Determinants Class 12th

Solving System of Linear Equations (Matrix Method)

Solving System of Linear Equations (Matrix Method)	
Q.1)	An amount of Rs 5000 is put in to three investments at the rate of interest of 6%,7% and
	8 % per annum. The total annual income is Rs 358. If the combined income from the first
	two investments is Rs 70 more than the income from the third, find the amount of each
	investment by matrix method.
Sol.1)	Let $Rs. x$, $Rs. y$ and $Rs. z$ be the investments
	from given conditions: $x + y + z = 5000$ (1)
	$\frac{6}{100} \times x + \frac{7}{100} \times y + \frac{8}{100} \times z = 358$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	and $\frac{6x}{100} + \frac{7y}{100} = \frac{8z}{100} + 70$ {combined income from first two is 70 more than
	3 rd }
	(or) $6x + 7y - 8z = 7000$ (3)
	∴ the equations are
	x + y + z = 5000
	6x + 7y + 8z = 35800
	6x + 7y - 8z = 7000
	\rightarrow Now solve by yourself using $x = A^{-1}B$
	$x = Rs \ 1000$; $y = Rs \ 2200$; $z = Rs \ 1800$ ans.
Q.2)	Two institutions decided to award their employees for the three values of resourcefulness,
	competence and determination in the form of prizes at the rate Rs x , Rs y , Rs z
	respectively per person. The first institution decided to award respectively 4 , 3 and
	2employees with a total prize money of Rs.37000 and the second institution decided to
	award respectively 5 , 3 and 4 employees with a total prize money of Rs.47000. If all the
	three prizes per person together amount to Rs.12000 then by matrix method. Find the
	value of x , y and z.
Sol.2)	Here $Rs.$, $Rs.$ y and $Rs.$ z are the award money for resourcefulness , competence and
	determination respectively
	from above data/condition , the equation are
	4x + 3y + 2z = 37000
	5x + 3y + 4z = 47000
	x + y + z = 12000
	(Do yourself using $X = A^{-1}B$)
	Rs. 4000, Rs. 5000, Rs. 3000 ans.
Q.3)	Two school's P and Q decided to award prizes for (1) academic (2) sports (3) all-rounder
	achievements. School P awarded Rs 12000 to 3, 1, 1 students while Q awarded Rs 7,000
	to 1, 0, 2 students in the above categories. All the three prizes amount to Rs 6000. Find
	matrix representation of the above situation form equations and solve them by matrix
	method to find value of each prize. Do you agree that prizes should be given for honestly
6-1-0	and good character also? Give reasons.
Sol.3)	Let $Rs. x, Rs. y$, and $Rs. z$ are the awarded money for academic, sports and all rounder
	achievement respectively
	the matrix form is
	$\begin{bmatrix} 3 & 1 & 1 & \lambda & & 12000 \\ 1 & 0 & 2 & \lambda & & & 7000 \end{bmatrix}$
	$\begin{bmatrix} 3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 12000 \\ 7000 \\ 6000 \end{bmatrix}$
	$(or) A X = B \Rightarrow X = A^{-1}B$
	Equations are $3x + y + z = 12000$
	x + 0y + 2z = 7000

and x + y + z = 600Rs. 3000, Rs 1000 and Rs 2000 ans.

Properties of Determinates & Adjoint

Q.4) Show that A =
$$\begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix}$$
 satisfies the equation $f(x) = x^2 - 6x + 17 = 0$. Hence find A^{-1} .

Sol.4) We have
$$A = \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} -5 & -18 \\ 18 & 7 \end{bmatrix}$$
given $f(x) = x^{2} - 6x + 17$

$$\Rightarrow f(A) = A^{2} - 6A + 17I$$

$$= \begin{bmatrix} -5 & -18 \\ 18 & 7 \end{bmatrix} - \begin{bmatrix} 12 & -18 \\ 18 & 24 \end{bmatrix} + \begin{bmatrix} 17 & 0 \\ 0 & 17 \end{bmatrix}$$

$$A^{2} - 6A + 17I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$$

Clearly A satisfies the equation $x^2 - 6x + 17 = 0$

Now we have, $A^2 - 6A + 17I = 0$

Pre-multiply by A⁻¹

$$\Rightarrow A^{-1}A^2 - 6A^{-1}A + 17A^{-1}I = A^{-1}0$$

$$\Rightarrow A^{-1}A \cdot A - 6I + 17A^{-1} = 0$$

$$\Rightarrow$$
 IA - 6 I + 17A⁻¹ = 0

$$\Rightarrow A - 6I + 17A^{-1} = 0$$

$$\Rightarrow$$
 17A⁻¹ = 6 I – A

$$\Rightarrow 17A^{-1} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix} - \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ -3 & 2 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \frac{1}{17} \begin{bmatrix} 4 & 3 \\ -3 & 2 \end{bmatrix} \qquad \text{ans}$$

$$\Rightarrow A - 6I + 17A = 0$$

$$\Rightarrow 17A^{-1} = 6I - A$$

$$\Rightarrow 17A^{-1} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix} - \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ -3 & 2 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \frac{1}{17} \begin{bmatrix} 4 & 3 \\ -3 & 2 \end{bmatrix} \quad \text{ans.}$$
Q.5)
$$\text{If } A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \text{ show that } A^3 - 6A^2 + 5A + 11I = 0 \text{ and hence find } A^{-1}.$$
Sol 5)
$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

Sol.5)
$$A = \begin{bmatrix} 12 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

$$A^{2} = A \cdot A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix}$$

$$A^{3} = A^{2} \cdot A = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix}$$

$$Now A^{3} - 6A^{2} + 5A + 11 I$$

$$= \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix} - 6 \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} + 5 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} + 11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0 \text{ (proved)}$$

(ii) we have $A^3 - 6A^2 + 5A + 11I = 0$

Pre-multiply by A⁻¹

$$\Rightarrow A^{-1}A^3 - 6A^{-1}A^2 + 5AA^{-1} + 11A^{-1}I = A^{-1}0$$

$$\Rightarrow A^{-1}A \cdot A^2 - 6A^{-1}A \cdot A + 5I + 11A^{-1}I = 0$$

$$\Rightarrow I A^2 - 6 I A + 5 I + 11 A^{-1} = 0$$

$$\Rightarrow A^2 - 6A + 5I + 11A^{-1} = 0$$

$$\Rightarrow 11A^{-1} = 6A - A^2 - 5I$$

$$Adj(AB) = \begin{bmatrix} 94 & -39 \\ -82 & 34 \end{bmatrix}$$

$$(AB)^{-1} = -\frac{1}{2} \begin{bmatrix} 94 & -39 \\ -82 & 34 \end{bmatrix}$$
Taking RHS = B⁻¹ A⁻¹

$$= -\frac{1}{2} \begin{bmatrix} 9 & -7 \\ -8 & 6 \end{bmatrix} \begin{bmatrix} 5 & -2 \\ -7 & 3 \end{bmatrix}$$

$$= -\frac{1}{2} \begin{bmatrix} 94 & -39 \\ -84 & 34 \end{bmatrix} = (AB)^{-1}$$
Hence $(AB)^{-1} = B^{-1} A^{-1}$ verified ans.

Hence
$$(AB)^{-1} = B^{-1}A^{-1}$$
 verified ans.

Q.9) If $A = \begin{bmatrix} 1 & tan x \\ -tan x & 1 \end{bmatrix}$ show that $A'A^{-1} = \begin{bmatrix} cos(2x) & -sin(2x) \\ sin(2x) & cos(2x) \end{bmatrix}$

Sol. $A' = \begin{bmatrix} 1 & -tan x \\ tan x & 1 \end{bmatrix}$

$$|A| = 1 + tan^2 x$$

Sol.
$$A' = \begin{bmatrix} 1 & -tan x \\ tan x & 1 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|}$$
 . Adj $A = \frac{1}{1 + \tan^2 x} \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix}$

Taking LHS A' A⁻¹

$$\begin{aligned}
&= \begin{bmatrix} 1 & -tan x \\ tan x & 1 \end{bmatrix} \frac{1}{1+tan^2x} \begin{bmatrix} 1 & -tan x \\ tan x & 1 \end{bmatrix} \\
&= \frac{1}{1+tan^2x} \begin{bmatrix} 1-tan^2x & -2tan x \\ 2tan x & 1-tan^2x \end{bmatrix} \\
&= \begin{bmatrix} \frac{1-tan^2x}{1+tan^2x} & \frac{-2tan x}{1+tan^2x} \\ \frac{2tan x}{1+tan^2x} & \frac{1-tan^2x}{1+tan^2x} \end{bmatrix} \\
&= \begin{bmatrix} cos(2x) & -sin(2x) \\ sin(2x) & cos(2x) \end{bmatrix} = RHS \quad ans.
\end{aligned}$$

- Q.10) (a) Find area of \triangle ABC whose vertices are A(3, 8), B(-4, 2), C(5, -1).
 - (b) Find equation of line joining A(3, 5) & B(4, 2) using determinants.
 - (c) Find value of λ so that points (1, -5), (-4, 7) and $(\lambda, 7)$ are collinear.

) A(3, 8) , B(-4, 2) , C(5, -1)
Area of
$$\triangle ABC = \frac{1}{2} \begin{vmatrix} 3 & 8 & 1 \\ -4 & 2 & 1 \\ 5 & -1 & 1 \end{vmatrix}$$

$$= \frac{1}{2} |3(2+1) - 8(-4-5) + 1(4-10)|$$

$$= \frac{1}{2} |9 + 72 - 6| = \frac{75}{2} \text{ square units}$$

(b) equation of Ab is given by

$$\begin{vmatrix} x & y & 1 \\ 3 & 5 & 1 \\ 4 & 2 & 1 \end{vmatrix} = 0$$

$$\Rightarrow x(5-2) - y(3-4) + 1(6-20) = 0$$

$$\Rightarrow 3x + y - 14 = 0 \quad \text{ans.}$$

(c) since (1, -5), (-4, 5) and $(\lambda, 7)$ are collinear Area of $\Delta = 0$