Exercise 7.1

Question 1:

Which of the following numbers are not perfect cubes:

(i)	216	(ii)	128
(iii)	1000	(iv)	100
(v)	46656		

Answer 1:

(i) 216

Prime factors of 216 = 2 x 2 x 2 x 3 x 3 x 3
Here all factors are in groups of 3's (in triplets)
Therefore, 216 is a perfect cube number.

2	216
2	108
2	54
3	27
3	9
3	3
	1

(ii) 128

Prime factors of $128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$ Here one factor 2 does not appear in a 3's group. Therefore, 128 is not a perfect cube.

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

1000		
	2	1000
Prime factors of 1000 = 2 x 2 x 2 x 3 x 3 x 3 Here all factors appear in 3's group. Therefore, 1000 is a perfect cube.		500
		250
	5	125
	5	25
	5	5
		1
100		

	2	100
Prime factors of 100 = 2 x 2 x 5 x 5 Here all factors do not appear in 3's group. Therefore, 100 is not a perfect cube.		50
		25
	5	5

(v) 46656

(iii)

(iv)

	Prime factors of 46656 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 x 3 x 3 x	2
	Here all factors appear in 3's group.	2
Therefore, 46656 is a perfect cube.		-

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

1

Question 2:

Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube:

(i)	243	(ii)	256
(iii)	72	(iv)	675
(v)	100		

Answer 2:

(i) 243			
Prime factors of 243 = 3 x 3 x 3 x 3 x 3 Here 3 does not appear in 3's group. Therefore, 243 must be multiplied by 3 to make it a perfect cube.		3	243
		3	81
		3	27
		3	9

3 3

3

1

(ii) 256

Prime factors of 256 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 Here one factor 2 is required to make a 3's group.

Therefore, 256 must be multiplied by 2 to make it a perfect cube.

2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

(iii) 72		
Prime factors of 72 = 2 x 2 x 2 x 3 x 3	2	
Here 3 does not appear in 3's group.	2	+
Therefore, 72 must be multiplied by 3 to make it a perfect cube.		
	2	

2	72
2	36
2	18
3	9
3	3
	1

(iv) 675 Prime factors of $675 = 3 \times 3 \times 3 \times 5 \times 5$	3	675
Here factor 5 does not appear in 3's group. Therefore 675 must be multiplied by 3 to make it a perfect cube.	3	225
	3	75
	5	25
	5	5
		1
(v) 100		
Prime factors of $100 = 2 \times 2 \times 5 \times 5$	2	100
Here factor 2 and 5 both do not appear in 3's group. Therefore 100 must be multiplied by 2 x 5 = 10 to make it a perfect	2	50
cube.	5	25
	5	5
		1

Question 3:

Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube:

(i)	81	(ii)	128
(iii)	135	(iv)	192
(v)	704		

Answer 3:

(i) 81

Prime factors of $81 = 3 \times 3 \times 3 \times 3$ Here one factor 3 is not grouped in triplets. Therefore 81 must be divided by 3 to make it a perfect cube.

3	81
3	27
3	9
3	3
	1

(ii)	128
------	-----

Prime factors of 128 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 Here one factor 2 does not appear in a 3's group. Therefore, 128 must be divided by 2 to make it a perfect cube.

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

(iii) 135

Prime factors of 135 = 3 x 3 x 3 x 5 Here one factor 5 does not appear in a triplet. Therefore, 135 must be divided by 5 to make it a perfect cube.

3	135
3	45
3	15
5	5
	1

(iv) 192

Prime factors of $192 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$ Here one factor 3 does not appear in a triplet. Therefore, 192 must be divided by 3 to make it a perfect cube.

2	192
2	96
2	48
2	24
2	12
2	6
3	3
	1

(v)

704

Prime factors of 704 = 2 x 2 x 2 x 2 x 2 x 2 x 11 Here one factor 11 does not appear in a triplet. Therefore, 704 must be divided by 11 to make it a perfect cube.

2	704
2	352
2	176
2	88
2	44
2	22
2	11
	1

Question 4:

Parikshit makes a cuboid of plasticine of sides 5 cm, 2 cm, 5 cm. How many such cuboids will he need to form a cube?

Answer 4:

Given numbers = $5 \times 2 \times 5$

Since, Factors of 5 and 2 both are not in group of three.

Therefore, the number must be multiplied by $2 \times 2 \times 5 = 20$ to make it a perfect cube.

Hence he needs 20 cuboids.

Exercise 7.2

Question 1:

Find the cube root of each of the following numbers by prime factorization method:

(i)	64	(ii)	512
(iii)	10648	(iv)	27000
(v)	15625	(vi)	13824
(vii)	110592	(viii)	46656
(ix)	175616	(x)	91125

Answer 1:

(i) 64

$$\sqrt[3]{64} = \sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2}$$

 $\sqrt[3]{64} = 2 \times 2$
 $= 4$

2	64
2	32
2	16
2	8
2	4
2	2
	1

(ii)	512	
∛51	$\overline{2} = \sqrt[3]{2 \times 2}$	2×2×2×2×2×2×2×2×2
	= 2 x 2	2 x 2
	= 8	

2	512
2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

(iii) 10648 $\sqrt[3]{10648} = \sqrt[3]{2 \times 2 \times 2 \times 11 \times 11 \times 11}$	2	10648
= 2 x 11	- 2	5324
= 22	2	2662
	11	1331
	11	121
	11	11
		1

(iv) 27000		
$\sqrt[3]{27000} = \sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5}$	2	27000
$= 2 \times 3 \times 5$ = 30	2	13500
- 50	2	6750
	3	3375

2	13500
2	6750
3	3375
3	1125
3	375
5	125
5	25
5	5
	1

(v)	15625
3√.	$\overline{5625} = \sqrt[3]{5 \times 5 \times 5 \times 5 \times 5 \times 5}$
	= 5 x 5
	= 25

5	15625
5	3125
5	625
5	125
5	25
5	5
	1

(vi) 13824		
$\sqrt[3]{13824} = \sqrt[3]{2 \times 2 \times 3 \times 3 \times $	2	13824
$= 2 \times 2 \times 2 \times 3$ = 24	2	6912
- 24	2	3456
	2	1728
	2	864
	2	432
	2	216
	2	108
	2	54
	3	27
	3	9
	3	3
		1
(vii) 110592		

2	110592
2	55296
2	27648
2	13824
2	6912
2	3456
2	1728
2	864
2	432
2	216
2	108

2	54
3	27
3	9
3	3
	1

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

(ix)	175616
∛1	$\overline{75616} = \sqrt[3]{2 \times 2 \times 7 \times 7$
	$= 2 \times 2 \times 2 \times 7$
	= 56

= 2 x 2 x 3 x 3

= 36

(viii) 46656

2	175616
2	87808
2	43904
2	21952
2	10976

2	5488
2	2744
2	1372
2	686
7	343
7	49
7	7
	1

(x)	91125
∛91	$\overline{125} = \sqrt[3]{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5}$
	= 3 x 3 x 5
	= 45

3	91125
3	30375
3	10125
3	3375
3	1125
3	375
5	125
5	25
5	5
	1

Question 2:

State true or false:

- (i) Cube of any odd number is even.
- (ii) A perfect cube does not end with two zeroes.
- (iii) If square of a number ends with 5, then its cube ends with 25.
- (iv) There is no perfect cube which ends with 8.
- (v) The cube of a two digit number may be a three digit number.
- (vi) The cube of a two digit number may have seven or more digits.
- (vii) The cube of a single digit number may be a single digit number.

Answer 2:

(i)	False			
	Since, $1^3 = 1, 3^3 = 27, 5^3 = 125, \dots$ are	all odd.		
(ii)	True			
	Since, a perfect cube ends with three ze	roes.		
	e.g. $10^3 = 1000, 20^3 = 8000, 30^3 = 27000, \dots$ so on			
(iii)	False			
	Since, $5^2 = 25, 5^3 = 125, 15^2 = 225, 15^3 = 35^3$	375 (Did not end with 25)		
(iv)	False			
	Since $12^3 = 1728$	[Ends with 8]		
	And $22^3 = 10648$	[Ends with 8]		
(v)	False			
	Since $10^3 = 1000$	[Four digit number]		
	And $11^3 = 1331$	[Four digit number]		
(vi)	False			
	Since $99^3 = 970299$	[Six digit number]		
(vii)	True			
	$1^3 = 1$	[Single digit number]		
	$2^3 = 8$	[Single digit number]		

Question 3:

You are told that 1,331 is a perfect cube. Can you guess with factorization what is its cube root? Similarly guess the cube roots of 4913, 12167, 32768.

Answer 3:

We know that $10^3 = 1000$ and Possible cube of $11^3 = 1331$ Since, cube of unit's digit $1^3 = 1$ Therefore, cube root of 1331 is 11.

4913 We know that $7^3 = 343$ Next number comes with 7 as unit place $17^3 = 4913$ Hence, cube root of 4913 is 17.

12167 We know that $3^3 = 27$ Here in cube, ones digit is 7 Now next number with 3 as ones digit $13^3 = 2197$ And next number with 3 as ones digit $23^3 = 12167$ Hence cube root of 12167 is 23.

32768 We know that $2^3 = 8$ Here in cube, ones digit is 8 Now next number with 2 as ones digit $12^3 = 1728$ And next number with 2 as ones digit $22^3 = 10648$ And next number with 2 as ones digit $32^3 = 32768$

Hence cube root of 32768 is 32.

