# **Mathematics**

(Chapter – 1) (Rational Numbers) (Class – VIII)

# Exercise 1.1

# **Question 1:**

Using appropriate properties find:

| (i)  | $-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$                                  |
|------|-------------------------------------------------------------------------------------------------------------------|
| (ii) | $\frac{2}{5} \times \left(\frac{3}{-7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$ |

# **Answer 1:**

(i) 
$$-\frac{2}{3} \times \frac{3}{5} + \frac{3}{2} - \frac{3}{5} \times \frac{1}{6} = -\frac{2}{3} \times \frac{3}{5} - \frac{3}{5} \times \frac{1}{6} + \frac{3}{2}$$
 [Using associative property]  
 $= \frac{3}{5} \left( \frac{-2}{3} - \frac{1}{6} \right) + \frac{5}{2}$  [Using distributive property]  
 $= \frac{3}{5} \left( \frac{-4-4}{6} \right) + \frac{5}{2} = \frac{3}{5} \times \frac{-5}{6} + \frac{5}{2}$   
 $= -\frac{1}{2} + \frac{5}{2} = -\frac{1+5}{2} = \frac{4}{2} = 2$   
(ii)  $\frac{2}{5} \times \left( \frac{3}{-7} \right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$   
 $= \frac{2}{5} \times \left( \frac{-3}{7} \right) + \frac{1}{14} \times \frac{2}{5} - \frac{1}{6} \times \frac{3}{2}$  [Using associative property]  
 $= \frac{2}{5} \times \left( \frac{-3}{7} + \frac{1}{14} \right) - \frac{1}{4}$  [Using distributive property]  
 $= \frac{2}{5} \times \left( \frac{-6+1}{14} \right) - \frac{1}{4} = \frac{2}{5} \times \frac{-5}{14} - \frac{1}{4}$   
 $= -\frac{1}{7} - \frac{1}{4} = -\frac{4-7}{28} = -\frac{11}{28}$ 



# **Question 2:**

Write the additive inverse of each of the following:

| (i)   | $\frac{2}{8}$   |
|-------|-----------------|
| (ii)  | $\frac{-5}{9}$  |
| (iii) | $\frac{-6}{-5}$ |
| (iv)  | $\frac{2}{-9}$  |
| (v)   | $\frac{19}{-6}$ |

# **Answer 2:**

We know that additive inverse of a rational number  $\frac{a}{b}$  is  $\left(\frac{-a}{b}\right)$ , such that  $\frac{a}{b} + \left(\frac{-a}{b}\right) = 0$ .

(i) Additive inverse of  $\frac{2}{8}$  is  $\frac{-2}{8}$ . (ii) Additive inverse of  $\frac{-5}{9}$  is  $\frac{5}{9}$ .

(iii) Additive inverse of 
$$\frac{-6}{-5}$$
 is  $\frac{-6}{5}$ 

(iv) Additive inverse of 
$$\frac{2}{-9}$$
 is  $\frac{2}{9}$ 

(v) Additive inverse of 
$$\frac{19}{-6}$$
 is  $\frac{19}{6}$ 

#### **Question 3:**

Verify that -(-x) = x for:

(i) 
$$x = \frac{11}{15}$$
 (ii)  $x = -\frac{13}{17}$ 

# **Answer 3:**

(i) Putting 
$$x = \frac{11}{15}$$
 in  $-(-x) = x$ ,



$$-\left(-\frac{11}{15}\right) = \frac{11}{15} \qquad \Rightarrow \qquad \frac{11}{15} = \frac{11}{15}$$
$$\Rightarrow \qquad \text{L.H.S.} = \text{R.H.S.}$$

Hence, verified.

(ii) Putting 
$$x = \frac{-13}{17}$$
 in  $-(-x) = x$ ,  
 $-\left\{-\left(\frac{-13}{17}\right)\right\} = \frac{-13}{17} \implies \frac{-13}{17} = \frac{-13}{17}$   
 $\implies L.H.S. = R.H.S.$ 

Hence, verified.

#### **Question 4:**

Find the multiplicative inverse of the following:

(i) -13(ii)  $\frac{-13}{19}$ (iii)  $\frac{1}{5}$ (iv)  $\frac{-5}{8} \times \frac{-3}{7}$ (v)  $-1 \times \frac{-2}{5}$ (vi) -1

# **Answer 4:**

We know that multiplicative inverse of a rational number *a* is  $\left(\frac{1}{a}\right)$ , such that  $a \times \frac{1}{a} = 1$ .

- (i) Multiplicative inverse of -13 is  $\frac{-1}{13}$ .
- (ii) Multiplicative inverse of  $\frac{-13}{19}$  is  $\frac{-19}{13}$ .



(iii) Multiplicative inverse of 
$$\frac{1}{5}$$
 is 5.

(iv) Multiplicative inverse of 
$$\frac{-5}{8} \times \frac{-3}{7} = \frac{15}{56}$$
 is  $\frac{56}{15}$ 

(v) Multiplicative inverse of  $-1 \times \frac{-2}{5} = \frac{2}{5}$  is  $\frac{5}{2}$ .

(vi) Multiplicative inverse of 
$$-1$$
 is  $\frac{1}{-1}$ .

# **Question 5:**

Name the property under multiplication used in each of the following:

| (i)   | $\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5}$                           |
|-------|---------------------------------------------------------------------------|
| (ii)  | $-\frac{13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$ |
| (iii) | $\frac{-19}{29} \times \frac{29}{-19} = 1$                                |

#### **Answer 5:**

- (i) 1 is the multiplicative identity.
- (ii) Commutative property.
- (iii) Multiplicative Inverse property.

#### **Question 6:**

Multiply 
$$\frac{6}{13}$$
 by the reciprocal of  $\frac{-7}{16}$ 

# **Answer 6:**

The reciprocal of 
$$\frac{-7}{16}$$
 is  $\frac{-16}{7}$ 

According to the question,

$$\frac{6}{13} \times \left(\frac{-16}{7}\right) = \frac{-96}{91}$$

#### **Question 7:**

Tell what property allows you to compute  $\frac{1}{3} \times \left(6 \times \frac{4}{3}\right) \operatorname{as} \left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$ .

# **Answer 7:**

By using associative property of multiplication,  $a \times (b \times c) = (a \times b) \times c$ .

#### **Question 8:**

Is  $\frac{8}{9}$  the multiplicative inverse of  $-1\frac{1}{8}$ ? Why or why not?

# **Answer 8:**

Since multiplicative inverse of a rational number *a* is  $\left(\frac{1}{a}\right)$ , if  $a \times \frac{1}{a} = 1$ .

Therefore,  $\frac{8}{9} \times \left(-1\frac{1}{8}\right) = \frac{8}{9} \times \frac{-9}{8} = -1$ 

But its product must be positive 1.

Therefore,  $\frac{8}{9}$  is not the multiplicative inverse of  $\left(-1\frac{1}{8}\right)$ .

#### **Question 9:**

Is 0.3 the multiplicative inverse of  $3\frac{1}{3}$ ? Why or why not?

# **Answer 9:**

Since multiplicative inverse of a rational number *a* is  $\left(\frac{1}{a}\right)$ , if  $a \times \frac{1}{a} = 1$ .

Therefore,  $0.3 \times 3\frac{1}{3} = \frac{3}{10} \times \frac{10}{3} = 1$ 

Therefore, Yes 0.3 is the multiplicative inverse of  $3\frac{1}{2}$ .



#### **Question 10:**

Write:

- The rational number that does not have a reciprocal. (i)
- (ii) The rational numbers that are equal to their reciprocals.
- (iii) The rational number that is equal to its negative.

#### Answer 10:

- 0 (i)
- (ii) 1 and -1
- (iii) 0

#### **Question 11:**

Fill in the blanks:

- Zero has \_\_\_\_\_\_ reciprocal. (i)
- The numbers \_\_\_\_\_\_ and \_\_\_\_\_ are their own reciprocals. (ii)
- The reciprocal of –5 is \_\_\_\_\_. (iii)
- Reciprocal of  $\frac{1}{x}$ , where  $x \neq 0$  is \_\_\_\_\_. (iv)
- The product of two rational numbers is always a \_\_\_\_\_\_. (v)
- The reciprocal of a positive rational number is \_\_\_\_\_ (vi)

#### **Answer 11:**

- (i) No
- 1, -1 (ii)
- $\frac{-1}{5}$ (iii)
- (iv) x
- **Rational Number** (v)
- (vi) Positive



# Exercise 1.2

#### **Question 1:**

Represent these numbers on the number line:



#### **Question 2:**

Represent  $\frac{-2}{11}, \frac{-5}{11}, \frac{-9}{11}$  on the number line.

# 

#### **Question 3:**

Write five rational numbers which are smaller than 2.

# **Answer 3:**

 $\frac{1}{3}, \frac{1}{4}, \frac{1}{2}, \frac{-1}{2}, \frac{-1}{5}$  and so on.

#### **Question 4:**

Find ten rational numbers between  $\frac{-2}{5}$  and  $\frac{1}{2}$ .

#### **Answer 4:**

Given rational numbers  $\frac{-2}{5}$  and  $\frac{1}{2}$ Here, L.C.M. of 5 and 2 is 10.  $\therefore \qquad \frac{-2}{5} \times \frac{2}{2} = \frac{-4}{10}$  and  $\frac{1}{2} \times \frac{5}{5} = \frac{5}{10}$ Again,  $\frac{-4}{10} \times \frac{2}{2} = \frac{-8}{20}$  and  $\frac{5}{10} \times \frac{2}{2} = \frac{10}{20}$  $\therefore$  Ten rational number between  $\frac{-2}{5}$  and  $\frac{1}{2}$  are  $\frac{-7}{20}, \frac{-6}{20}, \frac{-5}{20}, \frac{-4}{20}, \frac{-3}{20}, \frac{-1}{20}, 0, \frac{1}{20}, \frac{2}{20}$ .

#### **Question 5:**

Find five rational numbers between:

(i) 
$$\frac{2}{3}$$
 and  $\frac{4}{5}$  (ii)  $\frac{-3}{2}$  and  $\frac{5}{3}$  (iii)  $\frac{1}{4}$  and  $\frac{1}{2}$ 

# Answer 5:

(i) 
$$\frac{2}{3}$$
 and  $\frac{4}{5}$ 



L.C.M. of 3 and 5 is 15.  $\therefore \frac{2}{3} \times \frac{5}{5} = \frac{10}{15} \text{ and } \frac{4}{5} \times \frac{3}{3} = \frac{12}{15}$ Again  $\frac{10}{15} \times \frac{4}{4} = \frac{40}{60}$  and  $\frac{12}{15} \times \frac{4}{4} = \frac{48}{60}$ Five rational numbers between  $\frac{2}{3}$  and  $\frac{4}{5}$  are  $\frac{41}{60}, \frac{42}{60}, \frac{43}{60}, \frac{44}{60}, \frac{45}{60}$ . *.*..  $\frac{-3}{2}$  and  $\frac{5}{3}$ (ii) L.C.M. of 2 and 3 is 6.  $\therefore \quad \frac{-3}{2} \times \frac{3}{3} = \frac{-9}{6} \text{ and } \frac{5}{3} \times \frac{2}{2} = \frac{10}{6}$ Five rational numbers between  $\frac{-3}{2}$  and  $\frac{5}{3}$  are  $\frac{-8}{6}, \frac{-7}{6}, 0, \frac{1}{6}, \frac{2}{6}$ . *.*. (iii)  $\frac{1}{4}$  and  $\frac{1}{2}$ L.C.M. of 4 and 2 is 4.  $\therefore \frac{1}{4} \times \frac{1}{1} = \frac{1}{4} \text{ and } \frac{1}{2} \times \frac{2}{2} = \frac{2}{4}$ Again  $\frac{1}{4} \times \frac{8}{8} = \frac{8}{32}$  and  $\frac{2}{4} \times \frac{8}{8} = \frac{16}{32}$ Five rational numbers between  $\frac{1}{4}$  and  $\frac{1}{2}$  are  $\frac{9}{32}, \frac{10}{32}, \frac{11}{32}, \frac{12}{32}, \frac{13}{32}$ *.*..

#### **Question 6:**

Write 5 rational numbers greater than -2.

#### **Answer 6:**

Five rational numbers greater than -2 are:



[Other rational numbers may also be possible]



# **Question 7:**

Find ten rational numbers between  $\frac{3}{5}$  and  $\frac{3}{4}$ .

# **Answer 7:**

The given rational numbers  $\frac{3}{5}$  and  $\frac{3}{4}$ 

L.C.M. of 5 and 4 is 20.

$$\therefore \qquad \frac{3}{5} \times \frac{4}{4} = \frac{12}{20} \text{ and } \frac{3}{4} \times \frac{5}{5} = \frac{15}{20}$$
Again  $\qquad \frac{12}{20} \times \frac{8}{8} = \frac{96}{160} \text{ and } \frac{15}{20} \times \frac{8}{8} = \frac{120}{160}$ 

$$\therefore \qquad \text{Five rational numbers between } \frac{3}{5} \text{ and } \frac{3}{4} \text{ are:}$$

$$\frac{97}{160}, \frac{98}{160}, \frac{99}{160}, \frac{100}{160}, \frac{101}{160}, \frac{102}{160}, \frac{103}{160}, \frac{104}{160}, \frac{105}{160}, \frac{106}{160}$$

