Preliminaries

Overview This chapter reviews the main things you need to know to start calculus.
The topics include the real number system, Cartesian coordinates in the plane,
straight lines, parabolas, circles, functions, and trigonometry.

Real Numbers and the Real Line

This section reviews real numbers, inequalities, intervals, and absolute values.

Real Numbers and the Real Line

Much of calculus is based on properties of the real number system. Real numbers
are numbers that can be expressed as decimals, such as

3

—— = —0.75000...
4
1
— =0.33333...
3
V2 =14142...
The dots ... in each case indicate that the sequence of decimal digits goes on

forever.
The real numbers can be represented geometrically as points on a number line
called the real line.

[ | | |
1 2 2 3w 4

N

The symbol R donotes either the real number system or, equivalently, the real line.

Properties of Real Numbers

The properties of the real number system fall into three categories: algebraic prop-
erties, order properties, and completeness. The algebraic properties say that the real
numbers can be added, subtracted, multiplied, and divided (except by 0) to produce
more real numbers under the usual rules of arithmetic. You can never divide by 0.
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The order properties of real numbers are summarized in the following list.

The symbol = means “implies.”

Notice the rules for multiplying an
inequality by a number. Multiplying by a
positive number preserves the inequality;
multiplying by a negative number
reverses the inequality. Also,
reciprocation reverses the inequality for
numbers of the same sign.

Rules for Inequalities
If a, b, and ¢ are real numbers, then:

1. a<b=a+c<b+c

2, a<b=>a—-c<b-c

3. a<bandc>0=ac <bc

4. a<bandc <0= bc <ac
Special case: a <b = —b < —a

1
5. a>0=->0
a

1 1
6. If a and b are both positive or both negative, then a < b = 5 < -
a

The completeness property of the real number system is deeper and harder to
define precisely. Roughly speaking, it says that there are enough real numbers to
“complete” the real number line, in the sense that there are no “holes” or “gaps”
in it. Many of the theorems of calculus would fail if the real number system were
not complete, and the nature of the connection is important. The topic is best saved
for a more advanced course, however, and we will not pursue it.

Subsets of R

We distinguish three special subsets of real numbers.

1. The natural numbers, namely 1,2,3,4, ...

2. The integers, namely 0, £1, £2, £3, ...

3. The rational numbers, namely the numbers that can be expressed in the form
of a fraction m/n, where m and n are integers and n # 0. Examples are

1 4 200 57
= —=, —, d 57=—.
3 9 130 1
The rational numbers are precisely the real numbers with decimal expansions
that are either

a) terminating (ending in an infinite string of zeros), for example,

f_l = 0.75000... =0.75 or

b) repeating (ending with a block of digits that repeats over and over), for example

23 The bar indicates the
= —=12.090909... = 2.09. block of repeating
11 digits.

The set of rational numbers has all the algebraic and order properties of
the real numbers but lacks the completeness property. For example, there is no
rational number whose square is 2; there is a “hole” in the rational line where v/2
should be.



Table 1 Types of intervals
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Real numbers that are not rational are called irrational numbers. They are char-
acterized by having nonterminating and nonrepeating decimal expansions. Examples
are 7, «/5 «3/5 and log;, 3.

Intervals

A subset of the real line is called an interval if it contains at least two numbers and
contains all the real numbers lying between any two of its elements. For example,
the set of all real numbers x such that x > 6 is an interval, as is the set of all x such
that —2 < x < 5. The set of all nonzero real numbers is not an interval; since O is
absent, the set fails to contain every real number between —1 and 1 (for example).

Geometrically, intervals correspond to rays and line segments on the real line,
along with the real line itself. Intervals of numbers corresponding to line segments
are finite intervals; intervals corresponding to rays and the real line are infinite
intervals.

A finite interval is said to be closed if it contains both of its endpoints, half-
open if it contains one endpoint but not the other, and open if it contains neither
endpoint. The endpoints are also called boundary points; they make up the in-
terval’s boundary. The remaining points of the interval are interior points and
together make up what is called the interval’s interior.

: Infinite:

Finite: ‘

" Notation
(a,b)
la, b]
la, b)
(a,b]
(a, 0)
[a, o0)
(o0, I;)

("'OO, b]

(=00, 00)

Set g ik Graph

{x|la < x < b}

a b
{xla <x <b)

a b
{xla < x < b}

a b
{xla <x < b}

a b
{x|x > a}

a
{xlx > a}

a
{x|x < b}

b

{x|x < b}
R (set of all real b

numbers)
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1 Solutions for Example 1.

Solving Inequalities

The process of finding the interval or intervals of numbers that satisfy an inequality
in x is called solving the inequality.

EXAMPLE 1 Solve the following inequalities and graph their solution sets on
the real line.

6
a) 2x—1<x+3 b) —% <241 ) >5
3 x—1
x Solution
a) 2x—1<x+3

2x <x+4 Add | to both sides.
x x <4 Subtract x from both sides.

The solution set is the interval (—oo, 4) (Fig. 1a).

b X
) —— < 2x+1
3
X
—x <6x+3 Multiply both sides by 3.
0<7x+3 Add x to both sides.
-3 < 7x Subtract 3 from both sides.
3
—7 <X Divide by 7.

The solution set is the interval (—3/7, oo) (Fig. 1b).

¢) The inequality 6/(x — 1) >5 can hold only if x > 1, because otherwise
6/(x — 1) is undefined or negative. Therefore, the inequality will be preserved
if we multiply both sides by (x — 1), and we have

6 5
x—1~

6>5x—-5 Multiply both sides by (x — 1).

11 > 5x Add 5 to both sides.
11 - 11
—_— < —
> X. Orx < 5
The solution set is the half-open interval (1, 11/5] (Fig. 1c). a

Absolute Value

The absolute value of a number x, denoted by |x|, is defined by the formula
x| = X, x>0
] —x, x < 0.
EXAMPLE2  |3|=3, [0|=0, |-5|=—(-5=5, |—lal|=1lal Q

Notice that |x| > O for every real number x, and |x| =0 if and only if x = 0.



It is important to remember that

Ja? = |a|. Do not write v/a2 = a unless
you already know that a > 0.

|5 =5 —— 3| —
] 1 T
-5 0 3
4=l =1-4]=3—
I I
1 4

2 Absolute values give distances
between points on the number line.

Notice that absolute value bars in
expressions like | — 3 + 5] also work like
parentheses: We do the arithmetic inside
before taking the absolute value.
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Since the symbol /a always denotes the nonnegative square root of a, an alternate
definition of |x]| is

x| = v/x2.

Geometrically, |x| represents the distance from x to the origin O on the real
line. More generally (Fig. 2)

|x — y| = the distance between x and y.

The absolute value has the following properties.

Absolute Value Properties

1. | —a| = |a| A number and its negative have the same absolute
value.
2. |ab| = |a]|b| The absolute value of a product is the product of
the absolute values.
a
3. ‘Z' = % The absolute value of a quotient is the quotient of

the absolute values.

4. la+b| <|a|+ |b| The triangle inequality The absolute value of
the sum of two numbers is less than or equal
to the sum of their absolute values.

If a and b differ in sign, then |a + b| is less than |a| + |b]. In all other cases, |a + b|
equals |a| + |b]|.

EXAMPLE 3
|=3+51=121=2<|-3+|5|=8
13+5] = 18] =13 + 15|
|=3-5=|-8=8=|-3]+]-5 a

EXAMPLE 4 Solve the equation [2x — 3| = 7.

Solution The equation says that 2x — 3 = %7, so there are two possibilities:

Equivalent equations
2x —3=17 2x =3 = -7 q "t eque
without absolute values

2x =10 2x = —4 Solve as usual.
x=35 x=-=2
The solutions of |2x — 3| =7 are x = 5 and x = —2. U

Inequalities Involving Absolute Values

The inequality |a| < D says that the distance from a to 0 is less than D. Therefore,
a must lie between D and —D.
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The symbol < means “if and only if,” or
“implies and is implied by.”

|
-4 5 14

3 The solution set of the inequality
|x — 5| <9 is the interval (—4, 14) graphed
here (Example 5).

(@)

(b)

4 Graphs of the solution sets (a) [1, 2]
and (b) (=0, 11U [2, ) in Example 7.

Intervals and Absolute Values
If D is any positive number, then

lal <D & —-D<a<D, (1)

lal<D <& —-D<a<D. ()]

EXAMPLE 5 Solve the inequality |x — 5| < 9 and graph the solution set on
the real line.

Solution [x =5/ <9

-9< x-5 <9 Eq. (1)

Add 5 to each part to
isolate x.

-9+5< x<9 +5

-4 < x<14
The solution set is the open interval (—4, 14) (Fig. 3). a
. . 2
EXAMPLE 6 Solve the inequality |5 — —| < 1.
X

Solution We have

2
<l & —-1<5--<1 Eq. (1)
x

2
& —b6<——<-4 Subtract 5.

X
1 ) 1
& 3>->2 Multiply by — =.
x 2
& 1 ! Take reci 1
—<Xx < -. ciprocals.
3 2

Notice how the various rules for inequalities were used here. Multiplying by a
negative number reverses the inequality. So does taking reciprocals in an inequality
in which both sides are positive. The original inequality holds if and only if (1/3) <
x < (1/2). The solution set is the open interval (1/3, 1/2). a

EXAMPLE 7 Solve the inequality and graph the solution set:

a) [2x—-3|<1 hb) 2x-3|>1
Solution
a) 2x = 3| <1

-1 <2x-3<1 Eq. (2)
2<2x <4 Add 3.
1<x<?2 Divide by 2.

The solution set is the closed interval [1, 2] (Fig. 4a).
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b) 2x —3|>1

Union and intersection
Notice the use of the symbol U to denote the x-321 or —@x -3 =1
union of intervals. A number lies in the 2x—3>1 or 2x —3 < -1 Multiply second
union of two sets if it lies in either set. incquality by —1.
Similarly we use the symbol N to denote x — E > l or x — E < _l Divide by 2.
intersection. A number lies in the 272 27 2
intersection 7 N J of two sets if it lies in 3
both sets I and J. For example, xz2 or x=1 Add 5.
[1,3)N[2,4] =[2,3). The solution set is (—00, 1]U [2, 00) (Fig. 4b). d

I R -]

Exercises 1

Decimal Representations

1. Express 1/9 as a repeating decimal, using a bar to indicate the
repeating digits. What are the decimal representations of 2/97 3/9?
8/9?

2. Express 1/11 as a repeating decimal, using a bar to indicate the
repeating digits. What are the decimal representations of 2/11?
3/1179/117

Inequalities

3. If 2 < x < 6, which of the following statements about x are nec-
essarily true, and which are not necessarily true?

a) 0<x<4 b) 0<x—-2<4

X 1 1 1
ol d - < - <-—
c) 1<2<3 ) 6<x<2
6
e) l<-<3 f) x—-4/<2
x
g) 6<-x<2 h) 6<—-—x<-2

4. If -1 <y —5 < 1, which of the following statements about y are
necessarily true, and which are not necessarily true?

a) 4<y<6 b) -6<y<—4

o y>4 d y<6

e O<y—4<2 f) 2<%<3
1 1 1

g) 6<;<Z h) |y-5<1

In Exercises 5-12, solve the inequalities and graph the solution sets.

5. —2x >4 6.8—-3x>5
7.5x—-3<7-3x 8. 32—-x)>2B+x)
1 7 6—x 3x —4

.2 — = - 10.
9. 2x 2z7x+6 0 1 < 2

4 1 x+5 12+43x
1. -(x—-2) < =(x — . —

5(x )<3(x 6) 12 <2

Absolute Value
Solve the equations in Exercises 13—18.

13. [y|=3 4. |y—3/=7 15. 2t +5| =4

9
16. |1 -t =1 17. |8—3s|=§ 18.

s 1’—1
S -1|=

Solve the inequalities in Exercises 19-34, expressing the solution sets
as intervals or unions of intervals. Also, graph each solution set on
the real line.

19. x| <2 20. x| <2 2. |1 —1] <3
2. 14+2 <1 23. 3y —7| < 4 24. 2y 45| <1
z 3 1 1
25 |2 -1] < 22— < L 3-Zl <2
|5 1’_1 2. |Zz-1|<2 27[ —1<3
2 1
28. |2 —4] <3 29, 25| > 4 30. Is+3] = 5
X
1
3. 1—x|>1 32. 2-3x|>5 33, ’;L ‘zl
3r 2
3. [ |2
5 1‘>5

Quadratic Inequalities

Solve the inequalities in Exercises 35-42. Express the solution sets
as intervals or unions of intervals and graph them. Use the result
va? = |a| as appropriate.

35, x2 <2 36. 4 < x? 37.4<x* <9

1 1
38.§<x2<z 39. x—1)?2 <4 40. (x+3)2 <2

41. x> -x <0 4. x2-x-2>0
Theory and Examples

43. Do not fall into the trap | — a| = a. For what real numbers a is
this equation true? For what real numbers is it false?
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44. Solve the equation [x — 1| =1 —x.

48. Graph the inequality |x| + |y] < 1.

45. A proof of the triangle inequality. Give the reason justifying 4 49. GRAPHER

.each of.the numbered steps in the following proof of the triangle a)  Graph the functions f(x) = x/2 and g(x) = 1 + (4/x) to-
inequality. gether to identify the values of x for which
la +b* = (a +b) (1M x 4
— &+ 2ab + b 27y
< a® +2|al|b| + b* (2) b) Confirm your findings in (a) algebraically.

< lal® + 2lallb| + [b)?
= (lal + Ib])?

la +b] < la| + |b]

46. Prove that |ab| = |a||b| for any numbers a and b.

(3) '@ 50. GRAPHER
a) Graph the functions f(x)=3/(x—1) and g(x)=
@) 2/(x + 1) together to identify the values of x for which
3 2
< .
x—1 x+1

47. If |x| <3 and x > —1/2, what can you say about x?

b

Positive y-axis

T~

Negative x-axis
RN

3

y

|~ Origin
S

Py 4 P(a, b)

-3 -2 -1 0

Negative y-axis

-3

l\2a

Positive x-axis

5 Cartesian coordinates.

b) Confirm your findings in (a) algebraically.

SRR e
Coordinates, Lines, and Increments

This section reviews coordinates and lines and discusses the
notion of increment.

Cartesian Coordinates in the Plane

The positions of all points in the plane can be measured with respect to two
perpendicular real lines in the plane intersecting in the O-point of each (Fig. 5).
These lines are called coordinate axes in the plane. On the horizontal x-axis,
numbers are denoted by x and increase to the right. On the vertical y-axis, numbers
are denoted by y and increase upward. The point where x and y are both 0 is the
origin of the coordinate system, often denoted by the letter O.

If P is any point in the plane, we can draw lines through P perpendicular to
the two coordinate axes. If the lines meet the x-axis at a and the y-axis at b, then a
is the x-coordinate of P, and b is the y-coordinate. The ordered pair (a, b) is the
point’s coordinate pair. The x-coordinate of every point on the y-axis is 0. The
y-coordinate of every point on the x-axis is 0. The origin is the point (0, 0).

The origin divides the x-axis into the positive x-axis to the right and the
negative x-axis to the left. It divides the y-axis into the positive and negative y-
axis above and below. The axes divide the plane into four regions called quadrants,
numbered counterclockwise as in Fig. 6.

A Word About Scales

When we plot data in the coordinate plane or graph formulas whose variables have
different units of measure, we do not need to use the same scale on the two axes. If
we plot time vs. thrust for a rocket motor, for example, there is no reason to place
the mark that shows 1 sec on the time axis the same distance from the origin as the
mark that shows 1 1b on the thrust axis.

When we graph functions whose variables do not represent physical measure-
ments and when we draw figures in the coordinate plane to study their geometry
and trigonometry, we try to make the scales on the axes identical. A vertical unit



2 Coordinates, Lines, and Increments 9

y
3¢—(0,3)
Second First
quadrant 2¢-0.2) quadrant
(= +) (+,+)
1¢-(0, 1)
0,0
2,0 \ (1,0 (2,0
i I B W
-2 -1 0 1 2
Thid 7O Fourh
quadrant quadrant
6 The points on the axes all have coordinate pairs, (=) 2o (+, )
s —-2¢-(0,-2)
but we usually label them with single numbers.
Notice the coordinate sign patterns in the quadrants.

61— C(5, 6)9
B(2,95)
<

Ax=0 |
A =—5%
. y

IF  Ay=38 D@5, 1)

Ax=-2

« A4,-3
2.5 4,-3)

7 Coordinate increments may be
positive, negative, or zero.

of distance then looks the same as a horizontal unit. As on a surveyor’s map or a
scale drawing, line segments that are supposed to have the same length will look
as if they do and angles that are supposed to be congruent will look congruent.
Computer displays and calculator displays are another matter. The vertical
and horizontal scales on machine-generated graphs usually differ, and there are
corresponding distortions in distances, slopes, and angles. Circles may look like
ellipses, rectangles may look like squares, right angles may appear to be acute
or obtuse, and so on. Circumstances like these require us to take extra care in
interpreting what we see. High-quality computer software usually allows you to
compensate for such scale problems by adjusting the aspect ratio (ratio of vertical
to horizontal scale). Some computer screens also allow adjustment within a narrow
range. When you use a grapher, try to make the aspect ratio 1, or close to it.

Increments and Distance

When a particle moves from one point in the plane to another, the net changes
in its coordinates are called increments. They are calculated by subtracting the
coordinates of the starting point from the coordinates of the ending point.

EXAMPLE 1 In going from the point A(4, —3) to the point B(2,5) (Fig. 7),
the increments in the x- and y-coordinates are

Ax=2—-4=-2 Ay=5—(=3)=8. Q

hange in that variable. If x changes

EXAMPLE 2 From C(5, 6) to D(5, 1) (Fig. 7) the coordinate increments are
Ax =5-5=0, Ay=1-6=-5. Q
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Y This distance is The distance between points in the plane is calculated with a formula that
d= \ll -5+ 9 - 9 - comes from the Pythagorean theorem (Fig. 8).
a2 A)
%~ Distance Formula for Points in the Plane
The distance between P(x;, y;) and Q(xz, y5) is
e %, ) d = V(Ax)> + (Ay)* =V (x2 — x1)> + (32 — 1)
| ] 5
0 x| X,
8 To calculate the distance between EXAMPLE 3
Pythagorean thesronh 16 angle Pco. ) The distance between P(~1,2) and Q(3.4) is

VB— (=P +@4-22=V@#?+ 22 =v20=+4.5=2/5.
b) The distance from the origin to P(x, y) is
Vi =02+ —02 =vx2+ )2 Q

Graphs

The graph of an equation or inequality involving the variables x and y is the set of
all points P(x, y) whose coordinates satisfy the equation or inequality.

EXAMPLE 4  Circles centered at the origin

a) If a > 0, the equation x? + y? = a? represents all points P(x, y) whose dis-
tance from the origin is \/x2 + y? = Va2 = a. These points lie on the circle
of radius a centered at the origin. This circle is the graph of the equation
x? +7y? = a? (Fig. 9a).

b) Points (x,y) whose coordinates satisfy the inequality x> + y? < a? all have
distance < a from the origin. The graph of the inequality is therefore the circle
of radius a centered at the origin together with its interior (Fig. 9b).

y

(@) (b)

9 Graphs of (a) the equation and (b) the inequality in Example 4.
a

The circle of radius 1 unit centered at the origin is called the unit circle.



-2,4) 4

— 2,4

-2 -1 0

10 The parabola y = x.

11 Triangles P1QP, and P{Q'P; are

similar, so

& _ &y,

Ax'  Ax

12 The slope of Ly is

_ﬂ_ﬁ—(—Z)_S
T AxT 3-0

That is, y increases 8 units every time x increases 3

units. The slope of L, is

units.

mody _2-5_-3
T Ax T 4-0 47
That is, y decreases 3 units every time x increases 4
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EXAMPLE 5 Consider the equation y = x2. Some points whose coordinates
satisfy this equation are (0, 0), (1, 1), (—1,1), (2,4), and (-2, 4). These points
(and all others satisfying the equation) make up a smooth curve called a parabola
(Fig. 10). a

Straight Lines

Given two points P;(x;, y;) and P,(x, y,) in the plane, we call the increments
Ax =x; —x; and Ay = y, — y; the run and the rise, respectively, between P,
and P,. Two such points always determine a unique straight line (usually called
simply a line) passing through them both. We call the line P, P;.

Any nonvertical line in the plane has the property that the ratio
ise _ Ay _ y2— o
run  Ax Xy — X1

has the same value for every choice of the two points P;(x;, y;) and P,(x,, y;) on
the line (Fig. 11).

Definition
The constant
_rmse Ay

run Ax Xy — X1

Y2—N

is the slope of the nonvertical line P, P;.

The slope tells us the direction (uphill, downhill) and steepness of a line. A line
with positive slope rises uphill to the right; one with negative slope falls downhill
to the right (Fig. 12). The greater the absolute value of the slope, the more rapid
the rise or fall. The slope of a vertical line is undefined. Since the run Ax is zero
for a vertical line, we cannot form the ratio m.
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) this
\thxs
X X
/ /
/o /
w___ .7 notthis ¢ not this

—

13 Angles of inclination are measured
counterclockwise from the x-axis.

y
Ay
\¢
O/P1 Ax *
“ m—y—tarub
-2 =

14 The slope of a nonvertical line is the
tangent of its angle of inclination.

15 AADC is similar to ACDB. Hence ¢, is
also the upper angle in ACDB. From the
sides of ACDB, we read tan ¢, = a/h.

16 The standard equations for the vertical and
horizontal lines through (2, 3) are x=2 and y = 3.

The direction and steepness of a line can also be measured with an angle. The
angle of inclination (inclination) of a line that crosses the x-axis is the smallest
counterclockwise angle from the x-axis to the line (Fig. 13). The inclination of a
horizontal line is 0°. The inclination of a vertical line is 90°. If ¢ (the Greek letter
phi) is the inclination of a line, then 0 < ¢ < 180°.

The relationship between the slope m of a nonvertical line and the line’s incli-
nation ¢ is shown in Fig. 14:

m = tan¢.

Parallel and Perpendicular Lines

Lines that are parallel have equal angles of inclination. Hence, they have the same
slope (if they are not vertical). Conversely, lines with equal slopes have equal angles
of inclination and so are parallel.

If two nonvertical lines L, and L, are perpendicular, their slopes m; and m;

satisfy mm, = —1, so each slope is the negative reciprocal of the other:
1 |
m = —-——, my=——.
m; m

The argument goes like this: In the notation of Fig. 15, m; = tan¢, = a/h, while
m, = tan¢, = —h/a. Hence, mym, = (a/h)(—h/a) = —1.

Equations of Lines

Straight lines have relatively simple equations. All points on the vertical line through
the point a on the x-axis have x-coordinates equal to a. Thus, x = a is an equation
for the vertical line. Similarly, y = b is an equation for the horizontal line meeting
the y-axis at b.

EXAMPLE 6 The vertical and horizontal lines through the point (2, 3) have
equations x = 2 and y = 3, respectively (Fig. 16).

y
Along this line,
6 x=2
5 —
ar Along this line,
2 y = 3
7 2,3)
2 —
1 —
| [ X
0 1 3 4 Q




16 The line in Example 8.

0 c\
17 Line L has x-intercept a and
y-intercept b.

X
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We can write an equation for a nonvertical straight line L if we know its slope
m and the coordinates of one point P;(x;, y;) on it. If P(x, y) is any other point
on L, then

y—n _
X —x ’
so that
y—y1 =m(x —x) or  y=y +m(x—x).
Definition

The equation
y=y+mkx—-x)

is the point-slope equation of the line that passes through the point (x;, y;)
and has slope m.

EXAMPLE 7 Write an equation for the line through the point (2, 3) with slope
-3/2.

Solution We substitute x; = 2, y; = 3, and m = —3/2 into the point-slope equa-
tion and obtain

3 3
y=3—§(x—2), or y:—§x+6. 0

EXAMPLE 8 Write an equation for the line through (-2, —1) and (3, 4).

Solution The line’s slope is
-1-4 -5
m = = — = 1
-2-3 =5

We can use this slope with either of the two given points in the point—slope equation:

With (x;, y1) = (=2, —1) With (x1, y1) = 3, 4)
y==-1+1:(x-(=2)) y=4+1-(x-3)
y=—-14+x+2 y=44+x-3
y=x+1 y=x+1
Same result
Either way, y = x + 1 is an equation for the line (Fig. 17). i

The y-coordinate of the point where a nonvertical line intersects the y-axis is
called the y-intercept of the line. Similarly, the x-intercept of a nonhorizontal line
is the x-coordinate of the point where it crosses the x-axis (Fig. 18). A line with
slope m and y-intercept b passes through the point (0, b), so it has equation

y=b+m(x —0), or, more simply, y =mx +b.
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19 The line y = mx has slope m and
passes through the origin.

Definition
The equation
y=mx+b

is called the slope-intercept equation of the line with slope m and
y-intercept b.

EXAMPLE 9 The line y = 2x — 5 has slope 2 and y-intercept —5. -
The equation
Ax+By=C (A and B not both 0)

is called the general linear equation in x and y because its graph always represents
a line and every line has an equation in this form (including lines with undefined
slope).

EXAMPLE 10 Find the slope and y-intercept of the line 8x 45y = 20.

Solution Solve the equation for y to put it in slope—intercept form. Then read the
slope and y-intercept from the equation:

8x + 5y = 20
Sy = —8x +20
8
y = —gx + 4.
The slope is m = —8/5. The y-intercept is b = 4. J

EXAMPLE 11  Lines through the origin

Lines with equations of the form y = mx have y-intercept 0 and so pass through
the origin. Several examples are shown in Fig. 19. d

Applications—The Importance of Lines and Slopes

Light travels along lines, as do bodies falling from rest in a planet’s gravitational
field or coasting under their own momentum (like a hockey puck gliding across the
ice). We often use the equations of lines (called linear equations) to study such
motions.

Many important quantities are related by linear equations. Once we know that
a relationship between two variables is linear, we can find it from any two pairs of
corresponding values just as we find the equation of a line from the coordinates of
two points.

Slope is important because it gives us a way to say how steep something is
(roadbeds, roofs, stairs). The notion of slope also enables us to describe how rapidly
things are changing. For this reason it will play an important role in calculus.
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Celsius vs. Fahrenheit

Fahrenheit temperature (F) and Celsius temperature (C) are related by a linear
equation of the form F =mC + b. The freezing point of water is F = 32° or
C = 0°, while the boiling point is F = 212° or C = 100°. Thus

32 =0m + b, and

212 = 100m + b,

so b =32 and m = (212 — 32)/100 = 9/5. Therefore,

F=-C+32
5 +

2 or C = g(F—32).

Exercises 2

Increments and Distance

In Exercises 1-4, a particle moves from A to B in the coordinate
plane. Find the increments Ax and Ay in the particle’s coordinates.
Also find the distance from A to B.

1. A(-3,2), B(-1,-2) 2. A(-1,-2), B(-3,2)
3. A(=3.2,-2), B(-8.1,-2) 4. A2,4), B(0,1.5)
Describe the graphs of the equations in Exercises 5-8.

5 x24y2=1 6. 2 4+y*=2

7. x4+ y? <3 8. x2+y*=0

Slopes, Lines, and Intercepts

Plot the points in Exercises 9-12 and find the slope (if any) of the
line they determine. Also find the common slope (if any) of the lines
perpendicular to line AB.

9. A(-1,2), B(=2,-1)
11. A2,3), B(-1,3)

10. A(=2, 1),
12. A(=2,0),

B(2,-2)
B(-2,-2)
In Exercises 13-16, find an equation for (a) the vertical line and (b)
the horizontal line through the given point.

13. (-1,4/3) 14. (v/2,-1.3)

15. (0, —+/2) 16. (—7,0)

In Exercises 17-30, write an equation for each line described.
17. Passes through (—1, 1) with slope —1

18. Passes through (2, —3) with slope 1/2

19. Passes through (3, 4) and (-2, 5)

20. Passes through (—38,0) and (-1, 3)

21. Has slope —5/4 and y-intercept 6

22. Has slope 1/2 and y-intercept —3

23. Passes through (—12, —9) and has slope 0

24. Passes through (1/3,4) and has no slope
25. Has y-intercept 4 and x-intercept —1
26. Has y-intercept —6 and x-intercept 2
27. Passes through (5, —1) and is parallel to the line 2x + 5y = 15
28. Passes through (=+/2,2) parallel to the line V2x +5y=4/3
29. Passes through (4, 10) and is perpendicular to the line
6x —3y=5
30. Passes through (0, 1) and is perpendicular to the line
8x — 13y =13
In Exercises 31-34, find the line’s x- and y-intercepts and use this
information to graph the Tine.
31. 3x +4y =12 32. x+2y=-4
33. V2x -3y =46 34, 15x—y=-3

35. Is there anything special about the relationship between the lines
Ax+ By =C, and Bx — Ay = C;, (A # 0, B #0)? Give rea-
sons for your answer.

36. Is there anything special about the relationship between the lines
Ax + By =C; and Ax + By = C; (A # 0, B # 0)? Give rea-
sons for your answer.

Increments and Motion

37. A particle starts at A(—2, 3) and its coordinates change by in-
crements Ax =5, Ay = —6. Find its new position.

38. A particle starts at A(6, 0) and its coordinates change by incre-
ments Ax = —6, Ay = 0. Find its new position.

39. The coordinates of a particle change by Ax =5 and Ay =6 as
it moves from A(x, y) to B(3, —3). Find x and y.

40. A particle started at A(1, 0), circled the origin once counterclock-
wise, and returned to A(1, 0). What were the net changes in its
coordinates?
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Applications

41.

42.

43.

4.

45.

Insulation. By measuring slopes in Fig. 20, estimate the temper-
ature change in degrees per inch for (a) the gypsum wallboard;
(b) the fiberglass insulation; (c) the wood sheathing. (Graphs can
shift in printing, so your answers may differ slightly from those
in the back of the book.)

80° —

L Sheathing
U NS S i

70° NG Itboard.

60° -

‘911'(11 ng

50° Air

=9 [0 I

e Lo , R REN/ -
72 [ \ / - Adrjouts
SN A\ f8 atOPFE

Wi SRS/ | Rat

20° |-

Temperature (°F)

I
Airjou
at

1

10°

0°

0 1 2 3 4 5 6 7
Distance through wall (inches)

20 The temperature changes in the wall in Exercises 41
and 42. (Source: Differentiation, by W. U. Walton et al.,
Project CALC, Education Development Center, Inc.,
Newton, Mass. [1975], p. 25.)

Insulation. According to Fig. 20, which of the materials in Ex-
ercise 41 is the best insulator? the poorest? Explain.

Pressure under water. The pressure p experienced by a diver
under water is related to the diver’s depth d by an equation of
the form p =kd + 1 (k a constant). At the surface, the pres-
sure is 1 atmosphere. The pressure at 100 meters is about 10.94
atmospheres. Find the pressure at 50 meters.

Reflected light. A ray of light comes in along the line x + y = 1
from the second quadrant and reflects off the x-axis (Fig. 21).
The angle of incidence is equal to the angle of reflection. Write
an equation for the line along which the departing light travels.

Fahrenheit vs. Celsius. In the FC-plane, sketch the graph of the
equation

5
C=_(F-32
5¢ )

linking Fahrenheit and Celsius temperatures (Example 12). On
the same graph sketch the line C = F. Is there a temperature at
which a Celsius thermometer gives the same numerical reading
as a Fahrenheit thermometer? If so, find it.

& 46.

Angle of
incidence

Angle of
reflection

0 1

21 The path of the light ray in Exercise 44. Angles of
incidence and reflection are measured from the
perpendicular.

The Mt. Washington Cog Railway. Civil engineers calculate
the slope of roadbed as the ratio of the distance it rises or falls
to the distance it runs horizontally. They call this ratio the grade
of the roadbed, usually written as a percentage. Along the coast,
commercial railroad grades are usually less than 2%. In the moun-
tains, they may go as high as 4%. Highway grades are usually
less than 5%.

The steepest part of the Mt. Washington Cog Railway in
New Hampshire has an exceptional 37.1% grade. Along this part
of the track, the seats in the front of the car are 14 ft above those
in the rear. About how far apart are the front and rear rows of
seats?

Theory and Examples

47.

48.

49.

50.

51.

By calculating the lengths of its sides, show that the triangle with
vertices at the points A(1, 2), B(S,5), and C (4, —2) is isosceles
but not equilateral.

Show that the triangle with vertices A(0, 0), B(1,+/3), and
C(2,0) is equilateral.

Show that the points A(2, —1), B(1, 3), and C (-3, 2) are vertices
of a square, and find the fourth vertex.

The rectangle shown here has sides parallel to the axes. It is three
times as long as it is wide, and its perimeter is 56 units. Find the
coordinates of the vertices A, B, and C.

y

A D(9,2)

B C

Three different parallelograms have vertices at (—1, 1), (2, 0),
and (2, 3). Sketch them and find the coordinates of the fourth
vertex of each.



52. A 90° rotation counterclockwise about the origin takes (2, 0) to
(0, 2), and (0, 3) to (—3, 0), as shown in Fig. 22. Where does it

take each of the following points?

a) 4,1 b) (-2,-3)
d (x,0) e Oy
g¢) What point is taken to (10, 3)?
y
©,3)

©,2)] @1
¢ 10.5):
X

3 Functions 17

54. Find the line that passes through the point (1, 2) and through
the point of intersection of the two lines x + 2y = 3 and 2x —

3y =—1.
¢ (2,-95 55. Show that the point with coordinates
B ) Xn+x y+»
2 72

is the midpoint of the line segment joining P(xy, y;) to Q(x2, y2).

56. The distance from a point to a line. We can find the distance
from a point P(xg, yo) to a line L: Ax + By = C by taking the
following steps (there is a somewhat faster method in Section

-3,0) @, 0) 1. Find an equation for the line M through P perpendicular to L.
2. Find the coordinates of the point Q in which M and L in-
/" tersect.
(=2,-3)e—___ | 3. Find the distance from P to Q.
. Use these steps to find the distance from P to L in each of the
2,-5 following cases.
a) P2,1), L:y=x+2
22 The points moved by the 90° rotation in Exercise 52. b) P@4,6), L:4x+3y=12
53. For what value of k is the line 2x + ky = 3 perpendicular to the ¢) P(a,b), L:x=-1
line 4x + y = 1? For what value of k are the lines parallel? d) P(xo,y), L:Ax+By=C

Functions

Functions are the major tools for describing the real world in mathematical terms.
This section reviews the notion of function and discusses some of the functions
that arise in calculus.

Functions

The temperature at which water boils depends on the elevation above sea level (the
boiling point drops as you ascend). The interest paid on a cash investment depends
on the length of time the investment is held. In each case, the value of one variable
quantity, which we might call y, depends on the value of another variable quantity,
which we might call x. Since the value of y is completely determined by the value
of x, we say that y is a function of x.

The letters used for variable quantities may come from what is being described.
When we study circles, we usually call the area A and the radius 7 Since A = wr?,
we say that A is a function of  The equation A = mr? is a rule that tells how to
calculate a unique (single) output value of A for each possible input value of the
radius r.

The set of all possible input values for the radius is called the domain of the
function. The set of all output values of the area is the range of the function. Since
circles cannot have negative radii or areas, the domain and range of the circle area
function are both the interval [0, co), consisting of all nonnegative real numbers.

The domain and range of a mathematical function can be any sets of objects;
they do not have to consist of numbers. Most of the domains and ranges we will
encounter in this book, however, will be sets of real numbers.
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Leonhard Euler (1707-1783)

Leonhard Euler, the dominant mathematical
figure of his century and the most prolific
mathematician who ever lived, was also an
astronomer, physicist, botanist, chemist, and
expert in Oriental languages. He was the first
scientist to give the function concept the
prominence in his work that it has in
mathematics today. Euler’s collected books
and papers fill 70 volumes. His introductory
algebra text, written originally in German
(Euler was Swiss), is still read in English
translation.

D = domain set .
R = set containing

the range

23 A function from a set D to a set R
assigns a unique element of R to each
element in D.

X fx)
Input Output
(Domain) (Range)

24 A "machine” diagram for a function.

In calculus we often want to refer to a generic function without having any
particular formula in mind. Euler invented a symbolic way to say “y is a function
of x” by writing

y=fx)

In this notation, the symbol f represents the function. The letter x, called the in-
dependent variable, represents an input value from the domain of f, and y, the
dependent variable, represents the corresponding output value f(x) in the range
of f. Here is the formal definition of function.

(“y equals f of x")

Definition
A function from a set D to a set R is a rule that assigns a unique element
f(x) in R to each element x in D.

In this definition, D = D(f) (read “D of f”) is the domain of the function f and R
is a set containing the range of f. See Fig. 23.

Think of a function f as a kind of machine that produces an output value f(x)
in its range whenever we feed it an input value x from its domain (Fig. 24).

In this book we will usually define functions in one of two ways:

1. by giving a formula such as y = x? that uses a dependent variable y to denote
the value of the function, or

2. by giving a formula such as f(x) = x? that defines a function symbol f to
name the function.

Strictly speaking, we should call the function f and not f(x), as the latter denotes
the value of the function at the point x. However, as is common usage, we will often
refer to the function as f(x) in order to name the variable on which f depends.

It is sometimes convenient to use a single letter to denote both a function and
its dependent variable. For instance, we might say that the area A of a circle of

radius 7 is given by the function A(r) = nr2.

Evaluation

As we said earlier, most of the functions in this book will be real-valued functions
of a real variable, functions whose domains and ranges are sets of real numbers.
We evaluate such functions by substituting particular values from the domain into
the function’s defining rule to calculate the corresponding values in the range.

EXAMPLE 1
function

The volume V of a ball (solid sphere) of radius r is given by the

4
V() = gnr3.

The volume of a ball of radius 3 m is

4
V(Q3) = 3zr(3)3 = 367 m’.



Most of the functions we encounter will have
domains that are either intervals or unions of
intervals.
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EXAMPLE 2 Suppose that the function F is defined for all real numbers ¢ by
the formula

F@) =2t -1)+3.
Evaluate F at the input values 0, 2, x + 2, and F(2).

Solution In each case we substitute the given input value for ¢ into the formula
for F:

F0O)=20-1)4+3=-243=1

F2)=22-1)4+3=2+4+3=5
Fx+2)=2x+2-1)4+3=2x+5
F(F2)=F@®)=25-1D)+3=11 a

The Domain Convention

When we define a function y = f(x) with a formula and the domain is not stated
explicitly, the domain is assumed to be the largest set of x-values for which the
formula gives real y-values. This is the function’s so-called natural domain. If we
want the domain to be restricted in some way, we must say so.

The domain of the function y = x? is understood to be the entire set of real
numbers. The formula gives a real y-value for every real number x. If we want
to restrict the domain to values of x greater than or equal to 2, we must write
“y=x2x>2"

Changing the domain to which we apply a formula usually changes the range
as well. The range of y = x? is [0, 00). The range of y = x2, x > 2, is the set of
all numbers obtained by squaring numbers greater than or equal to 2. In symbols,
the range is {x%|x > 2} or {y|y > 4} or [4, c0).

EXAMPLE 3
Function Domain (x) Range (y)
y=+1-x2 [-1,1] [0, 1]
y= % (=00, 0) U (0, c0) (=00, 0) U (0, 00)
y =% [0, 00) [0, 00)
y=4-x (—00, 4] [0, 00)

The formula y = +/1 — x?2 gives a real y-value for every x in the closed interval
from —1 to 1. Beyond this domain, 1 — x? is negative and its square root is not a
real number. The values of 1 — x?2 vary from O to 1 on the given domain, and the
square roots of these values do the same. The range of /1 — x2 is [0, 1].

The formula y = 1/x gives a real y-value for every x except x = 0. We cannot
divide any number by zero. The range of y = 1/x, the set of reciprocals of all
nonzero real numbers, is precisely the set of all nonzero real numbers.

The formula y = /x gives a real y-value only if x > 0. The range of y = \/x
is [0, 0o) because every nonnegative number is some number’s square root (namely,
it is the square root of its own square).
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A

25 This circle is not the graph of a
function y = f(x); it fails the vertical line
test.

Computers and graphing calculators graph
functions in much this way—by stringing
together plotted points—and the same
question arises.

In y = 4/4 — x, the quantity 4 — x cannot be negative. That is, 4 — x > 0, or
x < 4. The formula gives real y-values for all x < 4. The range of /4 — x is [0, 00),
the set of all square roots of nonnegative numbers. Qa

Graphs of Functions

The graph of a function fis the graph of the equation y = f(x). It consists of the
points in the Cartesian plane whose coordinates (x, y) are input—output pairs for f.

Not every curve you draw is the graph of a function. A function f can have
only one value f(x) for each x in its domain, so no vertical line can intersect the
graph of a function more than once. Thus, a circle cannot be the graph of a function
since some vertical lines intersect the circle twice (Fig. 25). If a is in the domain of
a function f, then the vertical line x = a will intersect the graph of f in the single

point (a, f(a)).

EXAMPLE 4 Graph the function y = x? over the interval [—2, 2].

Solution

Step 1: Make a table of xy-pairs that satisfy the function rule, in this case the
equation y = x2.

Step 2: Plot the points (x, y) whose Step 3: Draw a smooth curve through
coordinates appear in the table. the plotted points. Label the curve

with its equation.

y y
° 4 +— ° 4
(-2, 4) 2,4
3 3
— 2
2 2 e
-L,De 1+ (1) 1+
| | | ] x | | ] | x
-2 -1 0 1 2 -2 -1 0 1 2 Qa

How do we know that the graph of y = x? doesn’t look like one of these curves?

y y

y=x2?
y =x2?




26 Useful graphs.

0 1

Domain: (-, )

Range:

[0, )

1

Domain: [0, «)
Range: [0, «)

Domain: (-0, 0) U (0, ®)
Range: (0, )

To find out, we could plot more points. But how would we then connect them? The
basic question still remains: How do we know for sure what the graph looks like
between the points we plot? The answer lies in calculus, as we will see in Chapter
3. There we will use a marvelous mathematical tool called the derivative to find a
curve’s shape between plotted points. Meanwhile we will have to settle for plotting
points and connecting them as best we can.

Figure 26 shows the graphs of several functions frequently encountered in
calculus. It is a good idea to learn the shapes of these graphs so that you can

recognize them or sketch them when the need arises.

il

o 1

Domain: (-0, )
Range: (-, »)

|

W=

-2

0, 1

Domain: (-, )
Range: (-, »)

—

N|—

y = mux for selected
values of m

Domain: (-0, )
Range: (-, ®)

3 Functions

y
y=x3
1 —
] x

o] 1
Domain: (-0, )
Range: [0, )

y

Domain: (-, 0) U (0, )
Range: (=%, 0) U (0, )

o 1

Domain: [0, «)
Range: [0, »)
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Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except
where the denominator is zero) to produce new functions. If f and g are functions,
then for every x that belongs to the domains of both f and g, we define functions
f+g, f—g, and fg by the formulas

(f+9x) = f(x)+gkx)
(f—9x) = f(x) —gkx)
(fe)(x) = f(x)g(x).

At any point of D(f) N D(g) at which g(x) # 0, we can also define the function
f/g by the formula

(i> @=L (where gx) 2 0).
g g(x)

Functions can also be multiplied by constants: If ¢ is a real number, then the
function cf is defined for all x in the domain of f by

(cf)(x) = cf (x).

EXAMPLE 5

Function Formula Domain

f fx)=Vx [0, 00)
gx)=+1-x (=00, 1]

3g 3g(x) =3/T—x (—00,1]

f+s (f+®) =v/x+/T—x [0, 1] = D(f) N D(g)

f-s (f—9x)=vx—/1-x [0, 1]

g—f (g—NE) =VT-x—x [0, 1]

f-8 (f - 9)x) = f(x)gkx) =+/x(1-x) [0, 1]

f/g Loy L& _ [ * [0,1) (x = 1 excluded)
8 8(x) 1—x

g/f %(x) = i(();)) = ,/———-—1 ;x (0, 1] (x = 0 excluded) 0

Composite Functions

Composition is another method for combining functions.

Definition
If f and g are functions, the composite function f o g (“fcircle g”) is defined
by

(f o 8)(x) = f(g(x)).

The domain of f o g consists of the numbers x in the domain of g for which
g(x) lies in the domain of f.



fog

27 The relation of fog to g and f.

28 (a) Symmetry about the y-axis. If (x, y)
is on the graph, so is (—x, y). (b) Sym-
metry about the origin. If (x, y) is on the
graph, so is (—x, —y).
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The definition says that two functions can be composed when the range of the first
lies in the domain of the second (Fig. 27). To find (f o g)(x), we first find g(x)
and second find f(g(x)).

To evaluate the composite function g o f (when defined), we reverse the order,
finding f(x) first and then g(f(x)). The domain of g o f is the set of numbers x
in the domain of f such that f(x) lies in the domain of g.

The functions f o g and g o f are usually quite different.

EXAMPLE 6 If f(x) =4+/x and g(x) =x + 1, find
a) (fog)x) b) goNHE) © (fofllx) d) (gog)).

Solution

Composite Domain
a) (fog)x)=[f(g(x))=vgx)=+x+1 [—1, 00)
b) (gofH)=g(f(x)=f)+1=x+1 [0, o0)
) (foNW)=ffO)=yVfx)=V/JSx=x" [0, o0)

d) (gog)x)=ggx)=gx)+1=x+D)+1=x+2 R or (=00, 0)

To see why the domain of f o g is [—1, 00), notice that g(x) = x + 1 is defined
for all real x but belongs to the domain of f only if x + 1 > 0, that is to say, if
x> —1. a

Even Functions and Odd Functions—Symmetry

A function y = f(x) is even if f(—x) = f(x) for every number x in the domain
of f. Notice that this implies that both x and —x must be in the domain of f. The
function f(x) = x? is even because f(—x) = (—x)* = x% = f(x).

The graph of an even function y = f(x) is symmetric about the y-axis. Since
f(—=x) = f(x), the point (x, y) lies on the graph if and only if the point (—x, y)
lies on the graph (Fig. 28a). Once we know the graph on one side of the y-axis,
we automatically know it on the other side.

A function y = f(x) is odd if f(—x) = — f(x) for every number x in the
domain of f Again, both x and —x must lie in the domain of £ The function
f(x) = x* is odd because f(—x) = (—x)* = —x3 = —f(x).

The graph of an odd function y = f(x) is symmetric about the origin. Since
f(—=x) = — f(x), the point (x, y) lies on the graph if and only if the point (—x, —y)
lies on the graph (Fig. 28b). Here again, once we know the graph of f on one side
of the y-axis, we know it on both sides.

\ A
(=x,y) x, )
\ / (=x,-y)

o
(a) (b)
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29 The absolute value function.

30 To graph the function y = f(x) shown
here, we apply different formulas to
different parts of its domain (Example 7).

y
y=x
3_
2__
y=lx]
1_
L] N X
2 -1 1 2 3
_2_

31 The graph of the greatest integer
function y = |x] lies on or below the line
y =X, so it provides an integer floor for x.

Piecewise Defined Functions

Sometimes a function uses different formulas on different parts of its domain. One
example is the absolute value function

x| = X, x>0
] —x, x <0,

whose graph is given in Fig. 29. Here are some examples.

EXAMPLE 7 The function

—X, x <0
fx)y=1 x*, 0<x<l1
1, x > 1

is defined on the entire real line but has values given by different formulas depending
on the position of x (Fig. 30). (]

EXAMPLE 8 The greatest integer function

The function whose value at any number x is the greatest integer less than or equal
to x is called the greatest integer function or the integer floor function. It is
denoted |x|, or, in some books, [x] or [[x]]. Figure 31 shows the graph. Observe
that

24] =2, [19/=1, |0] =0, |-1.2) = -2,
12] =2, 02] =0, [-03]=-1 [-2]=-2. 0

EXAMPLE 9  The least integer function

The function whose value at any number x is the smallest integer greater than or
equal to x is called the least integer function or the integer ceiling function. It
is denoted [x]. Figure 32 shows the graph. For positive values of x, this function
might represent, for example, the cost of parking x hours in a parking lot which
charges $1 for each hour or part of an hour.

y
y=x
3_
2_
y=[x]
14
L [ .
-2 1 2 3
_1_
.

32 The graph of the least integer function y = [x] lies on or above the
line y = x, so it provides an integer ceiling for x. a
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Exercises 3

Functions

In Exercises 1-6, find the domain and range of each function.

L f(x)=1+x2 2. f)=1-x
1 1

3. F(t):z 4, F(t) = Y
5. g =4-722 6. g(z) = !

4 — 72

In Exercises 7 and 8, which of the graphs are graphs of functions of
x, and which are not? Give reasons for your answers.

7. a) b)
y y
X X
0 0
8. a) b)
y y
0 0

Finding Formulas for Functions

9. Express the area and perimeter of an equilateral triangle as a
function of the triangle’s side length x.

10. Express the side length of a square as a function of the length d
of the square’s diagonal. Then express the area as a function of
the diagonal length.

11. Express the edge length of a cube as a function of the cube’s
diagonal length d. Then express the surface area and volume of
the cube as a function of the diagonal length.

12. A point P in the first quadrant lies on the graph of the function
f(x) = +/x. Express the coordinates of P as functions of the
slope of the line joining P to the origin.

Functions and Graphs

Graph the functions in Exercises 13—24. What symmetries, if any, do
the graphs have? Use the graphs in Fig. 26 for guidance, as needed.

1

13, y=—x° Uy=-—
15.y=—)lc 16.y:%
17. y = /|x| 18. y=/—x
19. y =x3/8 20. y = —4/x
21, y = —x3? 22. y=(—x)*?
23. y= (—x)*3 24, y = —x23

25. Graph the following equations and explain why they are not
graphs of functions of x.

a) |yl=x b)

26. Graph the following equations and explain why they are not
graphs of functions of x.

a) |x|+yl=1 b)

y? = x2

lx+yl =1

Even and Odd Functions

In Exercises 27-38, say whether the function is even, odd, or neither.

27. f(x)=3 28, f(x)=x"3
29. f(x)=x2+1 30. f(x) =x24x
3L g(x) =x3+x 32. g(x) =x*+3x2—1
1
33. g(x)=m 34. 8(x)=x2_1
1
3. h() = — 36. h(t) = |£%|
37. h(t) =2t + 1 38. h(t) =2t + 1

Sums, Differences, Products, and Quotients

In Exercises 39 and 40, find the domains and ranges of f, g, f + g,
and f - g.

39. fx)=x, glx)=+/x—-1

40. f(x)=+/x+1, gx)=+vx—-1

In Exercises 41 and 42, find the domains and ranges of f, g, f/g,
and g/f.

41. f(x) =2,
42. f(x)=1,

gx)=x2+1
gx) =1+x
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Composites of Functions
43. If f(x) =x +5 and g(x) = x* — 3, find the following.

a)  f(g0) b) g(f(©0)
¢ f(gx) d g(fx)
e) f(f(=5) ) 2((2)
g) f(fx) h) g(g(x))
4. If f(x) =x — 1 and g(x) = 1/(x + 1), find the following.
a)  f(g(1/2) b) g(f(1/2)
o flgkx)) d) g(f(x)
e) f(f(2) ) 2(g(2)
g) fUf&x) h) g(g(x))

45. If u(x) = 4x — 5, v(x) = x2, and f(x) = 1/x, find formulas for
the following.

a) u((f(x) b) u(f(v(x)))
¢ vu(fx) d)  v(f@x))
e  fu@x)) f)  fw@x))

46. If f(x) = 4/x, g(x) = x/4, and h(x) = 4x — 8, find formulas
for the following.

a)  h(g(f(x) b) h(f(g(x)))
¢ gh(f(x)) d) g¢(f(h(x))
e f(gr(x) f) f(h(gx))

Let f(x) =x—3, g(x)=4+/x h(x)=x> and j(x)=2x. Ex-
press each of the functions in Exercises 47 and 48 as a composite
involving one or more of f, g, h, and j.

47. a) y=.x-3 b) y=2x
) y=x/* d y=4dx
e y=y/(x-3? f) y=(@x-6)°
48. a) y=2x-3 b) y=x%?
) y=x° d y=x-6
e) y=2/x-3 f) y=+/x3-3
49. Copy and complete the following table.
g(x) fx) (fog)x)
a) x—7 Jx
b) x+2 3x
c) Jx =5 Vx2 -5
d) x X
x—1 x—1
1
e) 1+ - x
X
1
f) - x
x

50. A magic trick. You may have heard of a magic trick that goes
like this: Take any number. Add 5. Double the result. Subtract 6.
Divide by 2. Subtract 2. Now tell me your answer, and I'll tell
you what you started with.

Pick a number and try it.

You can see what is going on if you let x be your original
number and follow the steps to make a formula f(x) for the
number you end up with.

Piecewise Defined Functions
Graph the functions in Exercises 51-54.

X, 0<x<l

SL. f(")‘{z—x, l<x<2
1—x, 0<x<l1

52 g(x)‘{z—x, l<x<2
3—x, x<l1

53. F(x) = [2x, x>1

) 1/x, x <0
54. G(x)_[x, 0<x
55. Find a formula for each function graphed.
a) b)
y

1,1

of 2

56. Find a formula for each function graphed.
a) b)
y y

(=]
|

0 T T
2

The Greatest and Least Integer Functions
57. For what values of x is (a) [x] = 0? (b) [x] =0?
58. What real numbers x satisfy the equation |x] = [x]?
59. Does [—x] = —|x] for all real x? Give reasons for your answer.
60. Graph the function
r@={r3 150

Why is f(x) called the integer part of x?

Even and Odd Functions

61. Assume that f is an even function, g is an odd function, and
both f and g are defined on the entire real line R. Which of the
following (where defined) are even? odd?
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a) f§ b) fz/g o g/f 4% Grapher

d fF=1f E) 8 =88 f) fog 63. (Continuation of Example 5.) Graph the functions f(x) = /x

g gof ) fof i) gog and g(x) =+/1 — x together with their (a) sum, (b) product,
62. Can a function be both even and odd? Give reasons for your (c) two differences, (d) two quotients.

answer.

64. Let f(x) =x —7 and g(x) = x2. Graph f and g together with
fogandgo f.

y
y=x2+2
y=x2+1
y=x
y=x2—2
1 unit
()
\ i)
x
- ol |
. |
i 2 units

33 To shift the graph of f(x) = x?> up (or
down), we add positive (or negative)
constants to the formula for f.

Shifting Graphs

This section shows how to change an equation to shift its graph up or down or
to the right or left. Knowing about this can help us spot familiar graphs in new
locations. It can also help us graph unfamiliar equations more quickly. We practice
mostly with circles and parabolas (because they make useful examples in calculus),
but the methods apply to other curves as well. We will revisit parabolas and circles
in Chapter 9.

How to Shift a Graph

To shift the graph of a function y = f(x) straight up, we add a positive constant
to the right-hand side of the formula y = f(x).

EXAMPLE 1 Adding 1 to the right-hand side of the formula y = x? to get
y = x* + 1 shifts the graph up 1 unit (Fig. 33).

To shift the graph of a function y = f(x) straight down, we add a negative
constant to the right-hand side of the formula y = f(x).

EXAMPLE 2 Adding —2 to the right-hand side of the formula y = x? to get
y = x* — 2 shifts the graph down 2 units (Fig. 33). d

To shift the graph of y = f(x) to the left, we add a positive constant to x.

EXAMPLE 3  Adding 3 to x in y = x2 to get y = (x + 3)? shifts the graph 3
units to the left (Fig. 34). a

Add a positive| Add a negative
constant to x. y constant to x.

y=(x+3)? y=(x—2)?

34 To shift the graph of y = x? to the left, we add a positive constant to x. To shift
the graph to the right, we add a negative constant to x.
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y=@x+173+3

y=x> |jy=@x-2)

35 The graph of y = x3 shifted to three
new positions in the xy-plane.

P(x, y)

-+ y-ki=d

o

36 A circle of radius a in the xy-plane,
with center at (h, k).

To shift the graph of y = f(x) to the right, we add a negative constant to x.

EXAMPLE 4 Adding —2 to x in y = x? to get y = (x — 2)? shifts the graph 2
units to the right (Fig. 34). Q

Shift Formulas

VERTICAL SHIFTS
y—k= f(x) or Shifts the graph up k units if £ > 0
y=f(x)+k Shifts it down |k| units if k < 0
HORIZONTAL SHIFTS
y=f(x—nh) Shifts the graph right h units if h > 0
Shifts it left |h| units if h < 0

EXAMPLE 5  The graph of y = (x — 2)> — 2 is the graph of y = x> shifted 2
units to the right and 2 units down. The graph of y = (x + 1)* + 3 is the graph of
y = x> shifted 1 unit to the left and 3 units up (Fig. 35). a

Equations for Circles

A circle is the set of points in a plane whose distance from a given fixed point
in the plane is constant (Fig. 36). The fixed point is the center of the circle; the
constant distance is the radius. We saw in Section 2, Example 4, that the circle of
radius a centered at the origin has equation x? + y? = a?. If we shift the circle to
place its center at the point (4, k), its equation becomes (x — k)% + (y — k) = a>.

The Standard Equation for the Circle of Radius a Centered at the Point
(h, k)

x=h’+ G-k =ad M

EXAMPLE 6  If the circle x> + y?> = 25 is shifted 2 units to the left and 3 units
up, its new equation is (x 4+ 2)? + (y — 3)? = 25. As Eq. (1) says it should be, this
is the equation of the circle of radius 5 centered at (4, k) = (-2, 3). a

EXAMPLE 7 The standard equation for the circle of radius 2 centered at
3,4)is

x =37+ -4= ()’
or

(=34 (-4 =4
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There is no need to square out the x- and y-terms in this equation. In fact, it is
better not to do so. The present form reveals the circle’s center and radius. (]

EXAMPLE 8 Find the center and radius of the circle

x—1)2+(+5*=3.

Solution Comparing

with

(x—h)?+(—k?=ad

=D+ +5*=3

shows that & = 1,k = —5, and a = +/3. The center is the point (A, k) = (1, =5);
the radius is a = /3. a

Technology Square Windows We use the term “square window” when the
units or scalings on both axes are the same. In a square window graphs are
true in shape. They are distorted in a nonsquare window.

The term square window does not refer to the shape of the graphic dis-
play. Graphing calculators usually have rectangular displays. The displays of
Computer Algebra Systems are usually square. When a graph is displayed,
the x-unit may differ from the y-unit in order to fit the graph in the display,
resulting in a distorted picture. The graphing window can be made square by
shrinking or stretching the units on one axis to match the scale on the other,
giving the true graph. Many systems have built-in functions to make the win-
dow “square.” If yours does not, you will have to do some calculations and set
the window size manually to get a square window, or bring to your viewing
some foreknowledge of the true picture.

On your graphing utility, compare the perpendicular lines y; = x and
y» = —x +4 in a square window and a nonsquare one such as [—10, 10]
by [10, 10]. Graph the semicircle y = +/8 — x2 in the same windows.

k/l_
g + +

Two perpendicular lines and a
semicircle graphed distorted by a
rectangular window.

If an equation for a circle is not in standard form, we can find the circle’s

center and radius by first converting the equation to standard form. The algebraic
technique for doing so is completing the square (see inside front cover).

EXAMPLE 9 Find the center and radius of the circle

X2+ y?4+4x —6y—-3=0.
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y
Exterior: (x — h)2 + (y — k)% > a?
>+ (<
_h J o
k —
Interior: (x — h)? + (y — k)? < a?
|
0 h

37 The interior and exterior of the circle

(x —h)? + (y — k)? = a%.

-4 -3 -2
-1
Yt
o
Vertex at EE‘
origin

38 Besides determining the direction in
which the parabola y = ax? opens, the
number a is a scaling factor. The parabola
widens as a approaches zero and narrows

symmetry

as |a| becomes large.

Solution We convert the equation to standard form by completing the squares in
x and y:
x>+ y2 +4x —6y—-3=0 Start with the given equation.

Gather terms. Move the
constant to the right-hand
side.

) Add the square of half the
—6
2
9

(*+4x )+ -6y )=3

A\2
<x2+4x+(§)>+(y —6y+
A\2
+(3)+(3)
(P +4x+4H+ (P —6y+9) =3+4+
x+22+(-32=16

coefficient of x to each
side of the equation. Do
the same for y. The
parenthetical expressions
on the left-hand side are
now perfect squares.

Write each quadratic as a
squared linear expression.

With the equation now in standard form, we read off the center’s coordinates and
the radius: (&, k) = (=2, 3) and a = 4. a

Interior and Exterior

The points that lie inside the circle (x — k)% 4+ (y — k) = a? are the points less
than a units from (%, k). They satisfy the inequality

(x —h)?+(y —k)? < a%

They make up the region we call the interior of the circle (Fig. 37).
The circle’s exterior consists of the points that lie more than a units from
(h, k). These points satisfy the inequality

x—h)*+(y—k)? > a%

EXAMPLE 10
Inequality Region
x2+y2 <1  Interior of the unit circle
2+yr<l1 Unit circle plus its interior
x4y >1 Exterior of the unit circle
x>+ y>>1  Unit circle plus its exterior a

Parabolic Graphs

The graph of an equation like y = 3x? or y = —5x? that has the form

y = ax?
is a parabola whose axis (axis of symmetry) is the y-axis. The parabola’s vertex
(point where the parabola and axis cross) lies at the origin. The parabola opens
upward if a > 0 and downward if a < 0. The larger the value of |a|, the narrower
the parabola (Fig. 38).
If we interchange x and y in the formula y = ax?, we obtain the equation

x =ay”.



Symmetry,

\ 1 2

Vertex at origin

39 The parabola x = ay? is symmetric
about the x-axis. It opens to the right if
a >0 and to the left if a <0.

y
y =z

y=—Vx

40 The graphs of the functions y = V/x
and y = —/x join at the origin to make
the graph of the equation x = y?
(Example 11).

y
y=a(x — h? + k
-~
]
=
[}
=
y = ax? g
B
{2]
K
3
[}
4
T <
New vertex
is (h, k)
x
o h

41 The parabola y = ax?, a > 0, shifted h
units to the right and k units up.
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With x and y now reversed, the graph is a parabola whose axis is the x-axis and
whose vertex lies at the origin (Fig. 39).

EXAMPLE 11 The formula x = y? gives x as a function of y but does not give
y as a function of x. If we solve for y, we find that y = £./x. For each positive
value of x we get two values of y instead of the required single value.

When taken separately, the formulas y = 4/x and y = —./x do define functions
of x. Each formula gives exactly one value of y for each possible value of x. The
graph of y = \/x is the upper half of the parabola x = y2. The graph of y = —/x
is the lower half (Fig. 40). Q

The Quadratic Equation y =ax?> +bx +¢c, a#0

To shift the parabola y = ax? horizontally, we rewrite the equation as
y =a(x —h)%
To shift it vertically as well, we change the equation to
y —k = a(x —h)% )

The combined shifts place the vertex at the point (4, k) and the axis along the line
x = h (Fig. 41).

Normally there would be no point in multiplying out the right-hand side of
Eq. (2). In this case, however, we can learn something from doing so because the
resulting equation, when rearranged, takes the form

y = ax*+bx +c. ' (3)

This tells us that the graph of every equation of the form y = ax? + bx + ¢, a # 0,
is the graph of y = ax? shifted somewhere else. Why? Because the steps that take
us from Eq. (2) to Eq. (3) can be reversed to take us from (3) back to (2). The
curve y = ax? + bx + ¢ has the same shape and orientation as the curve y = ax?.

The axis of the parabola y = ax? + bx + c turns out to be the line x = —b/(2a).

The y-intercept, y = c, is obtained by setting x = 0.

The Graph of y =ax?> +bx +¢, a#0

The graph of the equation y = ax?+bx +c,a # 0, is a parabola. The
parabola opens upward if a > 0 and downward if a < 0. The axis is the
line

b
~5

x = )
The vertex of the parabola is the point where the axis and parabola intersect.
Its x-coordinate is x = —b/2a; its y-coordinate is found by substituting
x = —b/2a in the parabola’s equation.

EXAMPLE 12  Graphing a parabola

1
Graph the equation y = —§x2 -x+4.
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. 9 y
Vertex is [-1, =
2]

Point symmetric
with y-intercept |

\

(=2,4)

Interceptaty = 4

(0,4

Intercepts at
x=-4andx =2

42 The parabola in Example 12.

Solution We take the following steps.

Step 1: Compare the equation with y = ax* + bx + c to identify a, b, and c.

1
a=-2. b=-1  c=4

Step 2: Find the direction of opening. Down, because a < 0.
Step 3: Find the axis and vertex. The axis is the line

_iz__(iz_l, Eq. (4)
2a 2(—1/2)

so the x-coordinate of the vertex is —1. The y-coordinate is

Loy pas?
y= 2( D —( 1)+4—2.

The vertex is (—1, 9/2).
Step 4: Find the x-intercepts (if any).

1 _0
2 _ Set y = 0 in the
_Ex —x+4=0 parabola’s equation.

x? +2x—8=0 Solve as usual.
x—-2)x+4) =0
x =2, x =—4

Step 5: Sketch the graph. We plot points, sketch the axis (lightly), and use what
we know about symmetry and the direction of opening to complete the graph

(Fig. 42). a
Exercises 4
Shifting Graphs
1. Figure 43 shows the graph of y = —x? shifted to two new posi- 2. Figure 44 shows the graph of y = x? shifted to two new positions.

tions. Write equations for the new graphs.

Write equations for the new graphs.

X Position (a)

43 The parabolas in Exercise 1.

Position (b)

Position (b)

44 The parabolas in Exercise 2.



3. Match the equations listed in (a)—(d) to the graphs in Fig. 45.

a) y=@x-1>%—4 b) y=(x—-2>%+2
) y=(x+2>*+2 d y=x+3?2-2

Position 2 Position 1

Position 3

2 —
(=2,2) 2,2

L1 X
o 1 2

Position 4

(1,-4)

45 The parabolas in Exercise 3.

4. Figure 46 shows the graph of y = —x? shifted to four new posi-

tions. Write an equation for each new graph.

y
1,4)

(
-2, 3)
(b (@)
2,0
2- X
(-4,-1) / >/
@

©)

46 The parabolas in Exercise 4.

Exercises 5-16 tell how many units and in what directions the graphs
of the given equations are to be shifted. Give an equation for the
shifted graph. Then sketch the original and shifted graphs together,
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labeling each graph with its equation. Use the graphs in Fig. 26 for
reference as needed.

5. x>+ y* =49 Down 3, left 2
6. x>+ y> =25 Up3,left 4
7. y=x Left 1, down 1
8. y =x? Right 1, down 1
9. y=./x Left0.81
10. y=—./x Right3
11. y=2x—-7 Up7

1
12. y = E(X +1)+5 Down 5, right 1
13. x = y? Leftl 14. x = —3y* Up2,right3
15. y=1/x Up 1, right 1 16. y = 1/x* Left 2, down 1

Graph the functions in Exercises 17-36. Use the graphs in Fig. 26
for reference as needed.

17. y=+/x+4 18. y=4/9—x
19. y =[x —2] 20. y=1]1—x|—-1
2. y=1++/x-1 22. y=1—4/x
23, y = (x +1)*¥3 24, y = (x — 8)%¥3
25. y=1-—x%3 26. y +4=x
27. y=Jx—1-1 28. y=(x+2)%+1
1 1
29. y= 30. y=-—-2
x—2 x
1 1
3. y=-+42 32 y=
Y x+ )

1 1
B.y=—— M. y=— -1
Y=oy YT e
35 —1+1 36. y = !
ERA) 'y_(x+1)2

37. The accompanying figure shows the graph of a function f(x)
with domain [0, 2] and range [0, 1]. Find the domains and ranges
of the following functions, and sketch their graphs.

y
1= y=f
X
0 2
a) f(x)+2 b) f(x)—1
© 2f(x) d —fkx)
e f(x+2) ) f&x-1)
g) f(—x) h) —f(x+1)+1
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38. The accompanying figure shows the graph of a function g(¢) with
domain [—4, 0] and range [—3, 0]. Find the domains and ranges
of the following functions, and sketch their graphs.

y
| | ‘
—4 -2

y=2g( -3+
a) g(-1) b) —g()
¢ g®+3 d 1-g@
e) g(-t+2) ) gt-2)
g) g(l—1) h) —gt—4)

Circles

In Exercises 39-44, find an equation for the circle with the given
center C(h, k) and radius a. Then sketch the circle in the xy-plane.
Include the circle’s center in your sketch. Also, label the circle’s x-
and y-intercepts, if any, with their coordinate pairs.

39. C(0,2), a=2 40. C(-3,0), a=3
41. C(-1,5), a=+10 2. C(,1), a=+2
43. C(=/3,-2), a=2 4. C(3,1/2), a=5

Graph the circles whose equations are given in Exercises 45-50. Label
each circle’s center and intercepts (if any) with their coordinate pairs.

45. x2+y? +4x —4y+4=0
46. x> +y? —8x+4y+16=0
47. x* +y? -3y —-4=0

48. x2+y?—4dx —(9/4) =0
49, x> +y?—4x+4y=0

50. x24+y?+2x=3

Parabolas

Graph the parabolas in Exercises 51-58. Label the vertex, axis, and
intercepts in each case.

51 y=x*—2x-3
53 y=—x?+4x
55. y=—x2—6x -5

52. y=x*+4x+3
54, y=—x>4+4x-5
56. y=2x*—x+3

1 1
57.y:§x2+x+4 58.y=——zx2+2x+4

59. Graph the parabola y = x — x2. Then find the domain and range
of f(x) =+/x —x2.

60. Graph the parabola y = 3 — 2x — x2. Then find the domain and
range of g(x) = +/3 —2x — x2.

Inequalities

Describe the regions defined by the inequalities and pairs of inequal-
ities in Exercises 61-68.

61. x2+y2>17

62. x2+y?2 <5

63. x—1)2+y*<4

64. X2+ (y—272 >4

65. x> +y2>1, x*4+y*<4

66. x2+y2 <4, (x+22+y*<4
67. x2+y>+6y <0, y>-3
68. x>2+y?—4x+2y>4, x>2

69. Write an inequality that describes the points that lie inside the
circle with center (—2, 1) and radius J6.

70. Write an inequality that describes the points that lie outside the
circle with center (—4, 2) and radius 4.

71. Write a pair of inequalities that describe the points that lie inside
or on the circle with center (0, 0) and radius +/2, and on or to
the right of the vertical line through (1, 0).

72. Write a pair of inequalities that describe the points that lie outside
the circle with center (0, 0) and radius 2, and inside the circle
that has center (1, 3) and passes through the origin.

Shifting Lines

73. The line y = mx, which passes through the origin, is shifted
vertically and horizontally to pass through the point (xo, yo).
Find an equation for the new line. (This equation is called the
line’s point—slope equation.)

74. The line y = mx is shifted vertically to pass through the point
(0, ). What is the new line’s equation?

Intersecting Lines, Circles, and Parabolas

In Exercises 75-82, graph the two equations and find the points in
which the graphs intersect.

75. y=2x, x*+y*=1

76. x+y=1 (x—-124+y*=1
77. y—x=1, y=x?

78. x+y=0 y=—(x—1)?

79. y=—x2, y=2x?-1

80. y=£x2, y = (x — 1)

8. x2+3y2=1, (x—1)2+y?=1

82. x2+y? =1, x*4+y=1

& CAS Explorations and Projects

In Exercises 83-86, you will explore graphically what happens to the
graph of y = f(ax) as you change the value of the constant a. Use
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a CAS or computer grapher to perform the following steps. 5x
83. f(x) == R [-—10, 10]
a) Plot the function y = f(x) together with the function y = f(ax) x*+4
for @ = 2,3, and 10 over the specified interval. Describe what 2x(x = 1)
. . 84. f)=—7——, [-3,2]
happens to the graph as a increases through positive values. x2+1
b) Plotthe function y = f(x)and y = f(ax) for the negative values x+1
a = —2, —3. What happens to the graph in this situation? 85. fl) = 22+ 1’ (=2.2]
¢) Plot the function y = f(x) and y = f(ax) for the fractional X —4x% + 10
values a = 1/2, 1/3, 1/4. Describe what happens to the graph 86. f(x)= 14 [—1,4]
X

when |a| < 1.

Degrees Radians
45
V2 V2
1 1
45 90

48 The angles of two common triangles,
in degrees and radians.

Trigonometric Functions

This section reviews radian measure, trigonometric functions, periodicity, and basic
trigonometric identities.

Radian Measure

In navigation and astronomy, angles are measured in degrees, but in calculus it is
best to use units called radians because of the way they simplify later calculations
(Section 2.4).

Let ACB be a central angle in a unit cirele (circle of radius 1), as in Fig. 47.

47 The radian measure of angle ACB is
Unit cirdle the length of the arc AB.

The radian measure 0 of angle ACB is defined to be the length of the circular arc
AB. Since the circumference of the circle is 27 and one complete revolution of a
circle is 360°, the relation between radians and degrees is given by the following
equation.

7 radians = 180°

EXAMPLE 1 Conversions (Fig. 48)

b4 b4
C t 45° to radians: 45+« — = —rad
onver o radians 80 = 2 ra
180
Convert % rad to degrees: % = 30° 0
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Positive
measure

./ x
Negative

measure

49 Angles in standard position in the xy-plane.

Conversion formulas

1 degree = 1% (~ 0.02) radians

Degrees to radians: multiply by {é%

180
1 radian = — (~ 57) degrees

180
Radians to degrees: multiply by —
F 4

Unit circ

Clircle of radivs 7

51 The radian measure of angle ACB is
the length 6 of arc A'B' on the unit circle
centered at C. The value of 6 can be
found from any other circle as s/r.

An angle in the xy-plane is said to be in standard position if its vertex lies at
the origin and its initial ray lies along the positive x-axis (Fig. 49). Angles measured
counterclockwise from the positive x-axis are assigned positive measures; angles
measured clockwise are assigned negative measures.

When angles are used to describe counterclockwise rotations, our measurements
can go arbitrarily far beyond 27 radians or 360°. Similarly, angles describing
clockwise rotations can have negative measures of all sizes (Fig. 50).

1N
N
N
N

/
N

50 Nonzero radian measures can be positive or negative.

There is a useful relationship between the length s of an arc AB on a circle
of radius r and the radian measure 6 of the angle the arc subtends at the circle’s
center C (Fig. 51). If we draw a unit circle with the same center C, the arc A’B’
cut by the angle will have length 6, by the definition of radian measure. From the
similarity of the circular sectors ACB and A’CB’, we then have s/r = 6/1.



hypotenuse
opposite
o 0
adjacent

sin = opp csc 0 = hyp
hyp opp

- 2adj _ hyp

cos 0 = hyp sec § = adj
tan 6 = ﬂ cotf = a_d]
adj opp

52 Trigonometric ratios of an acute

angle.

P(x, y)

r

N

53 The trigonometric functions of a

general angle 6 are defined in terms of x,

¥y, and r.

hypotenuse P(x,y)
r
y \ opposite
0
X

\J

54 The new and old definitions agree for

acute angles.

x
adjacent
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Radian Measure and Arc Length

Notice that these equalities hold precisely because we are measuring the angle in
radians.

Angle Convention: Use Radians

From now on in this book it is assumed that all angles are measured in
radians unless degrees or some other unit is stated explicitly. When we talk
about the angle 7 /3, we mean 7 /3 radians (which is 60°), not v /3 degrees.
When you do calculus, keep your calculator in radian mode.

EXAMPLE 2 Consider a circle of radius 8. (a) Find the central angle subtended
by an arc of length 27 on the circle. (b) Find the length of an arc subtending a
central angle of 37 /4.

Solution

s 2t 7 3n

The Six Basic Trigonometric Functions

You are probably familiar with defining the trigonometric functions of an acute
angle in terms of the sides of a right triangle (Fig. 52). We extend this definition to
obtuse and negative angles by first placing the angle in standard position in a circle
of radius » We then define the trigonometric functions in terms of the coordinates
of the point P(x, y) where the angle’s terminal ray intersects the circle (Fig. 53).

. . r
Sine: sinf = = Cosecant: cscld = —
y

. X r
Cosine: cosf = — Secant: sec = —
r X

y x

Tangent: tanf = = Cotangent: cotf = —
X y

These extended definitions agree with the right-triangle definitions when the angle
is acute (Fig. 54).
As you can see, tanf and sec 6 are not defined if x = 0. This means they are
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P(x,y) = (rcos 6, rsin 6)

55 The Cartesian coordinates of a point

in the plane expressed in terms of r and 6.

P(x,y) = (cos 6, sin 6) L
Unit circle

[yl 6
(—\ )

56 The acute reference triangle for an
angle 6.

57 The triangle for calculating the sine and cosine of

2n/3 radians (Example 3).

not defined if 6 is £ 7 /2, £37/2, .. .. Similarly, cotf and cscf are not defined
for values of 6 for which y =0, namely 8 =0, + 7, +27,....
Notice also the following definitions, whenever the quotients are defined.

tanf = sin6 cot@:L

cosf tan 6

0 ! (% ———1
sect = csch =

cos @ sin @

The coordinates of any point P(x, y) in the plane can now be expressed in
terms of the point’s distance from the origin and the angle that ray OP makes with
the positive x-axis (Fig. 55). Since x/r = cosf and y/r = sinf, we have

X = rcosf, y =rsiné. (1)

Values of Trigonometric Functions
If the circle in Fig. 53 has radius r = 1, the equations defining sinf and cos 6

become

cosf = x, sinf = y.

We can then calculate the values of the cosine and sine directly from the coordinates
of P, if we happen to know them, or indirectly from the acute reference triangle made
by dropping a perpendicular from P to the x-axis (Fig. 56). We read the magnitudes
of x and y from the triangle’s sides. The signs of x and y are determined by the
quadrant in which the triangle lies.

EXAMPLE 3 Find the sine and cosine of 27 /3 radians.

Solution

Step 1: Draw the angle in standard position in the unit circle and write in the
lengths of the sides of the reference triangle (Fig. 57).

(cos 2—77, sin 2—") = (— 1 \/73)

o
h
.
3
=




y
S A
sin pos all pos
x
T C
tan pos €Os pos

58 The CAST rule.

59 The triangle for calculating the sine and cosine of

—n/4 radians (Example 4).
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Step 2: Find the coordinates of the point P where the angle’s terminal ray cuts the
circle:

2w . 1
cos — = x-coordinate of P = ——
3 2
2 3
sin ?n = y-coordinate of P = % 0

A useful rule for remembering when the basic trigonometric functions are
positive and negative is the CAST rule (Fig. 58).

EXAMPLE 4 Find the sine and cosine of — /4 radians.

Solution

Step 1: Draw the angle in standard position in the unit circle and write in the
lengths of the sides of the reference triangle (Fig. 59).

1215

=

151

P

(et

~[S)

, -

/
2 S
ENE]

Jon(-5)

Step 2: Find the coordinates of the point P where the angle’s terminal ray cuts the
circle:

V2

cos <—£) = x-coordinate of P = —,
4 2

2
sin <—%) = y-coordinate of P = —%. 0

Calculations similar to those in Examples 3 and 4 allow us to fill in Table 2.

Table 2 Values of sin 6, cos 6, and tan 8 for selected values of 0

Degrees  —180 —135 —90 —45 0 30 45 60 90 135 180
o‘ (ra&ians) R —37/4 -2 —nl4 0 n/l6 nl4 n/3 72 3n/4 n
iosin@ il 0 —V2n -1 —V2/2 0 172 V212 V32 1 V212 0
cos9 0 -1 —212 0 V212 1 V312 V212 12 0 —V21 -1
tme 0 1 -1 0 V33 1 V3 -1 0
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y y
y = sinx y = COS X

| |

| |

| sy
- T s 2w —

2 7 3

| £
Domain: (o0, ) Domain: (—oo, )
Range: [-1,1] Range: [-1,1] Domain: All real numbers except odd
integer multiples of 7/2
Range: (-0, )
y y
y =secx y=cscx
] | x
T o™ 3 r 37w 2m
in° —+ +3 . .
Domain: x # = g’ = 7"’ e Domain: x # 0, =, 2, ... Domain: x # 0, =, =27, . ..
Range: (-, -1]U [1, ) Range: (-, -1] U [1, ®) Range: (-, )
60 The graphs of the six basic Graphs

trigonometric functions as functions of
radian measure. Each function’s
periodicity shows clearly in its graph.

Periods of trigonometric functions

Period 7: tan (x + ) = tanx
cot (x + ) = cotx

Period 27 sin (x + 27) = sinx
cos (x +2m) = cosx
sec (x +2m) = secx
csc (x +2m) = cscx

When we graph trigonometric functions in the coordinate plane, we usually denote
the independent variable by x instead of 8. See Fig. 60.

Periodicity

When an angle of measure x and an angle of measure x + 27 are in standard posi-
tion, their terminal rays coincide. The two angles therefore have the same trigono-
metric values. For example, cos (x + 27) = cos x. Functions like the trigonometric
functions whose values repeat at regular intervals are called periodic.

Definition
A function f(x) is periodic if there is a positive number p such that
f@x + p) = f(x) for all x. The smallest such value of p is the period of f.

As we can see in Fig. 60, the tangent and cotangent functions have period p = 7.
The other four functions have period 27.

Figure 61 shows graphs of y = cos2x and y = cos(x/2) plotted against the
graph of y = cosx. Multiplying x by a number greater than 1 speeds up a trigono-
metric function (increases the frequency) and shortens its period. Multiplying x by
a positive number less than 1 slows a trigonometric function down and lengthens
its period.
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T 27 37 4 - 0 T 27 T 47

&y

IS, NN

— —1F+

(a) (b)

61 (a) Shorter period: cos 2x. (b) Longer The importance of periodic functions stems from the fact that much of the

period: cos (x/2) behavior we study in science is periodic. Brain waves and heartbeats are periodic,
as are household voltage and electric current. The electromagnetic field that heats
food in a microwave oven is periodic, as are cash flows in seasonal businesses and
the behavior of rotational machinery. The seasons are periodic—so is the weather.
The phases of the moon are periodic, as are the motions of the planets. There is
strong evidence that the ice ages are periodic, with a period of 90,000-100,000
years.

If so many things are periodic, why limit our discussion to trigonometric func-
tions? The answer lies in a surprising and beautiful theorem from advanced calculus
that says that every periodic function we want to use in mathematical modeling can
be written as an algebraic combination of sines and cosines. Thus, once we learn
the calculus of sines and cosines, we will know everything we need to know to
model the mathematical behavior of periodic phenomena.

Even vs. Odd

The symmetries in the graphs in Fig. 60 reveal that the cosine and secant functions
are even and the other four functions are odd:

Even Odd
y cos (—x) = cosx sin (—x) = —sinx
sec (—x) = secx tan (—x) = —tanx
) csc (—x) = —cscx
P(cos 6, sin 6) cot (—x) = —cotx
noll Identities
sin@|}
X Applying the Pythagorean theorem to the reference right triangle we obtain by
R x  dropping a perpendicular from the point P(cosé,sin@) on the unit circle to the
| cos 6 1 x-axis (Fig. 62) gives
cos? 0 + sin?0 = 1. )
62 The reference triangle for a general This equation, true for all values of 6, is probably the most frequently used identity

angle 6. in trigonometry.
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Dividing Eq. (2) in turn by cos? @ and sin? @ gives the identities

1 + tan® 0 = sec? 0,

1 + cot? & = csc?6.

You may recall the following identities from an earlier course.

All the trigonometric identities you will need
in this book derive from Eqgs. (2) and (3).

Angle Sum Formulas

cos(A+ B) = cos Acos B —sin Asin B 3)
sin (A 4+ B) = sin A cos B + cos A sin B

These formulas hold for all angles A and B. There are similar formulas for
cos (A — B) and sin (A — B) (Exercises 35 and 36).

Substituting € for both A and B in the angle sum formulas gives two more
useful identities:

Instead of memorizing Egs. (3) you might
find it helpful to remember Egs. (4), and then
recall where they came from.

Double-angle Formulas

cos 20 = cos® 6 — sin® 6
(4)

sin 26 = 2 sin @ cos 0

Additional formulas come from combining the equations
cos? 6 + sin® 6 = 1, cos? @ — sin® 6 = cos 26.

We add the two equations to get 2 cos’> & = 1 + cos 20 and subtract the second
from the first to get 2sin” @ = 1 — cos 26.

Additional Double-angle Formulas
1 4 cos 26

2
=Y 5
cos 5 (5)
1 — cos 20
sin29=—i2°s— ©6)

When 6 is replaced by 6/2 in Egs. (5) and (6), the resulting formulas are called
half-angle formulas. Some books refer to Egs. (5) and (6) by this name as well.



63 The square of the distance between A
and B gives the law of cosines.

Exercises 5 43

B(a cos 6, a sin 6)

N

Cc b A(b,0)

The Law of Cosines
If a, b, and c are sides of a triangle ABC and if 6 is the angle opposite ¢, then

¢* = a® + b* — 2ab cos . 7)

This equation is called the law of cosines.

We can see why the law holds if we introduce coordinate axes with the origin
at C and the positive x-axis along one side of the triangle, as in Fig. 63. The
coordinates of A are (b, 0); the coordinates of B are (a cos 6, a sin ). The square
of the distance between A and B is therefore

c? = (acos 6 — b)? + (asin 6)?
= a®(cos? 0 + sin® 0) + b* — 2ab cos 0
1
= a’+ b* — 2ab cos 6.

Combining these equalities gives the law of cosines.
The law of cosines generalizes the Pythagorean theorem. If 6 = 7 /2, then
cos =0 and ¢* = a® + b%.

Exercises 5

Radians, Degrees, and Circular Arcs

1. On a circle of radius 10 m, how long is an arc that subtends a
central angle of (a) 4 /5 radians? (b) 110°?

@ 4. CALCULATOR If you roll a 1-m-diameter wheel forward 30
cm over level ground, through what angle will the wheel turn?
Answer in radians (to the nearest tenth) and degrees (to the nearest
degree).

2. A central angle in a circle of radius 8 is subtended by an arc of
length 10. Find the angle’s radian and degree measures.

B 3. CALCULATOR You want to make an 80° angle by marking an Evaluatmg Trigonometric Functions

arc on the perimeter of a 12-in.-diameter disk and drawing lines 5. Copy and complete the table of function values shown on the
from the ends of the arc to the disk’s center. To the nearest tenth following page. If the function is undefined at a given angle,

of an inch, how long should the arc be?

enter “UND.” Do not use a calculator or tables.
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. T b4
0 -7 —27/3 0 /2 3n/4 21. sin (x - Z) +1 22. cos (x + Z) -1
sin 6 Graph the functions in Exercises 23-26 in the #s-plane (#-axis hor-
cos 6 izontal, s-axis vertical). What is the period of each function? What
tan 6 symmetries do the graphs have?
cot 0 23. s =cot 2t 24. s = —tan mt
sec 6

t t
csc 6 25. 5 = sec (%) 26. s = csc (—2->

my
6. Copy and complete the following table of function values. If the 48 27. GRAPHER

function is undefined at a given angle, enter “UND.” Do not use a) Graph y =cosx and y = sec x together for —37/2 < x <

a calculator or tables. 37 /2. Comment on the behavior of sec x in relation to the
signs and values of cos x.

b) Graph y =sinx and y = cscx together for —w < x < 2x.

(7] —3n/2 —7/3 —x/6 /4 57/6 Comment on the behavior of cscx in relation to the signs

and values of sin x.

zglsi) 484 28. GRAPHER Graph y =tanx and y = cotx together for —7 <

x < 7. Comment on the behavior of cotx in relation to the signs

tan 6 and values of tanx.

cot 0

sec O 29. Graph y =sinx and y = [sin x| together. What are the domain
csc 6 and range of |sinx]?

30. Graph y =sinx and y = [sinx] together. What are the domain

. . L . and range of [sinx]?
In Exercises 7-12, one of sin x, cos x, and tan x is given. Find the

other two if x lies in the specified interval.

. 3 e Additional Trigonometric Identities
7. sinx = 5’ xom [5 ’ n] Use the angle sum formulas to derive the identities in Exercises 31-36.
8. tanx =2, xin [O, %] 31. cos (x — %) =sinx 32. cos (x + %) = —sinx
1
9. cosx=§, x in [—%,0] 33. sin (x+%) =CosXx 34. sin (x— %) = —cCcosx
35. cos(A— B) =cos Acos B +sinAsin B
10. cosx =——, xin|—, 7
13 2 36. sin(A — B) =sinAcos B —cos Asin B
I oenxr=L1 xin [n 3_77] 37. What happens if you take B = A in the identity cos (A — B) =
2 2 cos A cos B + sin A sin B? Does the result agree with something
1 3 you already know?
12. sinx = —=, xin|m, — . .
2 2 38. What happens if you take B = 27 in the angle sum formulas?

Do the results agree with something you already know?
Graphing Trigonometric Functions

Graph the functions in Exercises 13—-22. What is the period of each Using the Angle Sum Formulas

function? . . oo .
In Exercises 39—42, express the given quantity in terms of sin x and

13. sin2x 14. sin (x/2) cos x.
15. cosz x 16. cos ”7" 39. cos (7 +x) 40. sin (27 — x)
. (3w 3n
17. —sin n?x 18. — cos2mx 41. sin (7 - x) 42. cos (7 +x)

b

b
19. - = 20
cos ( 5 )

. /4 7
sin (x + E) 43. Evaluate sin % as sin (% + %)



4.

45.

46.

Eval tecs“nascos n+2n
valuate cos — -+ — ).
12 4 3

Eval tcsn
valuate cos —.
12

. Sm
Evaluate sin —.
12

Using the Double-angle Formulas

Find the function values in Exercises 47-50.

47.

49.

cos? = 48. cos? r
12

L, T R
— 50. -
sin 12 sin 8

Theory and Examples

51.

52.

53.

54.

B ss.
B s6.

57.

The tangent sum formula. The standard formula for the tangent
of the sum of two angles is

tan A + tan B

tan(A+B) = —m8M8—.
(A+B) 1 —tanAtan B
Derive the formula.

(Continuation of Exercise 51.) Derive a formula for
tan (A — B).

Apply the law of cosines to the triangle in the accompanying
figure to derive the formula for cos (A — B).

y

When applied to a figure similar to the one in Exercise 53, the law
of cosines leads directly to the formula for cos (A + B). What is
that figure and how does the derivation go?

CALCULATOR A triangle has sides a = 2 and b = 3 and angle
C = 60°. Find the length of side c.

CALCULATOR A triangle has sides a = 2 and b = 3 and angle
C = 40°. Find the length of side c.

The law of sines. The law of sines says that if a, b, and c are
the sides opposite the angles A, B, and C in a triangle, then

sin A sin B sinC

a b ¢

B ss.

B so.

s 60.

Exercises 5 45

Use the accompanying figures and the identity sin (7 —6) =
sin 0, if required, to derive the law.

CALCULATOR A triangle has sides a = 2 and b = 3 and angle
C = 60° (as in Exercise 55). Find the sine of angle B using the
law of sines.

CALCULATOR A triangle has side ¢ =2 and angles A = 7 /4
and B = 7 /3. Find the length a of the side opposite A.

The approximation sin x=x. It is often useful to know that,
when x is measured in radians, sinx & x for numerically small
values of x. In Section 3.7, we will see why the approximation
holds. The approximation error is less than 1 in 5000 if |x| < 0.1.

a) With your grapher in radian mode, graph y =sinx and

y = x together in a viewing window about the origin. What

do you see happening as x nears the origin?

With your grapher in degree mode, graph y = sinx and

y = x together about the origin again. How is the picture

different from the one obtained with radian mode?

¢) A quick radian mode check. Is your calculator in radian
mode? Evaluate sinx at a value of x near the origin, say
x = 0.1. If sinx =~ x, the calculator is in radian mode; if
not, it isn’t. Try it.

b)

General Sine Curves

Figure 64 on the following page shows the graph of a general sine
function of the form

f(x) = Asin (%t(x — C)) + D,

where |A| is the amplitude, |B| is the period, C is the horizontal
shift, and D is the vertical shift. Identify A, B, C, and D for the sine
functions in Exercises 61-64 and sketch their graphs.

61. y=2sin(x+m)—1

1 1
62. y=§ sin(nx—n)+§

2 1
63. y=—— sin (lt) + —
/4 -2 b4

2t

L
64. y=—sin—, L>0
y=g—sin— >
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64 The general sine curve
y = Asin [(27/B)(x — O)] + D,

Amplitude (A)
This axis is the

This distance is
the period (B).

shown for A, B, C, and D positive.

The Trans-Alaska Pipeline

The builders of the Trans-Alaska Pipeline used insulated pads to keep
the heat from the hot oil in the pipeline from melting the permanently
frozen soil beneath. To design the pads, it was necessary to take into
account the variation in air temperature throughout the year. Figure
65 shows how we can use a general sine function, defined in the
introduction to Exercises 61-64, to represent temperature data. The
data points in the figure are plots of the mean air temperature for
Fairbanks, Alaska, based on records of the National Weather Service
from 1941 to 1970. The sine function used to fit the data is

. 2
f(x) = 37sin (g(x - 101)) + 25,

where f is temperature in degrees Fahrenheit and x is the number of
the day counting from the beginning of the year. The fit is remarkably
good.

65. Temperature in Fairbanks, Alaska. Find the (a) amplitude, (b)
period, (c) horizontal shift, and (d) vertical shift of the general
sine function

f(x) = 37sin (%(x - 101)) +25.

66. Temperature in Fairbanks, Alaska. Use the equation in Exer-
cise 65 to approximate the answers to the following questions
about the temperature in Fairbanks, Alaska, shown in Fig. 65.
Assume that the year has 365 days.

a) What are the highest and lowest mean daily temperatures
shown?

b) What is the average of the highest and lowest mean daily
temperatures shown? Why is this average the vertical shift
of the function?

& CAS Explorations and Projects

In Exercises 67-70, you will explore graphically the general sine
function

. (2
f(x) = Asin (?(x - C)) + D

as you change the values of the constants A, B, C, and D. Use a
CAS or computer grapher to perform the steps in the exercises.
67. The period B. Set the constants A =3,C = D =0.

a) Plot f(x) for the values B = 1, 3, 2, 57 over the interval

65 Normal mean air temperature at

Fairbanks, Alaska, plotted as data points.
The approximating sine function is

Temperature (°F)

. (27
f(x) = 37sin (ﬁ(" - 101)) + 25.

(Source: "Is the Curve of Temperature

Variation a Sine Curve?” by B. M. Lando

and C. A. Lando, The Mathematics
Teacher, 7:6, Fig. 2, p. 535 [September

e

19771.)

0
Jan Feb Mar Apr May Jun Jul

Aug Sep Oct Nov Dec Jan Feb Mar
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PRELIMINARIES

—4mw < x < 4n. Describe what happens to the graph of the
general sine function as the period increases.

b) What happens to the graph for negative values of B? Try it
with B = -3 and B = —2m.

The horizontal shift C. Set the constants A =3, B =6, D = 0.

a) Plot f(x) for the values C =0, 1, and 2 over the interval
—4m < x < 4x. Describe what happens to the graph of the
general sine function as C increases through positive values.

b) What happens to the graph for negative values of C?

¢) What smallest positive value should be assigned to C so
the graph exhibits no horizontal shift? Confirm your answer
with a plot.

69.

70.

Questions to Guide Your Review 47

The vertical shift D. Set the constants A =3, B=6,C = 0.

a) Plot f(x) for the values D =0, 1, and 3 over the interval
—4m < x < 4m. Describe what happens to the graph of the
general sine function as D increases through positive values.

b) What happens to the graph for negative values of D?

The amplitude A. Set the constants B =6,C = D = 0.

a) Describe what happens to the graph of the general sine
function as A increases through positive values. Con-
firm your answer by plotting f(x) for the values A =1,
5, and 9.

b) What happens to the graph for negative values of A?

QUESTIONS TO GUIDE YOUR REVIEW

10.

11.

12.

. What are the order properties of the real numbers? How are they

used in solving inequalities?

. What is a number’s absolute value? Give examples. How are

| — al, |ab|, |a/b|, and |a + b| related to |a| and |b|?

. How are absolute values used to describe intervals or unions of

intervals? Give examples.

. How do you find the distance between two points in the coordinate

plane?

. How can you write an equation for a line if you know the coordi-

nates of two points on the line? the line’s slope and the coordinates
of one point on the line? the line’s slope and y-intercept? Give
examples.

. What are the standard equations for lines perpendicular to the

coordinate axes?

. How are the slopes of mutually perpendicular lines related? What

about parallel lines? Give examples.

. When a line is not vertical, what is the relation between its slope

and its angle of inclination?

. What is a function? Give examples. How do you graph a real-

valued function of a real variable?

Name some typical algebraic and trigonometric functions and
draw their graphs.

What is an even function? an odd function? What geometric prop-
erties do the graphs of such functions have? What advantage can
we take of this? Give an example of a function that is neither even
nor odd. What, if anything, can you say about sums, products,
quotients, and composites involving even and odd functions?

If f and g are real-valued functions, how are the domains of
f+sg f—g, fg, and f/g related to the domains of f and g?
Give examples.

13

B

14.

15.

16.

17.

18.

19.

20.

21.

22.

When is it possible to compose one function with another? Give
examples of composites and their values at various points. Does
the order in which functions are composed ever matter?

How do you change the equation y = f(x) to shift its graph up
or down? to the left or right? Give examples.

Describe the steps you would take to graph the circle x? + y? +
4x — 6y +12=0.

If a, b, and ¢ are constants and a # 0, what can you say about
the graph of the equation y = ax? + bx + ¢? In particular, how
would you go about sketching the curve y = 2x2 + 4x?

What inequality describes the points in the coordinate plane that
lie inside the circle of radius a centered at the point (%, k)? that
lie inside or on the circle? that lie outside the circle? that lie
outside or on the circle?

What is radian measure? How do you convert from radians to
degrees? degrees to radians?

Graph the six basic trigonometric functions. What symmetries do
the graphs have?

How can you sometimes find the values of trigonometric func-
tions from triangles? Give examples.

What is a periodic function? Give examples. What are the periods
of the six basic trigonometric functions?

Starting with the identity cos?# + sin?# = 1 and the formulas
for cos (A + B) and sin (A + B), show how a variety of other
trigonometric identities may be derived.
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Composition with absolute values. In Exercises 15-20, graph g,
and g, together. Then describe how taking absolute values after ap-

PRELIMINARIES PRACTICE EXERCISES
Geometry
1. A particle in the plane moved from A(—2,5) to the y-axis in

such a way that Ay equaled 3 Ax. What were the particle’s new
coordinates?

2. a) Plot the points A(8, 1), B(2, 10), C(—4,6), D(2, —3), and
E(14/3,6).
b) Find the slopes of the lines AB, BC, CD, DA, CE, and BD.
¢) Do any four of the five points A, B, C, D, and E form a
parallelogram?
d) Are any three of the five points collinear? How do you
know?
e)  Which of the lines determined by the five points pass through
the origin?
3. Do the points A(6, 4), B(4, —3), and C(—2, 3) form an isosceles

triangle? a right triangle? How do you know?

. Find the coordinates of the point on the line y = 3x + 1 that is

equidistant from (0, 0) and (-3, 4).

Functions and Graphs

5.

Express the area and circumference of a circle as functions of
the circle’s radius. Then express the area as a function of the
circumference.

. Express the radius of a sphere as a function of the sphere’s surface

area. Then express the surface area as a function of the volume.

. A point P in the first quadrant lies on the parabola y = x2. Express

the coordinates of P as functions of the angle of inclination of
the line joining P to the origin.

. A hot-air balloon rising straight up from a level field is tracked

by a range finder located 500 ft from the point of lift-off. Express
the balloon’s height as a function of the angle the line from the
range finder to the balloon makes with the ground.

Composition with absolute values. In Exercises 9-14, graph f; and
f> together. Then describe how applying the absolute value function
before applying f; affects the graph.

9.
10.
11.

12.

13.
14.

Six) f200 = fi(jx))
x x|

3 x|?

52 x[?

! 1

x x|

NN F

sin x sin |x|

plying g; affects the graph.

g1(x) g2(x)= |g1(x)|
15. x* |23
16. x lv/x]
1 1
17. — —
X X
18. 4 —x? |4 — x2|
19. x2+x |x2 + x|
20. sinx | sin x|
Trigonometry

In Exercises 21-24, sketch the graph of the given function. What is
the period of the function?

21.

23.

25.

26.

x
y =cos2x 22. y =sin B

y =sinmwx 24. y = cos %

Sketch the graph y = 2 cos (x - %)

Sketch the graph y = 1 + sin (x + %)

In Exercises 27-30, ABC is a right triangle with the right angle at C.
The sides opposite angles A, B, and C are g, b, and c, respectively.

27.
28.
29.

30.

B 31

B 3.

a) Findaandbifc=2,B=mn/3.
b) Findaandcif b=2,B=m/3.
a) Express a in terms of A and c.

b) Express a in terms of A and b.

a) Express a in terms of B and b.

b) Express c in terms of A and a.

a) Express sin A in terms of a and c.
b) Express sin A in terms of b and c.

CALCULATOR Two guy wires stretch from the top 7 of a vertical
pole to points B and C on the ground, where C is 10 m closer to
the base of the pole than is B. If wire BT makes an angle of 35°
with the horizontal, and wire CT makes an angle of 50° with the
horizontal, how high is the pole?

CALCULATOR Observers at positions A and B 2 km apart simul-
taneously measure the angle of elevation of a weather balloon to
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be 40° and 70°, respectively. If the balloon is directly above a au 35. a) GRAPHER Graph the function f(x) = sinx + cos (x/2).

point on the line segment between A and B, find the height of b) What appears to be the period of this function?
the balloon. ¢) Confirm your finding in (b) algebraically.
33. Express sin3x in terms of sinx and cos x. s 36. a) GRAPHER Graph f(x) = sin(1/x).

b) What are the domain and range of f?

34. Express cos 3x in terms of sinx and cos x. o ]
¢) Is fperiodic? Give reasons for your answer.

PRELIMINARIES ADDITIONAL EXERCISES—THEORY, EXAMPLES, APPLICATIONS
Geometry Functions and Graphs
1. An object’s center of mass moves at a constant velocity v along 3. Are there two functions f and g such that f o g = g o f? Give
a straight line past the origin. The accompanying figure shows reasons for your answer.
the coordinate system and the line of motion. The dots show 4. Are there two functions f and g with the following property? The

positions that are 1 sec apart. Why are the areas A;, A, ..., As
in the figure all equal? As in Kepler’s equal area law (see Section
11.5), the line that joins the object’s center of mass to the origin
sweeps out equal areas in equal times.

graphs of f and g are not straight lines but the graph of f o g is
a straight line. Give reasons for your answer.

5. If f(x) is odd, can anything be said of g(x) = f(x) — 2? What
if fis even instead? Give reasons for your answer.

6. If g(x) is an odd function defined for all values of x, can anything
be said about g(0)? Give reasons for your answer.

7. Graph the equation |x| 4 [y| =1+ x.
8. Graph the equation y + |y| = x + |x|.

Kilometers

Trigonometry

In Exercises 9-14, ABC is an arbitrary triangle with sides a, b, and ¢
opposite angles A, B, and C, respectively.

9. Findbifa=+/3,A=n/3,B=mn/4
10. FindsinB ifa =4,b =3, A = /4.
Kilometers 11. FindcosAifa=2,b=2,¢c=3.

2. a) Find the slope of the line from the origin to the midpoint ~ 12. Findcifa=2,b=3,C =n/4
P of side AB in the triangle in the accompanying figure 13. FindsinBifa=2,b=3,c = 4.

(a,b > 0). . . .
14. Find sinC ifa=2,b=4,c =5.
y
Derivations and Proofs
B, b) 15. Prove the following identities.
1 —cosx sin x
a) - =
sin x 1+ cosx
P b) 1 —cosx =tan2§
1+ cosx 2
0 A(a, 0)

b) When is OP perpendicular to AB?
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16. Explain the following “proof without words” of the law of cosines.

(Source: “Proof without Words: The Law of Cosines,” Sidney H.
Kung, Mathematics Magazine, Vol. 63, No. 5, Dec. 1990, p. 342.)

. 2acos 0 —b

17. Show that the area of triangle ABC is given by (1/2)absinC =
(1/2)bcsin A = (1/2)ca sin B.

C

* 18. Show that the area of triangle ABC is given by
/s(s —a)(s — b)(s — ¢) where s = (a+b+c¢)/2 is the semi-
perimeter of the triangle.*

19. Properties of inequalities. If a and b are real numbers, we say
that a is less than b and write a < b if (and only if) b —a is

positive. Use this definition to prove the following properties of

inequalities.
If a, b, and c are real numbers, then:

1. a<b = a+c<b+c
2. a<b = a-c<b-c
3. a<bandc>0 = ac <bc
4., a<bandc<0 = bc<ac
(Special case: a <b =— —b < —a)
1
5. a>0 = ~->0
a
1 1
6. O<a<b — —-<-
b a
1 1
7. a<b<0 = —-<-—
b a

*Asterisk denotes more challenging problem.

20.

21.

22.

23.

24.

Properties of absolute values. Prove the following properties
of absolute values of real numbers.
a) |—al|=|al

lal

b) ‘%Fm

Prove that the following inequalities hold for any real numbers
a and b.

a) |a| < |b| if and only if a® < b?

b) la—b|=|la| —|bl|

Generalizing the triangle inequality. Prove by mathematical
induction that the following inequalities hold for any » real num-

bers ay, a,, ..., a,. (Mathematical induction is reviewed in Ap-
pendix 1.)

a) |lajtayt+---+ta < |a|+lal+--+laal

b) laita+---+al=la| —laa] = —laal

Show that if f is both even and odd, then f(x) = O for every x
in the domain of f.

a) Even-odd decompositions. Let f be a function whose do-
main is symmetric about the origin, that is, —x belongs to
the domain whenever x does. Show that f is the sum of an
even function and an odd function:

f(x) = E@x)+ Ox),
where E is an even function and O is an odd function. (Hint:
Let E(x) = (f(x) + f(—x))/2. Show that E(—x) = E(x),
so that E is even. Then show that O(x) = f(x) — E(x) is
odd.)

b) Uniqueness. Show that there is only one way to write f as
the sum of an even and an odd function. (Hint: One way is
given in part (a). If also f(x) = E;(x) + O;(x) where E,
is even and O, is odd, show that E — E; = O; — O. Then
use Exercise 23 to show that £ = E, and O = 0,.)

Grapher Explorations—Effects of Parameters

25.

26.

27.

What happens to the graph of y = ax? + bx + ¢ as

a) a changes while b and ¢ remain fixed?
b) b changes (a and c fixed, a # 0)?
¢) ¢ changes (a and b fixed, a # 0)?

What happens to the graph of y = a(x +b)* + ¢ as

a) a changes while b and ¢ remain fixed?
b) b changes (a and c fixed, a # 0)?
¢) ¢ changes (a and b fixed, a # 0)?

Find all values of the slope of the line y = mx + 2 for which the
x-intercept exceeds 1/2.



CHAPTER

Limits and Continuity

OVERVIEW The concept of limit of a function is one of the fundamental ideas
that distinguishes calculus from algebra and trigonometry.

In this chapter we develop the limit, first intuitively and then formally. We use
limits to describe the way a function f varies. Some functions vary continuously;
small changes in x produce only small changes in f(x). Other functions can have
values that jump or vary erratically. We also use limits to define tangent lines
to graphs of functions. This geometric application leads at once to the important
concept of derivative of a function. The derivative, which we investigate thoroughly
in Chapter 2, quantifies the way a function’s values change.

Free fall

Near the surface of the earth, all bodies fall
with the same constant acceleration. The
distance a body falls after it is released from
rest is a constant multiple of the square of
the time elapsed. At least, that is what
happens when the body falls in a vacuum,
where there is no air to slow it down. The
square-of-time rule also holds for dense,
heavy objects like rocks, ball bearings, and
steel tools during the first few seconds of
their fall through air, before their velocities
build up to where air resistance begins to
matter. When air resistance is absent or
insignificant and the only force acting on a
falling body is the force of gravity, we call
the way the body falls free fall.

Rates of Change and Limits

In this section we introduce two rates of change, speed and population growth. This
leads to the main idea of the section, the idea of limit.

Speed

A moving body’s average speed over any particular time interval is the amount of
distance covered during the interval divided by the length of the interval.

EXAMPLE 1 A rock falls from the top of a 150-ft cliff. What is its average
speed (a) during the first 2 sec of fall? (b) during the 1-sec interval between second
1 and second 2?

Solution Physical experiments show that a solid object dropped from rest to fall
freely near the surface of the earth will fall

y = 16t ft

during the first ¢ sec. The average speed of the rock during a given time interval is
the change in distance, Ay, divided by the length of the time interval, At.

A 16(2)2 — 16(0)2 ft
a) For the first 2 sec: ol A M =32—
At 2—-0 sec
A 16(2)% — 16(1)? ft
b) From second 1 to second 2: = —(—)-———(—)— =48—
At 2—1 sec a

51
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Geometrically, an average rate of change
is a secant slope.

Table 1.1 Average speeds over short time intervals

Ay 16(ty + h)z — 161’02
Average speed: — = ————

At h
Length of Average speed over Average speed over
time interval interval of length h interval of length k
h starting at £y = 1 starting at £p = 2
1 48 80
0.1 33.6 65.6
0.01 32.16 64.16
0.001 32.016 64.016
0.0001 32.0016 64.0016

EXAMPLE 2 Find the speed of the rock at t = 1 and ¢ = 2 sec.

Solution We can calculate the average speed of the rock over a time interval
[%0, to + h], having length At = h, as

Ay . 16(zg +h)2 - 16t02

Ar h '

We cannot use this formula to calculate the “instantaneous” speed at 7, by sub-
stituting 2 = 0, because we cannot divide by zero. But we can use it to calculate
average speeds over increasingly short time intervals starting at 7o = 1 and 7, = 2.
When we do so, we see a pattern (Table 1.1).

The average speed on intervals starting at fo = 1 seems to approach a lim-
iting value of 32 as the length of the interval decreases. This suggests that the
rock is falling at a speed of 32 ft/sec at #, = 1 sec. Similarly, the rock’s speed at
to = 2 sec would appear to be 64 ft/sec. d

Average Rates of Change and Secant Lines

Given an arbitrary function y = f(x), we calculate the average rate of change of
y with respect to x over the interval [x,, x,] by dividing the change in value of
y, Ay = f(x3) — f(x1), by the length of the interval Ax = x, — x; = h over which
the change occurred.

Definition
The average rate of change of y = f(x) with respect to x over the interval
[x1, x2] is

ﬂ f(xZ)—f(xl)=f(x1+h)——f(x1).

Ax X3 — X1 - h

Notice that the average rate of change of f over [x;, x,] is the slope of the line
through the points P (x;, f(x;)) and Q(x,, f(x2)) (Fig. 1.1). In geometry, a line
joining two points of a curve is called a secant to the curve. Thus, the average rate
of change of f from x,; to x, is identical with the slope of secant PQ.
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y
y =f(%
Q(xy, f(x,)
Secant
Ay
P(x;, flx)
O
/T Ax
1.1 A secant to the graph y = f(x). Its slope is |
Ay/Ax, the average rate of change of f over the | x
interval [xq, x2]. 0 *) X

Experimental biologists often want to know the rates at which populations grow
under controlled laboratory conditions.

EXAMPLE 3  The average growth rate of a laboratory population

Figure 1.2 shows how a population of fruit flies (Drosophila) grew in a 50-day
experiment. The number of flies was counted at regular intervals, the counted
values plotted with respect to time, and the points joined by a smooth curve. Find
the average growth rate from day 23 to day 45.

Solution There were 150 flies on day 23 and 340 flies on day 45. Thus the num-
ber of flies increased by 340 — 150 = 190 in 45 — 23 = 22 days. The average
rate of change of the population from day 23 to day 45 was

Ap 340—150 190

= — =~ 8.6 flies/day.

A te of ch e
verage rate of change Ar 5-5 >

This average is the slope of the secant through the points P and Q on the graph in
Fig. 1.2.

The average rate of change from day 23 to day 45 calculated in Example 3
does not tell us how fast the population was changing on day 23 itself. For that we
need to examine time intervals closer to the day in question.

350

e (e
300 ! /
/

£ 250 / Ap=190
B /
= 200
2 W7 | B2l 8.6 flieg/day
=
Z Ar=22
100
P
50 <
. . . / |
1.2 Growth of a fruit fly population in a controlled N P
experiment. (Source: Elements of Mathematical 0 10 20 30 40 50

Biology by A. ). Lotka, 1956, Dover, New York, p. 69.) Time (days)
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Slope of PQ = A p/A ¢t

0 (flies/day)
340 — 150
45,340 — =86
( ) 45 —23
330 — 150
40, 330 —— =106
( ) 40 — 23
310 — 150
35,310 —— =~ 13.
( ) 35-23 3
265 — 150
30, 265 —— x 164
( ) 3023

1.3 The positions and slopes of four
secants through the point P on the fruit

fly graph.

p s

£

B(35, 350
350 [ e =y s ..(, g o ,) /_ L A -
% 0(45) 340)

300
250 f—1 /
200
150 JEUS SRS SRS S Ui 4
100 |-
50

Number of flies

7

0 167\ 20 30 40 50
A(14,0) Time (days)

EXAMPLE 4 How fast was the number of flies in the population of Example
3 growing on day 23 itself?

Solution To answer this question, we examine the average rates of change over
increasingly short time intervals starting at day 23. In geometric terms, we find
these rates by calculating the slopes of secants from P to Q, for a sequence of
points Q approaching P along the curve (Fig. 1.3).

The values in the table show that the secant slopes rise from 8.6 to 16.4 as
the #-coordinate of Q decreases from 45 to 30, and we would expect the slopes to
rise slightly higher as ¢ continued on toward 23. Geometrically, the secants rotate
about P and seem to approach the red line in the figure, a line that goes through
P in the same direction that the curve goes through P. We will see that this line
is called the tangent to the curve at P. Since the line appears to pass through the
points (14, 0) and (35, 350), it has slope

350-0
35-14

= 16.7 flies/day (approximately).

On day 23 the population was increasing at a rate of about 16.7 flies/day. U

The rates at which the rock in Example 2 was falling at the instants ¢ = 1
and ¢ = 2 and the rate at which the population in Example 4 was changing on
day t = 23 are called instantaneous rates of change. As the examples suggest, we
find instantaneous rates as limiting values of average rates. In Example 4, we also
pictured the tangent line to the population curve on day 23 as a limiting position
of secant lines. Instantaneous rates and tangent lines, intimately connected, appear
in many other contexts. To talk about the two constructively, and to understand
the connection further, we need to investigate the process by which we determine
limiting values, or limits, as we will soon call them.

Limits of Function Values

Before we give a definition of limit, let us look at another example.

2

EXAMPLE5  How does the function f(x) = —
-

1 behave near x = 1?



y=x+1

1.4 The graph of f is identical with the
line y = x + 1 except at x = 1, where fis
not defined.
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Solution The given formula defines f for all real numbers x except x = 1 (we
cannot divide by zero). For any x # 1 we can simplify the formula by factoring
the numerator and canceling common factors:

x-D&x+D

fl) = ——=

x+1 for x#1.

The graph of fis thus the line y = x 4+ 1 with one point removed, namely the
point (1, 2). This removed point is shown as a “hole” in Fig. 1.4. Even though f(1)
is not defined, it is clear that we can make the value of f(x) as close as we want
to 2 by choosing x close enough to 1 (Table 1.2).

We say that f(x) approaches arbitrarily close to 2 as x approaches 1, or, more
simply, f(x) approaches the limit 2 as x approaches 1. We write this as
xt—1

I =2, I =2.

Table 1.2 The closer x gets to 1, the closer f(x) = (x> — 1)/(x — 1) seems
to get to 2.

Values of x 21

below and fx) = =x+1, x#1
x—1

above 1

0.9 1.9

1.1 2.1

0.99 1.99

1.01 2.01

0.999 1.999

1.001 2.001

0.999999 1.999999

1.000001 2.000001

Definition

Informal Definition of Limit
Let f(x) be defined on an open interval about xo, except possibly at xo
itself. If f(x) gets arbitrarily close to L for all x sufficiently close to xo, we
say that f approaches the limit L as x approaches x,, and we write

lim f(x)=1L.

X—>Xg

This definition is “informal” because phrases like arbitrarily close and sufficiently
close are imprecise; their meaning depends on the context. To a machinist man-
ufacturing a piston, close may mean within a few thousandths of an inch. To an
astronomer studying distant galaxies, close may mean within a few thousand light-
years. The definition is clear enough, however, to enable us to recognize and evaluate
limits of specific functions. We will need the more precise definition of Section
1.3, however, when we set out to prove theorems about limits.
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1.5 lirr} f(x) = lin'} glx) = lirr} h(x) = 2.

y
y=x
Xy |
|
I
I
|
%o
(a) Identity function
y
k y=k
*
|
I
|
|
|
0 Xy

(b) Constant function

1.6 The functions in Example 8.

/.

2ol gz
@ f= =1 ) g =1 %1
1, x=1

@) h(x)=x+1

EXAMPLE 6 The existence of a limit as x — xo does not depend on how the
function may be defined at xo. The function f in Fig 1.5 has limit 2 as x — 1
even though f is not defined at x = 1. The function g has limit 2 as x — 1 even
though 2 5 g(1). The function £ is the only one whose limit as x — 1 equals its
value at x = 1. For & we have lim,_,; A(x) = h(1). This kind of equality of limit
and function value is special, and we will return to it in Section 1.5. Q

Sometimes lim,_,,, f(x) can be evaluated by calculating f(x,). This holds, for
example, whenever f(x) is an algebraic combination of polynomials and trigono-
metric functions for which f (x) is defined. (We will say more about this in Sections
1.2 and 1.5.)

EXAMPLE 7
a) lim 4) =4
b) Ilim (4)=4
x—>—13
c) lin; x=3
d) lim 5x—3)=10-3=7

3x+4 —6+4 2
im = =—=
x—>-2 x+5

2 T 245 3 Q

EXAMPLE 8

a) If fis the identity function f(x) = x, then for any value of x, (Fig. 1.6a),

lim f(x) = lim x = xo.
xX—>Xo

X—Xg

b) If fis the constant function f(x) = k (function with the constant value k),
then for any value of xo (Fig. 1.6b),

lim f(x) = lim k =k Q

X—Xo xX—>Xg

Some ways that limits can fail to exist are illustrated in Fig. 1.7 and described
in the next example.
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y y
0, x<0
y= 1~
1, x=0
1
x
0 0
0, x=0
y=3.1
sin=, x>0
U x
_1 -
() Unit step function U(x) (b) g(x) ©) fx)

1.7 The functions in Example 9.

EXAMPLE9 A function may fail to have a limit at a point in its domain.

Discuss the behavior of the following functions as x — 0.

a) U(x)=[(1)’ iig
b seo= {12
0, x<0
©) f(x)z[sinl x>0
X

Solution

a) It jumps: The unit step function U (x) has no limit as x — 0 because its values
jump at x = 0. For negative values of x arbitrarily close to zero, U(x) = 0.
For positive values of x arbitrarily close to zero, U(x) = 1. There is no single
value L approached by U(x) as x — 0 (Fig. 1.7a).

b) It grows too large: g(x) has no limits as x — 0 because the values of g grow
arbitrarily large in absolute value as x — 0 and do not stay close to any real
number (Fig. 1.7b).

¢) It oscillates too much: f(x) has no limit as x — O because the function’s
values oscillate between +1 and —1 in every open interval containing 0. The

values do not stay close to any one number as x — 0 (Fig. 1.7¢). a
Exercises 1.1
Limits from Graphs "
1. For the function g(x) graphed here, find the following limits or y=g®)

explain why they do not exist.

a) lim1 g(x) b) lirr; g(x)

11— ———e
© lim g(x) A/
I X
/
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2. For the function f(¢) graphed here, find the following limits or Existence of Limits

explain why they do not exist. In Exercises 5 and 6, explain why the limits do not exist.
a) 11_1312 f@ b) 113111 fo © 111_1)13 f@ 5. lim X 6. lim :
x—0 |x| =1 x —1

7. Suppose that a function f(x) is defined for all real values of
x except x = xp. Can anything be said about the existence of

s =) 1 o lim,_,,, f(x)? Give reasons for your answer.
1 | | ; 8. Suppose that a function f(x) is defined for all x in [—1, 1].
/N -1 O 1 Can anything be said about the existence of lim,_o f(x)? Give

reasons for your answer.

9. If lim,,; f(x) =5, must f be defined at x = 1? If it is, must
f(1) =5? Can we conclude anything about the values of f at
x = 17 Explain.

3. Which of the following statements about the function y = f(x) 10. If £(1) =5, must lim,_,; f(x) exist? If it does, then must

graphed here are true, and which are false? lim,_,; f(x) = 5?7 Can we conclude anything about lim,_,; f(x)?
Explain.
y
y =5 . . . ..
1o- Calculator/Grapher Exercises—Estimating Limits
/ 11. Let f(x) = (x2 — 9)/(x + 3).
_i ¥ ; x § a) CALCULATOR Make a table of the values of f at the points
x = —3.1, —3.01, —3.001, and so on as far as your calcula-
Ry tor can go. Then estimate lim,_,_3 f(x). What estimate do
you arrive at if you evaluate fat x = —2.9, —2.99, —2.999,
... instead?
) ) ) 12 b) GRAPHER Support your conclusions in (a) by graphing f
a) }l_ff(l) f(x) exists b) )1(1_r>r(1) fx)=0 near xo = —3 and using ZOOM and TRACE to estimate
o lim f(x)=1 d) lim f(x) =1 y.-valuAes on the graph as x - -3.
x—0 x—1 ¢) Find lim,_,_3; f(x) algebraically.

¢ lim f(x)=0 12. Let g(x) = (x2 —2)/(x — v/2).
f) )}1_{210 f(x) exists at every point xo in (-1, 1) ] a) CALCULATOR Make a table of the values of g at the points
x =1.4,141,1.414, and so on through successive decimal

4. Which of the following statements about the function y = f(x) an approximations of /2. Estimate lim, 5 g(x).

graphed here are true, and which are false? 4m b) GRAPHER Support your conclusion in (a) by graphing g
near xo = +/2 and using ZOOM and TRACE to estimate
y y-values on the graph as x — /2.
y=f) ¢) Find lim_, ;5 g(x) algebraically.
1= 13. Let G(x) = (x + 6)/(x2 + 4x — 12).

@ a) CALCULATOR Make a table of the values of G at x =
-5.9,-5.99, —5.999.... Then estimate lim,__¢ G(x).
What estimate do you arrive at if you evaluate G at x =

o - —6.1, —6.01, —6.001, ... instead?

um b) GRAPHER Support your conclusions in (a) by graphing G

and using ZOOM and TRACE to estimate y-values on the

graph as x — —6.

a) lim f(x) does not exist ¢) Find lim,,_¢ G(x) algebraically.
b) lim f(x)=2 14. Let h(x) = (x2 — 2x — 3)/(x> — 4x + 3).
c) lin} f(x) does not exist @ a) CALCULATOR Make a table of the values of i at x =
. . . , 2.9,2.99,2.999, and so on. Then estimate lim,_3 A(x).
d 1 ts at t -1,1 . . *
) an}o F0x) exists at every point xo in ( ) What estimate do you arrive at if you evaluate k& at x =

e) lim f(x) exists at every point xy in (1, 3) 3.1,3.01, 3.001, . . . instead?



5 b)

c)

GRAPHER Support your conclusions in (a) by graphing
h near xo = 3 and using ZOOM and TRACE to estimate
y-values on the graph as x — 3.
Find lim,_,3 h(x) algebraically.

15. Let f(x) = (x> — 1)/(|x| = 1).

@a)

H b)

c)

CALCULATOR Make tables of the values of f at values
of x that approach xo = —1 from above and below. Then
estimate lim,_,_; f(x).

GRAPHER Support your conclusion in (a) by graphing f
near xo = —1 and using ZOOM and TRACE to estimate
y-values on the graph as x — —1.

Find lim,_,_; f(x) algebraically.

16. Let F(x) = (x2 +3x +2)/(2 — |x|).

a)

8 b)

c)

CALCULATOR Make tables of values of F at values of x
that approach xp = —2 from above and below. Then estimate
lim,_, F(x).

GRAPHER Support your conclusion in (a) by graphing F
near xop = —2 and using ZOOM and TRACE to estimate
y-values on the graph as x — —2.

Find lim, ,_, F(x) algebraically.

17. Let g(0) = (sin6)/6.

a)

48 b)

CALCULATOR Make tables of values of g at values of 6
that approach 6, = 0 from above and below. Then estimate
limg_,o g(6).

GRAPHER Support your conclusion in (a) by graphing g
near 8y = 0.

18. Let G(t) = (1 — cost)/t2.

a)

“% b)

CALCULATOR Make tables of values of G at values of ¢
that approach fy = O from above and below. Then estimate
lim,o G(2).

GRAPHER Support your conclusion in (a) by graphing G
near fp = 0.

19. Let f(x) = x"/0-9,

Ea)

5 b)

CALCULATOR Make tables of values of fat values of x that
approach xo = 1 from above and below. Does f appear to
have a limit as x — 1? If so, what is it? If not, why not?
GRAPHER Support your conclusions in (a) by graphing f
near xo = 1.

20. Let f(x) =3 —1)/x.

ga)

% b)

CALCULATOR Make tables of values of f at values of x
that approach xyp = 0 from above and below. Does f appear
to have a limit as x — 07? If so, what is it? If not, why not?
GRAPHER Support your conclusions in (a) by graphing f
near xy = 0.

Limits by Substitution

In Exercises 21-28, find the limits by substitution. Support your an-
swers with a grapher or calculator if available.

21. lim 2x
x—>2

22. lim 2x
x—=0
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. i —1 24, 1i
23. lim Gx—1) =1 Gr—1
x2
25. lim 3x(2x — 1) 26. lim
x—>-1 x=>=12x — 1
27. lim xsinx 28, lim 2%
x—>/2 x-»n 1 —7

Average Rates of Change

In Exercises 29-34, find the average rate of change of the function
over the given interval or intervals.

29. fx)=x>+1;

(@ [2,3], () [-1,1]
30. g(x) =x%
(a [-1,1], (b) [-2,0]

31. h(t) = cott;

(a) [ /4, 37 /4],

(b) [7/6, 7 /2]

32. g(t) =2 +cost;

(a) [0, 7],
33. R(6) =40+ 1;
34. P(6) = 6% —46% + 50,

(b) [-m, 7]
[0,2]
[1,2]

35. Figure 1.8 shows the time-to-distance graph for a 1994 Ford
Mustang Cobra accelerating from a standstill.

a)

b)

Estimate the slopes of secants PQ;, PQ,, P03, and P Qy4,
arranging them in order in a table. What are the appropriate
units for these slopes?

Then estimate the Cobra’s speed at time ¢ = 20 sec.

N
P

650
600 e

/
7
400 Q/I

300 N S, - [

200 -
100

0 5 10 15 20
Elapsed time (sec)

500

Distance (m)

1.8 The time-to-distance graph for Exercise 35.
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36. Figure 1.9 shows the plot of distance fallen (m) vs. time for a ¢) Use your graph to estimate the rate at which the profits were
wrench that fell from the top platform of a communications mast changing in 1992.
on the moon to the station roof 80 m below. B 38. CALCULATOR Make a table of values for the function F(x) =
a) Estimate the slopes of the secants PQ;, PQ,, PQ3, and (x +2)/(x —2) at the points x =2, x = 11/10, x = 101/100,
P Qy4, arranging them in a table like the one in Fig. 1.3. x = 1001/1000, x = 10001/10000, and x = 1.

b)  About how fast was the wrench going when it hit the roof? a) Find the average rate of change of F(x) over the intervals

[1, x] for each x # 1 in your table.
b) Extending the table if necessary, try to determine the rate
of change of F(x) at x = 1.

B 39. CALCULATOR Let g(x) = +/ for x > 0.

a) Find the average rate of change of g(x) with respect to x
over the intervals [1, 2], [1, 1.5], and [1, 1 + A].

b) Make a table of values of the average rate of change of g with
respect to x over the interval [1, 1 + k] for some values of 4
approaching zero, say # = 0.1, 0.01, 0.001, 0.0001, 0.00001,
and 0.000001.

¢) What does your table indicate is the rate of change of g(x)
with respect to x at x = 1?

d) Calculate the limit as 4 approaches zero of the average
rate of change of g(x) with respect to x over the interval
[1,1+h].

B 40. CALCULATOR Let f(t) =1/t for t # 0.

a) Find the average rate of change of f with respect to ¢ over
the intervals (i) from ¢t = 2 to ¢t = 3, and (ii) from r =2 to
t=T.

"/ b) Make a table of values of the average rate of change of f

with respect to ¢ over the interval [2, T'], for some values of

o,/ T approaching 2, say T = 2.1, 2.01, 2.001, 2.0001, 2.00001,

and 2.000001.

0, ¢) What does your table indicate is the rate of change of f with

P B respect to t at t = 27

d) Calculate the limit as T approaches 2 of the average rate of

0 5 10 change of f with respect to ¢ over the interval from 2 to T.

Elapsed time (sec) You will have to do some algebra before you can substitute
T=2.

[*.2]
(=]

3
Y\

[\
(=]
I
{

Distance fallen (m)
N
S
i
N

1.9 The time-to-distance graph for Exercise 36.

& CAS Explorations and Projects

B 37. CALCULATOR The profits of a small company for each of the . .
In Exercises 41-46, use a CAS to perform the following steps:

first five years of its operation are given in the following table:
a) Plot the function near the point x being approached.

Year Profit in $1000s b) From your plot guess the value of the limit.
¢) Evaluate the limit symbolically. How close was your guess?
1990 6 . x*—16
1991 27 i R
1992 62

x3—x2—-5x-3

1993 111 42. lim
x—>— 2
1994 174 Lo b
L Vltx—1 . x2-9
a) Plot points representing the profit as a function of year, and 43. lmg) —_— 44. hrré =
join them by as smooth a curve as you can. * x*+7-4
b) What is the average rate of increase of the profits between .l —cosx . 2x?
45. lim ——— 46. lim

1992 and 19947 x=>0 xsinx x=0 3 —3cosx
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Rules for Finding Limits

This section presents theorems for calculating limits. The first three let us build
on the results of Example 8 in the preceding section to find limits of polynomials,
rational functions, and powers. The fourth prepares for calculations later in the text.

Limits of Powers and Algebraic Combinations

Theorem 1
Properties of Limits

The following rules hold if lim,_,. f(x) = L and lim,_,. g(x) = M (L and
M real numbers).

1. Sum Rule: )1(1_?11} [fx)+gx)]=L+M

2. Difference Rule: lim [f(x) - g(®)]=L-M

3. Product Rule: )lcl_)l‘IZ fx)-gx)=L-M

4. Constant Multiple Rule: 11_1;[} kf(x) =kL (any number k)
5. Quotient Rule: lim {; ((;‘)) - % M#0

6. Power Rule: If m and n are integers, then

lim [f(x)]™" = L™",

provided L™ is a real number.

In words, the formulas in Theorem 1 say:

1. The limit of the sum of two functions is the sum of their limits.

The limit of the difference of two functions is the difference of their limits.

The limit of the product of two functions is the product of their limits.

The limit of a constant times a function is that constant times the limit of the

function.

5. The limit of the quotient of two functions is the quotient of their limits, provided
the limit of the denominator is not zero.

6. The limit of any rational power of a function is that power of the limit of the
function, provided the latter is a real number.

Eal ol 0

We will prove the Sum Rule in Section 1.3. Rules 2-5 are proved in Appendix 2.
Rule 6 is proved in more advanced texts.

3 2 _
EXAMPLE 1  Find lim %% =3
x—c x2 -+ 5

Solution Starting with the limits lim,_,, x = ¢ and lim,_,. k = k from Section
1.1, Example 8, and combining them using various parts of Theorem 1, we obtain:
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a) lim x? = (lim x) (lim x) =c.c=c? Product or Power
xX—>C X—>C X—>C
b) lim (x2+5)=1lim x>+ 1lim S=c?>+5 Sum and (a)
¢) lim 4x? =41lim x? = 4c? Constant Multiple and (a)
X—cC X—>C
d) lim (4x?—3) =1lim 4x* —lim 3=4c>-3 Difference and (c)
x—>C xX—>C x=>c
e) lim x3= (]im x2> (lim x) =c2.c=¢3 Product and (a), or Power
X—=>C X—c¢ xX—c
f) lim (x3+4x —3) =1lim x>+ lim (4x?>—3) Sum
xX—=>c x—>C x—>c
=c3+4c* -3 (d) and (e)
psaeo3 lm G raro3) |
g) lim = - Quotient
x—c x24+5 lim (x2 +5)
X—>C
A +4ct -3
= — (f) and (b)
245 Q

EXAMPLE 2 Find lim +4x? - 3.

x—>=2

Solution

Example 1(d) and
Power Rule with n = 1/2

lim_ Vaxt =3 = J4(=2)2 =3

=416 -3

= /13 Q
Two consequences of Theorem 1 further simplify the task of calculating limits of
polynomials and rational functions. To evaluate the limit of a polynomial function
as x approaches ¢, merely substitute ¢ for x in the formula for the function. To

evaluate the limit of a rational function as x approaches a point ¢ at which the
denominator is not zero, substitute ¢ for x in the formula for the function.

Theorem 2
Limits of Polynomials Can Be Found by Substitution
If P(x) = a,x" +a,_1x"~' +--- + ay, then

lim P(X) = P(C) = anc" + an_lcn_l + -+ ag.

Theorem 3

Limits of Rational Functions Can Be Found by Substitution
If the Limit of the Denominator Is Not Zero

If P(x) and Q(x) are polynomials and Q(c) # 0, then

P(x) _ P(co)

0(x) Q)

lim
X—>C



Identifying common factors

It can be shown that if Q(x) is a polynomial
and Q(c) =0, then (x — ¢) is a factor of
Q(x). Thus, if the numerator and
denominator of a rational function of x are
both zero at x = ¢, then (x — ¢) is a common
factor.

(b)

1.10 The graph of f(x) = (x? +x —2)/

(x* — x) in (a) is the same as the graph of
g(x) = (x + 2)/x in (b) except at x =1,
where f is undefined. The functions have
the same limit as x — 1.
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EXAMPLE 3
X +4x? -3 . =13 +4(-1)? -3 0 ~0
>-1 x245 (=1)2+5 6
This is the limit in Example 1 with ¢ = —1, now done in one step. Q

Eliminating Zero Denominators Algebraically

Theorem 3 applies only when the denominator of the rational function is not zero
at the limit point c¢. If the denominator is zero, canceling common factors in the
numerator and denominator will sometimes reduce the fraction to one whose de-
nominator is no longer zero at ¢. When this happens, we can find the limit by
substitution in the simplified fraction.

EXAMPLE 4  Canceling a common factor

2
Lo X +x =2

Evaluate im ————.
x—1 x2 — X

Solution We cannot just substitute x = 1, because it makes the denominator zero.
However, we can factor the numerator and denominator and cancel the common
factor to obtain

2 -2 -1 2 2
x4+ x =(x )(x+)=x+ ifx 1.
x2—x x(x=1)
Thus
24+x-2 . x+2 142
1 = lim =——=3.
x>l x2—x x—>1 X 1
See Fig. 1.10. a
EXAMPLE 5  Creating and canceling a common factor

VITh -2
h

Find lim ——M8M88 .
h—0

Solution We cannot find the limit by substituting # = 0, and the numerator and
denominator do not have obvious factors. However, we can create a common factor
in the numerator by multiplying it (and the denominator) by the so-called conjugate
expression /2 + h + /2, obtained by changing the sign between the square roots:

V2Hh—N2  J2+h—2 V2+h+2

h - h VIt h+2
. 24+h-2
h(v2Z+h++/2)
h
= We have created a common
h(J/2+h +\/§) factor of /1 . ..
1

... which we cancel.

T 2rh+2
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y
02 +hN2+h)
y=x
P2,\2) !
i |
| |
| |
| |
| |
| I
| |
| |
| | | X
0 1 2 2+h

1.11 The limit of the slope of secant PQ
as Q — P along the curve is 1/(2v/2)
(Example 5).

<

0| b

1.12 The graph of f is sandwiched
between the graphs of g and h.

1.13 Any function u(x) whose graph lies
in the region between y = 1 + (x%/2) and
y =1—(x?/4) has limit 1 as x — 0.

Therefore,
. N2ZFh-2
im 2

1
=lim ————
=0 2+ h++/2

1

The denominator is no

B —«W longer O at h :.()‘
1 $so we can substitute.
22

Notice that the fraction (v/2+ & — +/2)/h is the slope of the secant through the
point P(2,+/2) and the point Q(2+ h, /2 + ) nearby on the curve y = /x.
Figure 1.11 shows the secant for £ > 0. Our calculation shows that the limiting
value of this slope as Q — P along the curve from either side is 1/ 2v/2). Q

The Sandwich Theorem

The following theorem will enable us to calculate a variety of limits in subsequent
chapters. It is called the Sandwich Theorem because it refers to a function f whose
values are sandwiched between the values of two other functions g and 4 that have
the same limit L at a point c. Being trapped between the values of two functions
that approach L, the values of f must also approach L (Fig. 1.12). You will find a
proof in Appendix 2.

Theorem 4
The Sandwich Theorem

Suppose that g(x) < f(x) < h(x) for all x in some open interval containing
¢, except possibly at x = c itself. Suppose also that

lim g(x) = lim A(x) = L.

Then lim f(x) = L.

EXAMPLE 6 Given that

x2 X2
l—zfu(x)sl—!——z—forallx;éo,

find lil‘l‘(l) u(x).

Solution Since
lim,o (1 —(x*/4)) =1 and lim,_o (1 + (x*/2)) =1,

the Sandwich Theorem implies that lim,_ o u(x) =1 (Fig. 1.13). a

EXAMPLE 7 Show that if lim,_,. |f(x)] =0, then lim,_,, f(x) =0.

Solution Since —|f(x)| < f(x) <|f(x)|,and —| f(x)| and | f (x)| both have limit
0 as x approaches ¢, lim,_,. f(x) = 0 by the Sandwich Theorem. Q
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Exercises 1.2

Limit Calculations

Find the limits in Exercises 1-16.
1. lim7 2x +5)
3. lin% (—=x24+5x—2)

5. liné 8t -5 -7
t—

7. lim 3
x>2 x+6

2

9 y

) y—1>n—15 5—-y
11. liml 3(2x — 1)?

x—>—

13. lim (5 —y)*?
y—>-3

15. lim ———
Th>0 R+ 141

2. linll2 (10 — 3x)
4, 1im2 3 —2x4+4x+38)

6. lim 3s(2s —1)
5s—2/3

8. I
xl—>H§ x—=17
2
10. lim Y+

=2 y2+5y+6
12. lim (x + 3)1984

14. lim (2z —8)'7
z—0

5
16. lim —————
h~0 /Sh+4+2

Find the limits in Exercises 17-30.

-5
17. lim ——
Fak QR T:

x24+3x—-10
x+5

2412

2—1

23, lim 22
x—>-2 x3 4 2x2

ut—1

w3 —1

Jx =3

x—9

19. lim

x——5

21. lim

t—1

25. lim

u—>1

27. lim

x—9

x—1

29, lim —
VJx+3-2

x—1

Using Limit Rules

18. lim
20. lim
22. lim

5y° + 8y?

26. lim ———

28. lim

30. lim

31. Suppose lim,_,o f(x) =1 and lim,_( g(x) = —5. Name the
rules in Theorem 1 that are used to accomplish steps (a), (b),
and (c) of the following calculation.

2 () —g(x) _ 1y @GS~ &G

(a)

=0 (f(x)+7¥

1in(1) 2f(x) — lin(1) g(x)

lim (f () +7)%°

(b)

(tim () +7)"

32.

33.

34.

3s.

36.

_ 2lim @)~ lim g

- li lim 7 ” “
(tim 09+ 1im 7)

QM =(=5 7

T+ 4

Let lim,_,; A(x) =5,lim,_,;, p(x) =1, and lim,_,; r(x) =2.
Name the rules in Theorem 1 that are used to accomplish steps
(a), (b), and (c) of the following calculation.

VR liml 5Sh(x)
li — x—
= px)(4 —r(x)) }1_1)1} (p(x)(4 —r(x)))

[lim Sk (x)
= (b)

(i 700) (g @ =re)

/5 lin} h(x)

(a)

(b 0) (i -t )
_ /OO s
-2 2

Suppose lim,_,, f(x) =5 and lim,_,. g(x) = —2. Find
a) lm f(xg0x) b) lim 2f(x)g(x)
©) )lrl_)mr (f(x) +3g(x)) d) )lclfl %
Suppose lim,_,4 f(x) =0 and lim,_4 g(x) = —3. Find
a) lim (g(x)+3) b) }lg}‘ xf(x)
O lim (g0 @ lim f(gT()x}I
Suppose lim,_,, f(x) =7 and lim,_,, g(x) = —3. Find
a) ll_rfll’ (f(x) +g(x)) b) )lcl_fg f(x) - g(x)

o  lim 4g(r) d lim f(x)/g(x)

Suppose that lim,,_», p(x) =4,lim,,_, r(x) =0, and
lim,_, _, s(x) = —3. Find

a)  lim (p(x)+r@) +s(x))
b) lirg2 p(x) e r(x) - s(x)
0 lim (<4p(x) +5r(x))/s(x)
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Limits of Average Rates of Change

Because of their connection with secant lines, tangents, and instanta-
neous rates, limits of the form

. fx+h)— fx)
m ——F
h—0 h

occur frequently in calculus. In Exercises 3742, evaluate this limit
for the given value of x and function f.

37. f(x) = x?,
38. f(x)=x% x=-2
39. f(x)=3x—4,
40. f(x)=1/x,
41. f(x)=/x, x=17

2. fx)=/3x+1, x=0

x=1

x =2

x=-2

Using the Sandwich Theorem

43, If /5—-2x2 < f(x) <+/5—x%for —1 <x <1, find
lim, o f(x).

4. If 2 — x? < g(x) < 2cosx for all x, find lim,_,y g(x).

45. a) It can be shown that the inequalities

x? X sinx

—_<-———_—
6 2 —2cosx

hold for all values of x close to zero. What, if anything,
does this tell you about

1-— <1

. X sin x
lim ———7
x—0 2 —2cosx
Give reasons for your answer.
uy

4m b) GRAPHER Graph
y=1—(x2/6),y = (xsinx)/(2—2cosx),and y = 1
together for —2 < x < 2. Comment on the behavior of the
graphs as x — 0.
46. a) Suppose that the inequalities

1 —cosx 1
< — <
2 24 x?

um 54, a)

hold for values of x close to zero. (They do, as you will see

in Section 8.10.) What, if anything, does this tell you about
1—
lim — %9
x—=0 xZ

Give reasons for your answer.
GRAPHER Graph the equations y = (1/2) — (x%/24),y =

(1 —cosx)/x%, and y=1/2 together for —2 < x < 2.
Comment on the behavior of the graphs as x — 0.

%% b)

Theory and Examples

47. If x* < f(x) < x*for xin [—1, 1] and x? < f(x) < x* for x <
—1 and x > 1, at what points ¢ do you automatically know
lim,,. f(x)? What can you say about the value of the limit
at these points?

48. Suppose that g(x) < f(x) < h(x) for all x # 2 and suppose that
lin% gx) = lin% h(x) = —5.
Can we conclude anything about the values of f, g, and & at

x =2?Could f(2) = 0?7 Could lim,_,, f(x) = 0? Give reasons
for your answers.

29. 1t tim 2273 _ | find lim £ (o).
x—4 X — x—4
50. If lim f(—f =1, find (a) lim f(x) and (b) lim &
x—=>-2 X x—-=2 x—=-2 X
-5
sy Iflim 2275 3 find lim fx).
x—2 X — x—2
b) If lim f& -3 =4, find lim f(x).
x—2 x =2 x—2
52 1t tim 2% = 1, find (@) tim £(x) and ) lim L%
x=0 X x—=0 x—0 X
% 53. a) GRAPHER Graph g(x) = xsin (1/x) to estimate

lim,_,o g(x), zooming in on the origin as necessary.
b) Confirm your estimate in (a) with a proof.

GRAPHER Graph A (x) = x?cos (1/x?) to estimate
lim,_,o A(x), zooming in on the origin as necessary.
b) Confirm your estimate in (a) with a proof.

In this section we give a formal definition of the limit introduced in the previous
two sections. We replace vague phrases like “gets arbitrarily close” in the informal
definition with specific conditions that can be applied to any particular example.
To do this we first examine how to control the input of a function to ensure that
the output is kept within preset bounds.

Keeping Outputs near Target Values

We sometimes need to know what input values x will result in output values of the
function y = f(x) near a particular target value. How near depends on the context.
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A gas station attendant, asked for $5.00 worth of gas, will try to pump a volume of
gas worth $5.00 to the nearest cent. An automobile mechanic grinding a 3.385-in.
cylinder will not let the bore exceed this value by more than 0.002 in. A pharmacist
making ointments will measure ingredients to the nearest milligram.

EXAMPLE 1 Controlling a linear function

How close to xo = 4 must we hold the input x to be sure that the output y = 2x — 1
lies within 2 units of yo = 7?

Solution We are asked: For what values of x is |y — 7| < 2? To find the answer
we first express |y — 7| in terms of x:

ly =7 =12x—-1) =7 =12x —§|.

The question then becomes: What values of x satisfy the inequality |2x — 8| < 2?
To find out, we solve the inequality:

2x — 8] <2
—2<2x—-8<2
6 <2x <10
3<x<5
-l<x—-4<1.

Keeping x within 1 unit of xo = 4 will keep y within 2 units of y, = 7 (Fig. 1.14).

y
y=2x—-1
9 1 Upper bound: y = 9
To control 76
this
5 — ey o -
I | Lower bound: y =5
Il
I
L o1 X
0 345
. . . . . —
1.14 Keeping x within 1 unit of xo = 4 will keep y Restrict
within 2 units of y, = 7. this [}

[0, 31by [0, 3]

Keeping x between 1.75 and 2.28 will
keep y between 1.8 and 2.2.

Technology Target Values You can experiment with target values on a
graphing utility. Graph the function together with a target interval defined by
horizontal lines above and below the proposed limit. Adjust the range or use
zoom until the function’s behavior inside the target interval is clear. Then
observe what happens when you try to find an interval of x-values that will
keep the function values within the target interval. (See also Exercises 7-14
and CAS Exercises 61-64.)

For example, try this for f(x) = +/3x — 2 and the target interval (1.8, 2.2)
on the y-axis. That is, graph y; = f(x) and the lines y, = 1.8, y; = 2.2. Then
try the target intervals (1.98, 2.02) and (1.9998, 2.0002).
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Stripes
about

1 mm
wide

(a)

r=6cm

: Liquid volume
-V =136mh

e—>—>]

(b)

1.15 A 1-L measuring cup (a), modeled as
a right circular cylinder (b) of radius
r =6 cm (Example 2).

1
L—I—lor\

1.16 A preliminary stage in the
development of the definition of limit.

EXAMPLE 2 Why the stripes on a 1-liter kitchen measuring cup are
about a millimeter wide

The interior of a typical 1-L. measuring cup is a right circular cylinder of radius 6
cm (Fig. 1.15). The volume of water we put in the cup is therefore a function of
the level A to which the cup is filled, the formula being

V = 76*h = 367h.

How closely must we measure 4 to measure out 1 L of water (1000 cm?®) with an
error of no more than 1% (10 cm?)?

Solution We want to know in what interval to hold values of 4 to make V satisfy
the inequality

|V —1000| = |36wh — 1000| < 10.
To find out, we solve the inequality:
[367h — 1000| < 10
—10 < 367h — 1000 < 10
990 < 36mh <1010

990 1010

< <

3670 T T 367
8.8 <h <89

/ \

rounded up, rounded down,
to be safe to be safe

The interval in which we should hold 4 is about 8.9 — 8.8 = 0.1 cm wide (1 mm).
With stripes 1 mm wide, we can expect to measure a liter of water with an accuracy
of 1%, which is more than enough accuracy for cooking. d

The Precise Definition of Limit

In a target-value problem, we determine how close to hold a variable x to a particular
value x, to ensure that the outputs f(x) of some function lie within a prescribed
interval about a target value L. To show that the limit of f(x) as x — x( actually
equals L, we must be able to show that the gap between f(x) and L can be made
less than any prescribed error, no matter how small, by holding x close enough to
X0-

Suppose we are watching the values of a function f(x) as x approaches x,
(without taking on the value of x itself). Certainly we want to be able to say that
f(x) stays within one-tenth of a unit of L as soon as x stays within some distance
8 of xo (Fig. 1.16). But that in itself is not enough, because as x continues on its
course toward xp, what is to prevent f(x) from jittering about within the interval
from L —1/10 to L + 1/10 without tending toward L?

We can be told that the error can be no more than 1/100 or 1/1000 or 1/100,000.
Each time, we find a new §-interval about x, so that keeping x within that interval
satisfies the new error tolerance. And each time the possibility exists that f(x)
jitters away from L at the last minute.

The following figures illustrate the problem. You can think of this as a quarrel
between a skeptic and a scholar. The skeptic presents e-challenges to prove that
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the limit does not exist or, more precisely, that there is room for doubt, and the
scholar answers every challenge with a §-interval around x,.

h
+
~ =)
=
+
~ ol
L
G

i
|
1 1 |
L-15 / L-15 ;
i

/ | ) A1 )
0 x 0 X,

0 X0~ S0 0 Xty

The challenge: 1 Response: New challenge: 1
Make|f(x)—-L|<e=E |x — xo| < 8,0 (anumber) Makelf(x)—L|<e=m

Response: New challenge: Response:
’ __1 x—x,| <8
|x = x| < 8,100 €= 1000 l ol <81/1000
y y y

1

L+ 756,000

N

L

1
100,000

/]

0 X,

New challenge: Response: New challenge:
1 lx — x| <8 €=

= 1/100,000
100,000

How do we stop this seemingly endless series of challenges and responses?
By proving that for every error tolerance € that the challenger can produce, we can
find, calculate, or conjure a matching distance § that keeps x “close enough” to x,
to keep f(x) within that tolerance of L (Fig. 1.17 on the following page).
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1.17 The relation of § and ¢ in the definition of limit.

The Weierstrass definition

The concepts of limit and continuity (and,
indeed, real number and function) did not
enter mathematics overnight with the great
discoveries of Sir Isaac Newton (1642—-1727)
and Baron Gottfried Wilhelm Leibniz
(1646-1716). Mathematicians had an
imperfect understanding of these fundamental
ideas even as late as the last century.
Definitions of the limit given by French
mathematician Augustin-Louis Cauchy
(1789-1857) and others referred to variables
“approaching indefinitely” a fixed value and
frequently made use of “infinitesimals,”
quantities that become infinitely small but
not zero. The now accepted €-§ definition of
limit was formulated by German
mathematician Karl Weierstrass (1815-1897)
in the middle of the nineteenth century as
part of his attempt to put mathematical
analysis on a sound logical foundation.

L+en

=
0 X,- 98 X

Here, at last, is a mathematical way to say that the closer x gets to xp, the
closer y = f(x) gets to L.

7
x0+6

Definition
A Formal Definition of Limit
Let f(x) be defined on an open interval about x,, except possibly at x,

itself. We say that f(x) approaches the limit L as x approaches x,, and
write

lim f(x) =L,

if, for every number € > 0, there exists a corresponding number é > 0 such
that for all x

O<|x—x] <8 = |f(x)—L|<e.

To return to the idea of target values, suppose you are machining a generator
shaft to a close tolerance. You may try for diameter L, but since nothing is perfect,
you must be satisfied with a diameter f(x) somewhere between L — € and L + €.
The § is the measure of how accurate your control setting for x must be to guarantee
this degree of accuracy in the diameter of the shaft. Notice that as the tolerance for
error becomes stricter, you may have to adjust §. That is, the value of §, how tight
your control setting must be, depends on the value of €, the error tolerance.

Examples: Testing the Definition

The formal definition of limit does not tell how to find the limit of a function, but it
enables us to verify that a suspected limit is correct. The following examples show
how the definition can be used to verify limit statements for specific functions.
(The first two examples correspond to parts of Examples 7 and 8 in Section 1.1.)
However, the real purpose of the definition is not to do calculations like this, but
rather to prove general theorems so that the calculation of specific limits can be
simplified.



y=5x

-3

1.18 If f(x) =5x — 3, then 0 < |x — 1| < €/5
guarantees that |f(x) — 2| < e (Example 3).

y
y=x
x0+e—
x0+x8
gr i
X, — !
|
XO—E“ }
i
i
i
|
0 xg— 8 x5 xo+ 96

1.19 For the function f(x) = x, we find
that 0 < |x — x| < 8 will guarantee

|f(x) — xo| < € whenever §< ¢

(Example 4a).

y
k+e —
k T
k—ef !
|
|
1
i
|
I
|
1
0 Xg—0 xy xy+8

1.20 For the function f(x) = k, we find
that |f(x) — k| < € for any positive &

(Example 4b).
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EXAMPLE 3 Show that lim,,; (5x —3) = 2.

Solution Set xy =1, f(x) = 5x — 3, and L = 2 in the definition of limit. For any
given € > 0 we have to find a suitable § > 0 so that if x 1 and x is within distance
§ of xo = 1, that is, if

0<|x—1]<§,
then f(x) is within distance € of L = 2, that is
If(x) =2 <e.
We find § by working backwards from the e-inequality:
|5x —3) —=2|=1|5x—5| <€
Slx —1] <€
lx —1] < €/5
Thus we can take § = €/5 (Fig. 1.18). If 0 < |[x — 1| < § = €/5, then
[(5x =3) =2| = |5x = 5| =5|x — 1] <5(¢/5) =e.

This proves that lim,_,; (5x —3) = 2.

The value of § = €/5 is not the only value that will make 0 < |[x — 1| < §
imply |5x — 5| < €. Any smaller positive § will do as well. The definition does not
ask for a “best” positive §, just one that will work. d

EXAMPLE 4  Two important limits

Verify: (a) lim x =xp (b) lim kK =k (k constant).
xX—Xo x—>Xp

Solution

a) Let e > 0 be given. We must find § > 0 such that for all x
0<|x—x0 <6 implies |x — xo| < €.

The implication will hold if § equals € or any smaller positive number (Fig.
1.19). This proves that lim,_,,, x = xo.

b) Let € > 0 be given. We must find § > O such that for all x
0<|x—xp <é implies lk — k| < €.
Since k — k = 0, we can use any positive number for § and the implication will
hold (Fig. 1.20). This proves that lim,_,,, k =k.
Finding Deltas Algebraically for Given Epsilons

In Examples 3 and 4, the interval of values about x, for which | f(x) — L| was less
than € was symmetric about x, and we could take & to be half the length of the
interval. When such symmetry is absent, as it usually is, we can take § to be the
distance from x, to the interval’s nearer endpoint.

EXAMPLE 5 For the limit lim,_,5s «~/x —1 =2, find a § > 0 that works for
€ = 1. That is, find a § > O such that for all x

O<x-51<é6 = |Wx—-1-2|<1.
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3
@é Lod Lol || X
2 e £ 10

1.21 An open interval of radius 3 about
Xo = 5 will lie inside the open interval
(2, 10).

NOT TO SCALE

1.22 The function and intervals in
Example 5.

Solution We organize the search into two steps. First we solve the inequality
[vx —1—2| <1 to find an interval (a, b) about xy = 5 on which the inequality
holds for all x # xy. Then we find a value of § > O that places the interval 5 — § <
x < 5+ 6 (centered at xo = 5) inside the interval (a, b).

Step 1: Solve the inequality |/x — 1 — 2| < 1 to find an interval about xy =5 on
which the inequality holds for all x # x.

Wx—1-2 <1
“1l<x—-1-2<1
l</x—1<3
l<x—-1<9
2<x<10

The inequality holds for all x in the open interval (2, 10), so it holds for all x # 5
in this interval as well.

Step 2: Find a value of § > 0 that places the centered interval 5 —§ <x <5+
inside the interval (2, 10). The distance from 5 to the nearer endpoint of (2, 10) is 3
(Fig. 1.21). If we take 6 = 3 or any smaller positive number, then the inequality 0 <
|x — 5| < & will automatically place x between 2 and 10 to make |[/x — 1 —2| < 1
(Fig. 1.22):

O<lx—-5<3 = [Wx—-1-2| <1. a

How to Find a é for a Given f, L, xy, and € > 0 Algebraically
The process of finding a § > 0 such that for all x

O<|x—xgl <& == |f(x) —L| <€
can be accomplished in two steps.

Step 1 Solve the inequality | f (x) — L| < € to find an open interval (a, b)
about xo on which the inequality holds for all x # x,.

Step 2 Find a value of § > 0 that places the open interval (xo — &, xo + §)
centered at x, inside the interval (a, b). The inequality | f(x) — L| < € will
hold for all x # x¢ in this §-interval.

EXAMPLE 6 Prove that lim,_,, f(x) =4 if

Xt ox#£2
f(x)_{l, x =2.

Solution Our task is to show that given € > 0 there exists a § > 0 such that for
all x

O<|x—2l<6é = |f(x)—4| <e.

Step 1: Solve the inequality | f (x) — 4| < € to find an open interval about xo = 2
on which the inequality holds for all x # xy.



y
y=x
4+e
4 2,4
4-€
42D
0 72\
V4 —€ 4+e€

1.23 The function in Example 6.
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For x # xo = 2, we have f(x) = x2, and the inequality to solve is [x? — 4| < e:
x> —4| < €
2
—e<x"—4<e
4—€<x’<4d+e¢
Vd—€e < |x| <~d+e€ Assumes e < 4; see below.
m <x < m An open interval about x, = 2

that solves the inequality
The inequality | f(x) — 4| < € holds for all x # 2 in the open interval (/4 — e,
V4 ¥ ¢€) (Fig. 1.23).
Step 2: Find a value of § > 0 that places the centered interval (2 — §, 2 4 §) inside

the interval (v/4 — €, /4 4+ €).

Take & to be the distance from xg =2 to the nearer endpoint of (1/4 — €,
V4 + €). In other words, take § = min {2 — /4 — €, /4 + € — 2}, the minimum
(the smaller) of the two numbers 2 — </4 — € and +/4 4+ € — 2. If § has this or any
smaller positive value, the inequality 0 < |x — 2| < § will automatically place x
between +/4 — € and 4/4 + € to make | f(x) — 4| < €. For all x,

O<|x—-2|<$ = |f(x) —4| <e.

This completes the proof.

Why was it all right to assume € < 47 Because, in finding a § such that for all
x, 0 < |x — 2| < § implied | f(x) — 4| < € < 4, we found a § that would work for
any larger € as well.

Finally, notice the freedom we gained in letting § = min {2 — /4 —¢,
/4 + € —2}. We did not have to spend time deciding which, if either, number
was the smaller of the two. We just let § represent the smaller and went on to finish
the argument. a

Using the Definition to Prove Theorems

We do not usually rely on the formal definition of limit to verify specific limits such
as those in the preceding examples. Rather we appeal to general theorems about
limits, in particular the theorems of Section 1.2. The definition is used to prove
these theorems. As an example, we prove part 1 of Theorem 1, the Sum Rule.

EXAMPLE 7  Proving the rule for the limit of a sum

Given that lim,_,,. f(x) = L and lim,_,. g(x) = M, prove that
llgg (fx)+gx) =L+ M.

Solution Let € > 0 be given. We want to find a positive number § such that for
all x

O<|x—c|<$§ - If(x)+gx)—(L+ M) <e.
Regrouping terms, we get
[f(x) +gx) —(L+ M) =|(f(x)— L)+ (gx) — M)|

_ _ Triangle Inequality:
< 1f@) = LI+ 1g() = M| [ransie equai
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Since lim,_,. f(x) = L, there exists a number §; > 0 such that for all x
0<|x—c|<é = |[f(x)—L| <¢€/2.

Similarly, since lim,_,. g(x) = M, there exists a number §, > 0 such that for all x
O<|x—c| <& e lg(x) — M| < €/2.

Let § = min{é;, §,}, the smaller of §; and §,. If 0 < |x — ¢| < § then |x — c| < &,
so |[f(x) —L| <€/2,and |x —c| < 85, so |g(x) — M| < €/2. Therefore

€ €
|[f(x)+gx)—(L+ M) < 5-&—5 =e.
This shows that lim,_,. (f(x) +gx)) =L+ M. a
Exercises 1.3
Centering Intervals About a Point 9. 10.
In Exercises 1-6, sketch the interval (a,b) on the x-axis with the ) = }/; Y f=2Vx+1
point x, inside. Then find a value of § > O such that for all x, 0 < y x£ B ) x,=3
_ = L=4
[x —x0l <8§=a<x<b. S €=% y=Vx =02
La=1, b=7, x=>5 L |
] S —
2.a=1, b=7, x=2 3L ; i
4 | I I
3.a=-7/2, b=-1/2, xo=-3 i i i
4. a=-17/2, b=-1/2, xo=-3/2 o !
X
5.a=4/9, b=41, xo=1/2 0 9 1B
6. a =2.7591, b=3.2391, xo=3
Finding Deltas Graphically NOTTO SCALE
In Exercises 7-14, use the graphs to find a § > 0 such that for all x
0<|x—x] <§8 = |f(x)—L| <e.
11. 12.
7. 8. y , y
f(x)=,§2 f(;z:i—x
X, =
0 _
e=1 :
2 —3
y=x Sh——————— y= 4 — x2 |
| |
7.65 4-——-- / i - ———i———— 2.75
7.5 [} E— I : { I
/ NG i |
49 51 ! Ll |
' 0 /2N i
NOT TO SCALE i NEY V5 :
:l \ NOT TO SCALE i I
X | |
/=3 N\ 0 [ 1 |
31 7 -29 N 513 o
2 2

NOT TO SCALE




13. 4. y
2.01 ) =%
1
XO = E
2+ L=2
e =0.01
1.99 =t
I
|
|
i
i
|
|
|
|
I
i |
| |
I |
[N
x 0 / 1\
1 5 1
2.01 1.99
NOT TO SCALE

Finding Deltas Algebraically

Each of Exercises 15-30 gives a function f(x) and numbers L, x,
and € > 0. In each case, find an open interval about xo on which the
inequality | f(x) — L| < € holds. Then give a value for § > 0 such that
for all x satisfying 0 < |x — xo| < 8 the inequality |f(x) —L| <€

holds.

15. f(x)=x4+1, L=5, xo=4, ¢=0.01

16. f(x)=2x—2, L=-6, xo=-2, €¢=0.02

17. f)=+vx+1, L=1, x=0, €=0.1

18. f(x)=4/x, L=1/2, xo=1/4, e=0.1

19. f(x)=+/19—x, L=3, x=10, e=1

20. f(x)=~x—7, L=4, =23, e=1

21. f(x)=1/x, L=1/4, xo=4, €=0.05

22, f(x)=x% L=3, xo=+/3, €=0.1

23, f(x)=x% L=4, x0=-2, €¢=0.5

24. f(x)=1/x, L=-1, xo=-1, €=0.1

25. f(x)=x2—=5, L=11, xg=4, e=1

26. f(x)=120/x, L=5, xo=24, e=1

27. f(x)=mx, m>0, L=2m, xo=2, €¢=0.03

28. f(x)=mx, m>0, L=3m, x=3, e=c>0

29, fx)=mx+b, m>0, L=m/2)+b, x=1/2,
€e=c>0

30. fx)=mx+b, m>0, L=m+b, xo=1, €=0.05

More on Formal Limits

Each of Exercises 31-36 gives a function f(x), a point X, and a
positive number €. Find L = lim f(x). Then find a number § > 0

XX

Exercises 1.3

such that for all x

0<|x—x <$§ = |f(x)—L| <e.
3. f(x)=3—-2x, x =3, €=0.02
3. f(x)=-3x—-2, xo=-1, €=0.03

2
—4
3B f) =" xy=2, €=0.05
x—2
246
M fy= TS s c=00s
x+5

35. f(x)=+/1=5x, xo=-3, €=0.5
36. f(x)=4/x, xg=2, €=04

Prove the limit statements in Exercises 37-50.

37. lin} 9—-x)=5 38. lirr; Bx-7)=2
3. lim Vx=5=2 40. lim VA=x =2
2
41 lim fx)=1 if f(x)={x’ x#1
x—>1 2, x=1
2 —
2. lim fo=4 if f(x)={’1‘” ii_;
1
43, lim — =1
x=1 X
44. lim —1—=1
sv3ix2 3
2 _
45, lim X2 — ¢
x—-3 x—|—3
2
-1
46. lim =~ =2
=1 x—=1
. . 4-2x, x<1
47 lim () =2 if f(x)_{6x_4, e

2x, x<0
x/2, x>0

x—=0

48. lim f(x)=0 if f(x):[

1
49. lim xsin— =0
x

X—>

(Generated by Mathematica)
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50.

(Generated by Mathematica)
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. 1
lim x*sin— =0
x—0 X

Theory and Examples

S1.
52.

53.

54.

B ss.

56.

Define what it means to say that lin% fx)=5.
Define what it means to say that liII(l) g(x) =k.

A wrong statement about limits. Show by example that the
following statement is wrong.

The number L is the limit of f(x) as x approaches xj
if f(x) gets closer to L as x approaches x,.

Explain why the function in your example does not have the
given value of L as a limit as x — x,.

Another wrong statement about limits. Show by example
that the following statement is wrong.

The number L is the limit of f(x) as x approaches
xo if, given any € > O, there exists a value of x for
which |f(x) — L| < e.

Explain why the function in your example does not have the
given value of L as a limit as x — xo.

Grinding engine cylinders. Before contracting to grind engine
cylinders to a cross-section area of 9 in?, you need to know how
much deviation from the ideal cylinder diameter of xy = 3.385
in. you can allow and still have the area come within 0.01 in? of
the required 9 in?. To find out, you let A = 7 (x/2)? and look for
the interval in which you must hold x to make |A — 9| < 0.01.
What interval do you find?

Manufacturing electrical resistors. Ohm’s law for electrical
circuits like the one shown in Fig. 1.24 states that V = RI. In
this equation, V is a constant voltage, I is the current in amperes,
and R is the resistance in ohms. Your firm has been asked to
supply the resistors for a circuit in which V will be 120 volts and

Iis to be 5+ 0.1 amp. In what interval does R have to lie for /
to be within 0.1 amp of the target value [y = 57

1.24 The circuit in Exercise 56.

When Is a Number L Not the Limit of f(x) as x— x,?

We can prove that lim,_,,, f(x)# L by providing an € > 0 such
that no possible § > 0 satisfies the condition

Forall x, 0 <|x—xo| <§ B |[f(x)—L| <e.

We accomplish this for our candidate € by showing that for each
§ > 0 there exists a value of x such that

0<|x—x0 <§6 and |[f(x)—L|>e.
y
N ~
L+e 7
L-—
L—er
O[xp—0\ x, x,+8 *

a value of x for which
0<|x—x)| <8and|f(x) —L| =€

57. Let f(x) = [?+1 izi
y
y=x+1
2_
y=f)
1_
| X
1
y=x




58.

59.

a) Let € = 1/2. Show that no possible § > 0 satisfies the fol-
lowing condition:
Forallx, O<|x—1]<$§ = [f(x)—2] <1)/2.
That is, for each § > 0 show that there is a value of x such
that
O<|x—1]<$é and |f(x)—2]>1/2.
This will show that lim,_,; f(x) # 2.
b) Show that lim,,; f(x) # 1.
¢) Show that lim,_,; f(x) # L.5.
X2, x<2
Leth(x)=4{3, x=2
2, x>2.
y
4 y=h)
3+ °
=2
2 - o_y_._
1 y=x2
I X
0 2
Show that
a) lin% h(x) #4
b) lirr% h(x) #3
©) lin; h(x) #2

For the function graphed here, show that

a) lin; fx) #£4
b) ling f(x)#4.8
0 lim f(x)#3

y

48 \

4 +— °
s y=f(

60.
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a) For the function graphed here, show thatlim,_,_; g(x) # 2.
b) Doeslim,_,_; g(x) appear to exist? If so, what is the value
of the limit? If not, why not?
y
° 2+

y=8®

l x

/ -1 0

O CAS Explorations and Projects

In Exercises 61-66, you will further explore finding deltas graphically.
Use a CAS to perform the following steps:

a)
b)

c)

d)

e)

61.

62.

63.

64.

65.

66.

Plot the function y = f(x) near the point x, being approached.
Guess the value of the limit L and then evaluate the limit sym-
bolically to see if you guessed correctly.

Using the value € = 0.2, graph the banding lines y; = L — € and
y2 = L + € together with the function f near x,.

From your graph in part (c), estimate a § > 0 such that for all x

0<|x—x <38 = |[f(x)—L| <e.

Test your estimate by plotting f, y;, and y, over the interval
0 < |x — xo| < §. For your viewing window use xy — 2§ < x <
xo+28 and L —2¢ <y < L + 2¢. If any function values lie
outside the interval [L — €, L + €], your choice of § was too
large. Try again with a smaller estimate.

Repeat parts (c) and (d) successively for e = 0.1, 0.05, and 0.001.
x* -8l
f@ =" n=3
5x3 4+ 9x2
fx) = Pk x0=0
sin 2x
f(x) = 3 s X0 = 0
X
x(1 —cosx)
fGx)=—-—, % =0
X — sinx
Jx —1
fw=Y"1 =
x—1
3x2— (Tx+ 1)/x+5
o) = TEDIES
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1.25 Different right-hand and left-hand
limits at the origin.

The u+" and u_n

The significance of the signs in the notation
for one-sided limits is this:

X — a~ means x approaches a from the
negative side of a, through values less than a.

x — a* means x approaches a from the
positive side of a, through values greater
than a.

Negative side of a
x—a

NG

X

! Positive side of a
; x—a*

|

|

|

|

|

|

|

: & :

i G e
Extensions of the Limit Concept
In this section we extend the concept of limit to

1. one-sided limits, which are limits as x approaches a from the left-hand side or
the right-hand side only,

2. infinite limits, which are not really limits at all, but provide useful symbols
and language for describing the behavior of functions whose values become
arbitrarily large, positive or negative.

One-Sided Limits

To have a limit L as x approaches a, a function f must be defined on both sides of
a, and its values f(x) must approach L as x approaches a from either side. Because
of this, ordinary limits are sometimes called two-sided limits.

It is possible for a function to approach a limiting value as x approaches a from
only one side, either from the right or from the left. In this case we say that f has
a one-sided (either right-hand or left-hand) limit at a. The function f(x) = x/|x|
graphed in Fig. 1.25 has limit 1 as x approaches zero from the right, and limit —1
as x approaches zero from the left.

Definition
Informal Definition of Right-hand and Left-hand Limits

Let f(x) be defined on an interval (a, b) where a < b. If f(x) approaches
arbitrarily close to L as x approaches a from within that interval, then we
say that f has right-hand limit L at a, and we write

lim f(x) = L.

Let f(x) be defined on an interval (c, a) where ¢ < a. If f(x) approaches
arbitrarily close to M as x approaches a from within the interval (c, a), then
we say that f has left-hand limit M at q, and we write

lim f(x) = M.

For the function f(x) = x/|x| in Fig. 1.25, we have
liI})1+ fx)y=1 and lir(r)l_ flx)=-1.

A function cannot have an ordinary limit at an endpoint of its domain, but it
can have a one-sided limit.

EXAMPLE 1 The domain of f(x) = +/4 — x? is [—2, 2]; its graph is the semi-
circle in Fig. 1.26. We have

lim vV4—-x2=0 and lir121_ V4 —-x2=0.

x—=2%



1.26 Iin21 VA —x2=0, Iirr; VA —x2=0.
X—2" x—=2%

0 1 2 3 4

1.27 Graph of the function in Example 2.
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y
y =4 — x?
& >4 X
-2 0 2
The function does not have a left-hand limit at x = —2 or a right-hand limit
at x = 2. It does not have ordinary two-sided limits at either —2 or 2. a

One-sided limits have all the limit properties listed in Theorem 1, Section 1.2.
The right-hand limit of the sum of two functions is the sum of their right-hand
limits, and so on. The theorems for limits of polynomials and rational functions
hold with one-sided limits, as does the Sandwich Theorem.

The connection between one-sided and two-sided limits is stated in the follow-
ing theorem (proved at the end of this section).

Theorem 5

One-sided vs. Two-sided Limits

A function f(x) has a limit as x approaches c if and only if it has left-hand
and right-hand limits there, and these one-sided limits are equal:

lim f(x) =L & lim f(x)=L and lim+ f(x)=L.

All of the following statements about the function graphed in

lin’l)(—)O+ f(x) =1,

lim,_,o- f(x) and lim,_,o f(x) do not exist. (The function is
not defined to the left of x = 0.)

lim,_, ;- f(x) =0 even though f(1) =1,

lim, _, + f(x) =1,

lim,_,, f(x) does not exist. (The right- and left-hand limits
are not equal.)

lim,,>- f(x) =1,

lim, 5+ f(x) =1,

lim,,, f(x)=1 even though f(2) =2.

1imx—>3’ f(x) = lim,_,3+ f(-x) = lim,_,3 f(X) = f(3) =2

EXAMPLE 2
Figure 1.27 are true.
Atx =0:
Atx =1:
Atx =2:
At x = 3:
At x =4

lim,_ 4 f(x) =1 even though f(4) # 1,
lim,_ 4+ f(x) and lim,_,4 f(x) do not exist. (The function is
not defined to the right of x = 4.)

At every other point a in [0, 4], f(x) has limit f(a). a
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1.28 The function y = sin (1/x) has neither a

right-hand nor a left-hand limit as x approaches zero

(Example 3).

You can get as high
as you want by
taking x close enough
to 0. No matter how
high B is, the graph
goes higher.

I
!
. x
x
No matter how

low —B is, the
graph goes lower.

You can get as low as | $ =B
you want by taking
x close enough to 0.

1.29 One-sided infinite limits:

o1 o1
lim — =0 and Ilim — = —c.
x—0t X x—0" X

In the examples so far in this section, the functions that failed to have a limit
at some point at least had one existing one-sided limit there. The function in the
following example has neither a left-hand limit nor a right-hand limit at x = 0 even
though it is defined everywhere except at x = 0.

EXAMPLE 3 Show that y = sin (1/x) has no limit as x approaches zero from
either side (Fig. 1.28).

—sinl
y= x

Solution As x approaches zero, its reciprocal, 1/x, grows without bound and the
values of sin (1/x) cycle repeatedly from —1 to 1. There is no single number L
that the function’s values stay increasingly close to as x approaches zero. This is
true even if we restrict x to positive values or to negative values. The function has
neither a right-hand limit nor a left-hand limit at x = 0. J

Infinite Limits

Let us look closely at the function f(x) = 1/x that drives the sine in Example 3. As
x — 07, the values of f grow without bound, eventually reaching and surpassing
every positive real number. That is, given any positive real number B, however large,
the values of f become larger still (Fig. 1.29). Thus, f has no limit as x — 0. It is
nevertheless convenient to describe the behavior of f by saying that f(x) approaches
oo as x — 0%. We write

lim f(x) = lim — = oo.

x—0* x—=0t X
In writing this, we are not saying that the limit exists. Nor are we saying that
there is a real number oo, for there is no such number. Rather, we are saying that
lim,_,o+ (1/x) does not exist because 1/x becomes arbitrarily large and positive
as x —> 0.

As x — 07, the values of f(x) = 1/x become arbitrarily large and negative.
Given any negative real number — B, the values of f eventually lie below —B. (See
Fig. 1.29.) We write

lim f(x) = lim l = —00.

x—0~ x=0" X
Again, we are not saying that the limit exists and equals the number —oo. There is
no real number —oo. We are describing the behavior of a function whose limit as
x — 07 does not exist because its values become arbitrarily large and negative.



1.30 Near x = 1, the function

y = 1/(x — 1) behaves the way the
function y = 1/x behaves near x = 0. Its
graph is the graph of y = 1/x shifted 1
unit to the right.

No matter how
high B is, the graph
goes higher.

|
|
|

-5 4 3 -2 -1 0
(®)

1.31 The graphs of the functions in
Example 5.
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EXAMPLE 4 One-sided infinite limits

Find lim and lim !

x—=>1t X — x=>1" X —

Geometric Solution The graph of y = 1/(x — 1) is the graph of y = 1/x shifted
1 unit to the right (Fig. 1.30). Therefore, y = 1/(x — 1) behaves near 1 exactly the
way y = 1/x behaves near 0:

1 1

lim =00 and lim
x—>1* x — 1 x—1" X —

= —OQ.

Analytic Solution Think about the number x — 1 and its reciprocal. As x — 1%,
we have (x — 1) - 0t and 1/(x — 1) = 00. As x —> 17, we have (x — 1) — 0~
and 1/(x — 1) = —oo0. a

EXAMPLE 5 Two-sided infinite limits

Discuss the behavior of

a) f(x)= % near x = 0,

1
b) gkx)= ——— nearx = -3.

x+3)
Solution

a) As x approaches zero from either side, the values of 1/x? are positive and
become arbitrarily large (Fig. 1.31a):
: .1
fimy £) = fimy 5 = o
b) The graph of g(x) = 1/(x + 3)? is the graph of f(x) = 1/x? shifted 3 units to
the left (Fig. 1.31b). Therefore, g behaves near —3 exactly the way f behaves
near 0.
li = 1l ! =
Jim, 500 = lim, o = oo a
The function y = 1/x shows no consistent behavior as x — 0. We have
1/x = ooifx — 0%,but1/x — —ooifx — 0. All we can say about lim,_,¢ (1/x)

is that it does not exist. The function y = 1/x? is different. Its values approach in-
finity as x approaches zero from either side, so we can say that lim,_,¢ (1/x%) = oo.

EXAMPLE 6  Rational functions can behave in various ways near zeros
of their denominators.

o x=2P (x —2)° .ox—=2
a) lim =lim ———~ _ —lim -0
=2 x2—4 =2 (x—=2)(x+2) =2 x+2
x—2 x =2 1 1
) xl—% x2—4 xl—% x=2)(x+2) xl—% x+2 4
¢) lim x -3 x-3 — The values are negative

=lim —— = -
x>2t x2—4 =2t (x —2)(x +2) for v > 2.\ near 2.
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0 7
X, X, + )

1.32 Diagram for the definition of
right-hand limit.

1.33 Diagram for the definition of
left-hand limit.

e)

f)

lim x—3 = lim L = 00 The values are positive
x—>2- x2 — =2 (x —=2)(x +2) for x < 2, x near 2.
li x =3 li x =3 d t exist See (c) and (d
m = l11m -————— do0¢€s not exist. .
3 X2 _4 2 (x—2)(x +2) ee (c) and (d)
2—x . —(x—=2) o -1

(x—23  x>2 (x—22

In parts (a) and (b) the effect of the zero in the denominator at x = 2 is canceled

lim = lim
x—=2 (x — 2)3 x—2

because the numerator is zero there also. Thus a finite limit exists. This is not true
in part (f), where cancellation still leaves a zero in the denominator. a

Precise Definitions of One-sided Limits

The formal definition of two-sided limit in Section 1.3 is readily modified for
one-sided limits.

Definitions
Right-hand Limit
We say that f(x) has right-hand limit L at x(, and write

lim f(x) =L  (See Fig. 1.32)

if for every number € > 0 there exists a corresponding number § > 0 such
that for all x
[f(x) —L| <e. Q)]

Xo<x<xg+96 =

Left-hand Limit
We say that f has left-hand limit L at xp, and write

lim f(x) =L (See Fig. 1.33)

X—>X0

if for every number € > 0 there exists a corresponding number § > 0 such
that for all x

|f(x) —L| <e. 2)

Xo—68 <Xx < X =

The Relation Between One- and Two-sided Limits

If we subtract x¢ from the §-inequalities in implications (1) and (2), we can see the
logical relation between the one-sided limits just defined and the two-sided limit
defined in Section 1.3. For right-hand limits, subtracting x, gives

O<x—xp<$é = |f(x) —L| <e; (3)
for left-hand limits we get

—§<x—x<0 = |[f(x)—L| <e. (4)
Together, (3) and (4) say the same thing as

0<|x—x0 <$ = |f(x)—L| <e, (5



y =f(x)

0 / X,

\
x,— 6 X+ 8

1.34 lim f(x) = co.
X—Xo
y

\ x,— 8 x0+8/
x

\ \ xo‘ /

y =f(x)

1.35 lim f(x) = —oo.
X—Xo

the implication required for two-sided limit. Thus, f has limit L at xo if and only if
f has right-hand limit L and left-hand limit L at x,.

Precise Definitions of Infinite Limits

Instead of requiring f(x) to lie arbitrarily close to a finite number L for all x
sufficiently close to xp, the definitions of infinite limits require f(x) to lie arbitrarily
far from the origin. Except for this change, the language is identical with what we

Exercises 1.4

have seen before. Figures 1.34 and 1.35 accompany these definitions.

Definitions
Infinite Limits

1. We say that f(x) approaches infinity as x approaches xo, and write

lim f(x) = oo,

X=>Xo

if for every positive real number B there exists a corresponding § > 0
such that for all x

O<|x—xp] <8 =

fx) > B.

2. We say that f(x) approaches minus infinity as x approaches xq, and

write

lim f(x) = —o0,

X—Xq

if for every negative real number — B there exists a corresponding § > 0
such that for all x

O0<|x—x0| <6 =

The precise definitions of one-sided infinite limits at x, are similar and are

stated in the exercises.

f(x) < —B.

Exercises 1.4

Finding Limits Graphically

1. Which of the following statements about the function y = f(x) a)

graphed here are true, and which are false?

y
y=fx

1
l L L
-1 0‘|’ 1 2

©
e
g)
i)
k)

Jim, 70 =1
Jim s =1
)1(1_1)1(1) f(x) exists '
lim f(x) =1

lim f(x) =0

lim f(x) does not exist.
x—>-=1"

b)
d
f)
h)

i)

lirg_ fx)=0
Jim 0= lim 10
llg(l) fx)=0
lin} fx)=1
lirrzl_ fx)=2

liI]271+ fx)=0
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2. Which of the following statements about the function y = f(x)
graphed here are true, and which are false?

y
y=f)
2+ .
1 e ]
| | | l x
-1 0 1 2 3
a) lim1+ fx)=1 b) lin% f(x) does not exist.
c) lin% fx)=2 d) liIIII_ fx)=2
e lim f(x)=1 f) lin} f(x) does not exist.
x—>1* x—>

g lim /()= lim /()

h) lim f(x)exists at every c in the open interval (—1, 1).

i) lim f(x) exists at every c in the open interval (1, 3).
X—=C

1)) liml_f(x) =0 k) lilgl+ f (x) does not exist.

3—x, x<2

3. Let f(x) =
f&) %+1, x>2

\3—;:3-;:4

a) Find lim,_,+ f(x) and lim,_,,- f(x).
b) Does lim,_,, f(x) exist? If so, what is it? If not, why not?
¢) Find lim,_ 4 f(x) and lim,_ 4+ f(x).
d) Does lim,_,4 f(x) exist? If so, what is it? If not, why not?

3—x, x<2

4. Let f(x) = i x=2
-, x > 2.
2
y
y:3ix_
3
— [ ]
“x
L y=3
[ T N B
-2 0 2

a) Find lim,_,,+ f(x),lim,_,- f(x), and f(2).

7. a) Graph f(x) ={

b) Does lim,_,, f(x) exist? If so, what is it? If not, why not?
¢) Find lim,_,_;- f(x) and lim,_, _;+ f(x).
d) Doeslim,_,_; f(x) exist? If so, what is it? If not, why not?

0, x<0
5. Let f(x) = { ,

1
sin—, x> 0.
X

y
T
x
0
0, x<0
y_
sin=, x>0
U X
1+

a) Doeslim,_ o+ f(x) exist? If so, what is it? If not, why not?
b) Doeslim,_ 4 f(x) exist? If so, what is it? If not, why not?
¢) Doeslim,_o f(x) exist? If so, what is it? If not, why not?

6. Let g(x) = /xsin(1/x).

(Generated by Mathematica)

a) Does lim, 4+ g(x) exist? If so, what is it? If not, why not?
b) Does lim,_,o- g(x) exist? If so, what is it? If not, why not?
¢) Does lim,_,o g(x) exist? If so, what is it? If not, why not?
x3, x#1

0, x=1.

b) Find lim,_,- f(x) and lim,_,+ f(x).

¢) Does lim,_,; f(x) exist? If so, what is it? If not, why not?



8.

Graph the functions in Exercises 9 and 10. Then answer these ques-

1—-x2, x#1

a) Graph f(x):{2 ey

b) Find lim,_,;+ f(x) and lim,_, ;- f(x).

¢) Does lim,_,; f(x) exist? If so, what is it? If not, why not?

tions.

a)

What are the domain and range of f?

b) At what points ¢, if any, does lim,_,. f(x) exist?
¢) At what points does only the left-hand limit exist?
d) At what points does only the right-hand limit exist?
J1—=x2 if 0<x<1
9. fk)y=11 if 1<x<2
2 if x=2
x if —-1<x<0, or 0<x<1
10. fx)=31 if x=0
0 if x<-1, or x>1
Finding Limits Algebraically
Find the limits in Exercises 11-20.
2 -1
1 tim J2E 12. lim />
x—>-0.5" X+ 1 x—1* x4+ 2

13.

. X 2x+5
lim _
x—>=2*\ X + 1 x2 +x

1 _
14. lim x+6) (3=
x—1- \x+1 X 7
. VR AR +5- 45
15. lim
h—0* h
_ 2
16. lim V6 —/ShZ+11h + 6
h—0~ h
. [x +2] . [x +2|
R 1
17. a) x2g+(x+3)x+2 b) x—}I—nz-(x+3)x+2
V2 -1 V2 -1
18. ) vaxx—1 by lim Y2XG—D
x=>1* |x—1| x=>1" |x—l|
6] 6]
. -— lim —
1o Jim b Jfim
20. a) lim (¢ — [z]) b) lim (¢t — [¢]))
t—4+ t—4-
Infinite Limits
Find the limits in Exercises 21-32.
1
21. lim — . lim —
1 xir{)l* 3x 2 xllg)l' 2x
23. lim 24. lim
x—=>2" X — =3 x =3
5. 1 2. lim —>
. lim . —
x—>-8"x+ 8 x—>-5"2x + 10

7l

29. a)

lim ——
x50+ 3x1/3

30. a) Xl_i)[g T

. 4
3. lim =5

Find the limits in Exercises 33-36.

33. lim
x—(/2)”

3s. liI(I)I (1 +csch) 36.
90"

Additional Calculations
Find the limits in Exercises 37—42.

37. lim

38. lim —— as

2
39. lim <x— - —) as
2 X

a) x— 0F

0 x—>2
x2—1
40. 1li
im i as

a) x— 2t
¢ x— 1t

28.

32.

tan x 34.

Exercises 1.4

-1
lim ——
x—0 x2(x +1)

b)

lim ——
x—0- 3x1/3

b lim %

1
o

lim secx
x—=(-m/2)*

lim (2 — cot®)
6—0

b) x—> 27
d x-—> -2-
b) x—> 1"
d x—> -1-
b) x—>0"
d x—> -1
b) x> -2~
d x—->0"
b) x —2*
d x-—>2

85

e) What, if anything, can be said about the limit as x — 0?

oo x?P=3x+2
41. lim Tz‘x—z as
a) x— 0
c) x—>2°
42. lim 5-2—_3)‘—+2 as
x3 —4x
a) x— 2t
¢c) x—0"

b) x— 2%
d x-—>1*F

e) What, if anything, can be said about the limit as x — 0?

Find the limits in Exercises 43-46.

3
1‘17 as

a) t— 0

43. lim (2—

b) t—>0"
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1
44. lim <— +7> as

£3/5
a) t— 0t
b) t— 0"

) 1 2
45. lim <m + ‘_'——(x _ 1)2/3> as

a) x— 0

b) x— 0"
¢ x— 17
d x—>1-

. 1 1
46. lim <W§ - m) as

a) x— 0

b) x— 0"
¢ x— 17
d x-—>1-

Theory and Examples

47. Once you know lim,_,,+ f(x) and lim,_,- f(x) at an interior
point of the domain of £ do you then know lim,_,, f(x)? Give
reasons for your answer.

48. If you know that lim,_,. f(x) exists, can you find its value by
calculating lim,_, .+ f(x)? Give reasons for your answer.

49. Suppose that f is an odd function of x. Does knowing that
lim,_ o+ f(x) =3 tell you anything about lim,_, - f(x)? Give

reasons for your answer.

50. Suppose that f is an even function of x. Does knowing that
lim,_,,- f(x) =7 tell you anything about either lim,_, _,- f(x)
or lim,_,_,+ f(x)? Give reasons for your answer.

Formal Definitions of One-sided Limits

51. Given € > 0, find an interval I = (5,5 + §), § > 0, such that if
x lies in I, then +/x —5 < €. What limit is being verified and
what is its value?

52. Given € > 0, find an interval ] = (4 — 6§, 4), 8 > 0, such that if
x lies in I, then /4 —x < e. What limit is being verified and
what is its value?

Use the definitions of right-hand and left-hand limits to prove the
limit statements in Exercises 53 and 54.

53. lim — =-1
x—0" lx
54, lim 22—

55. Find (a) lim,_ 400+ x| and (b) lim,_, 490~ Lx]; then use limit def-
initions to verify your findings. (c) Based on your conclusions
in (a) and (b), can anything be said about lim,_, 49 |x]? Give
reasons for your answers.

x%sin(1/x), x <0

Jx, x > 0.

Find (a) lim,_ ¢+ f(x) and (b) lim,_o- f(x); then use limit
definitions to verify your findings. (c) Based on your conclusions
in (a) and (b), can anything be said about lim,_o f(x)? Give
reasons for your answer.

56. Let f(x) = {

The Formal Definition of Infinite Limit

Use formal definitions to prove the limit statements in Exercises
57-60.

57. lim - =
x—=0 Xx

5§8. im — = —o0
x—0 x2

59. lim —— = —
x=>3 (x —3)?

60. llm — =
S x 152

Formal Definitions of Infinite One-sided Limits
61. Here is the definition of infinite right-hand limit.

We say that f(x) approaches infinity as x approaches x, from
the right, and write

1im+ f(x) = o0,

X—)Xo

if, for every positive real number B, there exists a correspond-
ing number § > 0 such that for all x

Xog <X <Xy+96 =

f(x) > B.

Modify the definition to cover the following cases.

a) lim f(x)=o00

X=Xy

b) lim+ f(x) =—00

X—)X()
¢) lim f(x)=-o00
X%XU_
Use the formal definitions from Exercise 61 to prove the limit state-
ments in Exercises 62-67.

1 1

62. lim — =00 63. lim — = -0

x—=>0* X x—0" X
1

64. li =— 65. 1 =

xin; x—2 * xlgl* x—2 *
. 1 . 1

66. lim —— = —o0 67. lim =00

x—>1* 1—x2 x—>1" 1—x2
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Continuity

When we plot function values generated in the laboratory or collected in the field,
we often connect the plotted points with an unbroken curve to show what the
function’s values are likely to have been at the times we did not measure. In doing
so, we are assuming that we are working with a continuous function, a function
whose outputs vary continuously with the inputs and do not jump from one value
to another without taking on the values in between.

So many physical processes proceed continuously that throughout the eigh-
teenth and nineteenth centuries it rarely occurred to anyone to look for any other
kind of behavior. It came as quite a surprise when the physicists of the 1920s
discovered that the vibrating atoms in a hydrogen molecule can oscillate only at
discrete energy levels, that light comes in particles, and that, when heated, atoms
emit light at discrete frequencies and not in continuous spectra. As a result of these
and other discoveries, and because of the heavy use of discrete functions in com-
puter science and statistics, the issue of continuity has become one of practical as
well as theoretical importance.

In this section, we define continuity, show how to tell whether a function
is continuous at a given point, and examine the intermediate value property of
continuous functions.

Continuity at a Point

In practice, most functions of a real variable have domains that are intervals or
unions of separate intervals, and it is natural to restrict our study of continuity to
functions with these domains. This leaves us with only three kinds of points to
consider: interior points (points that lie in an open interval in the domain), left
endpoints, and right endpoints.

Definition
A function f is continuous at an interior point x = ¢ of its domain if

lim f(x) = f(c).

In Fig. 1.36 on the following page, the first function is continuous at x = 0.
The function in (b) would be continuous if it had f(0) = 1. The function in (c)
would be continuous if f(0) were 1 instead of 2. The discontinuities in (b) and
(c) are removable. Each function has a limit as x — 0, and we can remove the
discontinuity by setting f(0) equal to this limit.

The discontinuities in parts (d)—(f) of Fig. 1.36 are more serious: lim,_,o f(x)
does not exist and there is no way to improve the situation by changing f at 0.
The step function in (d) has a jump discontinuity: the one-sided limits exist but
have different values. The function f(x) = 1/x? in (e) has an infinite discontinuity.
Jumps and infinite discontinuities are the ones most frequently encountered, but there
are others. The function in (f) is discontinuous at the origin because it oscillates
too much to have a limit as x — 0.
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y y y y
20—
y=f(x) y =fx) y=f)
y=fx)
1 1 1 e
/ 0 X / 0 X 0 X
(@) ®) ()
y y
W1
X
0
0 y = sin -
LI
1.36 The function in (a) is continuous at
x = 0; the functions in (b)-(f) are not. (e) (9]

Technology Deceptive Pictures A graphing utility (calculator or Computer
Algebra System—CAS*) plots a graph much as you do when plotting by hand:
by plotting points, or pixels, and then connecting them in succession. The
resulting picture may be misleading when points on opposite sides of a point
of discontinuity in the graph are incorrectly connected. To avoid incorrect
connections some systems allow you to use a “dot mode,” which plots only the
points. Dot mode, however, may not reveal enough information to portray the
true behavior of the graph. Try the following four functions on your graphing
device. If you can, plot them in both “connected” and “dot” modes.

yp=x*intx atx=2 jump discontinuity

1 S . .
Yy = sin — atx =0 oscillating discontinuity
X
1 e o
y3 = 2 atx =2 infinite discontinuity
x —
x2 =2
: . . = tx =2 removable discontinuity
a) y; = x*int x incorrectly graphed in Y4 x -2 a

connected mode.
b) y; = x*int x correctly graphed in dot
mode.

*Rhymes with class.
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1.37 Continuity at points a, b, and c.

LSL

-2 0

1.38 Continuous at every domain point.

y=U®

1.39 Right-continuous at the origin.

1.40 This function, defined on the closed
interval [0, 4], is discontinuous at x =1, 2,
and 4. It is continuous at all other points

of its domain.
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Continuity at endpoints is defined by taking one-sided limits.

Definition
A function f is continuous at a left endpoint x = a of its domain if

lim f(x) = f(@
and continuous at a right endpoint x = b of its domain if

lim () = fb).

In general, a function f is right-continuous (continuous from the right) at a
point x = cinitsdomainiflim,_ .+ f(x) = f(c). Itis left-continuous (continuous
from the left) at ¢ if lim,_, .- f(x) = f(c). Thus, a function is continuous at a
left endpoint a of its domain if it is right-continuous at a and continuous at a right
endpoint b of its domain if it is left-continuous at . A function is continuous
at an interior point ¢ of its domain if and only if it is both right-continuous and
left-continuous at ¢ (Fig. 1.37).

EXAMPLE 1 The function f(x) = +/4 — x? is continuous at every point of its
domain, [-2,2] (Fig. 1.38). This includes x = —2, where f is right-continuous,
and x = 2, where f is left-continuous. d

EXAMPLE 2 The unit step function U(x), graphed in Fig. 1.39, is right-
continuous at x = 0, but is neither left-continuous nor continuous there. u

We summarize continuity at a point in the form of a test.

Continuity Test

A function f(x) is continuous at x = ¢ if and only if it meets the following
three conditions.

1.  f(c) exists
2. lim,,. f(x) exists

3. lime,. f(x) = f(0)

(c lies in the domain of f)
(f has a limit as x — ¢)
(the limit equals the function value)

For one-sided continuity and continuity at an endpoint, the limits in parts 2
and 3 of the test should be replaced by the appropriate one-sided limits.

EXAMPLE 3 Consider the function y = f(x) in Fig. 1.40, whose domain is
the closed interval [0, 4]. Discuss the continuity of f at x =0, 1, 2, 3, and 4.
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Solution The continuity test gives the following results:

a)

b)

c)

d)

€)

f is continuous at x = 0 because

i) f(0) exists (f(0) = 1),
ii) lim,_y f(x) =1 (the right-hand limit exists at this left endpoint),
iii) lim,_ ¢+ f(x) = f(0) (the limit equals the function value).

f is discontinuous at x = 1 because lim,_,; f(x) does not exist. Part 2 of the
test fails: f has different right- and left-hand limits at the interior point x = 1.
However, f is right-continuous at x = 1 because

i) f(1) exists (f(1) =1),
ii) lim,_,;+ f(x) = 1 (the right-hand limit exists at x = 1),
iii) lim,_,;+ f(x) = f(1) (the right-hand limit equals the function value).
f is discontinuous at x = 2 because lim,_,, f(x) # f(2). Part 3 of the test
fails.
f is continuous at x = 3 because
i) f(3) exists (f(3) =2),
ii) lim,_; f(x) = 2 (the limit exists at x = 2),
iii) lim, .3 f(x) = f(3) (the limit equals the function value).

f is discontinuous at the right endpoint x = 4 because lim,_4- f(x) # f(4).
The right-endpoint version of Part 3 of the test fails.

Rules of Continuity

It follows from Theorem 1 in Section 1.2 that if two functions are continuous at
a point, then various algebraic combinations of those functions are continuous at
that point.

Theorem 6
Continuity of Algebraic Combinations

If functions f and g are continuous at x = c, then the following functions
are continuous at x = ¢:

1. f+gand f—g

2. fg

3. kf, where k is any number

4. f/g (provided g(c) # 0)

5. (f(x))™" (provided f(x))™/" is defined on an interval containing c,

and m and n are integers)

As a consequence, polynomials and rational functions are continuous at every

point where they are defined.
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1.41 The sharp corner does not prevent
the function from being continuous at
the origin (Example 5).

1.42 The continuity of composites.
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Theorem 7
Continuity of Polynomials and Rational Functions

Every polynomial is continuous at every point of the real line. Every rational
function is continuous at every point where its denominator is different from
zZero.

EXAMPLE 4 The functions f(x) = x* + 20 and g(x) = 5x(x — 2) are contin-
uous at every value of x. The function
fx) x*+20
r(x) = =
g(x)  S5x(x—2)

is continuous at every value of x except x = 0 and x = 2, where the denominator
is 0. d
EXAMPLE 5  Continuity of f(x) = |x|

The function f(x) = |x| is continuous at every value of x (Fig. 1.41). If x > 0, we
have f(x) = x, a polynomial. If x < 0, we have f(x) = —x, another polynomial.
Finally, at the origin, lim,_,o |x| =0 = |0].

EXAMPLE 6  Continuity of trigonometric functions

We will show in Chapter 2 that the functions sin x and cos x are continuous at every
value of x. Accordingly, the quotients

sin x cos X
tanx = cotx = —
cosx sin x
1 1
secx = CSCX = ——
cosx sinx
are continuous at every point where they are defined. a

Theorem 8§ tells us that continuity is preserved under the operation of compo-
sition.

Theorem 8
Continuity of Composites

If f is continuous at ¢, and g is continuous at f(c), then g o f is continuous
at ¢ (see Fig. 1.42).

g-f

Continuous at ¢

f g
/omm m
P, atc ‘ at f(c)
c f(©) 8(f(e)
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<

-1 0 1 3 4
(@
y
_x+3
5 2 Y x+2
4
1=
| | | l 5
-1 0 1 2 3 4

)

1.43 (a) The graph of

X +x—6
f0) = —5—7—

and (b) the graph of its continuous
extension

XX +x—-6
X+3 x2—4 ' X #2
Fx) = —— =
X+2 5 2
4’ x=
(Example 8).

The continuity of composites holds for any finite number of functions. The only
requirement is that each function be continuous where it is applied. For an outline
of the proof of Theorem 8, see Exercise 6 in Appendix 2.

EXAMPLE 7 The following functions are continuous everywhere on their re-
spective domains.

a) y= ﬁ Theorems 6 and 7 (rational power of a polynomial)
b) y= m Theorems 6 and 7. or (a) plus Theorems 7 and 8 ( power

of a polynomial or composition with the square root)

2/3 . .
) _x cos(x / ) Theorems 6, 7. and 8 ( power. composite. product. polynomial.
y= 14 x4 and quotient)
d) _|*~ 2 Theorems 7 and 8 (composite of absolute value and a rational
= x2 =2 function) 0

Continuous Extension to a Point

As we saw in Section 1.2, a rational function may have a limit even at a point
where its denominator is zero. If f(c) is not defined, but lim,_,. f(x) = L exists,
we can define a new function F(x) by the rule

fx) if x is in the domain of f
F(x) = .
L ifx=c.

The function F is continuous at x = ¢. It is called the continuous extension of

f to x = c. For rational functions f, continuous extensions are usually found by
canceling common factors.

EXAMPLE 8 Show that

x24+x—6
fx) = 4

has a continuous extension to x = 2, and find that extension.

Solution Although f(2) is not defined, if x # 2 we have
*+x—-6 (x-2x+3) x+3

o)== T x-2(x+2) x+42
The function
x+3
F =
(x) T2

is equal to f(x) for x # 2, but is also continuous at x = 2, having there the value
of 5/4. Thus F is the continuous extension of f to x = 2, and

. xP+x—-6 5

M e T /W=y
The graph of f is shown in Fig. 1.43. The continuous extension F has the same
graph except with no hole at (2, 5/4). d

Continuity on Intervals

A function is called continuous if it is continuous everywhere in its domain. A
function that is not continuous throughout its entire domain may still be continuous
when restricted to particular intervals within the domain.
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1.44 The function f, being continuous on
[a, b], takes on every value between f(a)
and f(b).

y=lx
O0=sx=<1

1.45 The function f(x) = |x],0<x<1,
does not take on any value between
f(0) =0 and (1) = 1.
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A function f is said to be continuous on an interval / in its domain if
lim,_,. f(x) = f(c) at every interior point ¢ and if the appropriate one-sided limits
equal the function values at any endpoints / may contain. A function continuous on
an interval / is automatically continuous on any interval contained in /. Polynomials
are continuous on every interval, and rational functions are continuous on every
interval on which they are defined.

EXAMPLE 9 Functions continuous on intervals

y
5 Y= 4 — x?
) 0 2
(a) Continuous on [-2, 2] (b) Continuous on (—oo, 0) and (0, o)
y y

1

y = U(x) y=Cosx

0

(c) Continuous on (—o, 0) and [0, o) (d) Continuous on (—oo, o) g

Functions that are continuous on intervals have properties that make them partic-
ularly useful in mathematics and its applications. One of these is the intermediate
value property. A function is said to have the intermediate value property if it
never takes on two values without taking on all the values in between.

Theorem 9
The Intermediate Value Theorem

Suppose f(x) is continuous on an interval 7, and a and b are any two points
~of 1. Then if y, is a number between f(a) and f(b), there exists a number
¢ between a and b such that f(c) = y, (Fig. 1.44).

The proof of the Intermediate Value Theorem depends on the completeness
property of the real number system and can be found in more advanced texts.

The continuity of f on I is essential to the theorem. If f is discontinuous at
even one point of /, the theorem’s conclusion may fail, as it does for the function
graphed in Fig. 1.45.
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A Consequence for Graphing: Connectivity Theorem 9 is the reason the
graph of a function continuous on an interval / cannot have any breaks. It will
be connected, a single, unbroken curve, like the graph of sinx. It will not have
jumps like the graph of the greatest integer function |x] or separate branches like
the graph of 1/x.

The Consequence for Root Finding  We call a solution of the equation f(x) =
0 a root or zero of the function f. The Intermediate Value Theorem tells us that
if f is continuous, then any interval on which f changes sign must contain a zero
of the function.
This observation is the basis of the way we solve equations of the form f(x) =
0 with a graphing calculator or computer grapher (when f is continuous). The
solutions are the x-intercepts of the graph of f. We graph the function y = f(x)
over a large interval to see roughly where its zeros are. Then we zoom in on the
1.46 A graphical solution of the intersection points one at a time to estimate their coordinates. Figure 1.46 shows a
equation x> —x — 1 = 0. We graph the typical sequence of steps in a graphical solution of the equation x> —x — 1 = 0.
function f(x) = x* —x — 1 and, with Graphical procedures for solving equations and finding zeros of functions,
successive screen enlargements, estimate o . . .
while instructive, are relatively slow. We usually get faster results from numerical

the coordinates of the point where the . ; .
graph crosses the x-axis. methods, as you will see in Section 3.8.

- — — ([

First we make a graph with a relatively We change the viewing window to We change the window to
large scale. It reveals a root (zero) I=x=<2,-1<y<1. Wenow see 13=x=<135-01=<y=<0.1.
betweenx = 1 and x = 2. that the root lies between 1.3 and 1.4. The root lies between 1.32 and 1.33.
| / 1/ | |
1.324/°1.325 1.3247/1.3248 1.324717 1.324719

N N _/

We change the window to We change the window to After two more enlargements, we arrive
1.32=<x =< 1.33,-0.01 =y <0.01. 1.324 < x <1.325,-0.001 <y <0.001. at a screen that shows the root to be
The root lies between 1.324 and 1.325. The root lies between 1.3247 and 1.3248. approximately 1.324718.
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EXAMPLE 10 Is any real number exactly 1 less than its cube?

Solution This is the question that gave rise to the equation we just solved. Any
such number must satisfy the equation x = x3—1orx3—x—1=0. Hence, we
are looking for a zero of f(x) = x> — x — 1. By trial, we find that f(1) = —1 and
f(2) =5 and conclude from Theorem 9 that there is at least one number in [1, 2]
where f is zero. So, yes, there is a number that is 1 less than its cube, and we just
estimated its value graphically to be about 1.3247 18. a

Exercises 1.5

Continuity from Graphs

In Exercises 1-4, say whether the function graphed is continuous on
[—1, 3]. If not, where does it fail to be continuous and why?

1. 2.

Exercises 5-10 are about the function

x2 -1,
2x,
flx) = 1,
—2x + 4,
0,

graphed in Fig. 1.47.

' L L L,y 1.47 The graph for Exercises 5-10.

7. a) Is f defined at x = 2? (Look at the definition of f.)
b) Is f continuous at x = 2?

y = k(x) 8. At what values of x is f continuous?

9. What value should be assigned to f(2) to make the extended func-

1 7/D tion continuous at x = 2?

/ 10. To what new value should f(1) be changed to remove the dis-
10 1 2 3 continuity?

Applying the Continuity Test

-1<x<0 At which points do the functions in the following exercises fail to be
0<x<1 continuous? At which points, if any, are the discontinuities removable?
x=1 not removable? Give reasons for your answers.
l<x<2 11. Exercise 1, Section 1.4 12. Exercise 2, Section 1.4
2<x<3

At what points are the functions in Exercises 13-28 continuous?

1 1
- ist? 3. y=——-3 4. y=——+4
5. a) Does f( 1) exist? . Y=L, y (x +2)? +
b) Does lim,_,_;+ f(x) exist? 1 43
©) Does lim,__;+ f(x) = f(=1)? 15 y= ———— 16 y= =~
d) Is f continuous at x = —1? x?—4x+3 x*—3x - 10
. 1 2
6. a) Does f(1) exist? 17. y = |x — 1| +sinx 18. y:—_x_
b) Does lim,_; f(x) exist? xl+1 2
¢ Does lim,.; f(x) = f(1)? 19. y = &% 20,y 512
d) Is f continuous at x = 1? x cosx
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21. y =csc2x 22. y =tan nTx
xtanx x4+ 1
23, y= —— 24, y= ——
Y x2+1 ' 1+ sinx
25. y=2x+3 26. y= ¥3x -1

27. y=(2x = 1)!/3 28. y=2-x)!

Limits of Composite Functions
Find the limits in Exercises 29-34.

29. lim sin (x — sinx) 30. lin(l) sin (% cos(tant))
X—>m t—

31. lirr} sec (ysec?y —tan*y — 1)
y—

32. lim tan (% cos (sin x'/3 ))

x—0

33. lim cos (4)
=0 V19 — 3sec2t
34. lim6\/ csc? x + 5+4/3tanx

x—>7 /!

Continuous Extensions

35. Define g(3) in a way that extends g(x) = (x> —9)/(x — 3) to be
continuous at x = 3.

36. Define h(2) in a way that extends h(r) = (t2 + 3t — 10)/(t — 2)
to be continuous at t = 2.

37. Define f(1) in a way that extends f(s) = (s> —1)/(s> = 1) to
be continuous at s = 1.

38. Define g(4)inaway thatextends g(x) = (x?> — 16)/(x?> — 3x — 4)
to be continuous at x = 4.
39. For what value of a is

fox) = [

x <3
x>3

x2 -1,
2ax,

continuous at every x?

40. For what value of b is

) = X, x <
§x) = bx?*, x> -2

continuous at every x?

Grapher Explorations—Continuous Extension

In Exercises 41-44, graph the function f to see whether it appears to
have a continuous extension to the origin. If it does, use TRACE and
ZOOM to find a good candidate for the extended function’s value at
x = 0. If the function does not appear to have a continuous extension,
can it be extended to be continuous at the origin from the right or
from the left? If so, what do you think the extended function’s value(s)
should be?

10* -1 10+ — 1

41. f(x) = 42. f(x) =

* 53.

3. f(x) = X

4. f(x)=(1+2x)"
x|

Theory and Examples

45. A continuous function y = f(x) is known to be negative at x = 0
and positive at x = 1. Why does the equation f(x) = 0 have at
least one solution between x =0 and x = 1? Illustrate with a
sketch.

46. Explain why the equation cos x = x has at least one solution.

47. Show that the equation x> — 15x 4+ 1 = 0 has three solutions in
the interval [—4, 4].

48. Show that the function F(x) = (x — a)?>(x — b)> + x takes on
the value (a + b)/2 for some value of x.

49. If f(x) = x3 — 8x + 10, show that there are values ¢ for which
f(c) equals (a) ; (b) —V3; (c) 5,000,000.

50. Explain why the following five statements ask for the same in-
formation.

a) Find the roots of f(x) =x3—3x —1.

b) Find the x-coordinates of the points where the curve y = x
crosses the line y = 3x + 1.

¢) Find all the values of x for which x> —3x = 1.

d) Find the x-coordinates of the points where the cubic curve
y = x3 — 3x crosses the line y = 1.

e) Solve the equation x> —3x — 1 =0.

3

51. Give an example of a function f(x) that is continuous for all
values of x except x = 2, where it has a removable discontinuity.
Explain how you know that f is discontinuous at x = 2, and how
you know the discontinuity is removable.

52. Give an example of a function g(x) that is continuous for all
values of x except x = —1, where it has a nonremovable discon-
tinuity. Explain how you know that g is discontinuous there and
why the discontinuity is not removable.

* A function discontinuous at every point.

a) Use the fact that every nonempty interval of real numbers
contains both rational and irrational numbers to show that
the function

S = [é

is discontinuous at every point.
b) Is f right-continuous or left-continuous at any point?

if x is rational
if x is irrational

54. If functions f(x) and g(x) are continuous for 0 < x < 1, could
f(x)/g(x) possibly be discontinuous at a point of [0, 1]? Give
reasons for your answer.

55. If the product function A(x) = f(x) - g(x) is continuous atx = 0,
must f(x) and g(x) be continuous at x = 0? Give reasons for your
answer.

*Asterisk denotes a challenging problem.
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57.

58.

59.

60.

1.48 L is tangent to the circle at P if it

Give an example of functions f and g, both continuous at x = 0,
for which the composite f o g is discontinuous at x = 0. Does
this contradict Theorem 8?7 Give reasons for your answer.

Is it true that a continuous function that is never zero on an
interval never changes sign on that interval? Give reasons for
your answer.

Is it true that if you stretch a rubber band by moving one end to
the right and the other to the left, some point of the band will
end up in its original position? Give reasons for your answer.

A fixed point theorem. Suppose that a function f is continu-
ous on the closed interval [0, 1] and that 0 < f(x) < 1 for every
x in [0, 1]. Show that there must exist a number ¢ in [0, 1] such
that f(c) = ¢ (c is called a fixed point of f).

The sign-preserving property of continuous functions. Let
f be defined on an interval (a, b) and suppose that f(c) # 0 at
some ¢ where f is continuous. Show that there is an interval
(c—8, c+6) about ¢ where f has the same sign as f(c).
Notice how remarkable this conclusion is. Although f is defined
throughout (a, b), it is not required to be continuous at any point

/]
]

61.
62.
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except c¢. That and the condition f(c) # 0 are enough to make
f different from zero (positive or negative) throughout an entire
interval.

Explain how Theorem 6 follows from Theorem 1 in Section 1.2.

Explain how Theorem 7 follows from Theorems 2 and 3 in Sec-
tion 1.2.

Solving Equations Graphically

Use a graphing calculator or computer grapher to solve the equations
in Exercises 63-70.

63.
65.
67.
68.
69.
70.

Tangent Lines

This section continues the discussion of secants and tangents begun in Section 1.1.

x3=-3x—-1=0 64. 2x3 —2x* —2x+1=0
x(x =1)?=1 (oneroot) 66. x* =2

Vi+/T+x=4

x3—15x +1=0 (three roots)

cosx = x (one root). Make sure you are using radian mode.
2sinx = x (three roots). Make sure you are using radian mode.

SR

We calculate limits of secant slopes to find tangents to curves.

What Is a Tangent to a Curve?

For circles, tangency is straightforward. A line L is tangent to a circle at a point P
if L passes through P perpendicular to the radius at P (Fig. 1.48). Such a line just
touches the circle. But what does it mean to say that a line L is tangent to some
other curve C at a point P? Generalizing from the geometry of the circle, we might
say that it means one of the following.

1. L passes through P perpendicular to the line from P to the center of C.
2. L passes through only one point of C, namely P.
3. L passes through P and lies on one side of C only.

While these statements are valid if C is a circle, none of them work consistently

for more general curves. Most curves do not have centers, and a line we may want
L to call tangent may intersect C at other points or cross C at the point of tangency
(Fig. 1.49 on the following page).
To define tangency for general curves, we need a dynamic approach that takes
into account the behavior of the secants through P and nearby points Q as Q moves
toward P along the curve (Fig. 1.50 on the following page). It goes like this:

1.
2.
3.

passes through P perpendicular to radius

OP.

We start with what we can calculate, namely the slope of the secant PQ.
Investigate the limit of the secant slope as Q approaches P along the curve.
If the limit exists, take it to be the slope of the curve at P and define the tangent
to the curve at P to be the line through P with this slope.

This is what we were doing in the fruit fly example in Section 1.1.
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L meets C only at P
but is not tangent to C.

L is tangent to C at P but
meets C at several points.

L is tangent to C at P but lies on
two sides of C, crossing C at P.

1.49 Exploding myths about tangent lines.

How do you find a tangent to a
curve?

This was the dominant mathematical question
of the early seventeenth century and it is hard
to overestimate how badly the scientists of
the day wanted to know the answer. In
optics, the tangent determined the angle at
which a ray of light entered a curved lens. In
mechanics, the tangent determined the
direction of a body’s motion at every point
along its path. In geometry, the tangents to
two curves at a point of intersection
determined the angle at which the curves
intersected. Descartes went so far as to say
that the problem of finding a tangent to a
curve was “the most useful and most general
problem not only that I know but even that I
have any desire to know.”

e
Secants

1.50 The dynamic approach to tangency. The tangent to the curve at P is the line
through P whose slope is the limit of the secant slopes as Q — P from either side.

EXAMPLE 1 Find the slope of the parabola y = x? at the point P(2, 4). Write
an equation for the tangent to the parabola at this point.

Solution We begin with a secant line through P(2, 4) and Q2 + h, (2 + h)?)
nearby. We then write an expression for the slope of the secant PQ and investigate
what happens to the slope as Q approaches P along the curve:

Ay (Q+h?2-22 h44h+4-—-4
Secant slope = — = =
Ax h h
h* + 4h
b —-]:—— =h+4.

If h > 0, Q lies above and to the right of P, as in Fig. 1.51. If 1 < 0, Q lies to
the left of P (not shown). In either case, as Q approaches P along the curve, h
approaches zero and the secant slope approaches 4:

lim (h+4) =4.
h—0

We take 4 to be the parabola’s slope at P.
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Secant slope is =h+4

/I’ angent slope = 4

Ay=Q+h?—4

Q+hn*-4
h

1.51 Diagram for finding the slope of
the parabola y = x? at the point
P(2, 4) (Example 1). NOT TO SCALE

The tangent to the parabola at P is the line through P with slope 4:

y=4+4(x —-2) Point-slope equation

y =4x —4. d
y o Finding a Tangent to the Graph of a Function
y = f(x
% To find a tangent to an arbitrary curve y = f(x) at a point P (xg, f(xo)) we use
Q(xy+ h, flxy+ h) the same dynamic procedure. We calculate the slope of the secant through P and

a point Q(xo + A, f(xo + h)). We then investigate the limit of the slope as # — 0
Sfxg + k) = flxy) (Fig. 1.52). If the limit exists, we call it the slope of the curve at P and define the
tangent at P to be the line through P having this slope.

Definitions
The slope of the curve y = f(x) at the point P (xo, f(xo)) is the number
f(xo+h) — f(xo)

0 x, Xg+h

m = Ain(l) p (provided the limit exists).
1.52 The tangent slope is
- f(xo + h) — (xo) The tangent line to the curve at P is the line through P with this slope.

h—0 h

Whenever we make a new definition it is a good idea to try it on familiar
objects to be sure it gives the results we want in familiar cases. The next example
shows that the new definition of slope agrees with the old definition when we apply
it to nonvertical lines.

How to Find the Tangent to the

Curve y = f(x) at (X, ¥o) EXAMPLE 2  Testing the definition

1. Calculate f(xp) and f(xo + h). Show that the line y = mx + b is its own tangent at any point (xo, mxo + b).
2. Calculate the slope
f(xo+h) — f(x0) Solution We let f(x) = mx + b and organize the work into three steps.
= lim ———M = "
"= h Step 1: Find f(xo) and f(xo+ h).

3. If the limit exists, find the tangent
line as y = yp + m(x — xo).

f(x0) = mxo+b
fo+h) =mxo+h)+b=mxo+mh+>b
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Pierre de Fermat (1601-1665)

The dynamic approach to tangency, invented
by Fermat in 1629, proved to be one of the

seventeenth century’s major contributions to
calculus.

Fermat, a skilled linguist and one of his
century’s greatest mathematicians, tended to
confine his writing to professional
correspondence and to papers written for
personal friends. He rarely wrote completed
descriptions of his work, even for his
personal use. His famous “last theorem” (that
a” 4+ b" = ¢" has no positive integer solutions
for a, b, and c if n is an integer greater than
2) is known only from a note he jotted in the
margin of a book. His name slipped into
relative obscurity until the late 1800s, and it
was only from a four-volume edition of his
works published at the beginning of this
century that the true importance of his many
achievements became clear.

Besides the work in physics and number
theory for which he is best known, Fermat
found the areas under curves as limits of
sums of rectangle areas (as we do today) and
developed a method for finding the centroids
of shapes bounded by curves in the plane.
The standard formula for the first derivative
of a polynomial function, the formulas for
calculating arc length and for finding the area
of a surface of revolution, and the second
derivative test for extreme values of functions
can all be found in his papers. We will see
what these are as the text continues.

%2 The two tangent lines to y = 1/x
having slope —1/4.

Step 2: Find the slope %in}) (f(xo+h)— f(x0))/h.

im f(xo+h) — f(xo) (mxo + mh + b) — (mxo + b)

li = lim
h—0 h h—0 h
- hl—I>I(1) h "

Step 3: Find the tangent line using the point—slope equation. The tangent line at
the point (x, mxy + b) is

y = (mxg+ b) + m(x — xq)
y = mxg+ b+ mx — mxp

y = mx +b. 4

EXAMPLE 3

a)

Find the slope of the curve y = 1/x at x = a.

b) Where does the slope equal —1/4?
¢) What happens to the tangent to the curve at the point (a, 1/a) as a changes?
Solution
a) Here f(x) = 1/x. The slope at (a, 1/a) is
1 1
B — - _Z
im feth-f@ . a+h a
h—0 h h—0 h
. la—(a+h)
=lim —-——
h=0 h a(a+h)
. —h
=lim ———
>0 ha(a + h)
. -1 1
=lim ——— = ——.
h—0 a(a + h) a?
Notice how we had to keep writing “lim,_,o” at the beginning of each line
until the stage where we could evaluate the limit by substituting 2 = 0.
b) The slope of y = 1/x at the point where x = a is —1/a®. It will be —1/4
provided
11
a? = 4
This equation is equivalent to a> = 4, so @ = 2 or a = —2. The curve has slope
—1/4 at the two points (2, 1/2) and (-2, —1/2) (Fig. 1.53).
¢) Notice that the slope —1/a? is always negative. As a — 0T, the slope ap-

proaches —oo and the tangent becomes increasingly steep (Fig. 1.54). We see
this again as a — 0. As a moves away from the origin, the slope approaches
0~ and the tangent levels off.

Rates of Change

The expression

J (o +h) — f(x0)
h




1.54 The tangent slopes, steep near the

origin, become more gradual as the point

of tangency moves away.

All of these refer to the same thing.

1.
2.

3.

The slope of y = f(x) at x = xp

The slope of the tangent to y = f(x)

at x = xg
The rate of change of f(x) with

respect to x at x = xg

The derivative of f at x = xp
m f(xo+h) — f(xo)

li
h—0

h
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is called the difference quotient of f at x,. If the difference quotient has a limit
as h approaches zero, that limit is called the derivative of f at xo. If we interpret
the difference quotient as a secant slope, the derivative gives the slope of the curve
and tangent at the point where x = x(. If we interpret the difference quotient as an
average rate of change, as we did in Section 1.1, the derivative gives the function’s
rate of change with respect to x at the point x = xo. The derivative is one of the
two most important mathematical objects considered in calculus. We will begin a
thorough study of it in Chapter 2.

EXAMPLE 4  Instantaneous speed (Continuation of Section 1.1,
Examples 1 and 2)

In Examples 1 and 2 in Section 1.1, we studied the speed of a rock falling freely
from rest near the surface of the earth. We knew that the rock fell y = 1612 feet
during the first ¢ seconds, and we used a sequence of average rates over increasingly
short intervals to estimate the rock’s speed at the instant ¢+ = 1. Exactly what was
the rock’s speed at this time?

Solution We let f(t) = 16t%. The average speed of the rock over the interval
between t = 1 and t = 1 + h seconds was

fA+hm) = fA) 1601+ h)> —16(1)>  16(h* + 2h)

= 16(h + 2).
h A A (h+2)
The rock’s speed at the instant t = 1 was
}liirr(l) 16(h 4+ 2) = 16(0 + 2) = 32 ft/sec.
Our original estimate of 32 ft/sec was right. d

Exercises 1.6

Slopes and Tangent Lines

In Exercises 1-4, use the grid and a straight edge to make a rough estimate of the slope of the curve (in y-units per x-unit) at the points P,
and P,. Graphs can shift during a press run, so your estimates may be somewhat different from those in the back of the book.

1.
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In Exercises 5-10, find an equation for the tangent to the curve at the
given point. Then sketch the curve and tangent together.

5.y=4—-x2 (-1,3) 6. y=(x—-D%+1, (1,1
1
7.y =2Jx, (1,2) 8. y=—=, (-1,
x
1 1
9. y=x3 (=2,-8) 10. y = > (—2,——)
X 8

In Exercises 11-18, find the slope of the function’s graph at the given
point. Then find an equation for the line tangent to the graph there.

1. fx)=x>+1, (2,5
12. f(x)=x—2x% (1,=1)

13. g(x) = ——, (3,3)

x—2
8
14. g(x) = el (2,2)

15. h(t) =13, (2,8)

16. h(1) =1 +31, (1,4)

17. f(x)=Vx, (4.2

18. f(x)=vx+1, (8,3)

In Exercises 19-22, find the slope of the curve at the point indicated.
19. y=5x2, x=-1

20 y=1—-x2, x=2

2. y= ;

, x=3
x—1
x—1

22. y= x=0

x+1°

Tangent Lines with Specified Slopes

At what points do the graphs of the functions in Exercises 23 and 24
have horizontal tangents?

23, f(x)=x>4+4x—1

25. Find equations of all lines having slope —1 that are tangent to
the curve y = 1/(x — 1).

24. g(x) =x3—3x

26. Find an equation of the straight line having slope 1/4 that is
tangent to the curve y = /x.

Rates of Change

27. An object is dropped from the top of a 100-m-high tower. Its
height aboveground after ¢ seconds is 100 — 4.9 m. How fast
is it falling 2 sec after it is dropped?

28. At t seconds after lift-off, the height of a rocket is 3% ft. How
fast is the rocket climbing after 10 sec?

29. What is the rate of change of the area of a circle (A = 7r?) with
respect to its radius when the radius is r = 3?

30. What is the rate of change of the volume of aball (V = (4/3)rr?)
with respect to the radius when the radius is r = 2?

Testing for Tangents
31. Does the graph of

x2sin  (1/x),

_ x#0
ro = M
have a tangent at the origin? Give reasons for your answer.
32. Does the graph of

2(x) = ’xsin (1/x),

x#0
0, x=0

have a tangent at the origin? Give reasons for your answer.

Vertical Tangents
We say that the curve y = f(x) has a vertical tangent at the point
where x = x¢ if lim,_¢ (f(xo +h) — f(x9))/h = 00 or —o0.

Vertical tangent at x = O:
— 173 _
h—0 h h—0 h

No vertical tangent at x = 0:

. g0+h)—g0) . hP-0

lim = lim

h—0 h h—0 h
=i 1
=0 s

does not exist, because the limit is co from the right and —oo
from the left.




33. Does the graph of

x <0
fx) = 0, x=0
, x>0

—

have a vertical tangent at the origin? Give reasons for your answer.

34. Does the graph of

/]
am

a)

b)

35. y =x*5

37. y =x'°

39, y =4x% —2x

41, y=xP - (x -1

CHAPTER

0, x<0

U =11 y>o0

have a vertical tangent at the point (0, 1)? Give reasons for your
answer.

Grapher Explorations—Vertical Tangents

Graph the curves in Exercises 35-44. Where do the graphs appear
to have vertical tangents?
Confirm your findings in (a) with limit calculations.

36. y = x*/5

38. y =x3°

40. y = x> — 5x23

2 y=x"P4+x-1D1"

43.
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VIxl, x <0

y=1{ 4. y = /IF—x]

Jx, x>0

& CAS Explorations and Projects

Use a CAS to perform the following steps for the functions in Exer-
cises 45-48.

a)

b)

c)
d)

45.

46.

47.
48.

1
Plot y = f(x) over the interval xo — 3 <x <xo+3.

Define the difference quotient g at xq as a function of the general
step size h.

Find the limit of ¢ as & — 0.

Define the secant lines y = f(xo) + ¢*(x — xo) for h = 3,2,
and 1. Graph them together with f and the tangent line over the
interval in part (a).

f&x)=x3+2x, x=0
fO=x+2, =1
X
f&x)=x+sin (2x),
f(x)=cos x+4sin (2x),

xo=m/2

Xo=T

QUESTIONS TO GUIDE YOUR REVIEW

. What is the average rate of change of the function g(z) over the

interval from ¢t = a to t = b? How is it related to a secant line?

. What limit must be calculated to find the rate of change of a

function g(z) at t = 1,?

. Does the existence and value of the limit of a function f(x) as

x approaches ¢ ever depend on what happens at x = ¢? Explain,
and give examples.

. What theorems are available for calculating limits? Give examples

of how the theorems are used.

. How are one-sided limits related to limits? How can this rela-

tionship sometimes be used to calculate a limit or prove it does
not exist? Give examples.

. How is the problem of controlling the input x of a function f

so that the output y = f(x) will be within a certain specified
tolerance € of a target value yp = f(xo) related to the problem
of proving that f has limit yp as x — x?

. What exactly does lim,_,,, f(x) = L mean? Give an example in

which you find a § > 0 for a given f, L, xp, and € > O in the
formal definition of limit.

. Give formal definitions of the following statements.

a) lim_, f(x)=5

10.

11.

12.

13.

14.
15.

b) lim,_,+ f(x)=35
¢) limey f(x) =00
d) lim, f&x)=—00

. What conditions must be satisfied by a function if it is to be

continuous at an interior point of its domain? at an endpoint?

How can looking at the graph of a function help you tell where
the function is continuous?

What does it mean for a function to be right-continuous at a
point? left-continuous? How are continuity and one-sided conti-
nuity related?

What can be said about the continuity of polynomials? of rational
functions? of trigonometric functions? of rational powers and
algebraic combinations of functions? of composites of functions?
of absolute values of functions?

Under what circumstances can you extend a function f(x) to be
continuous at a point x = ¢? Give an example.

What does it mean for a function to be continuous on an interval?

What does it mean for a function to be continuous? Give examples
to illustrate the fact that a function that is not continuous on its
entire domain may still be continuous on selected intervals within
the domain.
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16. What property must a function f that is continuous on an interval
[a, b] have? Show by examples that f need not have this property
if it is discontinuous at some point of the interval.

17. It is often said that a function is continuous if you can draw its
graph without having to lift your pen from the paper. Why is
that?

CHAPTER 1 PRACTICE EXERCISES

18. What does continuity have to do with solving equations?
19. When is a line tangent to a curve C at a point P?

20. What is the significance of the formula

o fEEh - f@),
1m —h——‘-—

h—0

Limit Calculations and Continuity
1. Graph the function

1, x<-1

—x, —-1<x<0

fx) = I, x=0
-x, O<x<l1

1, x>1.

Then discuss, in complete detail, limits, one-sided limits, continu-
ity, and one-sided continuity of f at each of the points x = —1, 0,
and 1. Are any of the discontinuities removable? Explain.

2. Repeat the instructions of Exercise 1 for

0, x<-1

) 1/x, O0<xl <1
flx) = 0 x=1
1, x>1.

3. Suppose that f(x) and g(x) are defined for all x and that
lim,,. f(x) = —7and lim,_,. g(x) = 0. Find the limit as x
of the following functions.

— C

a) 3f(x) b) (f(x))?

fx)
¢ flx)-gx) d) 20 -7
e) cos(g(x)) ) [f)l

4. Suppose that f(x) and g(x) are defined for all x and that
lim,o f(x) =1/2 and lim,_,o g(x) = +/2. Find the limits as
x — 0 of the following functions.

a) —g(x) b) gx) - f(x)

) flx)+gkx) d 1/f(x)

e x4+ f(x) f) Lclo” o
P

In Exercises 5 and 6, find the value that lim,_,¢ g(x) must have if the
given limit statements hold.

(4—g(x)> -1
—)=

S. lim
x—0

6 Jim, (< lim 5)) =2

am

In Exercises 7-10, find the limit of g(x) as x approaches the indicated
value.

7. lim (4g(x))'? =2 8. lim —— =
x—0* (4g(x)) =5 X+ gx)
3x? 5—x2
9. lim L _ o 10. lim >—~ =0
x—1 g(x) x—>=2 /g(x)
In Exercises 11-18, find the limit or explain why it does not exist.
2_4x+4
11. lim x:;x—|—5x——2x—-l-l4x (a) as x — 0, (b) as x — 2
o x>+ x
. lim m (a)asx—>(), (b)an—>—1
1 — 2 _ 2
13, fim =Y 4. lim =~
x>l 1 —x x—>a x* — g4
2_ .2 2 _ .2
15, lim G HEM" =X 16, lim &M —x
h—0 h x—0 h
1 1
_ - 3
17. lim 2+* 2 18. lim 20"~ 8
x—=0 X x—0 X

19. On what intervals are the following functions continuous?

a) f(x)=x'" b) gx)=x*
) h(x)=x"23 d) k(x)=x"6

20. Can f(x) = x(x* —1)/|x* — 1| be extended to be continuous
at x =1 or —1? Give reasons for your answers. (Graph the
function—you will find the graph interesting.)

Grapher Explorations—Continuous Extensions

In Exercises 21-24, graph the function to see whether it appears to
have a continuous extension to the given point a. If it does, use
TRACE and ZOOM to find a good candidate for the extended func-
tion’s value at a. If the function does not appear to have a continuous
extension, can it be extended to be continuous from the right or left?
If so, what do you think the extended function’s value should be?



x—1
21. = , =1
f) -
5cosé
22. 0 = = 2
80) = g5 a=n/

23. h(t)y = 1+ th"", a=0

24. k(x) = 1—_% a=0

% Grapher Explorations—Roots

25. Let f(x) =x3—x—1.

a) Show that f must have a zero between —1 and 2.

b) Solve the equation f(x) = O graphically with an error of at
most 1078,

¢) It can be shown that the exact value of the solution in (b)

CHAPTER
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is
1/3 1/3
1 + /69 + 1 /69
2 18 2 18 '
Evaluate this exact answer and compare it with the value
determined in (b).

26. Let f(x) =x3 —2x 4 2.

a) Show that f must have a zero between —2 and 0.

b) Solve the equation f(x) = O graphically with an error of at
most 1074,

¢) It can be shown that the exact value of the solution in (b)

is
IEl 1 1/3 ) 5 +1 1/3
V 27 V 27 ’

Evaluate this exact answer and compare it with the value
determined in (b).

ADDITIONAL EXERCISES—THEORY, EXAMPLES, APPLICATIONS

1. a) Iflim,,. f(x) =5, must f(c) =5?
b) If f(c) =5, must lim,,. f(x) =57

Give reasons for your answers.

2. Can lim,_,. (f(x)/g(x)) exist even if lim,,. f(c) =0 and
lim,_. g(x) = 0? Give reasons for your answer.

3. Assigning a value to 0°. The rules of exponents tell us that
a® = 1 if a is any number different from zero. They also tell us
that 0" = 0 if »n is any positive number.

If we tried to extend these rules to include the case 0°, we
would get conflicting results. The first rule would say 0° = 1
while the second would say 0° = 0.

We are not dealing with a question of right or wrong here.
Neither rule applies as it stands, so there is no contradiction. We
could, in fact, define 0° to have any value we wanted as long as
we could persuade others to agree.

What value would you like 0° to have? Here are two exam-
ples that might help you to decide. (See Exercise 4 for another
example.)

@ a) CALCULATOR Calculate x* for x = 0.1,0.01, 0.001, and
so on as far as your calculator can go. Write down the value
you get each time. What pattern do you see?

GRAPHER Graph the function y = x* (as y = x "x) for 0 <
x < 1. Even though the function is not defined for x < 0, the
graph will approach the y-axis from the right. Toward what
y-value does it seem to be headed? Zoom in to estimate the
value more closely. What do you think it is?

s b)

4. A reason you might want 0° to be something other thar:
0 or 1. As the number x increases through positive values, the
numbers 1/x and 1/(In x) both approach zero. What happens

to the number
1 1/(In x)
) = (—)
X

as x increases? Here are two ways to find out.

E a) CALCULATOR Evaluate f for x = 10, 100, 1000, and so
on, as far as your calculator can reasonably go. What pattern
do you see?

GRAPHER Graph f in a variety of graphing windows, in-
cluding windows that contain the origin. What do you see?
Use TRACE to read y-values along the graph. What do you
find? Chapter 6 will explain what is going on.

% b)

5. Lorentz contraction. In relativity theory the length of an object,
say a rocket, appears, to an observer, to depend on the speed at
which the object is traveling with respect to the observer. If the
observer measures the rocket’s length as L at rest, then at speed
v the rocket’s length will appear to be

v? The Lorents
contraction formut .

Here, ¢ & 3 x 10% m/sec is the speed of light in a vacuum. What
happens to L as v increases? Find lim,_,.- L. Why was the left-
hand limit needed?
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6. Roots of a quadratic equation that is almost linear. The equa-
tion ax? 4+ 2x — 1 =0, where a is a constant, has two roots if
a > —1 and a # 0, one positive and one negative:

—1++14a 1-+V1+4a
a a ’

ria) = L ra) =~

a) What happens to r,(a) asa — 0? asa —> —11?

b) What happens to r_(a) as a — 0? asa — —11?
Y

am ¢) GRAPHER Support your conclusions by graphing r, (a) and
r_(a) as functions of a. Describe what you see.
& d) GRAPHER For added support, graph f(x) = ax? + 2x — 1

simultaneously for a = 1, 0.5, 0.2, 0.1, and 0.05.
7. If lim, o+ f(x) = A and lim,_, - f(x) = B, find

a) lim_ o f(x’—x)
b) lim._o f(x’—x)
¢ lim_o f(x?—x%)
d) lim.o fOx*—xY)

8. Which of the following statements are true, and which are false?
If true, say why; if false, give a counterexample (that is, an
example confirming the falsehood).

a) Iflim,,, f(x) exists but lim,_,, g(x) does not exist, then
lim,, (f(x)+ g(x)) does not exist.

b) If neither lim,_,, f(x) nor lim,_,, g(x) exists, then
lim,_,, (f(x)+ g(x)) does not exist.

¢) If f is continuous at a, then so is | f|.

d) If | f| is continuous at a, then so is f.

9. Show that the equation x + 2 cosx = 0 has at least one solution.

10. Explain why the function f(x) = sin(1/x) has no continuous
extension to x = 0.

11. Controlling the flow from a draining tank. Torricelli’s law
says that if you drain a tank like the one in the figure below,
the rate y at which water runs out is a constant times the square
root of the water’s depth x. The constant depends on the size of
the exit valve. Suppose that y = /x/2 for a certain tank. You
are trying to maintain a fairly constant exit rate by pouring more
water into the tank with a hose from time to time. How deep
must you keep the water if you want to maintain the exit rate
(a) within 0.2 ft*/ min of the rate y, = 1 ft3/min? (b) within
0.1 fe/min of the rate yp = 1 ft*/min?

Exit rate y ft3/min

12. Thermal expansion in precise equipment. As you may know,
most metals expand when heated and contract when cooled. The
dimensions of a piece of laboratory equipment are sometimes so
critical that the temperature in the shop where it is made and the
laboratory where it is used must not be allowed to vary. A typical
aluminum bar that is 10 cm wide at 70°F will be

y =10+ (t —70) x 107*

centimeters wide at a nearby temperature ¢. Suppose you are
using a bar like this in a gravity wave detector, where its width
must stay within 0.0005 cm of the ideal 10 cm. How close to
to = 70°F must you maintain the temperature to ensure that this
tolerance is not exceeded?

13. Antipodal points. Is there any reason to believe that there is
always a pair of antipodal (diametrically opposite) points on the
earth’s equator where the temperatures are the same? Explain.

14. Uniqueness of limits. Show that a function cannot have two
different limits at the same point. That is, if lim,_,,, f(x) =L,
and lim,_,,, f(x) = L, then L, = L,.

In Exercises 15-18, use the formal definition of limit to prove that
the function is continuous at xj.

15. f(x)=x*—17, x =1
16. g(x) =1/(2x), x=1/4
17. h(x) =/2x =3, x9=2

18. F(x)=+4/9—x, x=5

In Exercises 19 and 20, use the formal definition of limit to prove
that the function has a continuous extension to the given value of x.

P |
19. = =-1
fx) 1
x*—2x-3
20. =— =
g(x) T , x=3

21. Max {a, b} and min {a, b}.

a) Show that the expression

a+b+|a—b|
2 2

equals a if a > b and equals b if b > a. In other words,
max (a, b) gives the larger of the two numbers a and b.

b) Find a similar expression for min {a, b}, the smaller of a
and b.

max {a,b} =

*22. A function continuous at only one point. Let

Fx) = x if x is rational
| 0 if x is irrational.
a) Show that f is continuous at x = 0.
b)  Use the fact that every nonempty open interval of real num-

bers contains both rational and irrational numbers to show
that f is not continuous at any nonzero value of x.



*23.

*24.

Bounded functions. A real-valued function f is bounded from
above on a set D if there exists a number N such that f(x) < N
for all x in D. We call N, when it exists, an upper bound for f
on D and say that f is bounded from above by N. In a similar
manner, we say that f is bounded from below on D if there
exists a number M such that f(x) > M for all x in D. We call
M, when it exists, a lower bound for f on D and say that f is
bounded from below by M. We say that f is bounded on D if
it is bounded from both above and below.

a) Show that f is bounded on D if and only if there exists a
number B such that | f(x)| < B for all x in D.

b) Suppose that f is bounded from above by N. Show that if
lim,,,, f(x)=L,then L <N.

c¢) Suppose that f is bounded from below by M. Show that if
lim,,,, f(x)=1L,then L > M.

The Dirichlet ruler function. If x is a rational number, then
x can be written in a unique way as a quotient of integers m/n
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where n > 0 and m and n have no common factors greater than
1. (We say that such a fraction is in lowest terms. For example,
6/4 written in lowest terms is 3/2.) Let f(x) be defined for all
x in the interval [0, 1] by

1/n if x = m/n is a rational number in lowest terms
fx) = e
0 if x is irrational.

For instance, f(0) = f(1) =1, f(1/2) = 1/2, f(1/3) = f(2/3)
=1/3, f(1/4) = f(3/4) = 1/4, and so on.

a) Show that f is discontinuous at every rational number in
[0, 1].

b) Show that f is continuous at every irrational number in
[0, 1]. (Hint: If € is a given positive number, show that
there are only finitely many rational numbers r in [0, 1]
such that f(r) > €.)

c) Sketch the graph of f. Why do you think f is called the
“ruler function™?






