CHAPTER

Applications of
Derivatives

OVERVIEW This chapter shows how to draw conclusions from derivatives. We use
derivatives to find extreme values of functions, to predict and analyze the shapes of
graphs, to find replacements for complicated formulas, to determine how sensitive
formulas are to errors in measurement, and to find the zeros of functions numerically.
The key to many of these accomplishments is the Mean Value Theorem, a theorem
whose corollaries provide the gateway to integral calculus in Chapter 4.

Extreme Values of Functions

This section shows how to locate and identify extreme values of continuous func-
tions.

The Max-Min Theorem

A function that is continuous at every point of a closed interval has an absolute
maximum and an absolute minimum value on the interval. We always look for these
values when we graph a function, and we will see the role they play in problem
solving (this chapter) and in the development of the integral calculus (Chapters 4
and 5).

: ,Theorem 1 -
The Max-Mm Theorem for Continuous Functions

If fis continuous at every point of a closed interval J, then f assumes both an

absolute maximum value M and an absolute minimum value m somewhere
_in L That is, there are numbers x; and x; in I with f(x;) =m, f(x;) =

and. m: < f (x) < M for every other x in / (Fig. 3.1 on the following page)

The proof of Theorem 1 requires a detailed knowledge of the real number system
and we will not give it here.
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190 Chapter 3: Applications of Derivatives

3.1 Typical arrangements of a continuous
function’s absolute maxima and minima
on a closed interval [a, b].

y =sinx

y=cosx

I
SIE]
NIE]

3.2 Figure for Example 1.

No largest value
~N

y=x

0<x<l
|

0\ 1

No smallest value

3.3 On an open interval, a continuous
function need not have either a
maximum or a minimum value. The
function f(x) = x has neither a largest nor
a smallest value on (0, 1).

! y=fx)
| )((1 | x X
a x, im| b
| Maximum and minimum
; at endpoints
(x,, m)
Maximum and minimum
at interior points
‘m X
x [ L x
a X, b a X, b
Maximum at interior point, Minimum at interior point,
minimum at endpoint maximum at endpoint

EXAMPLE 1 On [-7 /2,7 /2], f(x) = cosx takes on a maximum value of 1
(once) and a minimum value of O (twice). The function g(x) = sinx takes on a
maximum value of 1 and a minimum value of —1 (Fig. 3.2). d

As Figs. 3.3 and 3.4 show, the requirements that the interval be closed and the
function continuous are key ingredients of Theorem 1. Without them, the conclusion
of the theorem need not hold.

y
___ Graph has no
y=x+1 highest point
-1=sx<0
4 x
-1 0

y=x-1

0<x<l

/" Graph has no
lowest point

3.4 Even a single point of discontinuity can keep a function from having either a
maximum or a minimum value on a closed interval. The function

x+1, -1=<x<0
y= 0, x=0

is continuous at every point of [—1,1] except x = 0, yet its graph over [-1,1] has
neither a highest nor a lowest point.
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Absolute maximum.
No greater value of f anywhere.

. Also a local maximum.
Local maximum. !

No greater value of
[ nearby.

Local minimum.
i No smaller
| value of f nearby.

Absolute minimum.

No smaller value
of fanywhere. Also a
local minimum. {

; No smaller value of

2
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3.5 How to classify maxima and minima.

Local vs. Absolute (Global) Extrema

Figure 3.5 shows a graph with five extreme points. The function’s absolute minimum
occurs at a even though at e the function’s value is smaller than at any other point
nearby. The curve rises to the left and falls to the right around ¢, making f(c) a
maximum locally. The function attains its absolute maximum at d.

Definition
Absolute Extreme Values

Let f be a function with domain D. Then f has an absolute maximum
value on D at a point ¢ if

fx) < f(o) for all x in D
and an absolute minimum value on D at c if
fx) = f(o) for all x in D.

Absolute maximum and minimum values are called absolute extrema (plural of
the Latin extremum). Absolute extrema are also called global extrema.

Functions with the same defining rule can have different extrema, depending
on the domain.

(c) abs max only
_ y .
| {
ki y = x?
Y D=(0,2)
“\h

|
2

(d) no abs max or min

3.6 Graphs for Example 2.

EXAMPLE 2 (See Fig. 3.6.)
Function Domain Absolute extrema
rule D on D (if any)
a) y = x? (—00, 00) No absolute maximum. Absolute
minimum of 0 at x = 0.
b) y =x2 [0, 2] Absolute maximum of (2)? =4 at x = 2.
Absolute minimum of 0 at x = 0.
c) y =x2 0, 2] Absolute maximum of 4 at x = 2.
No absolute minimum.
d) y = x? 0,2) No absolute extrema. u
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Local maximum value
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3.7 A curve with a local maximum value.
The slope at ¢, simultaneously the limit of
nonpositive numbers and nonnegative
numbers, is zero.

Definition ,
‘Local Extreme Values
- A function f has a local maximum value at an interior point ¢ of its domain
fx) < fo) for all x in some open interval containing c.
A functionf has a local minimum value at an interior point ¢ of its domain
if e e

Cfx) > : f(c) ~ for all x in some open interval containing c.

We can extend the definitions of local extrema to the endpoints of intervals by
defining f to have a local maximum or local minimum value at an endpoint c if
the appropriate inequality holds for all x in some half-open interval in its domain
containing c¢. In Fig. 3.5, the function f has local maxima at ¢ and d and local
minima at a, e, and b.

An absolute maximum is also a local maximum. Being the largest value overall,
it is also the largest value in its immediate neighborhood. Hence, a list of all local
maxima will automatically include the absolute maximum if there is one. Similarly,
a list of all local minima will include the absolute minimum if there is one.

Finding Extrema

The next theorem explains why we usually need to investigate only a few values
to find a function’s extrema.

Theorem 2
The First Derivative Theorem for Local Extreme Values

If f has a local maximum or minimum value at an interior point c of its
domain, and if f’ is defined at ¢, then

fi(c) = 0.

Proof To show that f’(c) is zero at a local extremum, we show first that f’(c)
cannot be positive and second that f’(c) cannot be negative. The only number that
is neither positive nor negative is zero, so that is what f’(c) must be.

To begin, suppose that f has a local maximum value at x = ¢ (Fig. 3.7) so that
f(x) — f(c) <0 for all values of x near enough to c. Since c is an interior point
of f’s domain, f’(c) is defined by the two-sided limit

lim L&) = f©
im ——————.
x—=c X —C
This means that the right-hand and left-hand limits both exist at x = ¢ and equal
f'(c). When we examine these limits separately, we find that

. f(.X) - f(C) B _
! =1 L I <. ecause (x —c¢) > 0 1
AC) xin; x—c =0 and f(x) < f(c) (M



How to Find the Absolute Extrema

of a Continuous Function f on a

Closed Interval

1. Evaluate f at all critical points and
endpoints.

2. Take the largest and smallest of these
values.
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Similarly,

f'(c) = lim

x—=>c”

f(x) — f(o) >0 Because (x —¢) <0 )
X

—-c - and f(x) < f(c)

Together, (1) and (2) imply f'(c) = 0.
This proves the theorem for local maximum values. To prove it for local
minimum values, we simply use f(x) > f(c), which reverses the inequalities in

(1) and (2). a

Theorem 2 says that a function’s first derivative is always zero at an interior
point where the function has a local extreme value and the derivative is defined.
Hence the only places where a function f can possibly have an extreme value (local
or global) are

1. interior points where f' =0,
2. interior points where f’ is undefined,
3. endpoints of the domain of f.

The following definition helps us to summarize.

Definition

An interior point of the domain of a function f where f’ is zero or undefined
is a critical point of f.

Summary

The only domain points where a function can assume extreme values are
critical points and endpoints.

Most quests for extreme values call for finding the absolute extrema of a
continuous function on a closed interval. Theorem 1 assures us that such values
exist; Theorem 2 tells us that they are taken on only at critical points and endpoints.
These points are often so few in number that we can simply list them and calculate
the corresponding function values to see what the largest and smallest are.

EXAMPLE 3 Find the absolute maximum and minimum values of f(x) = x?
on [—2,1].

Solution The function is differentiable over its entire domain, so the only critical
point is where f’(x) =2x =0, namely x = 0. We need to check the function’s

values at x = 0 and at the endpoints x = —2 and x = 1:
Critical point value: fO)=0
Endpoint values: f(=2)=4
, F) =1
The function has an absolute maximum value of 4 at x = —2 and an absolute

minimum value of 0 at x = 0. 4
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fe2,-32)

i

y=8-1r*

-32

3.8 The extreme values of g(t) = 8t — t*
on [-2, 1] (Example 4).

y
y=x, -2<x<3
Absolute maximum;
Local also a local maximum

maximum <[

1 —

| | | | | X

-2 -1 0 1 2 3

Absolute minimum;
also a local minimum

3.9 The extreme values of h(x) = x%3 on
[-2, 3] occur at x =0 and x = 3 (Exam-

ple 5).

3.10 f(x) = x'® has no extremum at
x =0, even though f/(x) = (1/3)x~ %3 is
undefined at x = 0.

EXAMPLE 4 Find the absolute extrema values of g(z) = 8 —t* on [—2, 1].

Solution The function is differentiable on its entire domain, so the only critical
points occur where g'(¢) = 0. Solving this equation gives

8—42 =0
£=2
t =23

a point not in the given domain. The function’s local extrema therefore occur at
the endpoints, where we find

g(=2) = =32 (Absolute minimum)
gh)y="17. (Absolute maximum)
See Fig. 3.8. a
EXAMPLE 5  Find the absolute extrema of A (x) = x?/3 on [—2, 3].
Solution The first derivative
v 2 2
S N P
has no zeros but is undefined at x = 0. The values of % at this one critical point
and at the endpoints x = —2 and x = 3 are
h@©0) =0

h(=2) = (=2)"* =41
h(3) = (3)** =9'".

The absolute maximum value is 9!/3, assumed at x = 3; the absolute minimum is
0, assumed at x = 0 (Fig. 3.9). d

While a function’s extrema can occur only at critical points and endpoints, not
every critical point or endpoint signals the presence of an extreme value. Figures
3.10 and 3.11 illustrate this for interior points, and Exercise 34 asks you for a
function that fails to assume an extreme value at an endpoint of its domain.

3.11 g(x) = x3 has no extremum at x = 0 even though g’(x) = 3x? is zero at x = 0.
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As we will see in Section 3.3, we can determine the behavior of a function f at
a critical point ¢ by further examining f’, but we must look beyond what f’ does

at ¢ itself.

Exercises 3.1

Finding Extrema from Graphs

In Exercises 1-6, determine from the graph whether the function has
any absolute extreme values on [a, b]. Then explain how your answer
is consistent with Theorem 1.

1. 2.
y y
y = h(x) y =fx)
| | | | x | | | ¥
0 a o G b 0 a c b
3. y 4. y
y=fx
| | | 1 | | X
0 a c b 0 a c b
5 6.
y y
= g(x)
vTe . y= 8w
| | | X | | | X
0 a c 0 a c b

Absolute Extrema on Closed Intervals

In Exercises 7-22, find the absolute maximum and minimum values of
each function on the given interval. Then graph the function. Identify
the points on the graph where the absolute extrema occur, and include
their coordinates.
2
7. f(x)= gx -5,

8. f(x)=—x—4,

9. f(x)=x*—-1, —-1<x<2

10, f(x)=4—x%?, —-3<x<
1

11. F(x)=——2, 05<x<2
x

12. F(x):—l, —-2<x<-1
x

13. hx) =Jx, —1<x<8

14. h(x) = -3x*3, —1<x<1

15. g(x) =/4—x2, —-2<x<1
16. g(x)=—/5-x%, —/5<x<0
/4 S
17. f(0) =sinf, — =<6 < —
f(6) =sin y S0=—
b 4 /4
18. f(®) =tanf, — — <0< —
f(6) = tan 3 S0=7
19. g(x) =csc T < <27T
. X) =CSCx, — <X —
& 3 3
b4 b
20. = , ——<x<-—
0. g(x) =secx 3_x_6
2. f()=2—1tf, —1<t<3
22. f(r)=t—=5|, 4<t<7

In Exercises 23-26, find the function’s absolute maximum and mini-
mum values and say where they are assumed.

23, f(x)=x*3, —1<x<8
24, f(x)=x3, —1<x<8
25. g =06%°, —-32<6<1
26. h(0) =30*°, —271<6<8

Local Extrema in the Domain

In Exercises 27 and 28, find the values of any local maxima and
minima the functions may have on the given domains, and say where
they are assumed. Which extrema, if any, are absolute for the given
domain?

27.a) f(x)=x>—4, —2<x<2
b) gx)=x*—-4, —-2<x<2
© h(x)=x*—-4, —-2<x<2
d k(x)=x2—4, —-2<x<o00
e) Ix)=x>-4, 0O<x<oo
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B8 a) f=2-2% -lsx<l & CAS Explorations and Projects
b) glx)=2- 2x2, —l<x=l In Exercises 3540, you will use a CAS to help find the absolute ex-
¢) hx)=2-2x°, —-l<x<l1 . . . .
) trema of the given function over the specified closed interval. Perform
d) k(x)=2-2r, —oo<x=<l the following steps:
e) lx)=2-2x* —o00<x<0 g p.. ) )
a) Plot the function over the interval to see general behavior there.
Theory and Examples b) Find the interior points wl}ere f =.O. (In some exercis.es you
. . may have to use the numerical equation solver to approximate a
29. The function f().c) = |x|.has an 'absolute minimum vglue at)f =0 solution.) You may want to plot f' as well.
e\{en though f 1?s n'ot differentiable at x = 0. Is this consistent ¢) Find the interior points where f’ does not exist.
with Theorem 27 Give reasons for your answer. d) Evaluate the function at all points found in parts (b) and (c) and
30. Why can’t the conclusion of Theorem 2 be expected to hold if ¢ at the endpoints of the interval.
is an endpoint of the function’s domain? e) Find the function’s absolute extreme values on the interval and
31. If an even function f(x) has a local maximum value at x = c, can identify where they occur.
i i = —c? Gi 20 64
anything be said about the value of f at x ¢? Give reasons 35, f) =x -84 dx 42, |-,
for your answer. 25" 25
32. If an odd function g(x) has a local minimum value at x = ¢, can . 3 3
anything be said about the value of g at x = —c? Give reasons 36. f(x) =—x"+4x" —dx +1, ¥ 3]
for your answer. 273
37. f(x) =x*P3-x), [-2,2]
33. We know how to find the extreme values of a continuous function 10
f(x) by investigating its values at critical points and endpoints. 38. f(x) =2+ 2x —3x?5, [_1, _]
But what if there are no critical points or endpoints? What hap- 3
pens then? Do such functions really exist? Give reasons for your 39. f(x) =+/x +cosx, [0, 2n]
answers. 1
— 34 :
34. Give an example of a function defined on [0, 1] that has neither 40. f(x) =x sinx + 2’ [0, 27]

a local maximum nor a local minimum value at 0.

When the French mathematician Michel
Rolle published his theorem in 1691, his goal
was to show that between every two zeros of
a polynomial function there always lies a zero
of the polynomial we now know to be the
function’s derivative. (The modern version of
the theorem is not restricted to polynomials.)

Rolle distrusted the new methods of
calculus, however, and spent a great deal of
time and energy denouncing their use and
attacking 1’Hopital’s all too popular (he felt)
calculus book. It is ironic that Rolle is known
today only for his inadvertent contribution to
a field he tried to suppress.

The Mean Value Theorem

If a body falls freely from rest near the surface of the earth, its position 7 seconds into
the fall is s = 4.9¢> m. From this we deduce that the body’s velocity and acceleration
are v = ds/dt = 9.8t m/sec and a = d*s/dt* = 9.8 m/sec’. But suppose we started
with the body’s acceleration. Could we work backward to find its velocity and
displacement functions?

What we are really asking here is what functions can have a given derivative.
More generally, we might ask what kind of function can have a particular kind
of derivative. What kind of function has a positive derivative, for instance, or a
negative derivative, or a derivative that is always zero? We answer these questions
by applying corollaries of the Mean Value Theorem.

Rolle’s Theorem

There is strong geometric evidence that between any two points where a differen-
tiable curve crosses the x-axis there is a point on the curve where the tangent is
horizontal. A 300-year-old theorem of Michel Rolle (1652-1719) assures us that
this is indeed the case.



fle)=0

y =f)

[ P ——

(@)

3.12 Rolle's theorem says that a
differentiable curve has at least one
horizontal tangent between any two
points where it crosses the x-axis. It may
have just one (a), or it may have more (b).

y =fx)
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Theorem 3
Rolle’s Theorem

Suppose that y = f(x) is continuous at every point of the closed interval
[a, b] and differentiable at every point of its interior (a, b). If

fla) = fb) =0,
then there is at least one number ¢ in (a, b) at which
f'e)y =0.

See Fig. 3.12.

Proof Being continuous, f assumes absolute maximum and minimum values on
[a, b]. These can occur only

1. at interior points where f’ is zero,
2. at interior points where f’ does not exist,
3. at the endpoints of the function’s domain, in this case a and b.

By hypothesis, f has a derivative at every interior point. That rules out (2), leaving
us with interior points where f’ = 0 and with the two endpoints a and b.

If either the maximum or the minimum occurs at a point ¢ inside the interval,
then f’(c) = 0 by Theorem 2 in Section 3.1, and we have found a point for Rolle’s
theorem.

If both maximum and minimum are at a or b, then fis constant, f' = 0, and
¢ can be taken anywhere in the interval. This completes the proof. d

The hypotheses of Theorem 3 are essential. If they fail at even one point, the
graph may not have a horizontal tangent (Fig. 3.13).

y=f(x)
y=fx)

a

A 4 X

b

a

X0

b

a XO

*—> X
b

(a) Discontinuous at an endpoint

(b) Discontinuous at an interior point

(c) Continuous on [a, b] but not differentiable

3.13 No horizontal tangent.

at some interior point

EXAMPLE 1 The polynomial function

3
ﬂﬂ=%—h

graphed in Fig. 3.14 (on the following page) is continuous at every point of [—3, 3]
and is differentiable at every point of (=3, 3). Since f(—3) = f(3) =0, Rolle’s
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y
(-3, 2v3)
3
=X _
y=3 3x
X
-3 0 3
3.14 As predicted by Rolle’s theorem, this
curve has horizontal tangents between
the points where it crosses the x-axis (3, -243)
(Example 1). ’
theorem says that f’ must be zero at least once in the open interval between a = —3
and b = 3. In fact, f'(x) = x? — 3 is zero twice in this interval, once at x = -3
and again at x = /3. d
y Tangent parallel to chord The Mean Value Theorem

The Mean Value Theorem is a slanted version of Rolle’s theorem (Fig. 3.15). There
is a point where the tangent is parallel to chord AB.

B

|

1) — fla)
b—a

Slope f—r— 22

[ i
} I Theorem 4
l |
o X a " A x The Mean Value Theorem
y =f(x) Suppose y = f(x) is continuous on a closed interval [a, b] and differentiable
on the interval’s interior (@, b). Then there-is at least one point ¢ in (a, b)
3.15 Geometrically, the Mean Value at which
Theorem says that somewhere between A b
and B the curve has at least one tangent f®) - fla) = f'(c). )
parallel to chord AB. b—a

Proof We picture the graph of f as a curve in the plane and draw a line through
the points A(a, f(a)) and B(b, f(b)) (see Fig. 3.16). The line is the graph of the

B(b, f(b))

3.16 The graph of f and the chord AB
over the interval [a, b].

|
|
[
[
[
|
|
|
|
|
|
|
b



h(x) = f(x) — g(x)

a b

3.17 The chord AB in Fig. 3.16 is the
graph of the function g(x). The function
h(x) = f(x) — g(x) gives the vertical
distance between the graphs of f and

g at x.

-1 0 1

3.18 The function f(x) = +/1 — x2 satisfies
the hypotheses (and conclusion) of the
Mean Value Theorem on [—1, 1] even
though f is not differentiable at —1 and 1.

B2,4)

)]

A(0,0) 1 2

3.19 As we find in Example 2, c=1is
where the tangent is parallel to the
chord.
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function

(x—a) )

b —_
() = fa) + i()#

b —

(point—slope equation). The vertical difference between the graphs of f and g at x
is

h(x) = f(x) —g(x)

(x —a). (3)

b _
= f(0) = fl@) - L‘{(’”

b —

Figure 3.17 shows the graphs of f, g, and A together.

The function h satisfies the hypotheses of Rolle’s theorem on [a, b]. It is
continuous on [a, b] and differentiable on (a, b) because both f and g are. Also,
h(a) = h(b) = 0 because the graphs of f and g both pass through A and B. There-
fore, 4’ = 0 at some point ¢ in (a, b). This is the point we want for Eq. (1).

To verify Eq. (1), we differentiate both sides of Eq. (3) with respect to x and
then set x = c:

W(x) = f'(x) _ M Derivative of Eq. (3) . . .
b—a

We) = fio - L9 =S@ e
b—a

0= f'(c) — M B(c)=0

b—a

f(c) = M’ Rearranged

b—a
which is what we set out to prove. a

Notice that the hypotheses of the Mean Value Theorem do not require f to be
differentiable at either a or b. Continuity at a and b is enough (Fig. 3.18).

We usually do not know any more about the number ¢ than the theorem tells,
which is that ¢ exists. In a few cases we can satisfy our curiosity about the identity
of ¢, as in the next example. However, our ability to identify ¢ is the exception
rather than the rule, and the importance of the theorem lies elsewhere.

EXAMPLE 2 The function f(x) = x? (Fig. 3.19) is continuous for 0 < x <2
and differentiable for 0 < x < 2. Since f(0) =0 and f(2) = 4, the Mean Value
Theorem says that at some point ¢ in the interval, the derivative f’(x) = 2x must
have the value (4 — 0)/(2 — 0) = 2. In this (exceptional) case we can identify ¢ by
solving the equation 2c =2 to get ¢ = 1. a

Physical Interpretations

If we think of the number (f(b) — f(a))/(b — a) as the average change in f over
[a, b] and f'(c) as an instantaneous change, then the Mean Value Theorem says
that at some interior point the instantaneous change must equal the average change
over the entire interval.
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EXAMPLE 3 If a car accelerating from zero takes 8 sec to go 352 ft, its
average velocity for the 8-sec interval is 352/8 = 44 ft/sec. At some point during
the acceleration, the Mean Value Theorem says, the speedometer must read exactly

30 mph (44 ft/sec) (Fig. 3.20). |
s
s =f()
400 —
2 30 (8,352)
St
Py
g 240 -
8
a 160 At this point,
80 the car’s speed
| was 30 mph
[ '
0 5
Time (sec)

3.20 Distance vs. elapsed time for the car in Example 3.

Corollaries and Some Answers

At the beginning of the section, we asked what kind of function has a zero derivative.
The first corollary of the Mean Value Theorem provides the answer.

Corollary 1
Functions with Zero Derivatives Are Constant

If f’(x) =0 at each point of an interval I, then f(x) = C for all x in J,
where C is a constant.

We know that if a function f has a constant value on an interval /, then f is
differentiable on / and f’(x) = O for all x in I. Corollary 1 provides the converse.

Proof of Corollary 1 We want to show that f has a constant value on 1. We do so
by showing that if x; and x, are any two points in , then f(x;) = f(x,).

Suppose that x; and x, are two points in /, numbered from left to right so that
X1 < x,. Then f satisfies the hypotheses of the Mean Value Theorem on [x;, x,]: It
is differentiable at every point of [x;, x,], and hence continuous at every point as
well. Therefore,

fx2) — f(x1)

X2 — X1

= f'(0)

at some point ¢ between x; and x,. Since f’ = 0 throughout /, this equation trans-
lates successively into
(x2) — f(x1)
LD 2T _ o fay— foy =0, and fGn) = £
X2 — X1

At the beginning of the section, we also asked if we could work backward
from the acceleration of a body falling freely from rest to find the body’s velocity
and displacement functions. The answer is yes, and it is a consequence of the next

corollary.



y=2+C 3} c=2
c=1

c=0

c=-1

S c=-2

3.21 From a geometric point of view,
Corollary 2 of the Mean Value Theorem
says that the graphs of functions with
identical derivatives can differ only by a
vertical shift. The graphs of the functions
with derivative 2x are the parabolas

y = X2 + C, shown here for selected
values of C.
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Corollary 2
Functions with the Same Derivative Differ by a Constant

If f'(x) = g’(x) at each point of an interval , then there exists a constant
C such that f(x) = g(x) + C for all xin L

Proof At each point x in I the derivative of the difference function 2 = f — g is
Kx) = f(x) - ¢'(x)=0.

Thus, A(x) = C on I (Corollary 1). That is, f(x) —g(x) =C on [, so f(x) =

g(x)+C. a

Corollary 2 says that functions can have identical derivatives on an interval only
if their values on the interval have a constant difference. We know, for instance, that
the derivative of f(x) = x? on (—00, 00) is 2x. Any other function with derivative
2x on (—00, 0o) must have the formula x? 4+ C for some value of C (Fig. 3.21).

EXAMPLE 4 Find the function f(x) whose derivative is sin x and whose graph
passes through the point (0, 2).

Solution Since f(x) has the same derivative as g(x) = —cosx, we know that
f(x) = —cosx + C for some constant C. The value of C can be determined from
the condition that f(0) = 2 (the graph of f passes through (0, 2)):

f(0) = —cos(0)+C =2, SO C =3.
The formula for fis f(x) = —cosx + 3. Q

Finding Velocity and Position from Acceleration

Here is how to find the velocity and displacement functions of a body falling freely
from rest with acceleration 9.8 m/sec’.

We know that v(z) is some function whose derivative is 9.8. We also know
that the derivative of g(t) = 9.8t is 9.8. By Corollary 2,

v(t) =98t +C (4)
for some constant C. Since the body falls from rest, v(0) = 0. Thus
9.8(0)+C =0, and C=0.

The velocity function must be v(¢) = 9.8¢. How about the position function s(¢)?
We know that s(¢) is some function whose derivative is 9.8¢. We also know
that the derivative of 4(t) = 4.9t is 9.8¢. By Corollary 2,

s(t) =49 +C (5)
for some constant C. Since s(0) = 0,
49(0*+C=0, ad C=0.

The position function must be s(¢) = 4.9¢2.

The ability to find functions from their rates of change is one of the great
powers we gain from calculus. As we will see, it lies at the heart of the mathematical
developments in Chapter 4. We will continue the story there.
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Increasing Functions and Decreasing Functions

At the beginning of the section we asked what kinds of functions have positive
derivatives or negative derivatives. The answer, provided by the Mean Value The-
orem’s third corollary, is this: The only functions with positive derivatives are
increasing functions; the only functions with negative derivatives are decreasing
functions.

Definitions
Let f be a function defined on an interval I and let x; and x, be any two
points in L

1. fincreaseson /if x;<x, = f(x1) < f(xo).
2. fdecreaseson/lifx;<x; = f(x) < f(x1).

- Corollary 3 .
~ The First Derivative Test for Increasing and Decreasing
Suppose that fis continuous on [a, b] and differentiable on (a, b).
' If /" > 0 at each point of (a, b), then f increases on [a, b].
If f' <0 at each point of (a, b), then f decreases on [a, b].

Proof Letx; and x; be two points in [a, b] with x; < x,. The Mean Value Theorem
applied to f on [x;, x;] says that

f) = fxn) = fi(©)(x2 — x1) (6)

for some ¢ between x; and x,. The sign of the right-hand side of Eq. (6) is the
same as the sign of f’'(c) because x, — x; is positive. Therefore, f(x;) > f(x;) if
f' is positive on (g, b), and f(x;) < f(x;) if f is negative on (a, b). |

EXAMPLE 5 The function f(x) = x? decreases on (—o0, 0), where f'(x) =
2x < 0. It increases on (0, co), where f’(x) = 2x > 0 (Fig. 3.22). d

y
y=x?
4 L
) 3 .
Function Function
decreasing increasing
2 —
y'<0 y' >0
1 -
] | | | x
-2 -1 0N, 1 2

3.22 The graph for Example 5.
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Exercises 3.2

Finding ¢ in the Mean Value Theorem
Find the value or values of c that satisfy the equation

b) —
1O-1@ _ 1
—a

in the conclusion of the Mean Value Theorem for the functions and

intervals in Exercises 1-4.
L fx)=x>+2x-1,
2. f(x)=x*3 [0,1]

[0, 1]

3. fx)=x+ l [1,2]
X

2
4, fx)=+/x—-1, [1,3]

Checking and Using Hypotheses

Which of the functions in Exercises 5-8 satisfy the hypotheses of the
Mean Value Theorem on the given interval, and which do not? Give
reasons for your answers.

5. f(x)=x*3, [-1,8] 6. f(x)=x*, [0,1]
7. f(x) = Vx(l _x)’ [0’ 1]

sin x - 0
8. fm={ "% =7

0, x=0
9. The function

x, 0<x<1
o ={a 9%

is zero at x = 0 and x = 1 and differentiable on (0, 1), but its
derivative on (0, 1) is never zero. How can this be? Doesn’t
Rolle’s theorem say the derivative has to be zero somewhere in
(0, 1)? Give reasons for your answer.

10. For what values of a, m, and b does the function
3, x=0
f(x):l—x2+3x+a, 0<x<l1
mx + b, 1<x<2

satisfy the hypotheses of the Mean Value Theorem on the interval
[0, 2]?

Roots (Zeros)

11. a) Plot the zeros of each polynomial on a line together with

the zeros of its first derivative.

i) y=x>-4

i) y=x>+8x+15

i) y=x*-3x>+4=(x+ D(x —2)?

iv) y=ux3~33x2+216x = x(x — 9)(x —24)

b) Use Rolle’s theorem to prove that between every two zeros

of x" 4+ a,_ 1 x" '+ ... +a;x + ay there lies a zero of
nx" '+ (n— Dap_ix" 2+ +a.

Suppose that f” is continuous on [a, b] and that f has three
zeros in the interval. Show that f” has at least one zero in
(a, b). Generalize this result.

Show that if f” > 0 throughout an interval [a, b], then f’ has
at most one zero in [a, b]. What if f” < O throughout [a, b]
instead?

12.

13.

14. Show that a cubic polynomial can have at most three real zeros.

Theory and Examples

15. Show that at some instant during a 2-h automobile trip the car’s

speedometer reading will equal the average speed for the trip.

16. Temperature change. It took 14 sec for a thermometer to rise
from —19°C to 100°C when it was taken from a freezer and
placed in boiling water. Show that somewhere along the way the

mercury was rising at exactly 8.5°C/sec.

17. Suppose that fis differentiable on [0, 1] and that its derivative is

never zero. Show that f(0) # f(1).
Show that |sin b — sina| < |b — a| for any numbers a and b.

Suppose that f is differentiable on [a, b] and that f(b) < f(a).
Can you then say anything about the values of f’ on [a, b]?

18.
19.

20. Suppose that f and g are differentiable on [a, b] and that f(a) =
g(a) and f(b) = g(b). Show that there is at least one point be-
tween a and b where the tangents to the graphs of f and g are

parallel.

21. Let f be differentiable at every value of x and suppose that

f(1) =1, that f'< 0 on (—00, 1), and that f’ > 0 on (1, 00).

Show that f(x) > 1 for all x.
Must f'(1) = 0?7 Explain.

a)
b)

Let f(x) = px*+gqx +r be a quadratic function defined on
a closed interval [a, b]. Show that there is exactly one point ¢
in (a, b) at which f satisfies the conclusion of the Mean Value
Theorem.

22.

/]

um 23. A surprising graph. Graph the function

F(x) = sinxsin(x +2) —sin*(x + 1).

What does the graph do? Why does the function behave this way?
Give reasons for your answers.

24. If the graphs of two functions f(x) and g(x) start at the same
point in the plane and the functions have the same rate of change
at every point, do the graphs have to be identical? Give reasons

for your answer.

25. a) Show that g(x) = 1/x decreases on every interval in its

domain.



204 Chapter 3: Applications of Derivatives

b) If the conclusion in (a) is really true, how do you explain
the fact that g(1) =1 is actually greater than g(—1) = —1?

26. Let f be a function defined on an interval [a, b]. What conditions
could you place on f to guarantee that
f®) = f(a)
a

min f' < )

< max f’,

where min f’ and max f’ refer to the minimum and maximum
values of f’ on [a, b]? Give reasons for your answer.

B 27. CALCULATOR Use the inequalities in Exercise 26 to estimate
FO.1)if f/(x) =1/(1 +x*cosx) for0 < x <0.1 and f(0) = 1.

B 28. CALCULATOR Use the inequalities in Exercise 26 to estimate
FO.if f/(x) =1/(1 —x* for 0 < x <0.1 and f(0) = 2.

29. The geometric mean of a and b. The geometric mean of two
positive numbers a and b is the number +/ab. Show that the value
of ¢ in the conclusion of the Mean Value Theorem for f(x) = 1/x
on an interval [a, b] of positive numbers is ¢ = Jab.

30. The arithmetic mean of a and b. The arithmetic mean of two
numbers a and b is the number (a + b)/2. Show that the value
of ¢ in the conclusion of the Mean Value Theorem for f(x) = x>
on any interval [a, b] is ¢ = (a + b) /2.

Finding Functions from Derivatives

31. Suppose that f(—1) =3 and that f'(x) =0 for all x. Must
f(x) =3 for all x? Give reasons for your answer.

32. Suppose that £(0) = 5 and that f'(x) = 2 for all x. Must f(x) =
2x + 5 for all x? Give reasons for your answer.

33. Suppose that f'(x) = 2x for all x. Find f(2) if
a) f0)=0 b) f(1)=0 )

34. What can be said about functions whose derivatives are constant?
Give reasons for your answer.

In Exercises 3540, find all possible functions with the given deriva-
tive.

35.a) y=x b) y =x? ) y=x3
36. a) y =2«
b) y=2x-1
¢) y=3x2+2x-1
1
37. 3) y,:——z
X
, 1
b y=1-=
, 1
c) y:5+x—2
38.a) y= !
) y_2 X
1
b y=—=
X
1
¢ Y=4x—-—
x

f(=2)=3.

t
39. a) y =sin2t b) y =cos 3
. t
¢) y =sin2t+ cos 3
40. a) y =sec’d b) y =40

¢ Yy =+0—sec?d

In Exercises 41-44, find the function with the given derivative whose
graph passes through the point P,

41. f'(x)=2x—1, P(0,0)

1
42, g'(x) = = +2x, P(-1,1)
x

43. r'(0) = 8 —csc?0, P (% 0)

4. r'(t) =secttant — 1, P(0, 0)

Counting Zeros

When we solve an equation f(x) = 0 numerically, we usually want to
know beforehand how many solutions to look for in a given interval.
With the help of Corollary 3 we can sometimes find out.

Suppose that

1. fis continuous on [a, b] and differentiable on (a, b),
2. f(a) and f(b) have opposite signs,
3. f'>0o0n(a b)or f' <0on (a b).

Then f has exactly one zero between a and b: It cannot have more
than one because it is either increasing on [a, b] or decreasing on
[a, b]. Yet it has at least one, by the Intermediate Value Theorem
(Section 1.5). For example, f(x) = x3 + 3x + 1 has exactly one zero
on [—1, 1] because f is differentiable on [—1, 1], f(—1) = —3 and
f(1) =5 have opposite signs, and f'(x) = 3x>+3 > 0 for all x
(Fig. 3.23).

1,5)

3.23 The only real zero of the polynomial y = x3 +3x + 1
is the one shown here between —1 and 0.

Show that the functions in Exercises 45-52 have exactly one

zero in the given interval.
45, f(x)=x*+3x+1, [-2, —1]

4
46. f(x)=x+ = +7, (-00, 0)
X



47.

48.

49.

50.
51.

52.

gt) =i+ /1+1 -4,
gt) = %+\/1+t—3.1, (-1, 1)

(0, o0)

r(0) = 0 + sin? (g) —8, (00, 00)
r(@) =20 —cos?0 ++/2, (—00, 00)
r(@) =sech — % +5, (0, 7/2)

r(0) =tand —cotd — 6, (0, 7/2)

3.24 A function’s first derivative tells
how the graph rises and falls.

Absolute min
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& CAS Exploration
53. Rolle’s original theorem

a) Construct a polynomial f(x) that has zeros at x = -2, —1,
0, 1, and 2.

b) Graph fand its derivative f’ together. How is what you see
related to Rolle’s original theorem? (See the marginal note
on Rolle.)

¢) Do g(x) =sinx and its derivative g’ illustrate the same
phenomenon?

d) How would you state and prove Rolle’s original theorem in
light of what we know today?

The First Derivative Test for Local

Extreme Values

This section shows how to test a function’s critical points for the presence of local
extreme values.

The Test

As we see once again in Fig. 3.24, a function f may have local extrema at some
critical points while failing to have local extrema at others. The key is the sign of
f' in the point’s immediate vicinity. As x moves from left to right, the values of f
increase where f’ > 0 and decrease where f’ < 0.

At the points where f has a minimum value, we see that f’ < 0 on the interval
immediately to the left and f’ > O on the interval immediately to the right. (If the
point is an endpoint, there is only the interval on the appropriate side to consider.)
This means that the curve is falling (values decreasing) on the left of the minimum
value and rising (values increasing) on its right. Similarly, at the points where f
has a maximum value, f’ > 0 on the interval immediately to the left and f’ <0
on the interval immediately to the right. This means that the curve is rising (values
increasing) on the left of the maximum value and falling (values decreasing) on its
right.

These observations lead to a test for the presence of local extreme values.

Absolute max
f' undefined

Local max

f=0

No extreme

No extreme

Local min

=0

P
)
[0y S —
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Theorem 5
The First Derivative Test for Local Extreme Values At a left endpoint a:
The following test applies to a continuous function f(x). If f < 0(f'> 0) for x > a, then fhas a local maximum
At a critical point ¢: (minimum) value at a.
1. If f’ changes from positive to negative at ¢ (f' > 0 local max
for x < ¢ and f’ < 0 for x > ¢), then f has a local ! :
. lue at ¢ | local min .
maximum va . L f<o 750
local max local max ! i
! | -1 RS A A
| | g e
| |
f>0if<o f>°if<°
i | , At a right endpoint b:
c c
@ Fle)=0 ®) f(c) undefined If f"<0(f' > 0) for x < b, then f has a local minimum

(maximum) value at b.
2. If f’ changes from negative to positive at ¢ (f' <0

for x < ¢ and f'> 0 for x > ¢), then f has a local local max
minimum value at c.
f<0
local min ! f>0

local
min <0 -——117— __.._—_L_.b
<0 if'>0 local minY” f'> 0
i
| i
c c
@ fo=0 (b) f'(c) undefined

3. If f’ does not change sign at ¢ (f' has the same sign
on both sides of c¢), then f has no local extreme value

at c.
no extrc-in;c/ no extreme
f<0
>0 >0 !
|
c c
@ fle)=0 (b) f'(c) undefined

EXAMPLE 1 Find the critical points of
fx) =x"P(x —4) = x*? —4x'.

Identify the intervals on which f is increasing and decreasing. Find the function’s
local and absolute extreme values.

Solution The function fis defined for all real numbers and is continuous (Fig. 3.25).



y=x"Bx -4

/.

N —
W p—

1,-3)

3.25 The graph of y =x"3(x — 4)
(Example 1).

2,21

(-2,-11)

3.26 The graph of g(x) = —x3 + 12x + 5,

—3 < x < 3 (Example 2).
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The first derivative
d  , 4 4
/ — B _4x13) = Zy13 _ T2
f'(x) o (x x'73) 3 3

4 o _Ax =1
B A

is zero at x = 1 and undefined at x = 0. There are no endpoints in f’s domain,
so the critical points, x = 0 and x = 1, are the only places where f might have an
extreme value of any kind.

These critical points divide the x-axis into intervals on which f' is either positive
or negative. The sign pattern of f’ reveals the behavior of f both between and at
the critical points. We can display the information in a picture like the following.

4

. | I
Sign ofw. + E + i +
Signof (x — 1) : - : - I +

4 ] ]
Slgnoff(x)zm(x—l): - i - i +

T I x

Change in f: \?\1: /

I I
Extreme values : no local

extreme min

To make the picture, we marked the critical points on the x-axis, noted the sign
of each factor of f’ on the intervals between the points, and “multiplied” the signs
of the factors to find the sign of f’. We then applied Corollary 3 of the Mean Value
Theorem to determine that f decreases () on (—oo, 0), decreases on (0, 1), and
increases (') on (1, 00). Theorem 5 tells us that f has no extreme at x = 0 (f’
does not change sign) and that f has a local minimum at x = 1 (f’ changes from
negative to positive).

The value of the local minimum is f(1) = 1'/3(1 — 4) = —3. This is also an
absolute minimum because the function’s values fall toward it from the left and rise
away from it on the right. Figure 3.25 shows this value in relation to the function’s
graph. a

EXAMPLE 2 Find the intervals on which

g(x):—-x3+12x+5, —-3<x<3

is increasing and decreasing. Where does the function assume extreme values and
what are these values?

Solution The function f is continuous on its domain, [—3, 3] (Fig. 3.26). The first
derivative

g(x) = -3x>+12=-3(x*-4)
—3(x +2)(x —2),

defined at all points of [—3, 3], is zero at x = —2 and x = 2. These critical points
divide the domain of g into intervals on which g’ is either positive or negative. We
analyze the behavior of g by picturing the sign pattern of g’:
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Sign of ~3(x +2): + i - P-
|
Signof (x-2): - i - i +
| |
Signof g'(x) = -3(x +2)(x — 2): - E + i -
endpoint i i endpoint
| | | |
I l T 1
) R AN 2 3
Change in g(x) : : : / i \ i
Extrema : loéal lotlzal local local
max min max min
We conclude that g has local maxima at x = —3 and x = 2 and local minima at
x = —2 and x = 3. The corresponding values of g(x) = —x> + 12x + 5 are
Local maxima: g(=3) = —4, g(2) =121
Local minima: g(=2)=-11, g(3) = 14.

Since g is defined on a closed interval, we also know that g(—2) is the absolute
minimum and g(2) is the absolute maximum. Figure 3.26 shows these values in

/]
an

relation to the function’s graph. Q
I
Exercises 3.3
Analyzing f Given f 11 h(x) = —x* +2x? 12. h(x) =2x° — 18x
yzing
Answer the following questions about the functions whose derivatives 13. f(0) = 36% — 463 14. f(0) =60 —03
are given in Exercises 1-8: 15. f(r) = 33 4 16r 16. h(r) = (r + 7)°
a) What are the critical points of f? _ 4.2 _ 4 _ 4.3 2
b) On what intervals is f increasing or decreasing? 17. f(x) =x" =87+ 16 18 g(x) =x" —dx™ + dx
¢) At what points, if any, does f assume local maximum and mini- 19. H(t) = 3 P 20. K(t) =15¢* =175
mum values? 2
L fi(x)=x(x—1) 2 ) =(x—-Dx+2) 21. g(x) = xv/8 —x? 22. gy =x*V/5—x
2 3
3@ =6-Dx+2) 4 f1@) == D*x+27 2. f) =1 _23, x#2 U f®) = 5
5. f(0) =@ - DE+2)( -3 - *
6. f'(x)=@x =T+ 1)(x+5) 25. f(x)=x"P(x+38) 26. g(x) = x**(x +5)
27. h(x) = x> —4) 28. k(x) = x*3(x* —4)

7. fx)=x""(x+2) 8. fl(x)=x""2(x =3)

Extremes of Given Functions

In Exercises 9-28:

a) Find the intervals on which the function is increasing and de-
creasing.

b) Then identify the function’s local extreme values, if any, saying
where they are taken on.

¢) Which, if any, of the extreme values are absolute?

d) GRAPHER You may wish to support your findings with a graph-
ing calculator or computer grapher.

9. gt)=—-12—-3t+3 10. g(t) = =32+ 9t +5

Extremes on Half-Open Intervals
In Exercises 29-36:

a) Identify the function’s local extreme values in the given domain,
and say where they are assumed.
b) Which of the extreme values, if any, are absolute?

4 ¢) GRAPHER You may wish to support your findings with a graph-

ing calculator or computer grapher.
29, f(x)=2x—x? —oc0o<x<2

3. f(x)=@x+1)?2 —-o00<x<0



1/
am

3. gx) =x>—4x+4, I<x<o0
32, gx) =—x?—-6x-9, —4<x<o0
3. f()=12t-13, -3<t<o

M., f()=1t>=3t2, —c0o<t<3

3
35. h(x)=%—2x2+4x, 0<x<o0

36. k(x) =x>+3x>+3x+1, —oo<x<0

Graphing Calculator or Computer Grapher

In Exercises 37-40:

a) Find the local extrema of each function on the given interval,
and say where they are assumed.

b) GRAPHER Graph the function and its derivative together. Com-
ment on the behavior of f in relation to the signs and values
of f'.

37. f(x):%—Zsin%, 0<x<2n

38. f(x) =—2cosx —cos’x, —m<x<m
39. f(x) =csc’x —2cotx, O<x<m
40. f(x)=sec’x —2tanx, i<x<%

Theory and Examples

Show that the functions in Exercises 41 and 42 have local extreme
values at the given values of 6, and say which kind of local extreme
the function has.

0
41. h(@):3cos§, 0<6<2m, atf =0and 6 =27

42.

43.

45.

46,

47.

48.
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0
h(@):Ssin—z-, 0<0<m, atf=0andO=m
Sketch the graph of a differentiable function y = f(x) through
the point (1, 1) if f'(1) =0 and
a) f'(x)>0forx <1and f'(x) <O forx > 1,
b) f'(x)<Oforx <1and f'(x) >0 for x > 1;
¢) f'(x)>0forx#1;
d) f'(x) <Oforx#1.

. Sketch the graph of a differentiable function y = f(x) that has

a) a local minimum at (1, 1) and a local maximum at (3, 3);

b) a local maximum at (1, 1) and a local minimum at (3, 3);

¢) local maxima at (1, 1) and (3, 3);

d) local minima at (1, 1) and (3, 3).

Sketch the graph of a continuous function y = g(x) such that

a) g2)=2, O0<g' <lforx<2,gx)—>1"asx—>2",
—1<g <Oforx>2,and g'(x) > —1" as x —> 2%;

b) g(2)=2, g <0forx<2, g'(x)—> —ocoasx—2,
g >0forx >2, and g'(x) —> oo as x — 2+,

Sketch the graph of a continuous function y = A (x) such that

a) h(0)=0,-2<h(x)<2forallx, h'(x) > oc0casx — 0,
and h'(x) - —00 as x — 0F;

b) h(0)=0,-2<h(x) <Oforallx, W'(x) > c0asx — 0,
and h'(x) > —oo0 as x — O*.

As x moves from left to right through the point ¢ = 2, is the graph

of f(x) = x> — 3x + 2 rising, or is it falling? Give reasons for

your answer.

Find the intervals on which the function f(x) = ax? + bx +c,

a # 0, is increasing and decreasing. Describe the reasoning be-
hind your answer.

Graphing with y’ and y~

In Section 3.1, we saw the role played by the first derivative in locating a function’s
extreme values. A function can have extreme values only at the endpoints of its
domain and at its critical points. We also saw that critical points do not necessarily
yield extreme values. In Section 3.2, we saw that almost all the information about
a differentiable function is contained in its derivative. To recover the function
completely, the only additional information we need is the value of the function at
any one single point. If a function’s derivative is 2x and the graph passes through
the origin, the function must be x2. If a function’s derivative is 2x and the graph
passes through the point (0, 4), the function must be x? + 4.

In Section 3.3, we extended our ability to recover information from a function’s
first derivative by showing how to use it to tell exactly what happens at a critical
point. We can tell whether there really is an extreme value there or whether the
graph just continues to rise or fall.

In the present section, we show how to determine the way the graph of a
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3.27 The graph of f(x) = x? is concave
down on (-, 0) and concave up on
(0, ).

function y = f(x) bends or turns. We know that the information must be contained
in y’, but how do we find it? The answer, for functions that are twice differentiable
except perhaps at isolated points, is to differentiate y’. Together y’ and y” tell us
the shape of the function’s graph. We will see in Chapter 4 how this enables us to
sketch solutions of differential equations and initial value problems.

Concavity

As you can see in Fig. 3.27, the curve y = x” rises as x increases, but the portions
defined on the intervals (—oo, 0) and (0, co) turn in different ways. As we come
in from the left toward the origin along the curve, the curve turns to our right and
falls below its tangents. As we leave the origin, the curve turns to our left and rises
above its tangents.

To put it another way, the slopes of the tangents decrease as the curve ap-
proaches the origin from the left and increase as the curve moves from the origin
into the first quadrant.

3

Definition

The graph of a differentiable function y = f(x) is concave up on an in-
terval where y’ is increasing and concave down on an interval where y’ is
decreasing.

If y = f(x) has a second derivative, we can apply Corollary 3 of the Mean Value
Theorem to conclude that y’ increases if y” > 0 and decreases if y” < 0.

The Second Derivative Test for Concavity
Let y = f(x) be twice differentiable on an interval .

1. If y” > 0 on /, the graph of f over I is concave up.
2. If y” <0 on I, the graph of f over I is concave down.

EXAMPLE 1

a) The curve y = x3 (Fig. 3.27) is concave down on (—o0, 0) where y” = 6x < 0
and concave up on (0, co) where y” = 6x > 0.

y' decreases )

X




s=2+cost

=
oIy
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3.29 The motion in Example 2.

3.30 The point of inflection on a typical
cost curve separates the interval of
decreasing marginal cost from the interval
of increasing marginal cost. This is the
point where the marginal cost is smallest
(Example 3).
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b) The parabola y = x? (Fig. 3.28) is concave up on every interval because y” =
2>0.

771 2

3.28 The graph of f(x) = x? on any interval is concave up. a

Points of Inflection

To study the motion of a body moving along a line, we often graph the body’s
position as a function of time. One reason for doing so is to reveal where the body’s
acceleration, given by the second derivative, changes sign. On the graph, these are
the points where the concavity changes.

Definition
A point where the graph of a function has a tangent line and where the
concavity changes is called a point of inflection.

Thus a point of inflection on a curve is a point where y” is positive on one side
and negative on the other. At such a point, y” is either zero (because derivatives
have the intermediate value property) or undefined.

On the graph of a twice-differentiable function, y” = 0 at a point of inflec-
tion.

EXAMPLE 2  Simple harmonic motion

The graph of s = 2 + cos ¢, t > 0 (Fig. 3.29), changes concavity at ¢t = /2, 37 /2,
., where the acceleration s” = — cos ¢ is zero. a

EXAMPLE 3  Marginal cost

Inflection points have applications in some areas of economics. Suppose that y =
¢ (x) is the total cost of producing x units of something (Fig. 3.30). The point of
inflection at P is then the point at which the marginal cost (the approximate cost
of producing one more unit) changes from decreasing to increasing. a



212 Chapter 3: Applications of Derivatives

y EXAMPLE 4  An inflection point where y” does not exist
5= 23 The curve y = x'/3 has a point of inflection at x = 0 (Fig. 3.31), but y” does not
" does 1ot exist there.
y
exist. d? d 1 2
n_ 94 1/3) _ % (123 _Z. -3
\0 x Y de(x dx (3’“ ) 9" Q

EXAMPLE 5  No inflection where y"= 0

The curve y = x* has no inflection point at x = 0 (Fig. 3.32). Even though y” =

3.31 A point where y" fails to exist can 12x2 is zero there, it does not change sign.
be a point of inflection.

3.32 The graph of y = x* has no inflection point at the origin, even
though y”’ = 0 there. a

Technology Graphing a Function with Its Derivatives When we graph a
function y = f(x), it may be difficult to identify the inflection points exactly by
zooming in. Try it on the curve y = 2cosx — \/Ex, —nm < x < 3m/2. Adding
the graph of f” to the display can help to identify inflection points more closely,
but the strongest visual evidence comes from graphing f and f” together.
The graph of y = 2 cos x —v/2 x and its IF is interesting to watch all three functions, f, f’, and f”, being graphed
first derivative. simultaneously.

The Second Derivative Test for Local Extreme Values

Instead of examining y’ for sign changes at a critical point, we can sometimes use
the following test to determine the presence of a local extremum.

The Second Derivative Test for Local Extreme Values

If f/(¢c) =0and f"(c) <O, then f has a local maximum at x = c.
= 0,y" '=0,y">0 ‘ .
Yooy <0 Y ocut min If f(c) =0 and f”(c) > 0, then £ has a local minimum at x = c.




Testing the critical points in
Example 6

As a quick test to see if any of the critical
points are local extreme values, we could
try the second derivative test.

Atx =3,y">0:

We now know that this point is
definitely a local minimum.
Atx=0,y"=0:

Test fails, and so we will need to check

the signs of y’ to know whether this
point gives a local extreme value.
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Notice that the test requires us to know y” only at c itself, and not in an interval
about c. This makes the test easy to apply. That’s the good news. The bad news is
that the test is inconclusive if y” = 0 or if y” does not exist. When this happens,
use the first derivative test for local extreme values.

Graphing with y’ and y”
We now apply what we have learned to sketch the graphs of functions.

EXAMPLE 6

Solution

Graph the function

y = x* —4x* + 10.

Step 1: Find y' and y".

y=x'—4x>+10

y = 4x® — 12x* = 4x*(x = 3)

y" = 12x? — 24x = 12x(x — 2)

Critical points: x =0,
x=3

Possible inflection
points: x =0, x =2

Step 2: Rise and fall. Sketch the sign pattern for y’ and use it to describe the

behavior of y.

4x%:
x—-3):
4x%(x — 3):

+

+

+

+

+

N

no

AN

[ Y

I
local

extreme min

>/

Step 3: Concavity. Sketch the sign pattern for y” and use it to describe the way

the graph bends.

12x: - i + i +
I I
x-2: - | = | +
I I
2ee-2: o+ 1 - o+
i I
conc ( conc p conc
up ! down Ioup
infl infl
point  point



214 Chapter 3: Applications of Derivatives

Step 4: Summary and general shape. Summarize the information from steps 2 and
3. Show the shape over each interval. Then combine the shapes to show the curve’s
general form.

NN NS

I
I
|
conc I conc conc conc
up | down up up
} x
NG R AN
I | |
I I I
infl infl local
point point min

Step 5: Specific points and curve. Plot the curve’s intercepts (if convenient) and the
points where y’ and y” are zero. Indicate any local extreme values and inflection
points. Use the general shape in step 4 as a guide to sketch the curve. (Plot additional
points as needed.)

y
y=x*-4x3+10
20—
15—
) . (0, 10)
11:)ﬂ§tctlon 10
1
p s
| | | | | X
-1 0 1 2 3 4
=5 . %(2,-6)
inflection
—10 — point
_15 —
—20 (3,-17)
local
minimum 4

The steps in Example 6 give a general procedure for graphing by hand.

Strategy for Graphing y = f(x)

Find y’ and y”.

Find the rise and fall of the curve.

Determine the concavity of the curve.

Make a summary and show the curve’s general shape.
Plot specific points and sketch the curve.

A W=

EXAMPLE 7  Graph y = x%* — 5x%/3,



Cusps

The graph of a continuous function y = f(x)

has a cusp at a point x = c if the concavity is

the same on both sides of ¢ and either

1. lim f'(x) =00 and lim f'(x) = —00
x—ct

x—=>c”

Cusp

lim f'(x) = o

X—>C™

X
of ~ \
or
2. lim f'(x) = —oo and lim+ f'(x) = o0.
y
lim_f'(x) = —oo
|\Cusp
| ;
0 c

A cusp can be either a local maximum (1) or
a local minimum (2).
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Solution
Step 1: Find y' and y".

y =x3 —5x23 = xB(x = 5)

The x-intercepts
are at x = (0 and

X =35.
y = §x2/3 — lgx—lﬂ - §X—1/3(x —2) Critical points:
3 3 3 r=0x=2
Possible inflection
10 10 10 ey
y// — ___x—l/3 + ___x—4/3 — ___x—4/3(x + 1) points: x = 0,
9 9 9 x=-
Step 2: Rise and fall.
Sy L 44
| |
| |
x-2): - N
| |
y' = %x_m(x -2): + i — i +
% ! x
0 2
y'doesn’t (' =0)
exlist I
local max local min
Step 3: Concavity.
0,-43, 4 | 4 | 4
o o
x+1): - : + o+
| I
y'= Ig—ox"4/3(x+ 1): — i + E +
% % x
-1 0
conc | conc | conc
down | up | up
| |
infl point
From the sign pattern for y”, we see that there is an inflection point at x = —1, but

not at x = 0. However, knowing that

1. the function y = x%* — 5x%/3 is continuous,

2. y >o00asx— 0" and y - —oo as x — 0" (see the formula for y’ in step
2), and

3. the concavity does not change at x = 0 (step 3) tells us that the graph has a
cusp at x = 0.

Step 4: Summary. General shape.
|

N/

| |
I | |
| | |
| i I
conc } conc { conc : conc
down | up | up I up
| | | x
| I I
-1 0 2
I I |
| I |
2R
I | |
I | |
infl cusp local

point local max min
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y

y = x5 _ 5523 = 25 _ 5)

2_

[ Tocal

max

infl
point
(-1,-6)

2,-32%%) ~ (2,-4.8)

Step 5: Specific points and curve. See the figure to the left.

Learning About Functions from Derivatives

Pause for a moment to see how remarkable the conclusions in Examples 6 and 7
really are. In each case, we have been able to recover almost everything we need
to know about a differentiable function y = f(x) by examining y’. We can find
where the graph rises and falls and where the local extremes are assumed. We can
differentiate y’ to learn how the graph bends as it passes over the intervals of rise
and fall. We can determine the shape of the function’s graph. The only information
we cannot get from the derivative is how to place the graph in the xy-plane. That
requires evaluating the formula for f at various points. Or so it seems. But as we
saw in Section 3.2, even that is nearly superfluous. All we really need, in addition
to y’, is the value of f at a single point.

What Derivatives Tell Us About Graphs

a) b) <)

y =f(x) y =fx) y =f()
Differentiable = y' > 0 = rises from y' < 0 = falls from
smooth, connected; left to right; left to right;
may rise and fall may be wavy may be wavy

d) €) f)
/ or \ / or \ / \
y" changes sign
y" > 0 = concave up y" < 0 = concave down = Inflection point (if f
throughout; no waves; throughout; no waves; is twice differentiable)
may rise or fall may rise or fall
g) h) i)
/\ or v
+ p—
y'=0 and y"<0 y'=0 and y">0
at a point at a point
y' changes sign =
local maximum or
local minimum = Local maximum = Local minimum
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Exercises 3.4

Analyzing Graphed Functions 7. 8.
Identify the inflection points and local maxima and minima of the y =sinfx|, 27 < x < 27 y=2cosx—\V2x,—m=x= 3777
functions graphed in Exercises 1-8. Identify the intervals on which Y y
the functions are concave up and concave down. ~
1. 2. | \ 1,y
) - 0 3w
2

W=

V4

(Generated by Mathematica)

3 4
_ X X X 2 0
= -2 == - +
y=3 3 2x + Y= 2x”+4
y y
NOT TO SCALE

Graphing Equations
Use the steps of the graphing procedure on page 214 to graph the
equations in Exercises 9—40. Include the coordinates of any local

0 x extreme points and inflection points.
(Generated by Mathematica) 9.y =x2—4x+3 10. y =6 —2x —x2?
(Generated by Mathematica) 11, y=x3—-3x+3 12. y = x(6 — 2x)?
13, y = -2x3+6x2 -3 14 y=1—-9x — 622 —x°
3 4 15. y=x =2)>+1 16. y=1—(x+1)3
_ 4 2 _ 202
I PERe IR 17. y=x*—-2x> =x*(x* - 2)
4%y 1 18. y= —x*+6x2 —4=x}6-x2) —4
19. y=4x> —x*=x34 —x)
20 y=x*+2x=x3(x+2)
0 * 2l y=x°=5x* =x*(x - 5)
x 4
0 —x(* -
22, y_x(2 5)
23. y=x+sinx, 0<x <27
24, y=x —sinx, 0<x<2m
25. y=x1? 26. y = x3°
27. y =x*° 28, y = x*°
S. 6.
) , 29, y =2x —3x?3 30. y =5x%3 —2x
y=x+sin2y, - <x< X y=tanx —4x, -T<x<T 5
y 3 y 2 2 3L y=x} (— —x) 2. y=xx-5)
2
33, y =x4/8—x2 34, y=2-x%3?
x2 =3 x3
35 y=—, 2 36. y= ———
I Ly . yY=5p *7 YTt
-2z 9 r 0 3. y=lx -1 38, y = [x? — 2|
_ _fv=x x=<0
39.y_«/|x|_{«/;’ >0

(Generated by Mathematica) 40. y = /|x — 4|
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Sketching the General Shape Knowing y’

Each of Exercises 41-62 gives the first derivative of a continuous
function y = f(x). Find y” and then use steps 2—4 of the graphing
procedure on page 214 to sketch the general shape of the graph of f.

41. y =2+ x — x? 42 y=x>-x—-6
43. y' = x(x — 3)? 4, y =x*2~-x)
45, y =x(x* - 12) 46. y' = (x — 1)2(2x + 3)
47. y = (8x — 5x%)(4 — x)? 48. y' = (x2 = 2x)(x — 5)?
49. y' =sec’x, —% <x < %
50. y’' =tanx, ——<x<%
6

51. y’=cot§, 0<0<2m

/ 29
52. y' =csc 7 0<0<2m
53. y' =tan?6 — 1, ——%<9<%

54. y =1—-cot?f, 0<O<m
§5. y =cost, 0<t<2m
56. y' =sint, 0<t<2mw
57,y = (x + 1)
58 y =(x —2)"1/3
59. y =x"(x -1)

60. y =x"*S(x+1)

, -2x, x<0
61.y=2|x|={ 2x, x>0

, -x%, x<0
62.y_{ %2, x>0

Sketching y from Graphs of y’ and y”

Each of Exercises 63—-66 shows the graphs of the first and second
derivatives of a function y = f(x). Copy the picture and add to it
a sketch of the approximate graph of f, given that the graph passes
through the point P.

63. 64.

y=f)

y=f"x)

65. y

y=f

/7<\ )
(0]
y=fk

66. Y

y=rf)

0 X
/ y=f'“\><

Pe

Theory and Examples

67. The accompanying figure shows a portion of the graph of a
twice-differentiable function y = f(x). At each of the five la-
beled points, classify y’ and y” as positive, negative, or zero.

y=fx) S

o

68. Sketch a smooth connected curve y = f(x) with

f(=2) =38, ') = f'(=2)=0,
f(0) =4, f'(x) <0 for |x|<2,
f) =0, f"(x) <0 for x <O,
f'(x) >0 for |x|>2, f"(x) >0 for x>0.

69. Sketch the graph of a twice-differentiable function y = f(x) with
the following properties. Label coordinates where possible.

x y Derivatives
x <2 y <0, y >0
2 1 y =0, >0
2<x<4 y >0, >0
4 4 y >0, y' =0
4<x<6 y >0, y' <0
6 7 y=0, ' <0
x>6 ¥y <0, y' <0




70.

Sketch the graph of a twice-differentiable function y = f(x) that
passes through the points (-2, 2), (—1, 1), (0, 0), (1, 1) and (2, 2)
and whose first two derivatives have the following sign patterns:

Velocity and acceleration. The graphs in Exercises 71 and 72 show
the position s = f(¢) of a body moving back and forth on a coordinate
line. (a) When is the body moving away from the origin? toward the
origin? At approximately what times is the (b) velocity equal to zero?

©

acceleration equal to zero? (d) When is the acceleration positive?

negative?
71.

Displacement

s =f0

(=)

2
b

Displacement

Time (sec)

©

s=f@®

(=]

73.

15
Time (sec)

Marginal cost. The accompanying graph shows the hypothetical
cost ¢ = f(x) of manufacturing x items. At approximately what
production level does the marginal cost change from decreasing
to increasing?

¢ =f)

Cost

P I IO T B I
20 40 60 80 100120

Thousands of units produced

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.
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The accompanying graph shows the monthly revenue of the
Widget Corporation for the last twelve years. During approx-
imately what time intervals was the marginal revenue increasing?
decreasing?

y=r@

llllllllllllt

0 5 10

Suppose the derivative of the function y = f(x) is
Yy =&-D(x-2).

At what points, if any, does the graph of f have a local minimum,
local maximum, or point of inflection? (Hint: Draw the sign
pattern for y'.)

Suppose the derivative of the function y = f(x) is
Y= —1DXx —2)(x —4).

At what points, if any, does the graph of f have a local mini-
mum, local maximum, or point of inflection?

Forx > 0, sketchacurve y = f(x) thathas f(1)= 0Oand f'(x)=
1/x. Can anything be said about the concavity of such a curve?
Give reasons for your answer.

Can anything be said about the graph of a function y = f(x)
that has a continuous second derivative that is never zero? Give
reasons for your answer.

If b, ¢, and d are constants, for what value of » will the curve
y = x3 + bx? + cx + d have a point of inflection at x = 1? Give
reasons for your answer.

Horizontal tangents. True, or false? Explain.

a) The graph of every polynomial of even degree (largest ex-
ponent even) has at least one horizontal tangent.

b) The graph of every polynomial of odd degree (largest ex-
ponent odd) has at least one horizontal tangent.

Parabolas

a) Find the coordinates of the vertex of the parabola y = ax? +
bx+c,a#0.

b) When is the parabola concave up? concave down? Give
reasons for your answers.

Is it true that the concavity of the graph of a twice-differentiable
function y = f(x) changes every time f”(x) = 0? Give reasons
for your answer.

Quadratic curves. What can you say about the inflection points
of a quadratic curve y = ax? + bx + ¢, a # 0? Give reasons for
your answer.

Cubic curves. What can you say about the inflection points of
a cubic curve y = ax® + bx? + cx +d, a # 0? Give reasons for
your answer.
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%s Grapher Explorations

In Exercises 85-88, find the inflection points (if any) on the graph
of the function and the coordinates of the points on the graph where
the function has a local maximum or local minimum value. Then
graph the function in a region large enough to show all these points
simultaneously. Add to your picture the graphs of the function’s first
and second derivatives. How are the values at which these graphs
intersect the x-axis related to the graph of the function? In what other
ways are the graphs of the derivatives related to the graph of the

function?
85. y =x%—5x*—-240
86. y = x> — 12x?
4
87. y= gx5 +16x% —25
4 3
88. y=%—%—4x2+12x+20

89.

90.

91.

Graph f(x) =2x*—4x?>+1 and its first two derivatives to-
gether. Comment on the behavior of f in relation to the signs
and values of f’ and f".

Graph f(x) =xcosx and its second derivative together for
0 < x <2m. Comment on the behavior of the graph of f in
relation to the signs and values of f”.

a) On a common screen, graph f(x) = x> + kx for k = 0 and
nearby positive and negative values of k. How does the value
of k seem to affect the shape of the graph?

b) Find f’'(x). As you will see, f’(x) is a quadratic function of
x. Find the discriminant of the quadratic (the discriminant
of ax? + bx + ¢ is b* — 4ac). For what values of k is the
discriminant positive? zero? negative? For what values of

92.

93.

94.

95.

k does f’ have two zeros? one or no zeros? Now explain
what the value of k has to do with the shape of the graph
of f.

¢) Experiment with other values of k. What appears to happen
as k — —oo0? as k — 00?

a) On acommon screen, graph f(x) = x* + kx> +6x%, -1 <
x <4 for k = —4, and some nearby values of k. How does
the value of k seem to affect the shape of the graph?

b) Find f”(x). As you will see, f”(x) is a quadratic function of
x. What is the discriminant of this quadratic (see Exercise
91b)? For what values of k is the discriminant positive?
zero? negative? For what values of k does f”(x) have two
zeros? one or no zeros? Now explain what the value of k
has to do with the shape of the graph of f.

a) Graph y = x*3(x? — 2) for —3 < x < 3. Then use calculus
to confirm what the screen shows about concavity, rise, and
fall. (Depending on your grapher, you may have to enter
x23 as (x%)!/? to obtain a plot for negative values of x.)

b) Does the curve have a cusp at x = 0, or does it just have a
corner with different right-hand and left-hand derivatives?

a) Graph y = 9x%3(x — 1) for —0.5 < x < 1.5. Then use cal-
culus to confirm what the screen shows about concavity,
rise, and fall. What concavity does the curve have to the
left of the origin? (Depending on your grapher, you may
have to enter x%3 as (x?)'/> to obtain a plot for negative
values of x.)

b) Does the curve have a cusp at x = 0, or does it just have a
corner with different right-hand and left-hand derivatives?

Does the curve y = x2 4 3sin2x have a horizontal tangent near
x = —3? Give reasons for your answer.

Limits as x — + o, Asymptotes, and Dominant
Terms

In this section, we analyze the graphs of rational functions (quotients of polynomial
functions), as well as other functions with interesting limit behavior as x — = oco.
Among the tools we use are asymptotes and dominant terms.

Limits as x — + oo

The function f(x) = 1/x is defined for all x # 0 (Fig. 3.33). When x is positive and
becomes increasingly large, 1/x becomes increasingly small. When x is negative and
its magnitude becomes increasingly large, 1/x again becomes small. We summarize
these observations by saying that f(x) = 1/x has limit 0 as x — =+ oo.



3.33 The graph of y = 1/x.

The symbol infinity (oo)

As always, the symbol co does not represent
a real number and we cannot use it in
arithmetic in the usual way.

y  No matter what
positive number € is,
the graph enters

this band at x = €

No matter what
positive number € is,
the graph enters

this band at x = — =
and stays.

3.34 The geometry behind the argument
in Example 1.

3.5 Limits as x — + o0, Asymptotes, and Dominant Terms 221

~ Definitions
1. We say that f(x) has the limit L as x approaches infinity and write
lim f(x) =L

if, for every number € > 0, there exists a corresponding number M such
that for all x

x>M = |[f(x)—L| <e.
2. We say that f(x) has the limit L as x approaches minus infinity and
write
lim f(x) =1L
X—>— 00

if, for every number € > 0, there exists a corresponding number N such
that for all x

x <N = |f(x)—L| <e.

The strategy for calculating limits of functions as x — = 0o is similar to the
one for finite limits in Section 1.2. There, we first found the limits of the constant
and identity functions y =k and y = x. We then extended these results to other
functions by applying a theorem about limits of algebraic combinations. Here we
do the same thing, except that the starting functions are y = k and y = 1/x instead
of y=kand y =x.

The basic facts to be verified by applying the formal definition are

lim k=k and lim 1 =0. (1)

x—>* o0 x—>*oo X

We prove the latter and leave the former to Exercises 87 and 88.

EXAMPLE 1 Show that

1 1
a) lim —=0 b) Ilim - =0.
x—>00 X x—>—00 X
Solution

a) Let € > 0 be given. We must find a number M such that for all x

1 1
-0 Z
x x

x>M =

< €.

The implication will hold if M = 1/¢ or any larger positive number (Fig. 3.34).
This proves lim,_, o (1/x) =0.
b) Let € > 0 be given. We must find a number N such that for all x

1 1
-0 Z
x x

x <N =

< €.

The implication will hold if N = —1/€ or any number less than —1/¢ (Fig.
3.34). This proves lim,_, _o, (1/x) =0. a
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The following theorem enables us to build on Egs. (1) to calculate other limits.

Theorem 6
Properties of Limits as x — + oo

The following rules hold if lim, .1 f(x) =L and lim, 1 g(x) =M
(L and M real numbers).

1. Sum Rule: xljlgloo[f(x) +gx)=L+M
2. Difference Rule: xl)iinoo[f(x) —-gx)]=L-M
3. Product Rule: ; _I:Iinoo f(x)-gx)y=L-M
4. Constant Multiple Rule: xl}irﬁn@k f(x) =kL (any number k)
. x L .
5. Quotient Rule: x—l:gloo g((x)) = w if M #0
6. Power Rule: If m and n are integers, then . Ligloo[ Fa63) i

= L™ provided L™" is a real number.

These properties are just like the properties in Theorem 1, Section 1.2, and we
use them the same way.

y o s ge 3 EXAMPLE 2
3x2+2 1 1
2 a) lim (5+— )= lim 5+ lim — Sum Rule
- 3 X—>00 X xX—00 x—>00 X
\ 1 Line y = 3 =54+0=5 Known values
. 1/3 , 11
I 1o ! [N T T T B N b) lim : =hmn\/§-—-—
_5 0 5 10 X—>—00 x X—>— 00 X x
1 1
—1 = lim 71'«/? « lm —-. lim - Product Rule
X——00 X—>—00 X X—>—00 X
= 7'[«/5 .0:.0=0 Known values D
™ ~2  NOTTOSCALE

Limits of Rational Functions as x — + 0

To determine the limit of a rational function as x — £ 00, we can divide the
numerator and denominator by the highest power of x in the denominator. What
happens then depends on the degrees of the polynomials involved.

3.35 The function in Example 3.

EXAMPLE 3  Numerator and denominator of same degree
The degree of the polynomial

n n— . 5x%4+8x =3 . 5+ (8/x) — (3/x2 Divide numera-
ax" +a, X" 4 - 4 ax +a, lim —3 ) = (3 :_ ()2 (2)/ ) tor and denomi-
X—>00 X—=>00 . el
a, # 0, is n, the largest exponent. x /x nator by x-.
540-0 5 '
= — == See Fig. 3.35.
340 3

Q
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X EXAMPLE 4  Degree of numerator less than degree of denominator
8 —
i 11x +2 (1 1/x2) + (2/x3) Divide numerator
1m = — and denominator
6— x—>—o002x3 — x>-00 2 —(1/x3) by 1%,
0+0
ar =——=0 See Fig. 3.36.
2-0 a
I x
420 EXAMPLE 5 Degree of numerator greater than degree of
-2 denominator
2
-4 a) lim 2x" -3 = lim 2x — 3/x) Divide.numerator and
x—>—00 Tx +4 x—>—00 74 (4/x) denominator by .x.
-6 The numerator now ap-
proaches — oc while the
-8 = -0 denominator approaches 7,

3.36 The graph of the function in
Example 4. The graph approaches the

. : b)
X-axis as |x| increases.

so the ratio — — o0. Sec
Fig. 3.37.

Divide numerator and
denominator by x°.

. —4x3 + 7x —4x + (7/x)
Iim ———— = = lim
0 2x? —3x — 10 +orw2 — (3/x) — (10/x2)

Numerator — oo. Denom-
inator — 2. Ratio — oc.

Q

= 00

y
Examples 3-5 reveal a pattern for finding limits of rational functions as
a4l x — too.
2
= 27’; J: f 1. If the numerator and the denominator have the same degree, the limit is the
L ratio of the polynomials’ leading coefficients (Example 3).

2.

=

3.37 The function in Example 5(a).

The leading coefficient of the polynomial
apx" +ap_ X"+ ax +ag, a, #0, is
ay, the coefficient of the highest-powered
term.

If the degree of the numerator is less than the degree of the denominator, the
limit is zero (Example 4).

If the degree of the numerator is greater than the degree of the denominator,
the limit is + oo or — 0o, depending on the signs assumed by the numerator
and denominator as |x| becomes large (Example 5).

Summary for Rational Functions

1. If deg (f) = deg (g), lim ZACY = a—", the ratio of the leading
x—>too g(x) b,
coefficients of f and g.
2. Ifdeg (f) < deg (g), i LS =0
x—>+o00 g(_x)
f)

3. Ifdeg (f) > deg (g), = =+ 00, depending on the signs

x—>+00 g(x)

of numerator and denominator.
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Vertical asymptote

Horizontal
asymptote

—

(=]

Vertical asymptote,

1 Horizontal
asymptote,
y=0

o

I
%

3.38 The coordinate axes are asymptotes
of both branches of the hyperbola

y =1

3.39 The graphs of sec x and tan x

(Example 7).

Horizontal and Vertical Asymptotes

If the distance between the graph of a function and some fixed line approaches
zero as the graph moves increasingly far from the origin, we say that the graph
approaches the line asymptotically and that the line is an asymptote of the graph.

EXAMPLE 6 The coordinate axes are asymptotes of the curve y = 1/x (Fig.
3.38). The x-axis is an asymptote of the curve on the right because
1
lim — =0
xX—>00 X
and on the left because
. 1
lim - =0.
X—=>—00 X

The y-axis is an asymptote of the curve both above and below because

i and Iim — = —o0.
x—0t X x=>0" X
Notice that the denominator is zero at x = 0 and the function is undefined. a

Definitions
A line y = b is a horizontal asymptote of the graph of a function y = f(x)
if either

lim f(x) =b or lir_n f(x)="0b.

A line x = a is a vertical asymptote of the graph if either

lim f(x) =+o0 or lim f(x) =+o0.
x—at x—a”

EXAMPLE 7 The curves

1 sin x
and y=tanx =

COS X

both have vertical asymptotes at odd-integer multiples of m /2, where cos x =0
(Fig. 3.39).

y =8secx y=tanx

ol

]
I
3

(=]
\I:I‘
3

(%
q

W
q
3

[o
3
3

3
=1




y
Vertical
asymptote, 6~
x=-2 S5 ,_ x+3
Y= x¥2
4 . 1
=14+ —=
Horizontal 3 x+2
asymptote, s
y=1 ——
TN | L,
-6 -5 -4 -3\-2 -1 0 1 2 3
_1 —
_2 —
_3 —
_4 —

3.41 Thelinesy =1 and x = —2 are
asymptotes of the curve y = (x + 3)/(x + 2)
(Example 8).

y
y=- 8
x*-4
Vertical Vertical
asymptote, asymptote, x = 2
x=-2

Horizontal
asymptote, y =0

L 1 | ] | /1 1 |
-3-2-10 1 2 3

X

3.42 The graph of y = —8/(x? — 4)
(Example 9). Notice that the curve
approaches the x-axis from only one side.
Asymptotes do not have to be two-sided.
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The graphs of

1 cos x
and y =cotx =

y=cscx =

sin x sin x

have vertical asymptotes at integer multiples of 7, where sin x = 0 (Fig. 3.40).

Y y=cscx y y = cotx
1 1
| 1 | N N
-7 @m0 T ¥ 3w 2 -7 _7m\0| #\ 7% 3m\2m
— 2 2 - 2 2
3.40 The graphs of csc x and cot x (Example 7). (]

EXAMPLE 8  Find the asymptotes of the curve

_x—|-3
y_x+2'

Solution We are interested in the behavior as x — + 00 and as x — —2, where
the denominator is zero.
The asymptotes are quickly revealed if we recast the rational function as a
polynomial with a remainder, by dividing (x 4 2) into (x + 3).
1

x—|—2ix+3
x+2
1

This enables us to rewrite y:
1

=1
Y +x+2

From this we see that the curve in question is the graph of y = 1/x shifted 1 unit
up and 2 units left (Fig. 3.41). The asymptotes, instead of being the coordinate
axes, are now the lines y =1 and x = —2. a

EXAMPLE 9 Find the asymptotes of the graph of

8
fx) = -

x2—4

Solution We are interested in the behavior as x — oo and as x — +2, where
the denominator is zero. Notice that f is an even function of x, so its graph is
symmetric with respect to the y-axis.

The behavior as x — +o00. Since lim,_, o, f(x) =0, the line y =0 is an
asymptote of the graph to the right. By symmetry it is an asymptote to the left as
well (Fig. 3.42).
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| ] | | | |
-4 -3 -2 -1 O 1 2 3

3.43 The graph of f(x) = (x3 — 1)/(x> — 1)
has one vertical asymptote, not two. The
discontinuity at x = 1 is removable.

y
y=2+sir;x
———— N A‘b\ -
p— —
1_
1 | | | | | x
=37 27 -w O T 27 37

3.44 A curve may cross one of its
asymptotes infinitely often (Example 11).

The behavior as x — 2. Since
lim f(x) = —o© and lim f(x) = oo,
x—2% x—2
the line x = 2 is an asymptote both from the right and from the left. By symmetry,

the same holds for the line x = —2.
There are no other asymptotes because f has a finite limit at every other point.

Q

We might be tempted at this point to say that rational functions have ver-
tical asymptotes where their denominators are zero. That is nearly true, but not
quite. What is true is that rational functions reduced to lowest terms have vertical
asymptotes where their denominators are zero.

EXAMPLE 10 A removable discontinuity at a zero of the denominator

The graph of

x3 =1
f@ =5
has a vertical asymptote at x = —1 but not at x = 1. Since
x =1 _ x=DE2+x+1 _x2+x+1
x2-=1 (x-Dx+1) — x+1 ~°

the function has a finite limit (3/2) as x — 1 and the discontinuity is removable
(Fig. 3.43).

The Sandwich Theorem (Section 1.2, Theorem 4) also holds for limits as
x — Foo. Here is a typical application.

EXAMPLE 11 Using the Sandwich Theorem, find the asymptotes of the curve
sinx

y=2+

Solution We are interested in the behavior as x — & 00 and as x — 0, where the
denominator is zero.

The behavior as x — 0. We know that lim,_,¢ (sinx)/x = 1, so there is no
asymptote at the origin.

The behavior as x — +00. Since
1

X

sin x
0<

3

X

and lim,_, 1 |1/x| =0, we have lim,_,; ., (sinx)/x = 0 by the Sandwich The-
orem. Hence,

nm<z+ﬂz>=2+0=z
X

x—+o00

and the line y = 2 is an asymptote of the curve on both left and right (Fig. 3.44).
a



y Y= ox—d ~2tlt g
The vertical distance
between curve and

6 line goes to zero as x — o
5
1 .
Oblique
3 asymptote

wfm——————

-1 0 3 4
-1
9 Vertical
asymptote,
3 x=2

3.45 The graph of f(x) = (x> — 3)/(2x — 4)
(Example 12).
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Oblique Asymptotes

If the degree of the numerator of a rational function is one greater than the degree
of the denominator, the graph has an oblique asymptote, that is, a linear asymptote
that is neither vertical nor horizontal.

EXAMPLE 12 Find the asymptotes of the graph of
x?-3

fo)=—4

Solution We are interested in the behavior as x — & oo and also as x — 2, where
the denominator is zero. We divide (2x — 4) into (x? — 3):

X
- +1
2 +
2x —4)x%2 -3
x?—2x
2x —3
2x — 4
1
This tells us that
x2—-3 x 1
= ==41 . 2
T =g =t It @
— —
linear remainder
Since lim,_,,+ f(x) = 00 and lim,_,,- f(x) = — 00, the line x = 2 is a two-sided

asymptote. As x — = 0o, the remainder approaches 0 and f(x) — (x/2) + 1. The
line y = (x/2) + 1 is an asymptote both to the right and to the left (Fig. 3.45). U

Graphing with Asymptotes and Dominant Terms

Of all the observations we can make quickly about the function

x*-3
f(x)=2x_4

in Example 12, probably the most useful is that

Foy =S4
V=5 m—4

This tells us immediately that

fx) =

+1 for x numerically large

N =

1
f(x) = 2y —4 for x near 2

If we want to know how f behaves, this is the way to find out. It behaves like
y = (x/2) + 1 when x is numerically large and the contribution of 1/(2x —4) to
the total value of f is insignificant. It behaves like 1/(2x —4) when x is so close
to 2 that 1/(2x — 4) makes the dominant contribution.

We say that (x/2) + 1 dominates when x is numerically large, and we say that
1/(2x — 4) dominates when x is near 2. Dominant terms like these are the key to
predicting a function’s behavior.
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EXAMPLE 13 Graph the function

Solution We investigate symmetry, dominant terms, asymptotes, rise, fall, extreme
values, and concavity.

Step 1: Symmetry. There is none.

Step 2: Find any dominant terms and asymptotes. We write the rational function
as a polynomial plus remainder:

1
y=x2+—. 3)
x

For |x| large, y &~ x*. For x near zero, y ~ 1/x.
Equation (3) reveals a vertical asymptote at x = 0, where the denominator of
the remainder is zero.

Step 3: Find y' and analyze the function’s critical points. Where does the curve
rise and fall?
The first derivative

1 2x3 -1
y’ = 2x — == > From Eq. (3)
X X
is undefined at x = 0 and zero when
1 3 _ _ | _ I
2 — == 0 2x 1 } { +
X 2 } I
x + 0+ |+
[ |
20} -1 = 22— b
1 2 I |
x3 = 5 { } x
0 0.8
1 AN
X=5=% 0.8. no loc'al
2 extreme min
value

Step 4: Find y" and determine the curve’s concavity. The second derivative

2 2x3 42
n
Y x3 x3
is undefined at x = 0 and zero when
2 2 3 _ | I
24+ == 0 x> +2 : + : +
X | |
D T B S
3 _ I |
2x°4+2=0 _23+2. L L,
3 x3 | |
x? = -1 } { X
conc —] conc () conc
x =—1. up | down | up

|

I |
infl

point
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Step 5: Summarize the information from the preceding steps and sketch the curve’s
general shape.

N

/
N\

I I I
I I I
I \ |
I 1 |
conc } conc } conc conc :
up I down 1 up up I
— : |
-1 0 0.8 I
| | I !
| I | :
infl vert local I
point asmt min

Step 6: Plot the curve’s intercepts, mark any horizontal tangents, and graph the
dominant terms. See Fig. 3.46. This provides a framework for graphing the curve.

— WALV
—
I
»
—_
o
N

0 08 2 3

- -2
- -3
— -4
— -5
— -6
— -7

3.46 The dominant terms and horizontal tangent provide a framework for
graphing the function.

Step 7: Now add the final curve to your figure, using the framework and the curve’s
general shape as guides. See Fig. 3.47. Q

<

==

y=x2+

(0.8, 1.9) //Graph close

toy=x2
for |x| large

_NW AR N I

|
—_

Graph close
toy=1/x
for x near 0 \ — =4

3.47 The function, graphed with the aid of the framework in Fig. 3.46.
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Hidden Behavior Checklist for Graphing a Function y = f(x)

Sometimes graphing f’ or f” will suggest
where to zoom in on a computer generated 1. Look for symmetry.

graph of f to reveal behavior hidden in the Is the f.unction .even? odd? )
grapher’s original picture. 2. Is the function a shift of a known function?
3

Analyze dominant terms.
Divide rational functions into polynomial + remainder.
4. Check for asymptotes and removable discontinuities.
Is there a zero denominator at any point?
What happens as x — =+ 00?

5. Compute f’ and solve f’ = 0. Identify critical points and determine
intervals of rise and fall.
6. Compute f” to determine concavity and inflection points.
7. Sketch the graph’s general shape.
8. Evaluate f at special values (endpoints, critical points, intercepts).
9. Graph f, using dominant terms, general shape, and special points for
guidance.
Exercises 3.5
i imi 1 —12x3 1
Calculating Limits as x — + oo 15, 0 =12 x 16. ) =
In Exercises 1-6, find the limit of each function (a) as x — oo and 4x? +12 X —dx+1
B ) o . 7y3 3x2 -6
(b) as x - —oo. (You may wish to visualize your answer with a 17. hx) = X 18. g(x) = X X
grapher.) x3 —3x2 4 6x 4x — 8
2 2 2x3 43 10x5 + x* + 31
1. f(x)=;—3 2. f(x)=7t—; 19. f(x) = g 20. g(x):T
1 1 4 4
Jogx)=5—— 4. g(x) = c— ¢ I o M Hx
2+ (1/x) 8 — (5/x2) 21. g(x)—x3+1 22. h(X)_2x4+5X2—x+6
=5+ 3-(2
5. h(x) = 3+71(/2x) 6. h(x) = ______(./i 23. hx) = —2x3 —2x +3 2. hix) = —x*
= (1/x%) 4+(\/§/x2) ) T 3x343x2 — 5x ) T Xt —Tx34+7x249
Find the limits in Exercises 7-10.
7. lim S 8. lim <
X—>00 X 0—>—-oc0 30
o piy 2 Ltsins 0. 1 r+ sinr Limits with Noninteger or Negative Powers
) Hu—n oo t4cost . ringo 2r +7 — S5sinr The process by which we determine limits of rational functions applies
equally well to ratios containing noninteger or negative powers of x:
Limits of Rational Functions divide numerator and denominator by the highest power of x in the
In Exercises 11-24, find the limit of each rational function (a) as denominator and proceed from there. Find the limits in Exercises
x — 00 and (b) as x — — oo. 25-30. 1
2 3 2x3+7 . Zﬁ +x~ A 2+ \/;
1. f(r) = o 12 f) = o— 25 lim = 2. lim >
5x+7 B =xt+x+7 * x o0 2 —\/x
x+1 3x+7 . N —=x Cox 7 xt
13. = . = 27. e . —
fx) i3 14. f(x) 5 7. lim N 28. lim o —
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26555 _ 315 47 JE—5x+3 ! =
29. lim ——— 30. i — 5l y= —— 52. y=—
e X85 4+ 3x + /x Pl 2x +x23 -4 YT YT
53, y= =2 4,y 24
Inventing Graphs from Values and Limits YT T A
In Exercises 31-34, sketch the graph of a function y = f(x) that x2 x2
satisfies the given conditions. No formulas are required—ijust label 5.y = x—1 56. y=— T +1
the coordinate axes and sketch an appropriate graph. (The answers 24 2—a
are not unique, so your graphs may not be exactly like those in the 57. y= 58. y=-—
answer section.) x=1 x+1
2 _ 2 _
3L f(0)=0, f(1)=2, f(—1) = =2, lim f(x)=—1, and 59, y = % 60. y = _¥
. X—=>—=00 X — X —
dim =1 X =3x2+3x -1 XPtx-2
32 f©) =0, lim f(x)=0, lim f(x)=2,and oly=—mr7 62. y=—""0
x—=>*o0 x—0*
lir(r)l flx)y=-2 63 X 64 x—1
= “Y=2 1 YT 2 —2)
3. [ =0, lim f()=0, lim f(x)= lim f(x)= oo, * g ! ¥(x=2)
lim f(x)=—o00,and lim f(x)=—o0 05. y= 55 (Agnesi'switch)
x—1* x—>—1-
M fO=1 fED =0 lim fx)=0, lim f(x) = oo, 66. y = ha (Newton’s serpentine)
. x—»fx: x—0 -y X2 +4 I'p
llrg f(x)=—o00,and lim f(x)=1
x—0" X— — 00

4a Grapher Explorations

Graph the curves in Exercises 67-72 and explain the relation between
the curve’s formula and what you see.

Inventing Functions

In Exercises 35-38, find a function that satisfies the given conditions

and sketch its graph. (The answers here are not unique. Any function _1

that satisfies the conditions is acceptable. Feel free to use formulas 67. y = 68. y= ———
defined in pieces if that will help.) V4 —x? Va4 —x?
. . . 1 2
35. lim f(x)=0, lim f(x) =00, and lim f(x)=oo 69. y =x¥* + ) 70. y =2/x + 5 3
36. lim g(x) =0, lim g(x) = —o0, and lim g(x) = o0
x—=>+o00 x—=3" x—3* . T T
. ) . 71. y =sin (—) 72. y = —cos (—)
37. lim h(x)=-1, lim h(x) =1, 111‘(1)1 h(x) = —1, and x2+1 x2+1
X— —00 X—00 x—0"
lir{)1+ h(x)=1
- Graphing Terms
38. lim k(x) =1, lim k(x) =00, and lim k(x) = —o0 phing ) ) o
x—>E00 x=>1- x> 1 Each of the functions in Exercises 73-76 is given as the sum or
difference of two terms. First graph the terms (with the same set of
Graphing Rational Functions axes). Then, using these graphs as guides, sketch in the graph of the
Graph the rational functions in Exercises 39-66. Include the graphs ~ function.
. . 1
and equatloni of the asymptotes and dominant terrlns. 73. y =secx + -, _% <x < %
X
39 y=—-o 40. y =
x—1 x+1 b/ T
74. y=secx — —, —— <x<—
1 -3 x? 2 2
41. y= 4. y=
2x +4 x—=3 T b4
75. y=tanx+ —, —— <x< —
x+3 2x x2? 2 2
43. y = 4. y=
x+2 x+1 1 T
76. y=— —tanx, —— <x < —
45, X1 46 yo X 2
YT e YT e tsx—14
PR el 48 x2+4 Theory and Examples
YT TR YT T 77. Let f(x) = (x* +x2)/(x? 4+ 1). Show that there is a value of ¢
41 41 for which f(c) equals
49. y=— 50. y =
x x? a) -2 b) cos3 ¢) 5,000,000.
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EXAMPLE 6

a) d(tan2x) = sec’(2x) d(2x) = 2sec? 2x dx
x x+1Ddx—xdx+1) xdx+dx—xdx dx
) ) :

x+1/) (x + 1) x+1)?2 (x+1? Q

Estimating Change with Differentials

Suppose we know the value of a differentiable function f(x) at a point xo and we
want to predict how much this value will change if we move to a nearby point
Xo +dx. If dx is small, f and its linearization L at xo will change by nearly the
same amount. Since the values of L are simple to calculate, calculating the change
in L offers a practical way to estimate the change in f.

In the notation of Fig. 3.65, the change in f is

Af = f(xo+dx) — f(xo).

y y=fx)

)
'/ Af = f(xy + dx) — f(x,)
1

AL = f'(x;)dx
(xgs fOxp)),
R
| | When dx is a small change in x,
Tangent I I zge lc‘orres.po?din.g change lin it
. . 3 € f1inearization 1s precise! .
3.65 If dx is small, the change in the line I | P Y
linearization of f is nearly the same as ' ' x
the change in f. 0 %o X+ dx

The corresponding change in L is
AL = L(xy + dx) — L(xo)

= f0) + £ o) (o +dx) = x0] = £ (x0)
L(x0)=f (x0)

L(xo+dx)
= f'(x0) dx.
Thus, the differential df = f’(x) dx has a geometric interpretation: When df

is evaluated at x = xo, df = AL, the change in the linearization of f corresponding
to the change dx.

The Differential Estimate of Change

Let f(x) be differentiable at x = x,. The approximate change in the value
of f when x changes from x, to xy + dx is

df = f'(xo) dx.
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/] H " H [ ] H 1 1
4s Grapher Explorations—"Seeing” Limits at Infinity 103. Tim xsin+ 104, lim cos (1/x)
Sometimes a change of variable can change an unfamiliar expression ¥ koo X s~ -0 I+ (1/x)
into one whose limit we know how to find. For example, . 3x4+4 ) 1\~
1 105. im > 5 106. lim (—)
lim sin— = lim sin@ Substitute 6 = 1/x rEee LX — e X
X—>00 X 6—-0* 2 1
107. lim (3 + —) (cos —)
= 0. x>+ X X
This suggests a creative way to “see” limits at infinity. Describe the ) 3 1 1
procedure and use it to picture and determine limits in Exercises 108. xll»ngo (F — Cos _) (1 +sin _)

103-108.

Optimization

To optimize something means to maximize or minimize some aspect of it. What is
the size of the most profitable production run? What is the least expensive shape
for an oil can? What is the stiffest beam we can cut from a 12-inch log? In the
mathematical models in which we use functions to describe the things that interest
us, we usually answer such questions by finding the greatest or smallest value of a
differentiable function.

Examples from Business and Industry

EXAMPLE 1 Metal fabrication

An open-top box is to be made by cutting small congruent squares from the corners
of a 12-by-12-in. sheet of tin and bending up the sides. How large should the squares
cut from the corners be to make the box hold as much as possible?

Solution We start with a picture (Fig. 3.48). In the figure, the corner squares are

. x inches on a side. The volume of the box is a function of this variable:
3.48 An open box made by cutting the

corners from a square sheet of tin. V(x) = x(12 — 2x)* = 144x — 48x* + 4x>. V = hlw

()

(b
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Maximum
y
y = x(12=2x)?,

2 0<x=<6

2

4
min min

|
0 2 6

NOT TO SCALE

3.49 The volume of the box in Fig. 3.48
graphed as a function of x.

3.50 This 1-L can uses the least material
when h = 2r (Example 2).

Since the sides of the sheet of tin are only 12 in. long, x < 6 and the domain of V
is the interval 0 < x < 6.

A graph of V (Fig. 3.49) suggests a minimum value of 0 at x =0 and x = 6
and a maximum near x = 2. To learn more, we examine the first derivative of V
with respect to x:

av
- = 144 — 96x + 12x% = 12(12 — 8x + x%) = 12(2 — x)(6 — x).
x
Of the two zeros, x = 2 and x = 6, only x = 2 lies in the interior of the function’s
domain and makes the critical-point list. The values of V at this one critical point
and two endpoints are

Critical-point value: V() =128
Endpoint values: V0)=0, V(®6)=0.

The maximum volume is 128 in®. The cut-out squares should be 2 in. on a side.

a

EXAMPLE 2  Product design

You have been asked to design a 1-L oil can shaped like a right circular cylinder.
What dimensions will use the least material?

Solution We picture the can as a right circular cylinder with height 4 and diameter
2r (Fig. 3.50). If r and h are measured in centimeters and the volume is expressed
as 1000 cm?, then r and h are related by the equation

7r2h = 1000. I L = 1000 cm’ (1

How shall we interpret the phrase “least material”? One possibility is to ignore
the thickness of the material and the waste in manufacturing. Then we ask for
dimensions r and 4 that make the total surface area

A =2nr*+2nrh )
—— N —

cylinder cylinder
ends wall

as small as possible while satisfying the constraint 7r2h = 1000. (Exercise 18
describes one way we might take waste into account.)

We are not quite ready to find critical points because Eq. (2) gives A as a
function of two variables and our procedure calls for A to be a function of a single
variable. However, Eq. (1) can be solved to express either r or A in terms of the
other.

Solving for A is easier, so we take

1000
h —

wr?’

This changes the formula for A to

1000 , 2000
= 2nre + .
Tr r

A =2nr? 4+ 2nrh = 2nr? + 2nr

For small r (a tall thin container, like a pipe), the term 2000/r dominates and
A is large. For larger r (a short wide container, like a pizza pan), the term 2772



3.51 The graph of A = 27r? 4 2000/r is
concave up.
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dominates and A is again large. If A has a minimum, it must be at a value of r that
is neither too large nor too small.

Since A is differentiable throughout its domain (0, co) and the domain has no
endpoints, A can have a minimum only where dA/dr = 0.

2000
=2nrl 4 ——
r
dA 2000
— =4nr — i :
ar r 2 Find dA/dr.
2000 .
Aor — — = Set it equal to 0.
47[7‘3 = 2000 Solve for r.

3/ 500 . ‘
r = _— Critical point
T
So something happens at r = /500/7, but what?

If the domain of A were a closed interval, we could find out by evaluating A
at this critical point and the endpoints and comparing the results. But the domain
is not a closed interval, so we must learn what is happening at r = 500/ by
determining the shape of A’s graph. We can do this by investigating the second
derivative, d?A/dr*:

d_A — dgr — 2000
dr 2
a'Z_A 4+ 4000
dr? r

The second derivative is positive throughout the domain of A. The value of A at
r = J/500/m is therefore an absolute minimum because the graph of A is concave
up (Fig. 3.51).

Short
and wide

A=2wr2+@g,r40

r

0 3/500
T
When
r = 500/,
1000
h = r2 =2y 500/ = 2r. After some arithmetic (3)

Equation (3) tells us that the most efficient can has its height equal to its diameter.
With a calculator we find

r ~ 5.42 cm, h =~ 10.84 cm. a
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y
max
100 —————= T y =x(20 — x),
I 0=x=<20
50 - i
I
|
| x
0 10 20

3.52 The product of x and (20 — x)
reaches a maximum value of 100 when
x = 10 (Example 3).

3.53 The rectangle and semicircle in
Example 4.

Strategy for Solving Max-Min Problems

1. Read the problem. Read the problem until you understand it. What is

unknown? What is given? What is sought?

Draw a picture. Label any part that may be important to the problem.

3. Introduce variables. List every relation in the picture and in the problem
as an equation or algebraic expression.

4. Identify the unknown. Write an equation for it. If you can, express the
unknown as a function of a single variable or in two equations in two
unknowns. This may require considerable manipulation.

5. Test the critical points and endpoints. Use what you know about the
shape of the function’s graph and the physics of the problem. Use the
first and second derivatives to identify and classify critical points (where
f' =0 or does not exist).

g

Examples from Mathematics

EXAMPLE 3  Products of numbers

Find two positive numbers whose sum is 20 and whose product is as large as
possible.

Solution If one number is x, the other is (20 — x). Their product is
f(x) =x(20—-x)=20x — x2.

We want the value or values of x that make f(x) as large as possible. The domain
of fis the closed interval 0 < x < 20.

We evaluate f at the critical points and endpoints. The first derivative,

f(x) =20 — 2x,

is defined at every point of the interval 0 < x < 20 and is zero only at x = 10.
Listing the values of f at this one critical point and the endpoints gives

Critical-point value: £(10) = 20(10) — (10)2 = 100

Endpoint values: f(@©0) =0, f(20)=0.

We conclude that the maximum value is f(10) = 100. The corresponding numbers
are x = 10 and (20 — 10) = 10 (Fig. 3.52). a

EXAMPLE 4  Geometry

A rectangle is to be inscribed in a semicircle of radius 2. What is the largest area
the rectangle can have, and what are its dimensions?

Solution To describe the dimensions of the rectangle, we place the circle and
rectangle in the coordinate plane (Fig. 3.53). The length, height, and area of the
rectangle can then be expressed in terms of the position x of the lower right-hand
corner:

Length: 2x Height: v4 — x2 Area: 2x - /4 —x2.



‘ Angle of

refraction

3.54 A light ray refracted (deflected from
its path) as it passes from one medium to
another. 6, is the angle of incidence and

6, is the angle of refraction.
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Notice that the values of x are to be found in the interval 0 < x < 2, where the
selected corner of the rectangle lies.
Our mathematical goal is now to find the absolute maximum value of the

continuous function
A(x) = 2xv/4 — x2

on the domain [0, 2]. We do this by examining the values of A at the critical points
and endpoints. The derivative

dA —2x?
A 194 x2
Jx s + b

is not defined when x = 2 and is equal to zero when

—2x?
e f4_ 2 —
\/4——x2+24 =0

—2x2 424 —x% =0 Multiply both sides by V& — x°.
8—4x* =0
=2
x = +£42.

Of the two zeros, x = +/2 and x = —+/2, only x = +/2 lies in the interior of A’s
domain and makes the critical-point list. The values of A at the endpoints and at
this one critical point are

Critical-point value:  A(v2) = 2v/2/4-2=4
Endpoint values: A0) =0, AR2)=0.

The area has a maximum value of 4 when the rectangle is v/4 — x2 = +/2 units
high and 2x = 2+/2 units long. Q

aly

*¢ Fermat’s Principle and Snell’'s Law

The speed of light depends on the medium through which it travels and tends to be
slower in denser media. In a vacuum, it travels at the famous speed ¢ = 3 x 108
m/sec, but in the earth’s atmosphere it travels slightly slower than that, and in glass
slower still (about two-thirds as fast).

Fermat’s principle in optics states that light always travels from one point to
another along the quickest route. This observation enables us to predict the path
light will take when it travels from a point in one medium (air, say) to a point in
another medium (say, glass or water).

EXAMPLE 5 Find the path that a ray of light will follow in going from a point
A in a medium where the speed of light is ¢; across a straight boundary to a point
B in a medium where the speed of light is c,.

Solution Since light traveling from A to B will do so by the quickest route, we
look for a path that will minimize the travel time.

We assume that A and B lie in the xy-plane and that the line separating the two
media is the x-axis (Fig. 3.54).

In a uniform medium, where the speed of light remains constant, “shortest
time” means “shortest path,” and the ray of light will follow a straight line. Hence
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dtldx dtldx dtldx
negative zero positive

£

————— FA A

|
0 & d

3.55 The sign pattern of dt/dx in
Example 5.

3.56 For air and water at room
temperature, the light velocity ratio is
1.33 and Snell’s law becomes
sin 87 = 1.335sin 0,. In this laboratory
photograph, 6, = 35.5°,0, = 26°, and
(sin 35.5°/sin 26°) ~ 0.581/0.438 ~ 1.33, as
predicted.

This photograph also illustrates that
angle of reflection = angle of incidence
(Exercise 39).

the path from A to B will consist of a line segment from A to a boundary point P,
followed by another line segment from P to B. From the formula distance equals

rate times time, we have
distance

time =
rate

The time required for light to travel from A to P is therefore

t_AP_\/a2+x2
T T a

From P to B the time is

PB  \/b*+(d —x)?

fh = — =

(&) C2

The time from A to B is the sum of these:
Va? + x? N Vb + (d — x)?
C1 (%] ’

I=h+n= 4

Equation (4) expresses ¢ as a differentiable function of x whose domain is
[0, d], and we want to find the absolute minimum value of ¢ on this closed interval.
We find
dt x d—x)

dx — cva? + x? B /b2 + (d — x)?

In terms of the angles 6, and 6, in Fig. 3.54,
dt sinf;, sin6,

= - . (6)

dx C [o)

5)

We can see from Eq. (5) that d¢/dx < 0 at x = 0 and dz/dx > 0 at x = d. Hence,
dt/dx = 0 at some point xq in between (Fig. 3.55). There is only one such point
because dt/dx is an increasing function of x (Exercise 52). At this point,

sin 6, sin 6,

1 C

This equation is Snell’s law or the law of refraction.
We conclude that the path the ray of light follows is the one described by
Snell’s law. Figure 3.56 shows how this works for air and water. d

Cost and Revenue in Economics

Here we want to point out two of the many places where calculus makes a contri-
bution to economic theory. The first has to do with the relationship between profit,
revenue (money received), and cost.

Suppose that

r(x) = the revenue from selling x items
c(x) = the cost of producing the x items

p(x) =r(x) — c(x) = the profit from selling x items.



Developing a physical law

In developing a physical law, we typically
observe an effect, measure values and list
them in a table, and then try to find a rule by
which one thing can be connected with
another. The Alexandrian Greek Claudius
Ptolemy (c. 100—c. 170 A.D.) tried to do this
for the refraction of light by water. He made
a table of angles of incidence and
corresponding angles of refraction, with
values very close to the ones we find for air
and water today.

Ptolemy’s Modern
Angle angle angle
in air in water in water
(degrees) (degrees) (degrees)
10 8 7.5
20 15.5 15
30 22.5 22
40 28 29
50 35 35
60 40.5 40.5
70 45 45
80 50 47.6

The rule that connected these angles,
however, eluded him, as it did everyone else
for the next 1400 years. The Dutch
mathematician Willebrord Snell (1580-1626)
found it in 1621.

Finding a rule is nice, but the real glory
of science is finding a way of thinking that
makes the rule evident. Fermat discovered it
around 1650. His idea was this: Of all the
paths light might take to get from one point
to another, it follows the path that takes the
shortest time. In Example 5, you see how
this principle leads to Snell’s law. The
derivation we give is Fermat’s own.

For more on marginal revenue and cost, see
the end of Section 2.3.
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The marginal revenue and cost at this production level (x items) are

dr .

— = marginal revenue
dx

dc .

— = marginal cost.
dx

The first theorem is about the relationship of the profit p to these derivatives.

Theorem 7

Maximum profit (if any) occurs at a production level at which marginal
revenue equals marginal cost.

Proof We assume that r(x) and c(x) are differentiable for all x > 0, so if p(x) =
r(x) — c(x) has a maximum value, it occurs at a production level at which p’(x) = 0.

Since p'(x) =r'(x) — ¢'(x), p'(x) = 0 implies
r'@x) —cd(x)=0 or r'(x) = c'(x).

This concludes the proof (Fig. 3.57).

y
Cost c(x)
g Revenue r(x)
3
A Break-even |
e : Maximum profit, ¢'(x) = r'(x)
I
I
I
| Local maximum for loss:(minimum profit), c'(x) = r'(x)
l ] X
0 Items produced

3.57 The graph of a typical cost function starts concave down and later turns
concave up. It crosses the revenue curve at the break-even point B. To the left of B,
the company operates at a loss. To the right, the company operates at a profit,
with the maximum profit occurring where c’(x) = r'(x). Farther to the right, cost
exceeds revenue (perhaps because of a combination of market saturation and rising
labor and material costs) and production levels become unprofitable again.

d

What guidance do we get from Theorem 7? We know that a production level
at which p’(x) = 0 need not be a level of maximum profit. It might be a level of
minimum profit, for example. But if we are making financial projections for our
company, we should look for production levels at which marginal cost seems to
equal marginal revenue. If there is a most profitable production level, it will be one
of these.
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EXAMPLE 6 The cost and revenue functions at American Gadget are
r(x) = 9% and c(x) = x* — 6x% + 15x,

where x represents thousands of gadgets. Is there a production level that will max-
imize American Gadget’s profit? If so, what is it?

Solution
r(x) =9x, c(x) =x>—6x*+15x  Find r'(x) and ¢'(x).
rx) =9, Jdkx) =3x*-12x+15
3x2 - 12x+15=9 Set them equal.
3x2—12x+6=0 Rearrange.
x—4x+2=0
o Sl o it
_4+2V2
2
=242

The possible production levels for maximum profit are x = 2 4 +/2 thousand units
and x =2 — +/2 thousand units. A quick glance at the graphs in Fig. 3.58 or at
the corresponding values of r and ¢ shows x = 2 + /2 to be a point of maximum
profit and x = 2 — +/2 to be a local maximum for loss.

c(x) = x> — 6x% + 15x

r(x) = 9x
Maximum for profit

| Local maximum fof loss
| | |
0 2-12 2 2+1\2

NOT TO SCALE

X

3.58 The cost and revenue curves for Example 6. Q

Another way to look for optimal production levels is to look for levels that
minimize the average cost of the units produced. The next theorem helps us to find
them.
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Theorem8
The ;profduction level (if any) at which average cost is smallest is a level at
- which the average cost equals the marginal cost.

Proof We start with

¢(x) = cost of producing x items, x > 0

c(x) . .

—— = average cost of producing x items,
x

assumed differentiable.
If the average cost can be minimized, it will be at a production level at which

d (c(x)

—(—==1]1=0

dx( X )
xc,(x)—_c(x) =0 Quotient Rule
x2

xc'(x) —c(x) =0 Multiplied by x

c(x
Cl(x) —_ (_) .
N—— \x/_/
marginal average
cost cost
This completes the proof. a

Again we have to be careful about what Theorem 8 does and does not say.
It does not say that there is a production level of minimum average cost—it says
where to look to see if there is one. Look for production levels at which average
cost and marginal cost are equal. Then check to see if any of them gives a minimum
average cost.

EXAMPLE 7  The cost function at American Gadget is c¢(x) = x* — 6x2 4 15x
(x in thousands of units). Is there a production level that minimizes average cost?
If so, what is it?

Solution We look for levels at which average cost equals marginal cost.

Cost: c(x) = x> —6x2+15x
Marginal cost: c(x) =3x> - 12x + 15
Average cost: @ _ x? —6x +15

x

3x2—12x+ 15 =x2—6x + 15 MC = AC
2% —6x =0
2x(x —=3) =0

x=0 or x=3
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Since x > 0, the only production level that might minimize average cost is x = 3
thousand units.
We check the derivatives:

c(x
Q =x2—6x+15 Average cost
X

d [c(x) e
E(T)"z" 6

& (S(—JQ>=Z>O

dx? \ x

The second derivative is positive, so x = 3 gives an absolute minimum. a

Modeling Discrete Phenomena
with Differentiable Functions

In case you are wondering how we can use differentiable functions c(x) and r(x)
to describe the cost and revenue that come from producing a number of items x,
which can only be an integer, here is the rationale.

When x is large, we can reasonably fit the cost and revenue data with smooth
curves c(x) and r(x) that are defined not only at integer values of x but at the values
in between. Once we have these differentiable functions, which are supposed to
behave like the real cost and revenue when x is an integer, we can apply calcu-
lus to draw conclusions about their values. We then translate these mathematical
conclusions into inferences about the real world that we hope will have predictive
value. When they do, as is the case with the economic theory here, we say that the
functions give a good model of reality.

What do we do when our calculus tells us that the best production level is a
value of x that isn’t an integer, as it did in Example 6 when it said that x = 2 + /2
thousand units would be the production level for maximum profit? The practical
answer is to use the nearest convenient integer. For x = 2 + \/5 thousand, we might

use 3414, or perhaps 3410 or 3420 if we ship in boxes of 10.

Exercises 3.6

If you have a grapher, this is a good place to use it. We have
included some specific grapher exercises but there is something
to be learned from graphing in most of the other exercises
as well.

Whenever you are maximizing or minimizing a function of
a single variable, we urge you to graph it over the domain that
is appropriate to the problem you are solving. The graph will
provide insight before you calculate and will furnish a visual
context for understanding your answer.

Applications in Geometry

1. A sector shaped like a slice of pie is cut from a circle of radius
r. The outer circular arc of the sector has length s. If the sector’s

total perimeter (2r + s) is to be 100 m, what values of r and s
will maximize the sector’s area?

. What is the largest possible area for a right triangle whose hy-

potenuse is 5 cm long?

. What is the smallest perimeter possible for a rectangle whose

area is 16 in??

. Show that among all rectangles with a given perimeter, the one

with the largest area is a square.

. The figure shown here shows a rectangle inscribed in an isosceles

right triangle whose hypotenuse is 2 units long.

a) Express the y-coordinate of P in terms of x. (You might
start by writing an equation for the line AB.)



b) Express the area of the rectangle in terms of x.
¢) What is the largest area the rectangle can have?

P(x, ?)

6. A rectangle has its base on the x-axis and its upper two vertices on
the parabola y = 12 — x2. What is the largest area the rectangle
can have?

Q

. You are planning to make an open rectangular box from an 8-
by-15-in. piece of cardboard by cutting squares from the corners
and folding up the sides. What are the dimensions of the box of
largest volume you can make this way?

o0

. You are planning to close off a corner of the first quadrant with
a line segment 20 units long running from (a, 0) to (0, b). Show
that the area of the triangle enclosed by the segment is largest
when a = b.

9. A rectangular plot of farmland will be bounded on one side by
a river and on the other three sides by a single-strand electric
fence. With 800 m of wire at your disposal, what is the largest
area you can enclose?

10. A 216-m? rectangular pea patch is to be enclosed by a fence and
divided into two equal parts by another fence parallel to one of
the sides. What dimensions for the outer rectangle will require the
smallest total length of fence? How much fence will be needed?

11. The lightest steel holding tank. Your iron works has con-
tracted to design and build a 500-ft’, square-based, open-top,
rectangular steel holding tank for a paper company. The tank is
to be made by welding %-in.—thick stainless steel plates together
along their edges. As the production engineer, your job is to find
dimensions for the base and height that will make the tank weigh
as little as possible. What dimensions do you tell the shop to use?

12. Catching rainwater. An 1125-ft> open-top rectangular tank
with a square base x ft on a side and y ft deep is to be built
with its top flush with the ground to catch runoff water. The
costs associated with the tank involve not only the material from
which the tank is made but also an excavation charge proportional
to the product xy. If the cost is

¢ = 5(x? +4xy) + 10xy,

what values of x and y will minimize it?

13. You are designing a poster to contain 50 in® of printing with

margins of 4 in. each at top and bottom and 2 in. at each side.
What overall dimensions will minimize the amount of paper used?
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14. Find the volume of the largest right circular cone that can be
inscribed in a sphere of radius 3.

15. Two sides of a triangle have lengths a and b, and the angle
between them is 8. What value of 6 will maximize the triangle’s
area? (Hint: A = (1/2)absin6.)

16. Find the largest possible value of s = 2x + y if x and y are side
lengths in a right triangle whose hypotenuse is +/5 units long.

17. What are the dimensions of the lightest (least material) open-top
right circular cylindrical can that will hold a volume of 1000
cm?? Compare the result here with the result in Example 2.

18. You are designing 1000-cm? right circular cylindrical cans whose
manufacture will take waste into account. There is no waste in
cutting the aluminum for the sides, but the tops and bottoms of
radius r will be cut from squares that measure 27 units on a side.
The total amount of aluminum used by each can will therefore be

A=8"+2nrh

rather than the A = 27r% + 2zrh in Example 2. In Example 2
the ratio of 4 to r for the most economical cans was 2 to 1. What
is the ratio now?

19. a) The U.S. Postal Service will accept a box for domestic
shipment only if the sum of its length and girth (distance
around) does not exceed 108 in. What dimensions will give

a box with a square end the largest possible volume?

Girth = Distance
around here

44 b) GRAPHER Graph the volume of a 108-in. box (length plus
girth equals 108 in.) as a function of its length, and compare

what you see with your answer in (a).

20. (Continuation of Exercise 19.) Suppose that instead of having a
box with square ends you have a box with square sides so that
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21.

22.

23.

=
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24.
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its dimensions are 4 by 4 by w and the girth is 2k + 2w. What
dimensions will give the box its largest volume now?

Gi{th
7

Y—————————— |-=9

h
/’/ 7 w
h

Compare the answers to the following two construction problems.
a) A rectangular sheet of perimeter 36 cm and dimensions x

cm by y cm is to be rolled into the cylinder shown here (a).

What values of x and y give the largest volume?
b) The rectangular sheet of perimeter 36 cm and dimensions

x by y is to be revolved about one of the sides of length y
to sweep out the cyclinder shown here (b). What values of
x and y give the largest volume?

Circumference = x

(@ (b)

A right triangle whose hypotenuse is /3 m long is revolved about
one of its legs to generate a right circular cone. Find the radius,
height, and volume of the cone of greatest volume that can be
made this way.

Circle vs. square

a) A 4-m length of wire is available for making a circle and
a square. How should the wire be distributed between the
two shapes to maximize the sum of the enclosed areas?

b) GRAPHER Graph the total area enclosed by the wire as a
function of the circle’s radius. Reconcile what you see with
your answer in (a).

¢) GRAPHER Now graph the total area enclosed by the wire
as a function of the square’s side length. Again, reconcile
what you see with your answer in (a).

If the sum of the surface areas of a cube and a sphere is held

constant, what ratio of an edge of the cube to the radius of the
sphere will make the sum of the volumes (a) as small as possible,
(b) as large as possible?

25.

26.

27

28.

A window is in the form of a rectangle surmounted by a semi-
circle. The rectangle is of clear glass while the semicircle is of
tinted glass that transmits only half as much light per unit area
as clear glass does. The total perimeter is fixed. Find the propor-
tions of the window that will admit the most light. Neglect the
thickness of the frame.

7

’

AN

A silo (base not included) is to be constructed in the form of a
cylinder surmounted by a hemisphere. The cost of construction
per square unit of surface area is twice as great for the hemisphere
as it is for the cylindrical sidewall. Determine the dimensions to
be used if the volume is fixed and the cost of construction is
to be kept to a minimum. Neglect the thickness of the silo and
waste in construction.

The trough here is to be made to the dimensions shown. Only
the angle 6 can be varied. What value of 6 will maximize the
trough’s volume?

A rectangular sheet of 8%-by-1 1-in. paper shown here is placed
on a flat surface, and one of the corners is placed on the opposite
longer edge. The other corners are held in their original positions.
With all four corners now held fixed, the paper is smoothed flat.
The problem is to make the length of the crease as small as
possible. Call the length L.

D
R
\'LZ _ x2
L
X

C
x
A P B

Q (originally at A)




a) Try it with paper.

b) Show that L? = 2x3/(2x — 8.5).

¢) What value of x minimizes L??

d) CALCULATOR Find the minimum value of L to the nearest
tenth of an inch.

e) GRAPHER Graph L as a function of x and compare what
you see with your answer in (d).

Physical Applications

29.

B 30.

31.

1/
Al

32.

/]
am
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The height of a body moving vertically is given by
1
s = —Egl‘2 + vt + 59, g >0,

with s in meters and ¢ in seconds. Find the body’s maximum
height.

CALCULATOR The 8-ft wall shown here stands 27 ft from the
building. Find the length of the shortest straight beam that will
reach to the side of the building from the ground outside the wall.

Building

|<—- 27—

The strength of a beam. The strength S of a rectangular wooden
beam is proportional to its width w times the square of its
depth d.

a) Find the dimensions of the strongest beam that can be cut
from a 12-in.-diameter cylindrical log.

b) GRAPHER Graph S as a function of the beam’s width w,
assuming the proportionality constant to be k = 1. Reconcile
what you see with your answer in (a).

¢) GRAPHER On the same screen, or on a separate screen,
graph S as a function of the beam’s depth d, again taking
k = 1. Compare the graphs with one another and with your
answer in (a). What would be the effect of changing to some
other value of k? Try it.

The stiffness of a beam. The stiffness S of a rectangular beam
is proportional to its width times the cube of its depth.

a) Find the dimensions of the stiffest beam that can be cut
from a 12-in.-diameter log.

b) GRAPHER Graph S as a function of the beam’s width w,
assuming the proportionality constant to be k = 1. Reconcile
what you see with your answer in (a).

¢) GRAPHER On the screen, or on a separate screen, graph
S as a function of the beam’s depth d, again taking k = 1.
Compare the graphs with one another and with your answer
in (a). What would be the effect of changing to some other
value of k? Try it.

33.

34.

3s.

36.

37.
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Suppose that at any given time ¢ (sec) the current i (amp) in
an alternating current circuit is i = 2 cosz + 2sinz. What is the
peak current for this circuit (largest magnitude)?

A small frictionless cart, attached to the wall by a spring, is pulled
10 cm from its rest position and released at time ¢ = 0 to roll
back and forth for 4 sec. Its position at time ¢ is s = 10cosmt.

a) What is the cart’s maximum speed? When is the cart moving
that fast? Where is it then? What is the magnitude of the
acceleration then?

b) Where is the cart when the magnitude of the acceleration
is greatest? What is the cart’s speed then?

Two masses hanging side by side from springs have positions

s; = 2sint and s, = sin 2z, respectively.

a) At what times in the interval O < ¢ do the masses pass each
other? (Hint: sin2t = 2sint cost.)

b) When in the interval 0 <t < 2x is the vertical distance
between the masses the greatest? What is this distance?
(Hint: cos2t =2cos’t — 1.)

The positions of two particles on the s-axis are s; = sinz and

s, = sin (¢ +m/3).

a) At what time(s) in the interval 0 < ¢ < 27 do the particles
meet?

b) What is the farthest apart the particles ever get?

¢) When in the interval 0 <7 < 2x is the distance between
the particles changing the fastest?

Suppose that at time ¢ > 0 the position of a particle moving on
the x-axis is x = (r — 1)(t — 4)*.
a) When is the particle at rest?
b) During what time interval does the particle move to the left?



246 Chapter 3: Applications of Derivatives

¢) What is the fastest the particle goes while moving to the
left?

GRAPHER Graph x as a function of 7 for 0 < ¢ < 6. Graph
dx /dt over the same interval, in another color if possible.
Compare the graphs with one another and with your an-
swers in (a)—(c).

i d)

38. At noon, ship A was 12 nautical miles due north of ship B.
Ship A was sailing south at 12 knots (nautical miles per hour—a
nautical mile is 2000 yd) and continued to do so all day. Ship B
was sailing east at 8 knots and continued to do so all day.

a) Start counting time with # = 0 at noon and express the dis-
tance s between the ships as a function of .

b) How rapidly was the distance between the ships changing
at noon? One hour later?

B c) CALCULATOR The visibility that day was 5 nautical miles.

Did the ships ever sight each other?

GRAPHER Graph s and ds/dt together as functions of ¢

for —1 <t < 3, using different colors if possible. Compare

the graphs and reconcile what you see with your answers

in (b) and (c).

e) The graph of ds/dt looks as if it might have a horizontal
asymptote in the first quadrant. This in turn suggests that
ds/dt approaches a limiting value at  — oco. What is this
value? What is its relation to the ships’ individual speeds?

s d)

39. Fermat’s principle in optics states that light always travels from
one point to another along a path that minimizes the travel time.
Figure 3.59 shows light from a source A reflected by a plane
mirror to a receiver at point B. Show that for the light to obey
Fermat’s principle, the angle of incidence must equal the angle
of reflection. (This result can also be derived without calculus.
There is a purely geometric argument, which you may prefer.)

Normal
Light
receiver
Light Angle of | Angle of B
sourcey  incidence | reflection
A
6 |9,
Plane mirror

3.59 In studies of light reflection, the angles of incidence
and reflection are measured from the line normal to the
reflecting surface. Exercise 39 asks you to show that if
light obeys Fermat's “least-time” principle, then 8, = 6,.

40. Tin pest. Metallic tin, when kept below 13°C for a while, be-
comes brittle and crumbles to a gray powder. Tin objects eventu-
ally crumble to this gray powder spontaneously if kept in a cold
climate for years. The Europeans who saw the tin organ pipes
in their churches crumble away years ago called the change tin
pest because it seemed to be contagious. And indeed it was, for
the gray powder is a catalyst for its own formation.

A catalyst for a chemical reaction is a substance that controls
the rate of the reaction without undergoing any permanent change

in itself. An autocatalytic reaction is one whose product is a cat-
alyst for its own formation. Such a reaction may proceed slowly
at first if the amount of catalyst present is small and slowly again
at the end, when most of the original substance is used up. But
in between, when both the substance and its catalyst product are
abundant, the reaction proceeds at a faster pace.

In some cases it is reasonable to assume that the rate v =
dx/dt of the reaction is proportional both to the amount of the
original substance present and to the amount of product. That is,
v may be considered to be a function of x alone, and

v =kx(a — x) = kax — kx?,
where
x = the amount of product
a = the amount of substance at the beginning

k = a positive constant.

At what value of x does the rate v have a maximum? What is
the maximum value of v?

Mathematical Applications
41. Is the function f(x) = x?> — x + 1 ever negative? Explain.

42. You have been asked to determine whether the function f(x) =
3 + 4 cosx + cos 2x is ever negative.

a) Explain why you need consider values of x only in the
interval [0, 27 ].
b) Is f ever negative? Explain.
43. Find the points on the curve y = /x nearest the point (c, 0)
a) ifc>1/2
b) ifc<1/2.
44. What value of a makes f(x) = x? + (a/x) have (a) a local min-
imum of x = 2; (b) a point of inflection at x = 1?
45. What values of a and b make

fx)=x>4+ax’+bx

have (a) a local maximum at x = —1 and a local minimum at
x = 3; (b) a local minimum at x = 4 and a point of inflection at
x=1?

46. Show that f(x) = x? + (a/x) cannot have a local maximum for
any value of a.

47. a) The function y = cotx — +/2cscx has an absolute maxi-
mum value on the interval 0 < x < . Find it.
an b) GRAPHER Graph the function and compare what you see
with your answer in (a).
48. a) The function y = tanx + 3 cotx has an absolute minimum
value on the interval 0 < x < 7 /2. Find it.
14 b) GRAPHER Graph the function and compare what you see

with your answer in (a).
49. How close does the curve y = /x come to the point (1/2, 16)?

50. Let f(x) and g(x) be the differentiable functions graphed here.
Point c is the point where the vertical distance between the curves



is the greatest. Is there anything special about the tangents to the
two curves at c? Give reasons for your answer.

y=f(x

|
|
|
|
|
|
|
|
|
|
b

Q

51. Show that if a, b, ¢, and d are positive integers, then
@+ DE*+ D+ D@ +1) .
abed -
52. The derivative dt/dx in Example 5
a) Show that

6.

x
() =
f6) = o
is an increasing function of x.
b) Show that
d—x

8(x) = —m77—=
Vb% 4+ (d — x)?
is a decreasing function of x.
¢) Show that

dt x d—
dx  cn/a? +x2  cy\/b? + (d — x)?

is an increasing function of x.

Medicine

53. Sensitivity to medicine (Continuation of Exercise 50, Section
2.2). Find the amount of medicine to which the body is most
sensitive by finding the value of M that maximizes the derivative

dR/dM, where
cC M
R=M*[=-=—
(2 3)

and C is a constant.

54. How we cough

a) When we cough, the trachea (windpipe) contracts to increase
the velocity of the air going out. This raises the questions
of how much it should contract to maximize the velocity
and whether it really contracts that much when we cough.

Under reasonable assumptions about the elasticity of
the tracheal wall and about how the air near the wall is
slowed by friction, the average flow velocity v can be mod-
eled by the equation

7o
v = c(ro — r)r? cm/sec, ) <r =<ry,
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where ry is the rest radius of the trachea in centimeters and
c is a positive constant whose value depends in part on the
length of the trachea.

Show that v is greatest when r = (2/3)ry, that is, when
the trachea is about 33% contracted. The remarkable fact
is that x-ray photographs confirm that the trachea contracts
about this much during a cough.

GRAPHER Take ry to be 0.5 and ¢ to be 1, and graph v
over the interval 0 < r < 0.5. Compare what you see to the
claim that v is at a maximum when r = (2/3)ry.

%% b)

Business and Economics

55. It costs you ¢ dollars each to manufacture and distribute back-
packs. If the backpacks sell at x dollars each, the number sold
is given by n = a/(x — ¢) + b(100 — x), where a and b are cer-
tain positive constants. What selling price will bring a maximum
profit?

56. You operate a tour service that offers the following rates:

a)  $200 per person if 50 people (the minimum number to book
the tour) go on the tour.

b) For each additional person, up to a maximum of 80 people
total, everyone’s charge is reduced by $2.

It costs $6000 (a fixed cost) plus $32 per person to conduct the
tour. How many people does it take to maximize your profit?

57. The best quantity to order. One of the formulas for inventory
management says that the average weekly cost of ordering, paying
for, and holding merchandise is

hq

7 )

where g is the quantity you order when things run low (shoes,

radios, brooms, or whatever the item might be), k is the cost of

placing an order (the same, no matter how often you order), ¢ is
the cost of one item (a constant), m is the number of items sold
each week (a constant), and 4 is the weekly holding cost per item

(a constant that takes into account things such as space, utilities,

insurance, and security). Your job, as the inventory manager for

your store, is to find the quantity that will minimize A(g). What
is it? (The formula you get for the answer is called the Wilson
lot size formula.)

km
A(g) = 7 +cm+

58. (Continuation of Exercise 57.) Shipping costs sometimes depend
on order size. When they do, it is more realistic to replace k by
k + bq, the sum of k and a constant multiple of g. What is the
most economical quantity to order now?

59. Show that if #(x) = 6x and c(x) = x> — 6x2 4 15x are your rev-
enue and cost functions, then the best you can do is break even
(have revenue equal cost).

60. Suppose c(x) = x> — 20x2 + 20,000 x is the cost of manufac-
turing x items. Find a production level that will minimize the
average cost of making x items.
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Linearization and Differentials

Sometimes we can approximate complicated functions with simpler ones that give
the accuracy we want for specific applications and are easier to work with. The
approximating functions discussed in this section are called linearizations. They
are based on tangent lines.

We introduce new variables dx and dy and define them in a way that gives
new meaning to the Leibniz notation dy/dx. We will use dy to estimate error in
measurement and sensitivity to change.

Linear Approximations

As you can see in Fig. 3.60, the tangent to a curve y = f(x) lies close to the curve
near the point of tangency. For a brief interval to either side, the y-values along the
tangent line give a good approximation to the y-values on the curve.

S 3
2
1
~
N

y= x2 and its tangenty = 2x — 1 at (1, 1). Tangent and curve very close near (1, 1).

3.60 The more we magnify the graph of
a function near a point where the

function is differentiable, the :flatter the Tangent and curve very close throughout Tangent and curve closer still. Computer
graph becomes and the more it resembles entire x-interval shown. screen cannot distinguish tangent from
its tangent. curve on this x-interval.

In the notation of Fig. 3.61, the tangent passes through the point (a, f(a)), so
its point-slope equation is

y = f@+ fl@x—a).



Slope = f'(a)

3.61 The equation of the tangent line is
y =f(a) + f'(@)x — a).

y=1+ (x/2)
1.1 -
y= V1 +x
1.0 /
0.9 L
-0.1 0 0.1 0.2

3.63 Magnified view of the window in
Fig. 3.62.
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Thus, the tangent is the graph of the function
L(x) = f(a) + f'@)(x —a).

For as long as the line remains close to the graph of f, L(x) gives a good approxi-
mation to f(x).

Definitions
If £ is differentiable at x = a, then the approximating function
L(x) = f@+ f@&-a) (1
is the linearization of f at a. The approximation
f(x) = L(x)

of fby L is the standard linear approximation of f at a. The point x = a
is the center of the approximation.

EXAMPLE 1 Find the linearization of f(x) =+/1+x atx =0.
Solution We evaluate Eq. (1) for f at a = 0. With
1
flx) = 5(1 +x)7'72,

we have f(0) =1, f'(0) = 1/2, and

X
5

L(x)=f@)+ fll@x—-a =1+ %(X—O) =1+
See Fig. 3.62.

3.62 The graph of y = /1 +x
and its linearizations at x =0
and x = 3. Figure 3.63 shows a
magnified view of the small
window about 1 on the y-axis.

The approximation /1 + x =~ 1 4+ (x/2) (Fig. 3.63) gives

0.2
V12~ 1+ 7 = 1.10, Accurate to 2 decimals
V105~ 1+ ? = 1.025, Accurate to 3 decimals

V/1.005~ 1+ @ = 1.00250. Accurate to 5 decimals
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Common linear approximations,
x=x0

sinx = x
cosx ~ 1
tanx ~ x

A +x)* =~ 1 +kx

(See the Exercises.)

Do not be misled by these calculations into thinking that whatever we do with
a linearization is better done with a calculator. In practice, we would never use
a linearization to find a particular square root. The utility of a linearization is its
ability to replace a complicated formula by a simpler one over an entire interval of
values. If we have to work with 4/1 + x for x close to 0 and can tolerate the small
amount of error involved, we can work with 1 4+ (x/2) instead. Of course, we then
need to know how much error there is. We will touch on this toward the end of the
section but will not have the full story until Chapter 8.

A linear approximation normally loses accuracy away from its center. As Fig.
3.62 suggests, the approximation /1 4+ x &~ 1 + (x/2) will probably be too crude
to be useful near x = 3. There, we need the linearization at x = 3.

EXAMPLE 2 Find the linearization of f(x) = /1 + x at x = 3.

Solution We evaluate Eq. (1) for fat a = 3. With

, 1 _ 1
=2 fO=30+0" =1
we have

1 5 x
Lx)=24+-(x—3)=-+-.
(x) + 4(x 3) it7 0
At x = 3.2, the linearization in Example 2 gives

5 32
Vi+x=V/1+32=~ it = 1.250 + 0.800 = 2.050,

which differs from the true value /4.2 & 2.04939 by less than one one-thousandth.
The linearization in Example 1 gives

32
«/1+x:J1+3.2%1+—2—=1+1.6=2.6,

a result that is off by more than 25%.

EXAMPLE 3 The most important linear approximation for roots and powers is
(A+x)~1+kx (x = 0; any number k) 2)

(Exercise 20). This approximation, good for values of x sufficiently close to zero,
has broad application.

Approximation (x =~ 0) Source: Eq. (2) with ...
«/1+x%1—|—262— k=1)2

1
—— =1-x)""m I+ (=D(=x)=1+x k=—1; —x
1-x | S in place of x
T =1 +5xH"P~ 1+ §(5x“) =1+ §x4 k=1/3; 5x*

in place of x

2
:(1—x2)1/2%1+<—l) (—x2> 1+ k=-1/2; —x?

2 in place of x

1
N
Q



\

0 ) ¥
2 Yy =cosx
y=—x+%r

3.64 The graph of f(x) = cosx and its
linearization at x = n/2. Near x = 7/2,
Cos X = — X + (7 /2).

The meaning of dx and dy

In most contexts, the differential dx of the
independent variable is its change Ax, but
we do not impose this restriction on the
definition.

Unlike the independent variable dx, the
variable dy is always a dependent variable. It
depends on both x and dx.

Table 3.1 Formulas for differentials

dc=0
d(cu) = cdu
d(u+v) =du+dv
d(uv) =udv+vdu
u vdu —udv
1(G) ="
dw") = nu"""du
d(sinu) = cosudu
d(cosu) = —sinudu
d(tanu) = sec’ u du
d(cotu) = —csc®udu
d(secu) = secutanu du

d(cscu) = —cscucotudu
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EXAMPLE 4 Find the linearization of f(x) = cosx at x = 7 /2 (Fig. 3.64).
Solution With
f@r/2) =cos(mr/2) =0 and f(r/2) = —sin (7 /2) = —1,

we have
L(x) = f(a)+ f'(@)(x —a)
4
=0+ (-1) (x - E)
Differentials
Definitions

Let y = f(x) be a differentiable function. The differential dx is an inde-
pendent variable. The differential dy is

dy = f'(x)dx.
EXAMPLE 5  Find dy if
a) y=x+37x b) y =sin3x.
Solution
a) dy= (5x*+37)dx b) dy = (3cos3x)dx (|

If dx # 0 and we divide both sides of the equation dy = f'(x) dx by dx, we
obtain the familiar equation

dy
ﬁ—f(x)'

This equation says that when dx # 0, we can regard the derivative dy/dx as a
quotient of differentials.
We sometimes write

df = f'(x)dx

in place of dy = f'(x) dx, and call df the differential of f For instance, if f(x) =
3x% — 6, then

df = d(3x* —6) = 6xdx.

Every differentiation formula like
du+v) du +dv
dx  dx dx
has a corresponding differential form like
d(u +v) = du +dv,

obtained by multiplying both sides by dx (Table 3.1).
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EXAMPLE 6
a) d(tan2x) = sec?(2x) d(2x) = 2sec?* 2x dx
b) d( x )_(x-l—l)dx—xd(x—l—l)__xdx+dx—xdx__ dx
x+1/ (x + 1) T x+1D?2 T (x+12 Q

Estimating Change with Differentials

Suppose we know the value of a differentiable function f(x) at a point xo, and we
want to predict how much this value will change if we move to a nearby point
xo +dx. If dx is small, f and its linearization L at xo will change by nearly the
same amount. Since the values of L are simple to calculate, calculating the change
in L offers a practical way to estimate the change in f.

In the notation of Fig. 3.65, the change in f is

Af = f(xo+dx) — f(xo).

y y=fx)

1
'/ Af = f(xy + dx) — f(x;)
T

AL = f'(xy)dx
(XO, f(xo))
R
| | When dx is a small change in x,
Tangent | | the corresponding change in

3.65 If dx is small, the change in the line I I the linearization is precisely df.
linearization of f is nearly the same as 5 ' | - x
the change in f. %o X+ dx

The corresponding change in L is
AL = L(xo +dx) — L(xo)

= /(o) + /(o) (x0 + dx) = 30| = £ (x0)
L(xo)=f (x0)

L(xo+dx)
= f'(xo) dx.
Thus, the differential df = f'(x)dx has a geometric interpretation: When df

is evaluated at x = xo, df = AL, the change in the linearization of f corresponding
to the change dx.

The Differential Estimate of Change

Let f(x) be differentiable at x = xo. The approximate change in the value
of f when x changes from xq to xy + dx is

df = f'(xo) dx.




AA=dA = 2mrydr

3.66 When dr is small compared with ro,
as it is when dr = 0.1 and ry = 10, the
differential dA = 2z rodr gives a good
estimate of AA (Example 7).

If we underestimated the radius of the earth
by 528 ft during a calculation of the earth’s
surface area, we would leave out an area the
size of the state of Maryland.
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EXAMPLE 7 The radius r of a circle increases from ro = 10 m to 10.1 m (Fig.
3.66). Estimate the increase in the circle’s area A by calculating dA. Compare this
with the true change A A.

Solution Since A = mr?, the estimated increase is
dA = A'(ro)dr = 2nrodr = 27 (10)(0.1) = 27 m?.
The true change is

AA = 7(10.1)*> — 7(10)> = (102.01 — 100)7 = 27 +0.01x .
N—— N——
dA error D

Absolute, Relative, and Percentage Change

As we move from x, to a nearby point xo + dx, we can describe the change in
fin three ways:

True Estimated
Absolute change Af = f(xo+dx) — f(xo) df = f'(x0)dx
. A d
Relative change f(xfo) f(ico)
Percentage change f?xfo) x 100 f‘é{o) x 100

EXAMPLE 8 The estimated percentage change in the area of the circle in
Exercise 7 is
dA 2
100 = 100 = 2%.
Alr) 1007 ’ 0

EXAMPLE 9 The earth’s surface area

Suppose the earth were a perfect sphere and we determined its radius to be 3959
4+ 0.1 miles. What effect would the tolerance of & 0.1 have on our estimate of the
earth’s surface area?

Solution The surface area of a sphere of radius r is S = 47 r2. The uncertainty
in the calculation of S that arises from measuring r with a tolerance of dr miles is
about

ds = (d—S) dr =8nrdr.
dr

With r = 3959 and dr = 0.1, our estimate of S could be off by as much as
dS = 87(3959)(0.1) &~ 9950 mi?,

to the nearest square mile, which is about the area of the state of Maryland. U

EXAMPLE 10 About how accurately should we measure the radius r of a
sphere to calculate the surface area S = 47 r? within 1% of its true value?
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Angiography: An opaque dye is injected into
a partially blocked artery to make the inside

visible under x-rays. This reveals the location
and severity of the blockage.

[T

Inflatable

Angioplasty: A balloon-tipped catheter is
inflated inside the artery to widen it at the
blockage site.

Solution We want any inaccuracy in our measurement to be small enough to make

the corresponding increment AS in the surface area satisfy the inequality
1 dmr?

AS| < —S§ = .
| |—100 100

We replace AS in this inequality with
das
ds = (—) dr = 8nrdr.
dr
This gives

ar? 1 4ar* 1 r
R i .y
100 87r 100 2100

|8 rdr| <

We should measure r with an error dr that is no more than 0.5% of the true value.

a

EXAMPLE 11 Unclogging arteries

In the late 1830s, the French physiologist Jean Poiseuille (“pwa-zoy”) discovered
the formula we use today to predict how much the radius of a partially clogged
artery has to be expanded to restore normal flow. His formula,

V = kr*,

says that the volume V of fluid flowing through a small pipe or tube in a unit of
time at a fixed pressure is a constant times the fourth power of the tube’s radius
How will a 10% increase in r affect V?

Solution The differentials of r and V are related by the equation

av
dV = —dr = 4krdr.
dr

Hence,
3
dv _ 4kr'dr _ 4 ﬂ Dividing by V = kr*
Vv kr* r
The relative change in V is 4 times the relative change in 7 so a 10% increase in r
will produce a 40% increase in the flow. u
Sensitivity

The equation df = f'(x)dx tells how sensitive the output of f is to a change in
input at different values of x. The larger the value of f’ at x, the greater is the
effect of a given change dx.

EXAMPLE 12 You want to calculate the height of a bridge from the equation
s = 16t* by timing how long it takes a heavy stone you drop to splash into the
water below. How sensitive will your calculation be to a 0.1-sec error in measuring
the time?

Solution The size of ds in the equation

ds = 32t dt
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depends on how big ¢ is. If + = 2 sec, the error caused by dt = 0.1 is only
ds = 32(2)(0.1) = 6.4 ft.
Three seconds later, at ¢t = 5 sec, the error caused by the same df is

ds = 32(5)(0.1) = 16 ft. U

The Error in the Approximation Af ~ df

Let f(x) be differentiable at x = x, and suppose that Ax is an increment of x. We
have two ways to describe the change in f as x changes from xo to xo + Ax:

The true change: Af = f(xo+ Ax) — f(xo)
The differential estimate: df = f'(x0)Ax.

How well does df approximate Af?
We measure the approximation error by subtracting df from Af:

Approximation error = Af —df

= Af — f'(x0)Ax
= f(xo+ Ax) — f(x0) —f'(x0) Ax
Af
_ (f(xo+ A:) — f(x0) f’(xo)) Ax
X
Call this part €
=€+ Ax.

As Ax — 0, the difference quotient
f(xo + Ax) — f(xo)
Ax

approaches f'(xo) (remember the definition of f’(x)), so the quantity in parentheses
becomes a very small number (which is why we called it €). In fact, ¢ — 0 as
Ax — 0. When Ax is small, the approximation error € Ax is smaller still.

Af = f'(xo)Ax +€ Ax
—_—  ————— S

true estimated error
change change

While we do not know exactly how small the error is and will not be able to make
much progress on this front until Chapter 8, there is something worth noting here,
namely the form taken by the equation.

If y = f(x) is differentiable at x = x¢, and x changes from x, to xo + Ax,
the change Ay in f is given by an equation of the form

Ay = f'(x0)Ax + € Ax (3)

in which e — 0 as Ax — 0.
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y
y=fx)
_ L
Secant slope = Ax
Ay
| Ax
| |
| |
| |
0 X, xy+ Ax

3.67 The graph of y as a function of x.
The derivative of y with respect to x at
X=X is Al)i‘mo AylAx.

ol
DRS

Surprising as it may seem, just knowing the form of Eq. (3) enables us to bring
the proof of the Chain Rule to a successful conclusion.

Proof of the Chain Rule

You may recall our saying in Section 2.5 that the proof we wanted to give for the
Chain Rule depended on ideas in Section 3.7, the present section. We were referring
to Eq. (3), and here is the proof:

Our goal is to show that if f(u) is a differentiable function of u and u = g(x)
is a differentiable function of x, then the composite y = f(g(x)) is a differentiable
function of x. More precisely, if g is differentiable at x, and f is differentiable at
g(xp), then the composite is differentiable at x, and

dy

ax = f'(g(x0)) + &' (x0).
X x=xq

Let Ax be an increment in x and let Au and Ay be the corresponding increments
in u and y. As you can see in Fig. 3.67,

dy
dx

Ay
= lim —/,
Ax—0 Ax

so our goal is to show that this limit is f'(g(xo)) - &' (x0)-
By Eq. (3),
Au = g'(xg) Ax + €, Ax = (g'(x0) + €)) Ax,
where €, — 0 as Ax — 0. Similarly,
Ay = f'(uo)Au + € Au = (f'(uo) + €2) Au,

where €, — 0 as Au — 0. Notice also that Au — 0 as Ax — 0. Combining the
equations for Au and Ay gives

Ay = (f'(uo) + €)(g'(x0) + €1)Ax,

SO

A
A—z = f'(u0)g'(x0) + €2 8 (x0) + f'(uo)€r + €2¢€;.

Since €; and €, go to zero as Ax goes to zero, three of the four terms on the right
vanish in the limit, leaving

A
m =X = F(uo)g (o) = f(g(x0)) - &' (xo).

Ax—0 AXx

This concludes the proof. a

The Conversion of Mass to Energy

Here is an example of how the approximation
1 1

SLINPVS B 4
T T @

from Example 3 is used in an applied problem.
Newton’s second law,

F= Sy =m2 =
—dtmv —mdt_ma,
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is stated with the assumption that mass is constant, but we know this is not strictly
true because the mass of a body increases with velocity. In Einstein’s corrected
formula, mass has the value

mo

J1=v2/c?

where the “rest mass” m represents the mass of a body that is not moving and c is
the speed of light, which is about 300,000 km/sec. When v is very small compared
with ¢, v?/c? is close to zero and it is safe to use the approximation

(5)

m =

1 ~ 14 1 [v?
V1—v2/c? 2\¢?
(Eq. 4 with x = v/c) to write
my 1+ 1 U2 + 1 2 1
= — X - | — = — MoV — 1],
"= icwe L T2\ T e
or

1 1
m = my+ 5 l’l’l()'U2 (C_2> . (6)

Equation (6) expresses the increase in mass that results from the added velocity v.
In Newtonian physics, (1/2)mgv? is the kinetic energy (KE) of the body, and
if we rewrite Eq. (6) in the form

2 1 2
(m —mo)c” = —mov”,
2
we see that

1 1
(m — mg)c* ~ Emov2 = Emov2 — EmO(O)Z = A(KE),

or
(Am)c* =~ A(KE). )

In other words, the change in kinetic energy A(KE) in going from velocity O to
velocity v is approximately equal to (Am)c?.
With ¢ equal to 3 x 10® m/sec, Eq. (7) becomes

A(KE) ~ 90,000,000,000,000,000 Am joules ~ mass in kilograms

and we see that a small change in mass can create a large change in energy. The
energy released by exploding a 20-kiloton atomic bomb, for instance, is the result
of converting only 1 gram of mass to energy. The products of the explosion weigh
only 1 gram less than the material exploded. A U.S. penny weighs about 3 grams.

Exercises 3.7

Finding Linearizations L f)=x* at x=1
In Exercises 1-6, find the linearization L(x) of f(x) at x = a. 2. fx)=x"1 at x=2
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3. f)=x>—x at x=1
4, f(x)=x>—2x+3 at x=2
5. fx)=+/x at x=4
6. f(x) =+/x24+9 at x=-4
You want linearizations that will replace the functions in Exercises
7-12 over intervals that include the given points xo. To make your
subsequent work as simple as possible, you want to center each lin-
earization not at xo but at a nearby integer x = a at which the given
function and its derivative are easy to evaluate. What linearization do
you use in each case?

7. f(x) =x>+2x, x =0.1

8. f(x)=x"1 x=06

9. f(x)=2x>+4x -3, xo=-09
10. f(x) =1+x,
1. f(x)=Jx, x =85

12. f(x) = xil

.X()=8.1

N )Co=1.3

Linearizing Trigonometric Functions

In Exercises 13-16, find the linearization of f at x = a. Then graph
the linearization and f together.

13. f(x)=sinx at (@) x=0, b)yx=n

14, f(x)=cosx at (@x=0, b)x=-m/2
15. f(x)=secx at (a)x=0, (b)x=-7m/3
16. f(x) =tanx at (@ x=0, (b)x=7m/4

The Approximation (1 + x)* =~ 1 + kx

17. Use the formula (1 + x)* ~ 1 + kx to find linear approximations
of the following functions for values of x near zero.

1
_ 2 —
) f)=(1+x) b)) =
2
© g =1— d gx)=(1-x)°
— X
e h(x)=3(1+x)1" f) hix)= !
V1 +x

18. Faster than a calculator. Use the approximation (1 + x)* ~
1 + kx to estimate

a)  (1.0002)% b) J1.009.

19. Find the linearization of f(x) = +/x + 1 +sinx at x = 0. How
is it related to the individual linearizations for +/x + 1 and
sin x?

20. We know from the Power Rule that the equation
d k k=1
— (1 +x)"=k(1+x)
dx

holds for every rational number k. In Chapter 6, we will show

that it holds for every irrational number as well. Assuming this
result for now, show that the linearization of f(x) = (1 + x)* at
x =01is L(x) = 1 4+ kx for any number &.

Derivatives in Differential Form
In Exercises 21-32, find dy.

21 y =x3-3x 22. y=x/1—2x2
2

23. y = 2—x 24, y = L

I+ 3(1+ /)
25. 2y +xy—x =0 26. xy? —4x3? —y =0
27. y =sin (5/x) 28. y = cos (x2)
29. y =4tan (x3/3) 30. y = sec =1

1

31. y=3csc(1 —2/x) 32. y=2cot<ﬁ>

Approximation Error

In Exercises 33-38, each function f(x) changes value when x changes
from xo to xo + dx. Find

a) the change Af = f(xo + dx) — f(x0);

b) the value of the estimate df = f'(xo) dx; and

¢) the approximation error |Af — df].

! y= f(7
Af = flxy + dx) — flxy)
(x5 f(x)) df;= f'(xg)dx
= | dx |
Tangent | |
I X
0| Xo X, + dx

33 fx)=x>4+2x, x =0, dx=0.1

34, f(x) =2x%+4x -3, dx =0.1
35 fx)=x>—x, x=1, dx=0.1

36. f(x)=x* xo=1, dx=0.1

37. f(x)=x"', x =05, dx=0.

38, f)=x>-2x+3, x=2, dx=0.1

X0 = —1,

Differential Estimates of Change

In Exercises 3944, write a differential formula that estimates the
given change in volume or surface area.

39. The change in the volume V = (4/3)mr® of a sphere when the
radius changes from ry to ro + dr

40. The change in the volume V = x?

lengths change from xy to xo + dx

of a cube when the edge

41. The change in the surface area S = 6x2 of a cube when the edge
lengths change from xq to xo + dx



42.

43.

44.

The change in the lateral surface area S = mwr+/r2 + h? of aright
circular cone when the radius changes from ry to ro + dr and
the height does not change

The change in the volume V = mr2h of a right circular cylinder
when the radius changes from ry to ro + dr and the height does
not change

The change in the lateral surface area S = 2w rh of aright circular
cylinder when the height changes from kg to hg + dh and the
radius does not change

Applications

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

The radius of a circle is increased from 2.00 to 2.02 m.

a)
b)

Estimate the resulting change in area.
Express the estimate in (a) as a percentage of the circle’s
original area.

The diameter of a tree was 10 in. During the following year, the
circumference grew 2 in. About how much did the tree’s diameter
grow? the tree’s cross-section area?

The edge of a cube is measured as 10 cm with an error of 1%.
The cube’s volume is to be calculated from this measurement.
Estimate the percentage error in the volume calculation.

About how accurately should you measure the side of a square
to be sure of calculating the area within 2% of its true value?

The diameter of a sphere is measured as 100 £ 1 cm and the
volume is calculated from this measurement. Estimate the per-
centage error in the volume calculation.

Estimate the allowable percentage error in measuring the diameter
D of a sphere if the volume is to be calculated correctly to within
3%.

The height and radius of a right circular cylinder are equal, so the
cylinder’s volume is V = mwh>. The volume is to be calculated
from a measurement of 4 and must be calculated with an error
of no more than 1% of the true value. Find approximately the
greatest error that can be tolerated in the measurement of A,
expressed as a percentage of h.

About how accurately must the interior diameter of a
10-m-high cylindrical storage tank be measured to calcu-
late the tank’s volume to within 1% of its true value?
About how accurately must the tank’s exterior diameter be
measured to calculate the amount of paint it will take to
paint the side of the tank within 5% of the true amount?

a)

b)

A manufacturer contracts to mint coins for the federal govern-
ment. How much variation dr in the radius of the coins can be
tolerated if the coins are to weigh within 1/1000 of their ideal
weight? Assume that the thickness does not vary.

(Continuation of Example 11.) By what percentage should r be
increased to increase V by 50%?

(Continuation of Example 12.) Show that a 5% error in measuring
t will cause about a 10% error in calculating s from the equation
s = 1612,

56.

57.

B ss.
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The effect of flight maneuvers on the heart. The amount of
work done in a unit of time by the heart’s main pumping chamber,
the left ventricle, is given by the equation
Vév?

2g

where W is the work, P is the average blood pressure, V is the
volume of blood pumped out during the unit of time, § is the
density of the blood, v is the average velocity of the exiting
blood, and g is the acceleration of gravity.

When B, V, §, and v remain constant, W becomes a function

of g and the equation takes the simplified form

W =PV +

W=a+ g (a, b constant). (8)
As a member of NASA’s medical team, you want to know how
sensitive W is to apparent changes in g caused by flight maneu-
vers, and this depends on the initial value of g. As part of your
investigation, you decide to compare the effect on W of a given
change dg on the moon, where g = 5.2 ft/sec®, with the effect
the same change dg would have on Earth, where g = 32 ft/sec?.
You use Eq. (8) to find the ratio of d Wyyon to d Wean. What do

you conclude?

Sketching the change in a cube’s volume. The volume V =
x3 of a cube with edges of length x increases by an amount AV
when x increases by an amount Ax. Show with a sketch how to
represent AV geometrically as the sum of the volumes of

a) three slabs of dimensions x by x by Ax;
b) three bars of dimensions x by Ax by Ax;
c) one cube of dimensions Ax by Ax by Ax.

The differential formula dV = 3x2dx estimates the change in V
with the three slabs.

Measuring the acceleration of gravity. When the length L of
a clock pendulum is held constant by controlling its temperature,
the pendulum’s period T depends on the acceleration of gravity g.
The period will therefore vary slightly as the clock is moved from
place to place on the earth’s surface, depending on the change
in g. By keeping track of AT, we can estimate the variation in
g from the equation T = 27 (L/g)"/? that relates T, g, and L.

a) With L held constant and g as the independent variable,
calculate dT and use it to answer (b) and (c).

b) If g increases, will T increase, or decrease? Will a pendulum
clock speed up, or slow down? Explain.

¢) A clock with a 100-cm pendulum is moved from a location

where g = 980 cm/sec? to a new location. This increases
the period by dT = 0.001 sec. Find dg and estimate the
value of g at the new location.

Theory and Examples

59.

Show that the approximation of +/1 4 x by its linearization at
the origin must improve as x — O by showing that

. V14 x
lim —— =
x>0 14 (x/2)



260 Chapter 3: Applications of Derivatives

60.

61.

%% 62.

1% 63.

64.

Show that the approximation of tan x by its linearization at the
origin must improve as x — 0 by showing that

t
lim — = 1.
x—0 X
Suppose that the graph of a differentiable function f(x) has
a horizontal tangent at x = g. Can anything be said about the

linearization of f at x = a? Give reasons for your answer.

Reading derivatives from graphs. The idea that differentiable
curves flatten out when magnified can be used to estimate the
values of the derivatives of functions at particular points. We
magnify the curve until the portion we see looks like a straight
line through the point in question, and then we use the screen’s
coordinate grid to read the slope of the curve as the slope of the
line it resembles.

a) To see how the process works, try it first with the function
y = x? at x = 1. The slope you read should be 2.
b) Then try it with the curve y =e* atx =1, x =0, and x =

—1. In each case, compare your estimate of the derivative
with the value of ¢* at the point. What pattern do you see?
Test it with other values of x. Chapter 6 will explain what
is going on.

Linearizations at inflection points. As Fig. 3.64 suggests,
linearizations fit particularly well at inflection points. You will
understand why if you do Exercise 40 in Section 8.10 later
in the book. As another example, graph Newton’s serpentine,
f(x) = 4x/(x? + 1), together with its linearizations at x = 0 and
x =+/3.

The linearization is the best linear approximation. (This is
why we use the linearization.) Suppose that y = f(x) is differen-
tiable at x = a and that g(x) = m(x — a) + c is a linear function
in which m and c are constants. If the error E(x) = f(x) — g(x)
were small enough near x = a, we might think of using g as
a linear approximation of f instead of the linearization L(x) =
f(a) + f'(a)(x — a). Show that if we impose on g the conditions

1. E@=0
2 1im £ g

x>a X —a
then g(x) = f(a) + f'(a)(x — a). Thus, the linearization L(x)
gives the only linear approximation whose error is both zero at
x = a and negligible in comparison with x — a.

The error is negligible when compared
with x —a.

The approximation error is zero at x = a.

B 6.

B 6.

The linearization, L(x):

y =fla) + f(a)x — a)

\

Some other linear
approximation, g(x):
y=m(x—a)+c

(a, f(@)
|

L X
a

CALCULATOR Enter 2 in your calculator and take successive
square roots by pressing the square root key repeatedly (or raising
the displayed number repeatedly to the 0.5 power). What pattern
do you see emerging? Explain what is going on. What happens
if you take successive tenth roots instead?

CALCULATOR Repeat Exercise 65 with 0.5 in place of 2 as the
original entry. What happens now? Can you use any positive
number x in place of 2? Explain what is going on.

& CAS Explorations and Projects

In Exercises 67-70, you will use a CAS to estimate the magnitude
of the error in using the linearization in place of the function over a
specified interval I. Perform the following steps:

a)
b)
c)
d)

€)

67.

68.

69.
70.

Plot the function f over I.

Find the linearization L of the function at the point a.

Plot f and L together on a single graph.

Plot the absolute error | f(x) — L(x)| over I and find its maxi-
mum value.

From your graph in part (d), estimate as large a 6 > 0 as you
can, satisfying

[x—al<é=|f(x)—Lx)| <€

for € = 0.5, 0.1, and 0.01. Then check graphically to see if your
8-estimate holds true.

fx)=x34+x2-2x, [-1,2], a=1
x—1 3 1

) = [“Z , 1], a=1

f)=xx-2), [-2,3], a=2

f(x) = /x —sinx, [0,2r],

Newton’s Method

We know simple formulas for solving linear and quadratic equations, and there are
somewhat more complicated formulas for cubic and quartic equations (equations
of degree three and four). At one time it was hoped that similar formulas might
be found for quintic and higher degree equations, but the Norwegian mathematician



y = fx)

EAIED)

(X0 fx,))

Root \

sought
N\

P X %o
Fourth  Third Second First
APPROXIMATIONS

3.68 Newton’s method starts with an
initial guess xo and (under favorable
circumstances) improves the guess one
step at a time.

Tangent line
(graph of
linearization
of fatx,)

y = fx)
Point: (x,, f(x,))
Slope: f'(x,)
Equation:

y=fx,) = fx,)x-x,)

Root sought

R

x
0 /“\
fx,)
Knat = X~ &,

3.69 The geometry of the successive
steps of Newton’s method. From x, we go
up to the curve and follow the tangent
line down to find x,1.

3.8 Newton’s Method 261

Neils Henrik Abel (1802-1829) showed that no formulas like these are possible for
polynomial equations of degree greater than four.

When exact formulas for solving an equation f(x) = 0 are not available, we
can turn to numerical techniques from calculus to approximate the solutions we
seek. One of these techniques is Newton’s method or, as it is more accurately called,
the Newton-Raphson method. 1t is based on the idea of using tangent lines to replace
the graph of y = f(x) near the points where f is zero. Once again, linearization is
the key to solving a practical problem.

The Theory

The goal of Newton’s method for estimating a solution of an equation f(x) =0 is
to produce a sequence of approximations that approach the solution. We pick the
first number x, of the sequence. Then, under favorable circumstances, the method
does the rest by moving step by step toward a point where the graph of f crosses
the x-axis (Fig. 3.68).

The initial estimate, xo, may be found by graphing or just plain guessing. The
method then uses the tangent to the curve y = f(x) at (xo, f(x0)) to approximate
the curve, calling the point where the tangent meets the x-axis x;. The number x,
is usually a better approximation to the solution than is x,. The point x, where the
tangent to the curve at (x;, f(x;)) crosses the x-axis is the next approximation in
the sequence. We continue on, using each approximation to generate the next, until
we are close enough to the root to stop.

We can derive a formula for generating the successive approximations in the
following way. Given the approximation x,, the point—slope equation for the tangent
to the curve at (x,, f(x,)) is

y = f(-xn) = fl(xn)(x — Xp) (1

(Fig. 3.69). We find where the tangent crosses the x-axis by setting y equal to 0 in
this equation and solving for x, giving, in turn,

0-— f(xn) = fl(xn)(x — Xp) Eq. (1) with y =0
_f(xn) = fl(xn)x - fl(xn)xn
f’(xn)x = f/(xn)xn - f(xn)
S (xn)

X =x Assuming f'(x,) # 0

")

This value of x is the next approximation, x,4i.

The Strategy for Newton’s Method

1. Guess a first approximation to a root of the equation f(x) = 0. A graph
of y = f(x) will help.

2. Use the first approximation to get a second, the second to get a third,
and so on, using the formula

 fGw)
[’

where f'(x,) is the derivative of f at x,.

(f'(xn) #0) @

Xnt1 = Xp



262 Chapter 3: Applications of Derivatives

Algorithm and iteration

It is customary to call a specified sequence of
computational steps like the one in Newton’s
method an algorithm. When an algorithm
proceeds by repeating a given set of steps
over and over, using the answer from the
previous step as the input for the next, the
algorithm is called iterative and each
repetition is called an iteration. Newton’s
method is one of the really fast iterative
techniques for finding roots.

3.70 The graph of f(x) =x3 —x -1
crosses the x-axis between x = 1 and
X=2.

The Practice

In our first example we find decimal approximations to +/2 by estimating the positive
root of the equation f(x) =x%—2=0.

EXAMPLE 1 Find the positive root of the equation

f(x)y=x>-2=0.
Solution With f(x) = x?> —2 and f'(x) = 2x, Eq. (2) becomes

X2 =2

2x,

Xngl = Xp —

To use our calculator efficiently, we rewrite this equation in a form that uses fewer
arithmetic operations:

Xn 1
Xntt = Xn = + P
X, 1
27X,
The equation
Xn 1
=gt

enables us to go from each approximation to the next with just a few keystrokes.
With the starting value x, = 1, we get the results in the first column of the following
table. (To 5 decimal places, V2 =1.41421.)

Number of
Error correct figures
xo =1 —0.41421 1
x=15 0.08579 1
X, = 1.41667 0.00246 3
x3 = 1.41422 0.00001 5 a

Newton’s method is the method used by most calculators to calculate roots
because it converges so fast (more about this later). If the arithmetic in the table
in Example 1 had been carried to 13 decimal places instead of 5, then going one
step further would have given +/2 correctly to more than 10 decimal places.

EXAMPLE 2 Find the x-coordinate of the point where the curve y = x> — x
crosses the horizontal line y = 1.

Solution The curve crosses the line when x> —x =1 or x> —x — 1 = 0. When
does f(x) = x> — x — 1 equal zero? The graph of f (Fig. 3.70) shows a single root,
located between x = 1 and x = 2. We apply Newton’s method to f with the starting
value xo = 1. The results are displayed in Table 3.2 and Fig. 3.71.

At n =5 we come to the result xg¢ = x5 = 1.3247 17957. When x,| = x,,
Eq. (2) shows that f(x,) = 0. We have found a solution of f(x) = 0 to 9 decimals.



y=x"—-x-1

(1.5,0.875)

3.71 The first three x-values in Table 3.2.

3.72 Any starting value xo to the right of
x = 1/+/3 will lead to the root.

3.73 Newton’s method will converge to r
from either starting point.
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Table 3.2 The result of applying Newton’s method to f(x) = x> —x — 1
with Xo = 1

, _._ Jea)
n Xn f(xn) f (xn) Xns1 = Xp f’(xn)
0 1 -1 2 1.5
1 1.5 0.875 5.75 1.3478 26087
2 1.3478 26087 0.1006 82173 4.4499 05482 1.3252 00399
3 1.3252 00399 0.0020 58362 4.2684 68293 1.3247 18174
4 1.3247 18174 0.0000 00924 4.2646 34722 1.3247 17957
5 1.3247 17957 —1.0437E-9 4.2646 32997 1.3247 17957

The equation x> — x — 1 = 0 is the equation we solved graphically in Section
1.5. Notice how much more rapidly and accurately we find the solution here. U

In Fig. 3.72, we have indicated that the process in Example 2 might have
started at the point By(3, 23) on the curve, with xo = 3. Point By is quite far
from the x-axis, but the tangent at B, crosses the x-axis at about (2.11, 0), so
x; is still an improvement over xo. If we use Eq. (2) repeatedly as before, with
f(x)=x*>—x—1 and f'(x) =3x? -1, we confirm the 9-place solution x¢ =
xs = 1.3247 17957 in six steps.

The curve in Fig. 3.72 has a local maximum at x = —1/+/3 and a local mini-
mum at x = +1/+/3. We would not expect good results from Newton’s method if
we were to start with xo between these points, but we can start any place to the
right of x = 1/+4/3 and get the answer. It would not be very clever to do so, but
we could even begin far to the right of By, for example with x, = 10. It takes a bit
longer, but the process still converges to the same answer as before.

Convergence Is Usually Assured

In practice, Newton’s method usually converges with impressive speed, but since
this is not guaranteed you must test that convergence is actually taking place. One
way to do this would be to begin by graphing the function to find a good starting
value for xj. It is important to test that you are getting closer to a zero of the
function, by evaluating |f(x,)|, and to check that the method is converging, by
evaluating |x, — x,41].

Theory does provide some help, however. A theorem from advanced calculus
says that if

Lf'()]?

for all x in an interval about a root 7, then the method will converge to r for any
starting value x, in that interval. In practice, the theorem is somewhat hard to apply
and convergence is evaluated by calculating f(x,) and |x,, — Xp+1 I

Inequality (3) is a sufficient but not a necessary condition. The method can
and does converge in some cases where there is no interval about r on which
the inequality holds. Newton’s method always converges if the curve y = f(x) is
convex (“bulges”) toward the x-axis in the interval between x, and the root sought.
See Fig. 3.73.

<1 (3)
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(s f(x,))
N\

Xn

3.74 If f'(x,) =0, there is no intersection
point to define x,.1.

(e}
&
_><

3.75 Newton'’s method fails to converge.

3.76 Newton’s method may miss the root
you want if you start too far away.

Under favorable circumstances, the speed with which Newton’s method con-
verges to r is expressed by the advanced calculus formula

max | f” 2 2
]x,,+1—r]§,4|f/||xn—r’ = constant - |x, —r|, (4)
——— " 2 min | f'| —_—

erTor €, error e,

where max and min refer to the maximum and minimum values in an interval
surrounding r. The formula says that the error in step n + 1 is no greater than a
constant times the square of the error in step n. This may not seem like much, but
think of what it says. If the constant is less than or equal to 1, and |x, — r| < 1073,
then |x,4; —r| < 107%. In a single step the method moves from three decimal
places of accuracy to six!

The results in (3) and (4) both assume that f is “nice.” In the case of (4), this
means that f has only a single root at 5 so that f’'(r) # 0. If f has a multiple root
at 1, the convergence may be slower.

But Things Can Go Wrong

Newton’s method stops if f'(x,) =0 (Fig. 3.74). In that case, try a new starting
point. Of course, f and f' may have a common root. To detect whether this is so,
you could first find the solutions of f’(x) = 0 and check f at those values. Or you
could graph f and f’ together.

Newton’s method does not always converge. For instance, if

f(x) _ —A/F — X, X <r (5)

X —=r, xX=r,

the graph will be like the one in Fig. 3.75. If we begin with xo =r — h, we get
x; =r + h, and successive approximations go back and forth between these two
values. No amount of iteration brings us closer to the root than our first guess.

If Newton’s method does converge, it converges to a root. In theory, that is. In
practice, there are situations in which the method appears to converge but there is
no root there. Fortunately, such situations are rare.

When Newton’s method converges to a root, it may not be the root you have
in mind. Figure 3.76 shows two ways this can happen.

The solution then is to use everything you know about the curve—from graphs
drawn by computer or from calculus-based analysis—to get a feeling for the shape
of the curve near r and to choose an xg close to . Use Newton’s method and test
its convergence as you go along. The chances are you will have no problems.
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|
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|
=
X0\
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3.77 (a) Starting values in (— 0, —+/2/2), (= ~/21/7, ~/21/7),
and (v/2/2, «) lead respectively to roots A, B, and C. (b) The

y = 4x* - 4x2 values x = +4/21/7 lead only to each other. (c) Between +/21/7

and +/2/2 there are infinitely many open intervals of points
attracted to A alternating with open intervals of points
attracted to C. This behavior is mirrored in the interval

(=212, —/2117).

y
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3¢ Chaos in Newton’s Method

The process of finding roots by Newton’s method can be chaotic, meaning that for
some equations the final outcome can be extremely sensitive to the starting value’s
location.

The equation 4x* — 4x2 = 0 is a case in point (Fig. 3.77a). Starting values in
the blue zone on the x-axis lead to root A. Starting values in the black lead to
root B, and starting values in the red zone lead to root C. The points £+/2/2 give
horizontal tangents. The points £+/21/7 “cycle;” each leading to the other, and
back (Fig. 3.77b).

The interval between +/21/7 and +/2/2 contains infinitely many open intervals
of points leading to root A, alternating with intervals of points leading to root C (Fig.
3.77¢c). The boundary points separating consecutive intervals (there are infinitely
many) do not lead to roots, but cycle back and forth from one to another.

Here is where the “chaos” is truly manifested. As we select points that approach
V/21/7 from the right it becomes increasingly difficult to distinguish which lead to
root A and which to root C. On the same side of +/21/7, we find arbitrarily close
together points whose ultimate destinations are far apart.

If we think of the roots as “attractors” of other points, the coloring in Fig. 3.77
shows the intervals of the points they attract (the “intervals of attraction”). You
might think that points between roots A and B would be attracted to either A or
B, but, as we see, that is not the case. Between A and B there are infinitely many
intervals of points attracted to C. Similarly, between B and C lie infinitely many
intervals of points attracted to A.

We encounter an even more dramatic example of chaotic behavior when we
apply Newton’s method to solve the complex-number equation z® — 1 = 0. It has
six solutions: 1, —1, and the four numbers +(1/2) & (+/3/2)i. As Fig. 3.78 (on
the following page) suggests, each of the six roots has infinitely many “basins”
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3.78 This computer-generated initial
value portrait uses color to show where
different points in the complex plane end
up when they are used as starting values
in applying Newton'’s method to solve the
equation z° — 1 = 0. Red points go to 1,
green points to (1/2) + (+/3/2)i, dark blue
points to (—1/2) + (+/3/2)i, and so on.
Starting values that generate sequences
that do not arrive within 0.1 units of a
root after 32 steps are colored black.

of attraction in the complex plane (Appendix 3). Starting points in red basins are
attracted to the root 1, those in the green basin to the root (1/2) + (+/3/2)i, and
so on. Each basin has a boundary whose complicated pattern repeats without end
under successive magnifications.

Exercises 3.8

Root Finding

1.

Use Newton’s method to estimate the solutions of the equation
x>4+x —1=0. Start with x; = —1 for the left-hand solution
and with xo = 1 for the solution on the right. Then, in each case,
find X2.

. Use Newton’s method to estimate the one real solution of x> +

3x + 1 = 0. Start with xo = 0 and then find x,.

. Use Newton’s method to estimate the two zeros of the function

f(x) = x* + x — 3. Start with x; = —1 for the left-hand zero and
with xy = 1 for the zero on the right. Then, in each case, find x,.

. Use Newton’s method to estimate the two zeros of the function

f(x) = 2x — x? + 1. Start with xo = O for the left-hand zero and
with xo = 2 for the zero on the right. Then, in each case, find x,.

. Use Newton’s method to find the positive fourth root of 2 by

solving the equation x* — 2 = 0. Start with xo = 1 and find x,.

. Use Newton’s method to find the negative fourth root of 2 by

B
Bs.
Bo.

solving the equation x* — 2 = 0. Start with xy = —1 and find x,.
CALCULATOR At what value(s) of x does cosx = 2x?
CALCULATOR At what value(s) of x does cosx = —x?

CALCULATOR Use the Intermediate Value Theorem from Sec-
tion 1.5 to show that f(x) = x> 4+ 2x — 4 has a root between
x =1 and x = 2. Then find the root to 5 decimal places.

= 10. CALCULATOR Estimate 7 to as many decimal places as your

calculator will display by using Newton’s method to solve the
equation tan x = 0 with xo = 3.

Theory, Examples, and Applications

11. Suppose your first guess is lucky, in the sense that x is a root
of f(x) =0. Assuming that f'(xo) is defined and not 0, what
happens to x; and later approximations?

12. You plan to estimate 7 /2 to 5 decimal places by using Newton’s
method to solve the equation cos x = 0. Does it matter what your
starting value is? Give reasons for your answer.

13. Oscillation. Show that if h > 0, applying Newton’s method to

/= x>0
flx) = {«/—x, x <0
leads to x; = —h if xo = h and to x; = h if xo = —h. Draw a

picture that shows what is going on.

14. Approximations that get worse and worse. Apply Newton’s
method to f(x) = x!/3 with xo = 1, and calculate x;, x,, x3, and
x4. Find a formula for |x,|. What happens to |x,| as n — 0c0?
Draw a picture that shows what is going on.

15. a) Explain why the following four statements ask for the same
information:



/]
am

16.

18.

i)  Find the roots of f(x) = x> —3x — 1.

ii) Find the x-coordinates of the intersections of the

curve y = x> with the line y = 3x + 1.

Find the x-coordinates of the points where the curve

y = x> — 3x crosses the horizontal line y = 1.

iv) Find the values of x where the derivative of g(x) =
(1/4)x* — (3/2)x* — x + 5 equals zero.

a) CALCULATOR Use Newton’s method to find the two neg-
ative zeros of f(x) = x> —3x — 1 to 5 decimal places.

b) GRAPHER Graph f(x) =x>—3x—1 for -2 <x <2.5.
Use ZOOM and TRACE to estimate the zeros of f to 5
decimal places.

¢) GRAPHER Graph g(x)=0.25x* —1.5x> —x+5. Use
ZOOM and TRACE with appropriate rescaling to find, to
5 decimal places, the values of x where the graph has hor-
izontal tangents.

iii)

Locating a planet. To calculate a planet’s space coordinates,
we have to solve equations like x = 1 + 0.5 sinx. Graphing the
function f(x) =x — 1 —0.5sinx suggests that the function has
aroot near x = 1.5. Use one application of Newton’s method to
improve this estimate. That is, start with xo = 1.5 and find x,.
(The value of the root is 1.49870 to 5 decimal places.) Remember
to use radians.

. Finding an ion concentration. While trying to find the acidity

of a saturated solution of magnesium hydroxide in hydrochloric
acid, you derive the equation

3.64 x 10~

[H;0" ]2
for the hydronium ion concentration [H;O%]. To find the value
of [H;0%], you set x = 10*[H;0"] and convert the equation to

x> +3.6x2-364=0.

= [H;07] +3.6 x 10™*

You then solve this by Newton’s method. What do you get for
x? (Make it good to 2 decimal places.) For [H;0"]?

Show that Newton’s method cannot converge to a point x = ¢
where the function’s graph has an upward pointing cusp above
the x-axis like the one in the margin on p. 215.

B Computer or Programmable Calculator

Exercises 19-28 require a computer or programmable calculator.

19.

20.

21.

22.

The curve y = tanx crosses the line y = 2x between x = 0 and
x = 1 /2. Use Newton’s method to find where.

Use Newton’s method to find the two real solutions of the equa-
tion x* —2x3 —x2 —2x +2 =0.

a) How many solutions does the equation sin 3x = 0.99 — x2
have?
b) Use Newton’s method to find them.

a) Does cos3x ever equal x?
b) Use Newton’s method to find where.

23.
24.

25.

26.
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Find the four real zeros of the function f(x) = 2x* — 4x? + 1.

The sonobuoy problem. In submarine location problems it is
often necessary to find a submarine’s closest point of approach
(CPA) to a sonobuoy (sound detector) in the water. Suppose that
the submarine travels on a parabolic path y = x2 and that the
buoy is located at the point (2, —1/2).

a) Show that the value of x that minimizes the distance between
the submarine and the buoy is a solution of the equation
x=1/x*+1).

b) Solve the equation x = 1/(x% + 1) with Newton’s method.

Submarine track
in two dimensions

—

AN
Sonobuoy (2, - 5)

(Source: The Contraction Mapping Principle, by C. O. Wilde,
UMAP Unit 326, Arlington, MA, COMAP, Inc.)

Curves that are nearly flat at the root. Some curves are so flat
that, in practice, Newton’s method stops too far from the root to
give a useful estimate. Try Newton’s method on f(x) = (x — 1)
with a starting value of xo = 2 to see how close your machine
comes to the root x = 1.

y
y=G-1¥
Slope = —40 Slope = 40
- 21
LNearly flat | J l .
0 1 2

Finding a root different from the one sought. All three roots
of f(x) = 4x* — 4x? can be found by starting Newton’s method
near x = +/21/7. Try it. See Fig. 3.77.



