CHAPTER

Applications
of Integrals

OVERVIEW Many things we want to know can be calculated with integrals: the
areas between curves, the volumes and surface areas of solids, the lengths of curves,
the amount of work it takes to pump liquids from belowground, the forces against
floodgates, the coordinates of the points where solid objects will balance. We define
all of these as limits of Riemann sums of continuous functions on closed intervals,
that is, as integrals, and evaluate these limits with calculus.

There is a pattern to how we define the integrals in applications, a pattern
that, once learned, enables us to define new integrals when we need them. We look
at specific applications first, then examine the pattern and show how it leads to
integrals in new situations.

Areas Between Curves

This section shows how to find the areas of regions in the coordinate plane by
integrating the functions that define the regions’ boundaries.

The Basic Formula as a Limit of Riemann Sums

Suppose we want to find the area of a region that is bounded above by the curve

y = f(x), below by the curve y = g(x), and on the left and right by the lines

x = a and x = b (Fig. 5.1). The region might accidentally have a shape whose area
y we could find with geometry, but if f and g are arbitrary continuous functions we
usually have to find the area with an integral.

To see what the integral should be, we first approximate the region with n
vertical rectangles based on a partition P = {xg, xy, ..., Xx,} of [a, b] (Fig. 5.2, on
the following page). The area of the kth rectangle (Fig. 5.3, on the following page)
is

x AAy = height x width = [f(cy) — g(cr)] Axy.

Upper curve

y =fx) | e

We then approximate the area of the region by adding the areas of the n rectangles:

, Lower curve
y =8k

AR ; AA, = ; [f(ck) — glcr)] Axy. Riemann sum

5.1 The region between y = f(x) and »
y = g(x) and the lines x =a and x = b. As || P ||— O the sums on the right approach the limit fa [f(x) — g(x)]dx because

365
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5.2 We approximate the region with
rectangles perpendicular to the x-axis.
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5.4 The region in Example 1 with a
typical approximating rectangle.
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5.3 AA, = area of kth rectangle, f(cx) — g(ck) = height, Ax, = width

fand g are continuous. We take the area of the region to be the value of this integral.
That is,

A= lim
1PIl—0

n b
> L) = glen] Ani = f LF () — g ()] dx.

~ Definition

If f and g are continuous with fx) = > g(x) throughout {a, bl, then the area
of the region between the curves y = f(x) and y g(x) fromato b is the,
integral of [ f — g] from a to b: i =

“f [f(x)-—g(x)]dm

)

To apply Eq. (1) we take the following steps.

How to Find the Area Between Two Curves

1. Graph the curves and draw a representative rectangle. This reveals
which curve is f (upper curve) and which is g (lower curve). It also
helps find the limits of integration if you do not already know them.

. Find the limits of integration.

Write a formula for f(x) — g(x). Simplify it if you can.

Integrate [ f (x) — g(x)] from a to b. The number you get is the area.

AW

2

EXAMPLE 1 x and y = sinx from O to 7 /4.

Find the area between y = sec

Solution
Step 1: We sketch the curves and a vertical rectangle (Fig. 5.4). The upper curve
is the graph of f(x) = sec? x; the lower is the graph of g(x) = sinx.

Step 2: The limits of integration are already given: a = 0, b = 7 /4.

Step 3: f(x) —g(x) =

sec?x —sinx
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Step 4:

/4

/4
A= / (sec’ x —sinx) dx = [tanx -+—cosx]0
0

:P+%q—m+u=

IS

Curves That Intersect

When a region is determined by curves that intersect, the intersection points give
the limits of integration.

EXAMPLE 2 Find the area of the region enclosed by the parabola y = 2 — x?

and the line y = —x.
" Solution
5. f0) Step 1: Sketch the curves and a vertical rectangle (Fig. 5.5). Identifying the upper
\ ’ and the lower curves, we take f(x) =2 — x2 and g(x) = —x. The x-coordinates
\ of the intersection points are the limits of integration.
L1 — y=2-x Step 2: We find the limits of integration by solving y =2 —x? and y = —x si-
g y g
Ax multaneously for x:
| 2 — x2 = —x Equate /(1) and g(1).
-1
)C2 —x—-2=0 Rewrite.
x+Dx—-2)=0 Factor.
x=-1, x = 2. Solve.
The region runs from x = —1 to x = 2. The limits of integration area = —1, b = 2.
Step 3:
2 2
5.5 The region in Example 2 with a fO) —gx) =C2—=x) = (=x) =2—-x"+x Rearrangement
typical approximating rectangle. =24+ x—x2 a matter of taste
Step 4:
b 2 ¥ 1377
A :/ [f(x)—gx)]dx = / Q+x—x%dx = [2x+ 5~ ?:I
a -1 -1
4 3 1 1
=(4+-—-2)-(—24=4-=
(+2 5) ( +3+3)
39 9
=64+ —2 =2
t37372 0

Technology The Intersection of Two Graphs One of the difficult and some-
times frustrating parts of integration applications is finding the limits of inte-
gration. To do this you often have to find the zeroes of a function or the
intersection points of two curves.

To solve the equation f(x) = g(x) using a graphing utility, you enter

yi=f(x) and y,=g(x)
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5.6 When the formula for a bounding curve
changes, the area integral changes to match

(Example 3).

and use the grapher routine to find the points of intersection. Alternatively, you
can solve the equation f(x) — g(x) = 0 with a root finder. Try both procedures
with

and

f(x)=Inx gx)=3—x.

When points of intersection are not clearly revealed or you suspect hidden
behavior, additional work with the graphing utility or further use of calculus
may be necessary.

ISECT
X = 2.2079400316

T4

_—ROOT
£ x = 2.2079400316

y = .79205996845 y=20

a) The intersecting curves y; = Inx and y, = 3 - x, using a built-in function
to find the intersection
b) Using a built-in root finder to find the zero of f(x) =Inx -3 +x

Boundaries with Changing Formulas

If the formula for a bounding curve changes at one or more points, we partition
the region into subregions that correspond to the formula changes and apply Eq.
(1) to each subregion.

EXAMPLE 3 Find the area of the region in the first quadrant that is bounded
above by y = 4/x and below by the x-axis and the line y = x — 2.

Solution

Step 1: The sketch (Fig. 5.6) shows that the region’s upper boundary is the graph of
f(x) = +/x. The lower boundary changes from g(x) =0for0 <x <2 to g(x) =
x — 2 for 2 < x < 4 (there is agreement at x = 2). We partition the region at x = 2
into subregions A and B and sketch a representative rectangle for each subregion.

y 4

2+

— & f),

—

(x, g(x))

Step 2: The limits of integration for region A are a = 0 and b = 2. The left-hand
limit for region B is a = 2. To find the right-hand limit, we solve the equations



In Eq. (2), f always denotes the right-hand
curve and g the left-hand curve, so
f(y) — g(y) is nonnegative.
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y = 4/x and y = x — 2 simultaneously for x:

ﬁ =x—=2 Equate f(x) and
gx).
x=(x- 2)2 =x*—4x+4 Square both
sides.
x%—5x +4=0 Rewrite.
E-Dx-4=0 Factor.
x=1, x =4. Solve.

Only the value x = 4 satisfies the equation \/x = x — 2. The value x = 1 is an
extraneous root introduced by squaring. The right-hand limit is b = 4.

Step 3: For 0 <x <2: fE)—gx)=/x—-0=./x
For2 <x < 4: fX)—gx)=/x—(x—-2)=/x—x+2
Step 4: We add the area of subregions A and B to find the total area:

2 4
Total area =/ ﬁdx+/(ﬁ—x+2)dx
0 2

area of A area of B
2 2 4
= [gx?’/z] + [%x:”/z _ .)E_ +2x]
37 ], L3 2 )

= %(2)3/2 -0+ (2(4)3/2 —8+ 8) _ <§(2)3/2 ) +4)

2 10
=§(3)—2=?- a

Integration with Respect to y

If a region’s bounding curves are described by functions of y, the approximating
rectangles are horizontal instead of vertical and the basic formula has y in place
of x.

For regions like these

y y y
)
d
d- x = f(y) d— _
x=f(y) x=80)/\ x = f(y)
x=2g(y) X
x=2g®) - cl- —
X X
0 0

use the formula

d
A= / LF () — g1 dy. @
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y
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k= f) — g(y)
!

0 =0 2 s

5.7 1t takes two integrations to find the
area of this region if we integrate with
respect to x. It takes only one if we
integrate with respect to y (Example 4).

0 y=0 2 4

5.8 The area of the blue region is the
area under the parabola y = /x minus
the area of the triangle.

EXAMPLE 4 Find the area of the region in Example 3 by integrating with
respect to y.

Solution

Step 1: We sketch the region and a typical horizontal rectangle based on a partition
of an interval of y-values (Fig. 5.7). The region’s right-hand boundary is the line x =
y 4+ 2,50 f(y) = y + 2. The left-hand boundary is the curve x = y?, so g(y) = y*.

Step 2: The lower limit of integration is y = 0. We find the upper limit by solving
x =y+2and x = y? simultaneously for y:
2 Equate f(v) =y +2 and
y+2=y g(v) ="
y2 -y—2=0 Rewrite.
+D(y—2)=0 Factor.

y=-1, y= 2 Solve.

The upper limit of integration is b = 2. (The value y = —1 gives a point of inter-
section below the x-axis.)
Step 3:
Rearrang a
fY—g =y+2-y =2+4y-y e
Step 4:
b 2
a= [ ror-gondy = [2+4y-y1d
a 0
2 372
y Y
=2y + — =
[ "TTT3 ]0
4 8 10
=44 - — - ==
+ 2 3 3
This is the result of Example 3, found with less work. |

Combining Integrals with Formulas from Geometry

The fastest way to find an area may be to combine calculus and geometry.
EXAMPLE 5 The Area of the Region in Example 3 Found the Fastest
Way

Find the area of the region in Example 3.

Solution The area we want is the area between the curve y = /x,0 < x <4, and
the x-axis, minus the area of a triangle with base 2 and height 2 (Fig. 5.8):

4
Area :/ «/de——%(2)(2)
0

4
= gxm] -2
3 0
2 10
=Z@)—0-2=—.
3(8) 0 3 0
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Moral of Examples 3-5 It is sometimes easier to find the area between two
curves by integrating with respect to y instead of x. Also, it may help to combine
geometry and calculus. After sketching the region, take a moment to determine the
best way to proceed.

Exercises 5.1

Find the areas of the shaded regions in Exercises 1-8. 5.
1. 2. "
y y
y= 12, (-2,8) g 2,9
=3 -
1 y=1 2 y =2x2
y= cos2x M_
| X ; y = x* - 2x?
0 g T T T
2 31 /0 3
_ L\ 1 1/ X
y = —4sin®¢ -2 \1/_1 \ 2
4 NOT TO SCALE
6.
y
3. 1+
y=x
- 0 T
y =-2x*
-2+
7 8.
y
il +y=2
X y=
y=4x
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In Exercises 9-12, find the total shaded area.

9 10.
)r} y=—x*+3x
35 | L\ —@2
L /1 [
y=x*-4 -2 1 2
| y=2x3—x*-5x
=3 o\ 1 xz
=—x2-2
TR -2,-10)
33 (1,-3) “0}‘
-4
11.
y
4
(—2a4) y_4_x2
2

_5.._.
12.
y
61— (3,6)
3
y= % —x
y=3
(€AY
| 1 B
20 3
2
(2-3)

Find the areas of the regions enclosed by the lines and curves in
Exercises 13-22.

13. y=x*—2 and y=2

14, y =2x —x2
4

and y=-3

15. y=x* and y=38x

16. y =x?—2x
17. y=x* and y=—x>+4x

18. y=7-2x* and y=x2>+4

19. y=x*—4x2+4 and y=x?

20. y=x+/a>—x2, a>0, and y=0

21. y=./|x] and Sy = x + 6 (How many intersection points are
there?)

22, y=|x?—4

and y=x

and y=(x%/2)+4

Find the areas of the regions enclosed by the lines and curves in
Exercises 23-30.

23. x =2y?, and y =3

24. x=y* and x=y+2

25. > —4x =4 and 4x—-y=16
26. x —y*=0 and x+2y*=3
27. x+y*=0 and x+3y>=2
28. x —y*=0 and x+y*=2

29. x=y>—1 and x =|y|y/1—y?

30. x =y —y?

x =0,

and x =2y

Find the areas of the regions enclosed by the curves in Exercises
31-34.

3. 4x*+y=4 and x*-y=1
32. x*~y=0 and 3x?—-y=4
33. x+4y>=4 and x+y*=1, for x>0
3. x+y*=3 and 4x+y*=0

Find the areas of the regions enclosed by the lines and curves in
Exercises 35-42.

35. y=2sinx and y=sin2x, 0<x<nm

36. y=8cosx and y=sec’x, —-nm/3<x<m/3
37. y=cos(7x/2) and y=1—x2

38. y=sin(wx/2) and y=x

39. y =sec’x,

y=tan’x, x=-n/4, and x =m/4

40. x =tan’y and x=—tan’y, —-n/4<y<m/4

41. x =3siny,/cosy and x=0, 0<y<wm/2

42. y=sec’*(nx/3) and y=x'3, —-1<zx<l

43. Find the area of the propeller-shaped region enclosed by the curve
x —y> =0 and the line x —y = 0.

44. Find the area of the propeller-shaped region enclosed by the
curves x — y!/3 =0and x — y'/5 = 0.

45. Find the area of the region in the first quadrant bounded by the
line y = x, the line x = 2, the curve y = 1/x2, and the x-axis.



46.

47.

48.

49.

50.

51.

Find the area of the “triangular” region in the first quadrant
bounded on the left by the y-axis and on the right by the curves
y =sinx and y = cos x.

The region bounded below by the parabola y = x? and above by
the line y = 4 is to be partitioned into two subsections of equal
area by cutting across it with the horizontal line y = c.

a) Sketch the region and draw a line y = ¢ across it that looks
about right. In terms of ¢, what are the coordinates of the
points where the line and parabola intersect? Add them to
your figure.

b) Find c by integrating with respect to y. (This puts ¢ in the
limits of integration.)

¢) Find c by integrating with respect to x. (This puts c into the
integrand as well.)

Find the area of the region between the curve y =3 — x? and
the line y = —1 by integrating with respect to (a) x, (b) y.

Find the area of the region in the first quadrant bounded on the
left by the y-axis, below by the line y = x /4, above left by the
curve y = 1 + 4/, and above right by the curve y = 2/./x.

Find the area of the region in the first quadrant bounded on the
left by the y-axis, below by the curve x =2,/y, above left by
the curve x = (y — 1)?, and above right by the line x = 3 — y.

x=(y—1)?

The figure here shows triangle AOC inscribed in the region cut
from the parabola y = x? by the line y = a?. Find the limit of
the ratio of the area of the triangle to the area of the parabolic
region as a approaches zero.
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52. Suppose the area of the region between the graph of a positive
continuous function f and the x-axis from x =a to x =b is 4
square units. Find the area between the curves y = f(x) and
y=2f(x) fromx =a to x =b.

53. Which of the following integrals, if either, calculates the area of
the shaded region shown here? Give reasons for your answer.

1 1
a) / (x = (=x))dx = / 2x dx
-1 -1

1 1
b) f (=x — (x))dx = / —2xdx
—1 —

1

54. True, sometimes true, or never true? The area of the region
between the graphs of the continuous functions y = f(x) and
y = g(x) and the vertical lines x =a and x = b (a < b) is

b
/ [f(x) —g(x)]dx.

Give reasons for your answer.

& CAS Explorations and Projects

In Exercises 55-58, you will find the area between curves in the plane
when you cannot find their points of intersection using simple algebra.
Use a CAS to perform the following steps:

a) Plot the curves together to see what they look like and how many
points of intersection they have.

b) Use the numerical equation solver in your CAS to find all the
points of intersection.

¢) Integrate |f(x) — g(x)| over consecutive pairs of intersection

values.
d) Sum together the integrals found in part (c).
3 2
1
55. f(x):%—%—2x+§, gy =x—1

4
56. f(x) = % —3x3+10, g(x)=8— 12x

57. f(x) =x +sin(2x), gx)=x3

58. f(x) =x%cosx, gx)=x>—x
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Cross section R(x). Its area is A(x).

X

b
5.9 If the area A(x) of the cross section
R(x) is a continuous function of x, we can

find the volume of the solid by
integrating A(x) from a to b.

Finding Volumes by Slicing

From the areas of regions with curved boundaries, we can calculate the volumes of
cylinders with curved bases by multiplying base area by height. From the volumes
of such cylinders, we can calculate the volumes of other solids.

Slicing

Suppose we want to find the volume of a solid like the one shown in Fig. 5.9. At
each point x in the closed interval [a, b] the cross section of the solid is a region
R(x) whose area is A(x). This makes A a real-valued function of x. If it is also a
continuous function of x, we can use it to define and calculate the volume of the
solid as an integral in the following way.

We partition the interval [a, b] along the x-axis in the usual manner and slice
the solid, as we would a loaf of bread, by planes perpendicular to the x-axis at
the partition points. The kth slice, the one between the planes at x;_; and x;, has
approximately the same volume as the cylinder between these two planes based on
the region R(x;) (Fig. 5.10). The volume of this cylinder is

Vi = base area x height
= A(x;) x (distance between the planes at x;_; and x;)
= A(xp)Axg.

The volume of the solid is therefore approximated by the cylinder volume sum

Z A(xk) Axk .
k=1

This is a Riemann sum for the function A(x) on [a, b]. We expect the approximations
from these sums to improve as the norm of the partition of [a, b] goes to zero, so
we define their limiting integral to be the volume of the solid.

Approximating
cylinder based
on R(x)

Plane at x, _

1

Plane at X,

The cylinder’s base
is the region R(xy).

NOT TO SCALE

5.10 Enlarged view of the slice of the solid between the
planes at x,_; and xx and its approximating cylinder.
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Definition
‘The volume of a solid of known integrable cross-section area A(x) from
x =a to x = b is the integral of A from a to b:

b
v=/ A(x) dx. M

To apply Eq. (1), we take the following steps.

How to Find Volumes by the Method of Slicing

1. Sketch the solid and a typical cross section.
2. Find a formula for A(x).

3. Find the limits of integration.

4. Integrate A(x) to find the volume.

EXAMPLE 1 A pyramid 3 m high has a square base that is 3 m on a side.
The cross section of the pyramid perpendicular to the altitude x m down from the
vertex is a square x m on a side. Find the volume of the pyramid.

Solution

Step 1: A sketch. We draw the pyramid with its altitude along the x-axis and its
vertex at the origin and include a typical cross section (Fig. 5.11).

Typical cross
section

x (m)

5.11 The cross sections of the pyramid in Example 1
are squares.

Step 2: A formula for A(x). The cross section at x is a square x meters on a side,
so its area is

A(x) = x>
Step 3: The limits of integration. The squares go from x =0 to x = 3.

Step 4: The volume.
3

b 3 x3
v:f A(x)dx:/ xzdx=—] =0,
a 0 3 0

The volume is 9 m3. d
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EXAMPLE 2 A curved wedge is cut from a cylinder of radius 3 by two planes.

Bonaventura Cavalieri (1598-1647) One plane is perpendicular to the axis of the cylinder. The second plane crosses

Cavalieri, a student of Galileo’s, discovered the first plane at a 45° angle at the center of the cylinder. Find the volume of the
that if two plane regions can be arranged to wedge.

lie over the same interval of the x-axis in

such a way that they have identical vertical Solution

cross sections at every point, then the regions
have the same area. The theorem (and a letter
of recommendation from Galileo) were
enough to win Cavalieri a chair at the
University of Bologna in 1629. The solid
geometry version in Example 3, which 29 — x?
Cavalieri never proved, was given his name
by later geometers.

Step 1: A sketch. We draw the wedge and sketch a typical cross section perpen-
dicular to the x-axis (Fig. 5.12).

| .

| Cross sections have
: the same length at

| every point in [a, b]

|

|

|

|
a x b 5.12 The wedge of Example 2, sliced perpendicular
to the x-axis. The cross sections are rectangles.

Step 2: The formula for A(x). The cross section at x is a rectangle of area

A(x) = (height)(width) = (x) (2\/9 - x2)
= 2xv/9 — x2.

Step 3: The limits of integration. The rectangles run from x =0 to x = 3.
Step 4: The volume.

: b 3
% :/ A(x)dx:/ 2xv9 — x2dx
a 0

2 3
= —-5(9 - x2)3/2]

0
2 Letu =9 — x2,
3/2
=0+ 5(9) / du = —2x dx, integrate,
and substitute back.
= 18. a

Same cross-section
area at every level

EXAMPLE 3 Cavalieri’s Theorem

5.13 Cavalieri’s theorem: These solids Cav:aherl s theorem says that solids w1tb equal altitudes and 1de}1t1'cal par.a]lel Cross-
have the same volume. You can illustrate section areas have the same volume (Fig. 5.13). We can see this immediately from
this yourself with stacks of coins. Eq. (1) because the cross-section area function A(x) is the same in each case. U
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Exercises 5.2

Cross-Section Areas

In Exercises 1 and 2, find a formula for the area A(x) of the cross
sections of the solid perpendicular to the x-axis.

1. The solid lies between planes perpendicular to the x-axis at x =
—1 and x = 1. In each case, the cross sections perpendicular
to the x-axis between these planes run from the semicircle y =
—+/1 — x? to the semicircle y = +/1 — x2.

a) The cross sections are circular disks with diameters in the
xy-plane.

2. The solid lies between planes perpendicular to the x-axis at x =0
and x = 4. The cross sections perpendicular to the x-axis between
these planes run from the parabola y = —/x to the parabola

y = /%
a) The cross sections are circular disks with diameters in the
xy-plane.

b) The cross sections are squares with bases in the xy-plane.

b) The cross sections are squares with bases in the xy-plane.

¢) The cross sections are squares with diagonals in the xy-
plane. (The length of a square’s diagonal is +/2 times the
length of its sides.)

¢) The cross sections are squares with diagonals in the xy-plane.
d) The cross sections are equilateral triangles with bases in the

xy-plane.

Volumes by Slicing

Find the volumes of the solids in Exercises 3—12.

3. The solid lies between planes perpendicular to the x-axis at x = 0

and x = 4. The cross sections perpendicular to the axis on the

d) The cross sections are equilateral triangles with bases in the interval 0 < x < 4 are squares whose diagonals run from the
xy-plane. parabola y = —./x to the parabola y = /x.
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4.

10.

The solid lies between planes perpendicular to the x-axis at x =
—1 and x = 1. The cross sections perpendicular to the x-axis are
circular disks whose diameters run from the parabola y = x? to
the parabola y = 2 — x2.

. The solid lies between planes perpendicular to the x-axis at

x = —1 and x = 1. The cross sections perpendicular to the axis
between these planes are vertical squares whose base edges
run from the semicircle y = —+/1 — x? to the semicircle y =

V1 —x2,

The solid lies between planes perpendicular to the x-axis at x =
—1 and x = 1. The cross sections perpendicular to the x-axis
between these planes are squares whose diagonals run from the
semicircle y = —+/1 — x? to the semicircle y = +/1 — x2. (The
length of a square’s diagonal is +/2 times the length of its sides.)

. The base of the solid is the region between the curve y = 2+/sinx

and the interval [0, 7] on the x-axis. The cross sections perpen-
dicular to the x-axis are

a) vertical equilateral triangles with bases running from the
x-axis to the curve;

vertical squares with bases running from the x-axis to the
curve.

b)

. The solid lies between planes perpendicular to the x-axis at x =

—n /3 and x = /3. The cross sections perpendicular to the x-
axis are

a) circular disks with diameters running from the curve y =
tanx to the curve y = secx;
vertical squares whose base edges run from the curve y =
tan x to the curve y = sec x.

b)

. The solid lies between planes perpendicular to the y-axis at y = 0

and y = 2. The cross sections perpendicular to the y-axis are cir-
cular disks with diameters running from the y-axis to the parabola

x =~/5y%

The base of the solid is the disk x? + y? < 1. The cross sections
by planes perpendicular to the y-axis between y = —l and y = 1
are isosceles right triangles with one leg in the disk.

Cavalieri’s Theorem

11. A twisted solid. A square of side length s lies in a plane per-

12

13.

14.

pendicular to a line L. One vertex of the square lies on L. As this
square moves a distance A along L, the square turns one revo-
lution about L to generate a corkscrew-like column with square
cross sections.

a) Find the volume of the column.

b) What will the volume be if the square turns twice instead
of once? Give reasons for your answer.
A solid lies between planes y

perpendicular to the x-axis at

x =0 and x = 12. The cross
sections by planes perpendicular
to the x-axis are circular disks
whose diameters run from the line
y = x/2 to the line y = x.
Explain why the solid has the
same volume as a right circular
cone with base radius 3 and
height 12.

~—
0

Cavalieri’s original theorem. Prove Cavalieri’s original theo-
rem (marginal note, page 376), assuming that each region is
bounded above and below by the graphs of continuous functions.

The volume of a hemisphere (a classical application of Cav-
alieri’s theorem). Derive the formula V = (2/3)7R® for the
volume of a hemisphere of radius R by comparing its cross sec-
tions with the cross sections of a solid right circular cylinder of
radius R and height R from which a solid right circular cone of
base radius R and height R has been removed.

x' R2_h2
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Generating region

Cross section perpendicular to
y the axis at x is a disk of area

A(x) = mr(radius)? = 7 (R(x))?
y=R()

/

Axis of

Radius: )
revolution

R(x)

5.14 The solid generated by revolving
the region between the curve y = R(x)
and the x-axis from a to b about the
X-axis.

Axis of
revolution

Volumes of Solids of Revolution—Disks
and Washers

The most common application of the method of slicing is to solids of revolution.
Solids of revolution are solids whose shapes can be generated by revolving plane
regions about axes. Thread spools are solids of revolution; so are hand weights
and billiard balls. Solids of revolution sometimes have volumes we can find with
formulas from geometry, as in the case of a billiard ball. But when we want to
find the volume of a blimp or to predict the weight of a part we are going to have
turned on a lathe, formulas from geometry are of little help and we turn to calculus
for the answers.

§ 1
Generating Axis of Generating region
region revolution

Axis of
revolution

A

If we can arrange for the region to be the region between the graph of a contin-
uous function y = R(x),a < x < b, and the x-axis, and for the axis of revolution
to be the x-axis (Fig. 5.14), we can find the solid’s volume in the following way.

The typical cross section of the solid perpendicular to the axis of revolution is
a disk of radius R(x) and area

A(x) = m(radius)® = w[R(x)]%.

The solid’s volume, being the integral of A from x = a to x = b, is the integral of
7[R(x)]? from a to b.

Volume of a Solid of Revolution (Rotation About the x-axis)

The volume of the solid generated by revolving about the x-axis the region
between the x-axis and the graph of the continuous function y = R(x),a <
x <b,is

b b
V:/ n[radius]zdxzf n[R(x))? dx. %)

EXAMPLE 1 The region between the curve y = /x, 0 < x < 4, and the x-axis
is revolved about the x-axis to generate a solid. Find its volume.



380 Chapter 5: Applications of Integrals

]

5.15 The region (a) and solid (b) in
Example 1.

(@)

5.16 The region (a) and solid (b) in
Example 2.

Solution We draw figures showing the region, a typical radius, and the generated
solid (Fig. 5.15). The volume is

b
v=/ 7[R(x))*dx Eq. (1)
4 2
=f m [Vx] dx R(x) = Jx
0
4 274 2
=7r/ xdx:nx—] =nﬁ=8n.
0 2 ]y 2 a

How to Find Volumes Using Eq. (1)

1. Draw the region and identify the radius function R(x).
2. Square R(x) and multiply by 7.
3. [Integrate to find the volume.

The axis of revolution in the next example is not the x-axis, but the rule for
calculating the volume is the same: Integrate 7 (radius)? between appropriate limits.

EXAMPLE 2 Find the volume of the solid generated by revolving the region
bounded by y = /x and the lines y = 1, x = 4 about the line y = 1.

Solution We draw figures showing the region, a typical radius, and the generated
solid (Fig. 5.16). The volume is

4
V=/ a[R(x)*dx Eq. (1)
1
4 2
=/n[ﬁ—1] dx R(x)=x—1
1
4
=7r/ [x —2V/x +1]dx
1

2 4
=7t|:£-—2-gx3/2+x] =7—n.
2 3 ) 6 Q

To find the volume of a solid generated by revolving a region between the
y-axis and a curve x = R(y),c < y <d, about the y-axis, we use Eq. (1) with x
replaced by y.

Volume of a Solid of Revolution (Rotation About the y-axis)

d d
V= f 7 (radius)’ dy = / 7[R(y)*dy )




(@)

y

4

0 RG) = 2

(b

5.17 The region (a) and solid (b) in
Example 3.

5.18 The region (a) and solid (b) in
Example 4.
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EXAMPLE 3 Find the volume of the solid generated by revolving the region
between the y-axis and the curve x = 2/y, 1 < y < 4, about the y-axis.

Solution We draw figures showing the region, a typical radius, and the generated
solid (Fig. 5.17). The volume is

4
V= / n[R(y)1*dy Eq. (2)
1

4 22 2
/N — | dy R() ==
1 y ¥
44 17* 3
=7l'/ —Edy=47r[——i| =47r|:—]
1y Y1 4

= 3. a

EXAMPLE 4 Find the volume of the solid generated by revolving the region
between the parabola x = y? + 1 and the line x = 3 about the line x = 3.

Solution We draw figures showing the region, a typical radius, and the generated
solid (Fig. 5.18). The volume is

V)
V= / 7[R dy Eq. (2)
V2
‘/5 2
=f 72 — y* P dy R()’)z;:g:\z + 1D
) )

N
=7r/ [4 —4y* + y*1dy
V3

V2

4 5
=7r|:4y——y3+y—] .
-2

3 5

647/2
15

y Rp)=3-0%+1
:2—-y2 @?
V2 \ (3,V2)

0 T 3 *
x=y2+1

(3,-V2)

(a)
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5.19 The cross sections of the solid of
revolution generated here are washers,
not disks, so the integral fab A(x) dx leads
to a slightly different formula.

The Washer Method

If the region we revolve to generate a solid does not border on or cross the axis of
revolution, the solid has a hole in it (Fig. 5.19). The cross sections perpendicular
to the axis of revolution are washers instead of disks. The dimensions of a typical
washer are

Outer radius: R(x)
Inner radius: r(x)

The washer’s area is

A(x) = [RX)V — w[r(0)? = 7 ([RX)? — [r(x)]?).

The Washer Formula for Finding Volumes
b
V= / 7 ([R®)P - [r(x)F) dx 3
outer inner
radius radius
squared squared

Notice that the function integrated in Eq. (3) is 7 (R? — r?), not w (R — r)?. Also
notice that Eq. (3) gives the disk method formula if r(x) is zero throughout [a, b].
Thus, the disk method is a special case of the washer method.

\

EXAMPLE 5 The region bounded by the curve y = x> + 1 and the line y =
—x + 3 is revolved about the x-axis to generate a solid. Find the volume of the
solid.

Solution

Step 1: Draw the region and sketch a line segment across it perpendicular to the
axis of revolution (the red segment in Fig. 5.20).

Step 2: Find the limits of integration by finding the x-coordinates of the intersection
points.

x*+1=-x+3
P4x-2=0
x+2)x—-1)=0
x = -2, x=1

Step 3: Find the outer and inner radii of the washer that would be swept out by
the line segment if it were revolved about the x-axis along with the region. (We
drew the washer in Fig. 5.21, but in your own work you need not do that.) These
radii are the distances of the ends of the line segment from the axis of revolution.

Outer radius: R(x)=—-x+3

Inner radius: r(x) =x>+1



=2,5)

I

Rx)=-x+3

r(x) = x2+1

Interval of
integration

5.20 The region in Example 5 spanned by
a line segment perpendicular to the axis
of revolution. When the region is
revolved about the x-axis, the line
segment will generate a washer.
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1,2

T~/

rx) =x2+ 17

~~_
~
~=

5.21 The inner and outer radii of the
washer swept out by the line segment in
Fig. 5.20.

Washer cross section
Outerradius: R(x) = —x +3
Inner radius: r(x) = x2 + 1

Step 4: Evaluate the volume integral.

Eq. (3)

b
V= / 7 ([R&)P = [r(x))?) dx

Values from steps

1
_ / 7 (—x +3) — (¢ + 1)) dx

5
2 2and 3
1 Expressions
= / 78 —6x —x* —x%)dx squared and
-2 combined
3 57!
X7 x 1177
=n[8x—3x2————:| = —
3 51, 5 Qa

How to Find Volumes by the Washer Method

1. Draw the region and sketch a line segment across it perpendicular to
the axis of revolution. When the region is revolved, this segment will
generate a typical washer cross section of the generated solid.

2. Find the limits of integration.

3. Find the outer and inner radii of the washer swept out by the line
segment.

4. Integrate to find the volume.

To find the volume of a solid generated by revolving a region about the y-axis,
we use the steps listed above but integrate with respect to y instead of x.

EXAMPLE 6 The region bounded by the parabola y = x? and the line y = 2x

in the first quadrant is revolved about the y-axis to generate a solid. Find the volume
of the solid.
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Solution

Step 1: Draw the region and sketch a line segment across it perpendicular to the
axis of revolution, in this case the y-axis (Fig. 5.22).

Step 2: The line and parabola intersect at y = 0 and y = 4, so the limits of inte-
gration are c =0 and d = 4.

Step 3: The radii of the washer swept out by the line segment are R(y) = ./y,
r(y) = y/2 (Figs. 5.22 and 5.23).

y
& y
4k 2,4
<—R(y) =y
=2
P =3
s
SO
£ y=2x
S or
= e=?
5 2 y = x?
= or
x =1y
5.22 The region, limits of integration, ' x 5.23 The washer swept out by the line
and radii in Example 6. 0 2 segment in Fig. 5.22.
Step 4:
d .
Eq. (3) with v
V= / Y4 ([R()’)]2 - [r(y)]Z) dy in place of x
c

4 2 2 Values from
2/ ﬂ(l:ﬁ] —[%] )dy steps 2 and 3
0
4
y 3 :”f4 Y—y—2 dy=m y_r ~
%=§ o 4 2 12, 3 0
S8

——RO) =3 .

= 2 EXAMPLE 7 The region in the first quadrant enclosed by the parabola y = x2,
% : /_y=x*orx=1y the y-axis, and the line y = 1 is revolved about the line x = 3/2 to generate a solid.
g“ 3 Find the volume of the solid.

= —

el y Vy, r(y)=35-—\y

° ( Y y) 2 Solution

E ' | Step 1: Draw the region and sketch a line segment across it perpendicular to the
= 0 1 3 * axis of revolution, in this case the line x = 3/2 (Fig. 5.24).

2 Step 2: The limits of integration are y =0to y = 1.

5.24 The region, limits of integration, Step 3: The radii of the washer swept out by the line segment are R(y) = 3/2,

and radii in Example 7. r(y) = (3/2) — /y (Figs. 5.24 and 5.25).



5.25 The washer swept out by the line segment in
Fig. 5.24.

Step 4:
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d Eq. (3) with
V= f ¥4 ([R(y)]2 - [r(}’)]z) dy .\'fin_ place
1 3 2 3 2
[=(B]-G-])e
1 29!
_ — p_ Y| 3
nfo(3«/§ y)dy—ﬂ[2y 2]0— 5 -

Exercises 5.3

Volumes by the Disk Method

In Exercises 1-4, find the volume of the solid generated by revolving
the shaded region about the given axis.

1. About the x-axis 2. About the y-axis

y y
\1 2
x+2y=2 x=30
X l X
0 2 0 3
3. About the y-axis 4. About the x-axis
Y y .
Yy = SIn x CoS x
1
X = tan (Z—{y)
0 * 0 *

Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 5-10 about the x-axis.

5.y=x% y=0, x=2 6. y=x% y=0x=2
7.y=+/9-x2, y=0 8. y=x—x% y=0

9. y=,/cosx, 0<x<m/2, y=0, x=0

10. y=secx, y=0, x=-7m/4, x=m/4

In Exercises 11 and 12, find the volume of the solid generated by
revolving the region about the given line.

11. The region in the first quadrant bounded above by the line y =
/2, below by the curve y = secx tanx, and on the left by the
y-axis, about the line y = +/2

12. The region in the first quadrant bounded above by the line y = 2,
below by the curve y = 2sinx, 0 < x < w/2, and on the left by
the y-axis, about the line y = 2

Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 13—18 about the y-axis.
13. x = /5y, =1

14. x = y3?,

x=0, y=-1,

x=0, y=2
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15. x =./2sin2y, 0<y<mn/2, x=0
16. x = /cos(my/4), -2<y<0, x=0
17. x=2/(y+1), x=0, y=0, y=3
18. x =.2y/(»*+1), x=0, y=1

Volumes by the Washer Method

Find the volumes of the solids generated by revolving the shaded
regions in Exercises 19 and 20 about the indicated axes.

19. The x-axis 20. The y-axis

y y
y=1 Ly .
4
x=tany
y = Vcosx X
_r 0 m
2 2
X
0 1

Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 21-28 about the x-axis.

2l. y=x, y=1, x=0 22. y=2x, y=x, x=1
23. y=2/x, y=2, x=0

24 y=—/x, y=-2, x=0

25. y=x?>4+1, y=x+3

26, y=4—x? y=2-—x

27. y=secx, y=+2, —-m/d<x<mn/4

28. y=secx, y=tanx, x=0, x=1

In Exercises 29-34, find the volume of the solid generated by revolv-
ing each region about the y-axis.

29. The region enclosed by the triangle with vertices (1, 0), (2, 1),
and (1, 1)
The region enclosed by the triangle with vertices (0, 1), (1, 0),
and (1, 1)

The region in the first quadrant bounded above by the parabola
y = x2, below by the x-axis, and on the right by the line x = 2

30.
31.

32. The region bounded above by the curve y = ,/x and below by

the line y = x

33. The region in the first quadrant bounded on the left by the circle
x* 4 y* =3, on the right by the line x = +/3, and above by the
line y = /3

34. The region bounded on the left by the line x = 4 and on the right

by the circle x? 4+ y? = 25

In Exercises 35 and 36, find the volume of the solid generated by
revolving each region about the given axis.

35. The region in the first quadrant bounded above by the curve

y = x2, below by the x-axis, and on the right by the line x = 1,
about the line x = —1

36. The region in the second quadrant bounded above by the curve
y = —x3, below by the x-axis, and on the left by the line x = —1,
about the line x = —2

Volumes of Solids of Revolution

37. Find the volume of the solid generated by revolving the region
bounded by y = 4/x and the lines y = 2 and x = 0 about
a) the x-axis;
b) the y-axis;
¢) theline y =2;
d) the line x = 4.

Find the volume of the solid generated by revolving the triangular
region bounded by the lines y = 2x, y = 0, and x = 1 about

38.

a) the line x = 1;
b) the line x = 2.

39. Find the volume of the solid generated by revolving the region

bounded by the parabola y = x? and the line y = 1 about

a) theliney =1,
b) the line y =2;
¢) theline y = —1.

40. By integration, find the volume of the solid generated by re-
volving the triangular region with vertices (0, 0), (b, 0), (0, k)

about

a) the x-axis;
b) the y-axis.

B 41.

Designing a wok. You are designing a wok frying pan that will
be shaped like a spherical bowl with handles. A bit of experi-
mentation at home persuades you that you can get one that holds
about 3 L if you make it 9 cm deep and give the sphere a radius
of 16 cm. To be sure, you picture the wok as a solid of revolu-
tion, as shown here, and calculate its volume with an integral.
To the nearest cubic centimeter, what volume do you really get?
(1 L = 1000 cm?)

y (cm)

/
~16 9 cm deep
B 42. Designing a plumb bob. Having been asked to design a brass
plumb bob that will weigh in the neighborhood of 190 g, you
decide to shape it like the solid of revolution shown here. Find



the plumb bob’s volume. If you specify a brass that weighs 8.5
g/cm?, how much will the plumb bob weigh (to the nearest gram)?

y (cm)

x (cm)

43. The arch y =sinx, 0 < x <z, is revolved about the line y = c,

0 < ¢ <1, to generate the solid in Fig. 5.26.

y

5.26 Exercise 43 asks for the value of ¢ that minimizes
the volume of this solid.

a) Find the value of ¢ that minimizes the volume of the solid.
What is the minimum value?

b) What value of ¢ in [0, 1] maximizes the volume of the solid?

A
4N C)

B au.

45.

46.

47.
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GRAPHER Graph the solid’s volume as a function of ¢, first
for 0 < ¢ <1 and then on a larger domain. What happens
to the volume of the solid as ¢ moves away from [0, 1]?
Does this make sense physically? Give reasons for your
answer.

An auxiliary fuel tank. You are designing an auxiliary fuel tank
that will fit under a helicopter’s fuselage to extend its range.
After some experimentation at your drawing board, you decide to
shape the tank like the surface generated by revolving the curve
y =1-— (x?/16), —4 < x < 4, about the x-axis (dimensions in
feet).

a) How many cubic feet of fuel will the tank hold (to the
nearest cubic foot)?

A cubic foot holds 7.481 gal. If the helicopter gets 2 mi to
the gallon, how many additional miles will the helicopter be
able to fly once the tank is installed (to the nearest mile)?

b)

The volume of a torus. The disk x? + y? < a? is revolved about
the line x = b (b > a) to generate a solid shaped like a doughnut
and called a torus. Find its volume. (Hint: [ \/a® — y?>dy =
ma?/2, since it is the area of a semicircle of radius a.)

a) A hemispherical bowl of radius a contains water to a depth
h. Find the volume of water in the bowl.

b) (Related rates) Water runs into a sunken concrete hemispher-
ical bowl of radius 5 m at the rate of 0.2 m®/ sec. How fast
is the water level in the bowl rising when the water is 4 m
deep?

Testing the consistency of the calculus definition of volume.

The volume formulas in this section are all consistent with the
standard formulas from geometry.

a) As a case in point, show that if you revolve the region
enclosed by the semicircle y = +/a? — x? and the x-axis
about the x-axis to generate a solid sphere, the disk formula
for volume (Eq. 1) will give (4/3)a® just as it should.

b) Use calculus to find the volume of a right circular cone of
height % and base radius .

Cylindrical Shells

When we need to find the volume of a solid of revolution, cylindrical shells some-
times work better than washers (Fig. 5.27, on the following page). In part, the
reason is that the formula they lead to does not require squaring.

The Shell Formula

Suppose we revolve the tinted region in Fig. 5.28 (on the following page) about the
y-axis to generate a solid. To estimate the volume of the solid, we can approximate
the region with rectangles based on a partition P of the interval [a, b] over which the
region stands. The typical approximating rectangle is Ax; units wide by f(c;) units
high, where ¢y is the midpoint of the rectangle’s base. A formula from geometry tells



388 Chapter 5: Applications of Integrals

Y

@? Shell radius

Shell thickness = dx

y=

2 Shell

height

Interval of integration

5.29 The region, shell dimensions, and
interval of integration in Example 1.

X

5.27 A solid of revolution approx- 5.28 The shell swept out by the kth
imated by cylindrical shells. rectangle.

us that the volume of the shell swept out by the rectangle is
AV, =2 x average shell radius x shell height x thickness,
which in our case is
AV, =21 X ¢ X f(cr) X Axg.

We approximate the volume of the solid by adding the volumes of the shells swept
out by the n rectangles based on P:

n n
V= Z AV, = Z2J‘L’Ck fcr) Axy. A Riemann sum
k=1 k=1
The limit of this sum as ||P||— 0 gives the volume of the solid:

1PII—0

n b
V= lim > 2me, fc)Ax =f 2rx f(x)dx.
k=1 a

The Shell Formula for Revolution About the y-axis

The volume of the solid generated by revolving the region between the
x-axis and the graph of a continuous functiony = f(x) > 0,0 <a <x <b,
about the y-axis is

b b
shell shell
V= /a 2w (radius) <height) dx = /; 2nx f(x)dx. (1)

EXAMPLE 1 The region bounded by the curve y = /x, the x-axis, and the
line x = 4 is revolved about the y-axis to generate a solid. Find the volume of the
solid.

Solution

Step 1: Sketch the region and draw a line segment across it parallel to the axis
of revolution (Fig. 5.29). Label the segment’s height (shell height) and distance from



One way to remember Eq. (1) is to imagine
cutting and unrolling a cylindrical shell to get
a (nearly) flat rectangular solid.

dx

Inner circumference = 27rx

| =2mx dx = thickness

Almost a rectangular solid
V = length X height X thickness

~2mx - f(x)-dx
y
4 — y2
Shell height

2 2 4.2
5§
Tils  thkness =
5} ickness =
= g ¥ Shell radius G\ Y

£ ! )
0 4 JJ *

5.31 The region, shell dimensions, and
interval of integration in Example 2.
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the axis of revolution (shell radius). The width of the segment is the shell thickness
dx. (We drew the shell in Fig. 5.30, but you need not do that.)

Y Shell radius

: Interval of
.. integration

“4

5.30 The shell swept out by the line segment in Fig. 5.29.

Step 2: Find the limits of integration: x runs from ¢ =0 to b = 4.

b
shell shell
= /a o (radius) <height) dx Eq. (1)
4 Val fr steps
= / 271(x)(ﬁ)dx | :“l]ljszmm tep
0
' 2 5,0 1287
= 271/ 2 dx =21 I:_XS/z:l _
° 57 1 5 a

Equation (1) is for vertical axes of revolution. For horizontal axes, we replace the
X’s with y’s.

The Shell Formula for Revolution About the x-axis

d d
shell shell
V= _[ 2m <radius) (height)dy - /C 2y f (y) dy @)

(for f(y) >0and 0 <c <y <d)

EXAMPLE 2 The region bounded by the curve y = /x, the x-axis, and the
line x = 4 is revolved about the x-axis to generate a solid. Find the volume of the
solid.

Solution

Step 1: Sketch the region and draw a line segment across it parallel to the axis of
revolution (Fig. 5.31). Label the segment’s length (shell height) and distance from
the axis of revolution (shell radius). The width of the segment is the shell thickness
dy. (We drew the shell in Fig. 5.32, shown on the following page, but you need not
do that.)
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Shell height

5.32 The shell swept out by the line
segment in Fig. 5.31.

Axis:x =2

Se

Shell thickness = dx

Shell height
1-x?

0

Interval of integration

| 2-—x
Shell radius

| x

5.33 The region, shell dimensions, and
interval of integration in Example 3.

Line x = 2 Shell height
W =1- x2
N

X

Interval of
integration

5.34 The shell swept out by the line
segment in Fig. 5.33.

Step 2: Identify the limits of integration: y runs from ¢ =0 to d = 2.
Step 3: Integrate to find the volume.

d
shell shell

V= /C 2m (radius) <height) dy

2
= f 2w ()@~ y»)dy

0

y_4 2

4 1o

This agrees with the disk method of calculation in Section 5.3, Example 1.

Eq. (2)

Values from steps
I and 2

=2r [Zyz - =8x

a

How to Use the Shell Method

Regardless of the position of the axis of revolution (horizontal or vertical),
the steps for implementing the shell method are these:

1. Draw the region and sketch a line segment across it parallel to the
axis of revolution. Label the segment’s height or length (shell height),
distance from the axis of revolution (shell radius), and width (shell
thickness).

2. Find the limits of integration.

3. Integrate the product 2 (shell radius) (shell height) with respect to the

appropriate variable (x or y) to find the volume.

In the next example, the axis of revolution is the vertical line x = 2.

EXAMPLE 3 The region in the first quadrant bounded by the parabola y = x2,
the y-axis, and the line y = 1 is revolved about the line x = 2 to generate a solid.
Find the volume of the solid.

Solution

Step 1: Draw a line segment across the region parallel to the axis of revolution (the
line x = 2) (Fig. 5.33). Label the segment’s height (shell height), distance from the
axis of revolution (shell radius), and width (in this case, dx). (We drew the shell in
Fig. 5.34, but you need not do that.)

Step 2: The limits of integration: x runs froma =0 to b = 1.

Step 3: shell shell

b
V= _/; 2m (radius) (height) dx

1
=f 21 (2 — x)(1 — x*)dx
0

Eq. (1)

Values from steps
I and 2

1
27r/ Q2—x—2x*+x%)dx
0

137
6 (]



Table 5.1 Washers vs. shells

5.4 Cylindrical Shells 391

Table 5.1 summarizes the washer and shell methods for the solid generated by
revolving the region bounded by y = x and y = x? about the coordinate axes. For
this particular region, both methods work well for both axes of revolution. But this
is not always the case. When a region is revolved about the y-axis, for example,
and washers are used, we must integrate with respect to y. However, it may not be
possible to express the integrand in terms of y. In such a case, the shell method
allows us to integrate with respect to x instead.

The washer and shell methods for calculating volumes of solids of revolution
always agree. In Section 6.1 (Exercise 52), we will be able to prove the equivalence

for a broad class of solids.

The region bounded by
y=1x y=x?
or
X=y X= \/;
y
1 —
y=x
y=x*
|
0 1

GENERATING SEGMENT 1 TO AXIS: WASHERS.

y

1~

GENERATING SEGMENT || TO AXIS: SHELLS.

y

1~
\)I |‘\ Shell height = Yy — y

S~

Shell radius = y

TR

Shell radius

1 Shell height
~ 2
=x-x
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Exercises 5.4

In Exercises 1-6, use the shell method to find the volumes of the
solids generated by revolving the shaded region about the indicated
axis.

1. 2.
] ]
& ,y. 2 & .

— X P
0 2 0 2
3. 4
y y
=2
Vi y=\3
x = y? B
| x=3-y°
0 2 Qz}: ! 0 3 QJJ: !
5. The y-axis 6. The y-axis
1 ! yo —2X
S Vi3 +9
X
0 V3 0 3 *

Use the shell method to find the volumes of the solids generated by
revolving the regions bounded by the curves and lines in Exercises
7-14 about the y-axis.

7.y=x, y=-x/2, x=2

8. y=2x, y=x/2, x=1

9. y=x% y=2-x, x=0,forx>0
10.y=2—x2, y:xz, x=0

1. y=4x, y=0, x=4

12. y=2x—-1, y=.x, x=0

13. y=1/x, y=0, x=1/2, x=2

4. y=3/2Jx), y=0, x=1, x=4

Use the shell method to find the volumes of the solids generated by
revolving the regions bounded by the curves and lines in Exercises
15-22 about the x-axis.

15. x =y, x=-y, y=2

16. x=y?, x=-y, y=2

17. x =2y -y, x=0 18. x=2y—y% =x=y
19. y=1|x|, y=1 20. y=x, y=2x, =2
2l. y=4/x, y=0, y=x-2

22. y=.x, y=0, =2—-x

In Exercises 23 and 24, use the shell method to find the volumes of the
solids generated by revolving the shaded regions about the indicated
axes.

23. a) The x-axis
b) Theliney=1
c¢) The line y =8/5
d) The line y =-2/5

y
1 x = 12(y2 )
l X
oM 1
24. a) The x-axis y
b) Theliney =2 . 5
¢) Theliney=35 x:%_%
d) The line y = —5/8 2 .2
2
. %
| L,y
0 1 2

In Exercises 25-32, find the volumes of the solids generated by re-
volving the regions about the given axes. If you think it would be
better to use disks or washers in any given instance, feel free to do
SO.

25. The triangle with vertices (1, 1), (1, 2), and (2, 2) about (a) the
x-axis; (b) the y-axis; (c) the line x = 10/3; (d) the line y = 1



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

The region in the first quadrant bounded by the curve x = y — y?
and the y-axis about (a) the x-axis; (b) the line y = 1

The region in the first quadrant bounded by x = y — y3, x =1,
and y = 1 about (a) the x-axis; (b) the y-axis; (c) the line x = 1;
(d) the line y =1

The triangular region bounded by the lines 2y = x +4, y = x,
and x = 0 about (a) the x-axis; (b) the y-axis; (c) the line x = 4;
(d) the line y = 8

The region in the first quadrant bounded by y = x* and y = 4x
about (a) the x-axis; (b) the line y =8

The region bounded by y = /x and y = x?/8 about (a) the x-
axis; (b) the y-axis

The region bounded by y = 2x — x?

y-axis; (b) the line x =1

and y = x about (a) the

The region bounded by y = /x, y = 2, x = 0 about (a) the x-
axis; (b) the y-axis; (c) the line x = 4; (d) the line y =2

The region in the first quadrant that is bounded above by the
curve y = 1/x'/4, on the left by the line x = 1/16, and below by
the line y = 1, is revolved about the x-axis to generate a solid.
Find the volume of the solid by (a) the washer method; (b) the
shell method.

The region in the first quadrant that is bounded above by the
curve y = 1/4/x, on the left by the line y = 1/4, and below by
the line y =1 is revolved about the y-axis to generate a solid.
Find the volume of the solid by (a) the washer method; (b) the
shell method.

(sinx)/x, O<x<m
Letf(x):{ly r=0.

a) Show that xf(x) =sin x,0 < x < .

b) Find the volume of the solid generated by revolving the
shaded region about the y-axis.

y

X

X o<x<a
y =
1, x=0

5.5 Lengths of Plane Curves 393
2
36. Let g(x) = {(()tanx) /x, Si)(c)gn/4

a) Show that xg(x) = (tanx)?,0 < x < 7 /4.
b) Find the volume of the solid generated by revolving the
shaded region about the y-axis.

37. The region shown here is to berevolved about the x-axis to
generate a solid. Which of the methods (disk, washer, shell) could
you use to find the volume of the solid? How many integrals
would be required in each case? Explain.

38. The region shown here is to be revolved about the y-axis to
generate a solid. Which of the methods (disk, washer, shell) could
you use to find the volume of the solid? How many integrals
would be required in each case? Give reasons for your answers.

-1+

39. Suppose that the function f(x) is nonnegative and continuous for
x > 0. Suppose also that, for every positive number b, revolving
the region enclosed by the graph of f, the coordinate axes, and
the line x = b about the y-axis generates a solid of volume 27 b>.
Find f(x).

Lengths of Plane Curves

We approximate the length of a curved path in the plane the way we use a ruler to
estimate the length of a curved road on a map, by measuring from point to point
with straight-line segments and adding the results. There is a limit to the accuracy
of such an estimate, however, imposed in part by how accurately we measure and
in part by how many line segments we use.
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Tangent
parallel
| to chord

(€ fc)

k-1 X

=

|
|
|
|
|
|
|
|
|
l
x
I
I

|
k |

5.36 Enlargement of the arc PQ in Fig.
5.35.

With calculus we can usually do a better job because we can imagine using
straight-line segments as short as we please, each set of segments making a poly-
gonal path that fits the curve more tightly than before. When we proceed this way,
with a smooth curve, the lengths of the polygonal paths approach a limit we can
calculate with an integral.

The Basic Formula

Suppose we want to find the length of the curve y = f(x) from x =a to x = b.
We partition [a, b] in the usual way and connect the corresponding points on the
curve with line segments to form a polygonal path that approximates the curve (Fig.
5.35). If we can find a formula for the length of the path, we will have a formula
for approximating the length of the curve.

y

y=f® B

A N 2 2 I

| (Axk) + (Ayk) I

| e

| o

|

| Pyax

| | | |

| | | |

| | | |

1 | | Ly
0 a X1 % b

5.35 A typical segment PQ of a polygonal path approximating the curve AB.

The length of a typical line segment PQ (see the figure) is v/ (Ax)? + (Ayi)?.
The length of the curve is therefore approximated by the sum

Y V(ax)? + Ay Q)
k=1

We expect the approximation to improve as the partition of [a, b] becomes finer,
and we would like to show that the sums in (1) approach a calculable limit as the
norm of the partition goes to zero. To show this, we rewrite the sum in (1) in a
form to which we can apply the Integral Existence Theorem from Chapter 4. Our
starting point is the Mean Value Theorem for derivatives.

Definition
A function with a continuous first derivative is said to be smooth and its
graph is called a smooth curve.

If f is smooth, by the Mean Value Theorem there is a point (¢;, f(cx)) on the
curve between P and Q where the tangent is parallel to the segment PQ (Fig. 5.36).
At this point

, Ay )
fllew) = = or Ay = f'(cr) Axy.
Axk



5.5 Lengths of Plain Curves 395

With this substitution for Ay, the sums in (1) take the form
i n
A Ri
Z \/(Axk)2 + (f/(ck)Axk)Z = Z 1+ (fl(Ck))z Ax;. Sumlemann
k=1 —

Because /1 + (f'(x))? is continuous on [a, b], the limit of the sums on the right

as the norm of the partition goes to zero is fab V14 (f'(x))?>dx. We define the
length of the curve to be the value of this integral.

Definition
If f is smooth on [a, b], the length of the curve y = f(x) from a to b is

b 2 b
- / ,/1+<%) dx = / ST+ (F0)3dy. @)

EXAMPLE 1 Find the length of the curve

=—4ﬁx3/2—1, 0<x<l.
3
Solution We use Eq. (2) witha =0,b =1, and
y = —4;/§x3/2 -1

dy 4\/§ 3 172 1
Z = . x12 =2/2x'?
x 3 27 Vax

<Z—)yc>2 (2J§x'/2)2 — 8x.

The length of the curve fromx =0to x =1 1is

L=/ ‘/1+ a’x_/ JT+8xdx L&

Let u = 1 + 8x,
- - . 32 _ 27 integrate, and
3 8(1+8 x) ] - 6' replace u by
0 1 + 8x.

Dealing with Discontinuities in dy/dx

At a point on a curve where dy/dx fails to exist, dx/dy may exist and we may be
able to find the curve’s length by expressing x as a function of y and applying the
following analogue of Eq. (2):

Formula for the Length of a Smooth Curve x = g(y), ¢ <y <d

d d 2 d
L =/ ‘/1+<£) dy=[ V14 (g'()*dy. ®3)
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_X2/3 0< x<2
= y‘(z) PUS xS

21

r Ly
0 1 2

5.37 The graph of y = (x/2)? from x =0
to x = 2 is also the graph of x = 2y3?

fromv—-—0tav=1

EXAMPLE 2  Find the length of the curve y = (x/2)%* from x =0 to x = 2.

Solution The derivative
dy 2

536 ()=:0)

is not defined at x = 0, so we cannot find the curve’s length with Eq. (2).
We therefore rewrite the equation to express x in terms of y:

£\ 23
Y=\2

32 _ X Raise both sides
yo = 5 to the power 3/2.
X = 2y3/2. Solve for x.

From this we see that the curve whose length we want is also the graph of x = 2y3/2
from y =0to y =1 (Fig. 5.37).

The derivative
dx 3
T 2 = 1/2 — 3 1/2
dy <2) Y Y

is continuous on [0, 1]. We may therefore use Eq. (3) to find the curve’s length:

d dx\? ! i
o [ @ e[
c 0

1 2 1 Let u =14 9y.
—_ — . — 3/2 ([L1/9 = ([_v,
9 3 (1+9y) :IO integrate, and

substitute back.

2
= — 10-1) = 2.27.
27(10«/ 0-1 7 0

The Short Differential Formula

The equations

b 2 d 2
L:/ ‘/1+<d—y) dx  and L=/ ‘/1+<§f) dy @
a dx c dy

are often written with differentials instead of derivatives. This is done formally by
thinking of the derivatives as quotients of differentials and bringing the dx and dy
inside the radicals to cancel the denominators. In the first integral we have

dy\’ dy? dy?
\/1+(ﬁ) dx=\/1+—y~a’x=\/dxz—l—gzgdxz:\/dxz—%dy?
X

dx?

In the second integral we have

d 2 d 2 d 2
\/1+(d—x) dy=\/1+idy=\/dy2+—x—dy2=\/dx2+dy2-
y

dy? dy?

Thus the integrals in (4) reduce to the same differential formula:

b
L= / Ja Ty, 5)



ds
dy

dx

o

5.38 Diagram for remembering the

equation ds = \/dx2 + dy2.

AL B

Curve 1 Curve 2 Curve 3 Curve 4

5.39 The first four polygonal
approximations in the construction of
Helga von Koch's snowflake.
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Of course, dx and dy must be expressed in terms of a common variable, and
appropriate limits of integration must be found before the integration in Eq. (5) is
performed.

We can shorten Eq. (5) still further. Think of dx and dy as two sides of a small
triangle whose “hypotenuse” is ds = \/dx? + dy? (Fig. 5.38). The differential ds
is then regarded as a differential of arc length that can be integrated between
appropriate limits to give the length of the curve. With \/dx? + dy? set equal to
ds, the integral in Eq. (5) simply becomes the integral of ds.

Definition
The Arc Length Differential and the Differential Formula
for Arc Length

ds = \/dx? + dy? L=[ds

arc length differential formula
differential for arc length

3¢ Curves with Infinite Length

As you may recall from Section 2.6, Helga von Koch’s snowflake curve K is the
limit curve of an infinite sequence C, C,, ..., C,, ... of “triangular” polygonal
curves. Figure 5.39 shows the first four curves in the sequence. Each time we
introduce a new vertex in the construction process, it remains as a vertex in all
subsequent curves and becomes a point on the limit curve K. This means that each
of the C’s is itself a polygonal approximation of K—the endpoints of its sides all
belonging to K. The length of K should therefore be the limit of the lengths of the
curves C,. At least, that is what it should be if we apply the definition of length
we developed for smooth curves.

What, then, is the limit of the lengths of the curves C,? If the original equilateral
triangle C; has sides of length 1, the total length of C; is 3. To make C, from C,,
we replace each side of C; by four segments, each of which is one-third as long
as the original side. The total length of C, is therefore 3(4/3). To get the length of
C3, we multiply by 4/3 again. We do so again to get the length of C,. By the time
we get out to C,,, we have a curve of length 3(4/3)"~!.

Curve Number 12 3 e n

4 4 2 4 n—1
Length 33{=)3{=) ---3(=
3 3 3

The length of C;o is nearly 40 and the length of C,o is greater than
7,000,000,000,000. The lengths grow too rapidly to have a finite limit. Therefore
the snowflake curve has no length, or, if you prefer, infinite length.

What went wrong? Nothing. The formulas we derived for length are for the
graphs of smooth functions, curves that are smooth enough to have a continuously
turning tangent at every point. Helga von Koch’s snowflake curve is too rough for
that, and our derivative-based formulas do not apply.

Benoit Mandelbrot’s theory of fractals has proved to be a rich source of curves
with infinite length, curves that when magnified prove to be as rough and varied as
they looked before magnification. Like coastlines on an ocean, such curves cannot
be smoothed out by magnification (Fig. 5.40, on the following page).
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5.40 Repeated magnifications of a
fractal coastline. Like Helga Von Koch’s
snowflake curve, coasts like these are too
rough to have a measurable length.

3
3
3
E
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Exercises 5.5

Finding Integrals for Lengths of Curves

In Exercises 1-8:

a)
% Ob)
"o ¢)

. X =siny,

LY H2y=2x+1

A

. y =sinx — xcosx,

Set up an integral for the length of the curve.

Graph the curve to see what it looks like.

Use your grapher’s or computer’s integral evaluator to find the
curve’s length numerically.

y=x% —-1<x<2
y=tanx, -—-m7/3<x<0
O<y=mn
x=41-y? -1/2<y=<1/2

from (—1,-1)to (7,3)

0<x<wm

. y=/ tantdt, 0<x<m/6
0

y
.x:/ Vvsec’t—1dt, —-n/3<y<mn/4
0

Finding Lengths of Curves

Find the lengths of the curves in Exercises 9-18. If you have a grapher,
you may want to graph these curves to see what they look like.

9.

y=(1/3)(x>+2)*?> from x=0tox=3

WAG 1.05F ¢ 08

10.
11.

12.

13.

14.

15.
16.

17.

18.

19.

copyrigqht

32

y=x from x=0tox=4

x=(*/3)+1/@y) from y=1toy=3
(Hint: 1+ (dx/dy)? is a perfect square.)

x=¥Y3)—y'? from y=1toy=9
(Hint: 1+ (dx/dy)? is a perfect square.)

x=0*4)+1/8y* from y=1toy=2
(Hint: 1+ (dx/dy)? is a perfect square.)

x=(y*/6)+1/Q2y) from y=2toy=23
(Hint: 1+ (dx/dy)? is a perfect square.)

y = 3/4)x*? — (3/8)x*3 +5,
y=3/3) +x2+x+1/(@4x+4),

y
xzf Vsectt —1dt, —-m/A<y<m/4
0
y=/ V3t —1dt, -2<x<-1
-2

a) Find a curve through the point (1, 1) whose length integral

(Eq. 2) is
4 1
L = 1+ —dx.
/; +4x o

b) How many such curves are there? Give reasons for your
answer.

1<x<8

0<x<2



20. a) Find a curve through the point (0, 1) whose length integral

(Eq. 3) is
2 1
L=/ 1+7dy.
1 y

b) How many such curves are there? Give reasons for your
answer.

21. Find the length of the curve
y = / ~/cos 2t dt
0

fromx =0to x =7 /4.

22. The length of an astroid. The graph of the equation x*/3 +
y*3 =1 is one of a family of curves called astroids (not “as-
teroids”) because of their starlike appearance (see the accom-
panying figure). Find the length of this particular astroid by
finding the length of half the first-quadrant portion, y =
(1 —x?3)3? \/2/4 < x < 1, and multiplying by 8.

y

Numerical Integration

B You may have wondered why so many of the curves we have been
working with have unusual formulas. The reason is that the square
root /1 + (dy/dx)? that appears in the integrals for length and sur-
face area almost never leads to a function whose antiderivative we
can find. In fact, the square root itself is a well-known source of
nonelementary integrals. Most integrals for length and surface area
have to be evaluated numerically, as in Exercises 23 and 24.

23. Your metal fabrication company is bidding for a contract to make
sheets of corrugated iron roofing like the one shown here. The
cross sections of the corrugated sheets are to conform to the curve

3
y =sin=x, 0<x <20 in.

20
If the roofing is to be stamped from flat sheets by a process
that does not stretch the material, how wide should the original
material be? To find out, use numerical integration to approximate
the length of the sine curve to 2 decimal places.

Exercises 5.5 399

Original sheet y

Corrugated sheet

/

y = sin 3w, 20

%x * (in.)

24. Your engineering firm is bidding for the contract to construct
the tunnel shown here. The tunnel is 300 ft long and 50 ft wide
at the base. The cross section is shaped like one arch of the
curve y = 25cos (x/50). Upon completion, the tunnel’s inside
surface (excluding the roadway) will be treated with a waterproof
sealer that costs $1.75 per square foot to apply. How much will
it cost to apply the sealer? (Hint: Use numerical integration to
find the length of the cosine curve.)

y y = 25 cos (mx/50)

25

x (ft)
NOTTO SCALE
Theory and Examples
25. Is there a smooth curve y = f(x) whose length over the interval
0 < x < a is always +/2a? Give reasons for your answer.

26. Using tangent fins to derive the length formula for curves.
Assume f is smooth on [a, b] and partition the interval [a, b] in
the usual way. In each subinterval [x;_, x;] construct the tangent
fin at the point (x;_;, f(xx—1)), shown in the figure.

a) Show that the length of the kth tangent fin over the interval
[xe-1, x¢] equals v/(Axe)? + (f (rem) Axi)2.
b) Show that

n b
lim Z(length of kth tangent fin) = / V14 (f'(x)*dx,
n—>o0 = a

which is the length L of the curve y = f(x) from a to b.

|
|
|
|
|
|
|

I Tangent fin
with slope

s S ) |

T I ACA
f
{

X1 i
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& cAS Explorations and Projects integral. How does the actual length compare with the approxi-

- . R .
In Exercises 27-32, use a CAS to perform the following steps for the mations as n increases? Explain your answer.

given curve over the closed interval. 27. f(x)=+/1—x2, —-1<x<1

a) Plot the curve together with the polygonal path approximations 28. fx)=x"P4+x*3, 0<x<2
forn = 2, 4, 8 partition points over the interval. (See Fig. 5.35.) 29. f(x)=sin(rx?), 0<x<+2

b) Find the corresponding approximation to the length of the curve
by summing the lengths of the line segments.

¢) Evaluate the length of the curve using an integral. Compare your 3. f(x) = x—1 1
approximations for n = 2, 4, 8 to the actual length given by the 4x2 +1

32, fr)=x3-x% —-1<x<l1

30. f(x) =x%cosx, O<x<m

Areas of Surfaces of Revolution

When you jump rope, the rope sweeps out a surface in the space around you, a
surface called a surface of revolution. As you can imagine, the area of this surface
depends on the rope’s length and on how far away each segment of the rope swings.
This section explores the relation between the area of a surface of revolution and
the length and reach of the curve that generates it. The areas of more complicated
surfaces will be treated in Chapter 14.

The Basic Formula

Suppose we want to find the area of the surface swept out by revolving the graph of
a nonnegative function y = f(x),a < x < b, about the x-axis. We partition [a, b]
in the usual way and use the points in the partition to partition the graph into short
arcs. Figure 5.41 shows a typical arc PQ and the band it sweeps out as part of the
graph of f.

As the arc PQ revolves about the x-axis, the line segment joining P and Q
the graph of a nonnegative function sweeps out. part of a cone v.vhose.ax.is lies along the x-axis (magnified view in Eig.
y = f(x), a< x < b, about the x-axis. The 5.42). A piece of a cone like this is called a frustum of the cone, frustum being
surface is a union of bands like the one Latin for “piece.” The surface area of the frustum approximates the surface area of
swept out by the arc PQ. the band swept out by the arc PQ.

The surface area of the frustum of a cone (see Fig. 5.43) is 27 times the average
of the base radii times the slant height:

5.41 The surface generated by revolving

ry+nr,

Frustum surface area = 27w - «L=mn(ri+nr)L.

For the frustum swept out by the segment PQ (Fig. 5.44), this works out to be

Frustum surface area = 7w (f (%) + f(x1))v (Axp)? + (Ay)?.

The area of the original surface, being the sum of the areas of the bands swept
out by arcs like arc PQ, is approximated by the frustum area sum

D w(fen) + FEIV(Ax)? + (Aye)?. (1)

k=1

We expect the approximation to improve as the partition of [a, b] becomes finer,
5.42 The line segment joining P and Q and we would like to show that the sums in (1) approach a calculable limit as the
sweeps out a frustum of a cone. norm of the partition goes to zero.



5.43 The important dimensions of the frustum in Fig.

5.42.
Segment length:
p L=NMx)+ @y’
N
M
R
n=fo Py
| -
| - f(xk)
|
|
Fe-1 Xk
I(_Axk_)l

5.44 Dimensions associated with the arc
and segment PQ.

___F
0 R(C" fle) Tangent
Afk \

parallel
R | \% to chord
| |
| } y=f®)
| |
| |
X1 e Xy
f—Ax——

5.45 If f is smooth, the Mean Value
Theorem guarantees the existence of a
point on arc PQ where the tangent is
parallel to segment PQ.
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Slant height = L

To show this, we try to rewrite the sum in (1) as the Riemann sum of some
function over the interval from a to b. As in the calculation of arc length, we begin
by appealing to the Mean Value Theorem for derivatives.

If f is smooth, then by the Mean Value Theorem, there is a point (¢, f(cx)) on
the curve between P and Q where the tangent is parallel to the segment PQ (Fig.
5.45). At this point,

Ay
Axk ’

Ay = f'(cr) Axg.

With this substitution for Ay, the sums in (1) take the form

Ao + ) V(AX)? + (/) Axe)?
k=1

fller) =

=Y 7 (f ) + FEVI+ (F () Axe. @)
k=1

At this point there is both good news and bad news.

The bad news is that the sums in (2) are not the Riemann sums of any function
because the points x;_;, X;, and ¢ are not the same and there is no way to make
them the same. The good news is that this does not matter. A theorem called Bliss’s
theorem, from advanced calculus, assures us that as the norm of the partition of
[a, b] goes to zero, the sums in Eq. (2) converge to

b
f 27 £ ) VIF (FP@)P dx

just the way we want them to. We therefore define this integral to be the area of
the surface swept out by the graph of f from a to b.

Definition
The Surface Area Formula for the Revolution About the x-axis

If the function f(x) > 0 is smooth on [a, b], the area of the surface gen-
erated by revolving the curve y = f(x) about the x-axis is

b 2 b
S=/ 2ny,/1+(j—i) dx=/ 2 fFVT + (F/())2dx.  (3)
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2, 2V2)

5.46 Example 1 calculates the area of
this surface.

5.47 Revolving line segment AB about
the y-axis generates a cone whose lateral
surface area we can now calculate in two
different ways (Example 2).

The square root in Eq. (3) is the same one that appears in the formula for the length
of the generating curve.

EXAMPLE 1 Find the area of the surface generated by revolving the curve
y =24/x,1 < x <2, about the x-axis (Fig. 5.46).

Solution We evaluate the formula
b 2
d
S =/ 271y‘/1+ (_y) dx Eq. (3)
a dx

dy 1
:1, b=2, =2 s —_—=—,
¢ y=2vx dx x

with

x Jx o

_\/x—i—l Vx+1

With these substitutions,

Vx+1
Jx

2

2 2
S=f2n-2ﬁ dx=47tf Vx+1dx
1 1

= 47 . %(x + 1)3/2] = %’1(3«/3— 24/2).

1

Revolution About the y-axis

For revolution about the y-axis, we interchange x and y in Eq. (3).

Surface Area Formula for Revolution About the y-axis

If x = g(y) > 0 is smooth on [c, d], the area of the surface generated by
revolving the curve x = g(y) about the y-axis is

d d 2 d
5= / 2 1+ (%) dy = / 2T+ @2dy. @

EXAMPLE 2 The line segment x =1 —y,0 <y <1, is revolved about the
y-axis to generate the cone in Fig. 5.47. Find its lateral surface area.

Solution Here we have a calculation we can check with a formula from geometry:

base circumference )
Lateral surface area = > x slant height = /2.




5.48 The area of the surface swept out
by revolving arc AB about the axis shown
here is jab 27p ds. The exact expression
depends on the formulas for p and ds.
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To see how Eq. (4) gives the same result, we take
=0, d=1, =1-y, — =-1,
c x y ay

2
1+<Z—§) = V1I+(-1)?=+2

d dx\? !
S = f 2rrx, 1+ (d_) dy =/ 2r(1 — y)«/idy
c y 0

= 2nﬁ[y— y;]; =2n«/§<1 - %)
=2

and calculate

The results agree, as they should. d

The Short Differential Form

The equations
b [ dv\2
S=/2ny 1+(—y) dx /an 1+ dy
a dx
are often written in terms of the arc length differential ds = x2 + dy as

b d
S =/ 2ry ds and S=/ 2rx ds.

In the first of these, y is the distance from the x-axis to an element of arc length
ds. In the second, x is the distance from the y-axis to an element of arc length ds.
Both integrals have the form

S = / 27 (radius)(band width) = / 2rpds,

where p is the radius from the axis of revolution to an element of arc length ds
(Fig. 5.48).

b
A S=J27Tpds
a

Axis of
revolution
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If you wish to remember only one formula
for surface area, you might make it the short
differential form.

/ OO —

00| =t (=]

NOT TO SCALE

5.49 The surface generated by revolving
the curve y = x3,0 < x < 1/2, about the
x-axis could be the design for a
champagne glass (Example 3).

Short Differential Form

S = /27r,ods

In any particular problem, you would then express the radius function p and the arc
length differential ds in terms of a common variable and supply limits of integration
for that variable.

EXAMPLE 3 Find the area of the surface generated by revolving the curve
y =x3,0 < x < 1/2, about the x-axis (Fig. 5.49).

Solution We start with the short differential form:

S = f27tpds

For revolution about
= 2rwyds the x-axis, the radius

function is p = y.

- /2ny,/dx2 + dyZ_ ds = Jdx? +dy?

We then decide whether to express dy in terms of dx or dx in terms of dy. The
original form of the equation, y = x>, makes it easier to express dy in terms of dx,
so we continue the calculation with

y =x3, dy = 3x%dx, and Vdx? +dy? = /dx? + (3x?dx)?
=+/1+4+9x*dx.

With these substitutions, x becomes the variable of integration and

x=1/2
S = / 2 yy/dx? + dy?

=0

12
=/ 2 x>y 14+ 9x*dx
0

1 2 43/ 172 Substitute u = 1 + 9x*, du/36 =
=2 | — =) (1497 / x'dx, integrate, and substitute
6 3 0 back.

3
7 9\3?
=—|({1+=) -1
27[<+16) ]
_E (B oE (s
—271\16 T 27\ 64
_617t
1728

As with arc length calculations, even the simplest curves can provide a workout.

a
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Exercises 5.6

Finding Integrals for Surface Area

In Exercises 1-8:

a)
O

1 c)

Set up an integral for the area of the surface generated by re-
volving the given curve about the indicated axis.

Graph the curve to see what it looks like. If you can, graph the
surface, too.

Use your grapher’s or computer’s integral evaluator to find the

surface’s area numerically.

y=tanx, 0<x <m/4; x-axis

y=x% 0<x<2; x-axis
xy=1, 1<y<2; y-axis
x=siny, 0<y<m; y-axis

x'2 4 y12 =3 from (4,1) to (1,4); x-axis
.y +2/y =1x,

y
7.x=f tantdt, 0<y<wm/3; y-axis
0

8. y:/\/ﬂ—ldt, 1<x<+/5 xaxis
1

R R S

1 <y<2; y-axis

Finding Surface Areas

9. Find the lateral (side) surface area of the cone generated by
revolving the line segment y = x/2, 0 < x < 4, about the x-axis.
Check your answer with the geometry formula

1 . .
Lateral surface area = 5 x base circumference x slant height.

10. Find the lateral surface area of the cone generated by revolving
the line segment y = x/2,0 < x <4 about the y-axis. Check
your answer with the geometry formula

1 . .
Lateral surface area = 3 x base circumference x slant height.

11. Find the surface area of the cone frustum generated by revolving
the line segment y = (x/2) + (1/2), 1 < x < 3, about the x-axis.
Check your result with the geometry formula

Frustum surface area = 7 (r, + r;) X slant height.

12. Find the surface area of the cone frustum generated by revolving
the line segment y = (x/2) + (1/2), 1 < x < 3, about the y-axis.
Check your result with the geometry formula

Frustum surface area = 7 (r; + r,) x slant height.

Find the areas of the surfaces generated by revolving the curves in
Exercises 13-22 about the indicated axes. If you have a grapher, you
may want to graph these curves to see what they look like.

13. y =x3/9,
14. y = x,

0<x<2; x-axis

3/4 <x <15/4; x-axis

15.
16.
17.
18.
19.

20.

21.

22.

23.

24.

25.

B 1)

y=+2x—x2, 05<x<15; x-axis
y=+x+1, 1<x<5; x-axis
x=y%/3, 0<y<l1; y-axis
x=(1/3)y*—y2, 1<y<3; yaxis

x =2/4~y,

0<y<15/4;, y-axis

x=42y—-1, 5/8<y<1; y-axis

x = (y*/4) + 1/(8y?), x-axis

l<y=Y
ds = \/dx? + dy? in terms of dy, and evaluate the integral S =
[ 2y ds with appropriate limits.)

(Hint:  Express

y=(1/3)(x2+2)%2, 0<x <42, y-axis (Hint: Express
ds = \/dx? + dy? in terms of dx, and evaluate the integral S =
[ 27x ds with appropriate limits.)

Testing the new definition. Show that the surface area of a
sphere of radius a is still 4wa® by using Eq. (3) to find the area
of the surface generated by revolving the curve y = +/a? — x2,
—a < x < a, about the x-axis.

Testing the new definition. The lateral (side) surface area of
a cone of height 4 and base radius r should be wr+/r? + h?,
the semiperimeter of the base times the slant height. Show that
this is still the case by finding the area of the surface generated
by revolving the line segment y = (r/h)x, 0 < x < h, about the
X-axis.

a) Write an integral for the area of the surface generated by
revolving the curve y = cosx, —m /2 < x < /2, about the
x-axis. In Section 7.4 we will see how to evaluate such
integrals.

CALCULATOR Find the surface area numerically.
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26.

B 2.

28.

The surface of an astroid. Find the area of the surface gen-
erated by revolving about the x-axis the portion of the astroid
x?/3 4+ y?3 =1 shown here. (Hint: Revolve the first-quadrant
portion y = (1 — x?/3)3/2,0 < x < 1, about the x-axis and double
your result.)

X34y = |

-1 0 1

Enameling woks. Your company decided to put out a deluxe
version of the successful wok you designed in Section 5.3, Ex-
ercise 41. The plan is to coat it inside with white enamel and
outside with blue enamel. Each enamel will be sprayed on 0.5
mm thick before baking. (See diagram here.) Your manufacturing
department wants to know how much enamel to have on hand
for a production run of 5000 woks. What do you tell them? (Ne-
glect waste and unused material and give your answer in liters.
Remember that 1 cm® = 1 mL, so 1 L = 1000 cm?.)

y (cm)

-16 | 9 cm deep

x2+y?=162=256

Slicing bread. Did you know that if you cut a spherical loaf
of bread into slices of equal width, each slice will have the
same amount of crust? To see why, suppose the semicircle y =
+/r? — x2 shown here is revolved about the x-axis to generate
a sphere. Let AB be an arc of the semicircle that lies above an
interval of length A on the x-axis. Show that the area swept out
by AB does not depend on the location of the interval. (It does
depend on the length of the interval.)

29.

30.

B 1)

31.

32.

The shaded band shown here is cut from a sphere of radius R by
parallel planes 4 units apart. Show that the surface area of the
band is 27 Rh.

Here is a schematic drawing of the 90-ft dome used by the U.S.
National Weather Service to house radar in Bozeman, Mont.

a) How much outside surface is there to paint (not counting
the bottom)?

CALCULATOR Express the answer to the nearest square
foot.

SIXV

Surfaces generated by curves that cross the axis of revolu-
tion. The surface area formula in Eq. (3) was developed under
the assumption that the function f whose graph generated the
surface was nonnegative over the interval [a, b]. For curves that
cross the axis of revolution, we replace Eq. (3) with the absolute
value formula

S = /27rpds = /27T|f(x)|ds. (5)
Use Eq. (5) to find the surface area of the double cone generated
by revolving the line segment y = x, —1 < x < 2, about the x-
axis.

(Exercise 31, continued.) Find the area of the surface generated
by revolving the curve y = x3/9, —/3 < x < /3, about the x-
axis. What do you think will happen if you drop the absolute
value bars from Eq. (5) and attempt to find the surface area with
the formula § = [ 27 f (x) ds instead? Try it.



Numerical Integration

Find, to 2 decimal places, the areas of the surfaces generated by
revolving the curves in Exercises 33-36 about the x-axis.

33.
34.
3s.

36.

37.

y=sinx, 0<x<wm

y=x%/4, 0<x<2

y=x+sin 2x, -2nw/3 <x <2m/3 (the curve in Section
3.4, Exercise 5)

y= %m, 0 < x <6 (the surface of the plumb bob in
Section 5.3, Exercise 44)

An alternative derivation of the surface area formula. As-
sume f is smooth on [a, b] and partition [a, b] in the usual way.
In the kth subinterval [x;_;, x;] construct the tangent line to the
curve at the midpoint my = (xx—; + x¢)/2, as in the figure here.
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¢) Show that the lateral surface area of the frustum of the cone
swept out by the tangent line segment as it revolves about

- N . _ the x-axis is 27 f (mi)y/T + (f/(my))? Axy.
@) Show thatiry = flm) = f10m) 2 and rp = fmi) + d) Show that the area of the surface generated by revolving
f’(mk)ﬂ. y = f(x) about the x-axis over [a, b] is
2 ; .
b) Show that the length L, of the tangent line segment in the lim Z ( l?ir;]l fsurftace area) = / 2 f(x)v/ 1+ (f'(x))?dx.
kth subinterval is Ly = /(Ax)? + (f'(mi) Axp)?. n—oo = \O rustum ;

5.7

Mass vs. weight

Weight is the force that results from gravity
pulling on a mass. If an object of mass m is
placed in a location where the acceleration of
gravity is g, the object’s weight there is

F =mg

(as in Newton’s second law).

Moments and Centers of Mass

Many structures and mechanical systems behave as if their masses were concentrated
at a single point, called the center of mass (Fig. 5.50, on the following page). It is
important to know how to locate this point, and doing so is basically a mathematical
enterprise. For the moment we deal with one- and two-dimensional objects. Three-
dimensional objects are best done with the multiple integrals of Chapter 13.

Masses Along a Line

We develop our mathematical model in stages. The first stage is to imagine masses
my, m,, and mj on a rigid x-axis supported by a fulcrum at the origin.

X3

o n
TS x
A s
Fulcrum
at origin

EX X

The resulting system might balance, or it might not. It depends on how large the
masses are and how they are arranged.

Each mass m, exerts a downward force m,;g equal to the magnitude of the
mass times the acceleration of gravity. Each of these forces has a tendency to turn
the axis about the origin, the way you turn a seesaw. This turning effect, called
a torque, is measured by multiplying the force m,g by the signed distance x;
from the point of application to the origin. Masses to the left of the origin exert
negative (counterclockwise) torque. Masses to the right of the origin exert positive
(clockwise) torque.
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(b)

5.50 (a) The motion of this wrench gliding on ice seems haphazard until we notice
that the wrench is simply turning about its center of mass as the center glides in a
straight line. (b) The planets, asteroids, and comets of our solar system revolve
about their collective center of mass. (It lies inside the sun.)

The sum of the torques measures the tendency of a system to rotate about the
origin. This sum is called the system torque.

System torque = m;gx; + magxy + magxs (1)

The system will balance if and only if its torque is zero.
If we factor out the g in Eq. (1), we see that the system torque is

g(mixy 4+ myxs + m3x3).

a feature of the a feature of
environment the system

Thus the torque is the product of the gravitional acceleration g, which is a fea-
ture of the environment in which the system happens to reside, and the number
(m1x1 + myx, + m3x3), which is a feature of the system itself, a constant that stays
the same no matter where the system is placed.

The number (mx; + myx, + m3x3) is called the moment of the system about
the origin. It is the sum of the moments mx;, m,x;, m;x; of the individual masses.

M, = Moment of system about origin = kaxk

(We shift to sigma notation here to allow for sums with more terms. For )_ m;x;,
read “summation m; times x;.”)

(a) We usually want to know where to place the fulcrum to make the system
balance, that is, at what point X to place it to make the torque zero.

R

r\

|

L~
R

N

L Rs
=

Special location
for balance

The torque of each mass about the fulcrum in this special location is

- signed distance downward
Torque of m; about X = —
of m; from X force

= (X — X)mg.

When we write the equation that says that the sum of these torques is zero, we get



Density

A material’s density is its mass per unit
volume. In practice, however, we tend to use
units we can conveniently measure. For
wires, rods, and narrow strips we use mass
per unit length. For flat sheets and plates we
use mass per unit area.
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an equation we can solve for x:

= _ Sum of the torques
Z(xk X)mg =0 equals zero
g Z(xk —X)m; =0 Constant Multiple Rule
for Sums
mix, —xm.) = 0 g divided out, m;
2 (mix, 2 distributed
Z MyXy — Z mg =0 Difference Rule for
Sums
= Rearranged, Constant
Z MiXe = X Z M Multiple Rule again
— myXy
X = -Z:———— Solved for X
> my

This last equation tells us to find X by dividing the system’s moment about the

origin by the system’s total mass:
> xgmy  system moment about origin

X = =
> my system mass

The point X is called the system’s center of mass.

Wires and Thin Rods

In many applications, we want to know the center of mass of a rod or a thin strip
of metal. In cases like these where we can model the distribution of mass with a
continuous function, the summation signs in our formulas become integrals in a
manner we now describe.

Imagine a long, thin strip lying along the x-axis from x = a to x = b and cut
into small pieces of mass Am, by a partition of the interval [a, b].

1

The kth piece is Ax; units long and lies approximately x; units from the origin.
Now observe three things.

First, the strip’s center of mass X is nearly the same as that of the system of
point masses we would get by attaching each mass Am, to the point x;:
system moment

XX
system mass

Second, the moment of each piece of the strip about the origin is approximately
xx Amy, so the system moment is approximately the sum of the x; Am:

System moment = ZxkAmk.

Third, if the density of the strip at x; is 8(x;), expressed in terms of mass
per unit length, and § is continuous, then Amy is approximately equal to &(x;) Ax,
(mass per unit length times length):

Amy = §(x;) Axy.
Combining these three observations gives

system moment Y xiAmy Y x8(x)Ax;
system mass > Amy S 8(a)Ax

x ~

)
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To find a center of mass, divide moment by
mass.

The sum in the last numerator in Eq. (2) is a Riemann sum for the continuous
function x38(x) over the closed interval [a, b]. The sum in the denominator is a
Riemann sum for the function §(x) over this interval. We expect the approximations

in (2) to improve as the strip is partitioned more finely, and we are led to the equation
b
_ [ x8(x)dx
X = 5
[, 8(x)dx

This is the formula we use to find X.

Moment, Mass, and Center of Mass of a Thin Rod or Strip Along the
x-axis with Density Function 6(x)
b
Moment about the origin: My = f x8(x)dx (3a)
b
Mass: M = f §(x)dx (3b)
a
M
Center of mass: X = ﬁo (3¢)

5.51 The center of mass of a straight,
thin rod or strip of constant density lies
halfway between its ends.

5.52 We can treat a rod of variable
thickness as a rod of variable density. See
Example 2.

EXAMPLE 1 Strips and rods of constant density

Show that the center of mass of a straight, thin strip or rod of constant density lies
halfway between its two ends.

Solution We model the strip as a portion of the x-axis from x = a to x = b (Fig.
5.51). Our goal is to show that X = (a + b)/2, the point halfway between a and b.

The key is the density’s having a constant value. This enables us to regard the
function §(x) in the integrals in Egs. (3) as a constant (call it §), with the result

that
’ ’ 1,1 8
Mo=f 8xdx=8/ xdx:8[§x2] =—-b*-d?

. 2

b b b

M:f 8dx=8f dx=8]:x:l =48(b—a)
)
- My E(b2—a2)
Xr=—m—m—= -
M 5(b — a)
= a +b. The §’s cancel in the
2 formula for X. I |

EXAMPLE 2 A variable density

The 10-m-long rod in Fig. 5.52 thickens from left to right so that its density, instead
of being constant, is §(x) = 1 + (x/10) kg/m. Find the rod’s center of mass.



5.53 Each mass my has a moment about
each axis.

5.54 A two-dimensional array of masses
balances on its center of mass.
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Solution The rod’s moment about the origin (Eq. 3a) is

10 10 x 10 x2
My = § = 14+ = = el
0 /0 x8(x)dx /0 x( + 1O)dx /o <x+ 10)dx

X2 53 10 100 250 The units of a moment
= |:_2—‘ + %]0 =50+ T = T kg - m, are mass x length.

The rod’s mass (Eq. 3b) is
2

10 10 X X 10
M_/O 5(x)dx_/0 (1+E)dx=|:x+2—0:|o —1045=15 ke.

The center of mass (Eq. 3c) is located at the point
Mo 250 1 50

= . — = — X556 m.
M3 159 m Q

X =

Masses Distributed over a Plane Region

Suppose we have a finite collection of masses located in the plane, with mass my
at the point (x, yx) (see Fig. 5.53). The mass of the system is

System mass: M = Z my.

Each mass m; has a moment about each axis. Its moment about the x-axis is my yy,
and its moment about the y-axis is mx;. The moments of the entire system about
the two axes are

Moment about x-axis: M, = ka Vi,
Moment about y-axis: M, = kaxk.

The x-coordinate of the system’s center of mass is defined to be
My _ i
M ka ’
With this choice of X, as in the one-dimensional case, the system balances about
the line x = x (Fig. 5.54).

The y-coordinate of the system’s center of mass is defined to be

_ZMX_kayk
y M - ka ’

X =

(4)

(5)

With this choice of y, the system balances about the line y = y as well. The torques
exerted by the masses about the line y =y cancel out. Thus, as far as balance is
concerned, the system behaves as if all its mass were at the single point (¥, y). We
call this point the system’s center of mass.

Thin, Flat Plates

In many applications, we need to find the center of mass of a thin, flat plate: a
disk of aluminum, say, or a triangular sheet of steel. In such cases we assume the
distribution of mass to be continuous, and the formulas we use to calculate X and
y contain integrals instead of finite sums. The integrals arise in the following way.
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Strip of mass Am

0|

5.55 A plate cut
to the y-axis. The

into thin strips parallel
moment exerted by a

typical strip about each axis is the

moment its mass

Am would exert if

concentrated at the strip’s center of mass

x, ).

y (cm)

y=2x

1,2

0 y=0 1

x(cm)

5.56 The plate in Example 3.

y
2+ 1,2
y=2x
(x, 2x)
\
Strip c.m.
is halfway.
*%¥) = (x, %)
A -o/ 2x
x

Units in centimeters

5.57 Modeling the plate in Example 3
with vertical strips.

Imagine the plate occupying a region in the xy-plane, cut into thin strips parallel
to one of the axes (in Fig. 5.55, the y-axis). The center of mass of a typical strip
is (X, y). We treat the strip’s mass Am as if it were concentrated at (X, y). The
moment of the strip about the y-axis is then X Am. The moment of the strip about
the x-axis is yAm. Equations (4) and (5) then become

My, > XAm M, > yAm
M Y Am’ M Y Am’

X = y =

As in the one-dimensional case, the sums are Riemann sums for integrals and
approach these integrals as limiting values as the strips into which the plate is cut
become narrower and narrower. We write these integrals symbolically as

[ xdm [ydm
[dm [ dm

X = and y =

Moments, Mass, and Center of Mass of a Thin Plate Covering a Region
in the xy-plane
v [

Moment about the y-axis: M

Moment about the x-axis: dm
dm (6)

=

<
Il
¥

<

Mass:

=

|
I

~<|
I

Center of mass:

<
S

To evaluate these integrals, we picture the plate in the coordinate plane and
sketch a strip of mass parallel to one of the coordinates axes. We then express the
strip’s mass dm and the coordinates (¥, ¥) of the strip’s center of mass in terms
of x or y. Finally, we integrate y dm, X dm, and dm between limits of integration
determined by the plate’s location in the plane.

EXAMPLE 3 The triangular plate shown in Fig. 5.56 has a constant density of
8 = 3 g/cm?. Find (a) the plate’s moment M, about the y-axis, (b) the plate’s mass
M, and (c) the x-coordinate of the plate’s center of mass (c.m.).

Solution
Method 1: Vertical strips (Fig. 5.57).

a) The moment M,: The typical vertical strip has

center of mass (c.m.): x, y) = (x, x),
length: 2x, area: dA = 2x dx,
width: dx, mass: dm =8dA =3 .2xdx =6xdx,
distance of c.m. from y-axis: X = x.



(1,2

Strip c.m.
is halfway.

+2
=22

/l

Aa,» @y

x (cm)

5.58 Modeling the plate in Example 3
with horizontal strips.

How to Find a Plate’s Center of
Mass

1. Picture the plate in the xy-plane.

2. Sketch a strip of mass parallel to one
of the coordinate axes and find its
dimensions.

3. Find the strip’s mass dm and center
of mass (X, y).

4. Integrate y dm, X dm, and dm to find
M, M,, and M.

5. Divide the moments by the mass to
calculate X and y.
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The moment of the strip about the y-axis is
¥dm = x - 6xdx = 6x°dx.

The moment of the plate about the y-axis is therefore
1

1
My:/idm:/ 6x2dx:2x3] =2g-cm
0 0

b) The plate’s mass:

1 1
M:fdm:/6xdx:3x2] =3g
0 0

¢) The x-coordinate of the plate’s center of mass:
- M, 2g-.cm 2
Ii=—=———=-cm
M 3g 3
By a similar computation we could find M, and y = M, /M.
Method 2: Horizontal strips (Fig. 5.58).

a) The moment M,: The y-coordinate of the center of mass of a typical horizontal
strip is y (see the figure), so

y=y.
The x-coordinate is the x-coordinate of the point halfway across the triangle.

This makes it the average of y/2 (the strip’s left-hand x-value) and 1 (the strip’s
right-hand x-value):

P /2)+1 _X+l_y+2
T2 42 4
We also have
2
length: 11— Y = —X,
2 2
width:  dy,
2-y
area: dA = ———dy,
2
mass: dm=86dA=3. —2;ydy,
2
distance of c.m. to y-axis: X = %

The moment of the strip about the y-axis is

2 2—
y+o 3,27

—
ram =y 2

3
dy =2@4—y)dy.
The moment of the plate about the y-axis is

23 3 v’ 1 3/16
My= | 3dm=| Z@4—-y)dy==|4y—-Z| ==|—)=2g-cm.
y /xdm /08( y9)dy 8[y 3]0 8(3) g-cm

b) The plate’s mass:

2 272
M= [an=[ E(2—y>dy=§[2y—y—] _3u_2=3¢
0 2 2
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5.59 Modeling the plate in Example 4
with (a) horizontal strips leads to an
inconvenient integration, so we model
with (b) vertical strips instead.

¢) The x-coordinate of the plate’s center of mass:

M 2g-
F—»_Z28 M zcm.
M 3g 3

a

By a similar computation, we could find M, and y.

If the distribution of mass in a thin, flat plate has an axis of symmetry, the
center of mass will lie on this axis. If there are two axes of symmetry, the center
of mass will lie at their intersection. These facts often help to simplify our work.

EXAMPLE 4 Find the center of mass of a thin plate of constant density §
covering the region bounded above by the parabola y = 4 — x? and below by the
x-axis (Fig. 5.59).

Solution Since the plate is symmetric about the y-axis and its density is constant,
the distribution of mass is symmetric about the y-axis and the center of mass lies
on the y-axis. This means that X = 0. It remains to find y = M, /M.

A trial calculation with horizontal strips (Fig. 5.59a) leads to an inconvenient
integration

4
M, =/ 26 y/4 — ydy.
0

We therefore model the distribution of mass with vertical strips instead (Fig. 5.59b).
The typical vertical strip has
4 — x?
=)

center of mass (c.m): (X, y) = (x,

length: 4 — x?,

width:  dx,

area: dA = (4—x%dx,

mass: dm =38dA =84 —x?)dx,
distance from c.m to x-axis: y = 4 —2x2

The moment of the strip about the x-axis is

4—x?
ydm =

)
.84 —x%dx = 5(4 — x2)?dx.

The moment of the plate about the x-axis is

foon-]

5 2
5/ (16 — 8x* +x*)dx =
)

8
M, 5(4 —x32%dx

256
—4.

15 7)

The mass of the plate is

2
M=/dm=/ 5(4-x2)dx=33—25. (8)
-2



y
A typical small segment of
y_m wire has dm = 8 ds = 8 ad®é.
(%) =
do~ (a cos 6, a sin 6)
f \
x
-a (] a
(@)
y
a
2
c.m.e (0, 7—1_a)
—a 0 a *

(b)

5.60 The semicircular wire in Example 6.

(a) The dimensions and variables used in

finding the center of mass. (b) The center
of mass does not lie on the wire.

5.7 Moments and Centers of Mass 415

Therefore,
M, _ (256/15) 8 _ 8

M (32/3)8 5

y =

The plate’s center of mass is the point

_ 8
(x,y)= (0, §> 0

EXAMPLE 5  Variable density

Find the center of mass of the plate in Example 4 if the density at the point (x, y)
is 8 = 2x2, twice the square of the distance from the point to the y-axis.

Solution The mass distribution is still symmetric about the y-axis, so X = 0. With
8 = 2x2, Egs. (7) and (8) become

2 5 2
M, = /jdm =/ —(4 —x¥%dx =f x2(4 — x»)*dx
52 2
2 2048
_ 2 _ g 4 6 _ , 7
/_2 (16x 8x" +x")dx 105 7
2 2
M = /dm =/ 85(4 —x?)dx = f 2x%(4 — x*) dx
-2 -2
2 256
= f 8x? —2x*ydx = =—. 8)
_ 15
Therefore,
- M, 2048 15_8
Y= T 05 36 T
The plate’s new center of mass is
_ _ 8
(x,y) = (O, 5) 0

EXAMPLE 6 Find the center of mass of a wire of constant density § shaped
like a semicircle of radius a.

Solution We model the wire with the semicircle y = +/a? — x2 (Fig. 5.60). The
distribution of mass is symmetric about the y-axis, so x = 0. To find y, we imagine
the wire divided into short segments. The typical segment (Fig. 5.60a) has

ds =adb,
dm =38ds =8ado,

distance of c.m. to x-axis:

length:
mass: Mass per unit length times length

y =asin 6.
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Hence,

[ydm [ asinf-8add Ssa’[—cosf]] 2
= 7 = = —da

[dm fy 8ad6 sam

y =

The center of mass lies on the axis of symmetry at the point (0, 2a/m), about
two-thirds of the way up from the origin (Fig. 5.60b).

Centroids

When the density function is constant, it cancels out of the numerator and denom-
inator of the formulas for X and y. This happened in nearly every example in this
section. As far as X and y were concerned, § might as well have been 1. Thus,
when the density is constant, the location of the center of mass is a feature of the
geometry of the object and not of the material from which it is made. In such cases
engineers may call the center of mass the centroid of the shape, as in “Find the
centroid of a triangle or a solid cone.” To do so, just set § equal to 1 and proceed
to find X and y as before, by dividing moments by masses.

e R _J
Exercises 5.7
Thin Rods 7.8x)=1+(x/3), 0=<x<3
1. An 80-Ib child and a 100-Ib child are balancing on a seesaw. The 8. 5(x)=2-(x/4), O0=<x=<4
80-Ib child is 5 ft from the fulcrum. How far from the fulcrum 9. 5(x)=1+4+(1//x), l<x<4

is the 100-Ib child?

2. The ends of a log are placed on two scales. One scale reads 100 2
kg and the other 200 kg. Where is the log’s center of mass? 11. 5(x) = {x ’

X
10. 8(x) =3(x32 +x7%), 025<x<1

O0<x<l1
1<x<?2
3. The ends of two thin steel rods of equal length are welded together

to make a right-angled frame. Locate the frame’s center of mass. 12. 8(x) = { x+1, O0=x<lI
(Hint: Where is the center of mass of each rod?) 2, l=x=2
y

Thin Plates with Constant Density

In Exercises 13-24, find the center of mass of a thin plate of constant
density § covering the given region.

Right—angled weld 13. The region bounded by the parabola y = x? and the line y = 4

0 14. The region bounded by the parabola y = 25 — x? and the x-axis
* 15. The region bounded by the parabola y = x — x> and the line
4. You weld the ends of two steel rods into a right-angled frame. y=-x

One rod is twice the length of the other. Where is the frame’s 16. The region enclosed by the parabolas y = x> — 3 and y = —2x2

ter of ? (Hint: W i f each rod? . .
center of mass? (Hint: Where is the center of mass of each rod?) 17. The region bounded by the y-axis and the curve x = y — y%,

Exercises 5-12 give density functions of thin rods lying along various O0<y<l1
intervals of the x-axis. Use Egs. (3a—c) to find each rod’s moment 18. The region bounded by the parabola x = y? — y and the line
about the origin, mass, and center of mass.

y=x

5. 8(x) =4, 0=<x=<2 19. The region bounded by the x-axis and the curve y = cosx,
6. 5(x)=4, 1<x<3 —n/2<x<m/2



20. The region between the x-axis and the curve y = sec?x, — /4 <

x <m/4
21. The region bounded by the parabolas y =2x?> —4x and y =
2x — x?
22. a) The region cut from the first quadrant by the circle x% +
2
y =9
b) The region bounded by the x-axis and the semicircle y =
V9 —x?

Compare your answer with the answer in (a).

23. The “triangular” region in the first quadrant between the circle
x2 4 y* =9 and the lines x = 3 and y = 3. (Hint: Use geometry
to find the area.)

24. The region bounded above by the curve y = 1/x3, below by the
curve y = —1/x3, and on the left and right by the lines x = 1
and x = a > 1. Also, find lim,_, ., x.

Thin Plates with Varying Density

25. Find the center of mass of a thin plate covering the region be-
tween the x-axis and the curve y = 2/x2, 1 < x < 2, if the plate’s
density at the point (x, y) is §(x) = x2.

26. Find the center of mass of a thin plate covering the region bounded
below by the parabola y = x? and above by the line y = x if the
plate’s density at the point (x, y) is §(x) = 12x.

27. The region bounded by the curves y = +4/,/x and the lines
x =1 and x = 4 is revolved about the y-axis to generate a solid.

a) Find the volume of the solid.

b) Find the center of mass of a thin plate covering the region
if the plate’s density at the point (x, y) is 8§(x) = 1/x.

¢) Sketch the plate and show the center of mass in your sketch.

28. The region between the curve y = 2/x and the x-axis from x = 1
to x = 4 is revolved about the x-axis to generate a solid.

a) Find the volume of the solid.

b) Find the center of mass of a thin plate covering the region
if the plate’s density at the point (x, y) is §(x) = /.

¢) Sketch the plate and show the center of mass in your sketch.

Centroids of Triangles

29. The centroid of a triangle lies at the intersection of the
triangle’s medians (Fig. 5.67a). You may recall that the point
inside a triangle that lies one-third of the way from each side
toward the opposite vertex is the point where the triangle’s three
medians intersect. Show that the centroid lies at the intersection
of the medians by showing that it too lies one-third of the way
from each side toward the opposite vertex. To do so, take the
following steps.

1. Stand one side of the triangle on the x-axis as in Fig. 5.61(b).
Express dm in terms of L and dy.

2. Use similar triangles to show that L = (b/h)(h — y). Sub-
stitute this expression for L in your formula for dm.

Exercises 5.7 417

(b)

5.61 The triangle in Exercise 29. (a) The centroid.
(b) The dimensions and variables to use in locating
the center of mass.

3. Show that y = h/3.
4. Extend the argument to the other sides.

Use the result in Exercise 29 to find the centroids of the triangles
whose vertices appear in Exercises 30-34. (Hint: Draw each triangle
first.)

30. (-1, 0), (1, 0), (0, 3)
32. (0, 0), (a, 0), (0, a)
34. (0,0),(a,0),(a/2,b)

31. (0, 0), (1, 0), (0, 1)
33. (0, 0), (a, 0), (0, b)

Thin Wires

35. Find the moment about the x-axis of a wire of constant density
that lies along the curve y = /x from x =0 to x = 2.

36. Find the moment about the x-axis of a wire of constant density
that lies along the curve y = x* from x =0 to x = 1.

37. Suppose the density of the wire in Example 6 is § = ksinf
(k constant). Find the center of mass.

38. Suppose the density of the wire in Example 6is § = 1 + k| cos 6|
(k constant). Find the center of mass.
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Engineering Formulas 41. For wires and thin rods of constant density shaped like circular
arcs centered at the origin and symmetric about the y-axis, the

Verify the statements and formulas in Exercises 39-42. . .
y-coordinate of the center of mass is

39. The coordinates of the centroid of a differentiable plane curve asina  ac
are y= - = e
d d
_ [x s, 5= [yds ‘
length length y

42. (Continuation of Exercise 41)
a) Show that when « is small, the distance d from the centroid

40. Whatever the value of p > 0 in the equation y = x*/(4p), the to chord A B is about 24 /3 (in the notation of the figure here)
y-coordinate of the centroid of the parabolic segment shown here by taking the following steps.
isy=3/5a. 1. Show that
d sina — @ cosa
- — 9)
h o —acosa
y %% 2. GRAPHER Graph
\ 2 fl@) = sin@ — acosa
= o —acosa

and use TRACE to show that lim,_ ¢+ f(a) &~ 2/3.
(You will be able to confirm the suggested equality
in Section 6.6, Exercise 74.)

@ b) CALCULATOR The error (difference between d and 24/3)

is small even for angles greater than 45°. See for yourself

x by evaluating the right-hand side of Eq. (9) for o = 0.2,
0.4, 0.6, 0.8, and 1.0 rad.

Work

In everyday life, work means an activity that requires muscular or mental effort.
In science, the term refers specifically to a force acting on a body and the body’s
subsequent displacement. This section shows how to calculate work. The applica-
tions run from compressing railroad car springs and emptying subterranean tanks
to forcing electrons together and lifting satellites into orbit.

Work Done by a Constant Force

When a body moves a distance d along a straight line as a result of being acted
on by a force of constant magnitude F in the direction of motion, we calculate the



Joules

The joule, abbreviated J and pronounced
“jewel,” is named after the English physicist
James Prescott Joule (1818-1889). The
defining equation is

1 joule = (1 newton)(1 meter).

In symbols, 1 J=1N - m.

It takes a force of about 1 N to lift an
apple from a table. If you lift it 1 m you
have done about 1 J of work on the apple. If
you then eat the apple you will have
consumed about 80 food calories, the heat
equivalent of nearly 335,000 joules. If this
energy were directly useful for mechanical
work, it would enable you to lift 335,000
more apples up 1 m.

5.8 Work 419

work W done by the force on the body with the formula

W = Fd (Constant-force formula for work). (1

Right away we can see a considerable difference between what we are used to
calling work and what this formula says work is. If you push a car down the street,
you will be doing work on the car, both by your own reckoning and by Eq. (1).
But if you push against the car and the car does not move, Eq. (1) says you will
do no work on the car, even if you push for an hour.

From Eq. (1) we see that the unit of work in any system is the unit of force
multiplied by the unit of distance. In SI units (SI stands for Systeme International,
or International System), the unit of force is a newton, the unit of distance is a
meter, and the unit of work is a newton-meter (N - m). This combination appears
so often it has a special name, the joule. In the British system, the unit of work is
the foot-pound, a unit frequently used by engineers.

EXAMPLE 1 If you jack up the side of a 2000-1b car 1.25 ft to change a tire
(you have to apply a constant vertical force of about 1000 1b) you will perform
1000 x 1.25 = 1250 ft-1b of work on the car. In SI units, you have applied a force
of 4448 N through a distance of 0.381 m to do 4448 x 0.381 =~ 1695 J of work.

a

Work Done by a Variable Force

If the force you apply varies along the way, as it will if you are lifting a leaking
bucket or compressing a spring, the formula W = Fd has to be replaced by an
integral formula that takes the variation in F into account.

Suppose that the force performing the work acts along a line that we can model
with the x-axis and that its magnitude F is a continuous function of the position. We
want to find the work done over the interval from x = a to x = b. We partition [a, b]
in the usual way and choose an arbitrary point ¢, in each subinterval [x;_;, x;]. If
the subinterval is short enough, F, being continuous, will not vary much from x;_,
to x;. The amount of work done across the interval will be about F(c;) times the
distance Axy, the same as it would be if F were constant and we could apply Eq.
(1). The total work done from a to b is therefore approximated by the Riemann
sum

3 F(co)Ax. @)
k=1

We expect the approximation to improve as the norm of the partition goes to zero,
so we define the work done by the force from a to b to be the integral of F from
atob.

Definition
The work done by a variable force F(x) directed along the x-axis from
x=atox=>bis

b
W:/ F(x)dx. (3)



420 Chapter 5: Applications of Integrals

201

X)) Y

"n

5.62 The leaky bucket in Example 3.

The units of the integral are joules if F is in newtons and x is in meters, and
foot-pounds if F is in pounds and x in feet.

EXAMPLE 2 The work done by a force of F(x) = 1/x? N along the x-axis
fromx =1mtox =10mis

109 11" 1
W= ——dx:——] =—— +1=0917.
] 10 4

EXAMPLE 3 A leaky 5-1b bucket is lifted from the ground into the air by
pulling in 20 ft of rope at a constant speed (Fig. 5.62). The rope weighs 0.08 1b/ft.
The bucket starts with 2 gal of water (16 1b) and leaks at a constant rate. It finishes
draining just as it reaches the top. How much work was spent

a) lifting the water alone;
b) lifting the water and bucket together;
c) lifting the water, bucket, and rope?

Solution

a) The water alone. The force required to lift the water is equal to the water’s
weight, which varies steadily from 16 to 0 Ib over the 20-ft lift. When the
bucket is x ft off the ground, the water weighs

F(x) = 16(20_)():16(1_1):16_4_)‘ Ib.

20 20 5

original weight proportion left
of water at elevation x

The work done is

b
W = / F(x)dx Use Eq. (3) for variable forces.
a

20 4 22 20
=/ 16— 2 ) dr=|16x — 2| =320—160 = 160 ft - Ib.
0 5 5 0

b) The water and bucket together. According to Eq. (1), it takes 5 x 20 = 100
ft - 1b to lift a 5-1b weight 20 ft. Therefore

160 + 100 = 260 ft - 1b

of work were spent lifting the water and bucket together.
¢) The water, bucket, and rope. Now the total weight at level x is
Ib/ft  ft

F(x) = (16 - 4%) + 5 4+ (0.08)(20 — x).
S—r ~~— —

variable constant weight of rope
weight weight paid out at
of water of bucket elevation x
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F=16x

Force (Ib)

Work done by F
fromx=0 tox=0.25
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0 0.25 x (ft)

Amount compressed
()
5.63 The force F needed to hold a spring

under compression increases linearly as
the spring is compressed.
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The work lifting the rope is

20 20

Work on rope = (0.08)(20 — x) dx = (1.6 — 0.08x) dx
0 0

20
= [l.6x - 0.04x2] =32-16=16ft . Ib.
0

The total work for the water, bucket, and rope combined is

160 + 100 + 16 = 276 ft - Ib. d

Hooke’s Law for Springs: F = kx
Hooke’s law says that the force it takes to stretch or compress a spring x length
units from its natural (unstressed) length is proportional to x. In symbols,

F = kx. (4)

The constant k, measured in force units per unit length, is a characteristic of the
spring, called the force constant (or spring constant) of the spring. Hooke’s law
(Eq. 4) gives good results as long as the force doesn’t distort the metal in the spring.
We assume that the forces in this section are too small to do that.

EXAMPLE 4 Find the work required to compress a spring from its natural
length of 1 ft to a length of 0.75 ft if the force constant is k = 16 1b/ft.

Solution We picture the uncompressed spring laid out along the x-axis with its
movable end at the origin and its fixed end at x = 1 ft (Fig. 5.63). This enables us
to describe the force required to compress the spring from 0 to x with the formula
F = 16x. To compress the spring from 0 to 0.25 ft, the force must increase from

F0)=16-0=01b to F(0.25) =16-0.25=4Ib.
The work done by F over this interval is

0.25 0.25 Eq. (3) witha =0,
W = f 16x dx =8x2] =05ft.lb. b=025Fx) =
0 0 16x

Q

EXAMPLE 5 A spring has a natural length of 1 m. A force of 24 N stretches
the spring to a length of 1.8 m.

a) Find the force constant k.
b) How much work will it take to stretch the spring 2 m beyond its natural length?
¢) How far will a 45-N force stretch the spring?

Solution

a) The force constant. We find the force constant from Eq. (4). A force of 24 N
stretches the spring 0.8 m, so

24 = k(0.8) Eq. (4) with F =24, x =0.8
k = 24/0.8 = 30 N/m.
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08 ————— B

x (m)

5.64 A 24-N weight stretches this spring
0.8 m beyond its unstressed length.

5.65 To find the work it takes to pump
the water from a tank, think of lifting
the water one thin slab at a time.

How to Find Work Done During
Pumping

1. Draw a figure with a coordinate
system.

2. Find the weight F of a thin
horizontal slab of liquid.

3. Find the work AW it takes to lift the
slab to its destination.

4. Integrate the work expression from
the base to the surface of the liquid.

b) The work to stretch the spring 2 m. We imagine the unstressed spring hanging
along the x-axis with its free end at x = 0 (Fig. 5.64). The force required to
stretch the spring x m beyond its natural length is the force required to pull
the free end of the spring x units from the origin. Hooke’s law with k = 30
says that this force is

F(x) = 30x.

The work done by F on the spring from x =0 mtox =2 mis
2

2
W= f 30xdx = 15x2] =601J.
0 0

¢) How far will a 45-N force stretch the spring? We substitute F' =45 in the
equation F = 30x to find

45 = 30x, or x=15m.

A 45-N force will stretch the spring 1.5 m. No calculus is required to find this.
Q

Pumping Liquids from Containers

How much work does it take to pump all or part of the liquid from a container?
To find out, we imagine lifting the liquid out one thin horizontal slab at a time
and applying the equation W = Fd to each slab. We then evaluate the integral this
leads to as the slabs become thinner and more numerous. The integral we get each
time depends on the weight of the liquid and the dimensions of the container, but
the way we find the integral is always the same. The next examples show what to
do.

EXAMPLE 6 How much work does it take to pump the water from a full
upright circular cylindrical tank of radius 5 m and height 10 m to a level of 4 m
above the top of the tank?

Solution We draw the tank (Fig. 5.65), add coordinate axes, and imagine the water
divided into thin horizontal slabs by planes perpendicular to the y-axis at the points
of a partition P of the interval [0, 10].

The typical slab between the planes at y and y 4+ Ay has a volume of

AV = m(radius)?(thickness) = 7 (5)>Ay = 257 Ay m’.
The force F required to lift the slab is equal to its weight,
_ Water weighs
F =9800AV 9800 N/m?.
= 9800(25m Ay) = 245,000 Ay N.

The distance through which F must act is about (14 — y) m, so the work done
lifting the slab is about

AW = force x distance = 245,000 (14 — y)Ay J.

The work it takes to lift all the water is approximately

10 10
W~ ;AW = ; 245,0007 (14 — y)Ay J.
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This is a Riemann sum for the function 245,0007r (14 — y) over the interval 0 <
y < 10. The work of pumping the tank dry is the limit of these sums as || P ||— O:

10

10
W= / 245,000t (14 — y) dy = 245,000 (14 — y)dy
0 0

210
= 245,000 [14y - yz] = 245,0007[90]
0

~ 69,272,118 ~ 69.3 x 10° J.

A 1-horsepower output motor rated at 746 J/sec could empty the tank in a little
less than 26 h. Q

EXAMPLE 7 The conical tank in Fig. 5.66 is filled to within 2 ft of the top
with olive oil weighing 57 1b/ft>. How much work does it take to pump the oil to
the rim of the tank?

Solution We imagine the oil divided into thin slabs by planes perpendicular to
the y-axis at the points of a partition of the interval [0, 8].
The typical slab between the planes at y and y + Ay has a volume of about

1 \2
AV = m(radius)?(thickness) = 7 <§ y) Ay = % y*Ay ft3.
The force F(y) required to lift this slab is equal to its weight,
volume x volume

F(y) = 57TAV = S’ITﬂysz b. Weight = weight per unit

The distance through which F(y) must act to lift this slab to the level of the
rim of the cone is about (10 — y) ft, so the work done lifting the slab is about

57
AW = T”(lo— y)y2Ay ft - b.

The work done lifting all the slabs from y = 0 to y = 8 to the rim is approximately

8
STn
W = ; —4— (10 — y)y*Ay ft - Ib.

This is a Riemann sum for the function (577 /4)(10 — y)y?* on the interval from
y = 0to y = 8. The work of pumping the oil to the rim is the limit of these sums
as the norm of the partition goes to zero.

577
W=/ —~(10 y)y*dy
0

5Tr
= / (10y* — y*) dy

577 [10y>  y*7°
== ~ 30,561 ft - Ib.
4 [ 3 4|,
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Exercises 5.8

Work Done by a Variable Force

1.

8.

The workers in Example 3 changed to a larger bucket that held
5 gal (40 Ib) of water, but the new bucket had an even larger
leak so that it, too, was empty by the time it reached the top.
Assuming that the water leaked out at a steady rate, how much
work was done lifting the water? (Do not include the rope and
bucket.)

. The bucket in Example 3 is hauled up twice as fast so that there

is still 1 gal (8 Ib) of water left when the bucket reaches the
top. How much work is done lifting the water this time? (Do not
include the rope and bucket.)

A mountain climber is about to haul up a 50-m length of hanging
rope. How much work will it take if the rope weighs 0.624 N/m?

A bag of sand originally weighing 144 Ib was lifted at a constant
rate. As it rose, sand also leaked out at a constant rate. The sand
was half gone by the time the bag had been lifted 18 ft. How
much work was done lifting the sand this far? (Neglect the weight
of the bag and lifting equipment.)

An electric elevator with a motor at the top has a multistrand
cable weighing 4.5 1b/ft. When the car is at the first floor, 180 ft
of cable are paid out, and effectively O ft are out when the car is
at the top floor. How much work does the motor do just lifting
the cable when it takes the car from the first floor to the top?

. When a particle of mass m is at (x, 0), it is attracted toward the

origin with a force whose magnitude is k/x?. If the particle starts
from rest at x = b and is acted on by no other forces, find the
work done on it by the time it reaches x =a,0 <a < b.

. Suppose that the gas in a circular cylinder of cross-section area A

is being compressed by a piston. If p is the pressure of the gas in
pounds per square inch and V' is the volume in cubic inches, show
that the work done in compressing the gas from state (p;, V)) to
state (p,, V») is given by the equation

(p2,V2)
Work = / pdV.
(p,\V1)

(Hint: In the coordinates suggested in the figure here,dV = Adx.
The force against the piston is pA.)

y

(Continuation of Exercise 7.) Use the integral in Exercise 7 to
find the work done in compressing the gas from V; = 243 in

to V5 =32 in’® if p; = 50 Ib/in® and p and V obey the gas law
pV'# = constant (for adiabatic processes).

Springs

9.

10.

11.

12.

13.

14.

It took 1800 J of work to stretch a spring from its natural length
of 2 m to a length of 5 m. Find the spring’s force constant.

A spring has a natural length of 10 in. An 800-Ib force stretches
the spring to 14 in. (a) Find the force constant. (b) How much
work is done in stretching the spring from 10 in. to 12 in.?
(c) How far beyond its natural length will a 1600-Ib force stretch
the spring?

A force of 2 N will stretch a rubber band 2 cm (0.02 m). Assuming
Hooke’s law applies, how far will a 4-N force stretch the rubber
band? How much work does it take to stretch the rubber band
this far?

If a force of 90 N stretches a spring 1 m beyond its natural length,
how much work does it take to stretch the spring 5 m beyond its
natural length?

Subway car springs. It takes a force of 21,714 b to compress
a coil spring assembly on a New York City Transit Authority
subway car from its free height of 8 in. to its fully compressed
height of 5 in.

a) What is the assembly’s force constant?

b) How much work does it take to compress the assembly the
first half inch? the second half inch? Answer to the nearest
in - Ib.

(Data courtesy of Bombardier, Inc., Mass Transit Division, for

spring assemblies in subway cars delivered to the New York City

Transit Authority from 1985 to 1987.)

A bathroom scale is compressed 1/16 in. when a 150-1b person
stands on it. Assuming the scale behaves like a spring that obeys
Hooke’s law, how much does someone who compresses the scale
1/8 in. weigh? How much work is done compressing the scale
1/8 in.?

Pumping Liquids from Containers

The Weight of Water

Because of variations in the earth’s gravitational field, the
weight of a cubic foot of water at sea level can vary from
about 62.26 1b at the equator to as much as 62.59 1b near the
poles, a variation of about 0.5%. A cubic foot that weighs
about 62.4 1b in Melbourne and New York City will weigh
62.5 1b in Juneau and Stockholm. While 62.4 is a typical
figure and a common textbook value, there is considerable
variation.




15. The rectangular tank shown here, with its top at ground level, is

16.

17.

18.

used to catch runoff water. Assume that the water weighs 62.4
1b/ft3.

a) How much work does it take to empty the tank by pumping
the water back to ground level once the tank is full?
b) If the water is pumped to ground level with a (5/11)-hp

motor (work output 250 ft - lb/sec), how long will it take
to empty the full tank (to the nearest minute)?
¢) Show that the pump in part (b) will lower the water level
10 ft (halfway) during the first 25 min of pumping.
What are the answers to parts (a) and (b) in a location where
water weighs 62.26 1b/ft3? 62.59 1b/ft>?

d)

The rectangular cistern (storage tank for rainwater) shown here
has its top 10 ft below ground level. The cistern, currently full, is
to be emptied for inspection by pumping its contents to ground
level.
a)
b)

How much work will it take to empty the cistern?

How long will it take a (1/2)-hp pump, rated at 275 ft - 1b/sec,
to pump the tank dry?

¢) How long will it take the pump in part (b) to empty the
tank halfway? (It will be less than half the time required to
empty the tank completely.)

d) What are the answers to parts (a)-(c) in a location where

water weighs 62.26 1b/ft3? 62.59 1b/ft>?

i Ground level

0 N
10
10 ft
20
20 ft 12 ft
y

How much work would it take to pump the water from the tank
in Example 6 to the level of the top of the tank (instead of 4 m
higher)?

Suppose that, instead of being full, the tank in Example 6 is only
half full. How much work does it take to pump the remaining
water to a level 4 m above the top of the tank?

19.

20.

E 21

22.
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A vertical right circular cylindrical tank measures 30 ft high and
20 ft in diameter. It is full of kerosene weighing 51.2 Ib/ft>. How
much work does it take to pump the kerosene to the level of the
top of the tank?

The cylindrical tank shown here can be filled by pumping water
from a lake 15 ft below the bottom of the tank. There are two
ways to go about it. One is to pump the water through a hose
attached to a valve in the bottom of the tank. The other is to
attach the hose to the rim of the tank and let the water pour in.
Which way will be faster? Give reasons for your answer.

Open top

Valve at base

CALCULATOR The truncated conical container shown here is
full of strawberry milkshake that weighs 4/9 oz/in®. As you can
see, the container is 7 in. deep, 2.5 in. across at the base, and
3.5 in. across at the top (a standard size at Brigham’s in Boston).
The straw sticks up an inch above the top. About how much
work does it take to suck up the milkshake through the straw
(neglecting friction)? Answer in inch-ounces.

y=14x - 175

| 1.25
Dimensions in inches

a) Suppose the conical container in Example 7 contains milk
(weighing 64.5 Ib/ft®) instead of olive oil. How much work
will it take to pump the contents to the rim?

b) How much work will it take to pump the oil in Example 7

to a level 3 ft above the cone’s rim?
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23. To design the interior surface of a huge stainless steel tank, you
revolve the curve y = x2,0 < x < 4, about the y-axis. The con-
tainer, with dimensions in meters, is to be filled with seawater,
which weighs 10,000 N/m*. How much work will it take to empty
the tank by pumping the water to the tank’s top?

24. We model pumping from spherical containers the way we do from
other containers, with the axis of integration along the vertical
axis of the sphere. Use the figure here to find how much work
it takes to empty a full hemispherical water reservoir of radius
5 m by pumping the water to a height of 4 m above the top of
the reservoir. Water weighs 9800 N/m?.

y

25. You are in charge of the evacuation and repair of the storage tank
shown here. The tank is a hemisphere of radius 10 ft and is full
of benzene weighing 56 1b/ft>. A firm you contacted says it can
empty the tank for 1/2¢ per foot-pound of work. Find the work
required to empty the tank by pumping the benzene to an outlet
2 ft above the top of the tank. If you have $5000 budgeted for
the job, can you afford to hire the firm?

y

T Outlet pipe

Z

26. Your town has decided to drill a well to increase its water supply.
As the town engineer, you have determined that a water tower
will be necessary to provide the pressure needed for distribu-
tion, and you have designed the system shown here. The water
is to be pumped from a 300-ft well through a vertical 4-in. pipe
into the base of a cylindrical tank 20 ft in diameter and 25 ft
high. The base of the tank will be 60 ft aboveground. The pump
is a 3-hp pump, rated at 1650 ft - Ib/sec. To the nearest hour, how

long will it take to fill the tank the first time? (Include the time
it takes to fill the pipe.) Assume water weighs 62.4 1b/ft>.

Ground

Water §

| Submersible pump

NOT TO SCALE

Other Applications

27. Putting a satellite in orbit. The strength of the earth’s grav-
itational field varies with the distance r from the earth’s center,
and the magnitude of the gravitational force experienced by a
satellite of mass m during and after launch is

mMG
rr -

F(r) =

Here, M = 5.975 x 10?* kg is the earth’s mass, G = 6.6720 x
107! N . m?kg~2 is the universal gravitational constant, and r is
measured in meters. The work it takes to lift a 1000-kg satellite
from the earth’s surface to a circular orbit 35,780 km above the
earth’s center is therefore given by the integral

35,780,000 IOOOMG
Work = / ————dr joules.
6,370,000 r

Evaluate the integral. The lower limit of integration is the earth’s
radius in meters at the launch site. (This calculation does not take
into account energy spent lifting the launch vehicle or energy
spent bringing the satellite to orbit velocity.)

= 28. Forcing electrons together. Two electrons r meters apart repel

each other with a force of
23 x 107%
F = ——— newtons.
r

a) Suppose one electron is held fixed at the point (1, 0) on
the x-axis (units in meters). How much work does it take
to move a second electron along the x-axis from the point
(—1, 0) to the origin?

b) Suppose an electron is held fixed at each of the points
(=1, 0) and (1, 0). How much work does it take to move a
third electron along the x-axis from (5, 0) to (3, 0)?

Work and Kinetic Energy

29. If a variable force of magnitude F(x) moves a body of mass



m along the x-axis from x; to x,, the body’s velocity v can be
written as dx /dt (where ¢ represents time). Use Newton’s Second
Law of Motion F = m(dv/dt) and the Chain Rule

dv _dvdx  dv

dr ~ dxdt dx
to show that the net work done by the force in moving the body
from x; to x, is

2 1 1
W= /X‘ F(x)dx = Emv% - Emvf,
where v; and v, are the body’s velocities at x; and x,. In physics
the expression (1/2)mv? is called the kinetic energy of the body
moving with velocity v. Therefore, the work done by the force
equals the change in the body’s kinetic energy, and we can find
the work by calculating this change.

In Exercises 30-36, use the result of Exercise 29.

30.

31.

32.

B 33

Tennis. A 2-oz tennis ball was served at 160 ft/sec (about 109
mph). How much work was done on the ball to make it go this
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Weight vs. Mass
Weight is the force that results from gravity pulling on a mass.
The two are related by the equation in Newton’s second law,

Weight = mass x acceleration.
Thus,
Newtons = kilograms x m/sec?,
Pounds = slugs x ft/sec’.

To convert mass to weight, multiply by the acceleration of
gravity. To convert weight to mass, divide by the acceleration
of gravity.

fast? (To find the ball’s mass from its weight, express the weight @ 34

in pounds and divide by 32 ft/sec?, the acceleration of gravity.)

Baseball. How many foot-pounds of work does it take to throw
a baseball 90 mph? A baseball weighs 5 oz = 0.3125 1b.

Golf. A 1.6-oz golf ball is driven off the tee at a speed of 280
ft/sec (about 191 mph). How many foot-pounds of work are done
getting the ball into the air?

Tennis. During the match in which Pete Sampras won the 1990
U.S. Open men’s tennis championship, Sampras hit a serve that

B 3s.

36.

was clocked at a phenomenal 124 mph. How much work did
Sampras have to do on the 2-oz ball to get it to that speed?

. Football. A quarterback threw a 14.5-0z football 88 ft/sec (60

mph). How many foot-pounds of work were done on the ball to
get it to this speed?

Softball. How much work has to be performed on a 6.5-oz soft-
ball to pitch it 132 ft/sec (90 mph)?

A ball bearing. A 2-oz steel ball bearing is placed on a ver-
tical spring whose force constant is k = 18 Ib/ft. The spring is
compressed 3 inches and released. About how high does the ball
bearing go?

Fluid Pressures and Forces

5.67 To withstand the increasing
pressure, dams are built thicker as they
go down.

We make dams thicker at the bottom than at the top (Fig. 5.67) because the pressure
against them increases with depth. It is a remarkable fact that the pressure at any
point on a dam depends only on how far below the surface the point is and not on
how much the surface of the dam happens to be tilted at that point. The pressure,
in pounds per square foot at a point & feet below the surface, is always 62.4h. The
number 62.4 is the weight-density of water in pounds per cubic foot.

The formula, pressure = 62.4h, makes sense when you think of the units
involved:

b Ib

— = — x ft.
2 f

As you can see, this equation depends only on units and not on the fluid involved. The
pressure / feet below the surface of any fluid is the fluid’s weight-density times .
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Weight-density

A fluid’s weight-density is its weight per unit
volume. Typical values (Ib/ft®) are

Gasoline 42
Mercury 849
Milk 64.5
Molasses 100
Olive oil 57
Seawater 64
Water 62.4

5.68 These containers are filled with
water to the same depth and have the
same base area. The total force is
therefore the same on the bottom of
each container. The containers’ shapes do
not matter here.

SHADED BAND NOT TO SCALE

5.69 Schematic drawing of the molasses
tank in Example 1. How much force did
the lowest foot of the vertical wall have
to withstand when the tank was full? It
takes an integral to find out. Notice that
the proportions of the tank were ideal.

The Pressure-Depth Equation

In a fluid that is standing still, the pressure p at depth % is the fluid’s
weight-density w times A:

p = wh. (1

In this section we use the equation p = wh to derive a formula for the total
force exerted by a fluid against all or part of a vertical or horizontal containing
wall.

The Constant-Depth Formula for Fluid Force

In a container of fluid with a flat horizontal base, the total force exerted by the
fluid against the base can be calculated by multiplying the area of the base by the
pressure at the base. We can do this because total force equals force per unit area
(pressure) times area. (See Fig. 5.68.) If £ p, and A are the total force, pressure,
and area, then

F = total force = force per unit area x area

= pressure X aréa = pA

_ p = wh from
= whA. Eq. (1)

Fluid Force on a Constant-Depth Surface

F = pA = whA (2)

EXAMPLE 1 The Great Molasses Flood

At 1:00 pM. on January 15, 1919, an unusually warm day, a 90-ft-high, 90-ft-
diameter cylindrical metal tank in which the Puritan Distilling Company was storing
molasses at the corner of Foster and Commercial streets in Boston’s North End
exploded. The molasses flooded into the streets, 30 ft deep, trapping pedestrians
and horses, knocking down buildings, and oozing into homes. It was eventually
tracked all over town and even made its way into the suburbs (on trolley cars and
people’s shoes). It took weeks to clean up.

Given that the molasses weighed 100 1b/ft>, what was the total force exerted
by the molasses against the bottom of the tank at the time it blew? Assuming the
tank was full, we can find out from Eq. (2):

Total force = whA = (100)(90)(r (45)%) ~ 57,255,526 Ib. Q

How about the force against the walls of the tank? For example, what was the
total force against the bottom foot-wide band of tank wall (Fig. 5.69)? The area of
the band was

A = 2nrh =27 (45)(1) = 907 ft2.



y
Surface of fluid
Submerged vertical T
Py I plate Strip
depth
yp-- er Ay

| L(y) I
Strip length at level y

5.70 The force exerted by a fluid against
one side of a thin horizontal strip is
about AF = pressure x area = w x (strip
depth) x L(y) Ay. The plate here is flat,
but it might have been curved instead,
like the vertical wall of a cylindrical tank.
Whatever the case, the strip length is
measured along the surface of the plate.
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The tank was 90 ft deep, so the pressure near the bottom was approximately
p = wh = (100)(90) = 9000 Ib/ft>.
Therefore the total force against the band was approximately
F = whA = (9000)(907) = 2, 544, 690 Ib.

But this is not exactly right. The top of the band was 89 ft below the surface, not
90, and the pressure there was less. To find out exactly what the force on the band
was, we need to take into account the variation of the pressure across the band.

The Variable-Depth Formula

Suppose we want to know the force exerted by a fluid against one side of a vertical
plate submerged in a fluid of weight-density w. To find it, we model the plate as
a region extending from y = a to y = b in the xy-plane (Fig. 5.70). We partition
[a, b] in the usual way and imagine the region to be cut into thin horizontal strips
by planes perpendicular to the y-axis at the partition points. The typical strip from y
to y + Ay is Ay units wide by L(y) units long. We assume L(y) to be a continuous
function of y.

The pressure varies across the strip from top to bottom, just as it did in the
molasses tank. But if the strip is narrow enough, the pressure will remain close to
its bottom-edge value of w x (strip depth). The force exerted by the fluid against
one side of the strip will be about

AF = (pressure along bottom edge) x (area)
= w X (strip depth) x L(y)Ay.

The force against the entire plate will be about
b b
D AF = (w x (strip depth) x L(y)Ay). 3)
a a

The sum in (3) is a Riemann sum for a continuous function on [a, b], and we expect
the approximations to improve as the norm of the partition goes to zero. We define
the force against the plate to be the limit of these sums.

Definition ,

The Integral for Fluid Force

Suppose that a plate submerged vertically in fluid of weight-density w runs

from y = a to y = b on the y-axis. Let L(y) be the length of the horizontal
- strip measured from left to right along the surface of the plate at level y.

Then the force exerted by the fluid against one side of the plate is

b
F = / w - (strip depth) - L(y) dy. (4)

EXAMPLE 2 A flat isosceles right triangular plate with base 6 ft and height
3 ft is submerged vertically, base up, 2 ft below the surface of a swimming pool.
Find the force exerted by the water against one side of the plate.
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y (ft)
y=xorx=y
v
Pool surface at |y = 5 7
1 7/
Igeflh. y=3 //
Y =y (3,3

! YA, S
- Ay L xx) =0y

/10

4

x (ft)

5.71 To find the force on one side of the
submerged plate in Example 2, we can

use a coordinate system like the one here.

NOT TO SCALE

5.72 The molasses

Bottom level

tank with the

coordinate origin at the bottom

(Example 3).

Solution We establish a coordinate system to work in by placing the origin at
the plate’s bottom vertex and running the y-axis upward along the plate’s axis of
symmetry (Fig. 5.71). (We will look at other coordinate systems in Exercises 3 and
4.) The surface of the pool lies along the line y = 5 and the plate’s top edge along
the line y = 3. The plate’s right-hand edge lies along the line y = x, with the upper
right vertex at (3, 3). The length of a thin strip at level y is

L(y) =2x =2y.

The depth of the strip beneath the surface is (5 — y). The force exerted by the water
against one side of the plate is therefore

b .
_ strip Ea. (4
F“lwx<depth)XL(y)dy q.- 4
3
:/ 62.4(5 — y)2ydy
0

3
= 124.8/ 5y — yHdy
0

= 1248 > Z—y—3 3—168481b
= . 2y 3 = . .

0 Q

How to Find Fluid Force

Whatever coordinate system you use, you can find the fluid force against
one side of a submerged vertical plate or wall by taking these steps.

1. Find expressions for the length and depth of a typical thin horizontal
strip.

2. Multiply their product by the fluid’s weight-density w and integrate over
the interval of depths occupied by the plate or wall.

EXAMPLE 3 We can now calculate exactly the force exerted by the molasses
against the bottom 1-ft band of the Puritan Distilling Company’s storage tank when
the tank was full.

The tank was a right circular cylindrical tank 90 ft high and 90 ft in diameter.
Using a coordinate system with the origin at the bottom of the tank and the y-axis
pointing up (Fig. 5.72), we find that the typical horizontal strip at level y has

90 — vy,

7 x tank diameter = 907.

Strip depth:
Strip length:

The force against the band is therefore

1
Force = / w(depth)(length) dy = /
0 0

1
10090 — y)(907) dy

For molasses,
w = 100

1
= 900071[ (90 — y)dy =~ 2,530,553 1b.
0



Surface level of fluid

h = centroid depth

[ ]
Plate centroid

5.73 The force against one side of the
plate is w « h - plate area.
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As expected, the force is slightly less than the constant-depth estimate following
Example 1.

Fluid Forces and Centroids

If we know the location of the centroid of a submerged flat vertical plate (Fig.
5.73), we can take a shortcut to find the force against one side of the plate. From

Eq. (4),

b
F = / w X (strip depth) x L(y)dy

b
= w/ (strip depth) x L(y)dy

= w X (moment about surface level line of region occupied by plate)

= w X (depth of plate’s centroid) x (area of plate).

Fluid Forces and Centroids

The force of a fluid of weight-density w against one side of a submerged
flat vertical plate is the product of w, the distance 4 from the plate’s centroid
to the fluid surface, and the plate’s area:

F = wh A. (5)

EXAMPLE 4 Use Eq. (5) to find the force in Example 2.

Solution The centroid of the triangle (Fig. 5.71) lies on the y-axis, one-third of
the way from the base to the vertex, so & = 3. The triangle’s area is

1
A= E(base)(hei ght)

1
5(6)(3) =9.

Hence,
F = whA = (62.4)(3)(9)
= 1684.8 Ib. Q

Equation (5) says that the fluid force on one side of a submerged flat vertical
plate is the same as it would be if the plate’s entire area lay % units beneath the
surface. For many shapes, the location of the centroid can be found in a table, and
Eq. (5) gives a practical way to find F. Of course, the centroid’s location was found
by someone who performed an integration equivalent to evaluating the integral in
Eq. (4). We recommend for now that you practice your mathematical modeling by
drawing pictures and thinking things through the way we did when we developed
Eq. (4). Then check your results, when you conveniently can, with Eq. (5).
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Exercises 5.9

The weight-densities of the fluids in the following exercises can be
found in the table on page 428.

1. What was the total fluid force against the cylindrical inside wall
of the molasses tank in Example 1 when the tank was full? half
full?

2. What was the total fluid force against the bottom 1-ft band of
the inside wall of the molasses tank in Example 1 when the tank
was half full?

3. Calculate the fluid force on one side of the plate in Example 2
using the coordinate system shown here.

y ()

Surface of pool 5/"’( )

Depth ||

4. Calculate the fluid force on one side of the plate in Example 2
using the coordinate system shown here.

y (fH)
Pool surface | aty = 2

' ; x (ft)

-3

5. The plate in Example 2 is lowered another 2 ft into the water.
What is the fluid force on one side of the plate now?

6. The plate in Example 2 is raised to put its top edge at the surface
of the pool. What is the fluid force on one side of the plate now?

7. The isosceles triangular plate shown here is submerged vertically
1 ft below the surface of a freshwater lake.

a) Find the fluid force against one face of the plate.
b) What would be the fluid force on one side of the plate if
the water were seawater instead of freshwater?

Surface level

A
| 4ft | 1fe
A ; B —+

8. The plate in Exercise 7 is revolved 180° about line AB so that
part of the plate sticks out of the lake, as shown here. What force
does the water exert on one face of the plate now?

Surface
level

N
B

| |
| 4 ft |

9. The vertical ends of a watering trough are isosceles triangles like
the one shown here (dimensions in feet).

a) Find the fluid force against the ends when the trough is full.
B b) CALCULATOR How many inches do you have to lower the
water level in the trough to cut the fluid force on the ends

in half? (Answer to the nearest half inch.)

¢) Does it matter how long the trough is? Give reasons for
your answer.

10. The vertical ends of a watering trough are squares 3 ft on a side.
a) Find the fluid force against the ends when the trough is full.

@ b) CALCULATOR How many inches do you have to lower the

water level in the trough to reduce the fluid force by 25%?

¢) Does it matter how long the trough is? Give reasons for
your answer.



11.

12,

B 13

E 14.

15.

16.

17.

18.

The viewing portion of the rectangular glass window in a typical
fish tank at the New England Aquarium in Boston is 63 in. wide
and runs from 0.5 in. below the water’s surface to 33.5 in. below
the surface. Find the fluid force against this portion of the window.
The weight-density of seawater is 64 1b/ft>. (In case you were
wondering, the glass is 3/4 in. thick and the tank walls extend 4
in. above the water to keep the fish from jumping out.)

A horizontal rectangular freshwater fish tank with base 2 x 4 ft
and height 2 ft (interior dimensions) is filled to within 2 in. of
the top.

a) Find the fluid force against each side and end of the tank.

b) If the tank is sealed and stood on end (without spilling), so
that one of the square ends is the base, what does that do
to the fluid forces on the rectangular sides?

CALCULATOR A rectangular milk carton measures 3.75 x 3.75
in. at the base and is 7.75 in. tall. Find the force of the milk on
ore stde witen tife carton 1s 1.

CALCULATOR A standard olive oil can measures 5.75 by 3.5
in. at the base and is 10 in. tall. Find the fluid force against the
base and each side when the can is full.

A semicircular plate 2 ft in diameter sticks straight down into
fresh water with the diameter along the surface. Find the force
exerted by the water on one side of the plate.

A tank truck hauls milk in a 6-ft-diameter horizontal right circular
cylindrical tank. How much force does the milk exert on each
end of the tank when the tank is half full?

The cubical metal tank shown here has a parabolic gate, held

in place by bolts and designed to withstand a fluid force of 160

Ib without rupturing. The liquid you plan to store has a weight-

density of 50 Ib/ft>.

a) What is the fluid force on the gate when the liquid is 2 ft
deep?

b) What is the maximum height to which the container can be
filled without exceeding its design limitation?

4 ft

L1 (1,1

-1 0

Enlarged view of
parabolic gate

Parabolic gate

The rectangular tank shown here has a 1 ft x 1 ft square window
1 ft above the base. The window is designed to withstand a fluid
force of 312 Ib without cracking.

a) What fluid force will the window have to withstand if the
tank is filled with water to a depth of 3 ft?

b) To what level can the tank be filled with water without
exceeding the window’s design limitation?
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E 19. CALCULATOR The end plates of the trough shown here were

designed to withstand a fluid force of 6667 1b. How many cubic
feet of water can the tank hold without exceeding this limitation?
Round down to the nearest cubic foot.

78 (8 fiy|

> x(ft) 30 ft

(o

Dimensional

End view of trough view of trough

20. Water is running into the rectangular swimming pool shown here

at the rate of 1000 ft3/h.

a) Find the fluid force against the triangular drain plate after
9 h of filling.

b) The drain plate is designed to withstand a fluid force of 520
Ib. How high can you fill the pool without exceeding this
limitation?

Triangular drain plate

y (fy)

-1, 1 aJn

| I ft
] 0 1 * @)

Enlarged view of drain plate
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21. A vertical rectangular plate a units long by b units wide is sub-
merged in a fluid of weight density w with its long edges parallel
to the fluid’s surface. Find the average value of the pressure along
the vertical dimension of the plate. Explain your answer.

22. (Continuation of Exercise 21.) Show that the force exerted by the
fluid on one side of the plate is the average value of the pressure
(found in Exercise 21) times the area of the plate.

23. Water pours into the tank here at the rate of 4 ft*/min. The tank’s
cross sections are 4-ft-diameter semicircles. One end of the tank
is movable, but moving it to increase the volume compresses a
spring. The spring constant is k = 100 lb/ft. If the end of the tank
moves 5 ft against the spring, the water will drain out of a safety
hole in the bottom at the rate of 5 ft>/min. Will the movable end
reach the hole before the tank overflows?

Movable end Water in

; I\
S5 f—
Drain Movable
hole end
Side view

The Basic Pattern and Other
Modeling Applications

There is a pattern to what we did in the preceding sections. In each section we
wanted to measure something that was modeled or described by one or more
continuous functions. In Section 5.1 it was the area between the graphs of two
continuous functions. In Section 5.2 it was the volume of a solid. In Section 5.8 it
was the work done by a force whose magnitude was a continuous function, and so
on. In each case we responded by partitioning the interval on which the function
or functions were defined and approximating what we wanted to measure with
Riemann sums over the interval. We used the integral defined by the limit of the
Riemann sums to define and calculate what we wanted to measure. Table 5.2 shows
the pattern.

Literally thousands of things in biology, chemistry, economics, engineering,
finance, geology, medicine, and other fields (the list would fill pages) are modeled
and calculated by exactly this process.

This section reviews the process and looks at a few more of the integrals it
leads to.

Displacement vs. Distance Traveled

If a body with position function s(¢) moves along a coordinate line without changing
direction, we can calculate the total distance it travels from r =a to t = b by
integrating its velocity function v(¢) from t = a to ¢t = b, as we did in Chapter 4. If
the body changes direction one or more times during the trip, we need to integrate
the body’s speed |v(¢)| to find the total distance traveled. Integrating the velocity
will give only the body’s displacement, s(b) — s(a), the difference between its
initial and final positions.

To see why, partition the time interval a < ¢ < b into subintervals in the usual
way and let Az denote the length of the kth interval. If Az is small enough,
the body’s velocity v(z) will not change much from #,_; to # and the right-hand
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Table 5.2 The phases of developing an integral to calculate something

Phase 1

Phase 2

Phase 3

We describe or model something we want
to measure in terms of one or more con-
tinuous functions defined on a closed
interval [a, b].

We partition [a, b] into subintervals of
length Ax; and choose a point ¢ in each
subinterval.

We approximate what we want to measure
with a finite sum.

We identify the sum as a Riemann sum
of a continuous function over [a, b].

The approximations improve as the
norm of the partition goes to zero.

The Riemann sums approach a limit-
ing integral.

We use the integral to define and cal-
culate what we originally wanted to
measure.

The area between the curves y = f(x),
y = g(x) on [a, b] when f(x) > g(x)

y

y =fx)

E y =8

SN T S
a 0 b

YL () — gle)] Axy

A= 1im02 [f (co) — glex)] Axy

1PlI—

b
- f Lf () — g(0)]dx

The volume of the solid defined by revolv-
ing the curve y = R(x), a < x < b, about
the x-axis.

y
y=R(x) Radius =
/ R(x)
g
e

Y 7[R(c)? Axy

V=1l R A
lelgoz T[R(c)]” Axy

b
= / 7[R dx

The work done by a continuous variable
force of magnitude F(x) directed along
the x-axis from a to b

> Fex) Axy

W= lim ¥ F(e)A
HPIH—’OZ (ck) Axk

b
=/ F(x)dx
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endpoint value v(#) will give a good approximation of the velocity throughout the
interval. Accordingly, the change in the body’s position coordinate during the kth
time interval will be about

v(tk)Atk.

The change will be positive if v(#) is positive and negative if v(#) is negative.
In either case, the distance traveled during the kth interval will be about

[v(t) | Aty.

The total trip distance will be approximately

n

PN (M

k=1

The sum in Eq. (1) is a Riemann sum for the speed |v(¢)| on the interval [a, b].
We expect the approximations to improve as the norm of the partition of [a, b] goes
to zero. It therefore looks as if we should be able to calculate the total distance
traveled by the body by integrating the body’s speed from a to b. In practice, this
turns out to be the right thing to do. The mathematical model predicts the distance
correctly every time.

b
Distance traveled = / lv(®)| dt

If we wish to predict how far up or down the line from its initial position a
body will end up when a trip is over, we integrate v instead of its absolute value.

To see why, let s(¢) be the body’s position at time ¢ and let F be an antiderivative
of v. Then

s@)y=F@)+C
for some constant C. The displacement caused by the trip fromt =a tot = b is

s(b) —s(a) = (F(b) + C) — (F(a) + C)

b
= F(b)—F(a):/ v(t) dt.

b
Displacement = / v(t) dt
a

EXAMPLE 1 The velocity of a body moving along a line from t =0 to ¢ =
3w /2 sec was

v(t) = Scost m/sec.

Find the total distance traveled and the body’s displacement.



m/sec
5
v(t) = S5cost Velocity

E | |

g 0 - po 3w t (sec)

9 2 2

2

_5 —
m Shift
from s(0)
sQ)+5+

=
.8
ig s(f) = Ssin t + s(0)
g ,
holig t (sec
E o s(0) T 3_77 (sec)
£ E 2
QB
R
&
2

s(0)-5+—

5.74 The velocity and displacement of
the body in Example 1.

5.75 The steps leading to Delesse’s rule:
(a) a slice through a sample cube; (b) the
granular material in the slice; (c) the slab
between consecutive slices determined by
a partition of [0, L].
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Solution

3n/2
Distance traveled = / |5cost|dt Distance is the integral of speed.
0

/2 3n/2
:f 5costdt+/ (=5cost)dt
0 /2

. /2 . 37 /2
= SSmt] —SSmt]
0 /2

=5(1-0-5(-1-1)=54+10=15m

. 32 Displacement is the integral
Displacement = Scostdt of velocity.
0

32
= 55int]0 =5(—1)=5(0) = —5m

During the trip, the body traveled 5 m forward and 10 m backward for a total
distance of 15 m. This displaced the body 5 m to the left (Fig. 5.74). Q

Delesse’s Rule

As you may know, the sugar in an apple starts turning into starch as soon as the
apple is picked, and the longer the apple sits around, the starchier it becomes. You
can tell fresh apples from stale by both flavor and consistency.

To find out how much starch is in a given apple, we can look at a thin slice
under a microscope. The cross sections of the starch granules will show up clearly,
and it is easy to estimate the proportion of the viewing area they occupy. This
two-dimensional proportion will be the same as the three-dimensional proportion
of uncut starch granules in the apple itself. The apparently magical equality of these
proportions was first discovered by a French geologist, Achille Emest Delesse, in
the 1840s. Its explanation lies in the notion of average value.

Suppose we want to find the proportion of some granular material in a solid
and that the sample we have chosen to analyze is a cube whose edges have length
L. We picture the cube with an x-axis along one edge and imagine slicing the
cube with planes perpendicular to points of the interval [0, L] (Fig. 5.75). Call the
proportion of the area of the slice at x occupied by the granular material of interest
(starch, in our apple example) r(x) and assume r is a continuous function of x.
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Delesse’s rule

Achille Ernest Delesse was a mid-nineteenth-
century mining engineer interested in
determining the composition of rocks. To
find out how much of a particular mineral a
rock contained, he cut it through, polished an
exposed face, and covered the face with
transparent waxed paper, trimmed to size. He
then traced on the paper the exposed portions
of the mineral that interested him. After
weighing the paper, he cut out the mineral
traces and weighed them. The ratio of the
weights gave not only the proportion of the
surface occupied by the mineral but, more
important, the proportion of the entire rock
occupied by the mineral. This rule is still
used by petroleum geologists today. A
two-dimensional analogue of it is used to
determine the porosities of the ceramic filters
that extract organic molecules in chemistry
laboratories and screen out microbes in water
purifiers.

Now partition the interval [0, L] into subintervals in the usual way. Imagine
the cube sliced into thin slices by planes at the subdivision points. The length Ax,
of the kth subinterval is the distance between the planes at x;_; and x;. If the
planes are close enough together, the sections cut from the grains by the planes
will resemble cylinders with bases in the plane at x;. The proportion of granular
material between the planes will be about the same as the proportion of cylinder
base area in the plane at x;, which in turn will be about r(x;). Thus the amount of
granular material in the slab between the two planes will be about

(Proportion) x (slab volume) = r(x)L? Axy.

The amount of granular material in the entire sample cube will be about
n

Z r(xk)L2 Axy.

k=1

This sum is a Riemann sum for the function r(x)L? over the interval [0, L]. We
expect the approximations by sums like these to improve as the norm of the sub-
division of [0, L] goes to zero and therefore expect the integral

L
/ r(x)L?dx
0

to give the amount of granular material in the sample cube.

We can obtain the proportion of granular material in the sample by dividing
this amount by the cube’s volume, L3. If we have chosen our sample well, this will
also be the proportion of granular material in the solid from which the sample was
taken. Putting it all together, we get

Proportion of granular _ Proportion of granular
material in solid  material in the sample cube

L L
/ r(x)L*dx L? / r(x)dx
0 _ 0

L3 L3

1 L
= Z,/(; r(x)dx

= proportion of area occupied by granular
material in a typical cross section.

= average value of r(x) over [0, L]

This is Delesse’s rule. Once we have found 7, the average of r(x) over [0, L], we
have found the proportions of granular material in the solid.

In practice, 7 is found by averaging over a number of cross sections. There
are several things to watch out for in the process. In addition to the possibility
that the granules cluster in ways that make representative samples difficult to find,
there is the possibility that we might not recognize a granule’s trace for what it
is. Some cross sections of normal red blood cells look like disks and ovals, while
others look surprisingly like dumbbells. We do not want to dismiss the dumbbells
as experimental error the way one research group did a few years ago.

Useless Integrals —Bad Models

Some of the integrals we get from forming Riemann sums do what we want, but
others do not. It all depends on how we choose to model the problems we want to
solve. Some choices are good; others are not. Here is an example.



5.76 The modeling cycle for surface area.

(b)

5.77 Why not use (a) cylindrical bands
instead of (b) conical bands to
approximate surface area?
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® A solid of revolution
whose surface area
we want to know

Modeled by revolving
an appropriate curve
y=flx)ja<x<b,
about the x-axis

Compare 4§ SURFACE 4 Conef imati
(ItisS) AREA . Cone frustum approximation

The surface area of the
geometric model is

b 2
S =J 27 f(x) ,1 + (j—f) dx.
We use the surface area formula

b [ 2
S:/ 27 f(x) 1+(%> dx )

because it has predictive value and always gives results consistent with information
from other sources. In other words, the model we used to derive the formula (Fig.
5.76) was a good one.

Why not find the surface area by approximating with cylindrical bands instead
of conical bands, as suggested in Fig. 5.77?7 The Riemann sums we get this way
converge just as nicely as the ones based on conical bands, and the resulting integral
is simpler. Instead of Eq. (2), we get

The area of the
solid’s surface
should be S.

b
S=/ 27 f(x)dx. 3)

After all, we might argue, we used cylinders to derive good volume formulas, so
why not use them again to derive surface area formulas?

The answer is that the formula in Eq. (3) has no predictive value and almost
never gives results consistent with other calculations. The comparison step in the
modeling process fails for this formula.

There is a moral here: Just because we end up with a nice-looking integral
does not mean it will do what we want. Constructing an integral is not enough—we
have to test it too (Exercises 15 and 16).

The Theorems of Pappus

In the third century, an Alexandrian Greek named Pappus discovered two formulas
that relate centroids to surfaces and solids of revolution. The formulas provide
shortcuts to a number of otherwise lengthy calculations.

~ Theorem 1
- Pappus’s Theorem for Volumes
If a plane region is revolved once about a line in the plane that does not
- cut through the region’s interior; then the volume of the solid it generates is
‘equal to the region’s area times the distance traveled by the region’s centroid
‘during the revolution. If p is the distance from the axis of revolution to the
_centroid, then

V =2mpA. 4)
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y
dF——————=
s e
v [ ) \
w
b=
)
0 o

5.78 The region R is to be revolved
(once) about the x-axis to generate a
solid. A 1700-year-old theorem says that
the solid’s volume can be calculated by
multiplying the region’s area by the
distance traveled by its centroid during
the revolution.

5.79 With Pappus’s first theorem, we can
find the volume of a torus without
having to integrate (Example 2).

5.80 With Pappus’s first theorem, we can
locate the centroid of a semicircular
region without having to integrate
(Example 3).

Proof We draw the axis of revolution as the x-axis with the region R in the first
quadrant (Fig. 5.78). We let L(y) denote the length of the cross section of R
perpendicular to the y-axis at y. We assume L(y) to be continuous.

By the method of cylindrical shells, the volume of the solid generated by
revolving the region about the x-axis is

d d
V= / 2m (shell radius)(shell height) dy = 27 / yL(y)dy. (5

The y-coordinate of R’s centroid is

d d
fydA fyL(y)dy

y= A = A )

so that
d
f yL(y)dy = A3.
c

Substituting Ay for the last integral in Eq. (5) gives V = 2nyA. With p equal to
y, we have V = 2mpA. a

EXAMPLE 2 The volume of the torus (doughnut) generated by revolving a
circular disk of radius a about an axis in its plane at a distance b > a from its
center (Fig. 5.79) is

V =27 (b)(na®) = 2n*ba?. (|

Z

Distance from axis of
revolution to centroid

b\

Circumference: 27a

EXAMPLE 3 Locate the centroid of a semicircular region.

Solution We model the region as the region between the semicircle y = +/a% — x2
(Fig. 5.80) and the x-axis and imagine revolving the region about the x-axis to
generate a solid sphere. By symmetry, the x-coordinate of the centroid is X = 0.
With y = p in Eq. (4), we have

_ 1% 4/3)ma’ 4

Y= mA T m(na 3 Q




ds

<

5.81 Figure for Pappus’s area theorem.
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arp txm‘es‘ the distance traveled
p 1s the distance from the axis

(6)

The proof we give assumes that we can model the axis of revolution as the x-axis
and the arc as the graph of a smooth function of x.

Proof We draw the axis of revolution as the x-axis with the arc extending from
X =a to x = b in the first quadrant (Fig. 5.81). The area of the surface generated
by the arc is

=b =b
S =/ 2ryds = 271/ yds. (7)

x=a Xx=a

The y-coordinate of the arc’s centroid is

x=b x=b
/ yds / yds
o — x=a — YX=a .

y= x=b - L
ds

L = [ds is the arc’s
length and y = y.

x=a

x=b
f yds =YyL.

Substituting yL for the last integral in Eq. (7) gives S = 2nyL. With p equal to
y, we have S = 2mpL.

Hence

EXAMPLE 4 The surface area of the torus in Example 2 is

S =2n(b)(2wa) = 4n’ba. 4

Exercises 5.10

Distance and Displacement

In Exercises 1-8, the function v(¢) is the velocity in meters per second
of a body moving along a coordinate line. (a) Graph v to see where it
is positive and negative. Then find (b) the total distance traveled by the
body during the given time interval and (c) the body’s displacement.

v(t) =5cost, 0<t<2m

v(t) =sinmwt, 0<t<2

v(t) = 6sin3t, 0<t<m/2

v(t) =4cos2t, O0<t=<m

EalE o
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S. v(#)=49-98:, 0<r<10
6 _ 1 - Time Velocity Time Velocity
~u@=8-16t, 0=r=10 (sec) (in./sec) (sec) (in./sec)

7. 0@) =62 18t +12=6(t — 1)t —2), 0<r<2

8. v() =612~ 18r+12=6( — )(t~2), 0<r<3 ; 9 5 '

9. The function s = (1/3)¢> — 3¢> + 8¢ gives the position of a body 2 22 8 2
moving on the horizontal s-axis at time ¢ > O (s in meters, ¢ in 3 10 9 6
seconds). 4 -5 10 0
a) Show that the body is moving to the right at time ¢ = 0. 5 —13

b) When does the body move to the left?
¢) What is the body’s position at time ¢ = 3?

d) Whent = 3, what is the total distance the body has traveled?

ny
/am €)

Delesse’s Rule

13. The photograph here shows a grid superimposed on the polished
face of a piece of granite. Use the grid and Delesse’s rule to
estimate the proportion of shrimp-colored granular material in
the rock.

GRAPHER Graph s as a function of ¢ and comment on the

relationship of the graph to the body’s motion.

10. The function s = —t*> 4 6t — 9t gives the position of a body
moving on the horizontal s-axis at time ¢ > 0 (s in meters, ¢ in
seconds).

a) Show that the body is moving to the left at z = 0.

. R BEETEEERaENNRERETEE
b) When does the bOdy move to the r1ght° o ) EDEEEEaEEEREREEEREEERE IR
¢) Does the body ever move to the right of the origin? Give FECEERECERREARERINREERaRER
reasons for your answer EEEEEEEANESTERGRRREERSREEd
d) Whatis the body's posi 3 8 1 8 e

at is the body’s position at time r = 3?
. ys P . EEEEERGDEBEEEEENERERREEEE
e) What is the total distance the particle has traveled by the eSSBS EEEEEREREEEEEE
time r = 3? lI'll-llllll-=====lllllll
av ) EEEEEERESRERER ERESRER
um f) GRAPHER Graph s as a function of ¢ and comment on the .-.-..I.ﬁll:...-lll-.====
relationship of the graph to the body’s motion. ===========-=========-.-.

11. Here are the velocity graphs of two bodies moving on a coordinate
line. Find the total distance traveled and the body’s displacement 14
for the given time interval.

. The photograph here shows a grid superimposed on a microscopic
view of a stained section of human lung tissue. The clear spaces
between the cells are cross sections of the lung’s air sacks (called
alveoli, accent on the second syllable). Use the grid and Delesse’s
rule to estimate the proportion of air space in the lung.

(a) v (m/sec)

2 —
/(_>>\|1 | BEEZUEE SRS EEER
o[ A 23 4 N/ #(sec) ERRBCUSRENREE SRR ERECEREEEs
BEsRRERC R EERE suEEEREREEES
Brooenges i BONRSE AR ERREEEEERE
-2 Baorae S i nnBE e N nNERE e naEs
Dlkoac BB S ETERE S HNBERE Bo 88D
®) (/sec) EginEsEEsEE s S RNUNENE s ENEENDEE
y e BREGCANBE IR LR NRRE R Do R IBRERE
L ERENEoERRGNSEES e TN EasREERaNEE
EREsTEEAREGBTESnasRr e aRRREEENE
SENcEEERAEIE o AeRCEERREREnES
SEEEEEANSEaERESERE EEUEEE
LN L1 1L IN S (seo) EELTEE RSB EBAEEEEEEENEE
0 1243456/ 80910 BEEs: cEsgEET BEEE GRS PEREENEEES
HRESCNRE Dt aFrRRECESEREREEEY

-3

Modeling Surface Area
15. Modeling surface area. The lateral surface area of the cone

= 12. CALCULATOR The table at the top of the next column shows the swept out by revolving the line segment y = x/+/3,0 < x < +/3,

velocity of a model train engine moving back and forth on a track
for 10 sec. Use Simpson’s rule to find the resulting displacement
and total distance traveled.

about the x-axis should be (1/2)(base circumference)(slant height)
= (1/2)(27)(2) = 2m. What do you get if you use Eq. (3) with
[ =x//3?



16.

B 1.

Modeling surface area. The only surface for which Eq. (3)
gives the area we want is a cylinder. Show that Eq. (3) gives S =
2nrh for the cylinder swept out by revolving the line segment
y =r,0 < x < h, about the x-axis.

A sailboat’s displacement. To find the volume of water dis-
placed by a sailboat, the common practice is to partition the
waterline into 10 subintervals of equal length, measure the cross
section area A(x) of the submerged portion of the hull at each
partition point, and then use Simpson’s rule to estimate the inte-
gral of A(x) from one end of the waterline to the other. The table
here lists the area measurements at “Stations” 0 through 10, as
the partition points are called, for the cruising sloop Pipedream,
shown here. The common subinterval length (distance between
consecutive stations) is & = 2.54 ft (about 2’ 6 1/2”, chosen for
the convenience of the builder).

-1 0 1 2 3 4 5 6 7 8 9 10 11 12
1 1

1 1 1 1 L 1 1

a) Estimate Pipedream’s displacement volume to the nearest

cubic foot.
Station | Submerged area (ft?)
0 0
1 1.07
2 3.84
3 7.82
4 12.20
5 15.18
6 16.14
7 14.00
8 9.21
9 3.24
10 0

b) The figures in the table are for seawater, which weighs

18.
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64 1b/ft>. How many pounds of water does Pipedream displace?
(Displacement is given in pounds for small craft, and long tons
[1 long ton = 2240 Ib] for larger vessels.)

(Data from Skene’s Elements of Yacht Design, Francis S. Kinney,
Dodd, Mead & Company, Inc., 1962)

Prismatic coefficients (Continuation of Exercise 17). A boat’s
prismatic coefficient is the ratio of the displacement volume to
the volume of a prism whose height equals the boat’s waterline
length and whose base equals the area of the boat’s largest sub-
merged cross section. The best sailboats have prismatic coeffi-
cients between 0.51 and 0.54. Find Pipedream’s prismatic coeffi-
cient, given a waterline length of 25.4 ft and a largest submerged
cross section area of 16.14 ft? (at Station 6).

The Theorems of Pappus

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

The square region with vertices (0, 2), (2, 0), (4, 2), and (2, 4)
is revolved about the x-axis to generate a solid. Find the volume
and surface area of the solid.

Use a theorem of Pappus to find the volume generated by re-
volving about the line x = 5 the triangular region bounded by
the coordinate axes and the line 2x + y = 6. (As you saw in
Exercise 31 of Section 5.7, the centroid of a triangle lies at the
intersection of the medians, one-third of the way from the mid-
point of each side toward the opposite vertex.)

Find the volume of the torus generated by revolving the circle
(x —2)2 + y? = 1 about the y-axis.

Use the theorems of Pappus to find the lateral surface area and
the volume of a right circular cone.

Use the second theorem of Pappus and the fact that the surface
area of a sphere of radius a is 47a? to find the centroid of the

semicircle y = v/a? — x2.

As found in Exercise 23, the centroid of the semicircle y =
v/a? — x? lies at the point (0, 2a/m). Find the area of the surface
swept out by revolving the semicircle about the line y = a.

The area of the region R enclosed by the semiellipse y =
(b/a)/a? — x? and the x-axis is (1/2)7 ab and the volume of the
ellipsoid generated by revolving R about the x-axis is (4/3)7 ab®.
Find the centroid of R. Notice the remarkable fact that the location
is independent of a.

As found in Example 3, the centroid of the region enclosed
by the x-axis and the semicircle y = +/a% — x? lies at the point
(0, 4a/3m). Find the volume of the solid generated by revolving
this region about the line y = —a.

The region of Exercise 26 is revolved about the line y = x —a
to generate a solid. Find the volume of the solid.

As found in Exercise 23, the centroid of the semicircle y =
v/a* — x? lies at the point (0, 2a /7). Find the area of the surface
generated by revolving the semicircle about the line y = x —a.

Find the moment about the x-axis of the semicircular region in
Example 3. If you use results already known, you will not need
to integrate.
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CHAPTER

5

QUESTIONS TO GUIDE YOUR REVIEW

. How do you define and calculate the area of the region between
the graphs of two continuous functions? Give an example.

. How do you define and calculate the volumes of solids by the
method of slicing? Give an example.

. How are the disk and washer methods for calculating volumes
derived from the method of slicing? Give examples of volume
calculations by these methods.

. Describe the method of cylindrical shells. Give an example.

5. How do you define and calculate the length of the graph of a

smooth function over a closed interval? Give an example. What
about functions that do not have continuous first derivatives?

. How do you define and calculate the area of the surface swept
out by revolving the graph of a smooth function y = f(x),a <
x < b, about the x-axis? Give an example.

7. What is a center of mass?

. How do you locate the center of mass of a straight, narrow rod or
strip of material? Give an example. If the density of the material
is constant, you can tell right away where the center of mass is.
Where is it?

9.

10.

11.

12.

13.
14.

15.

How do you locate the center of mass of a thin flat plate of
material? Give an example.

How do you define and calculate the work done by a variable
force directed along a portion of the x-axis? How do you calculate
the work it takes to pump a liquid from a tank? Give examples.

How do you calculate the force exerted by a liquid against a
portion of a vertical wall? Give an example.

Suppose you know the velocity function v(¢) of a body that will
be moving back and forth along a coordinate line from time t = a
to time t = b. How can you predict how much the motion will
shift the body’s position? How can you predict the total distance
the body will travel?

What does Delesse’s rule say? Give an example.

What do Pappus’s two theorems say? Give examples of how they
are used to calculate surface areas and volumes and to locate
centroids.

There is a basic pattern to the way we constructed integrals in
this chapter. What is it? Give examples.

CHAPTER PRACTICE EXERCISES
Areas 4. P+ y=1,
Find the areas of the regions enclosed by the curves and lines in
Exercises 1-12.
Ly=x y=1/x? x=2
2. y=x, y=1/Jx,
.V/x+y=1, x=0, y=0
y
1
5. x=2y% x=0, y=3
. :4— 2 =
Fy=1 6. x y4, x=0
7.y =4x, y=4x-2
| x 8 Y =dx+4, y=4x-16
0 ! 9. y=sinx, y=x, 0<x<m/4



10.
11.
12.
13.

14.

15.

16.

17.

18.

y=|sinx|, y=1, —n/2<x<n/2
y=2sinx, y=sin2x, 0<x<wm

y=8cosx, y=sec’x, —-m/3<x<mn/3

Find the area of the “triangular” region bounded on the left by

x +y =2, on the right by y = x2, and above by y = 2.

Find the area of the “triangular” region bounded on the left by
¥ = 4/x, on the right by y = 6 — x, and below by y = 1.

Find the extreme values of f(x) = x> — 3x? and find the area of
the region enclosed by the graph of f and the x-axis.

Find the area of the region cut from the first quadrant by the
curve x!/2 + y!/2 = g172,

Find the total area of the region enclosed by the curve x = y%3
and the lines x =y and y = —1.

Find the total area of the region between the curves y = sinx
and y =cosx for 0 < x <3m/2.

Volumes
Find the volumes of the solids in Exercises 19-24.

19.

20.

21.

22.

23.

24.

The solid lies between planes perpendicular to the x-axis at x = 0
and x = 1. The cross sections perpendicular to the x-axis between
these planes are circular disks whose diameters run from the
parabola y = x? to the parabola y = /.

The base of the solid is the region in the first quadrant between
the line y = x and the parabola y = 2,/x. The cross sections
of the solid perpendicular to the x-axis are equilateral triangles
whose bases stretch from the line to the curve.

The solid lies between planes perpendicular to the x-axis at
x =m /4 and x = 5 /4. The cross sections between these planes
are circular disks whose diameters run from the curve y = 2 cos x
to the curve y = 2sinx.

The solid lies between planes perpendicular to the x-axis at x = 0
and x = 6. The cross sections between these planes are squares
whose bases run from the x-axis up to the curve x/2 4+ y!/2 = /6.

y

X2 42 _ e

The solid lies between planes perpendicular to the x-axis at x = 0
and x = 4. The cross sections of the solid perpendicular to the
x-axis between these planes are circular disks whose diameters
run from the curve x? = 4y to the curve y? = 4x.

The base of the solid is the region bounded by the parabola

25.

26.

27.

28.

29.

30.

31.

32.

33.

B 34.
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y? = 4x and the line x = 1 in the xy-plane. Each cross section
perpendicular to the x-axis is an equilateral triangle with one edge
in the plane. (The triangles all lie on the same side of the plane.)

Find the volume of the solid generated by revolving the region
bounded by the x-axis, the curve y = 3x*, and the lines x = 1
and x = —1 about (a) the x-axis; (b) the y-axis; (c) the line x = 1;
(d) the line y = 3.

Find the volume of the solid generated by revolving the “tri-
angular” region bounded by the curve y = 4/x3 and the lines
x =1 and y = 1/2 about (a) the x-axis; (b) the y-axis; (c) the
line x = 2; (d) the line y = 4.

Find the volume of the solid generated by revolving the region
bounded on the left by the parabola x = y? + 1 and on the right
by the line x = 5 about (a) the x-axis; (b) the y-axis; (c) the line
x=3.

Find the volume of the solid generated by revolving the region
bounded by the parabola y?> = 4x and the line y = x about (a)
the x-axis; (b) the y-axis; (c) the line x = 4; (d) the line y = 4.

Find the volume of the solid generated by revolving the “trian-
gular” region bounded by the x-axis, the line x = 7 /3, and the
curve y = tanx in the first quadrant about the x-axis.

Find the volume of the solid generated by revolving the region
bounded by the curve y = sinx and the lines x = 0, x = 7, and
y = 2 about the line y = 2.

Find the volume of the solid generated by revolving the region
between the x-axis and the curve y = x? — 2x about (a) the x-
axis; (b) the line y = —1; (c) the line x = 2; (d) the line y = 2.

Find the volume of the solid generated by revolving about the
x-axis the region bounded by y = 2tanx, y =0, x = —n /4, and
x = m /4. (The region lies in the first and third quadrants and
resembles a skewed bow tie.)

A round hole of radius +/3 ft is bored through the center of a
solid sphere of radius 2 ft. Find the volume of material removed
from the sphere.

CALCULATOR The profile of a football resembles the ellipse
shown here. Find the football’s volume to the nearest cubic inch.

452 y2

it~

Lengths of Curves
Find the lengths of the curves in Exercises 35-38.

35.
36.

y=x"2—(1/3)x*?,
l<y=8

1<x<4

x =y,
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37.
38.

y = (5/12)x%° — (5/8)x*>, 1<x <32
x=0%12)+1/y), 1<y<2

Areas of Surfaces of Revolution

In Exercises 39-42, find the areas of the surfaces generated by re-
volving the curves about the given axes.

39.
40.
41.
42.

y=+2x+1, 0=<x <3, x-axis
y=x%/3, 0<x<1, xaxis

x =44y —y? 1<y<2, y-axis

x=,/y, 2=<y<6, y-axis

Centroids and Centers of Mass

43.

44,

45.

46.

47.

48.

Find the centroid of a thin, flat plate covering the region enclosed
by the parabolas y = 2x? and y = 3 — x2.

Find the centroid of a thin, flat plate covering the region enclosed
by the x-axis, the lines x =2 and x = —2, and the parabola
y =x%

Find the centroid of a thin, flat plate covering the “triangular”
region in the first quadrant bounded by the y-axis, the parabola
y = x2/4, and the line y = 4.

Find the centroid of a thin, flat plate covering the region enclosed
by the parabola y? = x and the line x = 2y.

Find the center of mass of a thin, flat plate covering the region
enclosed by the parabola y? = x and the line x = 2y if the density
function is §(y) = 1 + y. (Use horizontal strips.)

a) Find the center of mass of a thin plate of constant density
covering the region between the curve y = 3/x/2 and the
x-axis from x = 1tox =9.

b) Find the plate’s center of mass if, instead of being constant,
the density is §(x) = x. (Use vertical strips.)

Work

49.

50.

51.

52.

A rock climber is about to haul up 100 N (about 22.5 1b) of
equipment that has been hanging beneath her on 40 m of rope
that weighs 0.8 newton per meter. How much work will it take?
(Hint: Solve for the rope and equipment separately; then add.)

You drove an 800-gal tank truck from the base of Mt. Washington
to the summit and discovered on arrival that the tank was only
half full. You started with a full tank, climbed at a steady rate, and
accomplished the 4750-ft elevation change in 50 min. Assuming
that the water leaked out at a steady rate, how much work was
spent in carrying water to the top? Do not count the work done
in getting yourself and the truck there. Water weighs 8 1b/U.S.
gal.

If a force of 20 Ib is required to hold a spring 1 ft beyond its
unstressed length, how much work does it take to stretch the
spring this far? an additional foot?

A force of 200 N will stretch a garage door spring 0.8 m be-
yond its unstressed length. How far will a 300-N force stretch the

spring? How much work does it take to stretch the spring this
far?

53. A reservoir shaped like a right circular cone, point down, 20 ft
across the top and 8 ft deep, is full of water. How much work
does it take to pump the water to a level 6 ft above the top?

54. (Continuation of Exercise 53.) The reservoir is filled to a depth
of 5 ft, and the water is to be pumped to the same level as the
top. How much work does it take?

55. A right circular conical tank, point down, with top radius 5 ft
and height 10 ft is filled with a liquid whose weight-density is 60
1b/ft>. How much work does it take to pump the liquid to a point
2 ft above the tank? If the pump is driven by a motor rated at
275 ft « Ib/sec (1/2-hp), how long will it take to empty the tank?

56. A storage tank is a right circular cylinder 20 ft long and 8 ft in
diameter with its axis horizontal. If the tank is half full of olive
oil weighing 57 1b/ft?, find the work done in emptying it through
a pipe that runs from the bottom of the tank to an outlet that is
6 ft above the top of the tank.

Fluid Force

57. The vertical triangular plate shown here is the end plate of a
trough full of water (w = 62.4). What is the fluid force against
the plate?

UNITS IN FEET

58. The vertical trapezoidal plate shown here is the end plate of a
trough full of maple syrup weighing 75 1b/ft>. What is the force
exerted by the syrup against the end plate of the trough when the
syrup is 10 in. deep?

N -

-2 0/2

UNITS IN FEET

59. A flat vertical gate in the face of a dam is shaped like the parabolic
region between the curve y = 4x? and the line y = 4, with mea-
surements in feet. The top of the gate lies 5 ft below the surface
of the water. Find the force exerted by the water against the gate
(w = 62.4).

@ 60. CALCULATOR You plan to store mercury (w = 849 1b/f3) in a
vertical right circular cylindrical tank of radius 1 ft whose inte-
rior side wall can withstand a total fluid force of 40,000 1b. About



how many cubic feet of mercury can you store in the tank at any
one time?

61. The container profiled in Fig. 5.82 is filled with two nonmixing
liquids of weight density w; and w,. Find the fluid force on one
side of the vertical square plate ABCD. The points B and D lie
in the boundary layer and the square is 6+/2 ft on a side.

|- Liquid 1:
density = w,;

V2

|- Liquid 2:
density = w,

5.82 Profile of the container in
Exercise 61.

62

in water (w = 62.4) with its upper edge 4 ft below the surface.
Find the fluid force on one side of the plate in two different ways:

CHAPTER

The isosceles trapezoidal plate shown here is submerged vertically
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a) By evaluating an integral.

b) By dividing the plate into a parallelogram and an isosceles
triangle, locating their centroids, and using the equation
F = whA from Section 5.9.

Dimensions in feet

Distance and Displacement

In Exercises 63-66, the function v = f(¢) is the velocity (m/sec) of
a body moving along a coordinate line. Find (a) the total distance
the body travels during the given time interval and (b) the body’s
displacement.

63. v=r>—-8t+12, 0<1<6

64. v=1>—-3242r, 0<r<2
65. v=>5cost, 0<t<3m/2
66. v=—msinmt, 0<t<3/2

ADDITIONAL EXERCISES—THEORY, EXAMPLES, APPLICATIONS

Volume and Length

1. A solid is generated by revolving about the x-axis the region
bounded by the graph of the continuous function y = f(x), the
x-axis, and the fixed line x = a and the variable linex = b, b > a.
Its volume, for all b, is b?> — ab. Find f(x).

2. A solid is generated by revolving about the x-axis the region
bounded by the graph of the continuous function y = f(x), the
x-axis, and the lines x = 0 and x = a. Its volume, for all a > 0,
is a®> + a. Find f(x).

3. Suppose that the increasing function f(x) is smooth for x > 0
and that f(0) = a. Let s(x) denote the length of the graph of
f from (0, a) to (x, f(x)),x > 0. Find f(x) if s(x) = Cx for
some constant C. What are the allowable values for C?

4. a) Show that for 0 < o < 7/2,

/ V1+cos?20 db > Va2 +sin’a.
0

b) Generalize the result in (a).

Moments and Centers of Mass

5. Find the centroid of the region bounded below by the x-axis and
above by the curve y = 1 — x", n an even positive integer. What
is the limiting position of the centroid as n — co?

CALCULATOR If you haul a telephone pole on a two-wheeled
carriage behind a truck, you want the wheels to be three feet or so
behind the pole’s center of mass to provide an adequate “tongue”
weight. NYNEXs class 1 40-ft wooden poles have a 27-in. cir-
cumference at the top and a 43.5-in. circumference at the base.
About how far from the top is the center of mass?

Be.

7. Suppose that a thin metal plate of area A and constant density &
occupies a region R in the xy-plane, and let M, be the plate’s
moment about the y-axis. Show that the plate’s moment about
the line x = b is

a) M, — bé A if the plate lies to the right of the line, and
b) b8 A — M, if the plate lies to the left of the line.
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8.

10.

Find the center of mass of a thin plate covering the region bounded
by the curve y? = 4ax and the line x = a, a = positive constant,
if the density at (x, y) is directly proportional to (a) x, (b) |y|.

. a) Find the centroid of the region in the first quadrant bounded

by two concentric circles and the coordinate axes, if the
circles have radii ¢ and b, 0 < a < b, and their centers are
at the origin.

b) Find the limits of the coordinates of the centroid as a ap-
proaches b and discuss the meaning of the result.

A triangular corner is cut from a square 1 ft on a side. The area
of the triangle removed is 36 in?. If the centroid of the remaining
region is 7 in. from one side of the original square, how far is it
from the remaining sides?

Surface Area

11.

12.

At points on the curve y = 2./x, line segments of length & =y
are drawn perpendicular to the xy-plane (Fig. 5.83). Find the
area of the surface formed by these perpendiculars from (0, 0)

to (3, 24/3).

5.83 The surface in Exercise 11.

At points on a circle of radius g, line segments are drawn per-
pendicular to the plane of the circle, the perpendicular at each
point P being of length ks, where s is the length of the arc of
the circle measured counterclockwise from (a,0) to P and k is
a positive constant, as shown here. Find the area of the surface
formed by the perpendiculars along the arc beginning at (a, 0)
and extending once around the circle.

Work

13.

14.

A particle of mass m starts from rest at time ¢t = 0 and is moved
along the x-axis with constant acceleration a fromx =0tox = h
against a variable force of magnitude F(z) = ¢2. Find the work
done.

Work and kinetic energy. Suppose a 1.6-oz golf ball is placed
on a vertical spring with force constant k£ = 2 Ib/in. The spring
is compressed 6 in. and released. About how high does the ball
go (measured from the spring’s rest position)?

Fluid Force

15.

16.

17.

A triangular plate ABC is submerged in water with its plane
vertical. The side AB, 4 ft long, is 6 ft below the surface of the
water, while the vertex C is 2 ft below the surface. Find the force
exerted by the water on one side of the plate.

A vertical rectangular plate is submerged in a fluid with its top
edge parallel to the fluid’s surface. Show that the force exerted
by the fluid on one side of the plate equals the average value of
the pressure up and down the plate times the area of the plate.

The center of pressure on one side of a plane region submerged in
a fluid is defined to be the point at which the total force exerted by
the fluid can be applied without changing its total moment about
any axis in the plane. Find the depth to the center of pressure (a)
on a vertical rectangle of height 4 and width b if its upper edge
is in the surface of the fluid; (b) on a vertical triangle of height
h and base b if the vertex opposite b is a ft and the base b is
(a + h) ft below the surface of the fluid.



