CHAPTER

Integration

OVERVIEW This chapter examines two processes and their relation to one another.
One is the process by which we determine functions from their derivatives. The
other is the process by which we arrive at exact formulas for such things as volume
and area through successive approximations. Both processes are called integration.

Integration and differentiation are intimately connected. The nature of the con-
nection is one of the most important ideas in all mathematics, and its independent
discovery by Leibniz and Newton still constitutes one of the greatest technical
advances of modern times.

Indefinite Integrals

One of the early accomplishments of calculus was predicting the future position of a
moving body from one of its known locations and a formula for its velocity function.
Today we view this as one of a number of occasions on which we determine a
function from one of its known values and a formula for its rate of change. It is
a routine process today, thanks to calculus, to calculate how fast a space vehicle
needs to be going at a certain point to escape the earth’s gravitational field or to
predict the useful life of a sample of radioactive polonium-210 from its present
level of activity and its rate of decay.

The process of determining a function from one of its known values and its
derivative f(x) has two steps. The first is to find a formula that gives us all
the functions that could possibly have f as a derivative. These functions are the
so-called antiderivatives of f, and the formula that gives them all is called the
indefinite integral of f. The second step is to use the known function value to
select the particular antiderivative we want from the indefinite integral. The first
step is the subject of the present section; the second is the subject of the next.

Finding a formula that gives all of a function’s antiderivatives might seem like
an impossible task, or at least to require a little magic. But this is not the case at
all. If we can find even one of a function’s antiderivatives we can find them all,
because of the first two corollaries of the Mean Value Theorem of Section 3.2.
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276 Chapter 4: Integration

Finding Antiderivatives—Indefinite Integrals

Definitions
A function F(x) is an antiderivative of a function f(x) if

F'(x) = f(x)

for all x in the domain of f. The set of all antiderivatives of f is the
indefinite integral of f with respect to x, denoted by

/ f(x)dx.

The symbol [ s an integral sign. The function f is the integrand of the
integral and x is the variable of integration.

According to Corollary 2 of the Mean Value Theorem (Section 3.2), once we
have found one antiderivative F' of a function f, the other antiderivatives of f
differ from F by a constant. We indicate this in integral notation in the following
way:

/f(x)dx:F(x)—i—C. (1)

The constant C is the constant of integration or arbitrary constant. Equation (1)
is read, “The indefinite integral of f with respect to x is F(x) + C.” When we find
F(x) 4+ C, we say that we have integrated f and evaluated the integral.

EXAMPLE 1  Evaluate [ 2xdx.

Solution
/ an antiderivative of 2x

/ 2xdx =x*+C
T~ the arbitrary constant

The formula x? 4+ C generates all the antiderivatives of the function 2x. The func-
tions x2 + 1, x2 — 7, and x? + +/2 are all antiderivatives of the function 2x, as you
can check by differentiation.

Many of the indefinite integrals needed in scientific work are found by reversing
derivative formulas. You will see what we mean if you look at Table 4.1, which
lists a number of standard integral forms side by side with their derivative-formula

sources.
In case you are wondering why the integrals of the tangent, cotangent, secant,

and cosecant do not appear in the table, the answer is that the usual formulas for
them require logarithms. In Section 4.7, we will see that these functions do have
antiderivatives, but we will have to wait until Chapters 6 and 7 to see what they
are.
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Table 4.1 Integral formulas
Indefinite integral i : Reversed derivative formula
n+1 d n+1
1./x"dx=;€+1 +C, n# —1, nrational Zi;(:+l>=xn
. d
/dx = / ldx =x+ C (special case) P x)=1
X
k d k
2.[sinkxdx=—COS x+C By = sin kx
dx k
ink .
3.[coskxdx=Sln x+C i sinkx = cos kx
k dx
2 d 2
4, [ sec” xdx =tanx + C — tanx =sec” x
dx
2 d 2
5. | csc® xdx = —cotx + C d—(—cotx):csc x
x
6./secxtanxdx=secx+c zj—secx:secxtanx
x
d
7. | csc xcot xdx = —cscx +C ;—(—cscx):cscxcotx
x
EXAMPLE 2  Selected integrals from Table 4.1

6
a) /xsdx=%+c

1
b) /de=/x_1/2dx=2x'/2+C=2ﬁ+C

cos 2x

c) /siandx:— +C

1 i 2
d) /cos%dx:/cos 5xdx=M

1/2

Formula 1
withn =5

Formula |
with n = —1/2

Formula 2
with k =2

+ C =2 sin % + C Formula 3

with k = 1/2

Qa

Finding an integral formula can sometimes be difficult, but checking it, once
found, is relatively easy: differentiate the right-hand side. The derivative should be

the integrand.

EXAMPLE 3

Right: / x cos xdx =x sin x +cos x +C

Reason: The derivative of the right-hand side is the integrand:

d
d—(x sin x +cos x + C) = x cos x +sin x —sin x + 0 = x cos x.
x
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Wrong: / x cos xdx =x sin x + C
Reason: The derivative of the right-hand side is not the integrand:

d

— (xsinx+ C) = x cos x +sin x + 0 # x cos x.

dx a
Do not worry about how to derive the correct integral formula in Example 3.

We will present a technique for doing so in Chapter 7.

Rules of Algebra for Antiderivatives

Among the things we know about antiderivatives are these:

1. A function is an antiderivative of a constant multiple kf of a function f if and
only if it is k times an antiderivative of f.

2. In particular, a function is an antiderivative of —f if and only if it is the
negative of an antiderivative of f.

3. A function is an antiderivative of a sum or difference f + g if and only if it
is the sum or difference of an antiderivative of f and an antiderivative of g.

When we express these observations in integral notation, we get the standard arith-
metic rules for indefinite integration (Table 4.2).

Table 4.2 Rules for indefinite integration

1. Constant Multiple Rule: [ kf(x)dx = k/ fx)dx
(Does not work if k varies with x.)

2. Rule for Negatives: / —fx)dx = —f f(x)dx
(Rule 1 with k = —1)

3. Sum and Difference Rule: /[f(x) + g(x)]dx = / fx)dx £ / g(x)dx

EXAMPLE 4  Rewriting the constant of integration

f 5 sec x tan xdx = 5/ sec x tan x dx Table 4.2, Rule |

= 5(sec x + C) Table 4.1, Formula 6

= 5sec x +5C First form

=5secx+C’ Shorter form, where C’ is 5C
=5secx+C Usual form—no prime. Since 5 times an

arbitrary constant is an arbitrary constant,
we rename C'.

Q

What about all the different forms in Example 4? Each one gives all the
antiderivatives of f(x) = 5secxtanx, so each answer is correct. But the least
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complicated of the three, and the usual choice, is

/55ecxtanxdx=5secx+c.

Just as the Sum and Difference Rule for differentiation enables us to differenti-
ate expressions term by term, the Sum and Difference Rule for integration enables
us to integrate expressions term by term. When we do so, we combine the individual
constants of integration into a single arbitrary constant at the end.

EXAMPLE 5  Term-by-term integration

Evaluate

/()c2 —2x +5)dx.

Solution If we recognize that (x*/3) — x2 + 5x is an antiderivative of x> — 2x +
5, we can evaluate the integral as
antiderivative arbitrary constant

e e
3

(x2 = 2x + 5)dx = %——x2+5x+C.

If we do not recognize the antiderivative right away, we can generate it term
by term with the Sum and Difference Rule:

[xzdx—f2xdx+f5dx

3

:%—+C1—x2+C2+5x+C3~

/(x2 —2x +5)dx

This formula is more complicated than it needs to be. If we combine C;, C», and
Cj3 into a single constant C = C; + C, + C3, the formula simplifies to

3
3~ x*4+5x +C

and still gives all the antiderivatives there are. For this reason we recommend that

you go right to the final form even if you elect to integrate term by term. Write

/xzdx—/2xdx+/5dx

3

d 2
?—x +5x +C.

f(x2—2x+5)dx

Find the simplest antiderivative you can for each part and add the constant at the
end. d

The Integrals of sin? x and cos? x

We can sometimes use trigonometric identities to transform integrals we do not
know how to evaluate into integrals we do know how to evaluate. The integral
formulas for sin? x and cos? x arise frequently in applications.
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EXAMPLE 6
1 —cos2x oIy
a) /sin2xdx = / —dx sin® x = I———LO\—Z\
2 2
1/(1 2x)d 1/d 1/c 2xd
== —cos 2x)dx = - X — = 0s 2x dx
2 2 2
_1 1sin2x+c_x sin2x+C
2" 7272 2 4
14 cos 2x .
b) /coszxdx = / + CoN v = &
X sm 2x
= — +C As in part (a). but
2 4 with a sign change a
Exercises 4.1
Finding Antiderivatives 15. a) cscx cotx b) —csc5x cot 5x
In Exercises 1-18, find an antiderivative for each function. Do as ¢) —mcsc 7%3( cot y%x
many as you can mentally. Check your answers by differentiation.
L a) 2x b) x 0 x—2r+1 16. a) sew;t;mx . b) 4sec3xtan3x
2. a) 6x b) 0 x'—6x+8 ) sec—-tan—-
3.a) —3x* b) x°* ¢) x*+2x+3 17. (sin x — cos x)? 18. (1+2cosx)?
-3
4. a) 2x73 b) xT +x2 ¢) —x34x-—1
1 5 5
5. a) ") b) ) C) 2— —2
x x x :
) | 1 Evaluating Integrals
6. a) —— b) o ) x3-— = Evaluate the integrals in Exercises 19-58. Check your answers by
* * * differentiation.
7. a) 3 x b) L ¢ Jx+ L
: 2 2% Jx 19. /(x + 1)dx 20. [(5 — 6x)dx
45 1 3 1 2
3 = — -— t
8.a) V% RN o Vit 21. /(3t2+ %) dr 22. /(5 +4t3) di
9.2) i P b) L2 O —xx P
) 3* 3 3 23, /(2x3 —5x+7)dx 24, [(1 —x*=3x")dx
1 1 3
10. a -l b) —-x737 —=x7 1 1 1 2
) 2 ) 3% 0 —3* 25.] — X ) dx 26./ - — = 42x)dx
x2 3 5 x3
11. a) —msin7mx b) 3sinx ¢) sinmwx — 3 sin 3x
i X Tx 27. /x"”dx 28. /x‘s/“dx
12. a) mwcos mx b) ) cos - c¢) cos - + 7 cos x
2 x 3x 3 vx 2
2 £ 2 X ap2 X 29./\/;+\/; dx 30./(——+—>dx
13. a) sec‘x b) 3 sec 3 c) sec > ( ) 2 Jx
3 3x 2 1 1
14. a) csc’x b) —Ecscz 5 ¢) 1—8csc?2x 31 f(i;y - W) dy 32. / (7 - W) dy



33. fo(l —x7°) dx 34. /x’S(x+ 1) dx
35, f@d: 36. -/4+ﬁdt

t 3
37. f(—Z cos t) dt 38. f(——S sin t) dt

.6
39.f7sm §d9 40.f3c0359d9

) sec? x

41. [ (=3 csc” x)dx 42, -3 dx
43. fff%mtﬁde 4a. f% sec 6 tan 6 df

45, /(4 sec x tan x — 2 sec? x) dx
1 2

46. 2 (csc” x —csc x cot x)dx

47. / (sin 2x — csc? x) dx

48. f(2 cos 2x — 3 sin 3x)dx

2
49, f 4 sin® y dy 50. f °°f/ Y dy
4 _
51./1+cos tdt 52.‘/'1 COS6tdt
2 2
53. f (1 + tan® ) d6 54. / (2 + tan® 0) d6

(Hint: 1 4 tan? 6 = sec? 6)

55. /cot2 xdx 56. /(1 —cot? x)dx

csc 6
58. ———db
/ csc 6 —sin 6

Checking Integration Formulas

Verify the integral formulas in Exercises 59-64 by differentiation. In
Section 4.3, we will see where formulas like these come from.

(Hint: 1 4 cot? x = csc? x)

57. /cos 6 (tan 8 + sec 0) d6

. 4
59, /(7x—2)3dx e
28
-1
60. -/(3x+5)’2dx =—(~3ﬁ;—§—)— +C

1
61. /sec2(5x —1)dx = 5 tan Gx—-D+C

-1 -1
62. fcscz <XT) dx = -3 cot (%) +C

1 1
63. | ——dx=———+C
/-(x+l)2 * x+l+
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1 X
64. dx = c
/(x+1)2 =T

65. Right, or wrong? Say which for each formula and give a brief
reason for each answer.

2
a) /xsinxdx:;sinx+c
b) /xsinxdx:—xcosx+C

c) /xsinxdx:—xcosx+sinx+C

66. Right, or wrong? Say which for each formula and give a brief
reason for each answer.
sec? 0

C
3 +

a) /tan&seczedez
2 1 5
b) tan @ sec 0d0=5tan 6+C

1
) /tan@se020d9=ise020+c

67. Right, or wrong? Say which for each formula and give a brief
reason for each answer.

3
a) /(2x+l)2dx=@+c

b) /3(2x +D¥dx=02x+ 1)’ +C

c) /6(2x +D2dx=02x+ 1P +C

68. Right, or wrong? Say which for each formula and give a brief
reason for each answer.

a) [«/2x+ldx=\/x2+x+C
b) /\/2x+1dx=\/x2+x+C

|

) /«/2x+1dx=§(«/2x+1)3+C

Theory and Examples
69. Suppose that

d d
f(x)=d—(1~«/;) and g(x) = — (x +2).
X dx
Find:

a) /f(x)dx b) /g(x)dx

0 f [~ f()]dx d) f [—g()]dx

0 / LF () + g(0)]dx f) / Lf () — g(x)]dx
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70. Repeat Exercise 69, assuming that
2) /[x + f(x)]dx h) /[g(X) —4]dx

@)= o and gx) = = (xsinx)
fx)-.dxe an gx_dxxmx.

Differential Equations, Initial Value Problems,
and Mathematical Modeling

This section shows how to use a known value of a function to select a particular
antiderivative from the functions in an indefinite integral. The ability to do this is
important in mathematical modeling, the process by which we, as scientists, use
mathematics to learn about reality.

Initial Value Problems

An equation like

dy

2L — f(x

i)
that has a derivative in it is called a differential equation. The problem of finding
a function y of x when we know its derivative and its value y, at a particular point
Xo is called an initial value problem. We solve such a problem in two steps, as
demonstrated in Example 1.

EXAMPLE 1  Finding a body’s velocity from its acceleration and initial
velocity

The acceleration of gravity near the surface of the earth is 9.8 m/sec?. This means
that the velocity v of a body falling freely in a vacuum changes at the rate of

d

20— 9.8 m/sec?.

dt
If the body is dropped from rest, what will its velocity be ¢t seconds after it is
released?

Solution In mathematical terms, we want to solve the initial value problem that
consists of

d
The differential equation: d—l: =9.8
The initial condition: v=0whent =0 (abbreviated as v(0) = 0)

We first solve the differential equation by integrating both sides with respect to ¢:

dv
— =908 The differential equation

dt
dv )
d_ dt = 9.8dt Integrate with respect to t.
t

v+C, =98t+C, Integrals evaluated

v=98t+C. Constants combined as one
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y=x3+C

4.1 The curves y = x3 + C fill the
coordinate plane without overlapping. In
Example 2 we identify the curve

y = x3 — 2 as the one that passes through
the given point (1, —1).

This last equation tells us that the body’s velocity ¢ seconds into the fall is 9.8¢ +
C m/sec for some value of C. What value? We find out from the initial condition:

v=98t+C
0=980)+C v(0) =0
Cc=0.

Conclusion: The body’s velocity ¢ seconds into the fall is
v = 9.8t + 0 = 9.8¢ m/sec. d

The indefinite integral F(x) 4+ C of the function f(x) gives the general solu-
tion y = F(x) + C of the differential equation dy/dx = f(x). The general solution
gives all the solutions of the equation (there are infinitely many, one for each value
of C). We solve the differential equation by finding its general solution. We then
solve the initial value problem by finding the particular solution that satisfies the
initial condition y(xy) = yo (y has the value y, when x = x).

EXAMPLE 2  Finding a curve from its slope function and a point

Find the curve whose slope at the point (x, y) is 3x? if the curve is required to
pass through the point (1, —1).
Solution In mathematical language, we are asked to solve the initial value problem
that consists of
d 2o
The differential equation: & 3y The curve’s slope is 3x°.
X

The initial condition: y(1) =—1.
To solve it we first solve the differential equation:

d
—y=3x2

d
/ & dx = [ 3x%dx
dx
Constants of integration

y = X +C. combined, giving the general
solution

This tells us that y equals x> 4+ C for some value of C. We find that value from
the condition y(1) = —1:

y=x4+C
-1=W*+C
C =-2 a

The curve we want is y = x> — 2 (Fig. 4.1).
In the next example, we have to integrate a second derivative twice to find the
function we are looking for. The ﬁrst integration,

gives the function’s first derivative. The second integration gives the function.
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A
!
[
!
1!
!
:‘Proy:cule
|
|
|
|
|
|
|
|

Height above ground (m)

Ground level

0

4.2 The sketch for modeling the
projectile motion in Example 3.

EXAMPLE 3  Finding a projectile’s height from its acceleration, initial
velocity, and initial position

A heavy projectile is fired straight up from a platform 3 m above the ground, with
an initial velocity of 160 m/sec. Assume that the only force affecting the projectile
during its flight is from gravity, which produces a downward acceleration of 9.8
m/sec?. Find an equation for the projectile’s height above the ground as a function
of time ¢ if # = 0 when the projectile is fired. How high above the ground is the
projectile 3 sec after firing?

Solution To model the problem, we draw a figure (Fig. 4.2) and let s denote
the projectile’s height above the ground at time ¢. We assume s to be a twice-
differentiable function of ¢ and represent the projectile’s velocity and acceleration
with the derivatives

ds
Cdt

_dv d*s

d =v_4s
at A= T an

v

Since gravity acts in the direction of decreasing s in our model, the initial value
problem to solve is the following:

. . . d’s
The differential equation: yhe -9.8
. - ds
The initial conditions: E;(O) =160 and s(0) =3.

We integrate the differential equation with respect to ¢ to find ds/dt:

d?s
—dt = —9.8)dt
[ Gde = [ o9

i—g = -9.8t+ C;.

We apply the first initial condition to find C;:
160 =-980)+Ci 20 =160
C, = 160.

This completes the formula for ds/dt:

d
& _9.8:+ 160.
dr

We integrate ds/dt with respect to ¢ to find s:
ds
—dt = | (—9.8t + 160) dt
[ G = [ =980+ 160

s = —4.91* + 160t + C,.
We apply the second initial condition to find C;:
3=—49(0)*+16000)+C, s(0)=3
C, =3.
This completes the formula for s as a function of #:

s = —4.9¢% + 160t + 3.
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To find the projectile’s height 3 sec into the flight, we set t = 3 in the formula
for s. The height is

s = —4.9(3)* + 160(3) + 3 = 438.9 m. Q

When we find a function from its first derivative, we have one arbitrary constant,
as in Examples 1 and 2. When we find a function from its second derivative, we
have to deal with two constants, one from each antidifferentiation, as in Example
3. To find a function from its third derivative would require us to find the values of
three constants, and so on. In each case, the values of the constants are determined
by the problem’s initial conditions. Each time we find an antiderivative, we need
an initial condition to tell us the value of C.

Sketching Solution Curves

The graph of a solution of a differential equation is called a solution curve (integral
curve). The curves y = x3 4 C in Fig. 4.1 are solution curves of the differential
equation dy/dx = 3x2. When we cannot find explicit formulas for the solution
curves of an equation dy/dx = f(x) (that is, we cannot find an antiderivative of

f), we may still be able to find their general shape by examining derivatives.

EXAMPLE 4

Solution

Step 1: ¥ and y”. As in Section 3.4, the curve’s general shape
is determined by y’ and y”. We already know y’:
1

x24+1

’

y:

We find y” by differentiation, in the usual way:

,,_d(,)_d 1
Y _dxy Tdx \x2+1

.
IRCEE
Step 3: Concavity. The second derivative changes from (+)

to (—) at x =0, so the curves all have an inflection point at
x =0.

w_  =2x .
YTy

I

I

I

|

|
conc 0 conc
up i down
I

infl point

Sketch the solutions of the differential equation

1
x24+1°

/

y:

Step 2: Rise and fall. The domain of y’ is (—oo, 00). There
are no critical points, so the solution curves have no cusps or
extrema. The curves rise from left to right because y’ > 0. At
x = 0, the curves have slope 1.

= 2+ 1 " i "
I X
A4
slopel =1
Step 4: Summary: / /

conc up conc down

o

infl point slope = 1

General shape:
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Y Slope 1
\

0,0

4.3 The solution curve in Example 5.

The first derivative tells us still more:

. P _
xlllllooy - x-llrﬂr:]oo .x2 + 1 - 0’

so the curves level off as x — + 00.

Step 5: Specific points and solution y

curves. We plot an assortment of
points on the y-axis where we know

the curves’ slope (it is 1 at x =
0), mark tangents with that slope /
for guidance, and sketch “parallel”

curves of the right general shape.

—
=
e .

EXAMPLE 5 Sketch the solution of the initial value problem
, 1
X241

Initial condition: y=0 when x=0.

Differential equation: y

Solution We find the solution’s general shape (Example 4) and sketch the solution
curve that passes through the point (0, 0) (Fig. 4.3). a

The technique we have learned for sketching solutions is particularly helpful
when we are faced with an equation dy/dx = f(x) that involves a function whose
antiderivatives have no elementary formula. The antiderivatives of the function
f(x) =1/(x* + 1) in Example 4 do have an elementary formula, as we will see in
Chapter 6, but the antiderivatives of g(x) = +/1 + x* do not. To solve the equation
dy/dx = +/1 + x*, we must proceed either graphically or numerically.

Mathematical Modeling

The development of a mathematical model usually takes four steps: First we observe
something in the real world (a ball bearing falling from rest or the trachea contracting
during a cough, for example) and construct a system of mathematical variables and
relationships that imitate some of its important features. We build a mathematical
metaphor for what we see. Next we apply (usually) existing mathematics to the
variables and relationships in the model to draw conclusions about them. After that
we translate the mathematical conclusions into information about the system under
study. Finally we check the information against observation to see if the model
has predictive value. We also investigate the possibility that the model applies to
other systems. The really good models are the ones that lead to conclusions that
are consistent with observation, that have predictive value and broad application,
and that are not too hard to use.

The natural cycle of mathematical imitation, deduction, interpretation, and con-
firmation is shown in the diagrams on the following page.
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Variables:
s = distance Variables:
Assumptions about t = time Assumptions about Angles, light speeds,

how measurable
quantities are related

e Observed: Things
falling from rest

Initial values:

distances, etc.
Assumed relations:
Fermat’s principle

how measurable
quantities are related

e Observed: A light ray
bending as it passes
from one medium to

s=0andv=0
whent =0

in a vacuum Assumed relation: another Time = distance/rate
s = 1612
. . . Apply extreme
i Refraction pply
Confirmation Free fall 1 Apply Confirmation N | value calculation of
timer/video . calculus measurement of light a4 .
) Example 5, Section 3.6
1. The velocity at Mathematical Snell’s law: The sine of G Mathematical conclusion:
time ¢ should be 321. .. conclusions: the angle of refraction o . _ %9 .
1 — : 27 ¢ 1
> All bodics fall with Interpretation in 1y =321 will always be c,/c, Interpretation in sin 6, [ sin 6
. odies fall wi real-world terms 24=73 times the sine of the real-world terms

the same constant

acceleration: 32 ft/sec?.

4.4 (a) The modeling cycle for the shapes
of colliding galaxies. (b) The computer’s
image of how galaxies are reshaped by
the collision.

Assumptions about
how gravity would affect

e Observed: stars of galaxies passing
Oddly shaped through one another
galaxies

Comparison:

The computer pictures
look like the photographs
of the observed galaxies.
Plausible conclusion: They
got this way by passing
through one another.

Shapes of galaxies

Interpretation: Pictures
of galaxies passing though
one another

Computer-generated
visual images

(a)

7 of colliding galaxies

angle of incidence.

Computer Simulation

When a system we want to study is complicated, we can sometimes experiment
first to see how the system behaves under different circumstances. But if this is
not possible (the experiments might be expensive, time-consuming, or dangerous),
we might run a series of simulated experiments on a computer—experiments that
behave like the real thing, without the disadvantages. Thus we might model the
effects of atomic war, the effect of waiting a year longer to harvest trees, the effect
of crossing particular breeds of cattle, or the effect of reducing atmospheric ozone
by 1%, all without having to pay the consequences or wait to see how things work
out naturally.

We also bring computers in when the model we want to use has too many
calculations to be practical any other way. NASA’s space flight models are run on
computers—they have to be to generate course corrections on time. If you want to
model the behavior of galaxies that contain billions and billions of stars, a computer
offers the only possible way. One of the most spectacular computer simulations in
recent years, carried out by Alar Toomre at MIT, explained a peculiar galactic shape
that was not consistent with our previous ideas about how galaxies are formed. The
galaxies had acquired their odd shapes, Toomre concluded, by passing through one
another (Fig. 4.4).

Variables and
force equations

Apply:
Computer simulation

Data about
changing star
positions

(b)
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Exercises 4.2

ies d
Initial Value Problems 10. d—j —cost +sint, s(r) =1
1. Which of the following graphs shows the solution of the initial
dr .
value problem 11. 20 = —mwsinnd, r(0)=0
dy
— =2x, y=4wh =17 d
dx O YT EMIARS 12. & = cosnh, r©) =1
do
y y y
d 1
13. d—i; =5 sect tant, v(0) =1
dv ) b4
14. — =8t +csct, v(§> =-7
4 $01,9) s A0 s a9 dt
d2
31 3 35 15. S5 =2-6x; YO =4 y©O =1
dx?
2 2 = )
- . qn 16. 75 =0 YO =2 y0=0
| | | | N
1ol 1 Tol 1 o] 1 w Er 2ol o
Cdr 7 dr|
@ (b) © =
2
Give reasons for your answer. 18. Z_“: = Z’_; Z_s =3, s@)=4
t 8 t
2. Which of the following graphs shows the solution of the initial =4
value problem dy
19. — =6; y'0)=-8, Y0 =0 yW0 =5
dy _ dx3
— =-—x, y=1whenx=-1?
dx d*0 1
0. =0 0'0)=-2 00)=-3 00= V2

y"(0)=0, y'0)=y©0)=1, y0)=3

y y y
21. y® = —sint +cos t;
\I <‘%\ \{/ YO =17, y'©0)=y©0=-1 y©0=0
(-1, 1) B , LD B 22, y® = —cos x + 8sin2x;
N/ N 0

(@ (b) (©

Give reasons for your answer. Finding Position from Velocity
Solve the initial value problems in Exercises 3-22. Exercises 23-26 give the velocity v = ds/dt and initial position of
d a body moving along a coordinate line. Find the body’s position at
3.2 2-7, y@=0 | 20cy moving ong yep
dx time .
d 23, v=09. 5, =1
4. l:lO——x, y(0) = —1 v=9.8¢1+ s(0) 0
dx U v=320-2, s(1/2)=4
d 1 .
s. —y=—-—+x, x>0, y2)=1 25. v=sinmt, s(0)=0
dx x? ’ 2
dy ) 26. v=—cos —, s} =1
6. — =9x°—4x+5, y(-1)=0 4 4
dx
d
7. 2 =37, (-1 =-5 o . ,
dx Finding Position from Acceleration
@ — 1 — Exercises 27-30 give the acceleration a = d?s/dr?, initial velocity,
8. , Y4 =0 y
dx  2J/x and initial position of a body moving on a coordinate line. Find the
d body’s position at time ¢.

h)
9- — =1 t, O =4
ar ~ LHeost s© 27. a=32 v(0)=20, s©0)=S5



28. a=9.8; v(0)=-3, s(0)=0

29. a = —4sin2t; v(0) =2, s0)=-3

30. a = %cos g; v(0)=0, s0)=-1
T 14

Finding Curves
31. Find the curve y = f(x) in the xy-plane that passes through the
point (9, 4) and whose slope at each point is 3 \/x.

32. a) Find a curve y = f(x) with the following properties:

d?y
dx?
ii) Its graph passes through the point (0, 1) and has a
horizontal tangent there.

i) 6x

b) How many curves like this are there? How do you know?

Solution (Integral) Curves

Exercises 33-36 show solution curves of differential equations. In
each exercise, find an equation for the curve through the labeled
point.

33

35. 36.

dy .
E:smx—cosx Y & _ 1 + msin Tx

y dx o

RTANY/4

Use the technique described in Example 4 to sketch some of the
solutions of the differential equations in Exercises 37—40. Then solve
the equations to check on how well you did.

dy dy
. —==2 . — = —2x+2
37 Ix x 38 o X +
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dy dy
39, = =1-3x? 40. =L = 2
dx * dx *

Use the technique described in Examples 4 and 5 to sketch the solu-
tions of the initial value problems in Exercises 41-44.

dy 1

41, == ——, -1 1; y0)=0
T <x<l;i Y0
d
42. d—y=\/1—+—x“, y©0) =1
X
dy 1
A -
B m T YO =1
dy x
4. = =—"—— y0)=0
dx x2+1 y©
Applications

45. On the moon the acceleration of gravity is 1.6 m/sec?. If a rock
is dropped into a crevasse, how fast will it be going just before
it hits bottom 30 sec later?

46. A rocket lifts off the surface of Earth with a constant acceleration
of 20 m/sec?. How fast will the rocket be going 1 min later?

47. With approximately what velocity do you enter the water if you
dive from a 10-m platform? (Use g = 9.8 m/sec?.)

§ 48. CALCULATOR The acceleration of gravity near the surface of

Mars is 3.72 m/sec?. If a rock is blasted straight up from the
surface with an initial velocity of 93 m/sec (about 208 mph),
how high does it go? (Hint: When is the velocity zero?)

49. Stopping a car in time. You are driving along a highway at a
steady 60 mph (88 ft/sec) when you see an accident ahead and

slam on the brakes. What constant deceleration is required to stop
your car in 242 ft? To find out, carry out the following steps.

Step 1: Solve the initial value problem

d2
Differential equation: 217; =—k (k constant)
.. .. ds
Initial conditions: i 88 and s = 0 when ¢t = 0.

Measuring time and distance from
when the brakes are applied
Step 2: Find the value of ¢ that makes ds/dt = 0. (The answer
will involve k.)

Step 3: Find the value of k that makes s = 242 for the value of
t you found in step 2.

50. Stopping a motorcycle. The State of Illinois Cycle Rider Safety
Program requires riders to be able to brake from 30 mph (44
ft/sec) to O in 45 ft. What constant deceleration does it take to
do that?

51. Motion along a coordinate line. A particle moves on a co-
ordinate line with acceleration a = d%s/dt?> = 154/t — (3/+/1),
subject to the conditions that ds/dt =4 and s =0 when ¢ = 1.
Find
a) the velocity v = ds/dt in terms of 7,

b) the position s in terms of ¢.
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E 5.

53.

54.

The hammer and the feather. When Apollo 15 astronaut David
Scott dropped a hammer and a feather on the moon to demon-
strate that in a vacuum all bodies fall with the same (constant)
acceleration, he dropped them from about 4 ft above the ground.
The television footage of the event shows the hammer and feather
falling more slowly than on Earth, where, in a vacuum, they would
have taken only half a second to fall the 4 ft. How long did it
take the hammer and feather to fall 4 ft on the moon? To find
out, solve the following initial value problem for s as a function
of ¢. Then find the value of ¢ that makes s equal to O.
2

d
Differential equation: —de = —5.2 ft/sec?

- . ds

Initial conditions: i Oand s =4 whent =0
Motion with constant acceleration. The standard equation for
the position s of a body moving with a constant acceleration a
along a coordinate line is

s=§t2+v0t+so, (1)

where vy and sy are the body’s velocity and position at time
t = 0. Derive this equation by solving the initial value problem

Differential equation: —— =a

ds

Initial conditions: o =vpand s = sy whent =0

(Continuation of Exercise 53.) Free fall near the surface of
a planet. For free fall near the surface of a planet where the
acceleration of gravity has a constant magnitude of g length-
units/sec?, Eq. (1) takes the form

1
S=—581‘2+U01+~\‘o7 (2)

where s is the body’s height above the surface. The equation
has a minus sign because the acceleration acts downward, in the
direction of decreasing s. The velocity vy is positive if the object
is rising at time ¢ = 0, and negative if the object is falling.

Instead of using the result of Exercise 53, you can derive
Eq. (2) directly by solving an appropriate initial value problem.
What initial value problem? Solve it to be sure you have the right
one, explaining the solution steps as you go along.

Theory and Examples

55.

56.

Integration by Substitution—Running the
Chain Rule Backward

Finding displacement from an antiderivative of velocity

a) Suppose that the velocity of a body moving along the
s-axis is
ds
— =v=98-3.
ar =’
1) Find the body’s displacement over the time interval
from ¢t =1tot =3 given that s =5 when ¢t = 0.
2) Find the body’s displacement from ¢ = 1to ¢ = 3 given
that s = —2 when t = 0.
3) Now find the body’s displacement from ¢ = 1to¢ =3
given that s = so when ¢ = 0.

b) Suppose the position s of a body moving along a coordinate
line is a differentiable function of time ¢. Is it true that once
you know an antiderivative of the velocity function ds/dt
you can find the body’s displacement from t =a tot =b
even if you do not know the body’s exact position at either
of those times? Give reasons for your answer.

Uniqueness of solutions. If differentiable functions y = F(x)
and y = G(x) both solve the initial value problem

d
d—y = f(x), y(x0) = yo,
X

on an interval I, must F(x) = G(x) for every x in I ? Give
reasons for your answer.

A change of variable can often turn an unfamiliar integral into one we can evaluate.
The method for doing this is called the substitution method of integration. It is one
of the principal methods for evaluating integrals. This section shows how and why

the method works.

The Generalized Power Rule in Integral Form

When u is a differentiable function of x and » is a rational number different from
—1, the Chain Rule tells us

d [ ut! ,du
— =u"—.
dx \n+1 dx
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This same equation, from another point of view, says that u"1/(n + 1) is one of
the antiderivatives of the function u”(du/dx). Therefore,

du un+1
"— )dx = .
/(u dx) * n+1 +C

The integral on the left-hand side of this equation is usually written in the simpler
“differential” form,
/ u"du,

obtained by treating the dx’s as differentials that cancel. Combining the last two
equations gives the following rule.

Equation (1) actually holds for any real
exponent n # —1, as we will see in
Chapter 6.

If u is any differentiable function,

n+1
/u"du =2 + C. (n # —1, n rational) (1)
n+1

In deriving Eq. (1) we assumed u to be a differentiable function of the variable
x, but the name of the variable does not matter and does not appear in the final
formula. We could have represented the variable with 6, ¢, y, or any other letter.
Equation (1) says that whenever we can cast an integral in the form

fu"du, n#£-1)

with u a differentiable function and du its differential, we can evaluate the integral
as [u™'/(n+ 1)] + C.

EXAMPLE 1 Evaluate f (x +2)°dx.

Solution We can put the integral in the form

/u"du

d
u=x++2, du:d(x+2)=d—(x+2)-dx
X

by substituting

=1.dx =dx.
Then
/(x+2)5dx:/u5du u=x+2, du=dx
6 .
u Integrate, using Eq. (1)
= g +C with n = 5.
6
= x+2) + C. Replace u by x + 2.
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EXAMPLE 2

Let u = 1 + 2,
/ J1+y?.2ydy = /ul/Zdu du :12_\"(1'.‘*‘

u(1/2+1 Integrate, using
= —— 14 C Eq. (1) with
(1/2) +1 n=1/2.
= §u3/2 +C Simpler form
2 243/2 Replace u by

a

EXAMPLE 3  Adjusting the integrand by a constant

1 Letu =4t — |,
/v4t —1dt = ful/z - —du du = 4dt,
4 (1/4)du = dt.

1 12 With the 1/4 out front,
= Z u'“du the integral is now in
standard form.

1 u? ate, usi

- . +C Integrate, using Eq. (1)
4 /2 with n = 1/2.
15, o

= gu +C Simpler form

I

1(41 -1 4C Replace u by 41 — 1.
6 a

Trigonometric Functions

If u is a differentiable function of x, then sinu is a differentiable function of x.
The Chain Rule gives the derivative of sinu as

d sin cos du
—sinu = u—.
dx dx

From another point of view, however, this same equation says that sinu is one of
the antiderivatives of the product cosu - (du/dx). Therefore,

du .
/ <cosu —) dx = sinu + C.
dx

A formal cancellation of the dx’s in the integral on the left leads to the following
rule.

If u is a differentiable function, then

/cosudu:sinu+C. (2)
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Equation (2) says that whenever we can cast an integral in the form

/cosudu,

we can integrate with respect to u to evaluate the integral as sinu 4 C.

EXAMPLE 4
1 Letu =76 +5,
/cos(70+5)d0=/cosu-—du du =17d6,
7 (1/7)du = db.
1 With (1/7) out front,
= 7 / cosudu the integral is now
in standard form.

Integrate with
respect to u.

1
= =sin C
7 u+

1
— Qi Replace u by
-7sm(79+5)+C s 0

The companion formula for the integral of sinu when u is a differentiable
function is

/sinudu:—cosu+C. (3)

EXAMPLE 5
/ x%sin(x*)dx = f sin(x®) - x2dx

1 Letu = x’
= /sinu . —du du =3x2dx
3 (1/3)du = x2dx.
L[
= —/smudu
3
1 Integrate with respect
= —(—cosu)+C
3 tou.

1
= -3 cos (x3) + C  Replace u by x*. 0

The Chain Rule formulas for the derivatives of the tangent, cotangent, secant,
and cosecant of a differentiable function u lead to the following integrals.

/seczudu=tanu+C 4) /sec utan udu =secu + C (6)

/csczudu=—cotu+C (5) /cscucotudu:—cscu+C(7)
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The Substitution Method of
Integration

Take these steps to evaluate the integral

/f(g(X))g'(x)dx,

when f and g’ are continuous functions:

Step 1: Substitute u = g(x) and
du = g'(x) dx to obtain the integral

/ fw)du.

Step 2: Integrate with respect to u.

Step 3: Replace u by g(x) in the result.

In each formula, u is a differentiable function of a real variable. Each formula can
be checked by differentiating the right-hand side with respect to that variable. In
each case, the Chain Rule applies to produce the integrand on the left.

EXAMPLE 6
| 2 I
f&mde = /SCC 26 d6 sec 260 = o8 20
1 Let u = 26,
= /sec2 u-—-—du du=2d6,
2 do = (1/2)du.
1
=3 / sec’ udu
1 .
= —tanu +C Integrate, using Eq. (4).
1
= 5 tan20 + C Replace u by 26.
Check:
d (1 1 d
—([=ztan20+C ) = - . —(tan 20) + 0
d0<2an +) 2 ag Bt
1 d
= 5 . (SeC2 20 . d_9 (29)) Chain Rule
! 220.2 _
= — « S€C L= .
2 cos? 26 a

The Substitution Method of Integration

The substitutions in the preceding examples are all instances of the following general
rule.

du = g'(x)dx.

/f(g(x)) . g/(x) dx = /f(u) du 1. Substitute u = g(x),

=Fu)+C 2. Evaluate by finding an
antiderivative F(u) of
f (). (Any one will do.)

=F@gx)+C 3. Replace u by g(x).

These three steps are the steps of the substitution method of integration. The method
works because F(g(x)) is an antiderivative of f(g(x)) - g'(x) whenever F is an
antiderivative of f:

d
o E@) = F'(g(x)) - g'(x)  Chain Rule
X

= f(g)) - g'(x) Because F' = f

Implicit in the substitution method is the assumption that we are replacing x by a
function of u. Thus, the substitution # = g(x) must be solvable for x to give x as
a function x = g~!(u) (“g inverse of u”). The domains of « and x may need to be
restricted on occasion to make this possible. You need not be concerned with this
issue at the moment. We will discuss inverses in Section 6.1 and treat the theory
of substitutions in greater detail in Sections 7.4 and 13.7.
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EXAMPLE 7 ,
Let u = x~ + 2x — 3,

1 = 2xdx +2
/(x2 +2x = 3)X(x + Ddx = fuz - 5 du g2
1

(1/2)du = (x + N dx.
= /uzdu

2
1w 1 3 Integrate with respect
=§._3—+C:gu +C to u.
1 2 3
= 6(x +2x -3 +C Replace u. 0
EXAMPLE 8
Let u =sin ¢,
/sin4tcos tdt = /u4du du = costdt.
uS
= ? C Integrate with respect to u.
— sin’ ¢ +C Replace u
s Q

The success of the substitution method depends on finding a substitution that
will change an integral we cannot evaluate directly into one that we can. If the first
substitution fails, we can try to simplify the integrand further with an additional
substitution or two. (You will see what we mean if you do Exercises 47 and 48.)
Alternatively, we can start afresh. There can be more than one good way to start,
as in the next example.

EXAMPLE 9 Evaluate
2zdz

JZ+1
Solution We can use the substitution method of integration as an exploratory tool:
substitute for the most troublesome part of the integrand and see how things work

out. For the integral here, we might try u = z? + 1 or we might even press our luck
and take u to be the entire cube root. Here is what happens in each case.

Solution 1 Substitute u = 7% + 1.

/ 2zdz _ du Letu=22+1,
Y2+ 1 ul/3 du = 2zdz.
= fu_1/3 du In the form [ u" du
_ u?’? C Integrate with respect
- 2/3 + to u.
3
=-ul+C

2

= %(Zz + 1)2/3 +C Replace u by 72 + 1.
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Solution 2 Substitute u = /72 + 1 instead.
/ 2zdz 3udu
NZES u

:3/udu

Letu= vz + 1,
w=z2+1,
3udu =2zdz.

2
u Integrate with respect
=3 D) +C to u.
Replace u by

3
=5@+D"+C

(224 '3,

Exercises 4.3

Evaluating Integrals " dx

Evaluate the indefinite integrals in Exercises 1-12 by using the given V5x+8
substitutions to reduce the integrals to standard form. a) Usingu=>5x+38

1. fsin3xdx, u=3x

»

fx sin (2x?) dx, u = 2x?

3. /sec 2ttan 2t dt, u =2t

/1 stzs'tdt
co2 1n2,

5. f28(7x —2)Pdx, u=Tx-2

te

6. fx3(x4—l)2dx, u=x*-1
or?dr

7. | —, u=1-73
V1=r3

8. f12<y4 Fay R 1208 4 2)dy, w=yt Ay 4]

9, /«/Esinz(xy2 —Ddx, u=x%?-1

10. f—li cos? (l> dx, u= —l
x x x

11. / csc? 20 cot 26 d6

a) Using u = cot 20 b)

t
=1- —
u 0082

b) Using u = +/5x +8

Evaluate the integrals in Exercises 13—46.

13. V/‘\/3——2sds
15/ ! d
. | ———ds
J5s +4
17. fe;‘/1—92d9
19. f3y\/7—3y2dy

1
2. | ——————dx
fﬁ(1+ﬁ)2
23. /cos Bz+4)dz
25. fsec2(3x+2)dx
27. /sins % cos %dx
3 5
(7
29. [r <18 1) dr

31. fx'/z sin (x3/% + 1) dx
Using u = csc 26

14. /(Zx +1)%dx

3dx
16. | ——
] 2-x)?
18. / 80962 —1do

4y dy

) V2y2+1
(1+vx)
22. dex

24. f sin (8z —5)dz

20

26. f tan® x sec? x dx

28. / tan’ % sec? = dx

32. fx”3 sin (x*3 — 8) dx



33. fsec (v+ %)tan (v-{- %) dv
34. fcsc(v—”>cot<v_n)dv
2 2

35, f sin (2t + 1) dt 36. 6 co.s t
cos? (2t + 1) (2 +ssint)3
t:
37. /«/cot y csc? ydy 38, [ XAz,
sec z

1
39. fizcos <~—1> dt
t t
1 .1 1
41. fﬁ 31n§cos §d9

Cos «/_ do
«/5 SlIl2 \/_

43. f(s3 +25% — 554+ 5)(3s% +4s — 5)ds

1
40. / 7 cos(v/t + 3) dt
42,

44. f(e‘* —2024+80 —2)(0° -0 +2)do

45. fﬁ(l +t43dr

ss. |

1
dx

Simplifying Integrals Step by Step

If you do not know what substitution to make, try reducing the integral
step by step, using a trial substitution to simplify the integral a bit and
then another to simplify it some more. You will see what we mean
if you try the sequences of substitutions in Exercises 47 and 48.

18 tan? x sec?

Ctanx? &

X

47.

a) u =tan x, followed by v = 4>, then by w =2 + v
b) u =tan’® x, followed by v =2+ u
¢) u=2+tan’ x

48. /\/1 +sin?(x — 1) sin(x — 1) cos (x — 1) dx

a) u=x— 1, followed by v = sinu, then by w = 1+ v?
b) u =sin(x — 1), followed by v = 1 + u?
¢ u=1+sin*(x—-1)

Evaluate the integrals in Exercises 49 and 50.

49. /‘(Zr 1)cos+/3Q2r — 1)2 dr

3Q2r — 1)2

50. sin /6 d

V6 cos’ 6
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Initial Value Problems
Solve the initial value problems in Exercises 51-56.

d

51. E; =120G2 -1}, s(1)=3
dy 2 ~1/3

52. x=4x(x +87, y0)=0

dx

53. iS—:SsinZ(t+l), s©0) =8
dt 12
dr

r_ 2 (T _r
54. =5 =3 cos (4 9), r(0) =
d*s . b4 ,
55. = = —4sin (2z - 5)’ §'(0) = 100, s(0) =
d*y
56. i = 4 sec?2x tan 2x, y'(0) =4, y(0) = —
X

57. The velocity of a particle moving back and forth on a line is
v =ds/dt = 6sin2t m/sec for all ¢t. If s =0 when t =0, find
the value of s when ¢ = 7 /2 sec.

58. The acceleration of a particle moving back and forth on a line
is a = d?s/dt* = n?cosmt m/sec? for all t. If s =0 and v = 8
m/sec when ¢ =0, find s when ¢ = 1 sec.

Theory and Examples

59. It looks as if we can integrate 2 sinx cosx with respect to x in
three different ways:

a) f2 sin x cosxdx:/Zudu

i = 8in X,

=u?+C, =sin’x + C,

u = Cos x,

b) fZSinx cosxdx:/—Zudu

=—u?+C,=—cos’ x +C,

2sinx cosx = sin2x

c) fZ sin x cos x dx =/sin 2x dx

cos 2x
= - Cs.
; To

Can all three integrations be correct? Give reasons for your an-
swer.

60. The substitution # = tan x gives

2 tan?
/seczxtanxdxzfudu=%+C= 2x+c.
The substitution u = sec x gives
2 ez
fseczxtanxdxzfudu=%+cz sczx +C.

Can both integrations be correct? Give reasons for your answer.
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4.5 The dye concentrations from Table
4.3, plotted and fitted with a smooth
curve. Time is measured with t = 0 at the
time of injection. The dye concentrations
are zero at the beginning, while the dye
passes through the lungs. They then rise
to a maximum at about t = 9 sec and
taper to zero by t = 31 sec.

Estimating with Finite Sums

This section shows how practical questions can lead in natural ways to approxima-
tions by finite sums.

Area and Cardiac Output

The number of liters of blood your heart pumps in a minute is called your cardiac
output. For a person at rest, the rate might be 5 or 6 liters per minute. During
strenuous exercise the rate might be as high as 30 liters per minute. It might also
be altered significantly by disease.

Instead of measuring a patient’s cardiac output with exhaled carbon dioxide, as
in Exercise 25 in Section 2.7, a doctor may prefer to use the dye-dilution technique
described here. You inject 5 to 10 mg of dye in a main vein near the heart. The dye
is drawn into the right side of the heart and pumped through the lungs and out the
left side of the heart into the aorta, where its concentration can be measured every
few seconds as the blood flows past. The data in Table 4.3 and the plot in Fig. 4.5
show the response of a healthy, resting patient to an injection of 5.6 mg of dye.

To calculate the patient’s cardiac output, we divide the amount of dye by the
area under the dye concentration curve and multiply the result by 60:

amount of dye

Cardiac output = x 60. (1)

area under curve
You can see why the formula works if you check the units in which the various

quantities are measured. The amount of dye is in milligrams and the area is in

(milligrams/liter) x seconds, which gives cardiac output in liters/minute:

mg sec L sec L

S g _— . —— [

mg min mg-sec min  min
— . sec
L

In the example that follows, we estimate the area under the concentration curve in
Fig. 4.5 and find the patient’s cardiac output.

Table 4.3 Dye-dilution data

~ Dye b . Dye
Seconds concentration Seconds concentration
after. (adjusted for  after (adjusted for
. injection recirculation) injection . . recirculation)
Lo e - : T . c
5 0 19 0.91
7 3.8 21 0.57
9 8.0 23 0.36
11 6.1 25 0.23
13 3.6 27 0.14
15 23 29 0.09
17 1.45 31 0
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4.6 The region under the concentration
curve of Fig. 4.5 is approximated with
rectangles. We ignore the portion from
t =29 to t = 31; its concentration is
negligible.
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EXAMPLE 1 Find the cardiac output of the patient whose data appear in Table
4.3 and Fig. 4.5.

Solution We know the amount of dye to use in Eq. (1) (it is 5.6 mg), so all we
need is the area under the concentration curve. None of the area formulas we know
can be used for this irregularly shaped region. But we can get a good estimate of this
area by approximating the region between the curve and the z-axis with rectangles
and adding the areas of the rectangles (Fig. 4.6). Each rectangle omits some of the
area under the curve but includes area from outside the curve, which compensates.
In Fig. 4.6 each rectangle has a base 2 units long and a height that is equal to the
height of the curve above the midpoint of the base. The rectangle’s height acts as a
sort of average value of the function over the time interval on which the rectangle
stands. After reading rectangle heights from the curve, we multiply each rectangle’s
height and base to find its area, and then get the following estimate:

Area under curve ~ sum of rectangle areas
N f(6) -2+ f(8) 2+ f(10) - 2+--- + f(28) - 2
~(14)2)+63)2)+(752)+---+(0.1)(2)
~ (28.8)(2) = 57.6 mg - sec/L. (2)

Dividing this figure into the amount of dye and multiplying by 60 gives a corre-
sponding estimate of the cardiac output:

t of d 5.6
Cardiac output & M x 60 = —— x 60 ~ 5.8 L/min.
area estimate 57.6

The patient’s cardiac output is about 5.8 L/min. a

Technology Using a Grapher to Calculate Finite Sums If your graphing
utility has a method for evaluating sums, you might want to use it in this
section. Later in the chapter, you will find it useful for approximating “definite”
integrals. There will be other uses still later in your study of calculus.

Distance Traveled

Suppose we know the velocity function v = ds/dt = f(t) m/sec of a car moving
down a highway and want to know how far the car will travel in the time interval
a <t <b. If we know an antiderivative F of f, we can find the car’s position
function s = F () + C and calculate the distance traveled as the difference between
the car’s positions at times ¢ = a and ¢t = b (as in Section 4.2, Exercise 55).

If we do not know an antiderivative of v = f (), we can approximate the answer
with a sum in the following way. We partition [a, b] into short time intervals on each
of which v is fairly constant. Since velocity is the rate at which the car is traveling,
we approximate the distance traveled on each time interval with the formula

Distance = rate x time = f(¢) - At

and add the results across [a, b]. To be specific, suppose the partitioned interval
looks like this

[ At >« At >}« At —>]

I -' > L -' I t (sec)
a 1 t, Iy b
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with the subintervals all of length Az. Let ¢; be a point in the first subinterval. If
the interval is short enough so the rate is almost constant, the car will move about
f(#;)At m during that interval. If #, is a point in the second interval, the car will
move an additional f(#;)At m during that interval, and so on. The sum of these
products approximates the total distance D traveled from t = a to t = b. If we use
n subintervals, then

D= f(t)) At + f(t) At +---+ f(t,) At. (3)

Let’s try this on the projectile in Example 3, Section 4.2. The projectile was
fired straight into the air. Its velocity ¢ sec into the flight was v = f(t) = 160 — 9.8¢
and it rose 435.9 m from a height of 3 m to a height of 438.9 m during the first
3 sec of flight.

EXAMPLE 2 The velocity function of a projectile fired straight into the air is
f(t) =160 — 9.8¢. Use the summation technique just described to estimate how
far the projectile rises during the first 3 sec. How close do the sums come to the
exact figure of 435.9 m?

Solution We explore the results for different numbers of intervals and different
choices of evaluation points.

3 subintervals of length 1, with f evaluated at left-hand endpoints:

4Ly
0 1 2 3
l«At>]

With f evaluated at t = 0, 1, and 2, we have
D = f(t;) At + f(t;) At + f(t3) At Eq. (1)
2~ [160 — 9.8(0)]1(1) + [160 — 9.8(1)](1) + [160 — 9.8(2)1(1)
~ 450.6.

3 subintervals of length 1, with f evaluated at right-hand endpoints:

L 444>
0 1 2 3
[«Ar>|

With f evaluated at t = 1, 2, and 3, we have
D~ f(t) At + f(t) At + f(3) At Eq. (1)
~ [160 — 9.8(1)](1) + [160 — 9.8(2)1(1) + [160 — 9.8(3)1(1)
~ 421.2.
With 6 subintervals of length 1/2, we get

Lyt ts kg Lottt ts kg

bodod ol > Ledodeod >
0 1 2 3 0 1 2 3
[l [

At At



Error magnitude =
|true value — calculated value|
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Using left-hand endpoints: D = 443.25.
Using right-hand endpoints: D = 428.55.

These six-interval estimates are somewhat closer than the three-interval estimates.
The results improve as the subintervals get shorter.

Table 4.4 Travel-distance estimates

Number of Length of each Left-endpoint  Right-endpoint
subintervals subinterval sum sum
3 1 450.6 421.2
6 0.5 443.25 428.55
12 0.25 439.58 432.23
24 0.125 437.74 434.06
48 0.0625 436.82 434.98
96 0.03125 436.36 435.44
192 0.015625 436.13 435.67

As we can see in Table 4.4, the left-endpoint sums approach the true value
435.9 from above while the right-endpoint sums approach it from below. The true
value lies between these upper and lower sums. The magnitude of the error in the
closest entries is 0.23, a small percentage of the true value.

0.23
E tage = —— ~ 0.05%.
ITOr percentage 1359 o

It would be safe to conclude from the table’s last entries that the projectile rose
about 436 m during its first 3 sec of flight.

Notice the mathematical similarity between Examples 1 and 2. In each case,
we have a function f defined on a closed interval and estimate what we want to
know with a sum of function values multiplied by interval lengths. We can use
similar sums to estimate volumes.

Volume

Here are two examples using finite sums to estimate volumes.

EXAMPLE 3 A solid lies between planes perpendicular to the x-axis at x = —2
and x = 2. The cross sections of the solid perpendicular to the axis between these
planes are vertical squares whose base edges run from the semicircle y = —+/9 — x?
to the semicircle y = +/9 — x? (Fig. 4.7a, on the following page). The height of
the square at x is 24/9 — x2. Estimate the volume of the solid.

Solution We partition the interval [—2, 2] on the x-axis into four subintervals of
length Ax = 1. The solid’s cross section at the left-hand endpoint of each subinterval
is a square (Fig. 4.7b). On each of these squares we construct a right cylinder (square
slab) of height 1 extending to the right (Fig. 4.7c). We add the cylinders’ volumes
to estimate the volume of the solid.
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4.7 (a) The solid in Example 3. (b) Square
cross sections of the solid at x = -2, -1,
0, and 1. (c) Rectangular cylinders (slabs)
based on the cross sections to
approximate the solid.

)

3!

)
-

>

y=—\19—x2

P
\
R

(b) ()

We calculate the volume of each cylinder with the formula V = Ah (base
area x height). The area of the solid’s cross section at x is A (x) = (side)? =
(2v9 — x2)2 =4 (9 — x?), so the sum of the volumes of the cylinders is

Sy = A(cy) Ax + A(cy) Ax + A (c3) Ax + A (cq) Ax
=409 —-cHM)+409—HA) +4O —c3H() +4 09 — i) (D)
=4[0- DD+ O - =DH+ O - )+ O - 1)Y)]
=4[0-4H+O-D+O-0+©O-1)]
=4 (36 — 6) = 120.

This compares favorably with the solid’s true volume V = 368/3 ~ 122.67 (we
will see how to calculate V in Section 4.7). The difference between S and V is a
small percentage of V:
[V — 84  (368/3) — 120
V. (368/3)
8

= — =~ 2.2%.
368 %

Error percentage =

With a finer partition (more subintervals) the approximation would be even better.

a

EXAMPLE 4 Estimate the volume of a solid sphere of radius 4.

Solution We picture the sphere as if its surface were generated by revolving the
graph of the function f(x) = +/16 — x2 about the x-axis (Fig. 4.8a). We partition
the interval —4 < x < 4 into 8 subintervals of length Ax = 1. We then approximate
the solid with right circular cylinders based on cross sections of the solid by planes
perpendicular to the x-axis at the subintervals’ left-hand endpoints (Fig. 4.8b). (The
cylinder at x = —4 is degenerate because the cross section there is just a point.)
We add the cylinders’ volumes to estimate the volume of a sphere.
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1 y = f(x) = 16 — x*

=

4.8 (a) The semicircle y = +/16 — x2
revolved about the x-axis to outline a
sphere. (b) The solid sphere approximated
with cross-section-based cylinders.

We calculate the volume of each cylinder with the formula V = mr2h. The
sum of the eight cylinders’ volumes is

Sy = w [fe)P Ax + 7 [f(c)P Ax + 7w [f(c) P Ax + -+ 7 [f(cx)]* Ax
=7 [\/ 16 — clz]z Ax+m [\/ 16 — 022]2 Ax+m [\/ 16 — 032]2 Ax
+-o 4w [\/16—082]2 Ax

=7 [(16= (=) + (16 = (=3)) + (16 — (=2)*) +--- + (16 — (3)})]
=a[0+7+124+154+16+15+12+7]

=84m.
This compares favorably with the sphere’s true volume,
v 4 5 4 @y 256m
= -7 = — = —\
377 737 3

The difference between Sg and V is a small percentage of V:

|V — Ss| _ (256/3)r — 84x
V. (256/3)
_256-252 1

= — =x1.6%.
256 64 v Q

Error percentage =

The Average Value of a Nonnegative Function

To find the average of a finite set of values, we add them and divide by the number of
values added. But what happens if we want to find the average of an infinite number
of values? For example, what is the average value of the function f(x) = x? on
the interval [—1, 1]? To see what this kind of “continuous” average might mean,
imagine that we are pollsters sampling the function. We pick random x’s between
—1 and 1, square them, and average the squares. As we take larger samples, we

expect this average to approach some number, which seems reasonable to call the
average of f over [—1, 1].
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-1, 1) (1, 1)

(b)

4.9 (a) The graph of f(x) = x?,
—1 < x < 1. (b) Values of f sampled at
regular intervals.

The graph in Fig. 4.9(a) suggests that the average square should be less than
1/2, because numbers with squares less than 1/2 make up more than 70% of the
interval [—1, 1]. If we had a computer to generate random numbers, we could carry
out the sampling experiment described above, but it is much easier to estimate the
average value with a finite sum.

EXAMPLE 5 Estimate the average value of the function f(x) = x? on the
interval [—1, 1].

Solution We look at the graph of y = x? and partition the interval [0, 1] into 6
subintervals of length Ax = 1/3 (Fig. 4.9b).

It appears that a good estimate for the average square on each subinterval is
the square of the midpoint of the subinterval. Since the subintervals have the same
length, we can average these six estimates to get a final estimate for the average
value over [—1, 1].

NEEe R RORGR)

1 2
~ L. 5+9+1+1+9-!—25=7_0%0.324
6 36 216

Average value

We will be able to show later that the average value is 1/3.
Notice that

PRE RERORORO)

6

L[ 5\ 1 3\* 1 5\° 1
T2 <_8> '5’k<_8> '§*”'”+(8) '3

1 5\ 1 3\ 1 5\ 1
- Eﬁﬁﬂfﬁﬁfﬁ'[f<_€>'§'Ff<_8)'§*”'”+f(€)'§]

_ 1 a sum of function values
length of [—1, 1] | multiplied by interval lengths |’

Once again our estimate has been achieved by multiplying function values by
interval lengths and summing the results for all the intervals. d

Conclusion

The examples in this section describe instances in which sums of function values
multiplied by interval lengths provide approximations that are good enough to
answer practical questions. You will find additional examples in the exercises.

The distance approximations in Example 2 improved as the intervals involved
became shorter and more numerous. We knew this because we had already found
the exact answer with antiderivatives in Section 4.2. If we had made our partitions
of the time interval still finer, would the sums have approached the exact answer as
a limit? Is the connection between the sums and the antiderivative in this case just
a coincidence? Could we have calculated the area in Example 1, the volumes in
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Examples 3 and 4, and the average value in Example 5 with antiderivatives as well?
As we will see, the answers are “Yes, they would have,” “No, it is not a coincidence,”
and “Yes, we could have.”

Exercises 4.4

Cardiac Output the data points with a smooth curve. Estimate the area under the

1. Thetablebelow gives dye concentrations for a dye-dilution cardiac- curve and calculate the cardiac output from this estimate.

output determination like the one in Example 1. The amount of dye

injectfad in this case was 5 mg instead of 5.6 mg. Use rectangles Seconds  Dye concentration Seconds Dye concentration
to estimate .the area undér the dye 'concentratlon curve and then after (adjusted for after (adjusted for
go on to estimate the patient’s cardiac output. injection recirculation) injection recirculation)
t c t c
Seconds after Dye concentration
injection (adjusted for recirculation) 0 0 16 19
¢ ¢ 2 0 18 7.8
4 0.1 20 6.1
2 0 6 0.6 22 4.7
4 0.6 8 2.0 24 35
6 1.4 10 4.2 26 2.1
8 2.7 12 6.3 28 0.7
10 3.7 14 7.5 30 0
12 4.1
14 3.8 .
16 29 Distance
18 1.7 3. The table below shows the velocity of a model train engine mov-
20 1.0 ing along a track for 10 sec. Estimate the distance traveled by the
22 0.5 engine using 10 subintervals of length 1 with (a) left-endpoint
24 0 values and (b) right-endpoint values.
< Time Velocity Time Velocity
: (sec) (in./sec) (sec) (in./sec)
a4 7N i
) /LN e/ 0 0 6 11
€. / 1 12 7 6
-% 2 22 8 2
£ / \ ! 3 10 9 6
g 2 / 4 5 10 0
8 5 13
2 /
a /
| 4. You are sitting on the bank of a tidal river watching the incoming
ol 2 4 6 8 10 12 14 16 18 20 22 24 ! tide carry a bottle upstream. You record the velocity of the flow
Time (sec) every five minutes for an hour, with the results shown in the table
on the following page. About how far upstream did the bottle
2. The accompanying table gives dye concentrations for a cardiac- travel during that hour? Find an estimate using 12 subintervals
output determination like the one in Example 1. The amount of of length 5 with (a) left-endpoint values and (b) right-endpoint

dye injected in this case was 10 mg. Plot the data and connect values.
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Time Velocity Time Velocity
(min) (m/sec) (min) (m/sec)
0 1 35 1.2
5 1.2 40 1.0
10 1.7 45 1.8
15 2.0 50 1.5
20 1.8 55 1.2
25 1.6 60 0

30 14

5. You and a companion are about to drive a twisty stretch of dirt
road in a car whose speedometer works but whose odometer
(mileage counter) is broken. To find out how long this particular
stretch of road is, you record the car’s velocity at 10-sec intervals,
with the results shown in the table below. Estimate the length
of the road (a) using left-endpoint values and (b) using right-
endpoint values.

Velocity (converted Velocity
Time to ft/sec) Time (converted to ft/sec)
(sec) (30 mi/h = 44 ft/sec) (sec) (30 mi/h = 44 ft/sec)
0 0 70 15
10 44 80 22
20 15 90 35
30 35 100 44
40 30 110 30
50 44 120 35
60 35

6. The table below gives data for the velocity of a vintage sports

car accelerating from 0 to 142 mi/h in 36 sec (10 thousandths of

an hour).
Time Velocity Time Velocity

(h) (mi/h) (h) (mi/h)
0.0 0 0.006 116
0.001 40 0.007 125
0.002 62 0.008 132
0.003 82 0.009 137
0.004 96 0.010 142
0.005 108

a) Use rectangles to estimate how far the car traveled during

the 36 sec it took to reach 142 mi/h.

b) Roughly how many seconds did it take the car to reach the

halfway point? About how fast was the car going then?

mi/h

160 ;

140 =
120 A
100 /!

80— {1/

40 -

20

[ 1
0.002 0.004 0.006 0.008 0.01

\\

hours

o

Volume

7.

10.

. (Continuation of Example 3.)

(Continuation of Example 3.)
Suppose we use only two
square cylinders to estimate
the volume V of the solid in
Example 3, as shown in
profile in the figure here.

a) Find the sum S, of the
volumes of the cylinders.

b) Express |V — S, as a
percentage of V to the
nearest percent. -2 0 2

\

Suppose we use six square
cylinders to estimate the volume
V of the solid in Example 3, as
shown in the accompanying
profile view.

a) Find the sum Sg of the
volumes of the cylinders.
b) Express |V — Sg| as
a percentage of V to the x
nearest percent. -

. (Continuation of Example 4.) Suppose we approximate the vol-

ume V of the sphere in Example 4 by partitioning the interval
—4 < x <4 into four subintervals of length 2 and using cylin-
ders based on the cross sections at the subintervals’ left-hand
endpoints. (As in Example 4, the leftmost cylinder will have a
zero radius.)

a) Find the sum §; of the volumes of the cylinders.
b) Express |V — S4| as a percentage of V to the nearest percent.

To estimate the volume V of a solid sphere of radius 5 you
partition its diameter into five subintervals of length 2. You then



11.

12.

13.

slice the sphere with planes perpendicular to the diameter at
the subintervals’ left-hand endpoints and add the volumes of
cylinders of height 2 based on the cross sections of the sphere
determined by these planes.

a) Find the sum Ss of the volumes of the cylinders.

b) Express |V — Ss| as a percentage of V to the nearest percent.

To estimate the volume V of a solid hemisphere of radius 4,
imagine its axis of symmetry to be the interval [0, 4] on the
x-axis. Partition [0, 4] into eight subintervals of equal length and
approximate the solid with cylinders based on the circular cross
sections of the hemisphere perpendicular to the x-axis at the
subintervals’ left-hand endpoints. (See the accompanying profile
view.)

y
4 y =V16 — x2
|<
01112 3A21 *
e
=

a) Find the sum Sg of the volumes of the cylinders. Do you
expect Sg to overestimate V, or to underestimate V? Give
reasons for your answer.

b) Express |V — Sg| as a percentage of V' to the nearest percent.

Repeat Exercise 11 using cylinders based on cross sections at the
right-hand endpoints of the subintervals.

Estimates with large error. A solid lies between planes per-
pendicular to the x-axis at x = 0 and x = 4. The cross sections
of the solid perpendicular to the axis between these planes are
vertical squares whose base edges run from the parabolic curve
y = —4/x to the parabolic curve y = /x.

a) Find the sum S; of the volumes of the cylinders obtained
by partitioning 0 < x < 4 into four subintervals of length 1

14.

15.

16.

17.
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based on the cross sections at the subinterval’s right-hand
endpoints.

b) The true volume is V = 32. Express |V — S4| as a percent-
age of V to the nearest percent.

¢) Repeat parts (a) and (b) for the sum Ss.

Estimates with large error. A solid lies between planes perpen-
dicular to the x-axis at x = 0 and x = 4. The cross sections of
the solid perpendicular to the axis between these planes are verti-
cal equilateral triangles whose base edges run from the parabolic
curve y = —./x to the parabolic curve y = /x.

a) Find the sum S; of the volumes of the cylinders obtained
by partitioning 0 < x < 4 into four subintervals of length
1 based on the cross sections at the subinterval’s left-hand
endpoints.

b) The true volume is V = 8/3. Express |V — S4| as a per-
centage of V to the nearest percent.

c¢) CALCULATOR Repeat parts (a) and (b) for the sum S;.

A reservoir shaped like a hemispherical bowl of radius 8 m is
filled with water to a depth of 4 m. (a) Find an estimate S
of the water’s volume by approximating the water with eight
circumscribed solid cylinders. (b) As you will see in Section 4.7,
Exercise 71, the water’s volume is V = 3207 /3 m>. Find the
error |V — S| as a percentage of V to the nearest percent.

A rectangular swimming pool is 30 ft wide and 50 ft long. The
table below shows the depth A(x) of the water at 5-ft intervals
from one end of the pool to the other. Estimate the volume of
water in the pool using (a) left-endpoint values of %; (b) right-
endpoint values of 4.

Position Depth Position Depth
x ft h(x) ft x ft h(x) ft
0 6.0 30 11.5
5 8.2 35 11.9
10 9.1 40 12.3
15 9.9 45 12.7
20 10.5 50 13.0
25 11.0

The nose “cone” of a rocket is a paraboloid obtained by re-
volving the curve y = \/x, 0 < x < 5, about the x-axis, where
x is measured in feet. To estimate the volume V of the nose cone,
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we partition [0, 5] into five subintervals of equal length, slice the
cone with planes perpendicular to the x-axis at the subintervals’
left-hand endpoints, and construct cylinders of height 1 based on
cross sections at these points. (See the accompanying figure.)

y

a) Find the sum S5 of the volumes of the cylinders. Do you
expect Ss to overestimate V, or to underestimate V? Give
reasons for your answer.

b) As you will see in Section 4.7, Exercise 72, the volume
of the nose cone is V = 257 /2 ft°. Express |V — Ss| as a
percentage of V to the nearest percent.

18. Repeat Exercise 17 using cylinders based on cross sections at the
right-hand endpoints of the subintervals.

Average Value of a Function

In Exercises 19-22, use a finite sum to estimate the average value of f
on the given interval by partitioning the interval into four subintervals
of equal length and evaluating f at the subinterval midpoints.

19. f(x)=x3 on [0,2] 20. f(x)=1/x on
21. f(t) = (1/2) +sin® wz on [0,2]

(1,91

y
y= %+sin2m

Velocity and Distance

23. An object is dropped straight down from an airplane. The object
falls faster and faster but the acceleration is decreasing over time
because of air resistance. The acceleration is measured in ft/sec?
and recorded every second after the drop for 5 sec, as shown in
the following table.

a) Find an upper estimate for the speed when 7 = 5.
b) Find a lower estimate for the speed when ¢ = 5.
¢) Find an upper estimate for the distance fallen when ¢ = 3.

24. An object is shot straight upward from sea level with an initial
velocity of 400 ft/sec. Assuming gravity is the only force acting
on the object, give an upper estimate for its speed after 5 sec
have elapsed. Use g = 32 ft/sec? for the gravitational constant.
Find a lower estimate for the height attained after 5 sec.

Pollution Control

25. Oil is leaking out of a tanker damaged at sea. The damage to the
tanker is worsening as evidenced by the increased leakage each
hour, recorded in the following table.

Time (hours) 0 1 2 3 4

Leakage (gal/hr) 50 70 97 136 190
Time (hours) 5 6 7 8

Leakage (gal/hr) 265 369 516 720

a) Give an upper and a lower estimate of the total quantity of
oil that has escaped after 5 hours.

b) Repeat part (a) for the quantity of oil that has escaped after
8 hours.

¢) The tanker continues to leak 720 gal/h after the first 8 hours.
If the tanker originally contained 25,000 gal of oil, approx-
imately how many more hours will elapse in the worst case
before all of the oil has spilled? in the best case?

26. A power plant generates electricity by burning oil. Pollutants pro-
duced as a result of the burning process are removed by scrubbers
in the smoke stacks. Over time the scrubbers become less effi-
cient and eventually they must be replaced when the amount of
pollution released exceeds government standards. Measurements
are taken at the end of each month determining the rate at which
pollutants are released into the atmosphere, recorded as follows.
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Month I Jan Feb | Mar | Apr | May | Jun ’ Jul ' Aug | Sep ‘ Oct | Nov ‘ Dec
Pollutant
release rate 0.2 0.25 0.27 0.34 0.45 0.52 0.63 0.70 0.81 0.85 0.89 0.95
(tons/day)

a) Assuming a 30-day month and that new scrubbers allow
only 0.05 tons/day released, give an upper estimate of the
total tonnage of pollutant released by the end of June. What

is a lower estimate?

b) In the best case, approximately when will a total of 125
tons of pollutant have been released into the atmosphere?

& CAS Explorations and Projects

In Exercises 27-30, use a CAS to perform the following steps:

a) Plot the functions over the given interval.

b) Partition the interval into n = 100, 200, and 1000 subintervals of

equal length, and evaluate the function at the midpoint of each
subinterval.

¢) Compute the average value of the function values generated in
part (b).

d) Solve the equation f(x) = (average value) for x using the aver-
age value calculated in (c) for the n = 1000 partitioning.

27. f(x)=sinx on [0,7] 28. f(x)=sin>x on [0,7]

29. f(x) =x sin % on [% n]

30. f(x) = x sin® ! on [z, 71]
X 4

Riemann Sums and Definite Integrals

In the preceding section, we estimated distances, areas, volumes, and average values
with finite sums. The terms in the sums were obtained by multiplying selected
function values by the lengths of intervals. In this section, we say what it means for
sums like these to approach a limit as the intervals involved become more numerous
and shorter. We begin by introducing a compact notation for sums that contain large
numbers of terms.

Sigma Notation for Finite Sums

We use the capital Greek letter X (“sigma”) to write an abbreviation for the sum
f@) At + f() At +-- -+ f(tn) At

as Y ,_, f (&) At, “the sum from k equals 1 to n of f of # times delta " When
we write a sum this way, we say that we have written it in sigma notation.

Definitions

Sigma Notation for Finite Sums

The symbol ZZZI a; denotes the sum a; +a; + - -+ + a,. The a’s are the
terms of the sum: a; is the first term, a, is the second term, a; is the
kth term, and a, is the nth and last term. The variable k is the index of
summation. The values of k& run through the integers from 1 to n. The
number 1 is the lower limit of summation; the number n is the upper
limit of summation.
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EXAMPLE 1
The sum in The sum written out—one The value of
sigma notation term for each value of k& the sum
5
>k 1+2+3+4+45 15
k=1
3
> (=D DD+ (D2 + (-1)}3) —1+2-3=-2
k=1
2.k 1 2 1 2 7
P 151 241 27376

The lower limit of summation does not have to be 1; it can be any integer.

EXAMPLE 2 Express the sum 1 +3 4+ 547 + 9 in sigma notation.
Solution

6
Starting with k = 2: 1434+54+749=> (2k—-3)
k=2

1
Starting with k = —3: 14+34+5474+9= ) 2k+7)
k=3

The formula generating the terms changes with the lower limit of summation, but
the terms generated remain the same. It is often simplest to start with k = 0 or
k=1.

4
Starting with k = 0: 143454749=> 2k+1)
k=0

5
Starting with k = 1: 143454749=> (2k—-1) 0
k=1

Algebra with Finite Sums

We can use the following rules whenever we work with finite sums.

Algebra Rules for Finite Sums

1. Sum Rule: Yla+b) =Y a+ Y by
=1 k=1 k=1

g

Difference Rule: Ym—b)=Yar— > b
k=1 k=1 k=1

3. Constant Multiple Rule: ear=c- ) a (Any number c)
k=1

n
4. Constant Value Rule: Y c=n-c  (cisany constant value.)
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There are no surprises in this list. The formal proofs can be done by mathe-
matical induction (Appendix 1).

EXAMPLE 3
n n n Difference Rule
a) Z Bk — k2) =3 Z k — Z k? and Constant
k=1 k=1 k=1 Multiple Rule
“ _ — ‘ _ . —_1. S _ - Constant
b) k;( ap) = kgl( D-ap=—1 k;“k = ]Ela" Multiple Rule
3 3 3
c) Z(k+4)=2k+z4 Sum Rule
k=1 k=1 k=1
=14+24+3)+3-4) Constant
Value Rule
=6+12=18 a

Sum Formulas for Positive Integers

Over the years people have discovered a variety of formulas for the values of finite
sums. The most famous of these are the formula for the sum of the first n integers
(Gauss discovered it at age 5) and the formulas for the sums of the squares and
cubes of the first n integers.

u 1

The first n integers: k= % (1)
P
" 13]¢ 1

The first n squares: k* = E(_n_—_l—___)g(_n_t_z )
P
n 1 2

The first n cubes: k= (@) 3)
pa

4
EXAMPLE 4 Evaluate ) (k* — 3k).
k=1

Solution We can use the algebra rules and known formulas to evaluate the sum
without writing out the terms.

Difference Rule

4 4 4
Z (k2 —3k) = Z kK2 —3 Z k and Constant
k=1 k=1 k=1

Multiple Rule
_ 444+ 1)@8B+1) 3 44+1) Egs. (2) and (1)
= 6 - 2 with n =4

=30-30=0 d
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4.10 The graph of a typical function

y = f(x) over a closed interval [a, b]. The
rectangles approximate the region
between the graph of the function and
the x-axis.

R )

T
0| xo=a] xp

CND)

1
|
i
{
|
—=n
1
|
!

|
O

(¢, flcy)

=

Riemann Sums

The approximating sums in Section 4.4 are examples of a more general kind of sum
called a Riemann (“ree-mahn”) sum. The functions in the examples had nonnegative
values, but the more general notion has no such restriction. Given an arbitrary
continuous function y = f(x) on an interval [a, b] (Fig. 4.10), we partition the
interval into n subintervals by choosing n — 1 points, say xi, x,, ..., x,—, between
a and b subject only to the condition that

A<X| <Xy <-++<Xp_1<b.
To make the notation consistent, we usually denote a by x, and b by x,. The set
P = {anxls""xn}

is called a partition of [a, b].
The partition P defines n closed subintervals

[x0, x11, [x1, x21, - . o, [Xn—1, Xal.
The typical closed subinterval [x;_y, x;] is called the kth subinterval of P.

kth subinterval

| f | s 1 F— x

=a X X, X, X, X

-1
The length of the kth subinterval is Ax, = x; — x;_1.
|<— Axl—>|<—Ax2—>| i(—Axk—>| |<—Axn—>’
| | | | |
T T

! 1
I T T
X,

|
k-1 Xy s Xn-1 x,=b

I
0 =a X] _xz .. X
In each subinterval [x;_;, x;], we select a point ¢, and construct a vertical
rectangle from the subinterval to the point (¢, f(cx)) on the curve y = f(x). The
choice of ¢; does not matter as long as it lies in [x;_y, x;]. See Fig. 4.10 again.
If f(c) is positive, the number f(c;) Ax, = height x base is the area of the



y =fx)

y =f()

(b)

4.11 The curve of Fig. 4.10 with
rectangles from finer partitions of [a, b].
Finer partitions create more rectangles
with shorter bases.
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rectangle. If f(c;) is negative, then f(c;) Ax; is the negative of the area. In any
case, we add the n products f(c;) Ax; to form the sum

Sp = Z fer) Ax.
=1

This sum, which depends on P and the choice of the numbers ¢, is called a
Riemann sum for f on the interval [a, b], after German mathematician Georg
Friedrich Bernhard Riemann (1826-1866), who studied the limits of such sums.

As the partitions of [a, b] become finer, the rectangles defined by the partition
approximate the region between the x-axis and the graph of f with increasing
accuracy (Fig. 4.11). So we expect the associated Riemann sums to have a limiting
value. To test this expectation, we need to develop a numerical way to say that
partitions become finer and to determine whether the corresponding sums have a
limit. We accomplish this with the following definitions.

The norm of a partition P is the partition’s longest subinterval length. It is
denoted by

IP||  (read “the norm of P”).

The way to say that successive partitions of an interval become finer is to say
that the norms of these partitions approach zero. As the norms go to zero, the
subintervals become shorter and their number approaches infinity.

EXAMPLE 5 The set P = {0, 0.2,0.6, 1, 1.5, 2} is a partition of [0, 2]. There
are five subintervals of P: [0, 0.2], [0.2, 0.6], [0.6, 1], [1, 1.5], and [1.5, 2].

[«Ax,>| Axy l Axs | Axy | Axs |
| | ] | ] |
0 0.2 0.6 1 1.5 2

The lengths of the subintervals are Ax; = 0.2, Ax, = 0.4, Ax3 = 0.4, Ax4 = 0.5,
and Axs = 0.5. The longest subinterval length is 0.5, so the norm of the partition
is || P|| = 0.5. In this example, there are two subintervals of this length. d

Definition
The Definite Integral as a Limit of Riemann Sums
Let f(x) be a function defined on a closed interval [a, b]. We say that the
limit of the Riemann sums X7_; f(cx) Ax; on [a, b] as ||P|| — O is the
number [ if the following condition is satisfied:

Given any number € > 0, there exists a corresponding number § > 0
such that for every partition P of [a, b]

1P|l <6 = <€

Zf(ck)Axk -1

k=1

for any choice of the numbers ¢, in the subintervals [x;_y, x].

If the limit exists, we write

lim Y f(c) Axe = 1.
k=1

1
1Pl—0
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We call I the definite integral of f over [a, b], we say that f is integrable over
[a, b], and we say that the Riemann sums of f on [a, b] converge to the num-
ber 1.

We usually write [ as fab f(x)dx, which is read “integral of f from a to b.”
Thus, if the limit exists,

n b
n}}ﬂo; f () Axy —/a f(x)dx.

The amazing fact is that despite the variety in the Riemann sums X f (cx) Ax;
as the partitions change and the arbitrary choice of ¢;’s in the intervals of each
new partition, the sums always have the same limit as [|P| — O as long as f is
continuous. The need to establish the existence of this limit became clear as the
nineteenth century progressed, and it was finally established when Riemann proved
the following theorem in 1854. You can find a current version of Riemann’s proof
in most advanced calculus books.

Theorem 1
The Existence of Definite Integrals

All continuous functions are integrable. That is, if a function f is continuous
on an interval [a, b], then its definite integral over [a, b] exists.

Why should we expect such a theorem to hold? Imagine a typical partition
P of the interval [a, b]. The function f, being continuous, has a minimum value
min; (“min kay”) and a maximum value max, (“max kay”) on each subinterval.
The products min; Ax; associated with the minimum values (Fig. 4.12a) add up to
what we call the lower sum for f on P:

L = min; Ax; + min,Ax, + - - - + min, Ax,.

The products max,; Ax; obtained from the maximum values (Fig. 4.12b) add up to
the upper sum for f on P:

U = max;Ax; + max,Ax; + - - - + max, Ax,.

The difference U — L between the upper and lower sums is the sum of the areas of
the shaded blocks in Fig. 4.12(c). As || P|| — 0, the blocks in Fig. 4.12(c) become
more numerous, narrower, and shorter. As Fig. 4.12(d) suggests, we can make the
nonnegative number U — L less than any prescribed positive € by taking || P|| close
enough to zero. In other words,

lim (U —L) =0, @)
[[P|—0

and, as shown in more advanced texts,

lim L = lim U. (5)

IPlI—0 [I1PI—0
The fact that Egs. (4) and (5) hold for any continuous function is a consequence
of a special property, called uniform continuity, that continuous functions have on
closed intervals. This property guarantees that as || P|| — O the blocks that make
up the difference between U and L in Fig. 4.12(c) become less tall as they become
less wide and that we can make them all as short as we please by making them
narrow enough. Passing over the € - § arguments associated with uniform continuity
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y y
7 — X
0] xo=al x X, x,7, x,=b 0| xg=a}l x X, X, x, 7y x,=b
e’ @ ®)
n n
The lower sum L = Y, min, Ax, is less than ... ... the upper sum U = 3, max, Ax,.
k=1 k=1
Yy Yy
X
0| xp=a X, =b 0f xo=a x,=b
N \SE

T
1L
| |
(©)

The difference U — L can be made very small:
less than € - (b — a).

4.12 The difference between upper and
lower sums.

| b-a |
C)

We can make U — L smaller than any given positive €
by making Il Pll small enough.

keeps our derivation of Eq. (5) from being a proof. But the argument is right in
spirit and gives a faithful portrait of the proof.

Assuming that Eq. (5) holds for any continuous function f on [a, b], suppose
we choose a point ¢, from each subinterval [x;_;, x;,] of P and form the Riemann
sum %;_, f(cx) Ax. Then min, < f(cx) < max, for each k, so

L<) fle)hn<U.

k=1

The Riemann sum for f is sandwiched between L and U. By a modified version of
the Sandwich Theorem of Section 1.2, the limit of the Riemann sums as || P|| — O
exists and equals the common limit of U and L:

n

lim L = lim ) Axy = lim U.
IPll—0 ||1’||—>0k:1 f( 2 k IPl—0

Pause for a moment to see how remarkable this conclusion really is. It says that
no matter how we choose the points ¢, to form the Riemann sums as || P| — O,
the limit is always the same. We can take every f(c) to be the minimum value of
f on [x;_1, x¢]. The limit is the same. We can take every f(c;) to be the maximum
value of f on [x;_1, x¢]. The limit is the same. We can choose every ¢, at random.

The limit is the same.

Although we stated the integral existence theorem specifically for continuous
functions, many discontinuous functions are integrable as well. We treat the inte-
gration of bounded piecewise continuous functions in Additional Exercises 11-18
at the end of this chapter. We explore the integration of unbounded functions in

Section 7.6.
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Functions with No Riemann Integral

While some discontinuous functions are integrable, others are not. The function
1

X) =
f @) { .

when x is rational
when x is irrational,

for example, has no Riemann integral over [0, 1]. For any partition P of [0, 1], the
upper and lower sums are

Every subinterval

U= ZmaxkAxk = Z 1.-Ax; = Z Axy =1, contains a rational

number
Every subinterval
L= E ming Ax, = E 0.-Ax,=0. contains an irrational

number.

For the integral of f to exist over [0, 1], U and L would have to have the same
limit as || P]| — 0. But they do not:

lim L =0 while lim U =1.
I1P1—0 IP|—0

Therefore, f has no integral on [0, 1]. No constant multiple kf has an integral
either, unless k is zero.

Terminology
There is a fair amount of terminology associated with the symbol fa b f(x)dx.

The function is the integrand.

Upper limit of integration
\ b / x is the variable of integration.
Integral sign \ f ( ) d /
a
Lower limit of integration /k J

v

Integral of ffrom a to b When you find the value of the integral,

you have evaluated the integral.

The value of the definite integral of a function over any particular interval
depends on the function and not on the letter we choose to represent its independent
variable. If we decide to use ¢ or u instead of x, we simply write the integral as

b b b
/f(t)dt or /f(u)du instead of /f(x)dx.

No matter how we write the integral, it is still the same number, defined as a
limit of Riemann sums. Since it does not matter what letter we use, the variable of
integration is called a dummy variable.

EXAMPLE 6 Express the limit of Riemann sums

n
lim 3¢? —2ck+5) A
”P”_)O;( Ck Ck +35) Axg

as an integral if P denotes a partition of the interval [—1, 3].



T 160 P v=160 — 9.8¢
-n-’_.
"*-ﬁ..._h_p, 130.6)
120F|
base 80~
base
40+
0 1 2 3
| height |

Region is a trapezoid with height = 3
base (top) = 130.6
base (bottom) = 160.

4.13 Rectangles for a Riemann sum of
the velocity function f(t) = 160 — 9.8t
over the interval [0, 3].
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Solution The function being evaluated at ¢; in each term of the sum is f(x) =
3x% — 2x + 5. The interval being partitioned is [—1, 3]. The limit is therefore the
integral of f from —1 to 3:

n 3
li 3¢,2 =2 5A=/32—2 5)dx.
||P1||I£1>0k2=1:( Ck ¢k +35) Axi —1(x x +35)dx

Constant Functions

Theorem 1 says nothing about how to calculate definite integrals. Except for a few
special cases, that takes another theorem (Section 4.7). Among the exceptions are
constant functions. Suppose that f has the constant value f(x) = c over [a, b].
Then, no matter how the ¢;’s are chosen,

n

Xn:f(ck) Ax; = Zc < Axg
k=1

k=1

f(c) always equals c.

n
=C- Z Axy Constant Multiple Rule for Sums
k=1
=cb—a).

> Ax; = length of interval [a.b] =b —a
=1

Since the sums all have the value c(b — a), their limit, the integral, does too.

If f(x) has the constant value ¢ on [a, ], then

b b
ff(x)dx:/ cdx =c(b—a).

EXAMPLE 7

4
a) / 3dx =34 — (=1)) = 3)5) = 15
-1

4
b) / (=3)dx =-34 - (-1)) = (-3)(5) = —15
-1

The Area Under the Graph of a Nonnegative Function

The sums we used to estimate the height of the projectile in Section 4.4, Example
2, were Riemann sums for the projectile’s velocity function

v = f(t) = 160 — 9.8¢

on the interval [0, 3]. We can see from Fig. 4.13 how the associated rectangles

approximate the trapezoid between the ¢-axis and the curve v = 160 — 9.8¢. As the

norm of the partition goes to zero, the rectangles fit the trapezoid with increasing

accuracy and the sum of the areas they enclose approaches the trapezoid’s area,

which is

b+ b, 3 160 + 130.6
2 7T 2

Trapezoid area = & - =435.9.




318 Chapter 4: Integration

b —a—

4.14 The region in Example 8.

This confirms our suspicion that the sums we were constructing in Section 4.4,
Example 2, approached a limit of 435.9. Since the limit of these sums is also the
integral of f from O to 3, we now know the value of the integral as well:

3
/ (160 — 9.8¢) dt = trapezoid area = 435.9.
0

We can exploit the connection between integrals and area in two ways. When
we know a formula for the area of the region between the x-axis and the graph of a
continuous nonnegative function y = f(x), we can use it to evaluate the function’s
integral. When we do not know the region’s area, we can use the function’s integral
to define and calculate the area.

Definition
Let f(x) > 0 be continuous on [a, b]. The area of the region between the
graph of f and the x-axis is

b
A:/ f(x)dx.

Whenever we make a new definition, as we have here, consistency becomes an
issue. Does the definition that we have just developed for nonstandard shapes give
correct results for standard shapes? The answer is yes, but the proof is complicated
and we will not go into it.

EXAMPLE 8 Using an area to evaluate a definite integral

Evaluate

b
fxdx, 0<a<b.

Solution We sketch the region under the curve y = x,a < x < b (Fig. 4.14), and
see that it is a trapezoid with height (b — a) and bases a and b. The value of the
integral is the area of this trapezoid:

b 2 2
b b
/xalx=(b—a).“+ -2 _Z
. 2 2 2
Thus,
V5 52 1)2
/ P A0 L LV
1 2 2
and so on.
Notice that x? /2 is an antiderivative of x, further evidence of a connection
between antiderivatives and summation. 4

EXAMPLE 9  Using a definite integral to find an area

2

Find the area of the region between the parabola y = x* and the x-axis on the

interval [0, b].



y
w2l (b, 6%
y=x
x
X=0 x Xy X3 Xp_1 X, =D
[« Ax>l« Ax>l«Ax->]| [« Ax->|

4.15 The rectangles of the Riemann sums
in Example 9.

Notice that x3/3 is an antiderivative of xZ.
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Solution We evaluate the integral for the area as a limit of Riemann sums.
We sketch the region (a nonstandard shape) (Fig. 4.15) and partition [0, b] into
n subintervals of length Ax = (b —0)/n = b/n. The points of the partition are

xX0=0, x;=Ax, x=2Ax, -+, x,o1=m—1)Ax, x,=nAx=0b.

We are free to choose the ¢;’s any way we please. We choose each ¢, to be the
right-hand endpoint of its subinterval, a choice that leads to manageable arithmetic.
Thus, ¢; = x1, c; = x,, and so on. The rectangles defined by these choices have
areas

flc) Ax = f(Ax) Ax = (Ax)? Ax = (1%)(Ax)?

f(c) Ax = f(2Ax) Ax = 2Ax)* Ax = (2°)(Ax)?

f(c)) Ax = f(nAx) Ax = (nAx)? Ax = (n*)(Ax)>.

The sum of these areas is

Sp = fla) Ax
k=1

n
=Y K(Ax)
k=1
= (AX)3 Z k? (Ax)? is a constant.
k=1

l_)i nin+1)2n+1)
n 6

59_3 n+1D2n+1)
6 n?

Ax = b/n, and Eq. (2)

b 2n*+3n+1

6 n?
b 3 1

=— . (2+2+=). 6
. (+n+n2> ©)

We can now use the definition of definite integral

I1PII—0

b n
/ f(x)dx = lim Zf(ck) Ax
a k=1

to find the area under the parabola from x =0to x = b as

b In this example,
/ x?dx = lim Sy [[P]l = 0O is equivalent
0 n—00 to n — oo.
P 301
=lim —. (24 -+ — Eq. (6)
n—»oo 6 n n2

b? b
3 2+0+0) 3
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With different values of b, we get

1
/ x2dx =
0

and so on.

— == —— = 1.125,
3 3

JER| 15 1.5  3.375
33 / Pdr= S20 =
0

Exercises 4.5

Sigma Notation

Write the sums in Exercises 1-6 without sigma notation. Then evaluate

them.
2 6k 3 k—1
. Y — 2 —
,;‘2 k+1 gl k
4 5
3. Y coskm 4. ) sinkm
k=1 k=1
3 T 4
5. Y (=1)¥**'sin T 6. > (—=D*coskr
k=1 k=1

10.

. Which of the following express 1 4+ 2 + 4 4+ 8 + 16 4+ 32 in sigma

notation?
6 5 4
a) Yy 2¢! by Y 2% ¢ Y 2k
k=1 k=0 k=—1
. Which of the following express | —2 +4 — 8 + 16 — 32 in sigma
notation?
6 5
a) Y (-2 b) Y (~Dt2*
k=1 k=0

C) i (_1)k+1 2k+2

k=-2

. Which formula is not equivalent to the other two?

4 (=Dt 2 (=1 L (=D*
b
DD ) LT AT

Which formula is not equivalent to the other two?

a) i(k - 1)? b) 23: (k+1)2 c) i]: k?
k=1

k=—1 =-3

Express the sums in Exercises 11-16 in sigma notation. The form
of your answer will depend on your choice of the lower limit of

summation.
11. 14+24+3+44+5+6 12. 1+4+9+16
1 1 1 1
13. -+ -+-+ — 14. 2+ 4 1
2+4+8+16 +44+6+84+10
1 1 1 1 1 2 3 4 5
15,1 — -+ - — -+ - 16, ——+-——-+ - — -
2+3 4+5 5+5 5+5 5

Values of Finite Sums

17. Suppose that Y a, = —5 and Y_ b, = 6. Find the values of
k=1 k=1

by

a) Y 3a b) I3
k=1 1

M=

O (b
k k=1

3

O S@-b) O b2
k=1 k=1

n

18. Suppose that Y_ a, =0 and ) b, = 1. Find the values of
k=1 k=1

n n
a) > 8 b) ) 2500
k=1

k=1

c)ﬁm+n d)?@—n
=1 =1

Use the algebra rules on p. 310 and the formulas in Egs. (1)—(3) to
evaluate the sums in Exercises 19-28.

10 10 10
19.2) Yk b) Yk o Yk
k=1 k=1 k=1
13 13 13
20.a) Yk b) YK 0 YK
k=1 k=1 k=1
7 5
21, 3 (=2k) 2
k=1 k=1 1
6 6
23. Y. (3-kY) 24, Y (k2 -5)
k=1 k=1
5 7
25. Y kGk +5) 26. 3 k(2k + 1)
k=1 k=1

5 k3 5 3 7 2 k3
2. Y et (Zk) 28. <k; k) -X7

Rectangles for Riemann Sums

In Exercises 29-32, graph each function f(x) over the given interval.
Partition the interval into four subintervals of equal length. Then
add to your sketch the rectangles associated with the Riemann sum
¢, fck) Axy, given that ¢ is the (a) left-hand endpoint, (b) right-
hand endpoint, (c) midpoint of the kth subinterval. (Make a separate
sketch for each set of rectangles.)



29, f(x)=x>-1, [0,2]

30. f(x)=—-x2, [0,1]

31. f(x)=sinx, [-m, 7]

32, f(x)=sinx+1, [-m, n]

33. Find the norm of the partition P = {0, 1.2, 1.5, 2.3, 2.6, 3}.
34. Find the norm of the partition P = {—2, —1.6, —0.5,0, 0.8, 1}.

Expressing Limits as Integrals

Express the limits in Exercises 35-42 as definite integrals.

35. ”},i"mOZ ck?Axy, where P is a partition of [0, 2]

36. "ll’iumoz 2¢3Ax;, where P is a partition of [—1, 0]
0k=1

37. ||ll’ii|m0 3" (e — 3ci) Axy, where P is a partition of [—7, 5]
V%=1

n (1
38. lim <—) Ax;, where P is a partition of [1, 4]
I1PI=0, 27 \ Ck

n

39.

lim ) Axy, where P is a partition of [2, 3]
1PI-0;=1 1 — ¢

40. lim " /4 — 2 Axy, where P is a partition of [0, 1]

I1PI=0
41. ||’l7i”mo 3" (sec ¢) Ax;, where P is a partition of [—m/4, 0]
V=1

n

42, ||ll’i\|m0 Y (tan c) Ax;, where P is a partition of [0, 7/4]
-0

Constant Functions

Evaluate the integrals in Exercises 43-48.

1 7
43. f Sdx 44. / (—20) dx
-2 3
3 -1 T
45. / (—160) dt 46. / —db
0 —4 2

34 V18
47. / 0.5ds 48. / V2dr
- V2

2.1

Using Area to Evaluate Integrals

In Exercises 49-56, graph the integrands and use areas to evaluate
the integrals.

4

49./ X 13)d
vz(z )x
3

51./ J9—x2dx
-3

: 1
53. / |x|dx
-2

3/2
50./ (—2x +4)dx
12

0
52. f 16 — x2dx
-4

|
54, / - x| dx
-1
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56. /l(1+\/1—x2) dx

1
55. f @ — |x]) dx
-1

Use areas to evaluate the integrals in Exercises 57— 60.

b b
57.fxdx, b>0 58./4xdx, b>0
0 0
b

b
59./2sds, O<a<b 60./ 3tdt, O<a<b

Evaluations

Use the results of Examples 8 and 9 to evaluate the integrals in
Exercises 61-72.

V2 2.5 27
61.[ xdx 62./ xdx 63./ 6do
1 0.5 b4
52 ¥ 0.3
64. / rdr 65. / x%dx 66. f s2ds
V2 0 0
1/2 /2 2a
67. f 1 dt 68. 6% do 69. / xdx
0 0 a
V3a /7 3b
70. f xdx 71. / x2dx 72. f x%dx
a 0 0

Finding Area

In Exercises 73-76, use a definite integral to find the area of the
region between the given curve and the x-axis on the interval [0, b],
as in Example 9.

73. y =3x2 2

74. y=mx

75. y = 2x 76.y=%+1

Theory and Examples

77. What values of a and b maximize the value of
b
/ (x = x¥dx?

(Hint: Where is the integrand positive?)

78. What values of a and b minimize the value of
b
/ x* = 2x%) dx?

79. Upper and lower sums for increasing functions

a) Suppose the graph of a continuous function f (x) rises stead-
ily as x moves from left to right across an interval [a, b].
Let P be a partition of [a, b] into n subintervals of length
Ax = (b —a)/n. Show by referring to the accompanying
figure that the difference between the upper and lower sums
for f on this partition can be represented graphically as the
area of a rectangle R whose dimensions are [ f(b) — f(a)]
by Ax. (Hint: The difference U — L is the sum of areas



322 Chapter 4: Integration

of rectangles whose diagonals QgQ,, 0102, ..., @u-10,
lie along the curve. There is no overlapping when these
rectangles are shifted horizontally onto R.)

b) Suppose that instead of being equal, the lengths Ax; of the
subintervals of the partition of [a, b] vary in size. Show that

U-L < If(b) - f(a)IAxmaXy

where Axpa is the norm of P, and hence that limp o
(U—-L)=0.

Olxg=a x; x,

80. Upper and lower sums for decreasing functions (Continua-
tion of Exercise 79)

a) Draw a figure like the one in Exercise 79 for a continuous
function f(x) whose values decrease steadily as x moves
from left to right across the interval [a, b]. Let P be a
partition of [a, b] into subintervals of equal length. Find an
expression for U — L that is analogous to the one you found
for U — L in Exercise 79(a).

b) Suppose that instead of being equal, the lengths Ax; of the
subintervals of P vary in size. Show that the inequality

U-L< |f(b) - f(a)|Axmax

of Exercise 79(b) still holds and hence that limyp -0
U -L)y=0.

81. Evaluate fob x?dx,b > 0, by y
carrying out the calculations
of Example 9 with inscribed
rectangles, as shown here, —
instead of circumscribed
rectangles.

82. Let

1fr 2 3 n—1
Se==|-+=+>+-+ :
nin n n n

Calculate lim,_. S, by showing that S, is an approximating
sum of the integral
|
/ xdx,
0

whose value we know from Example 8. (Hint: Partition [0, 1]
into n intervals of equal length and write out the approximating
sum for inscribed rectangles.)
83. Let
12 22

(n—1y
Si= sttt

To calculate lim,_,o, S,, show that

s a6 () ()]

and interpret S, as an approximating sum of the integral

i
f x*dx,
0

whose value we know from Example 9. (Hint: Partition [0, 1]
into n intervals of equal length and write out the approximating
sum for inscribed rectangles.)

84. Use the formula
sin & + sin 2h +sin 3k + --- +sin mh
__cos (h/2) —cos ((m + (1/2))h)
- 2sin (h/2)

to find the area under the curve y = sin x fromx = Otox = 7 /2,
in two steps:

a) Partition the interval [0, 7/2] into n subintervals of equal
length and calculate the corresponding upper sum U; then
b) Find the limit of U as n — oo and Ax = (b —a)/n — 0.

& CAS Explorations and Projects

If your CAS can draw rectangles associated with Riemann sums, use it
to draw rectangles associated with Riemann sums that converge to the
integrals in Exercises 85-90. Use n = 4, 10, 20, and 50 subintervals
of equal length in each case.

1
1
8s. 1 —x)dx ==
fo( x)dx 2

! 4
86. f 2+ Ddx = -
0 3

87. f cos xdx =0

n

/4
88. / sec’xdx =1
0



89

90.

91.

92.

93.

1

/ x|dx =1
-1
2

1

f — dx (The integral’s value is In 2.)

1 X

a)  Write the sum S, in Exercise 82 in sigma notation and use
your CAS to find lim,— o Sn-

b) Do the same for the sum S, in Exercise 83.

Write the sum sin A& + sin 24 + - - - + sin mh in Exercise 84 in
sigma notation and use your CAS to find lim, e S,-

(Continuation of Section 4.4, Example 3.) In sigma notation, the
left-endpoint sum in Example 3, Section 4.4, is

4
Sa=) 4[9— (=24 *k—1)].
k=1

a) Use sigma notation to write the analogous left-endpoint
sums Sg for eight subintervals of length 4/8 and S,s for
25 subintervals of length 4/25.
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9.

b) Use sigma notation to write the left-endpoint sum S, for n
subintervals of length 4/n.
¢) Find lim,_, S,. How does this limit appear to be related

to the volume of the solid?

(Continuation of Section 4.4 Example 4.) In sigma notation, the
left-endpoint sum in Example 4, Section 4.4, is

8

Ss=)_ w[16— (—4+ (k—1)].

k=1

a) Use sigma notation to write the analogous left-endpoint
sums S;¢ for 16 subintervals of length 1/2 and Sg for 80
subintervals of length 1/10.

b) Use sigma notation to write the left-endpoint sum S, for n
subintervals of length 8/n.

¢) Find lim,_ S,. How does this limit appear to be related

to the volume of the sphere?

Properties, Area, and the Mean Value Theorem

This section describes working rules for integrals, examines the relationship between
the integral of an arbitrary continuous function and area, and takes a fresh look at
average value.

Properties of Definite Integrals

We often want to add and subtract definite integrals, multiply their integrands by
constants, and compare them with other definite integrals. We do this with the
rules in Table 4.5 (on the following page). All the rules except the first two follow
from the way integrals are defined with Riemann sums. You might think that this
would make them relatively easy to prove. After all, we might argue, sums have
these properties so their limits should have them, too. But when we get down to
the details we find that most of the proofs require complicated €-§ arguments with
norms of subdivisions and are not easy at all. We omit all but two of the proofs.
The remaining proofs can be found in more advanced texts.

Notice that Rule 1 is a definition. We want every integral over an interval of
zero length to be zero. Rule 1 extends the definition of definite integral to allow for
the case a = b. Rule 2, also a definition, extends the definition of definite integral
to allow for the case b < a. Rules 3 and 4 are like the analogous rules for limits and
indefinite integrals. Once we know the integrals of two functions, we automatically
know the integrals of all constant multiples of these functions and their sums and
differences. We can also use Rules 3 and 4 repeatedly to evaluate integrals of
arbitrary finite linear combinations of integrable functions term by term. For any
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115 Additivity for definite integrals:

/abf(x)dx+/bcf(x)dx= f:f(x)dx

/bc £(x) dx = /acf(x)dx - /ab £(x) dix.

Table 4.5 Rules for definite integrals

1. Zero: / fx)dx =0 (A definition)
a b

2. Order of Integration: f fx)dx =— / f(x)dx (Also a definition)
b

3. Constant Multiples: / kf(x)dx =k / fx)dx (Any number k)

/ —f(x)dx =~ / f(x)dx (k=-1)
b
4. Sums and Differences: / (f(x) £ gx))dx =f fx) dx:l:/ g(x)dx
b c c
5. Additivity: / f(x)dx+/ f(x)dx:/ fx)dx
a b a

6. Max-Min Inequality: If max f and min f are the maximum and minimum values
of f on [a, b], then

b
minf « (b —a) gf fx)dx <maxf + (b —a).
b b
7. Domination: f(x)>gx) on [a,b] = / fx)dx > f g(x)dx

b
fx)>=0 on [a,b] = ff(x)dx_>_0

(Special case)

constants cy, ..., ¢,, regardless of sign, and functions fi(x),..., f,(x), integrable
on [a, b],

b b b
/(c.fl(x)+~-+cnfn<x>>dx=c]/ fl(x)dx+---+cn/ o) dx.

The proof, omitted, comes from mathematical induction.
Figure 4.16 illustrates Rule 5 with a positive function, but the rule applies to
any integrable function.

Proof of Rule 3 Rule 3 says that the integral of k times a function is k times the
integral of the function. This is true because

b n
/kf(x)dx: lim Zkf(c,-)Axi

IIPl|—0

= lim k Z fe)Ax;

||1P||—=0

b
=k lim Zf(c,-)Ax,- :k/ f(x)dx.

IPII~0 =
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Proof of Rule 6 Rule 6 says that the integral of f over [a, b] is never smaller
than the minimum value of f times the length of the interval and never larger than
the maximum value of f times the length of the interval. The reason is that for
every partition of [a, b] and for every choice of the points ¢,

k=1

min f + (b—a) =min f - Y Ax, Y Ay =b-a
k=1
=me f- Axy
k=1

< Zf(ck) Axy min f < f(c)
k=1

IA

Zmax [ Ax, fla) < max f
k=1

=max f - Z Axy
k=1

=max f - (b—a).

In short, all Riemann sums for f on [a, b] satisfy the inequality
min f-(b—a) <Y f(a)Axy <max f - (b—a).
k=1

Hence their limit, the integral, does too. a

EXAMPLE 1 Suppose that
1 4 1
/ fx)dx =5, / fx)dx = =2, / h(x)dx =1.

1

Then
1 4
1. f fx)dx = —/ fx)dx=—-(-2)=2 Rule 2
4 1
1 1 1
2. / [2f(x)+3h(x)]dx:2/ f(x)dx+3/ h(x)dx
-1 -1 -1
=205)+3(7) =31 Rules 3 and 4

4 1 4
3. / f(x)dx:f f(x)dx—l—f fxX)dx=5+(-2)=3 Rule 5 0
-1 -1 1

In Section 4.5 we learned to evaluate three general integrals:

b
/ cdx =cb—a) (Any constant c) (1)
b 2 2
/axdxz%—% ©<a<b) @
b b3
/ x2dx = — (b > 0). (3)
0 3

The rules in Table 4.5 enable us to build on these results.
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2 /42
EXAMPLE 2 Evaluate / (Z - Tt + 5) dt.
0

Solution

(2 L[ ’ ’ Rules 3
—=Tt+5)dt = - t°dt =7 | tdt 5dt ues -
/O\ (4 * ) 4/(; /(; +/0 and 4

1@ () (0)? .

=1 (T) —7 (T - —2—) +52-0) Egs. (1)-(3)
2 0

:5—14—{—10:——— Q

3
EXAMPLE 3 Evaluate / x%dx.
2

Solution We cannot apply Eq. (3) directly because the lower limit of integration
is different from 0. We can, however, use the Additivity Rule to express f; x¥dx
as a difference of two integrals that can be evaluated with Eq. (3):

2 3 3
f xzdx+/ xzdx=/ x%dx Rule 5
0 2 0

3 3 2 Solve for
/ x*dx = f x*dx — / x*dx 7 x2dx.
2 0 0 :

_ (3_)i _ @i Eq. (3) now
3 3 applies.
__8_1
3 3 3
In Section 4.7, we will see how to evaluate f; x2dx in a more direct way. 4

The Max-Min Inequality for definite integrals (Rule 6) says that min f « (b —a) is
a lower bound for the value of fab f(x)dx and that max f - (b — a) is an upper
bound.

EXAMPLE 4 Show that the value of
[ ez
cannot possibly be 2.
Solution The maximum value of /T + cos x on [0, 1] is /1 + 1 = v/2, so
[ TR < s T T -0 RS
<V2.1=+2

The integral cannot exceed /2, so it cannot possibly equal 2. 4

EXAMPLE 5 Use the inequality cos x > (1 — x2/2), which holds for all x, to
find a lower bound for the value of fol cos xdx.



4.17 (a) The Riemann sums are algebraic
sums of areas and so is the integral to
which they converge. (b) The value of the
integral of f from a to b is

fa ’ o) ok = / " fx) dx + / Fx) dx

b
+f f(X)dX=A1 — A, +As.

-5+

4.18 Part of the region in Example 6 lies
below the x-axis.
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Solution
1 1 x2
f cosxdxzf (1——) dx Rule 7
0 0 2
1 1 1
z/ ldx——/ x*dx  Rules3and 4
0 2 Jo
1 (1) 5
>1.(1-0)— <. — =-~0.83.
>1-( ) > 6
The value of the integral is at least 5/6. a

Integrals and Total Area

If an integrable function y = f(x) has both positive and negative values on an
interval [a, b], then the Riemann sums for f on [a, b] add the areas of the rectangles
that lie above the x-axis to the negatives of the areas of the rectangles that lie below
it (Fig. 4.17). The resulting cancellation reduces the sums, so their limiting value
is a number whose magnitude is less than the total area between the curve and the
x-axis. The value of the integral is the area above the axis minus the area below
the axis.
This means that we must take special care in finding areas by integration.

Ifflc)) > O,f(ck)Axk is an area... jxlf(x) dx=A4A, fbf .
a (x)dx=A,

*2

[ dx=-a,

|

...butif f(c,) <0, f(c,)Ax, is
the negative of an area.

(a) ()

EXAMPLE 6 Find the area of the region between the curve y =4 — x?,
0 < x < 3, and the x-axis.

Solution The x-intercept of the curve partitions [0, 3] into subintervals on which
f(x) =4 — x? has the same sign (Fig. 4.18). To find the area of the region between
the graph of f and the x-axis, we integrate f over each subinterval and add the
absolute values of the results.

Integral over [0, 2]:

2 2 2
/ (4—x2)dx=/ 4a’x—/ x*dx
0 0 0

(2)3 Eqgs. (1)
=42-0)— 3 and (3)
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How to Find the Area of the
Region Between a Curve y = f(x),
a < x < b, and the x-axis

1. Partition [a, b] with the zeros of f.

2. Integrate f over each subinterval.

3. Add the absolute values of the
integrals.

y=fx)
(€ £())

4.19 A sample of values of a function on
an interval [a, b].

Integral over [2, 3]:

3 3 3
f (4—x2)dx=f 4dx—/ x2dx
2 2 2

3 @\
— _ N B q. (1) and
4G -2 ( 3 3 Example 3
_ B _ 7
3 3
The recion” A 16, | 7| _2
re n's area. rea = — - = = -
e region’s are 3 3 3 0

The Average Value of an Arbitrary Continuous
Function

In Section 4.4, Example 5, we discussed the average value of a nonnegative con-
tinuous function. We are now ready to define average value without requiring f
to be nonnegative, and to show that every continuous function assumes its average
value at least once.

We start once again with the idea from arithmetic that the average of n numbers
is the sum of the numbers divided by n. For a continuous function f on a closed
interval [a, b] there may be infinitely many values to consider, but we can sample
them in an orderly way. We partition [a, b] into n subintervals of equal length (the
length is Ax = (b —a)/n) and evaluate f at a point ¢, in each subinterval (Fig.
4.19). The average of the n sampled values is

fen+fle)+--+flew _ 1 ¥
" = ;f(ck)

Ax 1 _
C3fle) ax- bzl
k=1 n

The sum in sigma
notation

b—a

1 n
=——- Y fla) Ax
b—a ,Z:l: k

R ——
a Riemann sum for f on [a, b]

Thus, the average of the sampled values is always 1/(b — a) times a Riemann sum
for f on [a, b]. As we increase the size of the sample and let the norm of the

partition approach zero, the average must approach (1/(b — a)) fa b f(x)dx. We
are led by this remarkable fact to the following definition.

Definition
If f is integrable on [a, b], its average (mean) value on [a, b] is

1 b
w () =y / £ dx.

EXAMPLE 7 Find the average value of f(x) =4 — x> on [0, 3]. Does f
actually take on this value at some point in the given domain?



y=4-x%
Average value of y

/ on [0, 3] is assumed
11— atx = \/§

L 1\ |

o 3\ 3

X

-5+

4.20 The average value of f(x) =4 — x?
on [0, 3] occurs at x = +/3 (Example 7).

y=fx

]

|

|

|

|

I X
0 a c b

4.21 Theorem 2 for a positive function:
At some point c in [a, b],

b
F(O) - (b—a) = f £(x) dix.

y =f(x)
1 o—o
% - Average value 1/2
not assumed
I | x
0] 1 2

4.22 A discontinuous function need not
assume its average value.
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Solution

1 b
av(f) = mf f(x)dx

1 3 1 3 3
—/(4—x2)dx=— /4dx—/ x%dx
3-0Jo 3 \o 0

1 37 1 B
=3 (4(3—0)——3-)_5(12—9)_1

The average value of f(x) =4 — x? over the interval [0, 3] is 1. The function
assumes this value when 4 — x2 = 1 or x = ++/3. Since one of these points, x =
«/5, lies in [0, 3], the function does assume its average value in the given domain
(Fig. 4.20). |

The Mean Value Theorem for Definite Integrals

The statement that a continuous function on a closed interval assumes its average
value at least once in the interval is known as the Mean Value Theorem for Definite
Integrals.

Theorem 2
The Mean Value Theorem for Definite Integrals
If f is continuous on [a, b], then at some point ¢ in [a, b],

b
O = / F()dx.

(Fig. 4.21).

In Example 7, we found a point where f assumed its average value by setting
f(x) equal to the calculated average value and solving for x. But this does not
prove that such a point will always exist. It proves only that it existed in Example
7. To prove Theorem 2, we need a more general argument.

Proof of Theorem 2 If we divide both sides of the Max-Min Inequality (Rule 6)
by (b — a), we obtain

b
min f < ;/ f(x)dx < max f.
b—al,

Since f is continuous, the Intermediate Value Theorem for Continuous Functions
(Section 1.5) says that f must assume every value between min f and max f. It
must therefore assume the value (1/(b — a)) fa b f(x)dx at some point c in [a, b].

a

The continuity of f is important here. A discontinuous function can step over
its average value (Fig. 4.22).
What else can we learn from Theorem 2?7 Here is an example.
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EXAMPLE 8

Show that if f is continuous on [a, b], a # b, and if

b
/ f(x)dx =0,

then f(x) = 0 at least once in [a, b].

Solution The average value of f on [a, b] is

1

1 b
av(f) = m/ fx)dx =——-0=0.

b—a

By Theorem 2, f assumes this value at some point ¢ in [a, b].

Exercises 4.6

Using Properties and Known Values to Find Other
Integrals

1. Suppose that f and g are continuous and that
2 5 5
/ fx)dx = -4, f fx)dx =6, f g(x)dx = 8.
1 1 1

Use the rules in Table 4.5 to find

2 1
a) f g () dx b) f g(x) dx
2 5
2 5
) /Bf(x)dx d) ff(x)dx
1 2
5 5
0 / [F(x) — g(0)]dx f) f [4£ () — ()] dx
1 1

2. Suppose that f and h are continuous and that
9 9 9
f fx)ydx =—1, / fx)dx =5, f h(x)dx =4.
1 7 7
Use the rules in Table 4.5 to find

9 9
a) f -2f(x)dx b) f [f(x) +h(x)]dx
1 7
9 1
0 f RF () —3h@ldx  d) f o) dax
7 9

7 7
e / fx)dx f) / [A(x) — f(x)]dx
1 9
3. Suppose that flz f(x)dx = 5. Find
2 2
a) / f () du b) / V3f(@@)dz
I I

1 2
0 f Fydr ) / [ f(n)]dx
2 1

4. Suppose that fi g(t)dr = /2. Find

-3 0
2) / g(tydr b) / o) du
0 -3
0 0
g(r)
- d d —d
) f_3[ g(x)]dx ) T r

5. Suppose that f is continuous and that f03 f(z)dz =3 and
Jy f(x)dz="1.Find

4 3
a) / F2)dz b) / Faydr
3 4

6. Suppose that 4 is continuous and that f_ll h(r)dr =0 and
[> h(r)dr = 6. Find

3 1
a) / h(r)dr b) —/ h(u)du
1 3
Evaluate the integrals in Exercises 7-18.
1 -2
7. f 7dx 8. f V2dx
3 0
2 5 X
9. f Sxdx 10. / —dx
0 3 8
2 V2
11. / 21 —3)dt 12. / (:—ﬁ) dt
0 0
1 z 0
13. fz (1 ¥ 2) dz 14. /3 2z - 3)dz
2 1
15. / 3u’du 16. / 24 u* du
1 1/2
2 0
17./ (B3x% 4+ x — 5)dx 18. f (3x%>+x — 5)dx
0 1



Area
In Exercises 19-22, find the total shaded area.
19. 20.

y y

21. 22.

225+ y=x*-2x

4

In Exercises 23-26, graph the function over the given interval. Then
(a) integrate the function over the interval and (b) find the area of the
region between the graph and the x-axis.

23, y=x>—-6x+8, [0,3]

24, y=—x*+5x—4, [0,2]
25. y=2x —x%, [0, 3]
26. y = x> —4x, [0, 5]

Average Value

In Exercises 27-34, graph the function and find its average value over
the given interval. At what point or points in the given interval does
the function assume its average value?

27. fx)=x2=1 on [O,ﬁ]

28. f(x):—)—;i on [0,3]

29. f(x)=-3x>=1 on [0,1]

30. f(x)=3x2-3 on [0,1]

3. f)=@ -1 on [0,3]

32. f)=t>~t on [-2,1]

33 g(x)=Ix|—1 on (a)[—1, 1], (b)[1,3], and (c) [-1, 3]
34. h(x) = —|x| on (a)[—1,0], (b)[0,1], and (c) [—1, 1]
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In Exercises 35-38, find the average value of the function over the
given interval from the graph of f (without integrating).

x+4, —-4<x=<-1

[-4.2]

35. f(x) = { on

-1l<x<2

—x+2,

36. f()=1-+T—12 on [-1,1]

-1 0 1
37. f(¢) =sint on [0,2r7]
-7
38. f(f)=tan 6 on [—4—,2]

Theory and Examples
39. Use the Max-Min Inequality to find upper and lower bounds for

the value of
L |
——dx.
_/(; I + x? *

40. (Continuation of Exercise 39.) Use the Max-Min Inequality to
find upper and lower bounds for

0.5 1 1 1
[ we [l
o 1+x 0s 1+ x2

Add these to arrive at an improved estimate of

b
/ L
0 1+x2

41. Show that the value of fol sin (x) dx cannot possibly be 2.

42. Show that the value of [; +/x + 8dx lies between 2v/2 ~ 2.8
and 3.

43. Suppose that f is continuous and that flz f(x)dx = 4. Show
that f(x) =4 at least once on [I, 2].

44. Suppose that f and g are continuous on [a, b], a # b, and that
fab (f(x) — g(x))dx = 0. Show that f(x) = g(x) at least once
in [a, b].

45. Integrals of nonnegative functions. Use the Max-Min Inequal-
ity to show that if f is integrable then

b
fx)>0 on [a,b] = /f(x)dsz.
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46. Integrals of nonpositive functions. Show thatif f is integrable

47.

48.

49.

then

b

fx)<0 on [a,b] = / fx)dx <0.
Use the inequality sin x < x, which holds for x > 0, to find an
upper bound for the value of fol sin x dx.

The inequality sec x > 1+ (x2/2) holds on (- /2, 7 /2). Use
it to find a lower bound for the value of fol sec xdx.

If av (f) really is a typical value of the integrable function f(x)
on [a, b], then the number av(f) should have the same integral
over [a, b] that f does. Does it? That is, does

b b
/av(f)dx:/ fx)dx?

Give reasons for your answer.

50.

S1.

52.

It would be nice if average values of integrable functions obeyed
the following rules on an interval [a, b]:

a) av(f+g)=av(f)+av(g)

b) av(kf)=kav(f) (any number k)

¢ av(f)<av(g) if f(x)<g(x) on [a,b]

Do these rules ever hold? Give reasons for your answers.

If you average 30 mi/h on a 150-mi trip and then return over the
same 150 mi at the rate of 50 mi/h, what is your average speed
for the trip? Give reasons for your answer. (Source: David H.
Pleacher, The Mathematics Teacher, Vol. 85, No. 6, pp. 445-446,
September 1992.)

A dam released 1000 m? of water at 10 m>/min and then released
another 1000 m® at 20 m’/min. What was the average rate at
which the water was released? Give reasons for your answer.

The Fundamental Theorem

This section presents the Fundamental Theorem of Integral Calculus. The inde-
pendent discovery by Leibniz and Newton of this astonishing connection between
integration and differentiation started the mathematical developments that fueled
the scientific revolution for the next two hundred years and constitutes what is still
regarded as the most important computational discovery in the history of the world.

The Fundamental Theorem, Part 1

If f(z) is an integrable function, the integral from any fixed number a to another
number x defines a function F whose value at x is

F(x) = f f()dt. M

For example, if f is nonnegative and x lies to the right of a, F(x) is the area
under the graph from a to x. The variable x is the upper limit of integration of
an integral, but F is just like any other real-valued function of a real variable. For
each value of the input x there is a well-defined numerical output, in this case the
integral of f from a to x.

Equation (1) gives an important way to define new functions and to describe
solutions of differential equations (more about this later). The reason for mentioning
Eq. (1) now, however, is the connection it makes between integrals and derivatives.
For if f is any continuous function whatever, then F is a differentiable function of
x whose derivative is f itself. At every value of x,

d d [*
4 P = E/a £y dt = fx).

This idea is so important that it is the first part of the Fundamental Theorem of

Calculus.
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Theorem 3
The Fundamental Theorem of Calculus, Part 1

If f is continuous on [a, b], then F(x) = fax f(t)dt has a derivative at
every point of [a, b] and

dF

d X
E_;zd_X/; ft)dt = f(x), a<x<bh. 03]

This conclusion is beautiful, powerful, deep, and surprising, and Eq. (2) may
well be the most important equation in mathematics. It says that the differen-
tial equation dF/dx = f has a solution for every continuous function f. It says
that every continuous function f is the derivative of some other function, namely
fa * f(t)dt. It says that every continuous function has an antiderivative. And it says
that the processes of integration and differentiation are inverses of one another.

Proof of Theorem 3 We prove Theorem 3 by applying the definition of derivative
directly to the function F(x). This means writing out the difference quotient
F(x+h)— F(x)
h
and showing that its limit as 2 — 0 is the number f(x).

When we replace F(x + h) and F (x) by their defining integrals, the numerator
in Eq. (3) becomes

€)

x+h x
F(x—l-h)—F(x):f f(t)dt—/ f@@)d:s.

The Additivity Rule for integrals (Table 4.5 in Section 4.6) simplifies the right-hand

side to
x+h
/ f@)dt,

so that Eq. (3) becomes
Fx+h)—F(x) 1
h T h
1 x+h
- / f(t)dt. @)

[F(x +h) — F(x)]

h

According to the Mean Value Theorem for Definite Integrals (Theorem 2 in the
preceding section), the value of the last expression in Eq. (4) is one of the values
taken on by f in the interval joining x and x + A. That is, for some number ¢ in
this interval,

1 x+h
E/ f@®dt = f(co). (5

We can therefore find out what happens to (1/4) times the integral as 7 — 0 by
watching what happens to f(c) as h — 0.
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What does happen to f(c) as h — 0? As h — 0, the endpoint x + & approaches
x, pushing ¢ ahead of it like a bead on a wire:

= @

& or FY 4

c x+h x+h c x

So ¢ approaches x, and, since f is continuous at x, f(c) approaches f(x):

,1113(1) flo) = f(x). (6)
Going back to the beginning, then, we have
dF . Fx+h—-F®x)
— = lim Definition of derivative
dx h—0 h
1 x+h
= lim 7 / f(@)dt Eq. (4)
= lim f(c) Eq. (5)
= f(x). Eq. (6)
This concludes the proof. a

If the values of f are positive, the equation
d X
d_/ f@der = f(x)
X a

has a nice geometric interpretation. For then the integral of f from a to x is the
area A(x) of the region between the graph of f and the x-axis from a to x. Imagine
covering this region from left to right by unrolling a carpet of variable width f(t)
(Fig. 4.23). As the carpet rolls past x, the rate at which the floor is being covered

is f(x).

EXAMPLE 1
X
' — cos tdt = cos x Eq. (2) with f(1) = cos 1
dx J_,
4.23 The rate at which the carpet covers d * 1 1 |
the floor at the point x is the width of - S at = > Eq. (2) with f(1) = 5
the carpet’s leading edge as it rolls past x. dx Jo 1+t 1+x e
In symbols, dA/dx = f(x). 4

EXAMPLE 2 Find dy/dx if

y =f cos tdt.
1

Solution Notice that the upper limit of integration is not x but x2. To find dy/dx
we must therefore treat y as the composite of

u
y=/ cos tdt and u=x>
1
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and apply the Chain Rule:

335

a

dy dydu
- = Chain Rule
dx dudx
" du Substitute the formula
= — cos tdt « — for v
du [/, dx :
u
=COS U « — Eq. (2) with f(1) = cost
dx
— 2 )
= cos x° + 2x P
= 2x cos x%. Usual form

EXAMPLE 3 Express the solution of the following initial value problem as an

integral.
. . . dy
Differential equation: — =tan x
dx
Initial condition: y(1)=5

Solution The function

F(x) =f tan r dt
1

is an antiderivative of tan x. Hence the general solution of the equation is

X
y:f tan tdt + C.
1

As always, the initial condition determines the value of C:

1
5=/ tan tdt + C y(h=5
1

5=0+C
C =5.

The solution of the initial value problem is

y:/ tan rdt + 5.
1

@

How did we know where to start integrating when we constructed F(x)? We
could have started anywhere, but the best value to start with is the initial value of
x (in this case x = 1). Then the integral will be zero when we apply the initial
condition (as it was in Eq. 7) and C will automatically be the initial value of y.

The Evaluation of Definite Integrals

a

We now come to the second part of the Fundamental Theorem of Calculus, the part

that describes how to evaluate definite integrals.
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b
How to Evaluate / f(x) dx

1. Find an antiderivative F of f. Any
antiderivative will do, so pick the
simplest one you can.

2. Calculate the number F(b) — F(a).

b
This number will be / f(x)dx.
a

Notation

The usual notation for the number

F(b) — F(a) is F(x)]® when F(x) has

a single term, or [F(x)]’ for F(b) — F(a)
when F(x) has more than one term.

o Theorem 4 i -
The Fundamental Theorem of Calcu!us, Part 2

If fis continuous at every pomt of [a b] and Fis any antlderlvanve of f
Lon [a, b], then ; o

/ Somero om0 @

Theorem 4 says that to evaluate the definite integral of a continuous function
f from a to b, all we need do is find an antiderivative F of f and calculate the
number F(b) — F(a). The existence of the antiderivative is assured by the first part
of the Fundamental Theorem.

Proof of Theorem 4 To prove Theorem 4, we use the fact that functions with
identical derivatives differ only by a constant. We already know one function whose
derivative equals f, namely,

G(x) =/X f(@)d:t.

Therefore, if F is any other such function, then
Fx)=Gx)+C 9

throughout [a, b] for some constant C. When we use Eq. (9) to calculate F(b) —
F(a), we find that

F(b) — F(a) = [G() + C] — [G(a) + C]
= G(b) — G(a)

b a
=f f(t)dt——[ f@)dt
b b
=/ f(t)dt—O:/ f@)dz.

This establishes Eq. (8) and concludes the proof. a

EXAMPLE 4

T T
a) / cosxdx:sinx] =sin7t—sin0=0-0=0
0 0

0 0
b) secxtanxdx:secx] =sec 0 — sec (—%)zl—ﬁ

- /4 - /4

4
) /( x———)dx:[x3/2+ii|
x4

4 4

— 32 4 T 32 4 Z

—[(4> +4] [(1) +1]

= [8+1]—[5] = 4. d
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Theorem 4 explains the formulas we derived for the integrals of x and x? in
Section 4.5. We can now see that without any restriction on the signs of a and b,

b
b dx = x? _ b* a* Because x2/2 is an
xax = ? = ? - 7 antiderivative of x
a a
b
b 2 gy = x3 _ b ad Because x*/3 is an
xax = 3| T3 73 antiderivative of x>
a a
y EXAMPLE 5 Find the area of the region between the x-axis and the graph of

=3 52
Area = y=x—x"-2x fE)y=x>=x*?=2x,-1<x<2.

Solution First find the zeros of f. Since

o f)=x—x>-2x=x(x*—x—-2)=x(x + )(x = 2),

the zeros are x = 0, —1, and 2 (Fig. 4.24). The zeros partition [—1, 2] into two
subintervals: [—1, 0], on which f > 0 and [0, 2], on which f < 0. We integrate f
over each subinterval and add the absolute values of the calculated values.

0 ¥ X3 0
Integral over [—1, 0]: / @ =x*=2x)dx == - = —x?
-1 4 3 _1
4.24 The region between the curve 1 1 5
y = x3 — x2 — 2x and the x-axis =0- Z"‘g_l D)
(Example 5).
2 ¥ i3 2
Integral over [0, 2] / @ =xt=2x)dx=|=—-=—x?
0 4 3 0
8 8
= 4 - = - 4 — 0 = ——
45403
Enclosed area Total enclosed area > + 8 37
nclosed area: == )
12 3 12 d
EXAMPLE 6  Household electricity
We model the voltage in our home wiring with the sine function
V = Vpax sin 1207 ¢,
¢ ' which expresses the voltage V in volts as a function of time ¢ in seconds. The
Viax V' = Vg sin 1207 function runs through 60 cycles each second (its frequency is 60 hertz, or 60 Hz).
Vo= 2Viax /\ The positive constant V., (“vee max”) is the peak voltage.
wooow The average value of V over a half-cycle (duration 1/120 sec; see Fig. 4.25)
: is
— 0, V. ! O sin 120m1d
0 % av—m__—oj(; max S1N Tt dt
1/120
= 120Vpnax l:— cos 120nt]
074 0
Vi

= —2% [~ cos 7 + cos 0]
4.25 The graph of the household voltage I

V = Vmax Sin 120zt over a full cycle. Its 2V
average value over a half-cycle is 2V ax/7. — Zmax
Its average value over a full cycle is zero. T
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The average value of the voltage over a full cycle, as we can see from Fig. 4.25, is
zero. (Also see Exercise 64.) If we measured the voltage with a standard moving-coil
galvanometer, the meter would read zero.

To measure the voltage effectively, we use an instrument that measures the
square root of the average value of the square of the voltage, namely

The subscript “rms

Vims = \' (Vz)av-

” (read the letters separately) stands for “root mean square.

”

Since the average value of V2 = (Vijax)? sin® 1207t over a cycle is

) 1 1/60 5 )
Vg = ——— Vimax)~ sin” 1207t dt =
(V9 1/60) =0 /0 ( )© sin T

(Exercise 64c), the rms voltage is

( Vmax)

Vrms 2

2
(Vinax) (10)

Vmax

(11)

The values given for household currents and voltages are always rms values. Thus,
“115 volts ac” means that the rms voltage is 115. The peak voltage,

obtained from Eq. (11), is considerably higher.

max J_ Vnns

V2 .« 115 ~ 163 volts,

Exercises 4.7

Evaluating Integrals

Evaluate the integrals in Exercises 1-26.

0
1./ 2x +5)dx
-2
4 3
/(3x—x—) dx
0 4
1
/(x2+«/?)dx
0
2
/ x5 dx
9. / sin x dx
0

11. / 2 sec® xdx
0

w

o

N

13. csc 8 cot 6d6

15.

/0 1 +cos 2t

4
2. /_3 (5—’5‘)dx

2
4.[ (x* = 2x +3)dx
-2

5
6. / 32 dx
0

10. / (1+4cos x)dx
0

5m/6
12. / csc? x dx
n/6
/3
14. / 4 sec u tan udu
0

™3 1 —cos 2t
16. / ST
-n/3 2

/2
17. / (8y* +sin y) dy
-n/2

-1
19. / (r+1%dr
1
1 7
21. / (“— - i) du
B\2 W
V2 2
23. / S s
1 S

4
25. / |x|dx
-4

—n/4 T
2 —
18. [”/3 (450?14 5) ar
V3
20./ (t+ (2 +4)de
-3
V71 1
4
1_
2. /

26. / — (cos x + |cos x|)dx
0

Evaluating Integrals Using Substitutions

In Exercises 27-34, use a substitution to find an antiderivative and
then apply the Fundamental Theorem to evaluate the integral.

1
27. / (1 —=2x)%dx
0

1
29. f tVi2+1dt
0

2
28/ V3x+1dx
1

30/ tdt
")l V218



n/2
32. / sec? (r — 20) d6
3n/8

31. / sin? (1 + Q) do
o 2

T, X x
sin“ — cos —dx

fo 474
J

33.

i 3 X 2 X
tan” — sec” — dx

34.
2n/3 4

Area

In Exercises 35-40, find the total area between the region and the
X-axis.

35, y=—x*—2x, -3<x<2
36, y=3x2-3, —2<x<2
37. y=x3-3x242x, 0<x<2
38. y=x3—4x, —2<x<2
39, y=x3, —-1<x<8

40, y=x"V—x, —1<x<8

Find the areas of the shaded regions in Exercises 41-44.

41.
y
2 y=2
x=1
y=1+cosx
x
0 T
42,
y

y = sinx

N
oy
ols

43. 4.

: y = sec Otan 0

6

=)
ENEES

y=1-12
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Derivatives of Integrals

Find the derivatives in Exercises 45-48 (a) by evaluating the integral
and differentiating the result and (b) by differentiating the integral
directly.

Jx d sin x
45. — cos tdt 46. — 3t%dt
dx Jo dx J;
d I d tan 6
47. o /0 Judu 48. 7 sec? ydy
Find dy/dx in Exercises 49-54.
X X 1
49.y=/ 1412 dt 50.y=/ ?dt, x>0
0 1
vx x?
51. y = / sin (£2) dt 52. y= f cos /1 dt
0 0
sin x dt
53, y= _—, <=
y= e x| )

tan x dt
54, y =
Y fo 1412

Initial Value Problems
Each of the following functions solves one of the initial value prob-
lems in Exercises 55-58. Which function solves which problem? Give
brief reasons for your answers.

xl X
a) y:/ ?dt—3 b) y=/ sec tdt +4
1 0

X x 1
c) y:/ sectdt+4 d) y=/ ?dt—3
—1 b4
d 1
55. 2 -2y =-3 56. y =secx, y(—1)=4
dx «x
1
57. yy =secx, y(0)=4 58. y =—, y(1)=-3
x

Express the solutions of the initial value problems in Exercises 59-62
in terms of integrals.

d
59. atd =secx, y(2)=3
dx
d
60. = =V1+x% y()=-2
x
ds
61. T f@®), s()=so
dv
62. E = g(t), U(tO) =V

Applications

63. Archimedes’ area formula for parabolas. Archimedes (287-
212 B.C.), inventor, military engineer, physicist, and the greatest
mathematician of classical times in the western world, discovered
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64.

65.

66.

that the area under a parabolic arch is two-thirds the base times
the height.

a) Use an integral to find the area under the arch

y:6—x—x2, -3 <x<?2.

b) Find the height of the arch.

¢) Show that the area is two-thirds the base b times the
height A.

d) Sketch the parabolic arch y = h — (4h/b*)x?, —b/2 < x <
b/2, assuming that 4 and b are positive. Then use calculus
to find the area of the region enclosed between the arch and
the x-axis.

(Continuation of Example 6.)
a) Show by evaluating the integral in the expression

1

1/60

—_— Vinax sin 1207 ¢ dt

(1/60) =0 ]o ™
that the average value of V = Vi, sin 120zt over a full
cycle is zero.

b) The circuit that runs your electric stove is rated 240 volts
rms. What is the peak value of the allowable voltage?

c¢) Show that

(Vmax)2

1/60 )
Vinax)~ sin® 120wt dt =
/0 ( )° sin (04 120

Cost from marginal cost. The marginal cost of printing a poster
when x posters have been printed is
dc 1

dx 2%
dollars. Find (a) ¢(100) — c(1), the cost of printing posters 2—100;
(b) c(400) — ¢(100), the cost of printing posters 101-400.

Revenue from marginal revenue. Suppose that a company’s
marginal revenue from the manufacture and sale of egg beaters
is

dr
— =2-2/(x+1)?,

dx
where r is measured in thousands of dollars and x in thousands
of units. How much money should the company expect from
a production run of x = 3 thousand egg beaters? To find out,
integrate the marginal revenue from x = 0 to x = 3.

Drawing Conclusions about Motion from Graphs

67.

Suppose that f is the differentiable function shown in the accom-
panying graph and that the position at time ¢ (sec) of a particle
moving along a coordinate axis is

s =/ f(x)dx
0

68.

meters. Use the graph to answer the following questions. Give
reasons for your answers.

y
A y=f®
sk 33
L @2 (5,2)
1= 21,1
I I I [
of 1 2 3 4 5 W
_1_
2t

a) What is the particle’s velocity at time ¢t = 57

b) Is the acceleration of the particle at time ¢ = 5 positive, or
negative?

¢) What is the particle’s position at time ¢ = 3?

d) At what time during the first 9 sec does s have its largest
value?

e) Approximately when is the acceleration zero?

f) When is the particle moving toward the origin? away from
the origin?

g) On which side of the origin does the particle lie at time
t=9?

Suppose that g is the differentiable function graphed here and

that the position at time ¢ (sec) of a particle moving along a

coordinate axis is
t
s = / g(x)dx
0

meters. Use the graph to answer the following questions. Give
reasons for your answers.

y
8- ,6.5)
6 (6, 6)
4 y=gx)
2_
| l
0 3 6 9 F
_2._.
_4_
-6

a) What is the particle’s velocity at t = 3?

b) Is the acceleration at time ¢ = 3 positive, or negative?

¢) What is the particle’s position at time ¢ = 3?

d) When does the particle pass through the origin?

e) When is the acceleration zero?

f)  When is the particle moving away from the origin? toward
the origin?

g2) On which side of the origin does the particle lie at t = 9?



Exercises 4.7 341

Volumes from Section 4.4 80. Suppose that f has a negative derivative for all values of x and

69.

70.

71.

72.

Theory and Examples
73.

74.

75.
76.
77.

78.

79.

that f(1) = 0. Which of the following statements must be true

Conti j Section 4.4, E. le 3.) Th imati .
(Continuation of Section xample 3.) The approximating of the function

sum for the volume of the solid in Example 3, Section 4.4, was

a Riemann sum for an integral. What integral? Evaluate it to find h(x) = / * @) de?

the volume. 0

(Continuation of Section 4.4, Example 4.) The approximating Give reasons for your answers.

sum for the volume of the sphere in Example 4, Section 4.4, was a) h is a twice-differentiable function of x.

a Riemann sum for an integral. What integral? Evaluate it to find b) h and dh/dx are both continuous.

the volume. ¢) The graph of 4 has a horizontal tangent at x = 1.
(Continuation of Section 4.4, Exercise 15.) The approximating d) & has a local maximum at x = 1.

sums for the volume of water in Exercise 15, Section 4.4, are e) h has alocal minimum at x = 1.

Riemann sums for an integral. What integral? Evaluate it to find f) The graph of 4 has an inflection point at x = 1.
the volume. g) The graph of dh/dx crosses the x-axis at x = 1.

(Continuation of Section 4.4, Exercise 17.) The approximating v .
sums for the volume of the rocket nose cone in Exercise 17, u# Grapher Explorations

Section 4.4, is a Riemann sum for an integral. What integral? 81. The Fundamental Theorem. If f is continuous, we expect
Evaluate it to find the volume. 1 [rth
o f fa

to equal f(x), as in the proof of Part 1 of the Fundamental
Theorem. For instance, if f(t) = cos ¢, then

1

Show that if k is a positive constant, then the area between the

x-axis and one arch of the curve y = sin kx is 2/k.
sin (x 4+ h) — sin x

x+h
Find - cos tdt = 12
I & /x ¢ "
lim fo I The right-hand side of Eq. (12) is the difference quotient for the
. ) ] derivative of the sine, and we expect its limit as 2 — O to be
Suppose [ f(t)dt = x* — 2x + 1. Find f(x). oS x.
Find f(4) if fo" f@®)dt = x cos mx. Graph cos x for —7 < x < 2x. Then, in a different color if
. . .. ible, graph the right-hand side of Eq. (12) as a function of x
Find the 1 £ possible, grap g q
ind the linearization o il for h =2, 1, 0.5, and 0.1. Watch how the latter curves converge
fx)=2 _/ L dt to the graph of the cosine as 2 — 0.
I+1 82. Repeat Exercise 81 for f(¢) = 3t2. What is
atx = 1. x+h 3 3
o1 ) . (x+hy’—x
- = R
Find the linearization of zlir(l) h /; 37dt = zl_r,% h ’
Xz .
g(x) =3 +/ sec (t — 1)dr Graph f(x) =3x? for —1 < x < 1. Then graph the quotient
| ((x + h)> —x%)/h as a function of x for h =1, 0.5, 0.2, and
at x = —1 0.1. Watch how the latter curves converge to the graph of 3x? as
- h— 0.
Suppose that f has a positive derivative for all values of x and

that f(1) = 0. Which of the following statements must be true
of the function

& CAS Explorations and Projects
In Exercises 83-86, let F(x) = fax f(¢) dt for the specified function

X
glx) = / f@)de? f and interval [a, b]. Use a CAS to perform the following steps and
0 answer the questions posed.

Give reasons for your answers. a) Plot the functions f and F together over [a, b].
a) g is a differentiable function of x. b) Solve the equation F’(x) = 0. What can you see to be true about
b) g is a continuous function of x. the graphs of f and F at points where F’(x) = 0? Is your obser-
¢) The graph of g has a horizontal tangent at x = 1. vation borne out by Part 1 of the Fundamental Theorem coupled
d) g has a local maximum at x = 1. with information provided by the first derivative? Explain your
e) g has a local minimum at x = 1. answer.
f) The graph of g has an inflection point at x = 1. ¢) Over what intervals (approximately) is the function F increasing

g) The graph of dg/dx crosses the x-axis at x = 1. and decreasing? What is true about f over those intervals?
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d

83.

84.

85.

86.

Calculate the derivative f’ and plot it together with F. What can
you see to be true about the graph of F at points where f'(x) =
0? Is your observation borne out by Part 1 of the Fundamental
Theorem? Explain your answer.

f(x) =x%—4x>+3x, [0,4]

9
f(x) =2x* —17x3 + 46x? — 43x + 12, [0, 5]

f(x) = sin 2x cos %, [0, 2]

f(x) =xcos wx, [0,2r]

In Exercises 87-90, let F(x) = fa u(x) f@)dt for the specified a, u,
and f. Use a CAS to perform the following steps and answer the
questions posed.

a) Find the domain of F.

b)
c)

d)

87.
88.
89.
90.

91.

92.

Calculate F’(x) and determine its zeros. For what points in its
domain is F increasing? decreasing?

Calculate F” (x) and determine its zero. Identify the local ex-
trema and the points of inflection of F.

Using the information from parts (a)-(c), draw a rough hand-
sketch of y = F (x) over its domain. Then graph F (x) on your
CAS to support your sketch.

a=1, u@x)=x% fx)=+1-x2
a=0, u(x)=x% f@x)=+1-x2
a=0, u(x)=1-x, f@x)=x>—-2x-3
a=0, u(x)=1—-x% fx)=x*-2x-3
d u(x)
Calculate I f(¢) dt and check your answer using a CAS.
X Ja
2 u(x)
Calculate pre f(t)dt and check your answer using
X a
a CAS.

Substitution in Definite Integrals

There are two methods for evaluating a definite integral by substitution, and they

both work well. One is to find the corresponding indefinite integral by substitution
and use one of the resulting antiderivatives to evaluate the definite integral by the
Fundamental Theorem. The other is to use the following formula.

This formula first appeared in a book written
by Isaac Barrow (1630-1677), Newton’s
teacher and predecessor at Cambridge
University.

THE FORMULA

How To USE IT
Substitute u = g (x), du = g’ (x) dx, and integrate from g(a) to g(b).

Substitution in Definite Integrals

b
f fx) g (x)dx =

g)
f)du (1)

g(a)

To use the formula, make the same u-substitution you would use to evaluate the
corresponding indefinite integral. Then integrate with respect to u from the value
u has at x = a to the value u has at x = b.

1
EXAMPLE 1  Evaluate / 3x2V/x3 + 1dx.
-1

Solution We have two choices.
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Method 1: Transform the integral as an indefinite integral, integrate, change back
to x, and use the original x-limits.

f3x2 /x3+1dx=/ﬁdu Let u = v} + I.du = 3¢ dx.

2
= 5 u3/2 +C Integrate with respect to u.

= % (x3 + 1)3/2 +C Replace 1t by +* + 1.

1 1
/ 352/ x3 +1dx = %(XB + 1)3/2] Usc the integral just found,
3
-1 1

with limits of integration for x.

= % [+ DY = (1)’ + )]
g 32 _ 032 = % = 4_“/2
3[2 0 ]_3[2‘/5]_ 3

Method 2: Transform the integral and evaluate the transformed integral with the
transformed limits given by Eq. (1).

1
/ 3x2/x3 + 1dx

1

2 Letu =x' 4+ 1. du =317 dx.
=/ Vudu When x = —1. 1= (—1)"+ 1 =0.
0 Whenx = 1. u=(1)'+1=2.
2 2
= 243 Evaluate the new dcfinite intcgral.
3 0
2 3/2 3/2 2 [ ] 442
3 [2°2 - 0°7?] 3 242 3 .

Which method is better—transforming the integral, integrating, and transform-
ing back to use the original limits of integration, or evaluating the transformed
integral with transformed limits? In Example 1, the second method seems easier,
but that is not always the case. As a rule, it is best to know both methods and to
use whichever one seems better at the time.

Here is another example of evaluating a transformed integral with transformed
limits.

EXAMPLE 2
72 0 Let i = cot 8. du = —csc* 6.db
2 _ —du =csc* 9de.
/ cot 6 csc” 6d6 = / e (=du)  When = n/h u = cot(n/d) = 1.
T/ ! 0 When 6 = /2. u = cot(n/2) = 0.
= —f udu
1
_ [“2 ’
2 1
(O r] 1
B 2 2 2 d
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Technology Visualizing Integrals with Elusive Antiderivatives Many inte-
grable functions, such as the important

f)y=e*

from probability theory, do not have antiderivatives that can be expressed in
terms of elementary functions. Nevertheless, we know the antiderivative of f
exists by Part 1 of the Fundamental Theorem of Calculus. Use your graphing
utility to visualize the integral function

F(x) = / e dt.
0

What can you say about F (x)? Where is it increasing and decreasing? Where
are its extreme values, if any? What can you say about the concavity of its
graph?

Exercises 4.8

Evaluating Definite Integrals
Evaluate the integrals in Exercises 1-24.

3 0 0
t
1. a) / Vvy+1ldy b) / Vy+1ldy 12. a) f <2+tan E)sec2 %dt
0 -1 -

n/3
b) f (1 — cos 3¢) sin 3t dt
/6

/2
1 1 /2
2. a) / rv1—r2dr b) / rv1—r2dr b) / <2+tan %) sec? —;—dt
0 —1 -n/2
/4 0 2 b 4
3. a) / tan x sec’ x dx b) / tan x sec’ x dx 13. a) / sz dz b) s dz
0 —n/4 0 +4+3sinz \/4 + 3 sin z
T 3 .
4. a) f 3 cos® x sin x dx b) / 3 cos® x sin x dx 14. a) /0 s w dw
0 2 —x2 B3+2 cos w)?
1 1 /2 .
5. a) f B+ de b) / £+ dr b) / L
0 -1 o (342 cos w)?
7 2 1/3 0 3 ! 4 dy
6. a) f t(t* + 1)'Pdr b) f t@* + 1) dr 15. / V5 4+ 26 (5t +2) dt 16. f —_—
0 0 12y 4+ /)2
L5 17. [ cos 26 sin2
7. —d . > 26 sin 26 df
a) /;1 @trn r b) / @t r2)2 /(; cos sin
11040 0w (8 , (6
8. a) /0 ———(1 T dv b) Car v3/2)2 18. /H cot (E) sec (8) do
f b4
P A 4x 19. 5(5—4 cos t)/* sin t dt
9. a) ———dx b)
o Vxt+l v 0
/4
1 3 0 3 o 3/2
10. 2) / oy b) / *ux 20. /0 (1 — sin 2¢)*? cos 2t dt
0o Vx*+9 o AVxEF9

1
/6 2 3 ~2/3 2
11. a) / (1 — cos 31) sin 3t dt 21'/0(4y YAy DALy =2y + 4 dy
0



1
22. f ( +6y2 =12y +9)"V2(y2 + 4y —4)dy
0

i/;r; -1/2 1
23. f V6 cos? (6°%) do 24, f 72 sin? (1 + ;> dt
0 _

1

Area
Find the total areas of the shaded regions in Exercises 25-28.
25. 26.

y y

y= (1 —cosx)sinx

27. 28.

y y= 75"'(cos x)(sin(7 + 7sin x))
y

y=3(sinx)V1+ cos x

Theory and Examples
29. Suppose that F(x) is an antiderivative of f(x) = (sin x)/x,

x > 0. Express
3 .
sin 2
/ ~ dx
1 X

30. Show that if f is continuous, then

1 1
/ f(x)dx:/ fl—x)dx.
0 0

in terms of F.

31. Suppose that
1
/ f(x)dx = 3.
0

0
f flx)dx
-1

if (a) f is odd, (b) f is even.

Find
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32. a) Show that

/“ h(x)dx =

b) Test the result in part (a) with 2(x) = sin x and with A(x) =
cos x, taking @ = 7 /2 in each case.

0 if h is odd

2/ h(x)dx if A is even.
0

33, If f is a continuous function, find the value of the integral
¢ fx)dx
o f)+ fla—x)

by making the substitution ¥ = a — x and adding the resulting
integral to 1.

I =

34. By using a substitution, prove that for all positive numbers x

and y,
xy 1 y 1
/ —dt = / —dt.
x t 1 t

The Shift Property for Definite Integrals

A basic property of definite integrals is their invariance under trans-
lation, as expressed by the equation.

b
f fx)dx =

The equation holds whenever f is integrable and defined for the
necessary values of x. For example (Fig. 4.26),

-1 1
f (x+2)3dx = j xdx. 3)
-2 0

b—c
fx+c)dx. (2)

a—

/—é — /0 0

4.26 The integrations in Eq. (3). The shaded regions,
being congruent, have equal areas.

35. Use a substitution to verify Eq. (2).

36. For each of the following functions, graph f(x) over [a, b] and
f(x +¢) over [a — ¢, b — c] to convince yourself that Eq. (2) is

reasonable.
a) f(x)=x% a=0 b=1, c=
b) f(x)=sinx, a=0, b

O f=vi-3d a=4 b
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The length 2 = (b — a)/n is called the step
size. It is conventional to use % in this
context instead of A x.

Numerical Integration

As we have seen, the ideal way to evaluate a definite integral fa b f(x)dx is to find
a formula F(x) for one of the antiderivatives of f(x) and calculate the number
F(b) — F(a). But some antiderivatives are hard to find, and still others, like the
antiderivatives of (sin x)/x and +/1 + x*, have no elementary formulas. We do not
mean merely that no one has yet succeeded in finding elementary formulas for the
antiderivatives of (sin x)/x and +/1 + x*. We mean it has been proved that no such
formulas exist.

Whatever the reason, when we cannot evaluate a definite integral with an an-
tiderivative, we turn to numerical methods such as the trapezoidal rule and Simpson’s
rule, described in this section.

The Trapezoidal Rule

When we cannot find a workable antiderivative for a function f that we have to
integrate, we partition the interval of integration, replace f by a closely fitting
polynomial on each subinterval, integrate the polynomials, and add the results to
approximate the integral of f. The higher the degrees of the polynomials for a given
partition, the better the results. For a given degree, the finer the partition, the better
the results, until we reach limits imposed by round-off and truncation errors.

The polynomials do not need to be of high degree to be effective. Even line
segments (graphs of polynomials of degree 1) give good approximations if we use
enough of them. To see why, suppose we partition the domain [a, b] of f into n
subintervals of length Ax = h = (b —a)/n and join the corresponding points on
the curve with line segments (Fig. 4.27). The vertical lines from the ends of the
segments to the partition points create a collection of trapezoids that approximate
the region between the curve and the x-axis. We add the areas of the trapezoids,
counting area above the x-axis as positive and area below the axis as negative:

1 1 1 1
T = 3 o + y)h + 7 O +y)h+---+ 2 (Vw2 + Yn-1)h + 2 (Yn=1 + Yu)h

1 1
=h(§}’o+}’1+}’2+"'+)’n—1+§)’n>

h
= 5(y0+2y1+2y2+~-+2y,,_1+yn),

where

Yo = f(a)’ N = f(x1)7 R Yn—1 = f(xn—l)v Yn = f(b)

The trapezoidal rule says: Use T to estimate the integral of f from a to b.

The Trapezoidal Rule

To approximate fa b f(x)dx, use
h
T=200+2y+2y4 421+ ) (1)

(for n subintervals of length 2 = (b — a)/n and y, = f(x;)).
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4.27 The trapezoidal rule approximates y
short stretches of the curve y = f(x) with
line segments. To estimate the integral of
f from a to b, we add the “signed” areas
of the trapezoids made by joining the
ends of the segments to the x-axis.

y=f®
B VAN

Xg=24a X Xy

[=]

[

/

Pz(xzv }’2)
Po(xoy )’0)

Pl(xl» Y1)

Table 4.6
x y=x . . :
R EXAMPLE 1 Use the trapezoidal rule with n = 4 to estimate
1 1 2
5 25 / xtdx.
bt = 1
4 16
6 36 Compare the estimate with the exact value of the integral.
4 16 Solution To find the trapezoidal approximation, we divide the interval of inte-
7 4 gration into four subintervals of equal length and list the values of y = x? at the
4 16 endpoints and partition points (see Table 4.6). We then evaluate Eq. (1) with n = 4
2 4 and h = 1/4:
h
y T=5(}’0+2}’1+2}’2+2)’3+)’4)
17
1 25 36 49 75
==-(14+42{—= 2(— 2| — 4)=—
8 ( + (16) + (16) + (16)+ ) 32
= 2.34375.
B
y=x2 The exact value of the integral is
2 P8 o1 7T~
/ NRdx=2| =2 - =-=23.
2 1 3], 3 3 3
/ 4 The approximation is a slight overestimate. Each trapezoid contains slightly more
R than the corresponding strip under the curve (Fig. 4.28).
:4_2
k Wl Controlling the Error in the Trapezoidal Approximation
25 16 Pictures suggest that the magnitude of the error
1(16 b
A B . ET=/ fx)dx—T @)
0 15612 ‘
4o in the trapezoidal approximation will decrease as the step size / decreases, because
4.28 The trapezoidal approximation of the trapezoids fit the curve better'as t'heir number in'creases. A the(?rem from ad-
the area under the graph of y = x? from vanced calculus assures us that this will be the case if f has a continuous second

x =1to x =2 is a slight overestimate. derivative.
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The Error Estimate for the Trapezoidal Rule

If f” is continuous and M is any upper bound for the values of |f”| on

[a, b], then

b—
12

Er| < ——2n’M. 3)

0

4.29 Graph of the integrand in
Example 3.

Although theory tells us there will always be a smallest safe value of M, in
practice we can hardly ever find it. Instead, we find the best value we can and go
on from there to estimate |Er|. This may seem sloppy, but it works. To make |E7|
small for a given M, we make A small.

EXAMPLE 2 Find an upper bound for error in the approximation found in
Example 1 for the value of
2
/ x*dx.
1

Solution We first find an upper bound M for the magnitude of the second derivative
of f(x) = x? on the interval 1 < x < 2. Since f”(x) = 2 for all x, we may safely
take M =2. With b —a =1 and h = 1/4, Eq. (3) gives

b—a 1 (1) 1
PM=— (-] @=—.
12 12 (4) @) =36

This is precisely what we find when we subtract T = 75/32 from f12 x2dx =17/3,

since |7/3 —75/32| = | — 1/96|. Here our estimate gave the error’s magnitude
exactly, but this is exceptional. a

|Er| <

EXAMPLE 3 Find an upper bound for the error incurred in estimating

T
f x sin x dx
0

with the trapezoidal rule with n = 10 steps (Fig. 4.29).
Solution Witha =0,b=m,and h = (b —a)/n = x /10, Eq. (3) gives

b— 2 3
|ET|§—ah2M=l(1) M=2L_Mm
12 12 \10 1200

The number M can be any upper bound for the magnitude of the second derivative
of f(x) = x sin x on [0, ]. A routine calculation gives

f"(x) =2 cos x — x sin x,
0

| f"(x)| = |2 cos x — x sin x|

Triangle inequality:

< 2|cos x| + |x|| sin x| la + bl < lal + 1b]

<2.14+m.1=2+m. |cos x| and |sin x| never
exceed I,and 0 < x < 7.
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We can safely take M = 2 4 w. Therefore,

3 7[3(2 + 1) Rounded up to
|ET| =< 1200M = W < 0133 be safe

The absolute error is no greater than 0.133.
For greater accuracy, we would not try to improve M but would take more
steps. With n = 100 steps, for example, 7 = 7 /100 and

<0.00133 =1.33 x 1073.

T \? 7 2+m)
M= ————~
) 120,000 Q

Erl = = (
=12 \100
EXAMPLE 4 As we will see in Chapter 6, the value of In 2 can be calculated

from the integral
21
In2 = f —dx.
1 X

How many subintervals (steps) should be used in the trapezoidal rule to approximate
the integral with an error of magnitude less than 1074?

Solution To determine n, the number of subintervals, we use Eq. (3) with
b—a 1

b—a=2-1=1, h = =-,
n n

" d2 -1 -3 2
f(x):E(x ) = 2x =F,
Then
2

1 /1)
=—|—-) max|—
12 \n
where max refers to the interval [1, 2].
This is one of the rare cases where we can find the exact value of max|f
On [1, 2], y = 2/x* decreases steadily from a maximum of y = 2 to a minimum

of y = 1/4. Therefore,
Ep <L (! L,
=12 \n T oen?’

The error’s absolute value will therefore be less than 10~* if

1 —4
@<10 ’

0,
6 9
100
V6

Er f"(x)

b—
< 2% p2max
12

l/|

Multiply both sides by 10% n?.

< |n|, Square roots of both sides

— < n, n is positive.

40.83 < n. Rounded up, to be safe
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Simpson’s one-third rule

The idea of using the formula
h
A=30ot+4y+y)

to estimate the area under a curve is known
as Simpson’s one-third rule. But the rule was
in use long before Thomas Simpson
(1720-1761) was born. It is another of
history’s beautiful quirks that one of the
ablest mathematicians of eighteenth-century
England is remembered not for his successful
texts and his contributions to mathematical
analysis but for a rule that was never his, that
he never laid claim to, and that bears his
name only because he happened to mention
it in a book he wrote.

4.30 Simpson’s rule approximates short
stretches of curve with parabolic arcs.

y

0, }’1)
(_h,}’()/ (3D

y=Ax>+Bx+ C

Yo

h 0 3

4.31 By integrating from —h to h, we
find the shaded area to be

h
§(,Vo + dy1 + y2).

The first integer beyond 40.83 is n = 41. With n = 41 subintervals we can guarantee
calculating In 2 with an error of magnitude less than 10~*. Any larger n will
work, too.

Simpson’s Rule

Simpson’s rule for approximating fa b f(x)dx is based on approximating f with
quadratic polynomials instead of linear polynomials. We approximate the graph
with parabolic arcs instead of line segments (Fig. 4.30).

Parabolic arc

y =fx)

Gl

(xz, }’2)

Parabolic arc

Parabolic arc

The integral of the quadratic polynomial y = Ax? + Bx + C in Fig. 4.31 from
x=—-htox=his

h
h
f (Ax*+ Bx +C)dx = 3 (o + 4y1 + y2) @
—h

(Appendix 4). Simpson’s rule follows from partitioning [a, b] into an even number
of subintervals of equal length &, applying Eq. (4) to successive interval pairs, and
adding the results.

Simpson’s Rule

To approximate | " f(x)dx, use
h
§=300+4y+2y+4ys+ -+ 2ynz +4yn1 + ). (©)

The y’s are the values of f at the partition points
Xo=a,x1=a+h, xo=a+2h, ..., x,..1=a+ @ —Dh, x, =b.

The number » is even, and 2 = (b — a)/n.

Error Control for Simpson’s Rule

The magnitude of the Simpson’s rule error,

b
Es=f f(x)dx — S, (6)



Table 4.7

R

— R lW AN A= O

y=5¢

256
80
256
405
256
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decreases with the step size, as we would expect from our experience with the
trapezoidal rule. The inequality for controlling the Simpson’s rule error, however,
assumes f to have a continuous fourth derivative instead of merely a continuous
second derivative. The formula, once again from advanced calculus, is this:

The Error Estimate for Simpson’s Rule

If f® is continuous and M is any upper bound for the values of | f®| on
[a, b], then

b—a
Eg| < —— h*M. 7
|Es| < T80 (7)

As with the trapezoidal rule, we can almost never find the smallest possible
value of M. We just find the best value we can and go on from there to estimate
|Es|.

EXAMPLE 5 Use Simpson’s rule with n = 4 to approximate

1
/ 5x*dx.
0

What estimate does Eq. (7) give for the error in the approximation?

Solution Again we have chosen an integral whose exact value we can calculate
directly:
1

1
/ 5x4dx:x5:| =1.
0 0

To find the Simpson approximation, we partition the interval of integration
into four subintervals and evaluate f(x) = 5x* at the partition points (Table 4.7).
We then evaluate Eq. (5) with n =4 and h = 1/4:

h
S = g(y0+4}’1+2)’z+4)’3+)’4)

1 5 80 405
= — 4 — — 4 | — 2 1.00260.
12 <0+ (256) +2 (256) + (256) +5> 00260

To estimate the error, we first find an upper bound M for the magnitude of
the fourth derivative of f(x) = 5x* on the interval 0 < x < 1. Since the fourth
derivative has the constant value f® (x) = 120, we may safely take M = 120.
With b —a =1 and h = 1/4, Eq. (7) gives

b—a 1 /1\* 1
Eg| < M =— (=) (120) = — < 0.00261. Q
Esl = 350 180 <4) (120) = 355 <0

Which Rule Gives Better Results?

The answer lies in the error-control formulas

b—a
180

b_
|Eq| < —12—‘5h2M, |Es| < WM.
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Trapezoidal vs. Simpson

If Simpson’s rule is more accurate, why
bother with the trapezoidal rule? There are
two reasons. First, the trapezoidal rule is
useful in a number of specific applications

because it leads to much simpler expressions.

Second, the trapezoidal rule is the basis for
Rhomberg integration, one of the most
satisfactory machine methods when high
precision is required.

146 ft

Horizontal spacing = 20 ft

4.32 The swamp in Example 6.

The M’s of course mean different things, the first being an upper bound on | f”|
and the second an upper bound on | f|. But there is more. The factor (b — a)/180
in the Simpson formula is one-fifteenth of the factor (b — a)/12 in the trapezoidal
formula. More important still, the Simpson formula has an £* while the trapezoidal
formula has only an A2, If & is one-tenth, then A? is one-hundredth but 4* is only
one ten-thousandth. If both M’s are 1, for example, and b — a = 1, then, with
h =1/10,

while

|Es| <

1/ 1\* 1 1 1
180 (10) "7 71,800,000 1500 1200
For roughly the same amount of computational effort, we get better accuracy with
Simpson’s rule—at least in this case.

The h? versus h* is the key. If & is less than 1, then h* can be significantly
smaller than 42. On the other hand, if & equals 1, there is no difference between A2
and h*. If h is greater than 1, the value of h* may be significantly larger than the
value of h2. In the latter two cases, the error-control formulas offer little help. We
have to go back to the geometry of the curve y = f(x) to see whether trapezoids
or parabolas, if either, are going to give the results we want.

Working with Numerical Data

The next example shows how we can use Simpson’s rule to estimate the integral
of a function from values measured in the laboratory or in the field even when we
have no formula for the function. We can use the trapezoidal rule the same way.

EXAMPLE 6 A town wants to drain and fill a small polluted swamp (Fig. 4.32).
The swamp averages 5 ft deep. About how many cubic yards of dirt will it take to
fill the area after the swamp is drained?

Solution To calculate the volume of the swamp, we estimate the surface area and
multiply by 5. To estimate the area, we use Simpson’s rule with 2 = 20 ft and the
¥’s equal to the distances measured across the swamp, as shown in Fig. 4.32.

h
$ = 5(y0+4}’1+2yZ+4Y3+2y4+4)’5+)’6)

20
=3 (146 4488 + 152 4 216 4+ 80 + 120 4 13) = 8100.

The volume is about (8100)(5) = 40,500 € or 1500 yd>. Q

Round-off Errors

Although decreasing the step size & reduces the error in the Simpson and trapezoidal
approximations in theory, it may fail to do so in practice. When 4 is very small,
say h = 107>, the round-off errors in the arithmetic required to evaluate S and T
may accumulate to such an extent that the error formulas no longer describe what is
going on. Shrinking & below a certain size can actually make things worse. While
this will not be an issue in the present book, you should consult a text on numerical
analysis for alternative methods if you are having problems with round-off.
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Exercises 4.9

Estimating Integrals
The instructions for the integrals in Exercises 1-10 have two parts,
one for the trapezoidal rule and one for Simpson’s rule.

L. Using the trapezoidal rule

a) Estimate the integral with n = 4 steps and use Eq. (3) to
find an upper bound for |Er|.

b) Evaluate the integral directly, and use Eq. (2) to find | E7]|.

§ c¢) CALCULATOR Use the formula (|Er|/true value) x 100

to express | E7| as a percentage of the integral’s true value.

II. Using Simpson’s rule

a) Estimate the integral with n = 4 steps and use Eq. (7) to
find an upper bound for |Eg|.

b) Evaluate the integral directly, and use Eq. (6) to find | Es]|.

E c¢) CALCULATOR Use the formula (|Es|/true value) x 100

to express |Eg| as a percentage of the integral’s true value.

2
1. f xdx
1

1
. / &+ Ddx
-1

3
2. / 2x — 1)dx
1

w

0
4.f x? -1 dx
-2

wn

2
f B+ 0 dt
0
2
1
‘/l s—zds
b 4
9.f sin ¢t dt
0

1
10./ sin wt dt
0

1
6. / @+ de
-1

4 1
8. f ——ds
) G172

3

In Exercises 11-14, use the tabulated values of the integrand to es-
timate the integral with (a) the trapezoidal rule and (b) Simpson’s
rule with n = 8 steps. Round your answers to 5 decimal places. Then
(c) find the integral’s exact value and the approximation error E7 or
Eg, as appropriate, from Egs. (2) and (6).

1
1. / W= dx x Wi-2

0
0 0.0
0.125 0.12402
0.25 0.24206
0.375 0.34763
0.5 0.43301
0.625 0.48789
075 0.49608
0.875 0.42361
1.0 0

3 0 >
12.‘/(; mdQ (] 6/vV16+ 6
0 0.0
0.375 0.09334
0.75 0.18429
1.125 0.27075
1.5 0.35112
1.875 0.42443
2.25 0.49026
2.625 0.58466
3.0 0.6
5 [ _3eost t (3 cos £/(2 + sin 1)
—n/2 (2 + sin I)Z
—1.57080 0.0
—1.17810 0.99138
—0.78540 1.26906
—0.39270 1.05961
0 0.75
0.39270 0.48821
0.78540 0.28946
1.17810 0.13429
1.57080 0
/2
14. / : (csc? y)o/cot ydy y (csc? y)y/coty
/4
0.78540 2.0
0.88357 1.51606
0.98175 1.18237
1.07992 0.93998
1.17810 0.75402
1.27627 0.60145
1.37445 0.46364
1.47262 0.31688
1.57080 0

The Minimum Number of Subintervals

In Exercises 15-26, use Egs. (3) and (7), as appropriate, to estimate the
minimum number of subintervals needed to approximate the integrals
with an error of magnitude less than 10™* by (a) the trapezoidal rule
and (b) Simpson’s rule. (The integrals in Exercises 15-22 are the
integrals from Exercises 1-8.)

2
15. f xdx
1

1
17./ x? + Ddx
-1

3
16./ (2x —1)dx
1

0
18.[ (x* = 1)dx
-2
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2
19. f (@ +1)dt
0

2
21.f1 s—zds

3
23. f Vx + ldx
0

2
25../ sin(x + 1)dx
0

Applications

Integration

1
20. / P+ de
-1

4 1
22. _
/2 G- %

dx

3
24. / !
0o Vx+1

1
26. / cos(x +m)dx
-1

27. As the fish-and-game warden of your township, you are respon-

sible for stocking the town pond with fish before fishing season.
The average depth of the pond is 20 ft. You plan to start the
season with one fish per 1000 ft*>. You intend to have at least
25% of the opening day’s fish population left at the end of the
season. What is the maximum number of licenses the town can
sell if the average seasonal catch is 20 fish per license?

0ft
800 ft

/ 1000 ft \\

{ 1140 ft \

1160 ft \
\ e

Vertical spacing = 200 ft

860 ft

0 ft

B 28. CALCULATOR The design of a new airplane requires a gasoline

tank of constant cross-section area in each wing. A scale drawing
of a cross section is shown here. The tank must hold 5000 Ib of
gasoline, which has a density of 42 Ib/ft*. Estimate the length of
the tank.

Yo | Y1 | Y2 P3| |75 |6

Yo=151ft, y=16ft, y,=18ft, y, =191t

¥y =201t y;=y,=21ft Horizontal spacing = 1 ft

B 29. CALCULATOR A vehicle's aerodynamic drag is determined in

part by its cross-section area and, all other things being equal,
engineers try to make this area as small as possible. Use Simp-
son’s rule to estimate the cross-section area of James Worden’s
solar-powered Solectria car at MIT (Fig. 4.33).

30.

4.33 Solectria cars are produced by Selectron Corp.,
Arlington, MA (Exercise 29).

The accompanying table shows time-to-speed data for a 1994
Ford Mustang Cobra accelerating from rest to 130 mph. How far
had the Mustang traveled by the time it reached this speed?

Speed change Seconds

Zero to 30 mph 22
40 mph 32

50 mph 4.5

60 mph 59

70 mph 7.8

80 mph 10.2

90 mph 12.7

100 mph 16.0

110 mph 20.6

120 mph 26.2

130 mph 37.1

Source: Car and Driver, April 1994.
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Theory and Examples bound for the error that will occur if

/2 o
31. Polynomials of low degree. The magnitude of the error in the Si (%) = / il?l dt
. S b . 0
trapezoidal approximation of fa fx)dx is
b—a is estimated by Simpson’s rule with n = 4.
|Er] = —— K2 | f" ()], b) Estimate Si (77/2) by Simpson’s rule with n = 4.
12 ¢) Express the error bound you found in (a) as a percentage of the

where ¢ is some point (usually unidentified) in (a, b). If f is a value you found in (b).

linear function of x, then f” (c) =0, so Er =0 and T gives the g 33

exact value of the integral for any value of 4. This is no surprise,

really, for if f is linear, the line segments approximating the graph

. (Continuation of Example 3.) The error bounds in Egs. (3) and
(7) are “worst case” estimates, and the trapezoidal and Simpson
rules are often more accurate than the bounds suggest. The trape-

of f fit the graph exactly. The surprise comes with Simpson’s zoidal rule estimate of
rule. The magnitude of the error in Simpson’s rule is ™ x X sin x
b—a , / x sin x dx
|Es| = Tsoh [f @), 0 0 0
where once again c lies in (a, b). If f is a polynomial of degree ;r:)i}i?ample 3 s acasein Eggz 8(3)2;(3)2
less than 4, then f® = 0 no matter what c is, so Eg =0 and S ) ’ ’
gives the integral’s exact value—even if we use only two steps. a)  Use the trapezoidal (0.3)m 0.76248
As a case in point, use Simpson’s rule with n = 2 to estimate rule with n = 10 to 0.4)m 119513
5 approximate the value 0.5)r 1.57080
f dx. of the integral. The 0.6)m 179270
0 table to the right gives 0.7 1.77912
Compare your answer with the integral’s exact value. the necessary y-values. Egg;g ég;?;
B 32. Usable values of the sine-integral function. The sine-integral T 0
function,
< cint b) Find the magnitude of the difference between m, the inte-
Si(x) = f —dt, “Sine integral of x” gral’s value, and your approximation in (a). You will find
o !t the difference to be considerably less than the upper bound
is one of the many functions in engineering whose formulas of 0.133 calculated with n = 10 in Example 3.
cannot be simplified. There is no elementary formula for the 4 ¢) GRAPHER The upper bound of 0.133 for | E7| in Example
antiderivative of (sin ¢)/¢. The values of Si(x), however, are 3 could have been improved somewhat by having a better
readily estimated by numerical integration. bound for

Although the notation does not show it explicitly, the func-

tion being integrated is If7 )] = 12 cos x — x sin x|
sin ¢ on [0, w]. The upper bound we used was 2 + . Graph
fo=1"7" t#0 f" over [0, ] and use TRACE or ZOOM to improve this
1 =0 upper bound.

’ ’ Use the improved upper bound as M in Eq. (3) to
the continuous extension of (sin ¢)/¢ to the interval [0, x]. The make an improved estimate of |E7|. Notice that the trape-
function has derivatives of all orders at every point of its domain. zoidal rule approximation in (a) is also better than this
Its graph is smooth (Fig. 4.34) and you can expect good results improved estimate would suggest.

from Simpson’s rule. E 34. CALCULATOR (Continuation of Exercise 33)

4 a) GRAPHER Show that the fourth derivative of f(x) =

X x sin x is
. sum:fwdt @ (x) = —4 cos x + x sin x.
_ sint o ¢
Y= ! Use TRACE or ZOOM to find an upper bound M for the
/ L values of | f*] on [0, 7].
—r 0 T 27 ! b) Use the value of M from (a) together with Eq. (7) to obtain

an upper bound for the magnitude of the error in estimating

4.34 The continuous extension of y = (sint)/t. The the value of

sine-integral function Si(x) is the subject of Exercise 32. /'” .
x sin x dx
0

a) Use the fact that | f®| < 1 on [0, /2] to give an upper with Simpson’s rule with n = 10 steps.
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¢) Use the data in the table in Exercise 33 to estimate
foﬂ x sin x dx with Simpson’s rule with n = 10 steps.

d) To 6 decimal places, find the magnitude of the difference
between your estimate in (c) and the integral’s true value,
. You will find the error estimate obtained in (b) to be
quite good.

You are planning to use Simpson’s rule to estimate the values of the
integrals in Exercises 35 and 36. Before proceeding, you turn to Eq.
(7) to determine the step size & needed to assure the accuracy you
want. What happens? Can this be avoided by using the trapezoidal
rule and Eq. (3) instead? Give reasons for your answers.

4
3s. / 3% dx
0

1
36. / x*% dx
0

CHAPTER

B Numerical Integrator

As we mentioned at the beginning of the section, the definite in-
tegrals of many continuous functions cannot be evaluated with the
Fundamental Theorem of Calculus because their antiderivatives lack
elementary formulas. Numerical integration offers a practical way to
estimate the values of these so-called nonelementary integrals. If your
calculator or computer has a numerical integration routine, try it on
the integrals in Exercises 37—40.

1
37. / V1+xtdx
0

38. / einx
0 X

A nonelementary integral that
came up in Newton'’s research

The integral from Exercise 32. To
avoid division by zero, you may
have to start the integration at a
small positive number like 107°
instead of 0.

An integral associated with the

/2
: 2
- /o sin (<) dx diffraction of light

/2
40. f 40v/1 — 0.64 cos? t dt

0

The length of the ellipse
(@?/25) + (y*/9) = 1

QUESTIONS TO GUIDE YOUR REVIEW

1. Can a function have more than one antiderivative? If so, how are
the antiderivatives related? Explain.

2. What is an indefinite integral? How do you evaluate one? What
general formulas do you know for evaluating indefinite integrals?

3. How can you sometimes use a trigonometric identity to transform
an unfamiliar intregal into one you know how to evaluate?

4. How can you sometimes solve a differential equation of the form
dy/dx = f (x)?

5. What is an initial value problem? How do you solve one? Give
an example.

6. If you know the acceleration of a body moving along a coordinate
line as a function of time, what more do you need to know to
find the body’s position function? Give an example.

7. How do you sketch the solutions of a differential equation dy/dx
= f (x) when you do not know an antiderivative of f? How
would you sketch the solution of an initial value problem dy/dx =
f(x), y(x0) = yo under these circumstances?

8. How can you sometimes evaluate indefinite integrals by substi-
tution? Give examples.

9. How can you sometimes estimate quantities like distance traveled,
area, volume, and average value with finite sums? Why might you
want to do so?

10. What is sigma notation? What advantage does it offer? Give
examples.

11. What rules are available for calculating with sigma notation?

12. What is a Riemann sum? Why might you want to consider such
a sum?

13. What is the norm of a partition of a closed interval?

14. What is the definite integral of a function f over a closed interval
[a, b]? When can you be sure it exists?

15. What is the relation between definite integrals and area? Describe
some other interpretations of definite integrals.

16. Describe the rules for working with definite integrals (Table 4.5).

Give examples.

17. What is the average value of an integrable function over a closed
interval? Must the function assume its average value? Explain.

18. What does a function’s average value have to do with sampling
a function’s values?

19. What is the Fundamental Theorem of Calculus? Why is it so
important? Illustrate each part of the theorem with an example.

20. How does the Fundamental Theorem provide a solution to the
initial value problem dy/dx = f(x), y(xo) = Yo, when f is con-
tinuous?

21. How does the method of substitution work for definite integrals?
Give examples.

22. How is integration by substitution related to the Chain Rule?

23. You are collaborating to produce a short “how-to” manual for
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numerical integration, and you are writing about the trapezoidal 24. How would you compare the relative merits of Simpson’s rule
rule. (a) What would you say about the rule itself and how to and the trapezoidal rule?

use it? how to achieve accuracy? (b) What would you say if you

were writing about Simpson’s rule instead?

CHAPTER PRACTICE EXERCISES

ini H 10 10
Finite Sums and Estimates 3. Suppose that Y~ a, = —2 and ) b, = 25. Find the value of

k=1

1. The accompanying figure shows the graph of the velocity (ft/sec) k=1 it
of a model rocket for the first 8 sec after launch. The rocket 10 a, 10
accelerated straight up for the first 2 sec and then coasted to a) =4 b) k; (be — 3a,)
reach its maximum height at 1 = 8 sec. 0 0 /5
200 c) (@ +by—1) d (‘ - bk)
e NG e k=1 k=1 2
s \ 20 20
2 150 ; 4. Suppose that Y a, =0 and Y b; = 7. Find the values of
E i k=1 k=1
> 100 20 20
£ a) Y 3a b) > (a+by)
S : k=1 k=1
3 501
! ! ) > (2o O @2
y SN c ] -
0 k=1 2 7 ak

0 2 4 6 8

Time after launch (sec)

Definite Integrals

a)  Assuming that thf‘« r.ocket was la.unched from. grounfi level, In Exercises 5-8, express each limit as a definite integral. Then eval-
about.how high did it go? (This is the rocket in Section 2.3, uate the integral to find the value of the limit. In each case, P is a
Exercise ‘19’ but you do not need to do Exercise 19 to do partition of the given interval and the numbers c¢; are chosen from
the exercise here.) the subintervals of P.

b) Sketch a graph of the rocket’s height aboveground as a ) n ) ) »
function of time for 0 <t < 8. 5. ||1121;|IE0 k; (2c, — 1)™12 Ax;, where P is a partition of [1, 5]

2. a) The accompanying figure shows the velocity (m/sec) of a n
body moving along the s-axis during the time interval from 6. | II}HT o Y clee® — 1) Axy, where P is a partition of [1, 3]
t =0 to t =10 sec. About how far did the body travel k=l
during those 10 sec? 7. lim Y (cos (C—k)) Ax;, where P is a partition of [—, 0]

b) Sketch a graph of s as a function of ¢ for 0 <z < 10 as- I1PI1-0 k=i 2
suming s(0) = 0. . noo . .

8. ||11>l||mo Y (sin cx)(cos cx) Axy, where P is a partition of [0, /2]
5 =0 =1

4 9. If /2,3 f(x)dx =12, [°, f(x)dx =6, and [°, g(x)dx =2,
3 / | find the values of the following.
&3/ \ : 5
z o [ fwa b [ fear
'g 2 -2 2
G} -2 >
R \ o [ swax @ [ rewnar

. 5 -2

E
0 2 4 6 8 10 ") /S(M>dx

Time (sec) 2 5
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10. If [J f(x)dx =7, [ 7g(x)dx =7, and [, g(x)dx =2, find
the values of the following.

2
a) / g(x)dx
0

2
b) /g(x)dx
1O
© /f(x)dx
2
2
d) / V2 f(x)dx
0

2
€) /O(g(X)—3f(X))dx

Area

In Exercises 11-14, find the total area of the region between the graph
of f and the x-axis.

1. f(x)=x>—4x+3, 0<x<3
12. f(x)=1-(x%/4), -2<x<3
13. f(x) =5—5x%3,
4. f)=1—-x, 0<x<4

—-1<x<8

Initial Value Problems

Solve the initial value problems in Exercises 15-18.

dy x*+1
15, = = 1) =-1
Ix 2 y(1)
d 1)
16. —y=<x+—) Loy =1
dx x
d%r 3 ,
17’W=15*/;+E; r(1)=8, r(1)=0
d3r . " ’
18. F:—cost, r"0)=r@0)=0, r@0=-1

1
19. Show that y = x2 + / " dt solves the initial value problem
1

d?y 1
— =2—-—; y(1)=3, =1
i 7 v y(@)
20. Show that y:fox(l +24/sec t )dt solves the initial value
problem

d2
d_x); = +/sec xtan x; y'(0) =3, y(0)=0.

Express the solutions of the initial value problems in Exercises 21
and 22 in terms of integrals.

d sin x
Yo ye)=-3

21 2
d
2 22 ik, y—1)=2

dx
dx

Evaluating Indefinite Integrals
Evaluate the integrals in Exercises 23—44.

23. /(x3 +5x —7)dx

25. / <3¢Z+%> dt

rdr
NGEEE

29. / 36v2—6%2d6

27

31 /x3(1+x4)"/4dx
33. /seczids

10
35. fcsc V26 cot /2046
37. / sin = dx

4

39, f 2(cos x)™"/? sin x dx

41. f (20 +1+2cos (20 +1))do

o [ (7=

IERIE

43.

(7%)

s 1
. - — d
24 /(81‘ 2+t> t
1 3
26'f(z7‘74) a
2
28,/&
(r =2}

92
30. / ——df
973+ 63

32. / 2 —x)*dx
34. / csc? msds

0 0
36. / sec 3 tan §d9
38. / coszgdx

40. /(tan %)% sec? xdx

+2 sec?(26 — n)) de

12 -1
44. / Ldt
t4

Evaluating Definite Integrals
Evaluate the integrals in Exercises 45-70.

1
45, / (Bx? —4x + T dx
-1
2
4
47./ —Z-dv
1 v
4
o [
NG

' 36dx
51. —_
/(; (2x +1)3

1
53./ xR =Xy dx
1/8
55. / sin? 5rdr
0

n/3
57. [ sec?6 do
0

1
46.[ (8s® — 125>+ 5)ds
0

27
48. / x4 dx
1

C+Va)n
50. /; Tdu

52

/‘1 dr

"o YT =502
1/2

54, f X1 +9x4%dx
0

56. /0”/4 cos’ (4t - %) dt

3w /4
58. / csc? x dx
/4



59.

61.

63.

65.

66.

67.

69.

3n X n 0
?=d 60. tan® = d@
/7: co 5 X /(; an 3

0 3/4
/ sec x tan x dx 62. / csc zcot zdz
-n/3 /4

/2 1
/ 5(sin x)*? cos x dx 64. / 2x sin (1 — x?)dx
0 -1

/2
/ 15 sin* 3x cos 3xdx

/2
27 /3
/ cos™* (J—c) sin ()—C) dx

0 2 2

72 3 /4 2

sin x Ccos x dx 68. / sec” x _ dx

0 1+3sin® x o (147 tan x)?

n/3 t 2] n2/4 t

_enb do 70. _M dt

o ~/2sec 7?36/t sin /T

Average Values

71.

72.

73.

74.

Find the average value of f(x) =mx +b

a) over[—1,1]
b) over [k, k]

Find the average value of

a) y= /3x over [0, 3]
b) y = ./ax over [0, a]

Let f be a function that is differentiable on [a, b]. In Chapter 1
we defined the average rate of change of f over [a, b] to be
f®) = f(a)
b—a

and the instantaneous rate of change of f at x to be f'(x). In
this chapter we defined the average value of a function. For the
new definition of average to be consistent with the old one, we
should have

f®) - f@

= average value of f’ on [a, b].
b—a

Is this the case? Give reasons for your answer.

Is it true that the average value of an integrable function over
an interval of length 2 is half the function’s integral over the
interval? Give reasons for your answer.

Numerical Integration

H 7s.

CALCULATOR According to the error-bound formula for Simp-
son’s rule, how many subintervals should you use to be sure of
estimating the value of

31
ln3=/ —dx
1 X

by Simpson’s rule with an error of no more than 10~ in abso-
lute value? (Remember that for Simpson’s rule, the number of
subintervals has to be even.)
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76. A brief calculation shows that if 0 < x <1, then the second
derivative of f(x) = +/1+ x* lies between 0 and 8. Based on
this, about how many subdivisions would you need to estimate
the integral of f from O to 1 with an error no greater than 1073
in absolute value using the trapezoidal rule?

77. A direct calculation shows that

T
/ 2 sin® xdx = 7.
0

How close do you come to this value by using the trapezoidal
rule with n = 6? Simpson’s rule with n = 6? Try them and find
out.

78. You are planning to use Simpson’s rule to estimate the value of

the integral
2
| feas
1

with an error magnitude less than 10°. You have determined
that |f®(x)] < 3 throughout the interval of integration. How
many subintervals should you use to assure the required accuracy?
(Remember that for Simpson’s rule the number has to be even.)

@ 79. CALCULATOR Compute the average value of the temperature
function

. 2w
f(x) =37 sin (365 (x 101)) + 25
for a 365-day year. This is one way to estimate the annual mean
air temperature in Fairbanks, Alaska. The National Weather Ser-
vice’s official figure, a numerical average of the daily normal
mean air temperatures for the year, is 25.7°F, which is slightly
higher than the average value of f(x). Figure 2.42 shows why.

@ 80. Specific heat of a gas. Specific heat C, is the amount of heat
required to raise the temperature of a given mass of gas with con-
stant volume by 1°C, measured in units of cal/deg-mole (calories
per degree gram molecule). The specific heat of oxygen depends
on its temperature T and satisfies the formula

C, =827+ 107° (26T — 1.87T?).

Find the average value of C, for 20° < T < 675°C and the tem-
perature at which it is attained.

Theory and Examples

81. Is it true that every function y = f(x) that is differentiable on
[a, b] is itself the derivative of some function on [a, b]? Give
reasons for your answer.

82. Suppose that F(x) is an antiderivative of f(x) = +/1 + x*. Ex-
press fol /1 4+ x*dx in terms of F and give a reason for your

answer.
83. Finddy/dx ify = fx' +/1+ t2dt. Explain the main steps in your
calculation.

84. Find dy/dx if y = [0 (1/(1 — %)) dt. Explain the main steps

in your calculation.
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85. A new parking lot. To meet the demand for parking, your town Average Daily Inventory
has allocated the area shown here. As the town engineer, you
have been asked by the town council to find out if the lot can
be built for $11,000. The cost to clear the land will be $0.10 a
square foot, and the lot will cost $2.00 a square foot to pave.
Can the job be done for $11,000?

Average value is used in economics to study such things as average
daily inventory. If 7(¢) is the number of radios, tires, shoes, or what-
ever product a firm has on hand on day ¢ (we call / an inventory
function), the average value of I over a time period [0, T] is called
the firm’s average daily inventory for the period.

1 T
Average daily inventory =av (/) = T / I(t)dt.
0

If h is the dollar cost of holding one item per day, the product av(/) « A
is the average daily holding cost for the period.

87. As a wholesaler, Tracey Burr Distributors receives a shipment
of 1200 cases of chocolate bars every 30 days. TBD sells the
chocolate to retailers at a steady rate, and ¢ days after a shipment
arrives, its inventory of cases on hand is 7(t) = 1200 — 40¢,0 <
t <30. What is TBD’s average daily inventory for the 30-day
period? What is its average daily holding cost if the cost of
holding one case is 3¢ a day?

88. Rich Wholesale Foods, a manufacturer of cookies, stores its cases
of cookies in an air-conditioned warehouse for shipment every 14
days. Rich tries to keep 600 cases on reserve to meet occasional
peaks in demand, so a typical 14-day inventory functionis I (t) =
600 + 600¢, 0 < ¢ < 14. The daily holding cost for each case is
4¢ per day. Find Rich’s average daily inventory and average daily

holding cost.

Ignored

Vertical spacing = 15 ft

86. Skydivers A and B are in a helicopter hovering at 6400 ft. ) ) )
Skydiver A jumps and descends for 4 sec before opening her 89. Solon Container receives 450 drums of plastic pellets every 30

parachute. The helicopter then climbs to 7000 ft and hovers days. The inventory function (drums on hand as a function of
there. Forty-five seconds after A leaves the aircraft, B jumps days) is I(t) = 450 — ?/2. Find the average daily inventory. If
and descends for 13 sec before opening her parachute. Both sky- the holding cost for one drum is 2¢ per day, find the average
divers descend at 16 ft/sec with parachute open. Assume that daily holding cost.

the skydivers fall freely (no effective air resistance) before their 90, Mitchell Mailorder receives a shipment of 600 cases of athletic
parachutes open. socks every 60 days. The number of cases on hand ¢ days after
a) At what altitude does A’s parachute open? the shipment arrives is 7(f) = 600 — 20~/157. Find the average
b) At what altitude does B’s parachute open? daily inventory. If the holding cost for one case is 1/2¢ per day,
¢) Which skydiver lands first? find the average daily holding cost.

CHAPTER ADDITIONAL EXERCISES—THEORY, EXAMPLES, APPLICATIONS

5

2 5
Theory and Examples 2. Suppose / fx)dx = 4,] fx)dx = 3,/ g(x)dx =2.
—2 2 -2

1 1
1. a) Iff 7 f(x)dx =17, does f fx)dx =17
0 0

Which, if any, of the following statements are true?

1 1
b) If f f(x)dx =4 and f(x) > 0, does / JF)dx =
0 0
V4=12?

Give reasons for your answers. ¢) f(x) <g(x) on the interval -2 <x <5

2 5
2) f f)dx =3 b) / () +g(x) =9
5 -2



3. Show that
1 X
y=- / f@) sina(x —t)dt
a Jo

solves the initial value problem
d? d
—}—)+a2y=f(x), _y=0 and y =0 when x = 0.
dx? dx

(Hint: sin (ax — at) = sin ax cos at — cos ax sin at.)

4. Suppose x and y are related by the equation

Y 1
X = —dt
/o V14412
Show that d%y/dx? is proportional to y and find the constant of
proportionality.

5. Find f(4) if

a) / f@)dt =x cos mx,
0

fx)
b) / £2dt = x cos mx.
0

f

Find f (7 /2) from the following information.

i) f is positive and continuous.
ii) The area under the curve y = f(x) fromx =0tox =a is
a2+a sin +rr cos
7 tsinat s a.
7. The area of the region in the xy-plane enclosed by the x-axis,
the curve y = f(x), f(x) > 0, and the lines x = 1 and x = b is
equal to Vb2 + 1 — /2 for all b > 1. Find f(x).

8. Prove that

/ox (fo fmd’) du = /0 F)x —w)du.

(Hint: Express the integral on the right-hand side as the difference
of two integrals. Then show that both sides of the equation have
the same derivative with respect to x.)

9. Find the equation for the curve in the xy-plane that passes through
the point (1, —1) if its slope at x is always 3x% + 2.

10. You sling a shovelful of dirt up from the bottom of a hole with
an initial velocity of 32 ft/sec. The dirt must rise 17 ft above the
release point to clear the edge of the hole. Is that enough speed
to get the dirt out, or had you better duck?

Bounded Piecewise Continuous Functions

Although we are mainly interested in continous functions, many func-
tions in applications are piecewise continuous. All bounded piecewise
continuous functions are integrable (as are many unbounded functions,
as we will see in Chapter 7). Bounded on an interval / means that
for some finite constant M, |f(x)] < M for all x in I. Piecewise
continuous on / means that / can be partitioned into open or half
open subintervals on which f is continuous. To integrate a bounded
piecewise continuous function that has a continuous extension to each
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closed subinterval of the partition, we integrate the individual exten-
sions and add the results. The integral of the function

1—x, -1<x<0
f(x)=lx2, 0<x<2
-1, 2<x<3,

(Fig. 4.35) over [—1,3] is

3 0 2 3
/ f(x)dx:/ (1—x)dx+/ xzdx+/ (—-1)dx
-1 -1 0 2

X2 0 x3 2 3

- = +{=| +] —=x
5L EL L

_3 8 1_19
23 6
y
4_
3_
y=x
2_
y=1-x
-
| | ] | x
-1 0 1 2 3
y=-1
-1 *~—o

4.35 Piecewise continuous functions like this are
integrated piece by piece.

The Fundamental Theorem applies to bounded piecewise contin-
uous functions with the restriction that (d/dx) fa * f(t)dt is expected
to equal f(x) only at values of x at which f is continuous. There is
a similar restriction on Leibniz’s rule below.

Graph the functions in Exercises 11-16 and integrate them over
their domains.

1. f(x)= {izf _gii;g,

12, f(x)={;/§;t, ozsz3
O (R

14. h(z) = [ﬁ’)—l/a, ?2;;;
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1, —2<x<-1
15, f)=171-x% —-1<x<l1
2, 1<x<?2
7, —-1<r<0
16. h(r)=11-r2, 0<r<l
1, 1<r<2

17. Find the average value of the function graphed in Fig. 4.36(a).
18. Find the average value of the function graphed in Fig. 4.36(b).

y
1
X
0 1 2
(@)
y
1 ) o 0
s s ¢ x

0 1 2 3

4.36 The graphs for Exercises 17 and 18.

Leibniz’s Rule
In applications, we sometimes encounter functions like

x? 2/x
f(x) =/ (1+41¢)dt and g(x) =/

in x

sin £2 dt,
X
defined by integrals that have variable upper limits of integration and
variable lower limits of integration at the same time. The first integral
can be evaluated directly but the second cannot. We may find the
derivative of either integral, however, by a formula called Leibniz’s
rule:

Leibniz’s Rule

If f is continuous on [a, b], and u(x) and v(x) are differen-
tiable functions of x whose values lie in [a, b], then
d v(x)

dv du
T o f®)ydet = f(v(x)) i S ux)) e

Figure 4.37 gives a geometric interpretation of Leibniz’s rule. It
shows a carpet of variable width f(z) that is being rolled up at the
left at the same time x as it is being unrolled at the right. (In this
interpretation time is x, not ¢.) At time x, the floor is covered from
u(x) to v(x). The rate du/dx at which the carpet is being rolled up
need not be the same as the rate dv/dx at which the carpet is being

y

Uncovering

Sfu(x))
~J= f®

Covering

Jv(x)

v(x) -
A) =L(X) F) di

4.37 Rolling and unrolling a carpet: a geometric
interpretation of Leibniz’s rule:

dA dv du
o= f(v(x))a - f(U(X))a;

laid down. At any given time x, the area covered by carpet is
v(x)
A(x) = / f@)de.
u(x)
At what rate is the covered area changing? At the instant x, A(x) is
increasing by the width f(v(x)) of the unrolling carpet times the rate

dv/dx at which the carpet is being unrolled. That is, A(x) is being
increased at the rate

dv
fwx)) e
At the same time, A is being decreased at the rate
du
fu(x)) e

the width at the end that is being rolled up times the rate du/dx. The
net rate of change in A is

dA dv du
I f(x)) i S ux)) o

which is precisely Leibniz’s rule.
To prove the rule, let F be an antiderivative of f on [a, b]. Then

v(x)

f@)ydt = F(v(x)) — F(u(x)). (1

u(x)

Differentiating both sides of this equation with respect to x gives the
equation we want:

d [ d
ax / fde = — [F(v(x)) - F(M(X))]
X u(x) dx

Chain Rule

, dv , du
F'(v(x)) i F'(u(x)) T

dv du
= f(v(x)) i Sfux)) I

You will see another way to derive the rule in Chapter 12, Additional
Exercise 3.



Use Leibniz’s rule to find the derivatives of the functions in
Exercises 19-21.
x 1 sin x 1

19. f(x):/ —di 20. f(x):/ T

1/x cos x 1
25

21. g(y) =f sin £2dt
Sy

22. Use Leibniz’s rule to find the value of x that maximizes the value

of the integral
x+3
f t(5—t)d:r.

Problems like this arise in the mathematical theory of politi-
cal elections. See “The Entry Problem in a Political Race,” by
Steven J. Brams and Philip D. Straffin, Jr., in Political Equilib-
rium, Peter Ordeshook and Kenneth Shepfle, Editors, Kluwer-
Nijhoff, Boston, 1982, pp. 181-195.

Approximating Finite Sums with Integrals

In many applications of calculus, integrals are used to approximate
finite sums—the reverse of the usual procedure of using finite sums
to approximate integrals. Here is an example.

EXAMPLE 7 Estimate the sum of the square roots of the first
n positive integers, v/1 4+ /2 + - - + /7.
Solution See Fig. 4.38. The integral
! 2 )
/ Vxdx = —x3/2] =
0 3

is the limit of the sums

1 1 2 1 n 1
Sy =/—c—F4/—c =+t ==
n n n n n n

CVTI+V24 -+
- n3/2 :
y
y =%
o 1 2 -1 1
nn n

4.38 The relation of the circumscribed rectangles to the
integral [, v/x dx leads to an estimate of the sum

VI+V24+V3+--+4n.
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Therefore, when 7 is large, S, will be close to 2/3 and we will have
2
Root sum = ﬁ+~/§+~~+«/ﬁ=5,, n¥ gnm.

The following table shows how good the approximation can be.

n Root sum 2/3)n3? Relative error
10 22.468 21.082 1.386/22.468~ 6%
50 239.04 235.70 1.4%
100 671.46 666.67 0.7%
1000 21,097 21,082 0.07%

23. Evaluate
P+ 43F 4
lim

n—00 né

by showing that the limit is

1
/ x> dx
0

and evaluating the integral.

24. See Exercise 23. Evaluate
1
lim — (1P +2°+3 +... 4+2°).
n—-o0 n

25. Let f(x) be a continuous function. Express

2P0 es )

as a definite integral.

26. Use the result of Exercise 25 to evaluate

1
a) lim — Q2+4+6+ - +2n),
n—->o0 n

n—00

1
b) lim ?(1'5+2‘5+3‘5+...+n15)’
n

.1 (.  2m . 3w . nmw
¢) lim - {sin —+sin — +sin — +---+sin — .
n n n n

n—oo n

What can be said about the following limits?

1
d) lim 7(115+215+3'5+~--+n15)

n—-o0 n

1
e) llm T(115+215+315+"'+n15)
n—o00 n

27. a) Show that the area A, of an n-sided regular polygon in a
circle of radius 7 is
nr? 2
A, = — sin —.
5 sin —

b) Find the limit of A, as n — o0. Is this answer consistent
with what you know about the area of a circle?
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28. The error function. The error function,

2 e
erf (x) = ﬁ / e " dt,
0

important in probability and in the theories of heat flow and signal
transmission, must be evaluated numerically because there is no
elementary expression for the antiderivative of e~*".

a) Use Simpson’s rule with n = 10 to estimate erf(1).

b) In [0, 1],
4
()

Give an upper bound for the magnitude of the error of the
estimate in (a).

< 12.




