CHAPTER

Derivatives

OVERVIEW In Chapter 1 we defined the slope of a curve at a point as the limit of
secant slopes. This limit, called a derivative, measures the rate at which a function
changes and is one of the most important ideas in calculus. Derivatives are used
widely in science, economics, medicine, and computer science to calculate velocity
and acceleration, to explain the behavior of machinery, to estimate the drop in water
levels as water is pumped out of a tank, and to predict the consequences of making
errors in measurements. Finding derivatives by evaluating limits can be lengthy
and difficult. In this chapter we develop techniques to make calculating derivatives
easier.

The Derivative of a Function

At the end of Chapter 1, we defined the slope of a curve y = f(x) at the point
where x = xg to be

S e e

. flxo+h)— f(xo)
m = lim .
h—0 h

We called this limit, when it existed, the derivative of f at xy. In this section, we
investigate the derivative as a function derived from f by considering the limit at
each point of f’s domain.

Definition
The derivative of the function f with respect to the variable x is the function
f' whose value at x is

f'@) = lim ————--——-——-—f(x+hh) —f®)

provided the limit exists.

The domain of f’, the set of points in the domain of f for which the limit exists,
may be smaller than the domain of £ If f'(x) exists, we say that f has a derivative
(is differentiable) at x.
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110 Chapter 2: Derivatives

Why all these notations?

The “prime” notations y’ and f’ come from
notations that Newton used for derivatives.
The d/dx notations are similar to those used
by Leibniz. Each has its own strengths and
weaknesses.

Input: Output: df
function y = f(x) OQperation derivative y’= —=

dx
—_— d ——

dx

2.1 Flow diagram for the operation of
taking a derivative with respect to x.

Steps for Calculating f’(x) from the
Definition of Derivative

1. Write expressions for f(x) and

fx+ h).
2. Expand and simplify the difference
quotient
SFGx+h)— fx)

h

3. Using the simplified quotient, find
f'(x) by evaluating the limit

. fa+n - )
M e

-0 h

fw=1

Notation

There are many ways to denote the derivative of a function y = f(x). Besides
f'(x), the most common notations are these:

!

y “y prime” Nice and brief but does not name the
independent variable
d
el “dy dx” Names the variables and uses d for
dx .
derivative
df . .
Ix “df dx” Emphasizes the function’s name
X
d . . . _
P f(x) “ddx of f(x)” Emphasizes the idea that differentiation
* is an operation performed on f (Fig. 2.1)
D.f “dx of f” A common operator notation
y “y dot” One of Newton’s notations, now common

for time derivatives

We also read dy/dx as “the derivative of y with respect to x,” and df/dx and
(d/dx) f(x) as “the derivative of f with respect to x.”

Calculating Derivatives from the Definition

The process of calculating a derivative is called differentiation. Examples 2 and
3 of Section 1.6 illustrate the process for the functions y = mx + b and y = 1/x.
Example 2 shows that

d
—E(mx +b) = m.

d (1y 1
dx \x )  x*

In Example 3, we see that

Here are two more examples.

EXAMPLE 1

x

-1

b) Where does the curve y = f(x) have slope —1?

a) Differentiate f(x) =
X

Solution

a) We take the three steps listed in the margin.

Step 1: Here we have f(x) = Ll
x —_—

and

PCED)

crm—_1 ">
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2_

d

S = S

-2 -1(0,0) 1 2 3 . -1 -1
Step 3: f'(x) =1 = .
RIS T De-D G-
b) The slope of y = f(x) will be —1 provided
1

G

22 y'=-latx=0and x=2. This equation is equivalent to (x — 1)> =1, so x =2 or x = 0 (Fig. 2.2). U

EXAMPLE 2

a) Find the derivative of y = 4/x for x > 0.
b) Find the tangent line to the curve y = /x at x = 4.

Solution

. . a) Step1: f(x)=./x and f(x+h)=+x+h
You will often need to know the derivative o
Jx for x > 0: Step 2: f(x+h)—f(X)=«/x+h—ﬁ T+ Jx

Multiply by ———
h h Y AT rhtox

d 1
aVi = _ G4h)-x
h(Vx +h + /%)
1
B Nx+h 4%
Step 3: f'(x) = lim !

1
=0 Jx +h4Jx 2%

Try to remember it.

See Fig. 2.3.

\l@\‘()0

=

2
~<

I
N

N ————
=
—_————————

(a) (®

2.3 The graphs of (a) y = +/x and (b) y’ = 1/(24/x), x > 0 (Example 2). The function
is defined at x = 0, but its derivative is not.
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y
y=ix+1
\
\
(4’2) y=\/;
4
[ I T B .

0 4

2.4 The curve y = /x and its tangent at
(4, 2). The tangent'’s slope is found by
evaluating dy/dx at x = 4 (Example 2).

The symbol for evaluation

In addition to

/ : f ((l + h) - f ((1)

=1 — 7
f'(a) = lim A ,
the value of the derivative of y = f(x) with
respect to x at x = a can be denoted in the
following ways:
dy

d
dx = Ef(x)

X=a

yl |x=a =

x=a

Here the symbol |,—,, called an evaluation
symbol, tells us to evaluate the expression to
its left at x = a.

Daedalus’s flight path on April 23, 1988.

b) The slope of the curve at x =4 is
dy 1
dx|._, 2Jx

The tangent is the line through the point (4, 2) with slope 1/4 (Fig. 2.4).

1
7

x=4

1
y=2+36-4)

1
=-x+1
y 4x+

Graphing f' from Estimated Values

When we measure the values of a function y = f(x) in the laboratory or in the
field (pressure vs. temperature, say, or population vs. time) we usually connect the
data points with lines or curves to picture the graph of £ We can often make a
reasonable plot of f’ by estimating slopes on this graph. The following examples
show how this is done and what can be learned from the process.

EXAMPLE 3 Medicine

On April 23, 1988, the human-powered airplane Daedalus flew a record-breaking
119 km from Crete to the island of Santorini in the Aegean Sea, southeast of
mainland Greece. During the 6-h endurance tests before the flight, researchers
monitored the prospective pilots’ blood-sugar concentrations. The concentration
graph for one of the athlete-pilots is shown in Fig. 2.5(a), where the concentration
in milligrams/deciliter is plotted against time in hours.

The graph is made of line segments connecting data points. The constant slope
of each segment gives an estimate of the derivative of the concentration between
measurements. We calculated the slope of each segment from the coordinate grid
and plotted the derivative as a step function in Fig. 2.5(b). To make the plot for the
first hour, for instance, we observed that the concentration increased from about
79 mg/dL to 93 mg/dL. The net increase was Ay = 93 — 79 = 14 mg/dL. Dividing
this by Ar =1 h gave the rate of change as

—A—X = l‘—l = 14 mg/dL per h.

Ar 1 Qa

"
SANTORINI’ -

I
Sea of ,’ Crete

Mediterranean
Sea
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80 ¢/
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h

|
o
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Time (h)
(®)

2.5 (a) The sugar concentration in the
blood of a Daedalus pilot during a 6-h
preflight endurance test. (b) The
derivative of the pilot's blood-sugar
concentration shows how rapidly the
concentration rose and fell during various
portions of the test. (Source: The
Daedalus Project: Physiological Problems
and Solutions by Ethan R. Nadel and
Steven R. Bussolari, American Scientist,
Vol. 76, No. 4, July-August 1988, p. 358.)

2.6 We made the graph of y’ = f'(x) in
(b) by plotting slopes from the graph of
y = f(x) in (a). The vertical coordinate of
B’ is the slope at B, and so on. The graph
of y' = f'(x) is a visual record of how the
slope of f changes with x.
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Notice that we can make no estimate of the concentration’s rate of change at
times = 1,2,...,5, where the graph we have drawn for the concentration has a
corner and no slope. The derivative step function is not defined at these times.

When we have so many data that the graph we get by connecting the data
points resembles a smooth curve, we may wish to plot the derivative as a smooth
curve. The next example shows how this is done.

EXAMPLE 4 Graph the derivative of the function y = f(x) in Fig. 2.6(a).

Solution We draw a pair of axes, marking the horizontal axis in x-units and the
vertical axis in y’-units (Fig. 2.6b). Next we sketch tangents to the graph of f at
frequent intervals and use their slopes to estimate the values of y’ = f'(x) at these
points. We plot the corresponding (x, y’) pairs and connect them with a smooth
curve.

From the graph of y' = f’(x) we see at a glance

1. where f’s rate of change is positive, negative, or zero;
2. the rough size of the growth rate at any x and its size in relation to the size of

fx);

3. where the rate of change itself is increasing or decreasing. Q
y
Slope 0 y =f
A )
Slope -1
B | Slope ~ 8 2 y-units/x-unit
Slope — 3 edAT 4
9 .
. n ~ § y-units
> £
Slope 0
——
~ 4 x-units
x
0 ] 10 15
(@
y'
Slope
4 B ’ Y,
Y=
Slope 3~ /
units E'
1 —
A’ D'
- x
] 10 15
A e e
B
=21 Vertical coordinate |-1
(b)
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Slope =

i SO+ B) = f)

50" h
Slope = h=0

lim fla+h) —fla)
h=0* h

a+h b+h o
h>0 h<0

2.7 Derivatives at endpoints are
one-sided limits.

y'not defined:
right-hand derivative
# left-hand derivative

2.8 Not differentiable at the origin.

Differentiable on an Interval; One-sided Derivatives

A function y = f(x) is differentiable on an open interval (finite or infinite) if it
has a derivative at each point of the interval. It is differentiable on a closed interval
[a, b] if it is differentiable on the interior (a, b) and if the limits

fla+h) - f(a)

hlirg Y Right-hand derivative at a
b+h) — f(b
Jim f%& Left-hand derivative at b

exist at the endpoints (Fig. 2.7).

Right-hand and left-hand derivatives may be defined at any point of a function’s
domain. The usual relation between one-sided and two-sided limits holds for these
derivatives. Because of Theorem 5, Section 1.4, a function has a derivative at a point
if and only if it has left-hand and right-hand derivatives there, and these one-sided
derivatives are equal.

EXAMPLE 5 The function y = |x| is differentiable on (—oo, 0) and (0, co) but
has no derivative at x = 0. To the right of the origin,

d o _d _d o a
To the left,
d d d
—_— = —(— = — —1 . = —
dx(IXI) dx( x) dx( x) 1

(Fig. 2.8). There can be no derivative at the origin because the one-sided derivatives
differ there:

0+hl—10] _ . Al

Right-hand derivative of |x| at zero = lim =
h—0* h—0* h

|h| = h when h > 0

0+h|—10 h
Left-hand derivative of |x| at zero = lim M = lim |—]
h—0~ h h—0~ h

|h| = —h when h <0

= lim —1=-1.

When Does a Function Not Have a Derivative
at a Point?

A function has a derivative at a point x if the slopes of the secant lines through
P (x0, f(x0)) and a nearby point Q on the graph approach a limit as Q approaches
P. Whenever the secants fail to take up a limiting position or become vertical as Q
approaches F, the derivative does not exist. A function whose graph is otherwise
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smooth will fail to have a derivative at a point where the graph has

1. a corner, where the one-sided 2. a cusp, where the slope of PQ
derivatives differ approaches oo from one side and
—oo from the other

3. a vertical tangent, where the slope of PQ approaches oo from both sides or
approaches —oo from both sides (here, —o0)

-

4. a discontinuity.
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How rough can the graph of a
continuous function be?

The absolute value function fails to be
differentiable at a single point. Using a
similar idea, we can use a sawtooth graph to
define a continuous function that fails to have
a derivative at infinitely many points.

y
y=fx

|

But can a continuous function fail to have a
derivative at every point?

The answer, surprisingly enough, is yes,
as Karl Weierstrass (1815-1897) found in
1872. One of his formulas (there are many
like it) was

fx) = Z (%) cos (9"7x),

n=0

a formula that expresses f as an infinite sum
of cosines with increasingly higher
frequencies. By adding wiggles to wiggles
infinitely many times, so to speak, the
formula produces a graph that is too bumpy
in the limit to have a tangent anywhere.
Continuous curves that fail to have a
tangent anywhere play a useful role in chaos
theory, in part because there is no way to
assign a finite length to such a curve. We
will see what length has to do with
derivatives when we get to Section 5.5.

y = Uk

2.9 The unit step function does not have
the intermediate value property and
cannot be the derivative of a function on
the real line.

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

Theorem 1
If f has a derivative at x = ¢, then f is continuous at x = c.

Proof Given that f’(c) exists, we must show that lim,_,. f(x) = f(c), or, equiv-
alently, that limy,_.¢ f(c + k) = f(c). If h # 0, then

fle+h) = flO+(flc+h) - f0)

e ferh=1©

h.
h

Now take limits as # — 0. By Theorem 1 of Section 1.2,

fim S+ = iy @)+ im = i b
= f(©)+ f(c) -0
= f(©)+0
= f(o. a

Similar arguments with one-sided limits show that if f has a derivative from one
side (right or left) at x = ¢, then f is continuous from that side at x = c.

Caution  The converse of Theorem 1 is false. A function need not have a deriva-
tive at a point where it is continuous, as we saw in Example 5.

The Intermediate Value Property of Derivatives

Not every function can be some function’s derivative, as we see from the following
theorem.

Theorem 2

If a and b are any two points in an interval on which fis differentiable, then
f' takes on every value between f'(a) and f'(b).

Theorem 2 (which we will not prove) says that a function cannot be a deriva-
tive on an interval unless it has the intermediate value property there (Fig. 2.9).
The question of when a function is a derivative is one of the central questions in
all calculus, and Newton’s and Leibniz’s answer to this question revolutionized the
world of mathematics. We will see what their answer was when we reach Chapter 4.



Exercises 2.1

Finding Derivative Functions and Values

Using the definition, calculate the derivatives of the functions in Ex-
ercises 1-6. Then find the values of the derivatives as specified.

L fx)=4-x% f'(=3), f0), (1)

2. Fx) = (x — 1)2 +1; F'(-1),F(0), F'(2)
1

3. 8= g(=1),82),83)

1-z2

4. k(z) = 7 K (—1), K (1), k' (v/2)

5. p®) =+/36; p'(1),p'3), p'(2/3)
6. r(s) =25+ 1; r(0),r'(1),r'(1/2)

In Exercises 7-12, find the indicated derivatives.
dr 3

dy . 3 . s
7. = if y=2 8 — if r=—+1
dx t x ds e 2 +
ds t dv
9. — if s= 10. — if v=1r—-
a VST ar UV
dp 1 dz . 1
11. — if = 12 — if 7= ——=
dq g Jg+1 dw 3w — 2

Slopes and Tangent Lines

In Exercises 13-16, differentiate the functions and find the slope of
the tangent line at the given value of the independent variable.

13. f(x):x—!—g, x=-3
x

14. k(x) = % x=2
X

15. s=13—12, t=-1
16 y=(x+1? x=-2

In Exercises 17-18, differentiate the functions. Then find an equation
of the tangent line at the indicated point on the graph of the function.

8
17‘ y:f(x)ZM’ (x’)’)'—‘(6,4)

18. w=g(@=1+V4—2, (z,w)=(@3,2)

In Exercises 19-22, find the values of the derivatives.

d

19. 2 if s=1-3
dt t=—1
d 1

20 2 ifoy=1-—
dx|,_s X
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a & if 2

.- r=

a0, Ji=e
d

2 ¥ if w=z++2
dz z=4

An Alternative Formula for Calculating
Derivatives

The formula for the secant slope whose limit leads to the derivative
depends on how the points involved are labeled. In the notation of
Fig. 2.10, the secant slope is (f(x) — f(c))/(x — ¢) and the slope of
the curve at P is

fx) = f(o)

e

—C

f'(c) = lim

X—=C

y =fx)
Secant slope is

f&) = f(©)

X—-C

P, f©) foy = f

Derivative of fat ¢ is
£¢) = lim fle + h})z - flo)
h-0
_lim f&®) = f(©)

Pands X—-c

2.10 The way we write the difference quotient for the
derivative of a function f depends on how we label the
points involved.

The use of this formula simplifies some derivative calculations. Use it
in Exercises 23-26 to find the derivative of the function at the given
value of c.

23. f(x):% c=-1

+2°

1
24. f(x):m, c=2

t
25. = — =3
g0 ="—7 ¢
26. k(s)=1+4/s, ¢c=9
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Graphs

Match the functions graphed in Exercises 27-30 with the derivatives
graphed in Fig. 2.11.

' '

y y
o f———— x
o x
(a) (b)
y'

/T

© (d)

/. \NAX
VAV,

2.11 The derivative graphs for Exercises 27-30.

27. y 28. y
y =fi(x) y =5
X X
0| 0
29 y 30 y
y :f3(x) \ y =f"‘(x7
"\ /.. x
VARV ’

31. a) The graph in Fig. 2.12 is made of line segments joined end
to end. At which points of the interval [—4, 6] is f’ not

defined? Give reasons for your answer.

y
©2 y=fw ©?

/ %I L1 / .

(-4, 0) 0 1 6

[(1,22) 4,-2)

2.12 The graph for Exercise 31.

b) Graph the derivative of £ Call the vertical axis the y’-axis.
The graph should show a step function.

32. Recovering a function from its derivative

a) Use the following information to graph the function f over
the closed interval [—2, 5].

i) The graph of fis made of closed line segments joined
end to end.
ii) The graph starts at the point (-2, 3).
iii) The derivative of f is the step function in Fig. 2.13.

y
y'=f
1 o—0
| | ) | | | | x
-2 0 1 3 5
— Oo——e
>—i— -2

2.13 The derivative graph for Exercise 32.

b) Repeat part (a) assuming that the graph starts at (—2,0)
instead of (-2, 3).

33. Growth in the economy. The graph in Fig. 2.14 shows the aver-
age annual percentage change y = f(¢) in the U.S. gross national
product (GNP) for the years 1983-1988. Graph dy/dt (where de-
fined). (Source: Statistical Abstracts of the United States, 110th
Edition, U.S. Department of Commerce, p. 427.)

TN —
MIVARN
N
3 ~
2

1

0

1983 1984 1985 1986 1987 1988

2.14 The graph for Exercise 33.

34. Fruit flies. (Continuation of Example 3, Section 1.1.) Popula-
tions starting out in closed environments grow slowly at first,
when there are relatively few members, then more rapidly as the
number of reproducing individuals increases and resources are
still abundant, then slowly again as the population reaches the
carrying capacity of the environment.

a) Use the graphical technique of Example 4 to graph the
derivative of the fruit fly population introduced in Section
1.1. The graph of the population is reproduced here as Fig.
2.15. What units should be used on the horizontal and ver-
tical axes for the derivative’s graph?



350 !

300 J //
250 /
200

150} ——{ - [N o o] e R N .

100
50

| ! ]

0 10 20 30 40 50
Time (days)

2.15 The graph for Exercise 34.
b) During what days does the population seem to be increasing
fastest? slowest?

Compare the right-hand and left-hand derivatives to show that the
functions in Exercises 35-38 are not differentiable at the point P.

35. 36.
y y
y =f) y=f(x)
y= x2 y=2x
y=2 3
v =x P(1,2)
1 —
X I I P
P(0,0) 0 1 2
37. 38.
y
y =f(%)
P(1, 1)
1= =1
~2Tx

Each figure in Exercises 39-44 shows the graph of a function over a
closed interval D. At what domain points does the function appear to
be

a) differentiable?
b) continuous but not differentiable?
¢) neither continuous nor differentiable?
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Give reasons for your answers.

39. 40.
y = f(x) y Y y=fx
D: -3=x<2 D: 2=x<3
2 2
1+ 1
L L1 | Iﬂ
3 2 N 1 2" 2 a0 1/2 3 °
_1\ i
o o
41. 42.
y y
y=f(x) y =)
D: -3=x<3 D 2=x<3
_ N
1_ —
3 2-10] 1 3 " | .
_1_
_ l L1
2 2 -1 0] 1 2 3 °
43. 44.
y y y=f(x)
y=fx 4_D:—35x53
D -1=x<2
1+ 2
| | | y 1 1 [ 1\l
10 1 2 §-2-10 r 2§ o

Theory and Examples
In Exercises 45-48,

a)
b)

¢)
d)

45.
47.
49.

50.

Find the derivative y' = f’(x) of the given function y = f(x).
Graph y = f(x) and y’ = f'(x) side by side using separate sets
of coordinate axes, and answer the following questions.

For what values of x, if any, is y’ positive? zero? negative?
Over what intervals of x-values, if any, does the function y =
f(x) increase as x increases? decrease as x increases? How is
this related to what you found in (c)? (We will say more about
this relationship in-Chapter 3.)

y:—x2 46. y:—l/x
y=1x3/3 48. y =x*/4

Does the curve y = x> ever have a negative slope? If so, where?
Give reasons for your answer.

Does the curve y = 2,/x have any horizontal tangents? If so,
where? Give reasons for your answer.
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51.

52.

53.

54.

55.

56.

57.

58.

/]
]

60.

Does the parabola y = 2x% — 13x + 5 have a tangent whose slope
is —1?If so, find an equation for the line and the point of tangency.
If not, why not?

Does any tangent to the curve y = 4/x cross the x-axis atx = —1?
If so, find an equation for the line and the point of tangency. If
not, why not?

Does any function differentiable on (—o0, co) have y = [x] as
its derivative? Give reasons for your answer.

Graph the derivative of f(x) = |x|. Then graph y = (|x|
(x —0) = |x|/x. What can you conclude?

Does knowing that a function f(x) is differentiable at x = x

-0)/

61.

Weierstrass’s nowhere differentiable continuous function.
The sum of the first eight terms of the Weierstrass function

Fx) =30 0(2/3)" cos(9"mx) is

2\ 2\’
g(x) = cos(wx) + <§> cos(9mx) + (5) cos(9%mrx)

2\* 2\’
+(§) cos(93nx)+-~~+(§> cos(9'mx).

Graph this sum. Zoom in several times. How wiggly and bumpy
is this graph? Specify a viewing window in which the displayed
portion of the graph is smooth.

tell you anything about the differentiability of the function — f & CAS Explorations and Projects

at x = xo? Give reasons for your answer.

Does knowing that a function g(¢) is differentiable at ¢t = 7 tell
you anything about the differentiability of the function 3g at
t = 7? Give reasons for your answer.

Suppose that functions g(¢) and h(¢) are defined for all values
of ¢ and that g(0) = h(0) = 0. Can lim,_,¢(g(2))/(h(t)) exist? If
it does exist, must it equal zero? Give reasons for your answers.

a) Let f(x) be a function satisfying | f (x)| < x?for —1 < x <
1. Show that f is differentiable at x = 0 and find f’(0).
b) Show that

x#0
0, x=0
is differentiable at x = 0 and find f'(0).

x?%sin —,

fx) =

Grapher Explorations
59.

Graph y = 1/(24/x) in a window that has 0 < x < 2. Then, on
the same screen, graph
_ Vath-x
- h

for h =1,0.5,0.1. Then try 2 = —1, —0.5, —0.1. Explain what
is going on.
Graph y = 3x? in a window that has -2 <x <2,0<y <3.
Then, on the same screen, graph
(x +h)? —x3

D —
for h =2,1,0.2. Then try h = -2,
going on.

—1, —0.2. Explain what is

Use a CAS to perform the following steps for the functions in Exer-

cises 62-67.

a) Plot y = f(x) to see that function’s global behavior.

b) Define the difference quotient ¢ at a general point x, with general
stepsize h.

¢) Take the limit as # — 0. What formula does this give?

d) Substitute the value x = x( and plot the function together with
its tangent line at that point.

e) Substitute various values for x larger and smaller than x, into
the formula obtained in part (c). Do the numbers make sense
with your picture?

f) Graph the formula obtained in part (c). What does it mean when
its values are negative? zero? positive? Does this make sense
with your plot from part (a)? Give reasons for your answer.

62. f(x)=x>+x2-x, x=1
63. f(x)=xB4x3, x=1
4x —1
64. f(x)= 211 xo=2 65. f(x)= 32+1 xo=—1
66. f(x)=sin2x, xo=m/2 67. f(x) =x%cosx, xqo=nm/4



c (x,¢c) (x+h,c)

>

>
=
IR

]
|
|
|
|
|
|
|
X

2.16 The rule (d/dx)(c) = 0 is another
way to say that the values of constant
functions never change and that the
slope of a horizontal line is zero at every
point.
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Differentiation Rules

This section shows how to differentiate functions without having to apply the
definition each time.

Powers, Multiples, Sums, and Differences

The first rule of differentiation is that the derivative of every constant function is
zero.

Rule 1 Derivative of a Constant

d
If ¢ is constant, then —c = 0.
dx

d d [ 1 d
EXAMPLE 1 —(8) =0, —<——>=o, E(‘@)ZO a

dx 2

Proof of Rule 1 We apply the definition of derivative to f(x) = ¢, the function
whose outputs have the constant value ¢ (Fig. 2.16). At every value of x, we find
that
h) — —
M:lim ¢ lim 0=0.
h h—0

f (X) = ilzl—r>r(l) h h—0

Q

The next rule tells how to differentiate x” if n is a positive integer.

Rule 2 Power Rule for Positive Integers
If n is a positive integer, then

_xn — nxn—l

To apply the Power Rule, we subtract 1 from the original exponent (r) and
multiply the result by n.

EXAMPLE 2

Pl | s | e | 0

Proof of Rule 2 If f(x) =x", then f(x + k) = (x + h)". Since n is a positive
integer, we can use the fact that

a"—b"=@—-b)a@ '+a"tb+---+ab"t 4+ b))
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y=3x?
Slope = 3(2x)
= 6x
3 (1,3) =6(1)=6
y=x*
2 —
Slope = 2x
L =2(1)=2
1 (L. 1) 0))
I P
0 1 2

2.17 The graphs of y = x? and y = 3x2.

Tripling the y-coordinates triples the

slope (Example 3).

to simplify the difference quotient for £ Taking x + 4 =a and x = b, we have
a — b = h. Thus

FEAR) = fG) Ry ="
h B h
W+ xR x4+ ()X 4 x]
B h
=@+ @+ x4 "

n terms, each with limit x"~' as 4 — 0
Hence
4 on i LEED SO
dx h—0 h a

The next rule says that when a differentiable function is multiplied by a constant,
its derivative is multiplied by the same constant.

Rule 3 The Constant Multiple Rule

If u is a differentiable function of x, and ¢ is a constant, then

i(cu) = cd—u
dx T dx’

In particular, if n is a positive integer, then

d ( n) n—1
—(Xx' ) =c¢cnx .
dx

EXAMPLE 3 The derivative formula

d
—(Bx%) =3.2x =6x
dx

says that if we rescale the graph of y = x? by multiplying each y-coordinate by 3,
then we multiply the slope at each point by 3 (Fig. 2.17). Q

EXAMPLE 4 A useful special case

The derivative of the negative of a differentiable function is the negative of the
function’s derivative. Rule 3 with ¢ = —1 gives
du

- Q

d d d
W= (-l =l ) =
Proof of Rule 3
cu(x +h) — cu(x)

Derivative definition

T 1111—I>I(1) h with f(x) = cu(x)
u h) —
= clim (x4 h) —u) Limit property
h—0 h
du
=Cc— u is differentiable.

dx a
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The next rule says that the derivative of the sum of two differentiable functions
is the sum of their derivatives.

Denoting functions by u and v

The functions we are working with when we
need a differentiation formula are likely to be
denoted by letters like f and g. When we
apply the formula, we do not want to find it
using these same letters in some other way.
To guard against this, we denote the functions
in differentiation rules by letters like # and v
that are not likely to be already in use.

Rule 4 The Sum Rule

If u and v are differentiable functions of x, then their sum u + v is differen-
tiable at every point where # and v are both differentiable. At such points,

Combining the Sum Rule with the Constant Multiple Rule gives the equivalent
Difference Rule, which says that the derivative of a difference of differentiable
functions is the difference of their derivatives.

d d du dv du dv

dx(u v) dx[u + (=1l dx +( )dx dx dx

The Sum Rule also extends to sums of more than two functions, as long as

there are only finitely many functions in the sum. If uy, u,, ..., u, are differentiable
at x, then sois u; +u, +--- + u,, and

Dy Fur oy = B A A
dx 2 " dx dx dx
EXAMPLE 5
4
a)  y=x"+12x b) y=x3+§x2—5x+1
dy d , d dy d , d (4, d d
X_Z Lz L e (I Lo+ 2a
dx = a7 T 120 o T\ ) T EI M
4
=4x3+12 :3x2+§-2x—5+0
8
=3x2+§x—5 0

Notice that we can differentiate any polynomial term by term, the way we
differentiated the polynomials in Example 5.

Proof of Rule 4 We apply the definition of derivative to f(x) = u(x) + v(x):
[u(x +h) +v(x + h)] — [ulx) + v(x)]

d .
I [u(x) +v(x)] = }113(1)

h
) [u(x+h)—u(x) v(x+h)—v(x)]
= lim +
h—0 h h
— lim u(x+h)—u(x)+llm v(x +h) —v(x) =d_u+@

h=0 h h—0 h dx dx’

Q
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Proof by mathematical induction

Many formulas can be shown to hold for
every positive integer n greater than or equal
to some lowest integer ny by applying an
axiom called the mathematical induction
principle. A proof using this axiom is called
a proof by mathematical induction or a proof
by induction. The steps in proving a formula
by induction are

1. Check that it holds for n = ny.

2. Prove that if it holds for any positive
integer n = k > ny, then it holds for
n=k+1.

Once these steps are completed, the axiom
says, we know that the formula holds for all
n > ngy. For more mathematical induction,
see Appendix 1.

Y y=x*-22+2

0,2

1
LD 1,1n

2.18 The curve y = x* —2x?> 4+ 2 and its
horizontal tangents (Example 6).

Proof of the Sum Rule for Sums of More Than Two Functions We prove the
statement
du, du, du,

d
E(ul-{-uz-i-"'-{-un)—z'l‘dx + “+dx

by mathematical induction. The statement is true for n = 2, as was just proved.
This is step 1 of the induction proof.
Step 2 is to show that if the statement is true for any positive integer n = k,
where k > ny = 2, then it is also true for n = k 4+ 1. So suppose that
duy du, duy

d
adl = T 1
dx(ul+u2+ ) dx +dx + +dx ()

Then

d
— () +up + -+ g+ i)
dx S——

Call the function Call this
defined by this sum u. function v.

d dugi d
= —Wwtu+---+u)+ Rule 4 for — (u + v)
dx dx dx
du; du, dup  dugy
= —+—4 -+ —+ — Eq. (1
dx+dx+ +dx+dx o
With these steps verified, the mathematical induction principle now guarantees
the Sum Rule for every integer n > 2. a
EXAMPLE 6  Does the curve y = x* — 2x% 4 2 have any horizontal tangents?

If so, where?

Solution The horizontal tangents, if any, occur where the slope dy/dx is zero. To
find these points, we

d d
1. Calculate dy/dx: D — (=20 4+2) =4x® —4x
dx dx
. dy 3
2. Solve the equation y i Oforx: 4x°—4x=0
o 4x(x* = 1) =0
x=0,1,-1

The curve y = x* —2x? +2 has horizontal tangents at x =0, 1, and —1. The
corresponding points on the curve are (0, 2), (1, 1) and (-1, 1). See Fig. 2.18. U

Products and Quotients

While the derivative of the sum of two functions is the sum of their derivatives, the

derivative of the product of two functions is not the product of their derivatives.

For instance,
d

d ,
—(x+x) = — =2
dx (x - x) dx @) *

d
dx

d
while —(x) - x)=1.1=1.
dx

The derivative of a product of two functions is the sum of rwo products, as we now
explain.



Picturing the product rule

If u(x) and v(x) are positive and increase
when x increases, and if & > 0,

v(ix + hl
AviE o
< i
v(x) | |
u(x) v(x) %(x) Au:
| 1
] ]
0 / Au \

u(x) u(x+h)

the total shaded area in the picture is
ulx + hv(x +h) —u@x)v(x) =
u(x +h)Av +v(x + h)Au — Aulv.

Dividing both sides of this equation by &
gives
u(x + h)v(x + h) —u(x)v(x)

h
A
—u(X+h)——+v(x+h)——A TU
A d
Ash—>0+,Au-——v—>0~—})-=0,leaving
h dx
) dv+ du
=) = u— s
d dx " Vdx
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Rule 5 The Product Rule

If u and v are differentiable at x, then so is their product uv, and

The derivative of the product uv is u times the derivative of v plus v times the
derivative of u. In prime notation, (uv) = uv’ + vu'.

Proof of Rule 5
ulx +h)v(x +h) —u(x)v(x)
h

d ) = 1i
) = fin

To change this fraction into an equivalent one that contains difference quotients for
the derivatives of # and v, we subtract and add u(x + k)v(x) in the numerator:

ulx +hvx+h) —ulx+h)vx)+ulx+ h)vx) —ulx)v(x)

d .
720 = i

h
= lim [M(X +h)v(x +h) —v(x) n U(x)u(x + h) — u(x)]
h—0 h -
= Jim u(x +h) - lim w-l-v(xy’ll% W)ﬂ

As h approaches zero, u(x + h) approaches u(x) because u, being differentiable
at x, is continuous at x. The two fractions approach the values of dv/dx at x and
du/dx at x. In short,

d (uv) = dv + du
—Wv) =u— +v—.
dx dx dx 4

EXAMPLE 7  Find the derivative of y = (x% + 1)(x> + 3).
Solution From the Product Rule with u = x2+ 1 and v = x3 + 3,

we find

%[(X2 + D +3)] = (2 + 1D3xD) + (x* +3)(2x)
=3x* +3x2 4+ 2x* + 6x

= 5x* + 3x2 + 6x. Q

Example 7 can be done as well (perhaps better) by multiplying out the original
expression for y and differentiating the resulting polynomial. We now check:

y=@+DE+3)=x"+x>+3x2+3
dy

—= = 5x* 4+ 3x% + 6x.
dx

This is in agreement with our first calculation.
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There are times, however, when the Product Rule must be used. In the following
example, we have only numerical values to work with.

EXAMPLE 8 Let y = uv be the product of the functions u and v. Find y’(2) if
u2) =3, ') =—4, v(2) =1, and v'(2) =2.
Solution From the Product Rule, in the form
y = (wv) = uv' + v,
we have
Y'(2) = uv'(2) + v(2)u'(2)
=32+ ()(-4)=6-4=2. Q

Quotients

Just as the derivative of the product of two differentiable functions is not the product
of their derivatives, the derivative of the quotient of two functions is not the quotient
of their derivatives. What happens instead is this:

Rule 6 The Quotient Rule

If u and v are differentiable at x, and v(x) # 0, then the quotient u/v is

differentiable at x, and
du dv

F ()i

Proof of Rule 6
u(x+h) ulxx)

d (M) hi_I,r(‘) v(x+h;l v(x)

_ v(xX)ul(x +h) —ux)v(x + h)
= hv(x + h)v(x)

To change the last fraction into an equivalent one that contains the difference
quotients for the derivatives of u and v, we subtract and add v(x)u(x) in the
numerator. We then get

d (u) ov@ux +h) —vx)ux) + vx)ulx) —ux)v(x + h)
—-) = Pl£1m

dx \v -0 hv(x + h)v(x)
u(x +h) —u(x) v(x 4+ h) —v(x)
v)——mMmMm8mmm™ = —u(x) ———
— i h h
= lim
h—0 v(x + h)v(x)

Taking the limit in the numerator and denominator now gives the Quotient Rule.

Q



2.19 The tangent to the curve

¥y =x+(2/x) at (1, 3). The curve has a
third-quadrant portion not shown here.
We will see how to graph functions like
this in Chapter 3.
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2 —1

EXAMPLE 9 Find the derivative of y = il

Solution 'We apply the Quotient Rule with u =¢> — 1 and v =% + 1:
dy (+10)-2t—-@¢*-1.2t d su\  v(du/dt) — u(dv/dr)
dar (t2 + 1)2 E(_):+
263 +2t — 283 + 2t
(1> + 1)
4t

2+ 1% a

v

The Power Rule for Negative Integers

The Power Rule for negative integers is the same as the rule for positive integers.

Rule 7 Power Rule for Negative Integers
If n is a negative integer and x # 0, then

d
— (") = nx""".

dx

Proof of Rule 7 'The proof uses the Quotient Rule in a clever way. If # is a negative
integer, then n = —m where m is a positive integer. Hence, x" = x™” = 1/x" and

4 4 (1)
dxx T dx \xm

x™ . E(l) -1 E(X ) Quotient Rule with

= u=1and v=x"

(xm)?
0 — mxm! Since m > 0,
= XT E(x’") = mx""!
— _mx—m—l
= nx""1, Since —m =n a

EXAMPLE 10
4 (! _d(_l)—( Hx~? = !
dx \x)  dx r = r= x2

O s W N N S .
dx (x3>_4dx(x ) =4=3x = x4 a

EXAMPLE 11 Find an equation for the tangent to the curve

2
y=x+=
X

at the point (1, 3) (Fig. 2.19).



128 Chapter 2: Derivatives

Notice that

d (dy
dx \dx

does not mean multiplication. It means “the
derivative of the derivative.”

Solution The slope of the curve is
dy d d (1 1 2
dx dx )+ dx (x) + ( xz) x?

The slope at x =1 is
2
x=1 X7 Jx=1

dy
dx
The line through (1, 3) with slope m = —1 is

y=3=(-Dx-1) Point-slope equation
y=—-x+1+3
y=-—-x+4. a

Choosing Which Rules to Use

The choice of which rules to use in solving a differentiation problem can make a
difference in how much work you have to do. Here is an example.

EXAMPLE 12 Rather than using the Quotient Rule to find the derivative of
(x — DH(x? —2x)
e
expand the numerator and divide by x*:
(x—D(*-2x) x> —=3x"+2

7 2 =x"'=3x7242x73.
x x

Then use the Sum and Power Rules:

d
Y 2 3)x 4 2(=3)x
dx
16 6
S a

Second and Higher Order Derivatives

The derivative y' = dy/dx is the first (first order) derivative of y with respect to
x. This derivative may itself be a differentiable function of x; if so, its derivative
, _dy d (dy\ d’
= dx  dx ( )

dx )~ dx?
is called the second (second order) derivative of y with respect to x.

If y” is differentiable, its derivative, y” = dy”/dx = d*y/dx? is the third
(third order) derivative of y with respect to x. The names continue as you imagine,
with

d
n _— = =1
y dx y
denoting the nth (nth order) derivative of y with respect to x, for any positive
integer n.



EXAMPLE 13
How to read the symbols for

Exercises 2.2 129

The first four derivatives of y = x3 — 3x2 + 2 are

derivatives First derivative: y' = 3x? —6x
y' “‘y prime” y"” “y double prime” Second derivative: y' =6x—6
d?y Third derivative: y''=6

—— “d squared y dx squared” L. 4

dx Fourth derivative: y@ = 0.

"

y “y triple prime”
y™  “y super n”

d"y
dx"

Zero.

“d to the n of y by dx to the n”

The function has derivatives of all orders, the fifth and later derivatives all being

Q

Exercises 2.2

Derivative Calculations

In Exercises 1-12, find the first and second derivatives.

1.y=—x2+3 2.y=x*+x+8
3. s=53-3/° 4. w =37 -7 +217?
4x3 ¥ x x
5. y= > _ Lyl L x
Y=z b y=3+5+3
1 4
7. w=3z2%-- 8. s=-2"4+ -
z t
9. y =6x%—10x —5x72 10 y=4—-2x —x3
1 5 12 4 1
1. r= — — — 12.r=———4+ —
TT3 T =9 Tete

In Exercises 13-16, find y’ (a) by applying the Product Rule and
(b) by multiplying the factors to produce a sum of simpler terms to
differentiate.

1B.y=0C-x)*—x+1 M, y=x-DE2+x+1)

15. Y=(x2+1)<x+5+l) 16. yz(x+l)(x_l+1)
X x X

Find the derivatives of the functions in Exercises 17-28.

2x +5 2x +1
17.y—3x__2 18.1—)62_1
x2—4 2 —1
19- = 20, = ——
§(x) x+05 F® 24r-2
2l v=(1—t)(1 +¢»)7! 2. w=02x -7 (x+5)
Js—1 5x+1
23. = 24, u="—"-
Fs) Js+1 “ 2/x
14+x—4
25. v= tx VX 26.r=2<i+\/§)
x N/
1 x+Dx+2)
27. y= 28, y=—-"——
YT D+ x+ D) YT e-Dx-2

Find the derivatives of all orders of the functions in Exercises 29 and
30.

x* 3 x°
29, y="—-x?— 30. y=—
Y= Tt Y= 120
Find the first and second derivatives of the functions in Exercises
31-38.

3 2451
3.,=217 3 s=t21
t
N 2 2
,_ @-DE@+6+D (@40 -x+ D)
63 x4

36. w=0z+DE—-D@E+1)

35.w:<1+3z)(3—z)
3z

2 4 2
q +3> (q —1) g +3
37. p= 38. p=
P (12q 7 PG —Dr@riy

Using Numerical Values

39. Suppose u and v are functions of x that are differentiable at
x = 0 and that

u@0) =5 u0)=-3 v0)=-1, V0)=2.

Find the values of the following derivatives at x = 0.

d d (u d (v d
— — (= — (- —((Tv -2
a) dx (uv) b dx (v) ©) dx <u> 9 dx( v=2u)
40. Suppose u and v are differentiable functions of x and that
u(l)=2, 4'(1)=0, v(l)=5, v'(1)=-1.

Find the values of the following derivatives at x = 1.
d
dx

uv) b) %(%) o 4 (3) d) %(71)—214)

a —
) dx \u
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Slopes and Tangents

41.

42.

43,

44.

45.
46.

47.

/]
am

1/
am

48.

/]
am

a) Find an equation for the line perpendicular to the tangent to
the curve y = x* — 4x + 1 at the point (2, 1).

b) What is the smallest slope on the curve? At what point on
the curve does the curve have this slope?

¢) Find equations for the tangents to the curve at the points
where the slope of the curve is 8.

a) Find equations for the horizontal tangents to the curve
y = x> — 3x — 2. Also find equations for the lines that are
perpendicular to these tangents at the points of tangency.

b) What is the smallest slope on the curve? At what point on
the curve does the curve have this slope? Find an equation
for the line that is perpendicular to the curve’s tangent at this
point.

Find the tangents to Newton’s Serpentine (graphed here) at the
origin and the point (1, 2).

(1,2)

Find the tangent to the Witch of Agnesi (graphed here) at the
point (2, 1). There is a nice story about the name of this curve
in the marginal note on Agnesi in Section 9.4.

The curve y = ax? + bx + ¢ passes through the point (1, 2) and
is tangent to the line y = x at the origin. Find g, b, and c.

The curves y = x>+ ax +b and y = cx — x* have a common
tangent line at the point (1, 0). Find a, b, and c.

a) Find an equation for the line that is tangent to the curve
y = x3 — x at the point (—1, 0).

b) GRAPHER Graph the curve and tangent line together. The
tangent intersects the curve at another point. Use ZOOM
and TRACE to estimate the point’s coordinates.

¢) GRAPHER Confirm your estimates of the coordinates of
the second intersection point by solving the equations for

the curve and tangent simultaneously (SOLVER key).

a) Find an equation for the line that is tangent to the curve
y = x> — 6x? + 5x at the origin.

b) GRAPHER Graph the curve and tangent together. The tan-
gent intersects the curve at another point. Use ZOOM and
TRACE to estimate the point’s coordinates.

ny
4H C)

GRAPHER Confirm your estimates of the coordinates of
the second intersection point by solving the equations for
the curve and tangent simultaneously (SOLVER key).

Physical Applications

49.

50.

Pressure and volume. If the gas in a closed container is main-
tained at a constant temperature 7, the pressure P is related to
the volume V by a formula of the form

nRT an’®
V—-nb V2
in which a, b, n, and R are constants. Find dP/dV.

P =

’

The body’s reaction to medicine. The reaction of the body to
a dose of medicine can sometimes be represented by an equation

of the form
R =M c_m
- 2 3)

where C is a positive constant and M is the amount of medicine
absorbed in the blood. If the reaction is a change in blood pres-
sure, R is measured in millimeters of mercury. If the reaction is
a change in temperature, R is measured in degrees, and so on.

Find dR/dM. This derivative, as a function of M, is called
the sensitivity of the body to the medicine. In Section 3.6, we
will see how to find the amount of medicine to which the body is
most sensitive. (Source: Some Mathematical Models in Biology,
Revised Edition, R. M Thrall, J. A. Mortimer, K. R. Rebman, R.
F. Baum, eds., December 1967, PB-202 364, p. 221; distributed
by NTIS, U.S. Department of Commerce.)

Theory and Examples

51.

52.

S3.

Suppose that the function v in the Product Rule has a constant
value c. What does the Product Rule then say? What does this
say about the Constant Multiple Rule?

The Reciprocal Rule

a) The Reciprocal Rule says that at any point where the func-
tion v(x) is differentiable and different from zero,

d (1\ _ 1ladv

dx \v)  v2dx’
Show that the Reciprocal Rule is a special case of the Quo-
tient Rule.

b)  Show that the Reciprocal Rule and the Product Rule together
imply the Quotient Rule.

Another proof of the Power Rule for positive integers. Use
the algebra formula

=" = =) x4 x4 T
together with the derivative formula

F0) - tim TR 1@

1
—>c X —cC

from Exercises 2.1 to show that (d/dx)(x") = nx"~'.
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54. Generalizing the Product Rule. The Product Rule gives the 55. Rational Powers
formula

of x.

a)

d
a) Find = (x*/?) by writing x*? as x - x'/2 and using the Prod-
x

d d uct Rule. Express your answer as a rational number times
o . . . a rational power of x. Work parts (b) and (c) by a similar
for the derivative of the product uv of two differentiable functions method.
4 sp
What is the analogous formula for the derivative of the b) Find E(X ).
product uvw of three differentiable functions of x? d
What is the formula for the derivative of the product ¢) Find E(XW %).

b)

c)

uuyuzuy of four differentiable functions of x?
What is the formula for the derivative of a product u,u,us
-+ u, of a finite number n of differentiable functions of x?

d) What patterns do you see in your answers to (a), (b), and
(c)? Rational powers are one of the topics in Section 2.6.

2.3

Rates of Change

In this section we examine some applications in which derivatives are used to
represent and interpret the rates at which things change in the world around us. It
is natural to think of change in terms of dependence on time, such as the position,
velocity, and acceleration of a moving object, but there is no need to be so restrictive.
Change with respect to variables other than time can be treated in the same way. For
example, a physician may want to know how small changes in dosage can affect the
body’s response to a drug. An economist may want to study how investment changes
with respect to variations in interest rates. These questions can all be expressed in
terms of the rate of change of a function with respect to a variable.

Average and Instantaneous Rates of Change

We start by recalling the concept of average rate of change of a function over an
interval, introduced in Section 1.1. The derivative of the function is the limit of this
average rate as the length of the interval goes to zero.

Definitions
The average rate of change of a function f(x) with respect to x over the
interval from x to xo + & is
S (xo + h) — f(x0)
h .

The (instantaneous) rate of change of f with respect to x at xy is the
derivative

Average rate of change =

fGo+h) = f(xo)

f(xo) = ,{1_133 h

provided the limit exists.
It is conventional to use the word instantaneous even when x does not represent

time. The word is, however, frequently omitted. When we say rate of change, we
mean instantaneous rate of change.
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Position at time ¢ ... and at time ¢ + At
|
| Q |

K =}(t) s+ As =vf(t + Ap)

2.20 The positions of a body moving
along a coordinate line at time t and
shortly later at time t + At.

700 [ ——
| g/
- /
500 Secant slope is
average velogity
400 | for interval from Q

t=5totr=15.
|

Distance (m)

300 I -;+,_.. [ S/ AN N R
| / Tangent slope is
speedometer
(instanptaneous
100 L} velocity). _
0 ‘ '

Elapsed time (sec)

2.21 The time-to-distance data for
Example 2.

EXAMPLE 1 The area A of a circle is related to its diameter by the equation
A=1p
4

How fast is the area changing with respect to the diameter when the diameter is

10 m?

Solution The (instantaneous) rate of change of the area with respect to the diameter is
dA 7 nD
— =-2D=—.
dD 4 2

When D = 10 m, the area is changing at rate (7/2)10 = 57 m?/m. This means
that a small change A D m in the diameter would result in a change of about St AD
m? in the area of the circle. Q

Motion Along a Line—Displacement, Velocity, Speed,
and Acceleration

Suppose that an object is moving along a coordinate line (say an s-axis) so that we
know its position s on that line as a function of time ¢:

s = f().
The displacement of the object over the time interval from ¢ to ¢ + At (Fig. 2.20) is
As = f(t+ A1) — f(@),
and the average velocity of the object over that time interval is

displacement  As  f(r+ A1) — f(2)
travel time  Ar At ’

Vav =

To find the body’s velocity at the exact instant z, we take the limit of the average
velocity over the interval from ¢ to ¢ + At as At shrinks to zero. This limit is the
derivative of f with respect to ¢.

Definition
The (instantaneous) velocity is the derivative of the position function
s = f(¢) with respect to time. At time ¢ the velocity is

ds im f@+ A= f(@)

0 =g = fim, o

EXAMPLE 2 Figure 2.21 shows a distance—time graph of a 1994 Ford Mustang
Cobra. The slope of the secant PQ is the average velocity for the 10-sec interval
from t =5 to t = 15 sec, in this case 35.5 m/sec or 128 km/h. The slope of the
tangent at P is the speedometer reading at t = 5 sec, about 20 m/sec or 72 km/h.
The car’s top speed is 220 km/h (about 137 mph). (Source: Car & Driver, April
1994.) a
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Technology Parametric Functions To graph curves y = f(x), where y is
a function of x, your graphing utility should be set in function mode. Noi
all curves can be represented in that mode, so most graphing utilities have
a parametric mode as well. In this mode you plot the points (x(z), y(¢))
whose coordinates are functions of the varying “time” parameter ¢. Thus you
can think of the curve as the path of a moving particle as it changes its (x, y)
position over time (see Section 9.4). A curve y = f(x) can be graphed in
parametric mode using the equations x = ¢, y = f(¢). Set your graphing utility
to parametric mode and try the following equations.

Relation Parametrization

y = x* (y a function of x) x(t)=t, y@t)=1? —o0o<t<o00

x% + y? =4 (y not a function of x) x(t) =2cost, y(t)=2sint,
0<t<2m

The parabola x(t) = t,
y(t)=t?, fort> -2

Besides telling us how fast the object is moving, the velocity also tells us in what
direction it is moving. When the object is moving forward (s increasing) the velocity
is positive; when the body is moving backward (s decreasing) the velocity is negative
(Fig. 2.22).

s s
s = f@) §=/0
ds
> 0 .
as
i s 0
t t
0 0
s increasing: s decreasing:
positive slopes negative slopes

2.22 v = ds/dt is positive when s increases and negative when s decreases.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will
show 30 on the way over but it will not show —30 on the way back, even though our
distance from home is decreasing. The speedometer always shows speed, which
is the absolute value of velocity. Speed measures the rate of forward progress
regardless of direction.
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2.23 The velocity graph for Example 3.

Definition
Speed is the absolute value of velocity.

Speed = [u(t)] = f%

EXAMPLE 3 Figure 2.23 shows the velocity v = f'(t) of a particle moving on a
coordinate line. The particle moves forward for the first 3 seconds, moves backward
for the next 2 seconds, stands still for a second, and moves forward again. Notice
that the particle achieves its greatest speed at time ¢ = 4, while moving backward.

|
MOVES FORWARD ! FORWARD
w>0) AGAIN
wv>0)
v =f(
(__Speeds Steady Slows__) (__Speeds_)
up (v = const)i down i up
I
Stands
still
v=0
| | |

t (sec)

Greatest
speed

\

Speeds i Slows
up 1" down
I

i
MOVES BACKWARD
v<0) [

a

The rate at which a body’s velocity changes is called the body’s acceleration.
The acceleration measures how quickly the body picks up or loses speed.

Definition
Acceleration is the derivative of velocity with respect to time. If a body’s
position at time ¢ is s = f (), then the body’s acceleration at time ¢ is
a(t) = ili = fi}i
dt  dt?

We can illustrate all this with free fall. As we mentioned at the beginning
of Chapter 1, near the surface of the earth all bodies fall with the same constant
acceleration. When air resistance is absent or insignificant and the only force acting
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t=0 @
t=1
t=2 )
t=3 )

2.24 A ball bearing falling from rest

(Example 4).

s (meters)
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on a falling body is the force of gravity, we call the way the body falls free fall.
The mathematical description of this type of motion captured the imagination of
many great scientists, including Aristotle, Galileo, and Newton. Experimental and
theoretical investigations revealed that the distance a body released from rest falls
in time ¢ is proportional to the square of the amount of time it has fallen. We express
this by saying that
L)
s = 28f )
where s is distance and g is the acceleration due to Earth’s gravity. This equation
holds in a vacuum, where there is no air resistance, but it closely models the fall
of dense, heavy objects, such as rocks or steel tools, for the first few seconds of
their fall, before air resistance starts to slow them down.
The value of g in the equation s = (1/2)gt*> depends on the units used to
measure ¢ and s. With ¢ in seconds (the usual unit), we have the following values:

Free-Fall Equations (Earth)

ft
English units: §=32—>,
sec

1
s = 5(32)# = 16¢> (s in feet)
m

sec?’

1
Metric units: g=938 s = 5(9.8)t2 =4.9t> (s in meters)

The abbreviation ft/sec? is read “feet per second squared” or “feet per second
per second,” and m/sec? is read “meters per second squared.”

This description allows us to answer many questions concerning the position
and velocity of a falling object.

EXAMPLE 4 Figure 2.24 shows the free fall of a heavy ball bearing released
from rest at time ¢ = 0 sec.

a) How many meters does the ball fall in the first 2 sec?
b) What is its velocity, speed, and acceleration then?

Solution
a) The metric free-fall equation is s = 4.9¢2. During the first 2 sec, the ball falls

5(2) = 4.9(2)* = 19.6 m.
b) At any time ¢, velocity is the derivative of displacement:

v(t) = 5'(t) = %(4.9:2) =9.8r.

At t = 2, the velocity is
v(2) = 19.6 m/sec
in the downward (increasing s) direction. The speed at t = 2 is

speed = |v(2)| = 19.6 m/sec.
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@

Height (ft)

5, U
4°0L s = 160r — 1612
160
0 5 10 !
160 v="% —160-32

(b)

2.25 (a) The rock in Example 5. (b) The
graphs of s and v as functions of time; s is
largest when v = ds/dt = 0. The graph of
s is not the path of the rock: it is a plot of
height vs. time. The slope is the rock’s
velocity.

The acceleration at any time ¢ is
a(t) = v'(t) = s"(t) = 9.8 m/sec’.

At t = 2, the acceleration is 9.8 m/sec?. a

EXAMPLE 5 A dynamite blast blows a heavy rock straight up with a launch
velocity of 160 ft/sec (about 109 mph) (Fig. 2.25a). It reaches a height of s =
160z — 1612 ft after ¢ sec.

a)
b)

c)

d)

How high does the rock go?

What is the velocity and speed of the rock when it is 256 ft above the ground
on the way up? on the way down?

What is the acceleration of the rock at any time ¢ during its flight (after the
blast)?

When does the rock hit the ground again?

Solution

a)

b)

c)

In the coordinate system we have chosen, s measures height from the ground
up, so the velocity is positive on the way up and negative on the way down.
The instant the rock is at its highest point is the one instant during the flight
when the velocity is 0. Therefore, to find the maximum height, all we need to
do is to find when v = 0 and evaluate s at this time.

At any time ¢, the velocity is

ds d )
v = i E(I6Ot — 16¢°) = 160 — 321 ft/sec.

The velocity is zero when
160 — 32t =0, or t =35 sec.
The rock’s height at t = 5 sec is
Smax = 5(5) = 160(5) — 16(5)* = 800 — 400 = 400 ft.

See Fig. 2.25(b).
To find the rock’s velocity at 256 ft on the way up and again on the way down,
we find the two values of ¢ for which

s(t) = 160t — 161> = 256.
To solve this equation we write
161> — 1607 + 256 = 0
16(* — 10t +16) = 0
t—-2)¢-8 =0
t =2sec, t =8 sec.

The rock is 256 ft above the ground 2 sec after the explosion and again 8 sec
after the explosion. The rock’s velocities at these times are

v(2) = 160 — 32(2) = 160 — 64 = 96 ft/sec,
v(8) = 160 — 32(8) = 160 — 256 = —96 ft/sec.

At both instants, the rock’s speed is 96 ft/sec.
At any time during its flight following the explosion, the rock’s acceleration



Why peas wrinkle

British geneticists have recently discovered
that the wrinkling trait comes from an extra
piece of DNA that prevents the gene that
directs starch synthesis from functioning
properly. With the plant’s starch conversion
impaired, sucrose and water build up in the
young seeds. As the seeds mature, they lose
much of this water, and the shrinkage leaves
them wrinkled.
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dv d )
a=_= dt(160 32t) = —32 ft/sec”.
The acceleration is always downward. When the rock is rising, it is slowing
down; when it is falling, it is speeding up.
d) The rock hits the ground at the positive time ¢ for which s = 0. The equation
160t — 16¢% = 0 factors to give 16¢(10 — t) = 0, so it has solutions = 0 and
t = 10. At t = 0 the blast occurred and the rock was thrown upward. It returned
to the ground 10 seconds later. a

Technology Simulation of Motion on a Vertical Line The parametric equa-
tions

x@)=c,  y@ =f@

will illuminate pixels along the vertical line x = c. If f(¢) denotes the height
of a moving body at time ¢, graphing (x(¢), y(t)) = (¢, f(¢)) will simulate
the actual motion. Try it for the rock in Example 5 with x(z) = 2, say, and
y(t) = 160t — 1622, in dot mode with #Step = 0.1. Why does the spacing of
the dots vary? Why does the grapher seem to stop after it reaches the top? (Try
the plots for 0 <t <5 and 5 <t < 10 separately.)

For a second experiment, plot the parametric equations

x(t) =1,  y(t) =160t — 16¢*

together with the vertical line simulation of the motion, again in dot mode.
Use what you know about the behavior of the rock from the calculations of
Example 5 to select a window size that will display all the interesting behavior.

x(t) =2

y(t) = 160t — 16t2
and

x(t)=t

y(t) = 160t — 16t2

in dot mode

Sensitivity to Change

When a small change in x produces a large change in the value of a function f(x),
we say that the function is relatively sensitive to changes in x. The derivative f'(x)
is a measure of the sensitivity to change at x.

EXAMPLE 6  Sensitivity to change

The Austrian monk Gregor Johann Mendel (1822-1884), working with garden
peas and other plants, provided the first scientific explanation of hybridization. His
careful records showed that if p (a number between O and 1) is the frequency of
the gene for smooth skin in peas (dominant) and (1 — p) is the frequency of the
gene for wrinkled skin in peas, then the proportion of smooth-skinned peas in the
population at large is

y =2p(1—p)+p*=2p - p~.



138 Chapter 2: Derivatives

y
1
y=2p-p?
|

0 1 P

(a)
dy/dp
2

dy _

d_p =2-2p
0 1 b

(b)

2.26 (a) The graph of y =2p — p?,
describing the proportion of
smooth-skinned peas. (b) The graph of
dy/dp.
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2.28 The marginal cost dc/dx is
approximately the extra cost Ac of
producing Ax = 1 more unit.

The graph of y versus p in Fig. 2.26(a) suggests that the value of y is more
sensitive to a change in p when p is small than when p is large. Indeed, this is
borne out by the derivative graph in Fig. 2.26(b), which shows that dy/dp is close
to 2 when p is near 0 and close to O when p is near 1.

We will say more about sensitivity in Section 3.7. a

Derivatives in Economics

Engineers use the terms velocity and acceleration to refer to the derivatives of
functions describing motion. Economists, too, have a specialized vocabulary for
rates of change and derivatives. They call them marginals.

In a manufacturing operation, the cost of production c(x) is a function of x, the
number of units produced. The marginal cost of production is the rate of change
of cost (¢) with respect to level of production (x), so it is dc/dx.

For example, let c(x) represent the dollars needed to produce x tons of steel
in one week. It costs more to produce x + A units, and the cost difference, divided
by A, is the average increase in cost per ton per week:

c(x+h) —c(x)  average increase in cost/ton/wk
h " to produce the next & tons of steel

The limit of this ratio as 2 — 0 is the marginal cost of producing more steel when
the current production level is x tons (Fig. 2.27):

dc .ocx+h)—ckx) . .

= lim ——————— = marginal cost of production.

dx h—0 h

y (dollars)

Slope =

marginal cost y=cl)

|

|
| |
| |
: I 2.27 Weekly steel production:
| | c(x) is the cost of producing x
| |

X tons per week. The cost of
0 x x+h producing an additional h tons
(tons/week) is c(x + h) — c(x).

Sometimes the marginal cost of production is loosely defined to be the extra cost
of producing one unit:
Ac  c(x + 1) — c(x)
Ax 1

’

which is approximately the value of dc/dx at x. To see why this is an acceptable
approximation, observe that if the slope of ¢ does not change quickly near x, then the
difference quotient will be close to its limit, the derivative dc/dx, even if Ax =1
(Fig. 2.28). In practice, the approximation works best for large values of x.

EXAMPLE 7  Marginal cost

Suppose it costs

c(x) = x> — 6x% + 15x



Choosing functions to illustrate
economics

In case you are wondering why economists
use polynomials of low degree to illustrate
complicated phenomena like cost and
revenue, here is the rationale: While formulas
for real phenomena are rarely available in any
given instance, the theory of economics can
still provide valuable guidance. The functions
about which theory speaks can often be
illustrated with low degree polynomials on
relevant intervals. Cubic polynomials provide
a good balance between being easy to work
with and being complicated enough to
illustrate important points.
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dollars to produce x radiators when 8 to 30 radiators are produced. Your shop
currently produces 10 radiators a day. About how much extra will it cost to produce
one more radiator a day?

Solution The cost of producing one more radiator a day when 10 are produced
is about ¢’(10):

d
c(x) = d—(x3 —6x24+15x) =3x2 —12x + 15
X

c'(10) = 3(100) — 12(10) + 15 = 195.
The additional cost will be about $195. a

EXAMPLE 8 Marginal tax rate

To get some feel for the language of marginal rates, consider marginal tax rates. If
your marginal income tax rate is 28% and your income increases by $1,000, you can
expect to have to pay an extra $280 in income taxes. This does not mean that you
pay 28% of your entire income in taxes. It just means that at your current income
level I, the rate of increase of taxes T with respect to income is d7/dI = 0.28.
You will pay $0.28 out of every extra dollar you earn in taxes. Of course, if you
earn a lot more, you may land in a higher tax bracket and your marginal rate will
increase. d

EXAMPLE 9  Marginal revenue
If
r(x) = x> —3x% 4+ 12x

gives the dollar revenue from selling x thousand candy bars, 5 < x < 20, the
marginal revenue when x thousand are sold is

d
r(x) = d—(x3 —3x%4+12x) = 3x% — 6x + 12.
X

As with marginal cost, the marginal revenue function estimates the increase in
revenue that will result from selling one additional unit. If you currently sell 10
thousand candy bars a week, you can expect your revenue to increase by about

r'(10) = 3(100) — 6(10) + 12 = $252

if you increase sales to 11 thousand bars a week. Q

Exercises 2.3

Motion Along a Coordinate Line

Exercises 1-6 give the position s = f(¢) of a body moving on a
coordinate line for a < ¢t < b, with s in meters and ¢ in seconds.

a) Find the body’s displacement and average velocity for the given

time interval.

b) Find the body’s speed and acceleration at the endpoints of the

interval.

¢) When during the interval does the body change direction (if

ever)?
1. s=0.8¢2, 0<t <10 (free fall on the moon)
2. s=1.86:2, 0<t<0.5 (free fall on Mars)
3.s=—3432-3t, 0<t<3
4. s=(@*/H -+, 0<t<2
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25 5
==--, 1<t<5
t t
25
s=——, —4<1t<0
t+5

At time ¢, the position of a body moving along the s-axis is
s =13 —6t> + 9t m. (a) Find the body’s acceleration each time
the velocity is zero. (b) Find the body’s speed each time the
acceleration is zero. (c) Find the total distance traveled by the
body from ¢t =0to ¢ =2.

At time ¢ > 0, the velocity of a body moving along the s-axis
is v = > — 4t 4 3. (a) Find the body’s acceleration each time
the velocity is zero. (b) When is the body moving forward?
moving backward? (c) When is the body’s velocity increasing?
decreasing?

Free-Fall Applications

9.

10.

11.

12.

13.

14.

The equations for free fall at the surfaces of Mars and Jupiter (s
in meters, ¢ in seconds) are s = 1.86¢2 on Mars, s = 11.44¢% on
Jupiter. How long would it take a rock falling from rest to reach
a velocity of 27.8 m/sec (about 100 km/h) on each planet?

A rock thrown vertically upward from the surface of the moon
at a velocity of 24 m/sec (about 86 km/h) reaches a height of
s = 24t — 0.8t% meters in ¢ seconds.

a) Find the rock’s velocity and acceleration at time . (The
acceleration in this case is the acceleration of gravity on the
moon.)

b) How long does it take the rock to reach its highest point?

¢) How high does the rock go?

d) How long does it take the rock to reach half its maximum
height?

e) How long is the rock aloft?

On Earth, in the absence of air, the rock in Exercise 10 would
reach a height of s = 24t — 4.9t meters in ¢ seconds.

a) Find the rock’s velocity and acceleration at time .

b) How long would it take the rock to reach its highest point?

¢) How high would the rock go?

d) How long would it take the rock to reach half its maximum
height?

e) How long would the rock be aloft?

Explorers on a small airless planet used a spring gun to launch
a ball bearing vertically upward from the surface at a launch
velocity of 15 m/sec. Because the acceleration of gravity at the
planet’s surface was g, m/sec?, the explorers expected the ball
bearing to reach a height of s = 15t — (1/2)g,t* meters ¢ seconds
later. The ball bearing reached its maximum height 20 sec after
being launched. What was the value of g;?

A 45-caliber bullet fired straight up from the surface of the moon
would reach a height of s = 832t — 2.6¢ feet after ¢ seconds. On
Earth, in the absence of air, its height would be s = 832¢ — 1612
feet after ¢ seconds. How long will the bullet be aloft in each
case? How high would the bullet go?

(Continuation of Exercise 13.) On Jupiter, in the absence of air,

15.

16.

the bullet’s height would be s = 832¢ — 37.53t feet after ¢ sec-
onds. On Mars it would be s = 832t — 6.1 feet after ¢ seconds.
How high would the bullet go in each case?

Galileo’s free-fall formula. Galileo developed a formula for a
body’s velocity during free fall by rolling balls from rest down
increasingly steep inclined planks and looking for a limiting for-
mula that would predict a ball’s behavior when the plank was
vertical and the ball fell freely (part a of the accompanying fig-
ure). He found that, for any given angle of the plank, the ball’s
velocity ¢ seconds into the motion was a constant multiple of ¢
That is, the velocity was given by a formula of the form v = kt.
The value of the constant k depended on the inclination of the
plank.

Free fall
position

[NT2EN
v \
i
\

In modern notation (part b of the figure), with distance in
meters and time in seconds, what Galileo determined by experi-
ment was that, for any given angle 6, the ball’s velocity ¢ seconds
into the roll was

\

il
|
|
[
R
i
R

R Gsiulpuiptyntyntpuipn
=
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(a) (®)

v = 9.8(sin6)t m/sec.

a) What is the equation for the ball’s velocity during free fall?

b) Building on your work in (a), what constant acceleration
does a freely falling body experience near the surface of
the earth?

Free fall from the tower of Pisa. Had Galileo dropped a can-
nonball from the tower of Pisa, 179 ft above the ground, the
ball’s height aboveground ¢ seconds into the fall would have
been s = 179 — 162

a) What would have been the ball’s velocity, speed, and accel-
eration at time ¢?

b) About how long would it have taken the ball to hit the
ground?

¢) What would have been the ball’s velocity at the moment of
impact?

Conclusions About Motion from Graphs
17.

The accompanying figure shows the velocity v = ds/dt = f(¢)
(m/sec) of a body moving along a coordinate line.

v (m/sec)
v =f(1)

11 /1

0 346/810
-3

t (sec)



18.

19.

a) When does the body reverse direction?

b) When (approximately) is the body moving at a constant
speed?

¢) Graph the body’s speed for 0 < ¢ < 10.

d) Graph the acceleration, where defined.

A particle P moves on the number line shown in part (a) of
the accompanying figure. Part (b) shows the position of P as a
function of time .

P
. s (cm)

-

(b)

a) When is P moving to the left? moving to the right? standing
still?
b) Graph the particle’s velocity and speed (where defined).

When a model rocket is launched, the propellant burns for a few
seconds, accelerating the rocket upward. After burnout, the rocket
coasts upward for a while and then begins to fall. A small ex-
plosive charge pops out a parachute shortly after the rocket starts
down. The parachute slows the rocket to keep it from breaking
when it lands.

The figure here shows velocity data from the flight of the
model rocket. Use the data to answer the following.

200

150 |

100 &

50

Velocity (ft/sec)

0T e s 10 12

Time after launch (sec)

a) How fast was the rocket climbing when the engine stopped?

b) For how many seconds did the engine burn?

¢) When did the rocket reach its highest point? What was its
velocity then?

20.
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d) When did the parachute pop out? How fast was the rocket
falling then?

e) How long did the rocket fall before the parachute opened?

f) When was the rocket’s acceleration greatest?

g) When was the acceleration constant? What was its value
then (to the nearest integer)?

The accompanying figure shows the velocity v = f () of a par-
ticle moving on a coordinate line.

21.

22.

a) When does the particle move forward? move backward?
speed up? slow down?

b) When is the particle’s acceleration positive? negative? zero?

¢) When does the particle move at its greatest speed?

d) When does the particle stand still for more than an instant?

The graph here shows the position s of a truck traveling on a
highway. The truck starts at # = 0 and returns 15 hours later at
t =15

500

400

BTN
E/ \

I S Y A v
0 5 10 15

Elapsed time, ¢ (h)

Position, s (km)
I
\
~N
L—

a) Use the technique described in Section 2.1, Example 4, to
graph the truck’s velocity v = ds/dt for 0 <t < 15. Then
repeat the process, with the velocity curve, to graph the
truck’s acceleration dv/dt.

b) Suppose s = 15¢> — t3. Graph ds/dt and d%s/dt* and com-
pare your graphs with those in (a).

The multiflash photograph in Fig. 2.29 on the following page
shows two balls falling from rest. The vertical rulers are marked
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23.

24.

in centimeters. Use the equation s = 490¢? (the free-fall equation
for s in centimeters and ¢ in seconds) to answer the following
questions.

a) How long did it take the balls to fall the first 160 cm? What
was their average velocity for the period?

b) How fast were the balls falling when they reached the
160-cm mark? What was their acceleration then?

¢) About how fast was the light flashing (flashes per second)?

2.29 Two balls falling
from rest (Exercise 22).

The graphs in Fig. 2.30 show the position s, velocity v = ds/dt,
and acceleration a = d%s/dt* of a body moving along a coor-
dinate line as functions of time #. Which graph is which? Give
reasons for your answers.

The graphs in Fig. 2.31 show the position s, the velocity v =
ds/dt, and the acceleration a = d?s/dt? of a body moving along
the coordinate line as functions of time . Which graph is which?
Give reasons for your answers.

Economics

25.

Marginal cost. Suppose that the dollar cost of producing x wash-
ing machines is c(x) = 2000 4+ 100x — 0.1x2.

a) Find the average cost per machine of producing the first
100 washing machines.

b) Find the marginal cost when 100 washing machines are
produced.

2.30 The graphs for
Exercise 23.

26.

©

2.31 The graphs for
Exercise 24.

¢) Show that the marginal cost when 100 washing machines
are produced is approximately the cost of producing one
more washing machine after the first 100 have been made,
by calculating the latter cost directly.

Marginal revenue. Suppose the revenue from selling x custom-
made office desks is

1

dollars.

a) Find the marginal revenue when x desks are produced.

b) Use the function r’(x) to estimate the increase in revenue
that will result from increasing production from 5 desks a
week to 6 desks a week.

¢) Find the limit of r'(x) as x — oo. How would you interpret
this number?

Additional Applications

27.

28.

29.

When a bactericide was added to a nutrient broth in which bacte-
ria were growing, the bacterium population continued to grow for
a while, but then stopped growing and began to decline. The size
of the population at time ¢ (hours) was b = 10% + 10% — 10%2.
Find the growth rates at (a) = 0; (b) = 5; and (c) t = 10 hours.
The number of gallons of water in a tank ¢ minutes after the
tank has started to drain is Q(t) = 200(30 — ¢)2. How fast is the
water running out at the end of 10 min? What is the average rate
at which the water flows out during the first 10 min?

It takes 12 hours to drain a storage tank by opening the valve
at the bottom. The depth y of fluid in the tank ¢ hours after the
valve is opened is given by the formula

¢ 2
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a) Find the rate dy/dt (m/h) at which the tank is draining at (Hint: If vy is the exit velocity of a particle of lava, its height ¢
time ¢. seconds later will be s = vyt — 16¢? feet. Begin by finding the
b) When is the fluid level in the tank falling fastest? slowest? time at which ds/dt = 0. Neglect air resistance.)

What are the values of dy/dt at these times?
1 ¢) GRAPHER Graph y and dy/dt together and discuss the

behavior of y in relation to the signs and values of dy/dt. % Grapher Explorations
30. The volume V = (4/3)xr’ of a spherical balloon changes with Exercises 33-36 give the position function s = f(¢) of a body moving

the radius. along the s-axis as a function of time ¢ Graph f together with the

a) At what rate does the volume change with respect to the velocity function v(t) = ds/dt = f'(¢t) and the acceleration function
radius when r = 2 ft? a(t) = d%s/dt* = f"(t). Comment on the body’s behavior in relation

b) By approximately how much does the volume increase when to the signs and values v and a. Include in your commentary such
the radius changes from 2 to 2.2 ft? topics as the following.

31. Suppose that the distance an aircraft travels along a runway before a) When is the body momentarily at rest?

takeoff is given by D = (10/9)¢2, where D is measured in meters b) When does it move to the left (down) or to the right (up)?

from the starting point and ¢ is measured in seconds from the time ¢) When does it change direction?

the brakes are released. If the aircraft will become airborne when d) When does it speed up and slow down?

its speed reaches 200 km/hr, how long will it take to become ¢) When is it moving fastest (highest speed)? slowest?

airborne, and what distance will it travel in that time? f) When is it farthest from the axis origin?

B 32. volcanic lava fountains. Although the November 1959 Kilauea ~ 33. s =200r — 16>, 0 <17 <12.5 (A heavy object fired straight
Iki eruption on the island of Hawaii began with a line of fountains up from the earth’s surface at 200 ft/sec)

along the wall of the crater, activity was later confined to a single 34, s=12-3t+2, 0<r<5
vent in the crater’s floor, which at one point shot lava 1900 ft 3 )
straight into the air (a world record). What was the lava’s exit 3B.os=r—6"+T1, 0=t=4

velocity in feet per second? in miles per hour? 36. s=4—-Tt+6:2—13, 0<t<4

: e R e e e e ]
Der|vat|ves of Trigonometric Functions

Trigonometric functions are important because so many of the phenomena we
want information about are periodic (electromagnetic fields, heart rhythms, tides,
weather). A surprising and beautiful theorem from advanced calculus says that
every periodic function we are likely to use in mathematical modeling can be
written as an algebraic combination of sines and cosines, so the derivatives of sines
and cosines play a key role in describing important changes. This section shows
how to differentiate the six basic trigonometric functions.

B S

Some Special Limits

Our first step is to establish some inequalities and limits. It is assumed throughout
that angles are measured in radians.

Theorem 3
If 6 is measured in radians, then

—10] <sind <9 and —1|8] <1 —cosf < |9].



144 Chapter 2: Derivatives

v

1 [

9 uis

0
0| cos § Q A(1,0)

<
1—cos @

2.32 From the geometry of this figure,
drawn for 6 > 0, we get the inequality
sin26 + (1 — cos8)? < 92,

Proof To establish these inequalities, we picture € as an angle in standard position
(Fig. 2.32). The circle in the figure is a unit circle, so || equals the length of the
circular arc AP. The length of line segment AP is therefore less than |6].

Triangle APQ is a right triangle with sides of length

QP = |sind|, AQ =1 —cos®f.
From the Pythagorean theorem and the fact that AP < |6], we get
sin6 + (1 — cos@)? = (AP)? < 62. (1

The terms on the left side of Eq. (1) are both positive, so each is smaller than their
sum and hence is less than 62:

sin"0 < 6> and (1 —cosf)® < 6%

By taking square roots, we can see that this is equivalent to saying that
|sinf| < |6} and |1 —cos@| < |0]

or

—|0] < sinf < |6| and — 18] <1 —cosf < |8]. Q

EXAMPLE 1 Show that sin@ and cos 8 are continuous at & = 0. That is,

lim sinf =0 and lim cosf = 1.
8—0 6—0

Solution As @ — 0, both |6] and —|6| approach 0. The values of the limits there-
fore follow immediately from Theorem 3 and the Sandwich Theorem. Q

The function f(0) = (sin€)/6 graphed in Fig. 2.33 appears to have a removable
discontinuity at 6 = 0. As the figure suggests, limg_,o f(0) = 1.

y
1 sin 6
y= (radians)
0
| | J | P
=37 —2n~~n ™~—"1 37

NOT TO SCALE

2.33 The graph of f(9) = (sin9)/8.

Theofemv 4

im0 (6 inradians) (@)

Proof The plan is to show that the right-hand and left-hand limits are both 1. Then
we will know that the two-sided limit is 1 as well.



Equation (3) is where radian measure comes
in: The area of sector OAP is 6/2 only if 6 is
measured in radians.

y
T
1
P
tan 6
1
sin 6
0 cos @ ml
o o A(1,0)

1

2.34 The figure for the proof of
Theorem 4. TA/OA = tané, but OA =1, so
TA =tané.
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To show that the right-hand limit is 1, we begin with values of @ that are
positive and less than /2 (Fig. 2.34). Notice that

Area AOAP < area sector OAP < area AOAT.

We can express these areas in terms of 0 as follows:
1 1 1
Area AOAP = Ebase x height = 5(1)(sin 0) = 3 sin 6

1 1 6
A tor OAP = —r?0 = —(1)%0 = = 3
rea sector 2r 2( ) > 3)

1 1 1
Area AOAT = Ebase x height = 5(1)(tan 0) = 2 tané,

SO

1'0 19 1t9
5 sin < 56 < > tanf.

This last inequality will go the same way if we divide all three terms by the positive
number (1/2) sin@:
0 1

l<— < .
sin @ cos @

We next take reciprocals, which reverses the inequalities:

in@
1>%>cos@.

Since limg_, g+ cos @ = 1, the Sandwich Theorem gives

Finally, observe that sinf and 6 are both odd functions. Therefore, f(0) =
(sin0)/0 is an even function, with a graph symmetric about the y-axis (see Fig.
2.33). This symmetry implies that the left-hand limit at O exists and has the same
value as the right-hand limit:

. sin@ . sin@
Im — =1= lim —,
6—-0- O 60t 0O
so limg_,¢ (sin@)/0 = 1 by Theorem 5 of Section 1.4. Q

Theorem 4 can be combined with limit rules and known trigonometric identities
to yield other trigonometric limits.

cosh — 1 .

EXAMPLE 2 Show that }lling) 0.

Solution Using the half-angle formula cos # = 1 — 2sin?(k/2), we calculate
cosh —1 i 2sin®(h/2)

im ——— = lim
h—0 h h—0 h
sinf .
= —1lim —— sinf Let 8 = h/2.
60 @

= —(1)(0) = 0. Q
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yi=sinx,-2r <x <2m
Yy =d(y))dx, —2x < x <2m

Technology Conjectures Based on Grapher Images What you see in the
window of a graphing utility can suggest conjectures, sometimes rather strongly.
Graph the functions

y; = sinx

v, =d(y1)/dx (This is computed by a built-in differentiation utility.)

Does the graph of y, look familiar? What function do you think it is? Test
your conjecture by adding the function’s graph to the screen.

The Derivative of the Sine

To calculate the derivative of y = sinx, we combine the limits in Example 2 and
Theorem 4 with the addition formula

sin (x + h) = sinx cos h + cos x sin . (4)
We have
dy . sin(x +h) —sinx
— = lim Derivative definition
dx h—0 h
. (sinxcosh + cosxsinh) — sinx
= lim Eq. (4)
h—0 h
. sin x(cosh — 1)+ cosxsink
= lim
h—0 h
. . cosh —1 . sinh
=lim (sinx + ——— ) +1lim (cosx - —
h—0 h h—0 h
. . cosh—1 . sinh
=sinx + lim —— +cosx - lim —
h—0 h =0 h
. Example 2 and
=sinx +0+cosx - 1 Theorem 4
= COSX.

In short, the derivative of the sine is the cosine.

d(' )=¢
— (sinx) = cos x
dx

EXAMPLE 3
d d
a) y=ux?—sinx: el = 2x — —(sinx) Difference Rule
dx dx
=2x —CcoSXx
d d
b) y = x?sinx: o x*—(sinx) + 2x sinx Product Rule
dx dx

= x2cosx + 2x sinx



Radian measure in calculus

In case you are wondering why calculus uses
radian measure when the rest of the world
seems to use degrees, the answer lies in the
argument that the derivative of the sine is
the cosine. The derivative of sinx is cosx
only if x is measured in radians. The
argument requires that when # is a small
increment in x,

lim (sinh)/h = 1.
h—0

This is true only for radian measure, as we
saw during the proof of Theorem 4. You will
see what the degree-mode derivatives of the
sine and cosine are if you do Exercise 76.

2.35 The curve y’' = —sinx as the graph
of the slopes of the tangents to the curve
Yy = cosx.
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d
x .+ —(sinx) —sinx - 1
dx

0 sinx dy R
_ . 7 _ tient
y P dx 2 Quotient Rule
_ XCOSX — sin x
- x2 a
The Derivative of the Cosine
With the help of the addition formula,
cos(x + h) = cosxcosh — sinx sinh, (5)
we have
d — 1 cos (x + h) — cosx Derivative
E(COS *) = hl—I>I(l) h definition
— lim (cosx cosh —sinx sinh) — cos x Eq. 5)
h—0 h
. cosx(cosh—1)—sinxsinh
= lim
h—0 h
. cosh —1 . . sinh
= lim cosx + ———— — lim sinx -
h—0 h h—0
. cosh—1 . . sinh
=CosX + lim ———— —sinx + lim
h—0 h—0 h

=cosx +0—sinx -1

= —sinx.

Example 2 and
Theorem 4

In short, the derivative of the cosine is the negative of the sine.

d
— (cosx) = —sinx

dx

Figure 2.35 shows another way to visualize this result.

EXAMPLE 4

a) y = 5x +cosx
dy

d(5)+d( )
- —(cos
dx dx o dx *

=5 —sinx
b) y = sinxcosx
. d d .
— =sinx —(cos x) + cos x —(sin x)
dx dx
= sinx (— sinx) + cosx (cos x)

= cos?x — sin® x

Sum Rule

Product Rule
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\

'Vq

Rest
position

B
VAAAAAAAAA

B

Position at
t=0

2.36 The body in Example 5.

s,
v=-5sint s=5cost
0 ™ 3m \2m \37w
2 2 2

2.37 The graphs of the position and
velocity of the body in Example 5.

COS x

c = —
) y 1 —sinx

d d
d_y _ 1- sinx)a(cosx) —cosxa(l — sinx)

Quotient Rule

dx (1 — sinx)?
(1 = sinx)(—sinx) — cos x(0 — cos x)
- (1 — sin x)?
1 —sinx L, R
=(1_5Tx)2 sin“x +cos*x =1
1
~ 1—sinx Q

Simple Harmonic Motion

The motion of a body bobbing up and down on the end of a spring is an example
of simple harmonic motion. The next example describes a case in which there are
no opposing forces like friction or buoyancy to slow the motion down.

EXAMPLE 5 A body hanging from a spring (Fig. 2.36) is stretched 5 units
beyond its rest position and released at time ¢ = 0 to bob up and down. Its position
at any later time ¢ is

s = Scost.

What are its velocity and acceleration at time ¢?

Solution We have

Position: s =5cost
d d d
Velocity: v= d—j = E(S cost) = SE(COS t) = —5Ssint
d d d
Acceleration: a= d—l: = E(_S sint) = —SE(sin t) = —5cost.

Here is what we can learn from these equations:

1. As time passes, the body moves up and down between s =5 and s = —5 on
the s-axis. The amplitude of the motion is 5. The period of the motion is 27,
the period of cosz.

2. The function sin ¢ attains its greatest magnitude (1) when cost = 0, as the
graphs of the sine and cosine show (Fig. 2.37). Hence, the body’s speed,
|v| = 5|sint|, is greatest every time cost = 0, i.e., every time the body passes
its rest position.

The body’s speed is zero when sin# = 0. This occurs at the endpoints of
the interval of motion, when cost = *1.

3. The acceleration, a = —5cost, is zero only at the rest position, where the
cosine is zero. When the body is anywhere else, the spring is either pulling
on it or pushing on it. The acceleration is greatest in magnitude at the points
farthest from the origin, where cost = £1. a
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Jerk

A sudden change in acceleration is called a “jerk.” When a ride in a car or a bus
is jerky, it is not that the accelerations involved are necessarily large but that the
changes in acceleration are abrupt. Jerk is what spills your soft drink. The derivative
responsible for jerk is d3s/dt>.

Definition
Jerk is the derivative of acceleration. If a body’s position at time ¢ is s =
f (@), the body’s jerk at time ¢ is

Recent tests have shown that motion sickness comes from accelerations whose
changes in magnitude or direction take us by surprise. Keeping an eye on the road
helps us to see the changes coming. A driver is less likely to become sick than a
passenger reading in the backseat.

EXAMPLE 6

a) The jerk of the constant acceleration of gravity (g = 32 ft/sec?) is zero:
d
J=7)

We don’t experience motion sickness if we are just sitting around.
b) The jerk of the simple harmonic motion in Example 5 is
da
i

j d(Scot)
= —(—5cos
J dt

= Ssint.

It has its greatest magnitude when sinz = %1, not at the extremes of the
displacement but at the origin, where the acceleration changes direction and
sign. a

The Derivatives of the Other Basic Functions

Because sinx and cos x are differentiable functions of x, the related functions

sin x 1
tanx = secx =
Cos x COos x
COS x
cotx = — CSCXx = ——
sin x sin x

are differentiable at every value of x at which they are defined. Their derivatives,
calculated from the Quotient Rule, are given by the following formulas.
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Notice the minus signs in the derivative
formulas for the cofunctions.

d d
— (tanx) = sec® x (6) — (secx) = secx tan x 7)
dx dx
d , d
—(cot x) = —csc“x  (8) —(cscx) = —cscxcotx  (9)
dx dx

To show how a typical calculation goes, we derive Eq. (6). The other derivations
are left to Exercises 67 and 68.

EXAMPLE 7 Find dy/dx if y =tanx.

Solution

d . . d
d : cos x —(sinx) — sinx —(cos x) Quotient
= (,—i— (Smx) = dx dx Rule

X

cOS x cos x — sinx (— sinx)

d (tan x)
— X
dx

cos x cos? x

cos? x
cos? x + sin’ x

cos? x

1 2
= = SeCc™ x
cos? x u

EXAMPLE 8 Find y” if y = sec x.

Solution
y = secx
y' = secx tanx Eq. (7)
d
y" = —(sec x tan x)
dx
d d
= secx—(tanx) + tan x — (sec x) Product Rule
dx dx
= sec x (sec’ x) + tanx (sec x tan x)
= sec’ x + secx tan’ x d
EXAMPLE 9

d d
a) —(3x+cotx) =3+ —(cotx) =3 —csc’x
dx dx

b L ()= Lesen) = 2L esen)
- = —(2cscx) =2—/(c
dx \sinx dx * dx sex

= 2(—cscx cotx) = —2cscx cotx a



y
3_
_ tan2x
5x
2_
1_
=2
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2.38 The graph of y = (tan 2x)/5x steps
across the y-axis at y = 2/5 (Example 11).
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Continuity of Trigonometric Functions

Since the six basic trigonometric functions are differentiable throughout their do-
mains they are also continuous throughout their domains by Theorem 1, Section
2.1. This means that sin x and cos x are continuous for all x, that sec x and tanx are
continuous except when x is a nonzero integer multiple of 7 /2, and that csc x and
cotx are continuous except when x is an integer multiple of w. For each function,
lim,_,. f(x) = f(c) whenever f(c) is defined. As a result, we can calculate the
limits of many algebraic combinations and composites of trigonometric functions
by direct substitution.

EXAMPLE 10
e V2 +secx V2 +secO V241 V3 /3
1 = = = — = —
=0 cos (o — tan x) cos(m —tan0) cos(w —0) -1 a

Other Limits Calculated with Theorem 4

The equation limy_,¢(sinf)/6 = 1 holds no matter how 6 may be expressed:

im 22X _ . 9=x: lim 8"7‘7x=1, 0 =7x:
X

x—0 X x—0

Asx —> 0,6 >0 Asx —> 0,6 >0
. sin(2/3)x
lim (2/3)

Jm W = 1, 6 = (2/3))(

Asx —> 0,6 —>0

Knowing this helps us calculate related limits involving angles in radian measure.

EXAMPLE 11
. . Eq. (2) does not apply to the original
a) lim sin 2x — lim (2/5) - sin2x fraction. We need a 21 in the denominator.
x—>0 5x T x50 (2/5) . 5x not a Sx. We produce it by multiplying
. numerator and denominator by 2/5.
2 i sin 2x
= — lm Now Eq. (2) applics
5 x=0 2x 9 { ppie
2 ) 2
S5 S
. tan2x . sin 2x 1 in 2y
b) lim = lim . tan 2x = oot
x=0  5x x—0 5x cos 2x cos 2

_ (lim sin2x> (lim 1 )
x—0 Sx x—0 CcOS2x

(2 1 2

B (g) (cosO) =5

See Fig. 2.38. a

Part (a) and continuity of cosa
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Set§ =t — (/2).

lim T Then & — 0 as
t—(7/2) t _ t — (m/2).
2
sin @
=lim — = 1
0—0 9

Limits

Find the limits in Exercises 27-32.

. in 1 1
m Si - — =
x—2 X 2

lim/6 /14 cos (7T csc x)

x—>—7

. b4

lim sec [cosx +ntan( ) - 1]
x—0 4secx

. . T +tanx

lim sin{ —m
x—0 tanx — 2secx

. sint
lim tan (1 - —)
t—0 t

lim cos | ——
60 sin @

Find the limits in Exercises 33-48.

. EXAMPLE 12
Applications
The occurrence of the function (sinx)/x in
calculus is not an isolated event. The function
arises in such diverse fields as quantum
physics (where it appears in solutions of the
wave equation) and electrical engineering (in
signal analysis and signal filter design) as
well as in the mathematical fields of
differential equations and probability theory.
Exercises 2.4
Derivatives
In Exercises 1-12, find dy/dx.
3
1. y=—10x + 3cosx 2. y=—+45sinx 27.
x
1
3. y=cscx —4/x+7 4. y=x>cotx — 28.
x
5. y = (secx + tanx)(sec x — tan x) 29
6. y = (sinx + cos x) sec x
7. y= 0% 8 y= _S0S% 30.
1+ cotx 14 sinx
4 1 cosx X
9. y= o 10. y =
Y= Cosx + tan x Y X cos x 31
11. y = x?sinx +2xcosx — 2sinx
12. y = x%cosx — 2xsinx — 2cosx 32.
In Exercises 13-16, find ds/dt.
13. s =tant —¢ 14, s =12 —sect+1
1 i 33.
15. s = 2 Fosct 16. s = _smt
1 —csct 1 —cost
In Exercises 17-20, find dr/d6. 35.
17. r =4 —6%siné 18. r =0sinf + cos b 3
19. r =secHcsch 20. r = (1 +secH)sinb )
In Exercises 21-24, find dp/dq. 3.
1
2. p=5+— 22. p=(1
p cotq p=(1+cscq)cosq 41.
23, p= SN teosq 24 p— BN 43
cosq 1 +tang .
25. Find y” if (a) y = cscx, (b) y =secx.
45.
26. Find y® =d%y/dx* if (a) y = —2sinx, (b) y =9cosx.

in /26 in kt
lim M 34. lim o (k constant)
6—0 \/50 t—0

in3
lim 202 36. lim —
y—>0 4y h—0- sin3h

tan 2 2t
lim 2% 38. lim ——
x—=0 X t—-0 tant

2

lim & 40. lim 6x%(cotx)(csc2x)
x=0 cosSx x>0
im x.+xcosx 2. lim x? —x +sinx
x>0 sinXx cosx x—0 2x

in(1— t in (sinh
lim sin ( cost) 44. lim smfsm )
t—0 1 —cost h—0 sinh

ino ins
lim —o 46. lim 22X
6—0 sin 26 x—0 sin4x



tan 3x

47. lim —
x—0 sin 8x

sin3ycotSy

48. lim
y—>0  ycotdy

Tangent Lines

In Exercises 49-52, graph the curves over the given intervals, together
with their tangents at the given values of x. Label each curve and
tangent with its equation.
49. y=sinx, —37/2<x<2n

x=-m, 0, 3r/2
50. y=tanx, —x7/2<x<m/2

x=-m/3,0,7/3

51. y=secx, —n/2<x<m/2

x=-m/3, n/4
52 y=1+cosx, —3n/2<x<2m
x=-—n/3,3n/2

Do the graphs of the functions in Exercises 53-56 have any horizontal
tangents in the interval 0 < x < 2x? If so, where? If not, why not?
You may want to visualize your findings by graphing the functions
with a grapher.

53. y=x+sinx 54. y =2x +sinx

55. y=x —cotx 56. y=x+2cosx

57. Find all points on the curve y = tanx, —7 /2 < x < 7 /2, where
the tangent line is parallel to the line y = 2x. Sketch the curve
and tangent(s) together, labeling each with its equation.

58. Find all points on the curve y = cotx,0 < x < w, where the
tangent line is parallel to the line y = —x. Sketch the curve and
tangent(s) together, labeling each with its equation.

In Exercises 59 and 60, find an equation for (a) the tangent to the
curve at P and (b) the horizontal tangent to the curve at Q.

59. 60.

y=4+cotx — 2cscx

(Generated by Mathematica)

[
1 2 3

=)
IRy

y=1+ V2cscx + cotx
(Generated by Mathematica)
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Simple Harmonic Motion

The equations in Exercises 61 and 62 give the position s = f(¢) of
a body moving on a coordinate line (s in meters, ¢ in seconds). Find
the body’s velocity, speed, acceleration, and jerk at time ¢t = 7 /4 sec.

61. s =2 — 2sint 62. s =sint + cost

Theory and Examples
63. Is there a value of c that will make
)
sin” 3x
fo =@ *70
c, x=0
continuous at x = 0? Give reasons for your answer.

64. Is there a value of b that will make

x+b, x<0
cosx, x>0

glx) = {

continuous at x = 0? differentiable at x = 0? Give reasons for
your answers.

999 725
(cos x) 66. Find m(sm X)

67. Derive the formula for the derivative with respect to x of

65. Find -d—x@

a) secx b) cscx.

68. Derive the formula for the derivative with respect to x of cotx.

Grapher Explorations
69. Graph y = cosx for —7 < x < 2m. On the same screen, graph
sin (x + k) — sinx
=—F
for h =1,0.5,0.3, and 0.1. Then, in a new window, try & =
—1,—-0.5, and —0.3. What happens as & — 0v? as h — 07?
What phenomenon is being illustrated here?
70. Graph y = —sinx for —7 < x < 2. On the same screen, graph
cos(x +h) —cosx
- h
for h =1,0.5,0.3, and 0.1. Then, in a new window, try A =

—1,-0.5, and —0.3. What happens as &7 — 0t? as h — 07?
What phenomenon is being illustrated here?

71. Centered difference quotients. The centered difference quo-
tient
fx+h)—f(x—h)
2h

is used to approximate f’(x) in numerical work because (1) its
limit as 7 — 0 equals f’(x) when f’(x) exists, and (2) it usually
gives a better approximation of f’(x) for a given value of 4 than
Fermat’s difference quotient
fx+h) = fx)
h
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See the figure below.

y
Slope = f'(x)
f&x+h) — f(x)
Slope = —————=
C 3 h
|
A : N\
_fet+th—fx—h
I i I Slope = h
|
y=fx | | |
| | |
| | |
| | |
| | |
L,
| h ] h |
o x—h x x+h

a) To see how rapidly the centered difference quotient for
f(x) =sinx converges to f'(x) = cosx, graph y = cosx

together with
__sin(x +h) —sin(x —h)
- 2h

over the interval [, 27] for & = 1, 0.5, and 0.3. Compare
the results with those obtained in Exercise 69 for the same

values of A.

b) To see how rapidly the centered difference quotient for
f(x) =cosx converges to f'(x)=—sinx, graph y =

—sinx together with
cos (x +h) —cos(x — h)
- 2h

over the interval [—m, 2] for A = 1, 0.5, and 0.3. Compare
the results with those obtained in Exercise 70 for the same

values of A.

72. A caution about centered difference quotients. (Continua-

tion of Exercise 71.) The quotient

fx+h) —fx—h
2h

may have a limit as # — 0 when f has no derivative at x. As a

case in point, take f(x) = |x| and calculate
fim [0+ h| —|0—h|
h—0 2h ’

73.

74.

75.

76.

As you will see, the limit exists even though f(x) = |x| has no
derivative at x = 0.

Graph y = tan x and its derivative together on (=7 /2, 7 /2). Does
the graph of the tangent function appear to have a smallest slope?
a largest slope? Is the slope ever negative? Give reasons for your
answers.

Graph y = cotx and its derivative together for 0 < x < . Does
the graph of the cotangent function appear to have a smallest
slope? a largest slope? Is the slope ever positive? Give reasons
for your answers.

Graph y = (sinx)/x, y = (sin2x)/x, and y = (sin4x)/x to-
gether over the interval —2 < x < 2. Where does each graph
appear to cross the y-axis? Do the graphs really intersect the
axis? What would you expect the graphs of y = (sin5x)/x and
y = (sin (—3x))/x to do as x — 0? Why? What about the graph
of y = (sinkx)/x for other values of k? Give reasons for your
answers.

Radians vs. degrees. What happens to the derivatives of sin x
and cos x if x is measured in degrees instead of radians? To find
out, take the following steps.

a)  With your graphing calculator or computer grapher in degree
mode, graph
sinh

f(h):T

and estimate limy,_ o f (k). Compare your estimate with
w/180. Is there any reason to believe the limit should be

/1807
b) With your grapher still in degree mode, estimate
. cosh—1
T

¢) Now go back to the derivation of the formula for the deriva-
tive of sin x in the text and carry out the steps of the deriva-
tion using degree-mode limits. What formula do you obtain
for the derivative?

d) Work through the derivation of the formula for the derivative
of cos x using degree-mode limits. What formula do you
obtain for the derivative?

e) The disadvantages of the degree-mode formulas become
apparent as you start taking derivatives of higher order. Try
it. What are the second and third degree-mode derivatives
of sin x and cos x?

The Chain Rule

We now know how to differentiate sin x and x2 — 4, but how do we differentiate a
composite like sin (x? — 4)? The answer is, with the Chain Rule, which says that
the derivative of the composite of two differentiable functions is the product of their
derivatives evaluated at appropriate points. The Chain Rule is probably the most
widely used differentiation rule in mathematics. This section describes the rule and
how to use it. We begin with examples.



B: u turns A: x turns

C: y turns

2.39 When gear A makes x turns, gear B
makes u turns and gear C makes y turns.

By comparing circumferences or counting
teeth, we see that y = u/2 and u = 3x, so
y = 3x/2. Thus dy/du = 1/2, du/dx = 3, and
dyl/dx = 3/2 = (dy/du)(dul/dx).

2.40 Rates of change multiply: the
derivative of f o g at x is the derivative of
f at the point g(x) times the derivative of
g atx.
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EXAMPLE 1 The function y = 6x — 10 = 2(3x — 5) is the composite of the
functions y = 2u and u = 3x — 5. How are the derivatives of these three functions
related?

Solution We have
d d d
Y _6 Y _» “

— =0, —_— =4, - = 3
dx du dx
Since 6 =2 .3,
dy dy du
dx  du dx’ d
Is it an accident that

dy dy du‘7
dx  du dx’

If we think of the derivative as a rate of change, our intuition allows us to see that

this relationship is reasonable. For y = f () and u = g(x), if y changes twice as

fast as u and u changes three times as fast as x, then we expect y to change six

times as fast as x. This is much like the effect of a multiple gear train (Fig. 2.39).
Let us try this again on another function.

EXAMPLE 2
y = 9x* + 6x2 + 1 = (3x* + 1)?

is the composite of y = u? and u = 3x? + 1. Calculating derivatives, we see that

j—i . Z—Z = 2u - 6x
=203x*+1).6x
=36x> + 12x
and
j—z = d—d;(9x4+6x2+ 1)
= 36x> + 12x.
Once again,
dy du _dy
du dx dx’ d

The derivative of the composite function f(g(x)) at x is the derivative of f at
g(x) times the derivative of g at x. This is known as the Chain Rule (Fig. 2.40).

Composite fo g

Rate of change at
xis f(g(x)) - ')
Rate of change

atxis g'(x) at g(x) is f'(g(x)) S N—

x u = g(x) y = flu) = f(g(x))
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Theorem 5
The Chain Rule
If f(u) is differentiable at the point u = g(x), and g(x) is differentiable at

x, then the composite function (f o g)(x) = f(g(x)) is differentiable at x,

(fo0)(@) = f(g@) - g (). (1)
In Leibniz notation, if y = f(#) and u = g(x), then
—‘-1—)1 i fi.z . d_u’ (2)
dx du dx

' x‘wyhefe dy/du is evaluated at u = g(x).

It would be tempting to try to prove the Chain Rule by writing
Ay Ay Au
Ax  Au Ax
and taking the limit as Ax — 0. This would work if we knew that Au, the change
in u, was nonzero, but we do not know this. A small change in x could conceivably

produce no change in u#. The proof requires a different approach, using ideas in
Section 3.7. We will return to it when the time comes.

EXAMPLE 3 Find the derivative of y = +/x2 + 1.

Solution Here y = f(g(x)), where f(u) = /u and g(x) = x*> + 1. Since the
derivatives of fand g are

) = L ) =
f@=37 ad g =2

the Chain Rule gives
dy d

== Ef(g(x)) = f'(g(x)) - g'(x)

1 1
.o = —— 2
NI N
X

x2+1' D

The “Outside-Inside” Rule

It sometimes helps to think about the Chain Rule the following way. If y = f(g(x)),
Eq. (2) tells us that

d
= = flg)] - g'x). @3)
X

In words, Eq. (3) says: To find dy/dx, differentiate the “outside” function f and
leave the “inside” g(x) alone; then multiply by the derivative of the inside.
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EXAMPLE 4

derivative of
outside the outside

d
—sin(x?+x) =cos(x*+x) - Qx+1)
dx —— N——

——
inside inside derivative
left alone of the inside D

Repeated Use of the Chain Rule

We sometimes have to use the Chain Rule two or more times to find a derivative.
Here is an example.

EXAMPLE 5 Find the derivative of g(¢) = tan (5 — sin 2z).
Solution

i 4 e
g = o (tan (5 — sin 2¢))

Derivative of

d
= sec’(5 —sin2t) « —(5 — sin2¢) tanu with
dt u=>5-sin2ts

d Derivative of
= sec?(5 — sin2¢) - (O — (cos2t) - Z(Zt)) 5 —sinu

with u = 2t
= sec?(5 — sin2¢) « (—cos2¢) - 2

= —2(cos 2¢) sec*(5 — sin 2¢) o

Differentiation Formulas That Include the Chain Rule

Many of the differentiation formulas you will encounter in your scientific work
already include the Chain Rule.

If fis a differentiable function of u, and u is a differentiable function of x, then
substituting y = f () in the Chain Rule formula

dy dy du
dx  du dx
leads to the formula
d du
— = f'(u)—. 4
dxf(u) f(u)dx (4)

For example, if u is a differentiable function of x, » is an integer, and y = u”",
then the Chain Rule gives
dy d du

PR PCR

n—1

du
=nu"" —

dx’ to u itself gives nu

Differentiating 4" with respect

n—1
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sin” x is short for (sin x)", n# —1.

Power Chain Rule

If u(x) is a differentiable function and # is an integer, then " is differentiable
and

d
—u" = nu" —. (5)
x

EXAMPLE 6
d d
a) — sin’x = 5sin* x—(sinx) Eq. (5) with u = sinx.n =5
dx dx
= 5sin* x cosx
d -3 4 4 .
b) —2x+1D)7==-32x+1D)*—Qx+1) Eq. 5) withu =2v+1.n=-3
dx dx

=-32x+ 1) Q)

=—6Qx+1)7*
d 3 47 3 a6 o3 4 .
c) ?(SX —x7)' =706x" —x%) d—(5x —x") Eq. (5) withu =5x* —x*n=7
x X
= T7(5x3 — xH0 (5 - 3x%2 — 4x3)
= 7(5x3 — x*)% (15x% — 4x3)

d [ 1 d
d — = L GBx—2)!
)dx(3x—2> TS

=—-13x—-2)2 i(3x -2)
dx

Eq. (5) with u =3x —2.n = —1

=—13x—-2)"2(3)
_ 3
T (3x—=2)?

In part (d) we could also have found the derivative with the Quotient Rule. a

EXAMPLE 7  Radians vs. degrees

It is important to remember that the formulas for the derivatives of sin x and cos x
were obtained under the assumption that x is measured in radians, not degrees.
The Chain Rule brings new understanding to the difference between the two. Since
180° = & radians, x° = wx /180 radians. By the Chain Rule,

d . d . (nx b4 X b4 o

25506 = gosin (3g5) = 15 05 (55) = 780 %05 &7
See Fig. 2.41. Similarly, the derivative of cos (x°) is —(r /180) sin (x°).

The factor 7 /180, annoying in the first derivative, would compound with re-

peated differentiation. We see at a glance the compelling reason for the use of
radian measure. d



2.41 sin(x°) oscillates only =/180 times as
often as sin x oscillates. Its maximum
slope is 7/180.
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= sin(x°) = sin X
r= =180

O
HELARULRR

sin x

|
y=

Melting Ice Cubes

In mathematics, we tend to use letters like f, g, x, y, and u for functions and
variables. However, other fields use letters like V, for volume, and s, for side, that
come from the names of the things being modeled. The letters in the Chain Rule
then change too, as in the next example.

EXAMPLE 8 The melting ice cube
How long will it take an ice cube to melt?

Solution As with all applications to science, we start with a mathematical model.
We assume that the cube retains its cubical shape as it melts. We call its side length
5, s0 its volume is V = s*. We assume that V and s are differentiable functions of
time 7. We assume also that the cube’s volume decreases at a rate that is proportional
to its surface area. This latter assumption seems reasonable enough when we think
that the melting takes place at the surface: Changing the amount of surface changes
the amount of ice exposed to melt. In mathematical terms,

dv )

i k(6s°), k> 0.
The minus sign indicates that the volume is decreasing. We assume that the pro-
portionality factor k is constant. (It probably depends on many things, however,
such as the relative humidity of the surrounding air, the air temperature, and the
incidence or absence of sunlight, to name only a few.)

Finally, we need at least one more piece of information: How long will it take a
specific percentage of the ice cube to melt? We have nothing to guide us unless we
make one or more observations, but now let us assume a particular set of conditions
in which the cube lost 1/4 of its volume during the first hour. (You could use letters
instead of particular numbers: say n% in r hours. Then your answer would be in
terms of n and r)

Mathematically, we now have the following problem.

Given: V=s> and (iz’_‘t/ = —k(6s5%)
V=V, when t=0
V=@3/4Vy, when r=1h

Find: The value of t when V =0
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We apply the Chain Rule to differentiate V = s° with respect to #:
av ds
— =352 —.
ar ~ 7 dr
We set this equal to the given rate, —k(6s2), to get

2ds

35225 = ks
S d[ A)
d
“_
d1

The side length is decreasing at the constant rate of 2k units per hour. Thus, if
the initial length of the cube’s side is s, the length of its side one hour later is
s1 = so — 2k. This equation tells us that

2k =350 — I1-

The melting time is the value of 7 that makes 2kt = s9. Hence,
S0 So 1

% so—s 1—(s1/80)

Imelt =

But
3 1/3
-V
S1 (4 0) 3 173
— === ~ 0.91.
50 (Vo)!/3 4
Therefore,
1
fpet = ———— ~ 11 h.
melt T 1091
If 1/4 of the cube melts in 1 h, it will take about 10 h more for the rest of it to melt.

a

If we were natural scientists interested in testing the assumptions on which
our mathematical model is based, our next step would be to run a number of
experiments and compare their outcomes with the model’s predictions. One practical
application might lie in analyzing the proposal to tow large icebergs from polar
waters to offshore locations near southern California, where the melting ice could
provide fresh water. As a first approximation, we might imagine the iceberg to be
a large cube or rectangular solid, or perhaps a pyramid. We will say more about
mathematical modeling in Section 4.2.

Exercises 2.5

Derivative Calculations

In Exercises 1-8, given y = f(u) and u = g(x), find dy/dx = 5. y=cosu, u=sinx
f(g(x))g'(x). 6. y=sinu, u=x—cosx
1L.y=6u—-9, u=(1/2)x* 2. y=2 u=8x-—-1 7. y=tanu, u=10x -5

3. y=sinu, u=3x+1 4. y=cosu, u=-—x/3 8. y=—secu, u=x>+7x



In Exercises 9-18, write the function in the form y = f(«) and u =
g(x). Then find dy/dx as a function of x.

9. y=Q2x+1)7°
1 y=(1- ;)_7

2 4
13. y:<x—+x—1)
8 X

15. y = sec (tanx)

17. y =sin’ x

10. y = (4 —3x)°
12, y = (-’25 - 1)_10

14 __x+1 >
YE\5 T

1
16. y = cot (n - —)
x

18. y =5cos™*x

Find the derivatives of the functions in Exercises 19-38.

19. p=43—-1t

20. g =/2r — r?

4 4
21. s = — sin3t + — cos 5¢
S

3n

3nt 3wt
22. s =sin|{ — —
K 51n(2>—|—cos<2)

23. r = (csch +coth)™!

25. y = x?sin* x + x cos ™2

24, r = —(sec6 + tanf) !

1
26. y = —sin>x — %cos3x
x

1 ; 1\
2. y=50x-2) +<4——2)

28. y=(5—2x)‘3+%<
29, y=(4x +3)*x+ 173
31. h(x) =xtan 2/x) +7

3. £(0) = sin @ 2
) T \1+coso
35. r =sin (%) cos (26)

t
37. g =sin| ——
1 («/t+ 1)

2

2 4
—+1)
X

30. y = (2x —5)71(x? — 5x)°

32, k(x) = x?sec (l)
x

-1
4. o) = (1 +.cost)

sint

36. r = sec+/ftan (%)

In Exercises 3948, find dy/d:t.

39. y =sin’(nt —2)
41. y = (1 +cos2t)™

43. y = sin(cos 2t — 5))

RN
45. y=(1+tn*{ —

g ( e (12))
47. y = /1 +cos (t?)

Find y” in Exercises 49-52.

13
49.y::<1+—)
X

40. y =sec’mt
42. y = (1 +cot(t/2))2

44. y = cos <5 sin <%))

46. y = (1 + cos?(71)’
48. y =4 sin ( t)
50. y=(1-x)™!

51

1
. y:acot(3x—1)
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52. y =9tan (g)

Finding Numerical Values of Derivatives
In Exercises 53-58, find the value of (f o g)’ at the given value of x.

53.

54.

5S.

56.

57.

58.

59.

60.

fw=uw+1, u=gkx)=/x, x=1
f(u)=1—1, u=gx)= , x=-—1
u 1—x
f(u)=cot%, u=gx)=5vx% x=1
fw) = , u=gx)=mnx, x=1/4
f(u):%, u=gx)=10x2+x+1, x=0
f()—( ')2 e =L 1, x=—1
1 , u=g8kx =2 , X =

Suppose that functions f and g and their derivatives with respect
to x have the following values at x =2 and x = 3.

x fx) gx) [ g'(x)
2 8 2 1/3 -3
3 3 —4 27 5

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a) 2f(x), x=2 b) f(x)+gx), x=3
9 fx)-gx), x=3 d f(x)/gx), x=2
e fel), x=2 f) VG, x=2

g) 1/g°(x), x=3

) + 82 (x), x=2

Suppose that the functions f and g and their derivatives with
respect to x have the following values at x = 0 and x = 1.

x f&x) gx) [t g'(x)
0 1 1 5 1/3
1 3 —4 ~1/3 -8/3

Find the derivatives with respect to x of the following combina-
tions at the given value of x,

a) S5f(x)—gkx), x=1 b) f(x)g*x), x=0
fx) _

©) e d f(gkx), x=0

e g(f(x), x=0 ) «l+feN? x=1

g) fx+gkx), x=0
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61
62

. Find ds/dt when 6 =3m /2 if s = cosf and d6/dt = 5.
. Find dy/dt when x =1 if y = x2 +7x — 5 and dx/dt = 1/3.

Choices in Composition

What happens if you can write a function as a composite in different
ways? Do you get the same derivative each time? The Chain Rule
says you should. Try it with the functions in Exercises 63 and 64.

63

64.

. Find dy/dx if y = x by using the Chain Rule with y as a com-

posite of

a) y=(/5+7 and u=>5x-35

b) y=1+{/u) and u=1/(x —1).

Find dy/dx if y = x*? by using the Chain Rule with y as a
composite of

y=u’ and u=./x

y=4u ’

a)

b) and u =x".

Tangents and Slopes

65. a) Find the tangent to the curve y = 2tan (wx/4) at x = 1.
b) What is the smallest value the slope of the curve can ever
have on the interval —2 < x < 2? Give reasons for your
answer.

66. a) Find equations for the tangents to the curves y = sin2x and
y = —sin (x/2) at the origin. Is there anything special about
how the tangents are related? Give reasons for your answer.

b) Can anything be said about the tangents to the curves y =

y
60 T
. \.\

& 40 -

° \\"-.

= B

. & 20— — ”"7/*“"___* _*_*__*"\'-_*__*“—***_“7

2.42 Normal mean air temperatures at & / X /
Fairbanks, Alaska, plotted as data points. [LE) 7 N

The approximating sine function is

(Exercise 68).

sinmx and y = —sin(x/m) at the origin (m a constant
# 0)? Give reasons for your answer.
¢) For a given m, what are the largest values the slopes of
the curves y = sin mx and y = — sin (x/m) can ever have?
Give reasons for your answer.
The function y = sinx completes one period on the interval
[0, 2], the function y = sin2x completes two periods, the
function y = sin (x/2) completes half a period, and so on. Is
there any relation between the number of periods y = sinmx
completes on [0, 277] and the slope of the curve y = sinmx
at the origin? Give reasons for your answer.

d)

Theory, Examples, and Applications
67. Running machinery too fast. Suppose that a piston is moving

68.

69.

70.

71.

72.

73.

straight up and down and that its position at time ¢ seconds is
s = Acos (2mbt),

with A and b positive. The value of A is the amplitude of the mo-
tion, and b is the frequency (number of times the piston moves up
and down each second). What effect does doubling the frequency
have on the piston’s velocity, acceleration, and jerk? (Once you
find out, you will know why machinery breaks when you run it
too fast.)

Temperatures in Fairbanks, Alaska. The graph in Fig. 2.42
shows the average Fahrenheit temperature in Fairbanks, Alaska,
during a typical 365-day year. The equation that approximates
the temperature on day x is

2
= 37sin | — (x — 101 25.
y sin [365 (x )] +

a)
b)

On what day is the temperature increasing the fastest?
About how many degrees per day is the temperature in-
creasing when it is increasing at its fastest?

The position of a particle moving along a coordinate line is s =
+/1+4¢t, with s in meters and 7 in seconds. Find the particle’s
velocity and acceleration at ¢ = 6 sec.

Suppose the velocity of a falling body is v = k+/s m/sec (k a
constant) at the instant the body has fallen s meters from its
starting point. Show that the body’s acceleration is constant.

The velocity of a heavy meteorite entering the earth’s atmosphere
is inversely proportional to /s when it is s kilometers from the
earth’s center. Show that the meteorite’s acceleration is inversely
proportional to s2.

A particle moves along the x-axis with velocity dx/dt = f(x).
Show that the particle’s acceleration is f(x) f’(x).
Temperature and the period of a pendulum. For oscillations

of small amplitude (short swings), we may safely model the
relationship between the period T and the length L of a simple

. 2
f(x) = 37sin [ﬁ(x - 101)] +25

20 Jan Feb Mar Apr May Jun

Jul Aug Sep Oct Nov Dec Jan Feb Mar



74.

75.

76.

pendulum with the equation

L
T =27 [—,
8
where g is the constant acceleration of gravity at the pendulum’s
location. If we measure g in centimeters per second squared,
we measure L in centimeters and T in seconds. If the pendulum
is made of metal, its length will vary with temperature, either
increasing or decreasing at a rate that is roughly proportional to
L. In symbols, with u being temperature and k the proportionality
constant
dL
du ~
Assuming this to be the case, show that the rate at which the
period changes with respect to temperature is k7 /2.

kL.

Suppose that f(x) = x% and g(x) = |x|. Then the composites
(fo ) =Ix=x> and (go )H(x) =x*| = x>

are both differentiable at x = 0 even though g itself is not differ-
entiable at x = 0. Does this contradict the Chain Rule? Explain.

Suppose that u = g(x) is differentiable at x = 1 and that y =
f(u) is differentiable at u = g(1). If the graph of y = f(g(x))
has a horizontal tangent at x = 1, can we conclude anything about
the tangent to the graph of g at x = 1 or the tangent to the graph
of fat u = g(1)? Give reasons for your answer.

Suppose u = g(x) is differentiable at x = =5, y = f(u) is dif-
ferentiable at u = g(—5), and (f o g)’'(—5) is negative. What, if
anything, can be said about the values of g’(—5) and f'(g(—5))?

Using the Chain Rule, show that the power rule (d/dx)x" = nx"~!
holds for the functions x" in Exercises 77 and 78.

77. x4 =[x

78. x4 =

Y

80.

xJ/x

us Grapher Explorations
79.

The derivative of sin2x. Graph the function y = 2cos2x for
—2 < x < 3.5. Then, on the same screen, graph

_ sin2(x +h) —sin2x

- h
for h =1.0,0.5, and 0.2. Experiment with other values of A,

including negative values. What do you see happening as h — 0?
Explain this behavior.

The derivative of cos(x?). Graph y = —2xsin (x?) for —2 <
x < 3. Then, on the same screen, graph

_cos [(x + h)*] — cos (x?)

- h
for h =1.0,0.7, and 0.3. Experiment with other values of A.
What do you see happening as & — 0? Explain this behavior.

82.
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& CAS Explorations and Projects
81.

As Fig. 2.43 shows, the trigonometric “polynomial”
s = f(t) = 0.78540 — 0.63662 cos 2t — 0.07074 cos 61 —
0.02546 cos 10t — 0.01299 cos 141

gives a good approximation of the sawtooth function s = g(z) on
the interval [—m, 7]. How well does the derivative of f approx-
imate the derivative of g at the points where dg/dt is defined?
To find out, carry out the following steps.

a) Graph dg/dt (where defined) over [—m, 7].

b) Find df/d:.

¢) Graph df/dt. Where does the approximation of dg/dt by
df/dt seem to be best? least good? Approximations by
trigonometric polynomials are important in the theories of
heat and oscillation, but we must not expect too much of
them, as we see in the next exercise.

s/=g(t)
= f(t
/s f®

2.43 The approximation of a sawtooth function by a
trigonometric “polynomial” (Exercise 81).

(Continuation of Exercise 81.) In Exercise 81, the trigonometric
polynomial f(¢) that approximated the sawtooth function g(t)
on [—m, w] had a derivative that approximated the derivative of
the sawtooth function. It is possible, however, for a trigonometric
polynomial to approximate a function in a reasonable way without
its derivative approximating the function’s derivative at all well.
As a case in point, the “polynomial”

s = h(t) = 1.2732sin2¢ + 0.4244 sin 6¢ + 0.25465 sin 10¢
+0.18186 sin 147 4 0.14147 sin 18¢

graphed in Fig. 2.44 approximates the step function s = k(t)
shown there. Yet the derivative of 4 is nothing like the derivative
of k.

a) Graph dk/dt (where defined) over [—m, 7].

b) Find dh/dt.

¢) Graph dh/dt to see how badly the graph fits the graph of
dk/dt. Comment on what you see.

s
-7 _m 0 m ™
2 2
— -1

2.44 The approximation of a step function by a
trigonometric “polynomial” (Exercise 82).

s = k()

s = h(t)

j\
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When are the functions defined by
F(x, y) = 0 differentiable?

When may we expect the functions of x
defined by an equation of the form

F(x,y) =0, where F(x,y) denotes an
expression in x and y, to be differentiable? A
theorem in advanced calculus guarantees this
to be the case if F is continuous (in a sense
to be described in Chapter 12) and the first
derivatives of F with respect to each variable,
with the other held constant, are continuous,
and the derivative with respect to y is
nonzero. The functions you will encounter in
this section all meet these criteria.

2.45 The curve x3 +y3 — 9xy = 0 is not the graph of
any one function of x. However, the curve can be
divided into separate arcs that are the graphs of

Implicit Differentiation and Rational Exponents

When we cannot put an equation F(x, y) = 0 in the form y = f(x) to differentiate
in the usual way, we may still be able to find dy/dx by implicit differentiation.
This section describes the technique and uses it to extend the Power Rule for
differentiation to include all rational exponents.

Implicit Differentiation

The graph of the equation x* + y* — 9xy = 0 (Fig. 2.45) has a well-defined slope
at nearly every point because it is the union of the graphs of the functions y =
fix),y = fo(x), and y = f3(x), which are differentiable except at O and A. But
how do we find the slope when we cannot conveniently solve the equation to
find the functions? The answer is to treat y as a differentiable function of x and
differentiate both sides of the equation with respect to x, using the differentiation
rules for powers, sums, products, and quotients and the Chain Rule. Then solve for
dy/dx in terms of x and y together to obtain a formula that calculates the slope at
any point (x, y) on the graph from the values of x and y.

The process by which we find dy/dx is called implicit differentiation. The
phrase derives from the fact that the equation x> + y* — 9xy = 0 defines the func-
tions fi, f2, and f3 that give the graph’s slope implicitly (i.e., hidden inside the
equation), without giving us explicit formulas to work with.

y

5 y= fl(x)
(xp0 ¥))

functions of x. This particular curve, called a folium, (Y3 N\ = £50)

dates to Descartes in 1638.

EXAMPLE 1 Find dy/dx if y* = x.

Solution The equation y? = x defines two differentiable functions of x that we
can actually find, namely y; = </ and y, = —/x (Fig. 2.46). We know how to
calculate the derivative of each of these for x > 0:

d 1 d 1
yl-—_—— and 2=-—

dx 2% dx 2%
But suppose we knew only that the equation y?> = x defined y as one or more
differentiable functions of x for x > 0 without knowing exactly what these functions
were. Could we still find dy/dx?



y o 1 1

Slope—z—yl=ﬁ ylz\];
| P(x, Vx)
|

7 | :

|
: (x, —Vx)

Slope=l=—L y2=—\/;
,  2x

2.46 The equation y2 —x =0, or y2 = x
as it is usually written, defines two
differentiable functions of x on the
interval x > 0. Example 1 shows how to
find the derivatives of these functions
without solving the equation y? = x for y.

y
y[=\125—x2
5
G.-4
—_x_3
Slope = y= 1

2.47 The circle combines the graphs of
two functions. The graph of y, is the
lower semicircle and passes through

(3, -4).

Solving polynomial equations in x
and y

The quadratic formula enables us to solve a
second degree equation like y? — 2xy +
3x2 =0 for y in terms of x. There are
somewhat more complicated formulas for
solving equations of degree three and four.
But there are no general formulas for solving
equations of degree five or higher. Finding
slopes on curves defined by such equations
usually requires implicit differentiation.
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The answer is yes. To find dy/dx we simply differentiate both sides of the
equation y? = x with respect to x, treating y = f(x) as a differentiable function
of x:

y =x
yd_y _ The Chain Rule gives %yz =
- d d
ax d_[f(X)]2 =2f (0 f'(x) = 2y
X dx
dy 1
dx 2y’

This one formula gives the derivatives we calculated for borh of the explicit solutions
yi=+xand y, = —/x:
dyr 1 1 dy, 1 1 _ 1
T2y, 2= 2% Q

dx 2y 2Jx dx

EXAMPLE 2 Find the slope of circle x? + y? = 25 at the point (3, —4).

Solution The circle is not the graph of a single function of x. Rather it is the com-
bined graphs of two differentiable functions, y; = +/25 — x? and y, = —/25 — x2
(Fig. 2.47). The point (3, —4) lies on the graph of y,, so we can find the slope by
calculating explicitly:

dy, —2x —6 3

dx |,y 2V —22|es 2425-9 4

But we can also solve the problem more easily by differentiating the given equation
of the circle implicitly with respect to x:

(1

4+ Loy =2
)+ (%) = - (29)

dy
2 2y—= =0
X+ ydx
dy x
dx  y
3 3
The slope at (3, —4) is _z = =,
Yia,—a -4 4

Notice that unlike the slope formula in Eq. (1), which applies only to points
below the x-axis, the formula dy/dx = —x/y applies everywhere the circle has a
slope. Notice also that the derivative involves both variables x and y, not just the
independent variable x.

To calculate the derivatives of other implicitly defined functions, we proceed
as in Examples 1 and 2: We treat y as a differentiable implicit function of x and
apply the usual rules to differentiate both sides of the defining equation.

EXAMPLE 3 Find dy/dx if 2y = x* +sin y.
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Implicit Differentiation Takes Four
Steps

1. Differentiate both sides of the
equation with respect to x, treating y
as a differentiable function of x.

2. Collect the terms with dy/dx on one
side of the equation.

3. Factor out dy/dx.

4. Solve for dy/dx by dividing.

The word normal

When analytic geometry was developed in
the seventeenth century, European scientists
still wrote about their work and ideas in
Latin, the one language that all educated
Europeans could read and understand. The
word normalis, which scholars used for
“perpendicular” in Latin, became normal
when they discussed geometry in English.

Solution
2y = x* +siny
i(z ) = i(x2 + sin y) Differentiate both sides
dx )= dx y with respect (o x ...
d , d .
= —(x") + —(sin
dx( ) dy( y)
d d ... treating y as a function
2% = 2x + cos y% of x and using the Chain
Rule.
Z.Z_y — COoS yj_y = 2x Collect terms with dy/dx ...
X
(2 —cos y);i—y = 2x ...and factor out dy/dx.
X
Z—y = 2—x Solve for dy/dx by dividing.
x 2 —cosy

a

Lenses, Tangents, and Normal Lines

In the law that describes how light changes direction as it enters a lens, the important
angles are the angles the light makes with the line perpendicular to the surface of
the lens at the point of entry (angles A and B in Fig. 2.48). This line is called the
normal to the surface at the point of entry. In a profile view of a lens like the one
in Fig. 2.48, the normal is the line perpendicular to the tangent to the profile curve
at the point of entry.

Tangent

Light ray
Curve of lens

Normal line - surface

Point3bféﬁtry

2.48 The profile of a lens, showing the bending (refraction) of a ray of light as it
passes through the lens surface.

Definition \
A line is normal to a curve at a point if it is perpendicular to the curve’s
tangent there. The line is called the normal to the curve at that point.

The profiles of lenses are often described by quadratic curves. When they are,
we can use implicit differentiation to find the tangents and normals.



y

€ <5
K> %
v 2 2
xT—xy+y =7

L2221

2.49 The graph of X2 —xy +y? =7 is an
ellipse. Example 4 shows how to find
equations for the tangent and normal
lines at the point (-1, 2).

Helga von Koch’s snowflake curve
(1904)

Start with an equilateral triangle, calling it
curve 1. On the middle third of each side,
build an equilateral triangle pointing outward.
Then erase the interiors of the old middle
thirds. Call the expanded curve curve 2. Now
put equilateral triangles, again pointing
outward, on the middle thirds of the sides of
curve 2. Erase the interiors of the old middle
thirds to make curve 3. Repeat the process,
as shown, to define an infinite sequence of
plane curves. The limit curve of the sequence
is Koch’s snowflake curve.

The snowflake curve is too rough to have
a tangent at any point. In other words, the
equation F(x,y) = 0 defining the curve does
not define y as a differentiable function of x
or x as a differentiable function of y at any
point. We will encounter the snowflake again
when we study length in Section 5.5.

Curve 1 Curve 2

Curve 3 Curve 4
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EXAMPLE 4 Find the tangent and normal to the curve x> — xy + y> =7 at
the point (—1,2) (Fig. 2.49).

Solution We first use implicit differentiation to find dy/dx:

P —xy+y*=7

4 -2 4y =2
0D = @) + 0D = ()

Differentiate both
sides with respect to x, ...

dx

y dx dy . ... treating xy as a product
ZX—(XE-I-ya)-l-Zya =0 and y as a function of x.
d
2y — x)d—y =y—2x Collect terms.
X
d_y = y-2x . Solve for dy/dx.
dx 2y—x

We then evaluate the derivative at (x, y) = (—1, 2) to obtain
dy _2-2(-1) 4
dx iy 20 —(=1) " 5

The tangent to the curve at (—1, 2) is the line

_y—2x

(-1.2) S 2y—x

y =2+§(x—(—1))

4., 14
=—x+—.
Y=351Ts

The normal to the curve at (—1, 2) is

5
y=2-,-(D)
5

3
y——zx+z. D

Using Implicit Differentiation to Find Derivatives
of Higher Order

Implicit differentiation can also produce derivatives of higher order.

EXAMPLE 5 Find d?y/dx?* if 2x3 — 3y* =17.

Solution To start, we differentiate both sides of the equation with respect to x to
find y' =dy/dx:

23 =3y* =7

d d d
—2x%) = —@3y) = —(7
dx(x) dx( y9) dx()

6x* —6yy' =0

X’ —yy =0

y=% (fy#0).
y
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We differentiate the equation x?> — yy’ = 0 again to find y”:
d , d

- _ N — 0
& =) =0

2x —y'y' —yy” =0  Product Rule with u = y, v =y’

' =2x =)

p_2x O

y = — —
y

Finally, we substitute y’ = x2/y to express y” in terms of x and y:

b2 Gyt 2 !

yo=— ——= O#0.

(y #0).

y y y Q
Rational Powers of Differentiable Functions
We know that the Power Rule
d n n—1
4 2
P X nx (2)

holds when n is an integer. We can now show that it holds when » is any rational
number.

Theorem 6
Power Rule for Rational Powers

If n is a rational number, then x” is differentiable at every interior point x
of the domain of x"~!, and

— x" = nx"1, (3)

Proof Let p and g be integers with ¢ > 0 and suppose that y = ¢/x? = x?/9, Then
y? = xP.

This equation is an algebraic combination of powers of x and y, so the advanced
theorem we mentioned at the beginning of the section assures us that y is a differ-
entiable function of x. Since p and ¢ are integers (for which we already have the
Power Rule), we can differentiate both sides of the equation implicitly with respect
to x and obtain

gy’ i pxP~l. (4)

If y # 0, we can then divide both sides of Eq. (4) by gy?~! to solve for dy/dx,
obtaining

d xP~1
d—y = p N Eq. (4) divided by gy’
x qyi”
p-1
= P . _x y =xPl

q (x(p/q))q—l
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xP-1

S Pa-n=p-2
q xp—pla q q
= 14 . xP=D=(p=p/9) A law of exponents
q
e
q
This proves the rule.
EXAMPLE 6
d 1 1 1
a) —('?)=_x1V=_—_ Eq. 3) with n = ~
dx 2 2./x N 2
function derivative defined
defined for x > 0 only for x > 0
d 1 1
b) —x'P)y=_—x3 Eq. (3) with n = —
) G =< < ] :
function derivative not

defined for all x defined at x =0

169

Q

A version of the Power Rule with a built-in application of the Chain Rule states
that if » is a rational number, u is differentiable at x, and (u(x))"! is defined, then

u”" is differentiable at x, and

EXAMPLE 7

d 1 Eq. (5) with u =1 — x?
a) d—(l —xHV4 = Z(1 — x2)7¥4(—2x) and n = 1/4
X

function defined
on [—1,1]
—X
C2(1—x2)34

derivative defined
only on (—1,1)

/5 _ 6/5

d _ 1 e d
b) E(cosx) —g(cos X) E(oos X)

1
= —g(cos x)7%5(—sinx)

1
=3 sin x(cos x) "%/
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Exercises 2.6

Derivatives of Rational Powers
Find dy/dx in Exercises 1-10.

1 y=x"* 2. y=x73

3. y=v2x 4. y=+/5x

5. y=7J/x+6 6. y=—-2/x—1
7. y=Q2x+5)71/? 8. y=(1-6x)¥?
9. y=x(x*+ 12 10. y = x(x24+1)712

Find the first derivatives of the functions in Exercises 11-18.

11. s =12 12. r =63

13. y =sin[(2t +5)7%?] 14. z =cos[(1 — 61)*°]

15. f(x)=1—x 16. g(x) =22x~ "2 4 1)~173
17. h(9) = /1 + cos (29) 18. k(6) = (sin (8 + 5))**

Differentiating Implicitly
Use implicit differentiation to find dy/dx in Exercises 19-32.

19. X2y +xy> =6 20. x>+ y* = 18xy
21 2xy +y?=x+Yy 22. 3 —xy+y’ =1
23, x2(x —y)? =x2—y? 24. (3xy +7)? =6y
-1 _
25 y2 =1 26 2= 22
x+1 x+y
27. x =tany 28. x =siny
29. x +tan(xy) =0 30. x +siny = xy
1 1
31. ysin (—) =1-xy 32. y2cos <—> =2x+2y
y y
Find dr/d6 in Exercises 33-36.
3 4
330124712 =1 M. r-2/0= 592/3+§03/4
1
35. sin(r9) = 3 36. cosr +cosf =rb

Higher Derivatives

In Exercises 37-42, use implicit differentiation to find dy /dx and then
d*y/dx*.

3. x24+y?=1 38. x4y =1
39, y2 =x% +2x 40. y2 —2x =1-2y
41. 2. /y=x—y 2. xy+y*=1

43. If x* + y* = 16, find the value of d?y/dx? at the point (2, 2).
44. 1If xy + y* = 1, find the value of d?y /dx? at the point (0, —1).

Slopes, Tangents, and Normals

In Exercises 45 and 46, find the slope of the curve at the given points.
45. y’+x>=y*—2x at (=2,1)and (-2,-1)

46. (x2+y»? =(x—y)®> at (1,0)and (1,—1)

In Exercises 47-56, verify that the given point is on the curve and
find the lines that are (a) tangent and (b) normal to the curve at the
given point.

47. x*+xy—y*=1, (2,3)

48. x*+y2 =25 (3,-4)

49. x2y? =9, (-1,3)

50. > —2x—4y—1=0, (=2,1)
51. 6x2 +3xy +2y*+ 17y — 6 =0,
52. x2—\Bxy +2y* =5, (v/3,2)

(=1,0)

53. 2xy +mwsiny =2m, (1,7/2)
54. xsin2y = ycos2x, (w/4,7/2)
55. y=2sin(mx —y), (1,0)

56. x2cos’y —siny =0, (0,m)

57. Find the two points where the curve x? + xy 4+ y? = 7 crosses
the x-axis, and show that the tangents to the curve at these points
are parallel. What is the common slope of these tangents?

58. Find points on the curve x> + xy 4+ y? = 7 (a) where the tangent
is parallel to the x-axis and (b) where the tangent is parallel to
the y-axis. In the latter case, dy/dx is not defined, but dx /dy is.
What value does dx/dy have at these points?

59. The eight curve. Find the slopes of the curve y* = y? — x? at
the two points shown here.

y
e
(&3
42
V= )2 —x2
X
0
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60. The cissoid of Diocles (from about 200 8.c,). Find equations for 64. Is there anything special about the tangents to the curves 2x% +

the tangent and normal to the cissoid of Diocles y?(2 — x) = x> 3y? = 5 and y* = x> at the points (1, £1)? Give reasons for your
at (1, 1). answer.
y ) R y
Y2 —-x)=x Fa
2x2+3y2=5
~ (1, 1)

1= €1

X
!
0 1 * .-

65. The line that is normal to the curve x? + 2xy — 3y?> =0 at (1, 1)
intersects the curve at what other point?

66. Find the normals to the curve xy 4+ 2x — y = 0 that are parallel
61. The devil’s curve (Gabriel Cramer [the Cramer of Cramer’s to the line 2x + y = 0.

rule], 1750). Find the slopes of the devil’s curve y* — 4y? =

x* — 9x? at the four indicated points. 67. Show that if it is possible to draw these three normals from the

point (a, 0) to the parabola x = y? shown here, then ¢ must be
greater than 1/2. One of the normals is the x-axis. For what value

4 2_ 4 _ g2 .
Yyt -4yt =t - Ox of a are the other two normals perpendicular?

(3,2 2

X

> 3
(3,-2) o

0 (a,0)

62. The folium of Descartes. (See Fig. 2.45.)

a) Find the slope of the folium of Descartes, x> 4+ y3 — 9xy =
0 at the points (4, 2) and (2, 4).
b) At what point other than the origin does the folium have a

68. What is the geometry behind the restrictions on the domains of
the derivatives in Example 6 and Example 7(a)?

horizontal tangent? In Exercises 69 and 70 find both dy/dx (treating y as a function of x)
¢) Find the coordinates of the point A in Fig. 2.45, where the and dx /dy (treating x as a function of y). How do dy/dx and dx/dy
folium has a vertical tangent. seem to be related? Can you explain the relationship geometrically in
terms of the graphs?
Theory and Examples 69. xy’ +x’y =6 70. x>+ y? =sin’y

63. Which of the following could be true if f”(x) = x~'/3?

%% Grapher Explorations

3 s 9 s
a) fx)= 7* r-3 b) f(x)= I P -1 71. a) Given that x* 4+ 4y? = 1, find dy/dx two ways: (1) by solv-
ing for y and differentiating the resulting functions in the
1 3 . .. . . .
O fr(x)=—=-x"? d f)=2x"+6 usual way and (2) by implicit differentiation. Do you get
3 2 the same result each way?
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b) Solve the equation x* +4y> =1 for y and graph the re- & CAS Explorations and Projects

sulting functions together to produce a complete graph of
the equation x* + 4y = 1. Then add the graphs of the first

Use a CAS to perform the following steps in Exercises 73-80.

derivatives of these functions to your display. Could you a) Plot the equation with the implicit plotter of CAS. Check to see
have predicted the general behavior of the derivative graphs that the given point P satisfies the equation.
from looking at the graph of x* 4+ 4y? = 1? Could you have b) Using implicit differentiation find a formula for the derivative
predicted the general behavior of the graph of x* + 4y? = 1 dy/dx and evaluate it at the given point P.
by looking at the derivative graphs? Give reasons for your ¢) Use the slope found in part (b) to define the equation of the
answers. tangent line to the curve at P. Then plot the implicit curve and
72. a) Given that (x — 2)2 + y2 = 4, find dy/dx two ways: (1) by tangent line together on a single graph.
solving for y and differentiating the resulting functions with ~ 73. x> —xy +y* =7, P(2,1)
respect to x and (2) by implicit differentiation. Do you get 74. XS+ Y3 x+yxi+y' =4, P(1,1)
the same result each way? 24 x
b) Solve the equation (x — 2)% + y? =4 for y and graph the 75. yP 4y = = P, 1)
resulting functions together to produce a complete graph of -
the equation (x — 2)2 + y? = 4. Then add the graphs of the ~ 76. y*+cosxy =x* P(1,0)

functions’ first derivatives to your picture. Could you have
predicted the general behavior of the derivative graphs from
looking at the graph of (x — 2)% + y? = 4? Could you have
predicted the general behavior of the graph of (x — 2)% +
y? = 4 by looking at the derivative graphs? Give reasons
for your answers.

77.

78.

79.
80.

X + tan (%) =2, P(l, %)

xy’ +tan(x +y) =1, P(%,O)

2y* + (xy) P =x2+2, P(L,1)
xJTF+2y+y=x% P(,0)

Related Rates of Change

How rapidly will the fluid level inside a vertical cylindrical storage tank drop if we
pump the fluid out at the rate of 3000 L/min?
A question like this asks us to calculate a rate that we cannot measure directly

— >

from a rate that we can. To do so, we write an equation that relates the variables
involved and differentiate it to get an equation that relates the rate we seek to the
rate we know.

EXAMPLE 1  Pumping out a tank

How rapidly will the fluid level inside a vertical cylindrical tank drop if we pump
the fluid out at the rate of 3000 L/min?

Solution We draw a picture of a partially filled vertical cylindrical tank, calling
its radius r and the height of the fluid 4 (Fig. 2.50). Call the volume of the fluid V.

As time passes, the radius remains constant, but V and & change. We think of
V and h as differentiable functions of time and use ¢ to represent time. We are told

that
ﬂ — —3000 We pump out at the rate of 3000 L/min. The rate

dt : is negative because the volume is decreasing.

%/ =—3000 L/min We are asked to find
ﬁ_ How fast will the fluid level drop?
2.50 The cylindrical tank in Example 1. dt



Reminder

Rates of change are represented by
derivatives. If a quantity is increasing, its
derivative with respect to time is positive; if
a quantity is decreasing, its derivative is
negative.

Balloon Q

48 = 0,14 rad/min
when 6 = /4
dy_,
dt
when 6= n/4
6
Rangefinder
500 ft

2.51 The balloon in Example 2.
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To find dh/dt, we first write an equation that relates 4 to V. The equation
depends on the units chosen for V, r, and A. With V in liters and r and 4 in meters,
the appropriate equation for the cylinder’s volume is

V = 10007 r2h

because a cubic meter contains 1000 liters.

Since V and h are differentiable functions of ¢, we can differentiate both sides
of the equation V = 10007r>h with respect to ¢ to get an equation that relates
dh/dt to dV/dt.

av dh
— = 10007 r* —. is a constant.
a7 Tr di r1s a constant
We substitute the known value dV /dt = —3000 and solve for dh/dt:
dh  -=3000 3 ™)
dt  1000mr2  mr?
The fluid level will drop at the rate of 3/(rr?) m/min. a

Equation (1) shows how the rate at which the fluid level drops depends on the
tank’s radius. If r is small, dh/dt will be large; if r is large, dh/dt will be small.

dh 3
Ifr=1m: — = —— & —0.95 m/min = —95 cm/min
dt T
If 10 m dh 3 0.0095 m/min 0.95 cm/min
r = . _ = —-—— = —0. = —0.
dr 1007 ' cmmt
EXAMPLE 2 A rising balloon

A hot-air balloon rising straight up from a level field is tracked by a range finder
500 ft from the lift-off point. At the moment the range finder’s elevation angle is
7 /4, the angle is increasing at the rate of 0.14 rad/min. How fast is the balloon
rising at that moment?

Solution We answer the question in six steps.
Step 1: Draw a picture and name the variables and constants (Fig. 2.51). The
variables in the picture are

6 = the angle the range finder makes with the ground (radians)

y = the height of the balloon (feet).

We let ¢ represent time and assume 6 and y to be differentiable functions of ¢.
The one constant in the picture is the distance from the range finder to the
lift-off point (500 ft). There is no need to give it a special symbol.
Step 2: Write down the additional numerical information.
do 4

o = (.14 rad/min when 6= 1

Step 3: Write down what we are asked to find. We want dy/dt when 6 = /4.
Step 4: Write an equation that relates the variables y and 6.

) y = 500tan @

%(—) = tan@, or
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Step 5: Differentiate with respect to t using the Chain Rule. The result tells how
dy/dt (which we want) is related to d6/dt (which we know).

dy , . do
— =500 0 —
dt R
Step 6: Evaluate with 0 = /4 and dO /dt = 0.14 to find dy/dt.
d
d—i} = 500(+/2)2(0.14) = (1000)(0.14) = 140 sec % =V2
At the moment in question, the balloon is rising at the rate of 140 ft/min. a

Strategy for Solving Related Rate Problems

1. Draw a picture and name the variables and constants. Use ¢ for time.
Assume all variables are differentiable functions of ¢.

2. Write down the numerical information (in terms of the symbols you
have chosen).

3. Write down what you are asked to find (usually a rate, expressed as a
derivative).

4. Write an equation that relates the variables. You may have to combine
two or more equations to get a single equation that relates the variable
whose rate you want to the variable whose rate you know.

5. Differentiate with respect to t. Then express the rate you want in terms
of the rate and variables whose values you know.

6. FEvaluate. Use known values to find the unknown rate.

EXAMPLE 3 A highway chase

A police cruiser, approaching a right-angled intersection from the north, is chasing
a speeding car that has turned the corner and is now moving straight east. When
the cruiser is 0.6 mi north of the intersection and the car is 0.8 mi to the east, the
police determine with radar that the distance between them and the car is increasing
at 20 mph. If the cruiser is moving at 60 mph at the instant of measurement, what
is the speed of the car?

Solution We carry out the steps of the basic strategy.

Step 1: Picture and variables. We picture the car and cruiser in the coordinate
plane, using the positive x-axis as the eastbound highway and the positive y-axis
as the southbound highway (Fig. 2.52). We let ¢ represent time and set

x = position of car at time ¢,

Situation when

2= 08,y =06 y = position of cruiser at time ¢,
s = distance between car and cruiser at time .

4 _2

ar - We assume x, y, and s to be differentiable functions of ¢.

Step 2: Numerical information. At the instant in question,

o a_,
d
2.52 Figure for Example 3. (dy/dt is negative because y is decreasing.)

. d d
x=08mi, y=06mi = =—60mph Zi—j =20 mph.
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dx

Step 3: To find: —

p fi T
Step 4: How the variables are related: s* = x* + y2 Pythagorean theorem

(The equation s = /x2 + y? would also work.)
Step 5: Differentiate with respect to t.

2s r =2x — 42y — Chain Rule
ds 1 dx " dy
R [ puiid ta
dr s \"ar

1 dx  dy
= —\ X — —
1/.x2-|-y2 dt ydt

Step 6: Evaluate, with x = 0.8,y = 0.6,dy/dt = —60, ds/dt = 20, and solve for

dx/dt.
1 d
0= — o (0.8 =4 (0.6)(—60))
V(0.8)% + (0.6)? dt
—_————
1
dx
20=0.8— —36
dt
dx 20+36
_— = = 7
dt 0.8 0
At the moment in question, the car’s speed is 70 mph. d

EXAMPLE 4 Water runs into a conical tank at the rate of 9 ft*/min. The tank
stands point down and has a height of 10 ft and a base radius of 5 ft. How fast is
the water level rising when the water is 6 ft deep?

av _
dt

- 963/min Solution We carry out the steps of the basic strategy.

Step 1: Picture and variables. We draw a picture of a partially filled conical tank
(Fig. 2.53). The variables in the problem are

V = volume (ft®) of water in the tank at time ¢ (min),

x = radius (ft) of the surface of the water at time ¢,

y = depth (ft) of water in the tank at time ¢.
wheny = 6 ft .
We assume V, x, and y to be differentiable functions of z. The constants are the

dimensions of the tank.

Step 2: Numerical information. At the time in question,

av
2.53 The conical tank in Example 4. y = 6 ft, - = 9 ft3/min.
t

dy
Step 3: Tt d: —.
p 3: To fin o

Step 4: How the variables are related.
1

V= 3 wxly Cone volume formula (2
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This equation involves x as well as V and y. Because no information is given about
x and dx/dt at the time in question, we need to eliminate x. Using similar triangles
(Fig. 2.53) gives us a way to express x in terms of y:

x 5 y
- = —, or x ==
y 10 2
Therefore,
1 y\2 /4
v=le(2)y=Zy 3
37 2) Y= 127 @)

Step 5: Differentiate with respect to t. We differentiate Eq. (3), getting

av. = 32dy_ytzdy
a 12 7 ar T d) ar

(4)

We then solve for dy/dt to express the rate we want (dy/dt) in terms of the rate
we know (dV /dt):
dy 4dV

dt — wy?dt’
Step 6: Evaluate, with y = 6 and dV /dt = 9.

d 4
D _ 29— 1103 fimin
dt 7 (6)? b4
At the moment in question, the water level is rising at about 0.32 ft/min. a

1. Suppose that the radius r and area A = mr? of a circle are dif-

ferentiable functions of #. Write an equation that relates d A /dt
to dr/dt.

. Suppose that the radius r and surface area S = 47r? of a sphere
are differentiable functions of # Write an equation that relates
dS/dt to dr/dt.

. The radius r and height % of a right circular cylinder are related
to the cylinder’s volume V by the formula V = nr2h.

a) How is dV/dt related to dh/dt if r is constant?

b) How is dV/dt related to dr/dt if h is constant?

¢) How is dV/dt related to dr/dt and dh/dt if neither r nor
h is constant?

. The radius r and height 4 of a right circular cone are related to
" the cone’s volume V by the equation V = (1/3)7r2h.

a) How is dV/dt related to dh/dt if r is constant?

b) How-is dV/dt related to dr/dt if h is constant?

¢) How is dV/dt related to dr/dt and dh/dt if neither r nor
h is constant?

. Changing voltage. The voltage V (volts), current I (amperes),
and resistance R (ohms) of an electric circuit like the one shown
here are related by the equation V = I R. Suppose that V is

increasing at the rate of 1 volt/sec while I is decreasing at the
rate of 1/3 amp/sec. Let ¢ denote time in seconds.

LV

R

a) What is the value of dV /dt?

b) What is the value of d1/dt?

¢) What equation relates dR/dt to dV /dt and d1/dt?

d) Find the rate at which R is changing when V = 12 volts
and / = 2 amp. Is R increasing, or decreasing?

6. The power P (watts) of an electric circuit is related to the circuit’s

resistance R (ohms) and current i (amperes) by the equation P =

Ri’.

a) How are dP/dt,dR/dt, and di /dt related if none of P, R,
and i are constant?

b) How is dR/dt related to di/dt if P is constant?

7. Let x and y be differentiable functions of ¢ and let s = \/x2 + y?



10.

11.

12.

13.

be the distance between the points (x,0) and (0, y) in the xy-
plane.

a) How is ds/dt related to dx/dt if y is constant?

b) How is ds/dt related to dx/dt and dy/dt if neither x nor
y is constant?

c¢) How is dx/dt related to dy/dt if s is constant?

. If x, y, and z are lengths of the edges of a rectangular box, the

VXt +yr 422

a) Assuming that x, y, and z are differentiable functions of ¢,
how is ds/dt related to dx/dt,dy/dt, and dz/dt?

b) How is ds/dt related to dy/dt and dz/dt if x is constant?

¢) How are dx/dt,dy/dt, and dz/dt related if s is constant?

common length of the box’s diagonals is s =

. The area A of a triangle with sides of lengths a and b enclosing

an angle of measure 6 is

1
A= Eab sin6.

a) How is dA/dt related to d6/dt if a and b are constant?

b) How is dA/dt related 1o db/dtr and da/dr if only b is
constant?

¢) How is dA/dt related to d6/dt, da/dt, and db/dt if none
of a, b, and 6 are constant?

Heating a plate. When a circular plate of metal is heated in an
oven, its radius increases at the rate of 0.01 cm/min. At what
rate is the plate’s area increasing when the radius is 50 cm?

Changing dimensions in a rectangle. The length [ of a rect-
angle is decreasing at the rate of 2 cm/sec while the width w is
increasing at the rate of 2 cm/sec. When / =12 cm and w =5
cm, find the rates of change of (a) the area, (b) the perimeter,
and (c) the lengths of the diagonals of the rectangle. Which of
these quantities are decreasing, and which are increasing?

Changing dimensions in a rectangular box. Suppose that the

edge lengths x, y, and z of a closed rectangular box are changing

at the following rates:
dx dy

— =1 m/sec, — = —2 m/sec,
dt

dz
T yi 1 m/sec.

Find the rates at which the box’s (a) volume, (b) surface area,
and (c) diagonal length s = /x2 + y% + 72 are changing at the
instant when x =4,y =3, and z = 2.

A ssliding ladder. A 13-ft ladder is leaning against a house when
its base starts to slide away. By the time the base is 12 ft from
the house, the base is moving at the rate of 5 ft/sec.

13-ft ladder

0 x(1)

14.

15

16.

17

18

19
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a) How fast is the top of the ladder sliding down the wall then?

b) At what rate is the area of the triangle formed by the ladder,
wall, and ground changing then?

¢) At what rate is the angle 6 between the ladder and the
ground changing then?

Commercial air traffic. Two commercial airplanes are flying at
40,000 ft along straight-line courses that intersect at right angles.
Plane A is approaching the intersection point at a speed of 442
knots (nautical miles per hour; a nautical mile is 2000 yd). Plane
B is approaching the intersection at 481 knots. At what rate is
the distance between the planes changing when A is 5 nautical
miles from the intersection point and B is 12 nautical miles from
the intersection point?

. Flying a kite. A girl flies a kite at a height of 300 ft, the wind
carrying the kite horizontally away from her at a rate of 25 ft/sec.
How fast must she let out the string when the kite is 500 ft away
from her?

Boring a cylinder. The mechanics at Lincoln Automotive are
reboring a 6-in.-deep cylinder to fit a new piston. The machine
they are using increases the cylinder’s radius one-thousandth of an
inch every 3 min. How rapidly is the cylinder volume increasing
when the bore (diameter) is 3.800 in.?

. A growing sand pile. Sand falls from a conveyor belt at the
rate of 10 m*/min onto the top of a conical pile. The height of
the pile is always three-eighths of the base diameter. How fast
are the (a) height and (b) radius changing when the pile is 4 m
high? Answer in cm/min.

. A draining conical reservoir. Water is flowing at the rate of
50 m*/min from a shallow concrete conical reservoir (vertex
down) of base radius 45 m and height 6 m. (a) How fast is
the water level falling when the water is 5 m deep? (b) How fast
is the radius of the water’s surface changing then? Answer in
cm/min.

. A draining hemispherical reservoir. Water is flowing at the
rate of 6 m*/min from a reservoir shaped like a hemispherical
bowl of radius 13 m, shown here in profile. Answer the following
questions, given that the volume of water in a hemispherical bowl
of radius R is V = (r/3)y*(3R — y) when the water is y units
deep.

Center of sphere

Ry

\ Water level 1

a) At what rate is the water level changing when the water is
8 m deep?

b) What is the radius r of the water’s surface when the water
is y m deep?
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¢) At what rate is the radius r changing when the water is 8 m
deep?

20. A growing raindrop. Suppose that a drop of mist is a perfect

21.

22.

23.

24.

sphere and that, through condensation, the drop picks up moisture
at a rate proportional to its surface area. Show that under these
circumstances the drop’s radius increases at a constant rate.

The radius of an inflating balloon. A spherical balloon is
inflated with helium at the rate of 1007 ft*/min. How fast is
the balloon’s radius increasing at the instant the radius is 5 ft?
How fast is the surface area increasing?

Hauling in a dinghy. A dinghy is pulled toward a dock by a
rope from the bow through a ring on the dock 6 ft above the
bow. The rope is hauled in at the rate of 2 ft/sec. (a) How fast
is the boat approaching the dock when 10 ft of rope are out?
(b) At what rate is angle 6 changing then (see the figure)?

Ring at edge
of dock

A balloon and a bicycle. A balloon is rising vertically above a
level, straight road at a constant rate of 1 ft/sec. Just when the
balloon is 65 ft above the ground, a bicycle moving at a constant
rate of 17 ft/sec passes under it. How fast is the distance between
the bicycle and balloon increasing 3 sec later?

Y

Making coffee. Coffee is draining from a conical filter into a
cylindrical coffeepot at the rate of 10 in*/min. (a) How fast is
the level in the pot rising when the coffee in the cone is 5 in.
deep? (b) How fast is the level in the cone falling then?

25.

26.

How fast
is this
level falling?

How fast
is this
level rising?

Cardiac output. In the late 1860s, Adolf Fick, a professor of
physiology in the Faculty of Medicine in Wiirtzberg, Germany,
developed one of the methods we use today for measuring how
much blood your heart pumps in a minute. Your cardiac output
as you read this sentence is probably about 7 liters a minute. At
rest it is likely to be a bit under 6 L/min. If you are a trained
marathon runner running a marathon, your cardiac output can be
as high as 30 L /min.
Your cardiac output can be calculated with the formula

_2
y= D’
where Q is the number of milliliters of CO, you exhale in a
minute and D is the difference between the CO, concentration
(ml/L) in the blood pumped to the lungs and the CO, concentra-
tion in the blood returning from the lungs. With Q = 233 ml/min
and D =97 — 56 = 41 ml/L,

233 ml/min

41 ml/L

fairly close to the 6 L /min that most people have at basal (resting)
conditions. (Data courtesy of J. Kenneth Herd, M.D., Quillan
College of Medicine, East Tennessee State University.)
Suppose that when Q =233 and D = 41, we also know
that D is decreasing at the rate of 2 units a minute but that Q
remains unchanged. What is happening to the cardiac output?

A 5.68 L /min,

Cost, revenue, and profit. A company can manufacture x items
at a cost of ¢(x) dollars, a sales revenue of r(x) dollars, and a
profit of p(x) = r(x) — c(x) dollars (everything in thousands).
Find dc/dt, dr/dt, and dp/dt for the following values of x and
dx/dt.

a) r(x)=9x, c(x)=x>-6x2+15x, and dx/dt=0.1
when x =2
b) r(x) =70x, c(x)==x>—6x>4+45/x, and dx/dt=

0.05 when x = 1.5



27.

28.

29.

30.

31.

32.

Moving along a parabola. A particle moves along the parabola
y = x? in the first quadrant in such a way that its x-coordinate
(measured in meters) increases at a steady 10 m/sec. How fast is
the angle of inclination 6 of the line joining the particle to the
origin changing when x = 3 m?

Moving along another parabola. A particle moves from right
to left along the parabola y = /—x in such a way that its x-
coordinate (measured in meters) decreases at the rate of 8 m/sec.
How fast is the angle of inclination 6 of the line joining the
particle to the origin changing when x = —4?

Motion in the plane. The coordinates of a particle in the met-
ric xy-plane are differentiable functions of time ¢ with dx/dt =
—1 m/sec and dy/dt = —5 m/sec. How fast is the particle’s
distance from the origin changing as it passes through the point
5, 12)?

A moving shadow. A man 6 ft tall walks at the rate of 5 ft/sec
toward a streetlight that is 16 ft above the ground. At what rate
is the tip of his shadow moving? At what rate is the length of his
shadow changing when he is 10 ft from the base of the light?

Another moving shadow. A light shines from the top of a pole
50 ft high. A ball is dropped from the same height from a point
30 ft away from the light. How fast is the shadow of the ball
moving along the ground 1/2 sec later? (Assume the ball falls a
distance s = 16¢2 ft in ¢ sec.)

Light

oBallattimes =0

1/2 sec later

50-ft
pole

Shadow
x(1)

NOT TO SCALE

You are videotaping a race from a stand 132 ft from the track,
following a car that is moving at 180 mph (264 ft/sec). How fast
will your camera angle 6 be changing when the car is right in
front of you? A half second later?

Camera

1327

33.

H 3s.

36.

37.
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A melting ice layer. A spherical iron ball 8 in. in diameter is
coated with a layer of ice of uniform thickness. If the ice melts
at the rate of 10 in*/min, how fast is the thickness of the ice
decreasing when it is 2 in. thick? How fast is the outer surface
area of ice decreasing?

. Highway patrol. A highway patrol plane flies 3 mi above a level,

straight road at a steady 120 mi/h. The pilot sees an oncoming
car and with radar determines that at the instant the line-of-sight
distance from plane to car is 5 mi the line-of-sight distance is
decreasing at the rate of 160 mi/h. Find the car’s speed along the
highway.

A building’s shadow. On a morning of a day when the sun will
pass directly overhead, the shadow of an 80-ft building on level
ground is 60 ft long. At the moment in question, the angle 6 the
sun makes with the ground is increasing at the rate of 0.27°/min.
At what rate is the shadow decreasing? (Remember to use radians.
Express your answer in inches per minute, to the nearest tenth.)

Walkers. A and B are walking on straight streets that meet at
right angles. A approaches the intersection at 2 m/sec; B moves
away from the intersection 1 m/sec. At what rate is the angle 6
changing when A is 10 m from the intersection and B is 20 m
from the intersection? Express your answer in degrees per second
to the nearest degree.

0 1-3%*

A baseball diamond is a square 90 ft on a side. A player runs
from first base to second at a rate of 16 ft/sec.

a) Atwhatrate is the player’s distance from third base changing
when the player is 30 ft from first base?
b) At what rates are angles 6; and 6, (see the figure) changing

at that time?
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38.

¢) The player slides into second base at the rate of 15 ft/sec.
At what rates are angles 6; and 6, changing as the player
touches base?

Second base

First
base

Home

A second hand. At what rate is the distance between the tip
of the second hand and the 12 o’clock mark changing when the
second hand points to 4 o’clock?

& 30.

Ships. Two ships are steaming straight away from a point O along
routes that make a 120° angle. Ship A moves at 14 knots (nautical
miles per hour; a nautical mile is 2000 yd). Ship B moves at
21 knots. How fast are the ships moving apart when OA = 5 and
OB = 3 nautical miles?

CHAPTER 2 QUESTIONS TO GUIDE YOUR REVIEW
1. What is the derivative of a function f? How is its domain related b _du
to the domain of f? Give examples. ) E(cu) = a
2. What role does the derivative play in defining slopes, tangents, i _ dﬂ @ du,
and rates of change? ©) dx U1zt ot hn) R TT"

How can you sometimes graph the derivative of a function when
all you have is a table of the function’s values?

What does it mean for a function to be differentiable on an open
interval? on a closed interval?

5. How are derivatives and one-sided derivatives related?

10.

Describe geometrically when a function typically does not have
a derivative at a point.

How is a function’s differentiability at a point related to its con-
tinuity there, if at all?
Could the unit step function
0, x<0
Uix) = { 1, x>0

possibly be the derivative of some other function on [—1, 1]?
Explain.

What rules do you know for calculating derivatives? Give some
examples.

Explain how the three formulas

a) ()= nx""!,

11.

12.

13.

14.

15.

16.
17.

18.

19.

enable us to differentiate any polynomial.

What formula do we need, in addition to the three listed in
question 10, to differentiate rational functions?

What is a second derivative? a third derivative? How many deriva-
tives do the functions you know have? Give examples.

What is the relationship between a function’s average and instan-
taneous rates of change? Give an example.

How do derivatives arise in the study of motion? What can you
learn about a body’s motion along a line by examining the deriva-
tives of the body’s position function? Give examples.

How can derivatives arise in economics?
Give examples of still other applications of derivatives.

What is the value of limy_,¢(sin6)/6? Does it matter whether 6
is measured in degrees or radians? Explain.

What do the limits lim,_o(sink)/h and lim,_o(cosh — 1)/h
have to do with the derivatives of the sine and cosine functions?
What are the derivatives of these functions?

Once you know the derivatives of sin x and cos x, how can you



20.

21.

CHAPTER

find the derivatives of tan x, cot x, sec x, and csc x? What are
the derivatives of these functions?

At what points are the six basic trigonometric functions contin-
uous? How do you know?

What is the rule for calculating the derivative of a composite of
two differentiable functions? How is such a derivative evaluated?
Give examples.

2

PRACTICE EXERCISES

22.

23.

24.
25.
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If u is a differentiable function of x, how do you find (d/dx)(u")
if n is an integer? if n is a rational number? Give examples.

What is implicit differentiation? When do you need it? Give
examples.

How do related rate problems arise? Give examples.

Outline a strategy for solving related rate problems. Illustrate
with an example.

Derivatives of Functions
Find the derivatives of the functions in Exercises 1-36.

1

1

1. y=x%—0.125x% + 0.25x
2. y=3-0.7x>+0.3x7
3. y=x>-3(x24+1n?

1
4 y=xT +/Tx — ——
y xT+ 7 "
5. y=(x+1)2(x*+2x)

6. y=02x—5)(4—x)"!
7. y = (0> +secH +1)°

2\ 2
oy (st
2 4

t 1
0. 5= V1 0. 5= 1
1+t Vi-1
1 2
1. y =2tan’x —sec® x 12. y= —— -

sinx  sinx

2
s = cot? (—)
t

3. s =cos*(l —21) 14.

15. s = (sec t + tant)’ 16. s = csc’(1 — ¢ + 31%)
17. r = 4/20sin6 18. r = 20+/cosf
19. r =sin/26 20. r =sin(@ ++60+1)
2
21. y= Exz csc — 22. y =2 /xsin4/x
X
23. y = x"Y2sec(2x)? 24. y = /xcsc(x +1)°
25. y =5cotx? 26. y = x%cot5x
27. y = x2sin® 2x2) 28. y = xZsin® (x?)

-2
2, 5= (—“—’—)
P

31.

-1
T 1515t — 1)3

o= ()

30. s

Jx

y=(1+x>2

3. y =4x/x +./x

36, p — ((LFsind 2
1 —cos6

In Exercises 37-48, find dy/dx.

37.
38.

39.

40.
41.
42.
43.
44.
45.
46.
47.

48.

y=Qx+DV2x +1
y =20(3x — 4)4@3x — 4713
_ 3
(5x2 + sin2x)3/2
y = (3 4 cos®3x)~1/3

y

xy+2x+3y=1
24+ xy+y*—5x=2
x3 +dxy — 3y =2x
5x4° +10y%° = 15
Jxy =1
x2yt=1

x
x+1

1+x
¥ =

¥y =

1—x

In Exercises 49 and 50, find dp/dgq.

49.

pP+4pg—3¢* =2 50. g = (5p* +2p)>3*?

In Exercises 51 and 52, find dr/ds.

51.

53.

54.

rcos2s +sin’s =7 52. 2rs —r—s+s2=-3
Find d?y/dx? by implicit differentiation:
2
a) x*+y’=1 b) y =1-=
x
a) By differentiating x?> — y*> =1 implicitly, show that
dy/dx = x/y.
b) Then show that d%y/dx* = —1/y>.
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Nu

55.

56.

57.
58.

59.

60.

61.

62

merical Values of Derivatives

Suppose that functions f(x) and g(x) and their first derivatives
have the following values at x =0 and x = 1.

x fx) glx) fx) g'(x)
1 1 5 1/3
1 3 —4 —-1/3 —8/3

Find the first derivatives of the following combinations at the
given value of x.

a) Sflx)—glx), x=1 P flogx), x=0
fx) _

©) 0+ 1 d fgx), x=0

e) g(f(x)), x=0 f) «+fx)? x=1

g) fx+gx), x=0

Suppose that the function f(x) and its first derivative have the
following values at x = 0 and x = 1.

x | f) | &)

0 9 -2

1| -3 1/5

Find the first derivatives of the following combinations at the
given value of x.

a) Jxf(x), x=1 b) JVf(x), x=0

o f(vx), x=1 d) f(1-5tanx), x=0
F) B

©) 24cosx’ x=0

f) 10sin(n7x)f2(x), x=1

Find the value of dy/dt att = 0if y = 3sin2x and x = > + 7.

Find the value of ds/du at u =2 if s = t> + 5¢ and
t = (u?+2u)'3.

Find the value of dw/ds at s = 0 if w = sin (\/r —2) and r =
8sin (s + 7 /6).

Find the value of dr/dt at t=0 if r=(02>+7)'? and
0%t +6=1.

If y>+y=2cosx, find the value of d?y/dx? at the point
o, 1).

. If x!3 + y1/3 = 4, find d?y/dx? at the point (8, 8).

Derivative Definition

In Exercises 63 and 64, find the derivative using the definition.

63

1
=

64. =22 41
2+ 1 §(x) =2x"+

65. a) Graph the function
2 —1<
sw={ oIih
b) Is fcontinuous at x = 0?
¢) Is f differentiable at x = 0?
Give reasons for your answers.
66. a) Graph the function
f) = {fz;nx, B g;:gnM.
b) Is f continuous at x = 0?
¢) Is f differentiable at x = 0?
Give reasons for your answers.
67. a) Graph the function
< <
=13, 1%i%)
b) 1sf continuous at x =17
¢) Is f differentiable at x = 1?
Give reasons for your answers.
68. For what value or values of the constant m, if any, is
i <
o= 15
a) continuous at x = 0?
b) differentiable at x = 0?

Give reasons for your answers.

Slopes, Tangents, and Normals

69

70

71.

72.

73.

74.

75.

76.

. Are there any points on the curve y = (x/2) + 1/(2x — 4) where
the slope is —3/2? If so, find them.

. Are there any points on the curve y = x — 1/(2x) where the
slope is 3? If so, find them.

Find the points on the curve y = 2x* — 3x? — 12x + 20 where
the tangent is parallel to the x-axis.

Find the x- and y-intercepts of the line that is tangent to the
curve y = x* at the point (—2, —8).

Find the points on the curve y = 2x> — 3x% — 12x + 20 where
the tangent is

a) perpendicular to the line y =1 — (x/24);

b) parallel to the line y = +/2 — 12x.

Show that the tangents to the curve y = (wsinx)/x at x = 7
and x = —m intersect at right angles.

Find the points on the curve y = tanx, —7 /2 < x < /2, where
the normal is parallel to the line y = —x/2. Sketch the curve
and normals together, labeling each with its equation.

Find equations for the tangent and normal to the curve y =
1 4+ cosx at the point (;r/2, 1). Sketch the curve, tangent, and
normal together, labeling each with its equation.



77. The parabola y = x? + C is to be tangent to the line y = x.
Find C.

78. Show that the tangent to the curve y = x* at any point (a, a*)
meets the curve again at a point where the slope is four times
the slope at (a, a®).

79. For what value of c is the curve y = ¢/(x 4+ 1) tangent to the
line through the points (0, 3) and (5, —2)?

80. Show that the normal line at any point of the circle x? + y? = a?
passes through the origin.

In Exercises 81-86, find equations for the lines that are tangent and
normal to the curve at the given point.

81 x2+2y? =9, (1,2)
83. xy+2x —Sy=2, (3,2) 84. (y —x)}=2x+4, (6,2
85. x+ Ay =6, (4,1) 86. X2 +2y¥2 =17, (1,4)

87. Find the slope of the curve x*y® + y?> = x + y at the points
(1, 1) and (1, —1).
88. The graph below suggests that the curve y = sin(x — sinx)

might have horizontal tangents at the x-axis. Does it? Give rea-
sons for your answer.

82. X*+y*=2, (1,1

y
1+ y = sin (x — sin x)
- X
-2 - 0 2w
(Generated by Mathematica) -1

Analyzing Graphs

Each of the figures in Exercises 89 and 90 shows two graphs, the
graph of a function y = f(x) together with the graph of its derivative
f'(x). Which graph is which? How do you know?

89. y 9.
® 4 ®
3
1+ 2
15
| | | 1
—1 0 1 * 0 1 2 *
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91. Use the following information to graph the function y = f(x)
for -1 <x <6.

i) The graph of fis made of line segments joined end to end.
ii) The graph starts at the point (—1, 2).
iii) The derivative of f, where defined, agrees with the step
function shown here.

I
4 5 6

92. Repeat Exercise 91, supposing that the graph starts at (—1, 0)
instead of (—1, 2).

Exercises 93 and 94 are about the graphs in Fig. 2.54. The graphs
in part (a) show the numbers of rabbits and foxes in a small arctic

S e T
; B\ of rabbiis i ’ ! __Ti___

2000 ———7— T — — ;
ERapiumanuly rabbits = 1000
S no: foxes;= 40 :

/120, 1700) :
/ EEN
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{REaale
of foxes =T XS :
0 1 i T
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Time (days)
(a
+100 - T T T
e R SRR
50— :
(PN :
0 A
RN d
NG

=50 T

_ R e =

1000 50 100 150 200

Time (days)
Derivative of the rabbit population
(b)

2.54 Rabbits and foxes in an arctic predator-prey food
chain. (Source: Differentiation by W. U. Walton et al.,
Project CALC, Education Development Center, Inc.,
Newton, Mass, 1975, p. 86.)
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population. They are plotted as functions of time for 200 days.
The number of rabbits increases at first, as the rabbits reproduce.
But the foxes prey on the rabbits and, as the number of foxes in-
creases, the rabbit population levels off and then drops. Figure 2.54(b)
shows the graph of the derivative of the rabbit population. We made
it by plotting slopes, as in Example 4 in Section 2.1.

93. a) What is the value of the derivative of the rabbit population

in Fig. 2.54 when the number of rabbits is largest? smallest?
b) What is the size of the rabbit population in Fig. 2.54 when
its derivative is largest? smallest?

94. In what units should the slopes of the rabbit and fox population
curves be measured?

Limits
Find the limits in Exercises 95-104.
sin (s/2)

s/3

sin x

. 2 9
96. lim Sn @ +m)
0——1 0+

95, lim

s—0

3x —tan7

98. lim ™%
x>0 2x

99, lim —"

tan 2r

100, lim SmCI9)
6—0 6
4tan’ 6 + tan 8 + 1
tan?6 + 5
1 —2cot?6
102. lim
60" 5co20 — Tcoth — 8

X sinx

101. im
0—>(/2)"

1 —cosé
92

103. lim

—_— 104. 1li
x—0 2 —2cosx (}1—13(1)
Show how to extend the functions in Exercises 105 and 106 to be
continuous at the origin.

t t
105, g(x) = Lnanx) 106. f(x) = Snanx)
tan x sin (sin x)
107. Is there any value of k that will make
sinx
ity 0
fo=1 22" 7
k, x=0
continuous at x = 0? If so, what is it? Give reasons for your
answer.
108. a) GRAPHER Graph the function
2
A 0
f(x) =1 sin®2x x#
c, x =0.

b) Find a value of ¢ that makes f continuous at x = 0. Justify
your answer.

Related Rates

109. The total surface area S of a right circular cylinder is related to
the base radius r and height 4 by the equation S = 27r? + 2nrh.

a) How is dS/dt related to dr/dt if h is constant?

b) How is dS/dt related to dh/dt if r is constant?

¢) How is dS/dt related to dr/dt and dh/dt if neither r nor
h is constant?

d) How is dr/dt related to dh/dt if S is constant?

110. The lateral surface area S of a right circular cone is related to

the base radius r and height & by the equation S = wr/r? + h?.

a) How is dS/dt related to dr/dt if h is constant?

b) How is dS/dt related to dh/dt if r is constant?

c¢) How is dS/dt related to dr/dt and dh/dt if neither r nor
h is constant?

111. The radius of a circle is changing at the rate of —2/7 m/sec. At

what rate is the circle’s area changing when » = 10 m?

112. The volume of a cube is increasing at the rate of 1200 cm®/min
at the instant its edges are 20 cm long. At what rate are the

edges changing at that instant?

113. If two resistors of R, and R, ohms are connected in parallel in
an electric circuit to make an R-ohm resistor, the value of R can
be found from the equation

11 1
R R R
If R, is decreasing at the rate of 1 ohm/sec and R is increasing
at the rate of 0.5 ohm/sec, at what rate is R changing when

R, =75 ohms and R, = 50 ohms?

114. The impedance Z (ohms) in a series circuit is related to the
resistance R (ohms) and reactance X (ohms) by the equation Z =
+/R? + X?.If R is increasing at 3 ohms/sec and X is decreasing
at 2 ohms/sec, at what rate is Z changing when R = 10 ohms

and X = 20 ohms?

115. The coordinates of a particle moving in the metric xy-plane
are differentiable functions of time ¢ with dx/dt = —1 m/sec
and dy/dt = —5 m/sec. How fast is the particle approaching

the origin as it passes through the point (5, 12)?

116. A particle moves along the curve y = x*? in the first quadrant
in such a way that its distance from the origin increases at the

rate of 11 units per second. Find dx/dt when x = 3.

117. Water drains from the conical tank shown in Fig. 2.55 at the
rate of 5 ft’/min. (a) What is the relation between the variables
h and r in the figure? (b) How fast is the water level dropping

when i = 6 ft?
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118. As television cable is pulled from a large spool to be strung from
the telephone poles along a street, it unwinds from the spool in
layers of constant radius (see Fig. 2.56). If the truck pulling the
cable moves at a steady 6 ft/sec (a touch over 4 mph), use the
equation s = r6 to find how fast (rad/sec) the spool is turning
when the layer of radius 1.2 ft is being unwound.

119. The figure below shows a boat 1 km offshore, sweeping the shore
with a searchlight. The light turns at a constant rate, d6/dt =
—0.6 rad/sec.

a) How fast is the light moving along the shore when it
reaches point A?
b) How many revolutions per minute is 0.6 rad/sec?

=

Exit rate: 5 ft3/min []:Q

2.55 The conical tank in Exercise 117.

120. Points A and B move along the x- and y-axes, respectively, in
such a way that the distance r (meters) along the perpendicular
from the origin to line AB remains constant. How fast is OA
changing, and is it increasing, or decreasing, when OB = 2r
and B is moving toward O at the rate of 0.3r m/sec?

2.56 The television cable in Exercise 118.

CHAPTER l ADDITIONAL EXERCISES—THEORY, EXAMPLES, APPLICATIONS

1. An equation like sin® @ 4 cos? @ = 1 is called an identity because satisfy the conditions

it holds for all values of 6. An equation like sin® = 0.5 is not an ) =g@©), f'0)=g'@©), and f"(0)=g"(0).
identity because it holds only for selected values of 6, not all. If

you differentiate both sides of a trigonometric identity in 6 with @) Find values for b and ¢ that will make

respect to 6, the resulting new equation will also be an identity. f(x)=sin(x +a) and g(x)=bsinx +ccosx
Differentiate the following to show that the resulting equa- isfy th diti
tions hold for all 6. satisty the conditions
a) sin26 = 2sin6 cosh f(©0) =g(0) and f'(0) = g'(0).
‘2

b)  cos26 = cos’ —sin’ 6 b) For the determined values of a, b, and ¢, what happens for
2. If the identity sin (x 4+ a) = sinx cosa + cos x sina is differenti- the third and fourth derivatives of f and g in each of parts

ated with respect to x, is the resulting equation also an identity? (a) and (b)?

Does this principle apply to the equation x? — 2x — 8 = 0? Ex- 4. a) Show that y =sinx, y = cosx, and y = acosx + bsinx

plain. (a and b constants) all satisfy the equation

3. a) Find values for the constants a, b, and ¢ that will make y' +y=0.
f(x) =cosx and g(x)=a+bx +cx?
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b) How would you modify the functions in (a) to satisfy the
equation

Y 4y =07

Generalize this result.

5. An osculating circle. Find the values of h, k, and a that make

the circle (x — h)2 + (y — k)?> = a? tangent to the parabola y =
x2 41 at the point (1, 2) and that also make the second deriva-
tives d%y/dx? have the same value on both curves there. Circles
like this one that are tangent to a curve and have the same sec-
ond derivative as the curve at the point of tangency are called
osculating circles (from the Latin osculari meaning “to kiss”).
We will encounter them again in Chapter 11.

. Marginal revenue. A bus will hold 60 people. The number x
of people per trip who use the bus is related to the fare charged
(p dollars) by the law p = [3 — (x/40)]>. Write an expression
for the total revenue r(x) per trip received by the bus company.
What number of people per trip will make the marginal revenue
dr/dx equal to zero? What is the corresponding fare? (This is
the fare that maximizes the revenue, so the bus company should
probably rethink its fare policy.)

. Industrial production

a) Economists often use the expression “rate of growth” in rel-
ative rather than absolute terms. For example, let u = f(¢)
be the number of people in the labor force at time ¢ in a
given industry. (We treat this function as though it were dif-
ferentiable even though it is an integer-valued step function.)

Let v = g(¢) be the average production per person in
the labor force at time ¢. The total production is then y = uv.
If the labor force is growing at the rate of 4% per year
(du/dt = 0.04u) and the production per worker is growing
at the rate of 5% per year (dv/dt = 0.05v), find the rate of
growth of the total production, y.

b) Suppose that the labor force in (a) is decreasing at the rate
of 2% per year while the production per person is increasing
at the rate of 3% per year. Is the total production increasing,
or is it decreasing, and at what rate?

. The designer of a 30-ft-diameter spherical hot-air balloon wants
to suspend the gondola 8 ft below the bottom of the balloon with
cables tangent to the surface of the balloon (Fig. 2.57). Two of
the cables are shown running from the top edges of the gondola
to their points of tangency, (—12, —9) and (12, —9). How wide
should the gondola be?

. Pisa by parachute. The accompanying photograph shows Mike
McCarthy parachuting from the top of the Tower of Pisa on
August 5, 1988. Make a rough sketch to show the shape of the
graph of his speed during the jump.

10. The position at time ¢ > 0 of a particle moving along a coordinate

line is
s = 10cos (¢t + 7 /4).

a) What is the particle’s starting position (¢ = 0)?

X+ y? =225

-12,-9)R

Suspension cables
Gondola
—| |«— Width

NOT TO SCALE

2.57 The balloon and gondola in Exercise 8.

Mike McCarthy of London jumped from the Tower of
Pisa and then opened his parachute in what he said
was a world record low-level parachute jump of 179
feet. Source: Boston Globe, Aug. 6, 1988.

b) What are the points farthest to the left and right of the origin
reached by the particle?

¢) Find the particle’s velocity and acceleration at the points in
question (b).

d) When does the particle first reach the origin? What are its
velocity, speed, and acceleration then?
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12.

13.

14.

15.

16.

17.

18.

19.

20.

On Earth, you can easily shoot a paper clip 64 ft straight up into
the air with a rubber band. In ¢ seconds after firing, the paper
clip is s = 64t — 16¢2 ft above your hand.

a) How long does it take the paper clip to reach its maximum
height? With what velocity does it leave your hand?

b) On the moon, the same acceleration will send the paper clip
to a height of s = 64t — 2.6¢% ft in ¢ seconds. About how
long will it take the paper clip to reach its maximum height
and how high will it go?

At time ¢ sec, the positions of two particles on a coordinate line
are s; =313 — 1212+ 18 +5 m and s, = -3 + 92 — 12t m.
When do the particles have the same velocities?

A particle of constant mass m moves along the x-axis. Its velocity
v and position x satisfy the equation

1 1
Fm @' —vd) = -z“k(xo2 —x?),
where k, vy, and x( are constants. Show that whenever v # 0,
dv k
m— = —kx.
dt

a) Show that if the position x of a moving point is given
by a quadratic function of ¢, x = At> + Bt + C, then the
average velocity over any time interval [#, £,] is equal to the
instantaneous velocity at the midpoint of the time interval.

b) What is the geometric significance of the result in (a)?

Find all values of the constants m and b for which the function
_ | sinx forx <m
Y= V\mx+b for x > m,

is (a) continuous at x = 7; (b) differentiable at x = .
Does the function

1—cosx

o= Tx forx #0.

for x =0,

have a derivative at x = 0? Explain.

a) For what values of a and b will
ax, x <2
f(x)_[axz—bx+3, x>2

be differentiable for all values of x?
b) Discuss the geometry of the resulting graph of f.

a) For what values of a and b will
@) = ax +b, x<-1
g§Wx) = ax3 +x +2b, x> -1

be differentiable for all values of x?
b) Discuss the geometry of the resulting graph of g.

Is there anything special about the derivative of an odd differen-
tiable function of x? Give reasons for your answer.

Is there anything special about the derivative of an even differ-
entiable function of x? Give reasons for your answer.
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21.

22.

23.

24.

25.

26.
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A surprising result. Suppose that the functions f and g are
defined throughout an open interval containing the point xo, that
f is differentiable at xo, that f(xo) = 0, and that g is continuous
at xo. Show that the product fg is differentiable at x,. This
shows, for example, that while |x| is not differentiable at x =0,
the product x|x| is differentiable at x = 0.

(Continuation of Exercise 21.) Use the result of Exercise 21 to
show that the following functions are differentiable at x = 0.

a) |x|sinx b) x*3sinx ¢) J/x(1—cosx)
x%sin (1/x), x#0
d) & =
) hx) {0, 20
Is the derivative of
x2sin (1/x), x#0
h =
() [o, x=0

derived at x = 0? continuous at x = 0? How about the derivative
of k(x) = xh(x)? Give reasons for your answers.

Suppose that a function f satisfies the following conditions for
all real values of x and y:

) fx+y)=rF&) - fO);
ii) f(x)=14+xg(x), where lirr(l) gx)=1.

Show that the derivative f'(x) exists at every value of x and that
flx) = fx).

The generalized product rule. Use mathematical induction
(Appendix 1) to prove that if y = u u,---u, is a finite prod-
uct of differentiable functions, then y is differentiable on their
common domain and

du; du,

dy o I +ot
—_ = —U ...u" u —...un - uu ...uni _
dx  dx * " dx 12 Vdx

Leibniz’s rule for higher order derivatives of products. Leib-
niz’s rule for higher order derivatives of products of differentiable
functions says that

a) & uv) = @v—!—Zd—ud—v u @
dx? dx? dx dx dx?’
b) d3(uv)=ﬂv+3@ﬂ+3d_’4ﬂ uﬁ
dx3 dx3 dx? dx dx dx? dx3’
0 d"(uv) _ d"uv N wd_v
dx" dx" dx"~ldx
nn—1)---(n—k+ l)d""‘ud"_v ”_+ud"v
- k! dxn—k dxk dxn’

The equations in (a) and (b) are special cases of the equation in
(c). Derive the equation in (c) by mathematical induction, using
the fact that

m + m . m! n m!
(k) (k—l—l)_k!(m—k)! k+D!m —k —1)!"







