Chapter 8

Algebraic Expressions

Exercise 8.1

Question 1.

From the algebraic expressions using variables, constants, and arithmetic operations:

(i) 6 more than thrice a number x.

(ii) 5 times x is subtracted from 13.

(iii) The numbers x and y both squared and added.

(iv) Number 7 is added to 3 times the product of p and q.

(v) Three times of x is subtracted from the product of x with itself.

(vi) Sum of the numbers m and n is subtracted from their product. Solution:

(i) 6 more than thrice a number x = 3x + 6

(ii) 5 times x is subtracted from 13 = 13 - 5x

(iii) The numbers x and y both squared and added = $x^2 + y^2$

(iv) Number 7 is added to 3 times the product of p and q = 3pq + 1

- (v) Three times of x is subtracted from the product of x with itself = $x^2 3x$
- (vi) Sum of the numbers m and n is subtracted from their product = mn (m + n)

Question 2.

A taxi charges ₹ 9 per km and a fixed charge of ₹ 50. If the taxi is hired for x km, write an algebraic expression for this situation.

Solution:

Charges of a taxi = ₹ 9 per km

Fixed charges = ₹ 50

and taxi is hired for x km = (9x + 50) rupees

Question 3. Write down the algebraic expression whose terms are: (i) 5a, -3b, c (ii) x², -5x, 6 (iii) x²y, xy, -xy²

(i) 5a - 3b + c(ii) $x^2 - 5x + 6$ (iii) $x^2y + xy - xy^2$

Question 4. Write all the terms of each of the following algebraic expressions: (i) 3 - 7x(ii) 2 - 5a + 12 b(iii) $3x^5 + 4y^3 - 7xy^2 + 3$ Solution: (i) 3 - 7x = 3, -7x(ii) $2 - 5a + \frac{3}{2}b = 2, -5a, \frac{3}{2}b$ (iii) $3x^5 + 4y^3 - 7xy^2 + 3 = 3x^5, 4y^3, -7xy^2, 3$

Question 5.

Identify the terms and their factors in the algebraic expressions given below: (i) -4x + 5y(ii) $xy + 2x^2y^2$ (iii) 1.2ab - 2.4b + 3.6aSolution: (i) -4x + 5y -4x = -4, x5y = 5, y

(ii) $xy + 2x^2y^2$ xy = x, y $2x^2y^2 = 2, x, x, y, y$ (iii) 1.2ab - 2.4b + 3.6a 1.2ab = 1.2, a, b -2.4b = -2.4, b3.6a = 3.6, a

Question 6.

Show the terms and their factors by tree diagrams of the following algebraic expressions: (i) $8x + 3y^2$ (ii) $y - y^3$ (iii) $5xy^2 + 7x^2y$ (iv) $-ab + 2b^2 - 3a^2$

-3 a a

2

 $b \ b$

-1a

b

Question 7. Write down the numerical coefficient of each of the following: (i) -7x (ii) -2x³y² (iii) 6abcd² (iv) 2/3 pq² Solution: Numerical co-efficient

(i) -7x – numerical co-efficient is -7

(ii) -2x^3y^2 – numerical co-efficient is -2

(iii) 6abcd² – numerical co-efficient is 6

(iv) $\frac{2}{3}$ pq² – numerical co-efficient is $\frac{2}{3}$

Question 8.

Write down the coefficient of x in the following: (i) -4bx (ii) 5xyz (iii) -x (iv) -3x²y Solution: coefficient of x (i) -4bx - -4b (ii) 5xyz - 5yz

(iii) -x - -1

(iv) -3x²y - -3xy

Question 9. In -7xy²z³, write down the coefficient of: (i) 7x (ii) -xy² (iii) xyz (iv) 7yz² Solution: In -7xy²z³ (i) Co-efficient of 7x = -y²z³ (ii) Co-efficient of -xy² = 7z³

(iii) Co-efficient of $xyz = -7yz^2$

(iv) Co-efficient of $7yz^2 = -xyz$

Question 10.

Identify the terms (other than constants) and write their numerical coefficients in each of the following algebraic expressions:

(i) 3 - 7x(ii) $1 + 2x - 3x^2$

(iii) 1.2a + 0.8b

Solution:

Expression	Non-constant terms	Numerical co-efficient
(<i>i</i>) $3 - 7x$	-7 <i>x</i>	-7
(<i>ii</i>) $1 + 2x - 3x^2$	2x	2
	$-3x^{2}$	-3
(<i>iii</i>) $1.2a + 0.8b$	1.2 <i>a</i>	1.2
	0.8 <i>b</i>	0.8

Question 11.

Identify the terms which contain x and write the coefficient of x in each of the following expressions:

(i) 13y² - 8xy
(ii) 7x - xy²
(iii) 5 - 7xyz + 4x²y
Solution:

Expression	Term(s) Containing	Co-efficient of
	x	x
(i) $13y^2 - 8xy$	-8xy	-8y
(ii) $7x - xy^2$	7 <i>x</i>	7
	$-xy^2$	$-y^{2}$
(<i>iii</i>) $5 - 7xyz + 4x^2y$	-7xyz	-7 <i>y</i> z
	$4x^2y$	4xy

Question 12.

Identify the term which contain y2 and write the coefficient of y2 in each of the following expressions:

(i) 8 – xy²

(ii) $5y^2 + 7x - 3xy^2$ (iii) $2x^2y - 15xy^2 + 7y^2$

Expression	Term(s) Containing y ²	Co-efficient of y^2
(<i>i</i>) $8 - xy^2$	$-xy^2$	-x
(<i>ii</i>) $5y^2 + 7x - 3xy^2$	$5y^2$	5 -3r
(<i>iii</i>) $2x^2y - 15xy^2 + 7y^2$	$-15xy^2$	-15x
	$7y^2$	7

Question 13. Classify into monomials, binomials and trinomials: (i) 4y - 7z(ii) $-5xy^2$ (iii) x + y - xy(iv) $ab^2 - 5b - 3a$ (v) $4p^2q - 5pq^2$ (vi) 2017 (vii) $1 + x + x^2$ (viii) $5x^2 - 7 + 3x + 4$ Solution:

Expression	Number of terms	Kind
(<i>i</i>) $4y - 7z$	Two terms	Bionomial
(ii) $-5xy^2$	One term	Monomial
(iii) $x + y - xy$	Three terms	Trinomial
$(iv) ab^2 - 5b - 3a$	Three terms	Trinomial
(v) $4p^2q - 5pq^2$	Two terms	Bionomial
(vi) 2017	One term	Monomial
$(vii) 1 + x + x^2$	Three terms	Trinomial
$(viii)5x^2 - 7 + 3x + 4$	Three terms	Trinomial
$=5x^2+3x-3$		

Question 14. State whether the given pair of terms is of like or unlike terms: (i) -7x, 5/2 x (ii) -29x, -29y (iii) 2xy, 2xyz (iv) 4m²p, 4mp² (v) 12xz, 12x²z² (vi) -5pq, 7qp Solution:

(i) -7x, ⁵/₂ x - Like

- (ii) -29x, -29y Unlike
- (iii) 2xy, 2xyz Unlike
- (iv) 4m²p, 4mp² Unlike
- (v) 12xz, 12x²z² Unlike
- (vi) -5pq, 7qp Like

Question 15.

Identify like terms in the following:

(i) x²y, 3xy², -2x²y, 4x²y²

(ii) 3a²b, 2abc, -6a²b, 4abc

(iii) 10pq, 7p, 8q – p^2q^2 , -7qp, -100q, -23, 12 q^2p^2 , -5 p^2 , 41, 2405p, 78qp, 13 p^2q , q p^2 , 701 p^2 Solution:

(i) x²y and -2x²y are like terms.

(ii) 3a²b, -6a²b and 2abc, 4abc are pairs of like terms.

(iii) 10pq, -7qp, 78qp and 7p, 2405p and 8q, -100q,

and -p²q², 12q²p² and -23, 41 and -5p², 701p²

and 13p²q, qp² are groups of like terms.

Question 16.

Write down the degree of following polynomials in x:

(i) $x^2 - 6x^7 + x^8$ (ii) 3 - 2x(iii) -2 (iv) $1 - x^2$ Solution: (i) $x^2 - 6x^7 + x^8$; degree is 8 (ii) -2

(ii) 3 – 2x; degree is 1

- (iii) -2; degree is 0
- (iv) 1 x²; degree is 2

Question 17. Write the degree of the following polynomials: (i) $3x^2 - 5xy^2 + 7$

(ii) $xy^2 - y^3 + 3y^4 - 2$ (iii) $7 - 2x^3 - 5xy^3 + 9y^5$ Solution: (i) $3x^2 - 5xy^2 + 1$; degree is 1 + 2 = 3(ii) $xy^2 - y^3 + 3y^4 - 2$; degree is 4(iii) $7 - 2x^3 - 5xy^3 + 9y^5$; degree is 5

Question 18.

State true or false: (i) If 5 is constant andy is variable, then 5y and 5 + y are variables (ii) 7x has two terms, 7 and x (iii) 5 + xy is a trinomial (iv) 7a × bc is a binomial (v) $7x^3 + 2x^2 + 3x - 5$ is a polynomial (vi) $2x^2 - 3x$ is a polynomial (vii) Coefficient of x in -3xy is -3 Solution:

(i) True.

(ii) False. Correct: 7x has one term.

(iii) False. Correct: It is bionomial.

(iv) False. Correct: It is 7abc monomial.

(v) True.

(vi) False. Correct: It is bionomial.

(vii) False. Correct: It is -3y.

Exercise 8.2

Question 1. Add: (i) 7x, -3x (ii) 6x, -11x (iii) 5x², -9x² (iv) 3ab², -5ab² (v) 1/2 pq, -1/3 pq (vi) 5x³y, -23 x³y Solution: (i) 7x + (-3x) = 7x - 3x = 4x(ii) 6x + (-11x) = 6x - 11x = -5x(iii) $5x^2 + (-9x^2) = 5x^2 - 9x^2 = -4x^2$ $(iv) 3ab^2 + (-5ab^2) = 3ab^2 - 5ab^2 = -2ab^2$ (v) $\frac{1}{2}pq + \left(-\frac{1}{3}pq\right) = \frac{1}{2}pq - \frac{1}{3}pq$ $=\frac{3pq-2pq}{6}=\frac{pq}{6}=\frac{1}{6}pq$ (vi) $5x^3y + \left(-\frac{2}{3}x^3y\right) = 5x^3y - \frac{2}{3}x^3y$ $=\frac{15x^3y-2x^3y}{3}=\frac{13x^3y}{3}$ $=\frac{13}{3}x^3y$

Question 2. Add: (i) 3x, -5x, 7x (ii) 7xy, 2xy, -8xy (iii) -2abc, 3abc, abc (iv) 3mn, -5mn, 8mn, -4mn (v) 2x³, 3x³, -4x³, -5x³

Solution:

```
(i) 3x, -5x, 7x
= 3x - 5x + 7x
= (3 - 5 + 7)x
=(10-5)x
= 5x
(ii) 7xy, 2xy, -8xy
= 7xy + 2xy - 8xy
= (7 + 2 - 8)xy
= (9 - 8)xy
= XV
(iii) -2abc, 3abc, abc
= -2abc + 3abc + abc
= (-2 + 3 + 1) abc
= (4 - 2) abc
= 2abc
(iv) 3mn, -5mn, 8mn, -4mn
= 3mn - 5mn + 8mn - 4mn
= (3 - 5 + 8 - 4) mn
= (11 - 9) mn
= 2mn
(v) 2x<sup>3</sup>, 3x<sup>3</sup>, -4x<sup>3</sup>, -5x<sup>3</sup>
= 2x^3 + 3x^3 - 4x^3 - 5x^3
= (2 + 3 - 4 - 5) x^3
= (5 - 9) x^3
= -4x^{3}
```

Question 3. Simplify the following combining like terms: (i) 21b - 32 + 7b - 20b(ii) $12m^2 - 9m + 5m - 4m^2 - 7m + 10$ (iii) $-z^2 + 13z^2 - 5z + 7z^2 - 15z$ (iv) $5x^2y - 5x^2 + 3yx^2 - 3y^2 + x^2 - y^2 + 8xy^2 - 3y^2$ (v) p - (p - q) - (q - p) - q(vi) 3a - 2b - ab - (a - b + ab) + 3ab + b - a(vii) $(3y^2 + 5y - 4) - (8y - y^2 - 4)$

(i)
$$21b - 32 + 7b - 20b$$

= $21b + 7b - 20b - 32$
= $(21 + 7 - 20)b - 32$
= $(28 - 20)b - 32$
= $8b - 32$
(ii) $12m^2 - 9m + 5m - 4m^2 - 7m + 10$
= $12m^2 - 4m^2 - 9m + 5m - 7m + 10$
= $12m^2 - 4m^2 - 9m + 5m - 7m + 10$
= $12m^2 - 4m^2 - 9m + 5m - 7m + 10$
= $18m^2 - 11m + 10$
(iii) $-z^2 + 13z^2 - 5z + 7z^3 - 15z$
= $7z^3 - z^2 + 13z^2 - 5z - 15z$
= $7z^3 + 12z^2 - 20z$
(iv) $5x^2y - 5x^2 + 3yx^2 - 3y^2 + x^2 - y^2 + 8xy^2 - 3y^2$
= $5x^2y + 3x^2y + 8xy^2 - 5x^2 + x^2 - 3y^2 - y^2 - 3y^2$
= $(5 + 3) x^2y - (5 - 1) x^2 - (3 + 1 + 3) y^2 + 8xy^2$
= $8x^2y - 4x^2 - 7y^2 + 8xy^2$
= $8x^2y + 8xy^2 - 4x^2 - 7y^2$
(v) $p - (p - q) - (q - p) - q$
= $p - p + q - q + p - q$
= $p - p + q - q + p - q$
= $p - p + p + q - q - q$
= $p - q$
(vi) $3a - 2b - ab - (a - b + ab) + 3ab + b - a$
= $3a - 2a - 2b + b + b - ab + 3ab$
= $3a - 2a - 2b + 2b - ab + 3ab$
= $3a - 2a - 2b + 2b - ab + 3ab$
= $3a - 2a - 2b + 2b - ab + 3ab$
= $3a - 4a - 4b + 2b - 4b + 3ab$
= $3y^2 + 5y - 4 - 8y + y^2 + 4$
= $3y^2 + y^2 + 5y - 8y + 4 - 4$
= $4y^2 - 3y$

```
Question 4.

Find the sum of the following algebraic expressions:

(i) 5xy, -7xy, 3x^2

(ii) 4x^2y, -3xy^2, -5xy^2, 5x^2y

(iii) -7mn + 5, 12mn + 2, 8mn - 8, -2mn - 3

(iv) a + b - 3, b - a + 3, a - b + 3

(v) 14x + 10y - 12xy - 13, 18 - 7x - 10y + 8xy, 4xy

(vi) 5m - 7n, 3n - 4m + 2, 2m - 3mn - 5

(vii) 3x^3 - 5x^2 + 2x + 1, 3x - 2x^2 - x^3, 2x^2 - 7x + 9

(viii) 7a^2 - 5a + 2, 3a^2 - 7, 2a + 9, 1 + 2a - 5a^2

Solution:

(i) 5xy, -7xy, 3x^2
```

```
= 5xy - 7xy + 3x^2

= 3x^2 - 2xy

(ii) 4x^2y, -3xy^2, -5xy^2, 5x^2y

= 4x^2y + 5x^2y - 3xy^2 - 5xy^2

= 9x^2y - 8xy^2

(iii) -7mn + 5, 12mn + 2, 8mn - 8, -2mn - 3
```

```
-7mn + 5

12mn + 2

8mn - 8

-2mn - 3

11mn - 4
```

11mn - 4 (iv) a + b - 3, b - a + 3, a - b + 3a + b - 3-a + b + 3a - b + 3

$$\frac{a-b+3}{a+b+3}$$

a+b+3

12xy - 13
+8xy + 18
+4xy
+ 5

7x + 5

(vi) 5m - 7n, 3n - 4m + 2, 2m - 3mn - 5

5m - 7	'n
-4m + 3	3n+2
2m	-5 - 3mn
3m - 4	n-3-3mn

3m - 4n - 3mn - 3(vii) $3x^3 - 5x^2 + 2x + 1$, $3x - 2x^2 - x^3$, $2x^2 - 7x + 9$ $3x^3 - 5x^2 + 2x + 1$ $-x^3 - 2x^2 + 3x$ $\frac{2x^2 - 7x + 9}{2x^3 - 5x^2 - 2x + 10}$

$$2x^{3} - 5x^{2} - 2x + 10$$

(viii) $7a^{2} - 5a + 2$, $3a^{2} - 7$, $2a + 9$, $1 + 2a - 5a^{2}$
 $7a^{2} - 5a + 2$
 $3a^{2} - 7$

2a+9 $-5a^2+2a+1$ $5a^2-a+5$

Question 5. Simplify the following: (i) $2x^2 + 3y^2 - 5xy + 5x^2 - y^2 + 6xy - 3x^2$ (ii) $3xy^2 - 5x^2y + 7xy - 8xy^2 - 4xy + 6x^2y$ (iii) $5x^4 - 7x^2 + 8x - 1 + 3x^3 - 9x^2 + 7 - 3x^4 + 11x - 2 + 8x^2$

(i)
$$2x^2 + 3y^2 - 5xy + 5x^2 - y^2 + 6xy - 3x^2$$

= $2x^2 + 5x^2 - 3x^2 + 3y^2 - y^2 - 5xy + 6xy$
= $4x^2 + 2y^2 + xy$
(ii) $3xy^2 - 5x^2y + 7xy - 8xy^2 - 4xy + 6x^2y$
= $3xy^2 - 8xy^2 - 5x^2y + 6x^2y + 7xy - 4xy$
= $-5xy^2 + x^2y + 3xy$
(iii) $5x^4 - 7x^2 + 8x - 1 + 3x^3 - 9x^2 + 7 - 3x^4 + 11x - 2 + 8x^2$
= $5x^4 - 3x^4 + 3x^3 - 7x^2 - 9x^2 + 8x^2 + 8x + 11x - 1 + 7 - 2$
= $2x^4 + 3x^3 - 8x^2 + 19x + 4$

Question 6. Subtract: (i) $-5y^2$ from y^2 (ii) -7xy from -2xy(iii) a(b - 5) from b(5 - a)(iv) $-m^2 + 5mn$ from $4m^2 - 3mn + 8$ (v) $5a^2 - 7ab + 5b^2$ from $3ab - 2b - 2b^2$ (vi) $4pq - 5q^2 - 3p^2$ from $5p^2 + 3q^2 - pq$ (vii) $7xy + 5x^2 - 7y^2 + 3$ from $7x^2 - 8xy + 3y^2 - 5$ (viii) $2x^4 - 7x^2 + 5x + 3$ from $x^4 - 3x^3 - 2x^2 + 3$

Solution:

$$-5y^{2} \text{ from } y^{2}$$

= $y^{2} - (-5y^{2})$
= $y^{2} + 5y^{2}$
= $6y^{2}$
(ii) -7xy from -2xy
= $-2xy - (-7xy)$
= $-2xy + 7xy$
= $5xy$
(iii) $a(b - 5)$ from $b(5 - a)$
= $b(5 - a) - a(b - 5)$
= $5b - ab - ab + 5a$
= $5a + 5b - 2ab$

(iv)
$$-m^2 + 5mn \text{ from } 4m^2 - 3mn + 8$$

= $4m^2 - 3mn + 8 - (-m^2 + 5mn)$
= $4m^2 - 3mn + 8 + m^2 - 5mn$
= $5m^2 - 8mn + 8$
(v) $5a^2 - 7ab + 5b^2 \text{ from } 3ab - 2a^2 - 2b^2$
= $(3ab - 2a^2 - 2b^2) - (5a^2 - 7ab + 5b^2)$
= $3ab - 2a^2 - 2b^2 - 5a^2 + 7ab - 5b^2$
= $-7a^2 - 7b^2 + 10ab$
= $10ab - 7a^2 - 7b^2$
(vi) $4pq, -5q^2 - 3p^2 \text{ from } 5p^2 + 3q^2 - pq$
= $(5p^2 + 3q^2 - pq) - (4pq - 5q^2 - 3p^2)$
= $5p^2 + 3q^2 - pq - 4pq + 5q^2 + 3p^2$
= $5p^2 + 3q^2 - pq - 4pq + 5q^2 + 3p^2$
= $5p^2 + 3q^2 - 5pq$
(vii) $7xy + 5x^2 - 7y^2 + 3 \text{ from } 7x^2 - 8xy + 3y^2 - 5$
= $(7x^2 + 3y^2 - 8xy - 5) - (7xy + 5x^2 - 7y^2 + 3)$
= $7x^2 + 3y^2 - 8xy - 5 - 7xy - 5x^2 + 7y^2 - 3$
= $7x^2 - 5x^2 + 3y^2 + 7y^2 - 8xy - 7xy - 5 - 3$
= $2x^2 + 10y^2 - 15xy - 8$
(viii) $2x^4 - 7x^2 + 5x + 3 \text{ from } x^4 - 3x^3 - 2x^2 + 3$
= $(x^4 - 3x^3 - 2x^2 + 3) - (2x^4 - 7x^2 + 5x + 3)$
= $x^4 - 3x^3 - 2x^2 + 3 - 2x^4 + 7x^2 - 5x - 3$
= $x^4 - 2x^4 - 3x^3 - 2x^2 + 7x^2 - 5x + 3 - 3$
= $-x^4 - 3x^3 + 5x^2 - 5x$

Question 7. Subtract p - 2q + r from the sum of 10p - r and 5p + 2q. Solution:

Subtract p - 2q + r from the sum of 10p - r and 5p + 2qBy adding 10p - r + 5p + 2q and 5p + 2q, we get = 10p - r + 5p + 2q= 15p + 2q - r Now, (15p + 2q - r) - (p - 2q + r)= 15p + 2q - r - p + 2q - r= 14p + 4q - 2r

Question 8.

From the sum of 4 + 3x and $5 - 4x + 2x^2$, subtract the sum of $3x^2 - 5x$ and $-x^2 + 2x + 5$. Solution:

Sum of $(4 + 3x) + (5 - 4x + 2x^2)$ = $4 + 3x + 5 - 4x + 2x^2$ = $2x^2 - x + 9$ and sum of $3x^2 - 5x - x^2 + 2x + 5$ = $2x^2 - 3x + 5$ Now, $(2x^2 - x + 9) - (2x^2 - 3x + 5)$ = $2x^2 - x + 9 - 2x^2 + 3x - 5$ = 2x + 4

Question 9. What should be added to $x^2 - y^2 + 2xy$ to obtain $x^2 + y^2 + 5xy$? Solution:

Let the term added = Z term i.e., Z term + $x^2 - y^2 + 2xy = x^2 + y^2 + 5xy$ Z term = $(x^2 + y^2 + 5xy) - (x^2 - y^2 + 2xy)$ = $x^2 + y^2 + 5xy - x^2 + y^2 - 2xy$ = $2y^2 + 3xy$ The required term is $2y^2 + 3xy$

Question 10. What should be subtracted from $-7mn + 2m^2 + 3n^2$ to get $m^2 + 2mn + n^2$? Solution:

Let the term subtracted = Z term -7mn + $2m^2$ + $3n^2$ - Z term = m^2 + 2mn + n^2 Z term = (-7mn + 2mn + $3n^2$) - (m^2 + 2mn + n^2) = (-7mn + $2m^2$ + $3n^2$) - (m^2 + 2mn + n^2) = $-7mn + 2m^2 + 3n^2 - m^2 - 2mn - n^2$ = $m^2 + 2n^2 - 9mn$ The required term is $m^2 + 2n^2 - 9mn$

Question 11. How much is $y^4 - 12y^2 + y + 14$ greater than $17y^3 + 34y^2 - 51y + 68$? Solution:

The required expression = $(y^4 - 12y^2 + y + 14) - (17y^3 + 34y^2 - 51y + 68)$ = $y^4 - 12y^2 + y + 14 - 17y^3 - 34y^2 + 51y - 68$ = $y^4 - 17y^3 - 46y^2 + 52y - 54$

Question 12. How much does $93p^2 - 55p + 4$ exceed $13p^3 - 5p^2 + 17p - 90$? Solution:

The required expression

$$= (93p^{2} - 55p + 4) - (13p^{3} - 5p^{2} + 17p - 90)$$
$$= 93p^{2} - 55p + 4 - 13p^{3} - 5p^{2} - 17p + 90$$
$$= -13p^{3} + 98p^{2} - 72p + 94$$

Question 13.

What should be taken away from $3x^2 - 4y^2 + 5xy + 20$ to obtain $-x^2 - y^2 + 6xy + 20$? Solution:

The required expression

$$= (3x^{2} - 4y^{2} + 5xy + 20) - (-x^{2} - y^{2} + 6xy + 20)$$

= $3x^{2} - 4y^{2} + 5xy + 20 + x^{2} + y^{2} - 6xy - 20$
= $4x^{2} - 3y - xy$

Question 14. From the sum of $2y^2 + 3yz$, $-y^2 - yz - z^2$ and $yz + 2z^2$, subtract the sum of $3y^2 - z^2$ and $-y^2 + yz + z^2$. Solution:

Sum of
$$2y^2 + 3yz$$
, $-y^2 - yz - z^2$ and $yz + 2z^2$
= $2y^2 + 3yz - y^2 - yz - z^2 + yz + 2z^2$
= $y^2 + z^2 + 3yz$
and sum = $3y^2 - z^2 + (-y^2 + yz + z^2)$
= $3y^2 - z^2 - y^2 + yz + z^2$
= $2y^2 + yz$
Now, $(y^2 + z^2 + 3yz) - (2y^2 + yz)$
= $y^2 + z^2 + 3yz - 2y^2 - yz$
= $-y^2 + z^2 + 2yz$
= $-y^2 + 2yz + z^2$

Exercise 8.3

```
Question 1.

If m = 2, find the value of:

(i) 3m - 5

(ii) 9 - 5m

(iii) 3m^2 - 2m - 1

(iv) 5/2m - 4

Solution:

(i) 3m - 5 = 3 \times 2 - 5 = 6 - 5 = 1

(ii) 9 - 5m = 9 - 5 \times 2 = 9 - 10 = -1

(iii) 3m^2 - 2m - 7

= 3(2)^2 - 2 \times 2 - 7

= 12 - 4 - 7

= 12 - 11

= 1

(iv) \frac{5}{2}m - 4 = \frac{5}{2} \times 2 - 4 = 5 - 4 = 1
```

Question 2. If p = -2, find the value of: (1) 4p + 7(ii) $-3p^2 + 4p + 7$ (iii) $-2p^3 - 3p^2 + 4p + 7$

Solution:

```
p = -2
(i) 4p + 7
= 4 × (-2) + 7
= -8 + 7
= -1
(ii) -3p<sup>2</sup> + 4p + 7
= -3(-2)<sup>2</sup> + 4(-2) + 7
= -12 - 8 + 7
= -20 + 7
= -13
```

(iii)
$$-2p^3 - 3p^2 + 4p + 7$$

= $-2(-2)^3 - 3(-2)^2 + 4(-2) + 7$
= $16 - 12 - 8 + 7$
= $23 - 20$
= 3

Question 3. If a = 2, b = -2, find the value of: (i) $a^2 + b^2$ (ii) $a^2 + ab + b^2$ (iii) a² – b² Solution: a = 2, b = -2 (i) $a^2 + b^2$ $= (2)^2 + (-2)^2$ = 4 + 4 = 8 (ii) $a^2 + ab + b^2$ $= (2)^2 + 2 \times (-2) + (-2)^2$ = 4 - 4 + 4 = 8 - 4 = 4 (iii) a² – b² $= (2)^2 - (-2)^2$ = 4 - 4 = 0

Question 4. When a = 0, b = -1, find the value of the given expressions: (i) $2a^2 + b^2 + 1$ (ii) $a^2 + ab + 2$ (iii) $2a^2b + 2ab^2 + ab$

a = 0, b = -1(i) $2a^{2} + b^{2} + 1$ = $2(0)^{2} + (-1)^{2} + 1$ = 0 + 1 + 1= 2(ii) $a^{2} + ab + 2$ = $(0)^{2} + 0 \times (-1) + 2$ = 0 + 0 + 2= 2(iii) $2a^{2}b + 2ab^{2} + ab$ = $2(0)^{2}(-1) + 2(0)(-1)^{2} + 0 \times (-1)$ = 0 + 0 + 0= 0

Question 5. If p = -10, find the value of $p^2 - 2p - 100$. Solution:

p = -10, $p^{2} - 2p - 100$ $= (-10)^{2} - 2(-10) - 100$ = 100 + 20 - 100= 20

Question 6. If z = 10, find the value of $z^3 - 3(z - 10)$. Solution: z = 10 $z^3 - 3(z - 10)$ $= (10)^3 - 3(10 - 10)$ $= 1000 - 3 \times 0$ = 1000 - 0

Question 7. Simplify the following expressions and find their values when x = 2: (i) x + 7 + 4(x - 5)(ii) 3(x+2) + 5x - 7(iii) 6x + 5(x - 2)(iv) 4(2x - 1) + 3x + 11Solution: x = 2(i) x + 7 + 4(x - 5)= x + 7 + 4x - 20= 5x - 13 = 5 × 2 - 13 = 10 - 13= -3 (ii) 3(x + 2) + 5x - 7= 3x + 6 + 5x - 7= 8x - 1 = 8(2) - 1= 16 - 1 = 15 (iii) 6x + 5(x - 2)= 6x + 5x - 10= 11x - 10 = 11 × 2 - 10 = 22 - 10 = 12 (iv) 4(2x - 1) + 3x + 11= 8x - 4 + 3x + 11= 11x + 7 $= 11 \times 2 + 7$ = 22 + 7

= 29

Question 8. Simplify the following expressions and find their values when a = -1, b = -2:

```
(i) 2a - 2b - 4 - 5 + a
(ii) 2(a^2 + ab) + 3 - ab
Solution:
 a = -1, b = -2
 (i) 2a - 2b - 4 - 5 + a
 = 3a - 2b - 9
 = 3(-1) - 2(-2) - 9
 = -3 + 4 - 9
 = -12 + 4
 = -8
 (ii) 2(a<sup>2</sup> + ab) + 3 - ab
 = 2a^2 + 2ab + 3 - ab
 = 2a^2 + ab + 3
 = 2(-1)^2 + (-1)(-2) + 3
 = 2 × 1 + 2 + 3
 = 2 + 2 + 3
 = 7
```

Exercise 8.4

Question 1. If m = 2, find the value of: (i) 3m – 5 (ii) 9 – 5m (iii) 3m² – 2m – 1 (iv) 52 m – 4 Solution: (i) 3m - 5 = 3 × 2 - 5 = 6 - 5 = 1 (ii) 9 - 5m = 9 - 5 × 2 = 9 - 10 = -1 (iii) 3m² – 2m – 7 $= 3(2)^2 - 2 \times 2 - 7$ = 12 - 4 - 7 = 12 - 11 = 1 $(iv)\frac{5}{2}m - 4 = \frac{5}{2} \times 2 - 4 = 5 - 4 = 1$ Question 2. If p = -2, find the value of: (1) 4p + 7(ii) $-3p^2 + 4p + 7$ (iii) $-2p^3 - 3p^2 + 4p + 7$ Solution: p = -2(i) 4p + 7 $= 4 \times (-2) + 7$ = -8 + 7 = -1 (ii) $-3p^2 + 4p + 7$ $= -3(-2)^2 + 4(-2) + 7$ = -12 - 8 + 7 = -20 + 7 = -13

```
(iii) -2p^3 - 3p^2 + 4p + 7
= -2(-2)^3 - 3(-2)^2 + 4(-2) + 7
= 16 - 12 - 8 + 7
= 23 - 20
= 3
```

```
Question 3.
If a = 2, b = -2, find the value of:
(i) a^2 + b^2
(ii) a^2 + ab + b^2
(iii) a<sup>2</sup> – b<sup>2</sup>
Solution:
  a = 2, b = -2
 (i) a^2 + b^2
 = (2)^2 + (-2)^2
 = 4 + 4
  = 8
 (ii) a^2 + ab + b^2
 = (2)^2 + 2 \times (-2) + (-2)^2
 = 4 - 4 + 4
  = 8 - 4
  = 4
 (iii) a<sup>2</sup> - b<sup>2</sup>
 = (2)^2 - (-2)^2
  = 4 - 4
  = 0
```

Question 4. When a = 0, b = -1, find the value of the given expressions: (i) $2a^2 + b^2 + 1$ (ii) $a^2 + ab + 2$ (iii) $2a^2b + 2ab^2 + ab$

a = 0, b = -1(i) $2a^{2} + b^{2} + 1$ = $2(0)^{2} + (-1)^{2} + 1$ = 0 + 1 + 1= 2(ii) $a^{2} + ab + 2$ = $(0)^{2} + 0 \times (-1) + 2$ = 0 + 0 + 2= 2(iii) $2a^{2}b + 2ab^{2} + ab$ = $2(0)^{2}(-1) + 2(0)(-1)^{2} + 0 \times (-1)$ = 0 + 0 + 0= 0

Question 5. If p = -10, find the value of $p^2 - 2p - 100$. Solution:

p = -10, $p^{2} - 2p - 100$ $= (-10)^{2} - 2(-10) - 100$ = 100 + 20 - 100= 20

Question 6. If z = 10, find the value of $z^3 - 3(z - 10)$. Solution: z = 10 $z^3 - 3(z - 10)$ $= (10)^3 - 3(10 - 10)$ $= 1000 - 3 \times 0$ = 1000 - 0

Question 7. Simplify the following expressions and find their values when x = 2: (i) x + 7 + 4(x - 5)(ii) 3(x+2) + 5x - 7(iii) 6x + 5(x - 2)(iv) 4(2x - 1) + 3x + 11Solution: x = 2(i) x + 7 + 4(x - 5)= x + 7 + 4x - 20= 5x - 13 = 5 × 2 - 13 = 10 - 13= -3 (ii) 3(x + 2) + 5x - 7= 3x + 6 + 5x - 7= 8x - 1 = 8(2) - 1= 16 - 1 = 15 (iii) 6x + 5(x - 2)= 6x + 5x - 10= 11x - 10 = 11 × 2 - 10 = 22 - 10 = 12 (iv) 4(2x - 1) + 3x + 11= 8x - 4 + 3x + 11= 11x + 7 $= 11 \times 2 + 7$ = 22 + 7

= 29

Question 8. Simplify the following expressions and find their values when a = -1, b = -2:

```
(i) 2a - 2b - 4 - 5 + a
(ii) 2(a^2 + ab) + 3 - ab
Solution:
 a = -1, b = -2
 (i) 2a - 2b - 4 - 5 + a
 = 3a - 2b - 9
 = 3(-1) - 2(-2) - 9
 = -3 + 4 - 9
 = -12 + 4
 = -8
 (ii) 2(a<sup>2</sup> + ab) + 3 - ab
 = 2a^2 + 2ab + 3 - ab
 = 2a^2 + ab + 3
 = 2(-1)^2 + (-1)(-2) + 3
 = 2 × 1 + 2 + 3
 = 2 + 2 + 3
 = 7
```

Objective Type Questions

Question 1. Fill in the blanks: (i) The terms with different algebraic factors are called (ii) The number of terms in a monomial is (iii) An algebraic expression having two unlike terms is called a (iv) $3a^{2}b$ and $-7ba^{2}$ are terms. (v) $-6a^{2}b$ and $-6ab^{2}$ are terms. (vi) The number of unlike terms in the algebraic expression $3x^{2} - 2xy + 5x^{2}$ is (vii) The factors of the term $-3p^{2}q^{2}$ are (viii) The factors of the term $-3p^{2}q^{2}$ are (viii) The perimeter of a triangle whose sides measure 2a, b and a + b is (ix) The value of the expression $2x^{3} - 7x^{2} + 5x - 3$ when x = 1 is (x) In the term $-7a^{2}bc$, the coefficient of a is (xi) The degree of the polynomial $3 - 5x^{2} + 7x^{3} - x^{4}$ is (xii) The degree of the polynomial $3x^{2} - 2xy^{2} + 5$ is

Solution:

(i) The terms with different algebraic factors

are called unlike terms.

(ii) The number of terms in a monomial is one.

(iii) An algebraic expression having two unlike terms

is called a bionomial.

(iv) 3a²b and -7ba² are like terms.

(v) -6a²b and -6ab² are unlike terms.

(vi) The number of unlike terms in the algebraic expression

 $3x^2 - 2xy + 5x^2$ is 2.

(vii) The factors of the term $-3p^2q^2$ are -3, p, p, q, q.

(viii) The perimeter of a triangle whose sides measure

```
2a, b and a + b is 2a + b + a + b = 3a + 2b.
```

```
(ix) The value of the expression 2x^3 - 7x^2 + 5x - 3
```

when x = 1 is -3.

```
2(1)^3 - 7(1)^2 + 5(1) - 3
```

```
= 2 - 7 + 5 - 3
```

(x) In the term -7a²bc, the coefficient of a is -7abc. (xi) The degree of the polynomial $3 - 5x^2 + 7x^3 - x^4$ is 4. $3 - 5x^2 + 7x^3 - x^4$ is 4 (xii) The degree of the polynomial $3x^2 - 2xy^2 + 5$ is 3. $3x^2 - 2xy^2 + 5$ is 1 + 2 = 3

Question 2.

State whether the following statements are true (T) or false (F).

(i) The expression 5x + 7 - 2x is a trinomial.

(ii) (7x - 10) - (3x - 5) = 4x - 15.

(iii) The coefficient of 3x in -3x³y is -xy.

(iv) The constant term in the expression $2x^2 - 3xy - 7$ is 7.

(v) If x = 3 and y = 13 then the value of $xy (x^2 + y^2)$ is 919.

(vi) (3x - y + 5) - (x + y) is a binomial.

(vii) Sum of 2 and p is 2p.

(viii) Sum of $x^2 + x$ and $y^2 + y$ is $2x^2 + 2y^2$.

(ix) In like terms, variables and their powers are the same.

(x) Every polynomial is a monomial.

(xi) If we add a monomial and a binomial, then answer can never be a monomial.

(xii) If we subtract a monomial from a binomial, then the answer is at least a binomial.

(xiii) if we add a monomial and a trinomial, then the answer can be a monomial. (xiv) If we add a monomial and a binomial, then the answer can be a trinomial.

Solution:

(i) The expression 5x + 7 - 2x is a trinomial. (False)

Correct:

As 5x + 7 - 2x = 3x + 7 which has two terms.

(ii)
$$(7x - 10) - (3x - 5) = 4x - 15$$
. (False)

Correct:

(7x - 10) - (3x - 5) = 4x - 5

(iii) The coefficient of 3x in -3x³y is -xy. (False)

Correct:

As co-efficient of 3x is -x²y

(iv) The constant term in the expression

Correct:

2x² - 3xy - 7 is -7

(v) If x = 3 and y = $\frac{1}{3}$

(v) If x = 3 and y =
$$\frac{1}{3}$$

then the value of xy(x² + y²) is 9 $\frac{1}{9}$. (True)

$$xy(x^2 + y^2) = 3 \times \frac{1}{3} \left[(3)^2 + \left(\frac{1}{3}\right)^2 \right]$$

$$=1\left(9+\frac{1}{9}\right)=9\frac{1}{9}$$

(vi) (3x - y + 5) - (x + y) is a binomial. (False) Correct:

$$= 3x - y + 5 - x + y$$

= 2x - 2y + 5

It is trinomial.

(vii) Sum of 2 and p is 2p. (False)

Correct:

Sum of 2 and p is 2 + p not 2p.

(viii) Sum of $x^2 + x$ and $y^2 + y$ is $2x^2 + 2y^2$. (False)

Correct:

Sum of $x^2 + x$ and $y^2 + y = x^2 + y^2 + x + y$ not $2x^2 + 2y^2$

(ix) In like terms, variables and their powers are same. (True)

(x) Every polynomial is a monomial. (False)

It could be binomial, trinomial or polynomial.

```
(xi) If we add a monomial and a binomial,
```

then answer can never be a monomial. (False)

Correct:

It can be monomial.

For example :

3x + (5 - 3x) = 3x + 5 - 3x = 5 which is monomial.

(xii) If we subtract a monomial from a binomial, then the answer is at least a binomial. (False)

Correct:

It can be monomial also, for example

2x - (7 + 2x) = 2x - 2 - 2x = -7 which is a monomial.

(xiii) if we add a monomial and a trinomial,

then the answer can be a monomial. (False)

Correct:

It can be binomial also.

(xiv) If we add a monomial and a binomial,

then the answer can be a trinomial. (True)

Multiple Choice Questions

Choose the correct answer from the given four options (3 to 16): Question 3. The algebraic expression for the statement 'Thrice square of a number x subtracted from five times the sum of y and 2' is (a) $5y + 2 - 3x^2$ (b) $3x^2 - (5y + 2)$ (c) $5(y + 2) - 3x^2$ (d) $5(y + 2) - (3x)^2$ Solution: For the statement, thrice square of a number x

subtracted from five times the sum of y and 2 is $5(y + 2) - 3x^2(c)$

Question 4. The expression $7x - 5(x^2 + y^2)$ is a (a) monomial (b) binomial (c) trinomial (d) none of these Solution: $7x - 5(x^2 + y^2) = 7x - 5x^2 - 5y^2$

It is trinomial. (c)

Question 5. The coefficient of 5a² in -5a³bc is (a) -bc
(b) a²bc
(c) -a²bc
(d) -abc
Solution:

Co-efficient of 5a² in -5a³bc is -abc (d)

Question 6. Which of the following is a pair of like terms? (a) -5xy, 5x (b) -5xy, 3yz (c) -5xy, -5y (d) -5xy, 7yx Solution:

-5xy, 7yx is a pair of like terms. (d)

Question 7. The like terms is the expressions 3x(3 - 2y) and $2(xy + x^2)$ are (a) 9x and $2x^2$ (b) -6xy and 2xy(c) 9x and 2xy(d) -6xy and $2x^2$ Solution: Like terms in the expression

3x(3 - 2y) = 9x - 6xy and $2(xy + x^2) = 2xy + 2x^2$ are -6xy and 2xy (b)

Question 8. Identify the binomial out of the following: (a) $3xy^2 + 5y - x^2y$ (b) $2x^2y - 5y - 2x^2y$ (c) $3xy^2 + 5y - xy^2$ (d) xy + yz + zxSolution:

(a) 3xy² + 5y - x²y trinomial
(b) 2x²y - 5y - 2x²y = -5y monomial
(c) 3xy² + 5y - xy² = 2xy2 + 5y binomial (c)

Question 9.

The number of (unlike) terms in the expression $3xy^2 + 2y^2z - y^2x + y(xz + yz) - 5$ (a) 3 (b) 4

(c) 5

(d) 6

Solution:

The number of unlike terms in the expression

$$= 3xy^{2} + 2y^{2}z - y^{2}x + y(xz + yz) - 5$$

$$= 3xy^{2} + 2y^{2}z - y^{2}x + xyz + y^{2}z - 5$$

$$= 2xy^{2} + 3y^{2}z^{2} + xyz - 5$$

$$= 4 (b)$$

Question 10.

The value of the expression $x^3 + y^3$ when x = 2 and y = -2 is (a) 0 (b) 8 (c) 16 (d) -16 Solution: Value of $x^3 + y^3 = (2)^3 + (-2)^3 = 8 - 8 = 0$ (a)

Question 11. -xy - (-5xy) is equal to (a) -6xy(b) 6xy(c) -4xy(d) 4xySolution: -xy - (-5xy) = -xy + 5xy = 4xy (d)

Question 12. On subtracting 7x + 5y - 3 from 5y - 3x - 9, we get (a) 10x + 6 (b) -10x - 6 (c) 10x + 10y - 12 (d) -10x - 12

$$(5y - 3x - 9) - (7x + 5y - 3)$$

= 5y - 3x - 9 - 7x - 5y + 3
= -10x - 6 (b)

Question 13. The value of the expression 53 x² + 1 when x = -2 is (a) -173 (b) -73 (c) 213 (d) 233 Solution: $\frac{5}{3}x^2 + 1 = \frac{5}{3}(-2)^2 + 1 = \frac{5}{3} \times 4 + 1$

$$\frac{1}{3}x^{2} + 1 = \frac{1}{3}(-2)^{2} + 1 = \frac{1}{3} \times 4 + 1$$
$$= \frac{20}{3} + 1 = \frac{23}{3}$$
(d)

Question 14.

The number of sides in a pattern having 3 hexagons arranged in a row as shown in the given figure is

(a) 18
(b) 17
(c) 16
(d) 15
Solution:

Number of sides are = 16(c)

Question 15. The degree of the polynomial $3x^3y - 5xy^4 - 2x + 1$ is (a) 5 (b) 4 (c) 3 (d) 2

The degree of the polynomial $3x^{3}y - 5xy^{4} - 2x + 1$ is of $-5xy^{4} = 1 + 4 = 5$ (a)

Higher Order Thinking Skills (HOTS)

Question 1. The length of a rectangle is 3x - 4y + 6z and the perimeter is 7x + 8y + 17z, find the breadth of the rectangle. Solution: Length of rectangle = 3x - 4y + 6z $2 \times \text{length} = 6x - 8y + 12z$ and perimeter = 7x + 8y + 17z = 2(Length + Breadth)

 $2 \times \text{Breadth} = 7x + 8y + 17z - 6x + 8y - 12z = x + 5z + 16y$ Breadth = $\frac{x}{2} + 8y + \frac{5}{2}z$

Question 2.

Simplify:
$$\frac{3x}{5} + \frac{2x}{3} - \left(\frac{x}{2} + \frac{2x}{5}\right)$$
.

Solution:

$$\frac{3x}{5} + \frac{2x}{3} - \left(\frac{x}{2} + \frac{2x}{5}\right)$$
$$\frac{3x}{5} + \frac{2x}{3} - \frac{x}{2} - \frac{2x}{5}$$
$$= \frac{18x + 20x - 15x - 12x}{30}$$
$$= \frac{38x - 27x}{30} = \frac{11x}{30}$$
$$= \frac{11}{30}x$$

Question 3. If a = 3, b = -1, then find the value of each of the following:

(i) a^{b} (ii) b^{a} (iii) $(ab)^{b}$ (iv) $(a+b)^{b}$ (v) $\left(\frac{b}{a}\right)^{b}$ (vi) $\left(\frac{a}{b}+\frac{b}{a}\right)^{b}$

Solution:

a = 3, b = -1(i) $a^{b} = 3^{-1} = \frac{1}{3}$ (ii) $b^{a} = (-1)^{3} = -1$ (iii) $(ab)^{b} = [3 \times (-1)]^{-1} = (-3)^{-1} = \frac{1}{-3}$ (iv) $(a + b)^{b} = (3 - 1)^{-1} = (2)^{-1} = \frac{1}{2}$ (v) $\left(\frac{b}{a}\right)^{b} = \left(\frac{-1}{3}\right)^{-1} = \frac{3}{-1} = -3$ (vi) $\left(\frac{a}{b} + \frac{b}{a}\right)^{b} = \left(\frac{3}{-1} + \frac{-1}{3}\right)^{-1} = \left(-3 - \frac{1}{3}\right)^{-1}$ $= \left(\frac{-10}{3}\right)^{-1} = \frac{-3}{10}$

Check Your Progress

uestion 1. Consider the expression $32 x^2y - 12 xy^2 + 6x^2y^2$. (i) How many terms are there? What do you call such an expression? (ii) List out the terms. (iii) In the term $-12 xy^2$, write down the numerical coefficient and the literal coefficient. (iv) In the term $-12 xy^2$, what is the coefficient of x? Solution: $\frac{3}{7} x^2y = \frac{1}{7} xx^2 + 6x^2y^2$

(i) It has 3 terms : Trinomial
(ii)
$$\frac{3}{2}x^2y$$
, $\frac{-1}{2}xy^2$, $6x^2y^2$
(iii) $\ln \frac{-1}{2}xy^2$,
numerical coefficient = $\frac{-1}{2}$
Literal coefficient = xy^2
(iv) In the term $\frac{-1}{2}xy^2$
coefficient of x = $\frac{-1}{2}y^2$

Question 2. Write the Degree of the following polynomials: (i) $25 x^3 - 7x^2 - 12 x + 3$ (ii) $23 xy^2 - 5xy + 35 y^2x^2 + 2x$ Solution:

(i)
$$\frac{2}{5}x^3 - 7x^2 - \frac{1}{2}x + 3$$

Degree is 3.

(*ii*)
$$\frac{2}{3}xy^2 - 5xy + \frac{3}{5}y^2x^2 + 2x$$

Degree is
$$2 + 2 = 4$$

Question 3.

Identify monomials, binomials and trinomials from the following algebraic expressions: (i) $5x \times y$

(i) $3x \times y$ (ii) 3 - 5x(iii) 12 (7x - 3y + 5z)(iv) $3x^2 - 1.2xy$ (v) $-3x^3y^4z^5$ (vi) $5x(2x - 3y) + 7x^2$

(i) $5x \times y = 5xy$ Monomial (ii) 3 - 5x Binomial (iii) $\frac{1}{2}(7x - 3y + 5z)$ Trinomial (iv) $3x^2 - 1.2xy$ Binomial (v) $-3x^3y^4z^5$ Monomial (vi) $5x(2x - 3y) + 7x^2$ $= 10x^2 - 15xy + 7x^2$ $= 17x^2 - 15xy$ Binomial

Question 4.

Using horizontal method:

(i) Add $x^2 + y^2 - 2xy$, $-2x^2 - y^2 - 2xy$ and $3x^2 + y^2 + xy$ (ii) Subtract $-x^2 + y^2 + 2xy$ from $2x^2 - 3y^2$. Solution: (i) $x^2 + y^2 - 2xy - 2x^2 - y^2 - 2xy + 3x^2 + y^2 + xy$

$$= x^{2} - 2x^{2} + 3x^{2} + y^{2} - y^{2} + y^{2} - 2xy - 2xy + xy$$

= 2x² + y² - 3xy
(ii) (2x² - 3y²) - (-x² + y² + 2xy)
= 2x² - 3y² + x² - y² - 2xy
= 3x² - 4y² - 2xy

Question 5.

Using column method, add ab + 2bc - ca and 2ab - bc - ca and subtract 4ab + 5bc - 3ca. Solution:

ab + 2bc - ca 2ab - bc - ca 3ab + bc - 2ca 4ab + 5bc - 3ca - - + -ab - 4bc + ca

Question 6. The sides fo a triangle are 5a – 3b, 3a + 2b and 5b – 2a, find its perimeter.

Sides of a triangle are 5a - 3b, 3a + 2b and 5b - 2a Perimeter = 5a - 3b + 3a + 2b + 5b - 2a = 8a - 2a + 4b = 6a + 4b

Question 7.

If two adjacent sides of a rectangle are 4x + 7y and 3y - x, find its perimeter. Solution:

Two adjacent sides of a rectangle are 4x + 7y and 3y - x

Perimeter = 2(4x + 7y + 3y - x) = 2(3x + 10y) = 6x + 20y

Question 8. Subtract the sum of $3x^2 + 2xy - 2y^2$ and $5y^2 - 7xy$ from $5x^2 + 2y^2 - 3xy$. Solution:

Sum of
$$3x^2 + 2xy - 2y^2$$
 and $5y^2 - 7xy$
= $3x^2 + 2xy - 2y^2 + 5y^2 - 7xy$
= $3x^2 - 5xy + 3y^2$

Now,

$$\frac{5x^{2} + 2y^{2} - 3xy}{3x^{2} + 3y^{2} - 5xy}$$

$$\frac{- - +}{2x^{2} - y^{2} + 2xy} = 2x^{2} + 2xy - y^{2}$$

Question 9. What must be added to $5x^3 - 2x^2 + 3x + 7$ to get $7x^3 + 7x - 5$? Solution:

Required expression

$$= 7x^{3} + 7x - 5 - (5x^{3} - 2x^{2} + 3x + 7)$$

= 7x³ + 7x - 5 - 5x³ + 2x² - 3x - 7
= 2x³ + 2x² + 4x - 12

Question 10. How much is 3p - 4q + r less than 4p + 3q - 5r?

Required expression = (4p + 3q - 5r) - (3p - 4q + r)= 4p + 3q - 5r - 3p + 4q - r= p + 7q - 6r

Question 11. How much is $3a^2 - 5ab + 7b^2 + 3$ greater than $2a^2 + 2ab + 5$? Solution:

Required expression

$3a^2 - 5ab + 7$ $2a^2 + 2ab$	$b^2 + 3 + 5$
	-
$a^2 - 7ab + 7$	$b^2 - 2$

Question 12. How much should $5x^3 + 3x^2 - 2x + 1$ be increased to get $6x^2 + 7$? Solution:

Required expression
=
$$6x^2 + 7 - (5x^3 + 3x^2 - 2x + 1)$$

= $6x^2 + 7 - 5x^3 - 3x^2 + 2x - 1$
= $-5x^3 + 3x^2 + 2x + 6$

Question 13. Subtract the sum of $12ab - 10b^2 - 18a^2$ and $9ab + 12b^2 + 14a^2$ from the sum of $ab + 2b^2$ and $3b^2 - a^2$. Solution:

```
Sum of 12ab - 10b^2 - 18a^2
and 9ab + 12b^2 + 14a^2
12ab - 10b^2 - 18a^2
```

- - - -

 $\frac{9ab + 12b^2 + 14a^2}{21ab + 2b^2 - 4a^2}$

Now,

$$ab + 2b^{2} + 3b^{2} - a^{2}$$

$$ab + 5b^{2} - a^{2}$$

$$21ab + 2b^{2} - 4a^{2}$$

$$- - +$$

$$-20ab + 3b^{2} + 3a^{2}$$

Question 14. when a = 3, b = 0, c = -2, find the values of: (i) ab + 2bc + 3ca + 4abc (ii) a³ + b³ + c³ - 3abc Solution: a = 3, b = 0, c = -2 (i) ab + 2bc + 3ca + 4abc = 3 × 0 + 2 × 0 × (-2) + 3(-2)(3) + 4(3)(0)(-2) = 0 + 0 - 18 + 0 = -18 (ii) a³ + b³ + c³ - 3abc = (3)³ + (0)³ + (-2)³ - 3 × 3 × 0 × (-2) = 27 + 0 - 8 - 0 = 19

Question 15.

Write the algebraic expression for the nth term of the number pattern 13, 23, 33, 43, Solution:

13, 23, 33, 43 13 = $10 \times 1 + 3$ 23 = $10 \times 2 + 3$ 33 = $10 \times 3 + 3$ 43 = $10 \times 4 + 3$ $10 \times n + 3 = 10n + 3$ Where n is a natural number.