POINTERS

- Pointer is a variable that holds a memory address of another variable of same type.

- It supports dynamic allocation routines.

- It can improve the efficiency of certain routines.

C++Memory Map :

- Program Code : It holds the compiled code of the program.

- Global Variables : They remain in the memory as long as program continues.

- Stack : It is used for holding return addresses at function calls, arguments passed to
the functions, local variables for functions. It also storesthe current state of the CPU.

- Heap : It is aregion of free memory from which chunks of memory are allocated via
DMA functions,

Static Memory Allocation : The amount of memory to be allocated is known in advance and

it allocated during compilation, it isreferred to as Static Memory Allocation.

eg.inta /I Thiswill allocate 2 bytes for a during compilation.

Dynamic Memory Allocation :

referred to as dynamic memory allocation.
C++ offerstwo operator for DMA — new and delete.
eg intx=new int; float y= new float; // dynamic allocation
delete x; deletey; //dynamic deallocation
Free Store : It is a pool of unallocated heap memory given to a program that is used by the
program for dynamic memory allocation during execution.

Declaration and I nitialization of Pointers:

Datatype *variable_name;

Syntax : Datatype *variable_name;

Int *p; float *pl; char *c;

Eg. Int *p; float *p1l; char *c;
Two special unary operator * and & are used with pointers. The & is a unary operator that
returns the memory address of its operand.
Eg. Inta=10;int*p;, p=&a;
Pointer arithmetic:
Two arithmetic operations, addition and subtraction, may be performed on pointers.
When you add 1 to a pointer, you are actually adding the size of whatever the pointer is
pointing at. That is, each time a pointer is incremented by 1, it points to the memory location
of the next element of its base type.
eg. int*p; P++;
If current address of p is 1000, then p++ statement will increase p to 1002, not 1001.
If *C is char pointer and *p is integer pointer then

The amount of memory to be allocated is not known
beforehand rather it is required to allocated as and when required during runtime, it is

Char pointer C c+1 c+2 c+3 c+4 c+5 c+6 c+7
Address 100 101 102 103 104 105 106 107
Int pointer p p+1 p+2 p+3

Adding 1 to a pointer actually adds the size of pointer’s base type.

Base address : A pointer holds the address of the very first byte of the memory location

where it is pointing to. The addressof thefirst byteisknown asBASE ADDRESS.

Dynamic Allocation Operators:

C++ dynamic allocation allocate memory from the free storefhegp/poal, the pool of
unallocated heap memory provided to the program. C++ defines two unary operators new and
delete that perform the task of allocating and freeing memory during runtime.

Creating Dynamic Array :

Syntax : pointer-variable = new data-type [siz€];

e.g.int * array = new int[10];

Not array[0] will refer to the first element of array, array[1] will refer to the second element.
No initializes can be specified for arrays.

All array sizes must be supplied when new is used for array creation.

Two dimensional array :

int *arr, r, c;

r=5,c=5;

ar=new int[r* cJ;

Now to read the element of array, you can use the following loops :
For(inti=0;i<r;i++)

{

cout << “\n Enter element inrow “ << i+ 1<<*:*

For (int j=0; j <c; j++)

cn>>arr[i*c+]];

}
Memory released with delete as below:
Syntax for simple variable : For array :
delete pointer-variable; delete [size] pointer variable;
eg. delete p; Eg. delete[] arr;

Pointersand Arrays:

C++ treats the name of an array as constant pointer which contains base address i.e address of
first location of array. Therefore Pointer variables are efficiently used with arrays for declaration
aswell as accessing € ements of arrays, because array is continuous block of same memory
locations and therefore pointer arithmetic help to traversein the array easily.

void main()

t
Int *m;
int markg10] ={ 50,60,70,80,90,80,80,85,75,95} ;
m = marks; // address of first location of array or we can writeit as m=& markg[0]
for(int i=0;i<10;i++)
cout<< *m-++;
Il or
m = marks; // address of first location of array or we can writeit as m=& markg[0]
for(int i=0;i<10;i++)
cout<< *(mHi);

Array of Pointers:

To declare an array holding 10 int pointers—
int * ip[10];

That would be allocated for 10 pointersthat can point to integers.

Now each of the pointers, the elements of pointer array, may be initialized. To assign the address of

an integer variable phy to the forth element of the pointer array, we have to write ip[3] = & phy;

Now with *ip[3], we can find the value of phy. int *ip[5];

Index 0 1 2 3 4
address 1000 1002 1004 1006 1008
inta=12, b=23,¢c=34,d=45, e=56;
Variable a b C d e
Value 12 23 34 45 56
address 1050 1065 2001 2450 2725
ip[0] = &a; ip[1] = &b; ip[2] = &c; ip[3] = &d; ip[4] = &€
Index ip[0] ip[1] ip[2] ip[3] ip[4]
Array ip 1050 1065 2001 2450 2725
value
address 1000 1002 1004 1006 1008

ip isnow a pointer pointing to its first element of ip. Thusip is

equal to address of ip[Q], i.e. 1000

*ip (the value of ip[0]) = 1050
* (* ip) =thevalueof *ip=12

* % (jp+3) = * * (1006) = * (2450) = 45

Pointersand Strings:

Pointer is very useful to handle the character array also. E.g :
void main()
char str[] = “computer”;

{

char *cp;
Cp=str;

cout<<str ; //display string
cout<<cp; // display string
for (cp=str; *cp !'= “\0’; cp++) // display character by character by character

cout << --“<<*cp;

[/l arithmetic

str++; // not allowed because str is an array and array name is constant pointer
cp++; // allowed because pointer isavariable

cout<<cp;}

Output :

Computer
Computer

--C--0--M--p--U--t--e—T

omputer

An array of char pointersis very useful for storing strings in memory. Char

*subject[] ={ “Chemistry”, “Phycics’, “Maths”, “CS”, “English” } ;

In the above given declaration subject[] is an array of char pointers whose element pointers contain
base addresses of respective names. That is, the element pointer subject[0] stores the base address of
string “Chemistry”, the element pointer subject[1] stores the above address of string “Physics” and so
forth.

An array of pointers makes more efficient use of available memory by consuming lesser number
of bytesto storethe string.

An array of pointers makes the manipulation of the strings much easier. One can easily exchange
the positions of strings in the array using pointers without actually touching their

memory locations.

Pointersand CONST :

A constant pointer means that the pointer in consideration will always point to the same
address. Its address can not be modified.

A pointer to a constant refersto a pointer which is pointing to a symbolic constant. Look the
following example :

int m=20; Il integer m declaration

int*p=&m; // pointer p to an integer m

++ (*p); // ok : increments int pointer p

int * const c=&n; // acongt pointer cto anintger n

++ (* C); I/l ok : incrementsint pointer c i.e. its contents

++C; /l wrong : pointer c is const — address can’t be modified
const int cn = 10; /[aconst integer cn

const int *pc = &cn; // apointer to aconst int

++ (* po); /I wrong : int * pcis const — contents can’t be modified
++ pc; Il ok : increments pointer pc

const int * const cc = *k; /[aconst pointer to a const integer

++ (* cc); /' wrong : int *cc is const

++ CC; /' wrong : pointer cc is const

Pointersand Functions:
A function may be invoked in one of two ways :

1. call by value 2. call by reference

The second method call by reference can be used in two ways:

1. by passing the references 2. by passing the pointers
Reference is an alias name for avariable. For ex : int m =

23,

int &n=m;

int *p;

p=&m;

Then the value of mi.e. 23 is printed in the following ways : cout <<
m; /[using variable name

cout <<n; /[using reference name

cout << *p; // using the pointer

Invoking Function by Passing the References:
When parameters are passed to the functions by reference, then the formal parameters become

references (or aliases) to the actual parametersto the calling function.

That means the called function does not create its own copy of original values, rather, it refersto the
original values by different namesi.e. their references.

For example the program of swapping two variables with reference method :

#include<iostream.h>

void main()
{
void swap(int &, int &);
inta=5,b=6;
cout << “\nVaueof a:” <<a<<“andb:” << b;
swap(a, b);

cout << “\n After swapping value of a:” << a<<“and b:” << b;

void swap(int &m, int &n)

{
int temp; temp = m;
m=n;
n = temp;

}

output :

Vaueofa:5andb: 6
After swappingvalueof a: 6andb: 5

Invoking Function by Passing the Pointers:

When the pointers are passed to the function, the addresses of actual arguments in the calling function
are copied into formal arguments of the called function.

That means using the formal arguments (the addresses of original values) in the called function,
we can make changing the actual arguments of the calling function.

For example the program of swapping two variables with Pointers :

#include<iostream.h>

void main()
{
void swap(int *m, int *n);
inta=>5,b=¢6;
cout << “\nVaueof a:” <<a<<“andb:” << b;
swap(&a, &b);

cout << “\n After swapping value of a:” << a<<*“and b:” << b;

void swap(int *m, int *n)

{
int temp;
temp =*m;
*m - *n'
*n = temp;

}

Input :

Vaueofa:5andb: 6
After swappingvalueof a: 6andb: 5

Function returning Pointers:

The way a function can returns an int, an float, it also returns a pointer. The general form of prototype
of a function returning a pointer would be

Type* function-name (argument list);

#include <iostream.h> int

*min(int &, int &); void main()

{
inta b, *c;
cout << “\nEnter a:”; cin>> a;
cout << “\nEnter b :”; cint >> b;
c=min(a, b);
cout << “\n The minimumno is:” << *c;

}
int *min(int &X, int &Yy)

if(x<vy)
return (&x);
else
return (&Y)

}

Dynamic structures:

The new operator can be used to create dynamic structures also i.e. the structures for which the
memory is dynamically allocated.

struct-pointer = new struct-type;

student *stu;

stu = new Student;

A dynamic structure can be released using the deallocation operator delete as shown below :
delete stu;

Objectsas Function arguments:

Objects are passed to functions in the same way as any other type of variable is passed.

When it is said that objects are passed through the call-by-value, it means that the called function
creates a copy of the passed object.

A called function receiving an object as a parameter creates the copy of the object without invoking
the constructor. However, when the function terminates, it destroys this copy of the

object by invoking its destructor function.

If you want the called function to work with the original object so that there is no need to

create and destroy the copy of it, you may pass the reference of the object. Then the called function
refersto the original object using its reference or alias.

Also the object pointers are declared by placing in front of a object pointer’s name. Class-

name * object-pointer;

Eg. Student *su;

The member of a class is accessed by the arrow operator (->) in object pointer method.
Eg:

#include<iostream.h>

class Point

{x=y=0}
void getPoint(int x1, int y1)
{x=x1;y=y1;}
void putPoint()
{
cout <<“\nPoint : (“ << x <<, " <<y <<,
3%
void main()
{
Point p1, *p2;
cout << “\n Set point at 3, 5 with object”;
pl.getPoint(3,5);
cout << “\n Thepoint is:”;
pl.putPoint();
p2 = &pl,
cout << “\n Print point using object pointer :”;
p2->putPoint();
cout << “\n Set point at 6,7 with object pointer”;
p2->getPoint(6,7);
cout<< “\n The point is:”;
p2->putPoint();
cout << “\n Print point using object :”;
pl.getPoint();}
If you make an object pointer point to the first object in an array of objects, incrementing the pointer
would make it point to the next object in sequence.
student stud[5], * sp;

Sp = stud; Il sp pointsto the first element (stud[0])of stud
Spt+; /I 3p pointsto the second element (stud[1]) of stud sp + = 2;
/I sp pointsto the fourth element (stud[3]) of stud sp--; Il'sp

points to the third element (stud[2]) of stud

You can even make a pointer point to a data member of an object. Two points should be
considered :

1 A Pointer can point to only public members of a class.

2. The data type of the pointer must be the same as that of the data member it points to.

this Pointer :

In class, the member functions are created and placed in the memory space only once. That is

only one copy of functionsis used by all objects of the class.

Therefore if only one instance of a member function exists, how does it come to know which object’s
data member is to be manipulated?

Member Eunctiond Member Function2 [Member Function3

Object 1 Object 2 Object 3
Data Member1l Data Memberl Data Memberl
Data Member 2 Data Member 2 Data Member 2

For the above figure, if Member Function2 is capable of changing the value of Data Member3
and we want to change the value of Data Member3 of Object3. How would the Member Function2
come to know which Object’s Data Member3 is to be changed?

To overcome this problem this pointer is used.

When a member function is called, it is automatically passed an implicit argument that is a pointer to
the object that invoked the function. This pointer is called This.

That is if ojbect3 is invoking member function2, then an implicit argument is passed to member
function2 that pointsto object3 i.e. this pointer now pointsto object3.

The friend functions are not members of a class and, therefore, are not passed a this pointer. The static
member functions do not have a this pointer.

Solved Questions
Q.1 Howis*p different from**p ?
Ans: *p means, it is a pointer pointing to a memory location storing a value in it. But **p means, it
is a pointer pointing to another pointer which in turn points to a memory
location storing avalue in it.

Q.2 Howis&pdifferent from*p ?
Ans: &p gives us the address of variable p and *p. dereferences p and gives us the value
stored in memory location pointed to by p.

Q.3 Findtheerror in following code segment :
Float **p1, p2;
P2 = &p1;
Ans: In code segment, pl is pointer to pointer, it means it can store the address of another pointer
variable, whereas p2 is a simple pointer that can store the address of a normal variable. So here
the statement p2 = &p1 haserror.

Q.4 What will bethe output of the following code segment ?
char C1="A’;
char C2="'D’;
char *i, *j;
i =&C1;
j =&C2;
*i :J,
cout << C1;
Ans: Itwill print A.

Q.5 How doesC++ organize memory when aprogramisrun ?
Ans: Onceaprogramiscompiled, C++ creates four logically distinct regions of memory :
0] areato hold the compiled program code
(i) areato hold global variables
(iif) the stack areato hold the return addresses of function calls, arguments passed to the
functions, local variables for functions, and the current state of the CPU.
(iv) The heap area from which the memory is dynamically allocated to the program.

Q.6

Ans:

Q.13

Ans :

Identify and explain the error(s) in the following code segment :
float a] ={ 11.02, 12.13, 19.11, 17.41};

float *j, *k;

j=a

k=a+4;

=i 2

k=k/2

CoUt << “*j="<<*j<<™ *hk =" << *k << *\n”;

The erroneous statements in the code are :

=i 2

k=k/2

Because multiplication and division operations cannot be performed on pointer and |
and k are pointers.

How doesthe functioning of a function differ when
() an object is passed by value ? (i) anobject is passed by reference ?

(i) When an object is passed by value, the called function creates its own copy of
theobject by just copying the contents of the passed object. It invokes the
object’s copy constructor to create its copy of the object. However, the called
function destroys its copy of the object by calling the destructor function of
the object upon its termination.

() When an object is passed by reference, the called function does not crezte its own copy
of the passed object. Rather it refers to the original object using its
reference or alias name. Therefore, neither constructor nor destructor function of the
object isinvoked in such a case.

2MARKSPRACTICE QUESTIONS

Differentiate between static and dynamic allocation of memory.

Identify and explain the error in the following program :

#include<iostream.h>

int main()

{intx[]={1,23,45};
for (inti=0;1<5;i++)

{
cout << *X:
X++:

}

return O;

}

Give the output of the following :
char *s = “computer”;
for (int x = strlen(s) — 1; x >=0; x--)

for(inty =0; y <= x; y++) cout << gy];
cout << endl;

4, Identify the syntax error(s), if any, in the following program. Also give reason for errors.
void main()
{constint i = 20;
const int * const ptr = &i;
(*ptr++; int j= 15; ptr
=&j; }
5. What is ‘this’ pointer ? What is its significance ?
6. What will be the output of following program ?
#include<iostream.h>
void main()

char namel[] = “ankur”; char
name2[] = “ankur”; if (namel !=
name2)
cout << “\n both the strings are not equa”;
else
cout << “\n the strings are equal”; }
7. Give and explain the output of the following code :
void junk (int, int *);
int main() {
inti=6,j=-4
junk (i, &j);
cout <<“i="<<i<<" j="<<)<<“\n”;
return O; }

void junk(int a, int *b)
{

a=a" g
*ph=*p* *p }

