CHAPTER

Transcendental
Functions

OVERVIEW Many of the functions in mathematics and science are inverses of one
another. The functions Inx and e¢* are probably the best-known function—inverse
pair, but others are nearly as important. The trigonometric functions, when suitably
restricted, have important inverses, and there are other useful pairs of logarithmic
and exponential functions. Less widely known are the hyperbolic functions and
their inverses, functions that arise in the study of hanging cables, heat flow, and
the friction encountered by objects falling through the air. We describe all of these
functions in this chapter and look at the kinds of problems they solve.

Inverse Functions and Their Derivatives

In this section, we define what it means for functions to be inverses of one another
and look at what this says about the formulas, graphs, and derivatives of function—
inverse pairs.

One-to-One Functions

A function is a rule that assigns a value from its range to each point in its domain.
Some functions assign the same value to more than one point. The squares of —1
and 1 are both 1; the sines of 77 /3 and 27 /3 are both +/3/2. Other functions never
assume a given value more than once. The square roots and cubes of different
numbers are always different. A function that has distinct values at distinct points
is called one-to-one.

Definition
A function f(x) is one-to-one on a domain D if f(x;) # f(x,) whenever
X1 75 X2. £

EXAMPLE 1 f(x) = /x is one-to-one on any domain of nonnegative numbers
because /x| # ,/X; whenever x; # x,. a
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One-to-one: Graph meets each
horizontal line at most once.

y y=x2

Same y-value

[N
T Same y-value
! 0.5
l R 4 NG ¢
1o 1 3 ST N
6 6
y=sinx

Not one-to-one: Graph meets one or
more horizontal lines more than once.

6.1 Using the horizontal line test, we see
that y = x3 and y = /X are one-to-one,
but y = x? and y = sinx are not.

Domain of f Range of f

Domain of f !

Range of f 7!

y=f(
x=f1(y)

6.2 The inverse of a function f sends
each output back to the input from
which it came.

EXAMPLE 2 g(x) = sinx is not one-to-one on the interval [0, 7] because
sin (7t /6) = sin (57 /6). The sine is one-to-one on [0, 7 /2], however, because sines
of angles in the first quadrant are distinct. d

The graph of a one-to-one function y = f(x) can intersect a given horizontal
line at most once. If it intersects the line more than once it assumes the same
y-value more than once, and is therefore not one-to-one (Fig. 6.1).

The Horizontal Line Test

A function y = f(x) is one-to-one if and only if its graph intersects each
horizontal line at most once.

Inverses

Since each output of a one-to-one function comes from just one input, a one-to-
one function can be reversed to send the outputs back to the inputs from which
they came. The function defined by reversing a one-to-one function f is called the
inverse of f. The symbol for the inverse of f is f~1, read *f inverse” (Fig. 6.2).
The —1 in f~! is not an exponent: f~!(x) does not mean 1/f(x).

As Fig. 6.2 suggests, the result of composing f and f~! in either order is the
identity function, the function that assigns each number to itself. This gives a way
to test whether two functions f and g are inverses of one another. Compute f o g
and go f. If (f o g)(x) = (g o f)(x) = x, then f and g are inverse of one another;
otherwise they are not. If f cubes every number in its domain, g had better take
cube roots or it isn’t the inverse of f.

Functions f and g are an inverse pair if and only if

flex)=x and  g(f(x))=x.
In this case, g = f~' and f =g~ L.

A function has an inverse if and only if it is one-to-one. This means, for
example, that increasing functions have inverses and decreasing functions have
inverses (Exercise 39). Functions with positive derivatives have inverses because
they increase throughout their domains (Corollary 3 of the Mean Value Theorem,
Section 3.2). Similarly, because they decrease throughout their domains, functions
with negative derivatives have inverses.

Finding Inverses

How is the graph of the inverse of a function related to the graph of the function?
If the function is increasing, say, its graph rises from left to right, like the graph in
Fig. 6.3(a). To read the graph, we start at the point x on the x-axis, go up to the
graph, and then move over to the y-axis to read the value of y. If we start with y
and want to find the x from which it came, we reverse the process (Fig. 6.3b).
The graph of f is the graph of f~! with the input-output pairs reversed. To
display the graph in the usual way, we have to reverse the pairs by reflecting the



6.3 The graph of f~'(x).

How to Express f~' as a Function
of x

Step 1: Solve the equation y = f(x)
for x in terms of y.

Step 2: Interchange x and y. The

resulting formula will be y = f~1(x).

(a) To find the value of fat x, we start at x
and go up to the curve and over to the y-axis.

(c) To draw the graph of f ! in the
usual way, we reflect it in the line y = x.
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x=f"iy)

RANGE OF f
DOMAIN OF f !

X

x
-1
DOMAIN OF f RANGE OF f

(b) The graph of fcan also serve as a graph of f -1
To find the x that gave y, we start at y and go over
to the curve and down to the x-axis. The domain
of f~!is the range of f. The range of f~! is the
domain of f.

RANGE OF f ™!

<

<

=
RANGE OF f

DOMAIN OF f !

(d) Then we interchange the letters x and y.
We now have a graph of f~! as a function of x.

graph in the 45° line y = x (Fig. 6.3c) and interchanging the letters x and y (Fig.
6.3d). This puts the independent variable, now called x, on the horizontal axis and
the dependent variable, now called y, on the vertical axis. The graphs of f(x) and
f~'(x) are symmetric about the line y = x.

The pictures in Fig. 6.3 tell us how to express f~! as a function of x, which
is stated at the left.

1
EXAMPLE 3 Find the inverse of y = —2-x + 1, expressed as a function of x.

Solution

1
Step 1: Solve for x in terms of y: y = Ex +1

2y =x+2
x =2y—2.
Step 2: Interchange x and y: 'y = 2x — 2.
The inverse of the function f(x) = (1/2)x + 1 is the function f~!(x) =2x — 2.
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6.4 Graphing f(x) = (1/2)x + 1 and
f~(x) = 2x — 2 together shows the
graphs’ symmetry with respect to the line

y=x

x(t)=t X2(t) = t+cost
y1(t) = t+cost ya(t) =t
{x3(t) =t
ys(t) =t
y

6.5 The functions y = /X and y = x2,
x > 0, are inverses of one another.

To check, we verify that both composites give the identity function:

f‘l(f(x))=2(%x+1>—2=x+2—2:x

FUT N = 3@r =D 1= x - 141 =x

See Fig. 6.4. a

EXAMPLE 4 Find the inverse of the function y = x2, x > 0, expressed as a
function of x.

Solution

Step 1: Solve for x in terms of y:
y=x
ﬁ:«/}?=|x|:x x| = x because x > 0
Step 2: Interchange x and y: 'y = \/x.

The inverse of the function y = x2, x > 0, is the function y = /x. See Fig. 6.5.
Notice that, unlike the restricted function y = x%, x > 0, the unrestricted func-
tion y = x? is not one-to-one and therefore has no inverse. Q

Technology Using Parametric Equations to Graph Inverses (See the Tech-
nology Notes in Section 2.3 for a discussion of parametric mode.) It is easy to
graph the inverse of the function y = f(x), using the parametric form

() = @), ¥y =t
You can graph the function and its inverse together, using
x () =1t, yi(@®) = f() (the function)
x@) = f(), Y () =t (its inverse)

Even better, graph the function, its inverse, and the identity function y = x,
expressed parametrically as

x3(t) = t, () =t (the identity function)

The graphing is particularly effective if done simultaneously.

Try it on the functions y = x°/(x?> 4+ 1) and y = x + cos x. You will see
the symmetry best if you use a square window (one in which the x- and y-axes
are identically scaled).

Derivatives of Inverses of Differentiable Functions

If we calculate the derivatives of f(x) = (1/2)x + 1 and its inverse f~'(x) =
2x — 2 from Example 3, we see that

Lrw =L (3x41)=1
dxfx_dx(Zx =2

4y = Loy =
Ef (x)—dx(Zx 2) =2.
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6.6 The slopes of nonvertical lines
reflected across the line y = x are
reciprocals of one another.
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6.7 The graphs of inverse functions have reciprocal slopes at corresponding
points.

The derivatives are reciprocals of one another. The graph of f is the line y =
(1/2)x + 1, and the graph of f~! is the line y = 2x — 2 (Fig. 6.4). Their slopes
are reciprocals of one another.

This is not a special case. Reflecting any nonhorizontal or nonvertical line
across the line y = x always inverts the line’s slope. If the original line has slope
m # 0 (Fig. 6.6), the reflected line has slope 1/m (Exercise 36).

The reciprocal relation between the slopes of graphs of inverses holds for other
functions as well. If the slope of y = f(x) at the point (a, f(a)) is f'(a) # 0, then
the slope of y = f~!(x) at the corresponding point (f(a), a) is 1/f'(a) (Fig. 6.7).
Thus, the derivative of f~! at f(a) equals the reciprocal of the derivative of f at
a. As you might imagine, we have to impose some mathematical conditions on f
to be sure this conclusion holds. The usual conditions, from advanced calculus, are
stated in Theorem 1.

Theorem 1
The Derivative Rule for Inverses

If f is differentiable at every point of an interval I and df/dx is never
zero on I, then f~! is differentiable at every point of the interval f(I). The
value of df fl /dx at any particular point f(a) is the reciprocal of the value
of df/dx at a:

df"l) 1

e = e, (1)

( dx x=f(a) <ﬁ>
dx x=a

In short,

' 1
Y= —, 2
(s I )
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6.8 The derivative of f~'(x) = 4/x at the
point (4, 2) is the reciprocal of the
derivative of f(x) = x2 at (2, 4).

y=x -
— (2, 6)¢ Slope 3x2 = 3(2)2 = 12

(=)}

1
Reciprocal slope: 1

6.9 The derivative of f(x) = x3 — 2 at
x = 2 tells us the derivative of - at
X=6.

EXAMPLE 5  For f(x) =x2 x >0, and its inverse f~!(x) = 4/x (Fig. 6.8),
we have

d f d d f 1
=2x d = 0.
dx  dx =)= an dx \/— «/_ *
The point (4, 2) is the mirror image of the point (2, 4) across the line y = x.
d
At the point (2, 4): —i =2x=212) =
dx
df! 1 1 1 1

At the point (4, 2): e
e point (4,2) dx 2Jx  2Ja 4 dfjdx Q

Equation (1) sometimes enables us to find specific values of df~'/dx without
knowing a formula for f~'.

EXAMPLE 6 Let f(x) = x3 — 2. Find the value of df ~!/dx at x =6 = f(2)
without finding a formula for f~!(x).

Solution
d
al 3 =12
dx =2
-1
af = — Eq. (1)
dx |i=fa)
See Fig. 6.9. a

Another Way to Look at Theorem 1

If y = f(x) is differentiable at x = a and we change x by a small amount dx, the
corresponding change in y is approximately

dy = f'(a) dx.

This means that y changes about f’(a) times as fast as x and that x changes about
1/f'(a) times as fast as y.

Exercises 6.1

Identifying One-to-One Functions Graphically

Which of the functions graphed in Exercises 1-6 are one-to-one, and which are not?

1. y 2. y

y=-3x

3. y y=tanx 4. y
y=lx] —
=0
0
X X —_— = O—> X
1 0 -
2 [ el
—X o
[ el
-0




Graphing Inverse Functions

Each of Exercises 7-10 shows the graph of a function y = f(x).
Copy the graph and draw in the line y = x. Then use symmetry with
respect to the line y = x to add the graph of f~! to your sketch. (It
is not necessary to find a formula for f~!.) Identify the domain and
range of 1.

7. y
1
=fx)= ——, x=0
y =f(x) 21
1
' x
0 1
8 )
o A *
9. 10.
y
i y = f(x) = tan x,
y=f) =sinx, T, T
T x<T 1 25752
2 | Ly
I [ _m 0 )
T 0 T 2 2
2 2
_1_

11. a) Graph the function f(x) = +/1 —x%2,0 < x < 1. What sym-
metry does the graph have?
b) Show that f is its own inverse. (Remember that Vxt=x

if x >0.)
12. a) Graph the function f(x) = 1/x. What symmetry does the

graph have?
b) Show that f is its own inverse.
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Formulas for Inverse Functions

Each of Exercises 13—18 gives a formula for a function y = f(x) and
shows the graphs of f and f~!. Find a formula for f~! in each case.

13. f(x)=x*>4+1, x>0
y

y=fx)

y=f"1

4. fx)=x% x<0

y
y = f(x)

y=f"

15. f(x)=x>—1
y
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17. f(x):(x+l)2, x> -1 18. f(x)=x2/3, x>0

Yy
y =fx) y:f—l(x)
y=f"1x
/1 y=f®
-1 0/ * 1=
-1 | B
0 1

Each of Exercises 19-24 gives a formula for a function y = f(x). In
each case, find f~!(x) and identify the domain and range of f~!. As
a check, show that f(f~'(x)) = f~1(f(x)) = x.

19. f(x) =x° 20. f(x)=x* x>0
21 f(x)=x>+1 22, f(x)=(1/2)x—=17/2
23. fx)=1/x% x>0 24. f(x)=1/x3, x#£0

Derivatives of Inverse Functions
In Exercises 25-28:
a) Find f'(x).
b) Graph f and f~! together.
¢) Evaluate df/dx at x = a and df ™! /dx at x = f(a) to show that
at these points df ~'/dx = 1/(df/dx).

25. fx)=2x+3, a=-1
26. f(x)=({1/5x+7, a=-1
27. f(x)=5—4x, a=1/2
28. f(x)=2x%, x>0, a=5

29. a) Show that f(x) = x> and g(x) = /x are inverses of one

another.

b) Graph f and g over an x-interval large enough to show
the graphs intersecting at (1, 1) and (—1, —1). Be sure the
picture shows the required symmetry in the line y = x.

¢) Find the slopes of the tangents to the graphs of f and g at
(1, 1) and (-1, —1) (four tangents in all).

d) What lines are tangent to the curves at the origin?

30. a) Show that 2(x) = x3/4 and k(x) = (4x)!/? are inverses of

one another.

b) Graph h and k over an x-interval large enough to show
the graphs intersecting at (2, 2) and (—2, —2). Be sure the
picture shows the required symmetry about the line y = x.

¢) Find the slopes of the tangents to the graphs at z and k at
(2, 2) and (-2, -2).

d) What lines are tangent to the curves at the origin?

31. Let f(x) = x> —3x%>—1, x > 2. Find the value of df ' /dx at
the point x = —1 = f(3).

32. Let f(x) =x?>—4x — 5, x > 2. Find the value of df~!/dx at
the point x = 0 = f(5).

33. Suppose that the differentiable function y = f(x) has an inverse
and that the graph of f passes through the point (2, 4) and has
a slope of 1/3 there. Find the value of df~!'/dx at x = 4.

34. Suppose that the differentiable function y = g(x) has an inverse
and that the graph of g passes through the origin with slope 2.
Find the slope of the graph of g~! at the origin.

35. a) Find the inverse of the function f(x) = mx, where m is a

constant different from zero.

b) What can you conclude about the inverse of a function
y = f(x) whose graph is a line through the origin with

a nonzero slope m?

36. Show that the graph of the inverse of f(x) = mx + b, where m
and b are constants and m # 0, is a line with slope 1/m and
y-intercept —b/m.

37. a) Find the inverse of f(x) = x 4+ 1. Graph f and its inverse

together. Add the line y = x to your sketch, drawing it with

dashes or dots for contrast.

b) Find the inverse of f(x) = x + b (b constant). How is the
graph of f~! related to the graph of f?

¢) What can you conclude about the inverses of functions

whose graphs are lines parallel to the line y = x?

38. a) Find the inverse of f(x) = —x + 1. Graph the line y =

—x + 1 together with the line y = x. At what angle do the

lines intersect?

b) Find the inverse of f(x) = —x + b (b constant). What angle
does the line y = —x + b make with the line y = x?

¢) What can you conclude about the inverses of functions

whose graphs are lines perpendicular to the line y = x?

Increasing and Decreasing Functions

39. Increasing functions and decreasing functions. As in Section
3.2, a function f(x) increases on an interval / if for any two
points x; and x; in 7,

x>x = fl)> fx).

Similarly, a function decreases on I if for any two points x; and

X2 in / .

= flx) < fl).

Show that increasing functions and decreasing functions are one-
to-one. That is, show that for any x; and x; in I, x, # x; implies

f(x2) # f(x).

X2 > X1

Use the results of Exercise 39 to show that the functions in Exercises
4044 have inverses over their domains. Find a formula for df ~!/dx
using Theorem 1.

40. f(x) = (1/3)x +(5/6)
41. f(x) =27x3
2., fx)=1-8x3



43 fx)=(1-x)°
4. f(x)=x">

Theory and Applications

45. If f(x) is one-to-one, can anything be said about g(x) = — f(x)?
Give reasons for your answer.

46. If f(x) is one-to-one and f(x) is never 0, can anything be said

about h(x) = 1/f(x)? Give reasons for your answer.

47. Suppose that the range of g lies in the domain of f so that
the composite f o g is defined. If f and g are one-to-one, can

anything be said about f o g? Give reasons for your answer.

48. If a composite f o g is one-to-one, must g be one-to-one? Give

reasons for your answer.

49. Suppose f(x) is positive, continuous, and increasing over the

interval [a, b]. By interpreting the graph of f show that

b f(b)
/ fwdr+ [ ' 0)dy = bf () - af(@).

fla)

50. Determine conditions on the constants a, b, ¢, and d so that the
rational function
ax +b
fx) =
cx +d

has an inverse.

51. Still another way to view Theorem 1. If we write g(x) for

f~'(x), Eq. (1) can be written as

§'(f@) = gf@)- flla=1

! o
—, or
(@)

If we then write x for a, we get

g - flvy=1
The latter equation may remind you of the Chain Rule, and indeed
there is a connection.

Assume that f and g are differentiable functions that are
inverses of one another, so that (g o f)(x) = x. Differentiate both
sides of this equation with respect to x, using the Chain Rule to
express (g o f)'(x) as a product of derivatives of g and f. What
do you find? (This is not a proof of Theorem 1 because we assume
here the theorem’s conclusion that g = f~! is differentiable.)

52. Equivalence of the washer and shell methods for finding
volume. Let f be differentiable on the interval a < x < b, with
a > 0, and suppose that f has a differentiable inverse, f~!. Re-
volve about the y-axis the region bounded by the graph of f
and the lines x = a and y = f(b) to generate a solid. Then the
values of the integrals given by the washer and shell methods for

the volume have identical values:
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f@
W) = f a((f ) - a?) dy
f

(@)
S(t) = / 2mx(f0) — f(x))dx.

Then show that the functions W and S agree at a point of [a, b]
and have identical derivatives on [a, b]. As you saw in Section
4.2, Exercise 56, this will guarantee W(¢t) = S(¢) for all ¢ in
[a, b]. In particular, W (b) = S(b). (Source: “Disks and Shells
Revisited,” by Walter Carlip, American Mathematical Monthly,
Vol. 98, No. 2, February 1991, pp. 154-156.)

& CAS Explorations and Projects

In Exercises 53-60, you will explore some functions and their inverses
together with their derivatives and linear approximating functions at
specified points. Perform the following steps using your CAS:

a)

b)
)

d

e)

53.

54.

5.

56.

57.

58.

59.
60.

Plot the function y = f(x) together with its derivative over the
given interval. Explain why you know that f is one-to-one over
the interval.

Solve the equation y = f(x) for x as a function of y, and name
the resulting inverse function g.

Find the equation for the tangent line to f at the specified point
(.Xo, f (-XO))'

Find the equation for the tangent line to g at the point (f (xo), xo)
located symmetrically across the 45° line y = x (which is the
graph of the identity function). Use Theorem 1 to find the slope
of this tangent line.

Plot the functions f and g, the identity, the two tangent lines, and
the line segment joining the points (xo, f (xo)) and (f (xo), Xo)-
Discuss the symmetries you see across the main diagonal.

2
y=4+/3x =2, 3S¥s4 =3
L N T )
BT
ha l<x<l1 1,2
= N —_ X . X0 =
y X2+1 0
x3
y—x2+1, 1<x=<l1l, x=1/2
27
=x3-3x2-1, 2<x<5, =—
y=x X x < X0 0
3
y=2—-x—x3, -2<x<2, X0 =3
y=e, -3<x<5 x=1
. 7T< <7T 1
y =Ssinx, 2_x_2, Xo =

In Exercises 61 and 62, repeat the steps above to solve for the functions
y = f(x) and x = f~!(y) defined implicitly by the given equations

fb) b
f w7 0 = a?)dy = f 2mx(f(B) = F() dx.
f@ a

To prove this equality, define

over the interval.
61. ' —1=(x+2)3,

62. cosy=x'°, 0<x<l,

—5<x<5,

X = 1/2

X9 = —3/2
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6.10 The graph of y =In x and its
relation to the function y = 1/x, x > 0.
The graph of the logarithm rises above
the x-axis as x moves from 1 to the right,
and it falls below the axis as x moves
from 1 to the left.

Natural Logarithm

The most important function—inverse pair in mathematics and science is the pair
consisting of the natural logarithm function In x and the exponential function e*.
The key to understanding e* is In x, so we introduce In x first. The importance
of logarithms came at first from the improvement they brought to arithmetic. The
revolutionary properties of logarithms made possible the calculations of the great
seventeenth-century advances in offshore navigation and celestial mechanics. Nowa-
days we do complicated arithmetic with calculators, but the properties of logarithms

remain as important as ever.

The Natural Logarithm Function

The natural logarithm of a positive number x, written as In x, is the value of an

integral.

Definition
The Natural Logarithm Function

*1
Inx:/—dt, x>0
1t

If x > 1, then Inx is the area under the curve y =1/t fromtr=1tot =x
(Fig. 6.10). For 0 < x < 1, In x gives the negative of the area under the curve from

T
1
gives the negative of this area.

x 1
If0<x<1,then1nx=J 1dt: —J 7
X

X
Ifx > 1, then In x :J %d:

1
gives this area.

\

1
Ifx = 1, thenInx =J LYar=o.
1

y=Inx




Typical 2-place values of In x

x In x
0 undefined
0.05 -3.00
0.5 —0.69
1 0
2 0.69
3 1.10
4 1.39
10 2.30
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x to 1. The function is not defined for x < 0. We also have

1
Inl = / 1 dt = 0. Upper and lower limits equal
1t

Notice that we show the graph of y = 1/x in Fig. 6.10 but use y = 1/¢ in the
integral. Using x for everything would have us writing

1
lnx:/ —dx,
1 X

with x meaning two different things. So we change the variable of integration
to t.

The Derivative of y = In x
By the first part of the Fundamental Theorem of Calculus (in Section 4.6),
d d [*1 1

—Inx = — —dt = —.
dx dx J; t by

For every positive value of x, therefore,

If u is a differentiable function of x whose values are positive, so that In u is
defined, then applying the Chain Rule

dy dydu
dx ~ dudx
to the function y = Inu gives
d In d In du 1du
—_— U — — ¢ —=——,
dx du " dx udx
d 1du
—1 = - 0 1
dx nu udx’ “= M
EXAMPLE 1
1 d 1 1
—In2x=——02x)=—Q)= -
dx nex 2xdx( %) 2x() x a

Notice the remarkable occurrence in Example 1. The function y = In 2x has
the same derivative as the function y = Inx. This is true of y =Inax for any
number a:

—Inax = ———«—(ax):—l—(a)zl. 2)
ax x
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In the late 1500s, a Scottish baron, John
Napier, invented a device called the
logarithm that simplified arithmetic by
replacing multiplication by addition. The
equation that accomplished this was

Inax = Ina +Inx.

To multiply two positive numbers @ and x,
you looked up their logarithms in a table,
added the logarithms, found the sum in the
body of the table, and read the table
backward to find the product ax.

Having the table was the key, of course,
and Napier spent the last 20 years of his life
working on a table he never finished (while
the astronomer Tycho Brahe waited in vain
for the information he needed to speed his
calculations). The table was completed after
Napier’s death (and Brahe’s) by Napier’s
friend Henry Briggs in London. Base 10
logarithms subsequently became known as
Briggs’s logarithms (what else?) and some
books on navigation still refer to them this
way.

Napier also invented an artillery piece that
could hit a cow a mile away. Horrified by the
weapon’s accuracy, he stopped production
and suppressed the cannon’s design.

.2
x243 *

EXAMPLE 2  Equation (1) with u = x? + 3 gives
d 1 d
—Inx*+3) = c—(*+3) =
dx n(x"+3) x243 dx(x +3)

Properties of Logarithms

The properties that made logarithms the single most important improvement in
arithmetic before the advent of modern computers are listed in Table 6.1. The
properties made it possible to replace multiplication of positive numbers by addition,
and division of positive numbers by subtraction. They also made it possible to
replace exponentiation by multiplication. For the moment, we add the restriction
that the exponent n in Rule 4 be a rational number. You will see why when we

prove the rule.

EXAMPLE 3

a) mM6=In2-:-3)=In2+1n3 Product

ol

b) n4—-In5=In-=1In0.8 Quotient
1 .
¢c) In 3 =—In8 Reciprocal
=—In2>=-3In2 Power
EXAMPLE 4
a) In4+Insinx = In (4sinx)
1
b) Ino o —In(x+1)—InQx—3)

2x —3

¢) Insecx =In = —In cosx

COoS x

1
d InJx+1 =ln(x+1)1/3=§ln(x+1)

Product

Quotient

Reciprocal

Power

a

Proof that Inax =In a + In x The argument is unusual—and elegant. It starts
by observing that Inax and Inx have the same derivative (Eq. 2). According to
Corollary 1 of the Mean Value Theorem, then, the functions must differ by a

Table 6.1 Properties of natural logarithms

For any numbers a > 0 and x > 0,

1. Product Rule: Inax = Ina+1Inx

2.  Quotient Rule: In 2_ Ina—Inx
x
. 1
3. Reciprocal Rule: In—- = —Inx
X

4. Power Rule: Inx" = ninx

Rule 2 witha =1
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constant, which means that
Inax =lnx+C (3)

for some C. With this much accomplished, it remains only to show that C equals
Ina.
Equation (3) holds for all positive values of x, so it must hold for x = 1. Hence,

In@-1)=Inl+C
Ina=0+C Inl=0
C = Ina. Rearranged
Substituting C = Ina in Eq. (3) gives the equation we wanted to prove:

Inax =Ina +Inx. (4)

Q

Proof that In (a/x) = Ina - In x We get this from Eq. (4) in two stages. Equation
(4) with a replaced by 1/x gives

1 1
In—-+Inx=In{--x
x x

=Inl=0,

so that

1
In— = —Inx.
x

Equation (4) with x replaced by 1/x then gives
1 1
lnE = 1n<a . —) =Ina +In—-
x x X

=Ina —Inx. d

Proof that In x”" = n In x (assuming n rational) We use the same-derivative
argument again. For all positive values of x,

d 1 d

—Inx" = ——(x") Eq. (1) with u = x"
dx x"dx
Here is where we need n
1 to be rational, at least for

-1
—nx" now. We have proved the

xn
Power Rule only for
rational exponents.

d
=n . ; = E(nlnx).

Since Inx" and #nIn x have the same derivative,
Inx"=nlnx+C
for some constant C. Taking x to be 1 identifies C as zero, and we’re done. a

As for using the rule Inx" = nlnx for irrational values of n, go right ahead
and do so. It does hold for all n, and there is no need to pretend otherwise. From
the point of view of mathematical development, however, we want you to be aware
that the rule is far from proved.
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The Graph and Range of In x

The derivative d(Inx)/dx = 1/x is positive for x > 0, so Inx is an increasing
function of x. The second derivative, —1/x2, is negative, so the graph of Inx is
concave down.

We can estimate In2 by numerical integration to be about 0.69. We therefore
know that

1 n
In2" =n1n2>n<§> = —

and

1 n
In2" =—-nln2<—-—n|=)=—-.
n nln2 < n<2> >

It follows that

lim Inx = o0 and lim Inx = —o0.
X—00 x—=0*

The domain of Inx is the set of positive real numbers; the range is the entire real
line.

Logarithmic Differentiation

The derivatives of positive functions given by formulas that involve products, quo-
tients, and powers can often be found more quickly if we take the natural logarithm
of both sides before differentiating. This enables us to use the rules in Table 6.1
to simplify the formulas before differentiating. The process, called logarithmic
differentiation, is illustrated in the next example.

2+ D(x+3)72
x—1

EXAMPLE 5 Find dy/dx if y = , x> 1.

Solution We take the natural logarithm of both sides and simplify the result with
the rules in Table 6.1:

0 x4+ D(x +3)/2
x—1

=In ((*+Dx+3)") —Inx-1) Quotient Rule

Iny =1

=G>+ D+hEx+3)"?-InEx-1) Product Rule

1
=In (x2 + 1)+ 5 In(x+3)—In(x —1). Power Rule

We then take derivatives of both sides with respect to x, using Eq. (1) on the left:

1dy 1 11 1
et x4~ - - .
ydx x*+1 2 x+3 x-1

Next we solve for dy/dx:

dy 2x + 1 1
dx ° x24+1 2x+6 =x-1)°
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Finally, we substitute for y:

dy (24 Dx+3)"7?( 2 N 1 1
dx x—1 x2+1 2x46 =x-1/°

How to Differentiate y = f(x) > 0 by Logarithmic Differentiation

1. Iny=Inf(x) Take logs of both sides.
d d

2. — lny = —(n f(x)) Differentiate both sides . . .
dx dx

3. ld_y = i(]n fx) ... using Eq. (1) on the left.
ydx dx

4. d—y = y—‘—i—(]n fx) Solve for dy/dx.
dx dx

5. ﬂ = f(x)i(ln fx) Substitute y = f(x).
dx dx

The Integral [ (1/u) du

Equation (1) leads to the integral formula
1
/—du:lnu+C (5)
u

when u is a positive differentiable function, but what if u is negative? If u is
negative, then —u is positive and

[aa=] (—lu)d(_”)
©)

=In (—u)+C. Eq. (5) with « replaced by —u

We can combine Egs. (5) and (6) into a single formula by noticing that in each case
the expression on the right is In |u| 4+ C. In Eq. (5), In u = In |u| because u > 0;
in Eq. (6), In (—u) = In |u| because u < 0 . Whether u is positive or negative, the
integral of (1/u)du is In |u|+ C.

If u is a nonzero differentiable function,

1
/—du:ln lu| +C. 7)
u

We know that

un+1
/u"du:: +C, n#—1.

Equation (7) explains what to do when n equals —1.
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Equation (7) says that integrals of a certain form lead to logarithms. That is,
!
J'x) d
f(x)

whenever f(x) is a differentiable function that maintains a constant sign on the
domain given for it.

x =In|f(x)|+C

EXAMPLE 6
2 2 dx = —ld“_l - u=x*-5 du=2xdx,
y x2—5 X = s o n |u . u(0) = =5, u2)=—1
=In|—-1-In|-5/=In1-In5=-In5 a
EXAMPLE 7
™2 4cos@ B 52d W=3+2sin8, du=2cos0do,
_mm =/, u u u(=m/2)=1, u(x/2)=5
5
=2In |u|]
1
=2In|5|—-2In|l|=2In5 a

The Integrals of tan x and cot x

Equation (7) tells us at last how to integrate the tangent and cotangent functions.

For the tangent,
sin x —du U = Ccosx,
dx = du = —sinx dx

/ tanx dx

COS X u
du
:—/—=—1n|u|+C Eq. (7)
u
1 .
= —In|cosx|+C =1In +C Reciprocal Rule
| cos x|

= In |secx|+ C.

For the cotangent,

cosx dx du u = sinx,
cotxdx = = | —

sin x u du = cos x dx

=In|ul+C=In|sinx|4+C = —In |cscx|+ C.

/tanudu = —In|cosu|+C =In |secu| +C

/cotudu =In|sinu|+ C = —In |cscx|+ C
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EXAMPLE 8
n/6 /3 du 1 173 Substitute u = 2x,
f tan 2x dx / tany « — = = / tanu du dx =du/2,
0 0 2 2 0 u(0) =0,
1 x/3 1 1 u(m/6) =m/3
—=In |secu|] ==—(In2-Inl)==In2
2 0 2 2 a
Exercises 6.2
Using the Properties of Logarithms 2. y= In x 2.y xInx
1. Express the following logarithms in terms of In 2 and In 3. 1+1Inx 1+1Inx
a) In0.75 b) In (4/9) ¢) In(1R2) 23. y=In(Inx) 24. y =1In (In (In x))
d) In¥9 e) In3v2 f) In+135 25, y =6(sin(Inf) +cos (Inh)) 26. y = In (secd + tan6)
2. Express the following logarithms in terms of In 5 and In 7. 27. y=In ; 28. y = 1 In 1+
xv/x+1 2 1-x
a) In (1/125) b) In98 0 In7V/7 L+lnt
d) In1225 e) In0.056 2. y=17 30. y=+In 1
inf cosé
f) (n35+1n (1/7))/(In 25) 31, y = In (sec(ln 6)) 32 y=1n (\/sm cos )
Use the properties of logarithms to simplify the expressions in Exer- 1+21n6

cises 3 and 4.

3.

a) Insin6 —1In (?)

b) In(3x2—9x)+1In (i)
3x

1
c) E1n 4r*y—=1n2

. a) Insecd +In cos@

b) In(8x+4)—21In2
0 3mYP—1-In(t+1)

Derivatives of Logarithms

In Exercises 5-36, find the derivative of y with respect to x, ¢, or 6,

as appropriate.

5.
7.

9.

11.
13.
15.

17.

19.

y =1n 3x
y=In (%)
y=lnE
x
y=In(@+1)
y =In x3
y =t(In t)?
y—x—“lnx—ﬁ
4 16
In ¢
y=—

6.
8.

10.

12.
14.
16.

18.

20.

y = In kx, k constant

y=In (%%

10
y=Iln —

X
y=In (260 +2)
y = (In x)*
y=tInt

3 %3
__l _——
y 3nx 5
l+Int
y:

33.

35.

—In ((x2+1)5)
Y= V1—=x

y:/ In vz dt
x%/2

4. y=

Ix
36. yzf In ¢ dt

Logarithmic Differentiation

In Exercises 37-50, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

37. y=+/x(x+1)
t
P y=yi
41. y = +/6 + 3sinf
43 y=t@+ 1D +2)
6+5
45, y =
Y 6 cosb
x/x2+1
47, y= ——
(x+ 1?3
x(x =2)
49. y =)
Y x24+1
50 y= 3 x(x+Dx—-2)

TV 2+ D2x +3)

38. y =/ (x2+ 1)(x — 1)?

1
40. y=Vt(t+1)

42. y = (tan6) VIO F1
1
T+ DI +2)

4. y

6 sinf
46. y =
Y /secO
10
48. x+1
2x +1)°



466 Chapter 6: Transcendental Functions

Integration
Evaluate the integrals in Exercises 51-68.

51.

53.

55. —dt
/0 2 —cost

221
57./ NX i
1 X

4
59. / _dx
» x(In x)2

2 0
/ dx 52, / 3dx
-3 X —1 3x =2
/ 2ydy 54, / 8rdr
y2—25 4r2 —5

4sin6
1 —4cos6

/3
/
/4 dx
2 xlnx

16 dx
/2 2x+/In x

int
sSin 56.

58.

60.

2
6L / 3sec’t ; 62 / secytany
6 + 3tant 2+secy
/2 x /2
63. f tan —dx 64. f cott dt
0 2 /4
.4 2} /12
65. / 2cot —df 66. / 6tan3x dx
/2 3 0
67 / dx 68. secx dx
2/x +2x /In (sec x + tan x)

Theory and Applications

69.

70.

71.

72.

73.

74.

75.

76.

Locate and identify the absolute extreme values of
a) In (cosx) on [—m/4, /3],

b) cos(ln x) on [1/2, 2].
a) Prove that f(x) =x — In x is increasing for x > 1.
b) Using part (a), show that In x < x if x > 1.

Find the area between the curves y =In x and y = In 2x from
x=1tox =5.

Find the area between the curve y = tanx and the x-axis from
x=-m/4tox =m/3.

The region in the first quadrant bounded by the coordinate axes,
the line y = 3, and the curve x =2/4/y + 1 is revolved about
the y-axis to generate a solid. Find the volume of the solid.

The region between the curve y = +/cotx and the x-axis from
x =m/6 to x =m/2 is revolved about the x-axis to generate a
solid. Find the volume of the solid.

The region between the curve y = 1/x* and the x-axis from
x=1/2 to x =2 is revolved about the y-axis to generate a
solid. Find the volume of the solid.

In Section 5.4, Exercise 6, we revolved about the y-axis the region
between the curve y = 9x/+/x3 + 9 and the x-axis from x =0
to x = 3 to generate a solid of volume 367. What volume do
you get if you revolve the region about the x-axis instead? (See
Section 5.4, Exercise 6, for a graph.)

77.

78.

B .

80.

Find the lengths of the following curves.

a) y:(x2/8)—lnx, 4<x<8
b)) x=@/4*-2In(y/4, 4=<y=<I12
Find a curve through the point (1, 0) whose length from x =1
tox =2is
2 [
1 X
CALCULATOR

a) Find the centroid of the region between the curve y = 1/x
and the x-axis from x = 1 to x = 2. Give the coordinates
to 2 decimal places.

b) Sketch the region and show the centroid in your sketch.

a) Find the center of mass of a thin plate of constant density
covering the region between the curve y = 1//x and the
x-axis from x = 1 to x = 16.

Find the center of mass if, instead of being constant, the
density function is §(x) = 4/./x.

b)

Solve the initial value problems in Exercises 81 and 82.

81.

82.

83.

B
c)

84.

8s.

d 1
Y142, ya)=3
dx X

2
d _ 2
—F = S8ec x,

72 y(0)=0 and y'(0)=1

The linearization of In (1 + x) at x = 0. Instead of approximat-
ing x near x = 1, we approximate In (1 4 x) near x = 0. We get
a simpler formula this way.

a) Derive the linearization In (1 +x) ~ x at x = 0.

CALCULATOR Estimate to 5 decimal places the error in-
volved in replacing In (1 4 x) by x on the interval [0, 0.1].
GRAPHER Graph In (1 4+ x) and x together for 0 < x <
0.5. Use different colors, if available. At what points does
the approximation of In (1 4 x) seem best? least good? By
reading coordinates from the graphs, find as good an upper
bound for the error as your grapher will allow.
Estimating values of In x with Simpson’s rule. Although lin-
earizations are good for replacing the logarithmic function over
short intervals, Simpson’s rule is better for estimating particular
values of In x.

As a case in point, the values of In (1.2) and In (0.8) to 5
places are

In (1.2) = 0.18232, 1In (0.8) = —0.22314.

Estimate In (1.2) and In (0.8) first with the formulaln (1 + x) ~ x
and then use Simpson’s rule with n = 2. (Impressive, isn’t it?)

Find
In (x?)

Inx ~

lim

X—>00

Generalize this result.
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86. The derivative of In kx. Could y = In 2x and y = In 3x pos- 88. Graph y =In|sinx| in the window 0 <x <22,-2<y <0.
sibly have the same derivative at each point? (Differentiate them Explain what you see. How could you change the formula to
to find out.) What about y = In kx, for other positive values of turn the arches upside down?

the constant k? Give reasons for your answer.

% Grapher Explorations

89. a) Graph y = sinx and the curves y = In (a + sinx) fora =
2, 4, 8, 20, and 50 together for 0 < x < 23.
b) Why do the curves flatten as a increases? (Hint: Find an
a-dependent upper bound for |y’|.)

90. Does the graph of y = /x —In x, x > 0, have an inflection

87. Graph In x, In 2x, In 4x, In 8x, and In 16x (as many as you can) point? Try to answer the question (a) by graphing, (b) by us-
together for 0 < x < 10. What is going on? Explain. ing calculus.

y=In"lx

x=Iny

6.11 The graphs of y =In x and

y =In""x. The number e is In™" 1.

The Exponential Function

Whenever we have a quantity y whose rate of change over time is proportional to
the amount of y present, we have a function that satisfies the differential equation
dy
i

ky.

If, in addition, y = yp, when ¢ = 0, the function is the exponential function y =
yoe*. This section defines the exponential function (it is the inverse of In x) and
explores the properties that account for the amazing frequency with which the
function appears in mathematics and its applications. We will look at some of these
applications in Section 6.5.

The Inverse of In x and the Number e

The function In x, being an increasing function of x with domain (0, co) and range
(—00, 00), has an inverse In"! x with domain (—o0, c0) and range (0, co0). The
graph of In"! x is the graph of In x reflected across the line y = x. As you can see,

lim In"'x = o0 and lim In™! x = 0.

X—>00 X—>—00

The number In~! 1 is denoted by the letter e (Fig. 6.11).

Definition

e=1In"11

Although e is not a rational number, we will see in Chapter 8 that it is possible to
find its value with a computer to as many places as we want with the formula

1 1 1
= li 1+414+=-4+—=-4+---4+—=].
e nl)rglo<+ +2+6+ +n!>
To 15 places,

e =12.7 1828 1828 45 90 45.
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The Function y = ¥
We can raise the number e to a rational power x in the usual way:

1
e?=e.e, ee=— e'? = /e,
e

and so on. Since e is positive, e* is positive too. This means that e* has a logarithm.
When we take the logarithm we find that
Ine* =xlne=x-1=x. (1
Since In x is one-to-one and In (In~'x) = x, Eq. (1) tells us that
e =In"'x for x rational. (2

Equation (2) provides a way to extend the definition of e* to irrational values
of x. The function In~'x is defined for all x, so we can use it to assign a value to
e* at every point where e* had no previous value.

 Definition

Typical Values of e*
x e* (rounded) ~ For every real number x.,:ffe:z :
0 1
1 2.72
2 7.39
oo | e Equations Involving In x and e

Since In x and e* are inverses of one another, we have

Inverse Equations for e¢* and In x
e = x (all x > 0) (3)
In(e*) = x (all x) 4

You might want to do parts of the next example on your calculator.

EXAMPLE 1
a) lne?=2
b) lne!'=-1

D=

¢) In.e=

d) In e =ginx

e) eln2 =2
£) ene) 32y
g) 32 .= 2 — 8 _g One way

h) 32 — (eln2)3 =23=8 Another way d



Useful Operating Rules

1. To remove logarithms from an
equation, exponentiate both sides.

2. To remove exponentials, take the
logarithm of both sides.

Table 6.2 Laws of exponents for e*

For all numbers x, x;, and x,,

1_ eXl . e = ex1+x1

2. e = —~
e ¢

3. — =t
ex

4_ (exl )Xz = "2 = (exz)xl
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EXAMPLE 2 Find y if In y = 3¢ 4 5.

Solution Exponentiate both sides:

elny — e3t+5

y=e".  Eq 0 d

EXAMPLE 3 Find k if e* = 10.

Solution Take the natural logarithm of both sides:

e =10
Ine* =1n 10
2k = In 10 Eq. (4)
1
= —1n 10.
k=3 0

Laws of Exponents

Even though e* is defined in a seemingly roundabout way as In~'x, it obeys the
familiar laws of exponents from algebra (Table 6.2).

Proof of Law 1 Let
y =e" and Y, = e, (5)

Then

Take logs of both
sides of Egs. (5).

x1=Iny; and x,=1Iny,
x1+x2=Iny +Iny,
=Inyy; Product Rule

X1t = iy Exponentiate.

p— y1y2 elnu —
= e"e™. a

The proof of Law 4 is similar. Laws 2 and 3 follow from Law 1 (Exercise 78).

EXAMPLE 4
a) ex+ln2 —e*. eln2 = 2¢* Law |
1 1
b) e~ Inx — — Law 2
elnx x
2x
) — =e¥! Law 3
e

d) () =¥ = (¢)? Law 4 Q
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Transcendental numbers and
transcendental functions

Numbers that are solutions of polynomial
equations with rational coefficients are called
algebraic: —2 is algebraic because it satisfies
the equation x + 2 = 0, and V3 is algebraic
because it satisfies the equation x> — 3 = 0.
Numbers that are not algebraic are called
transcendental, a term coined by Euler to
describe numbers, like e and m, that appeared
to “transcend the power of algebraic
methods.” But it was not until a hundred
years after Euler’s death (1873) that Charles
Hermite proved the transcendence of e in the
sense that we describe. A few years later
(1882), C. L. E. Lindemann proved the
transcendence of .

Today we call a function y = f(x)
algebraic if it satisfies an equation of the
form

Pny"++P1y+P0=O
in which the P’s are polynomials in x with
rational coefficients. The function
y = 1/4/x + 1 is algebraic because it
satisfies the equation (x + 1)y? — 1 = 0.
Here the polynomials are
P2=x+1, P1 =0, and P0=——1.
Polynomials and rational functions with
rational coefficients are algebraic, as are all
sums, products, quotients, rational powers,
and rational roots of algebraic functions.

Functions that are not algebraic are
called transcendental. The six basic
trigonometric functions are transcendental, as
are the inverses of the trigonometric
functions and the exponential and logarithmic
functions that are the main subject of the
present chapter.

The Derivative and Integral of e*

The exponential function is differentiable because it is the inverse of a differentiable
function whose derivative is never zero. Starting with y = e*, we have, in order,

y=¢e
Iny=x Logarithms of both sides
ld_y =1 Derivatives of both sides with respect
y dx to x
dy
dx ~— Y
d
—y =e". y replaced by ¢
dx

The startling conclusion we draw from this sequence of equations is that e* is its
own derivative.

As we will see in Section 6.5, the only functions that behave this way are
constant multiples of e*.

d
x __ X 6
dx € ()
EXAMPLE 5
d X d P
ax 0 =55
= 5¢* Q

The Chain Rule extends Eq. (6) in the usual way to a more general form.

If u is any differentiable function of x, then

d , L adu @)
—et = e —
dx dx
EXAMPLE 6
d d .
W) —et=eT (- =e(-h)=—e () vihu=—x
. 4 . . ,
b) __ pSinx _ eSlnx_ (Sln x) — esmx . COSX Eq. (7) with # = sinx
dx dx a

The integral equivalent of Eq. (7) is
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/e"du:e“+C.

EXAMPLE 7
In2 In8 1 |
/ e3xdx — f e' . —du i = 3x, 3 du =dx, u(0) =0,
0 0 3 u(n2)=3I2=1Imn2"=In8
1 In8
= 3/ e'du
0
1 In8
= —e*
5],
1 7
= -[8-1]=-
B -1=3 Q
EXAMPLE 8
/2 2 Antiderivative fi
sinx __ sinx ntiderivative from
f e" cosxdx =e ] Example 6
0 0
=el—e'=e—1 g

EXAMPLE 9  Solving an initial value problem

Solve the initial value problem

d
e’ A 2x, x > \/5; y(2) =0.
dx

Solution We integrate both sides of the differential equation with respect to x to
obtain

e =x2+C.

We use the initial condition to determine C:
C=¢"— (22

=1-4=-3
This completes the formula for e”:

e’ =x?-3. (8)
To find y, we take logarithms of both sides:

Ine” =1In (x*-3)
y =1In (x* - 3). 9)

Notice that the solution is valid for x > +/3.
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It is always a good idea to check a solution in the original equation. From Egs.

(8) and (9), we have

The solution checks.

Exercises 6.3

Algebraic Calculations with the Exponential and
Logarithm

Find simpler expressions for the quantities in Exercises 1-4.

1. a) 72 b) e ¥ ¢) elx-iny

2. a) el (x24y?) b) g~ In 03 ) gln mx=In 2
3.a) 2In./e b) In (In €°) ¢ In(e™")
4. a) In (e=9) b) In (e®?) ¢) In (e?¥)

Solving Equations with Logarithmic or Exponen-
tial Terms

In Exercises 5-10, solve for y in terms of ¢ or x, as appropriate.
S.Iny=2t+4 6. Iny=—r+5

7. In (y — 40) = 5¢ 8 In(1-2y)=¢

9. n(y—1)—In2=x+Inx

10. In (y>— 1) —In (y + 1) = In (sinx)

In Exercises 11 and 12, solve for k.

11. a) e* =4 b) 100e'% =200 ¢) !0 =g
1
12. a) e* = 7 b) 80et =1 c) e™0® —0g8

In Exercises 13-16, solve for .

13. a) e 0¥ =27 b) ¥ = c) eW®0Or—04

1
2

1
-0.01r _ 1000 b kt —
e ) e T

16. ™)@ HD = o

1
14. a) ¢ e = _

15. V' = x2

dy d
YL =¢’— In (x*-3 Eq. (9)
e I e I n (x )
2x
= ey,\c2 -3
2x
= (" - N a3 Eq. (8)
= 2x
a
Derivatives

In Exercises 17-36, find the derivative of y with respect to x, ¢, or
6, as appropriate.

17. y = e~ 18. y = e*/3
19. y=¢>"" 20. y = e@/EH)
21, y = xe* —e* 22. y=(142x)e %
23, y = (x? —2x +2)e* 24. y = (9x% — 6x +2)e**
25. y =e%(sin6 + cos ) 26. y =1n (30e7?)
27. y =cos (e™%) 28. y =603%% cos 56
29. y=1n (3te™) 30. y =1n (2e7'sint)
e? N
3. y=1 32. y=1  ——
y n(1+e9) Y n(l+¢§)
33, y = eleosrtinn 3. y=e'(n 2+ 1)
Inx e
35, y= / sine'dt 36. y = / In ¢ dt
0 et
In Exercises 3740, find dy/dx.
37. In y =e”sinx 38. In xy =e*™
39. ¥ =sin(x +3y) 40. tany = ¢* +1n x
Integrals

Evaluate the integrals in Exercises 41-62.

41. /(es" +5¢)dx

In3
43. / e*dx
In2

42. / (2e* —3e ) dx

0
44, / e “dx
—In2



/ 8o+ gx
/ e dx

46. /Ze @=D gx

In16
48. / e dx
0

.
7
52. f 3¢ dy

—1/x?

e
o [

/ e dt

dx

/4

55./ (1 + ™%y sec’ 0 do
0
/2

56./ (1 + e*%) csc? 6 do
/4

57. /ese”” sec mttan wtdt

58. /em @+ ese (r 4 1) cot (w + 1) dt

In (7/2)
59. 2e” cos e’dv

Vin 7
60. / 2x e* cos(e )dx
In (7 /6)
61. / ¢ _ar
1+e”

62. / 1+ e*
Initial Value Problems

Solve the initial value problems in Exercises 63—-66.

63. dy =e'sin (e’ —2),

In2) =
T y (In 2)
dy t 2 —t
64. E:e sec’(me™), y(n4)=2/n
d2
65. 2 =2, y(0)=1 and y(0)=0
dx?
d2
66. d—tf=1_e2', y()=-1 and y(1)=0

Theory and Applications

67. Find the absolute maximum and minimum values of f(x) =

e* —2x on [0, 1].

68. Where does the periodic function f(x) = 2e*" */? take on its

extreme values and what are these values?

y=2e sin (x/2)

69.

am 70,

<

71

.

72.

73.

74.

75.

76.
71.
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Find the absolute maximum value of f(x) = x2In (1/x) and say
where it is assumed.

GRAPHER Graph f(x) = (x — 3)2¢* and its first derivative to-
gether. Comment on the behavior of f in relation to the signs
and values of f’. Identify significant points on the graphs with
calculus, as necessary.

Find the area of the “triangular” region in the first quadrant that is
bounded above by the curve y = e, below by the curve y = e*
and on the right by the line x =1In 3

Find the area of the “triangular” region in the first quadrant that
is bounded above by the curve y = e*/2, below by the curve
y = e*/2, and on the right by the line x =2 In 2.

Find a curve through the origin in the xy-plane whose length
fromx=0tox=1Iis

L 1
L=f 1+ —e*dx.
0 4

Find the area of the surface generated by revolving the curve
x=(e”+e7)/2,0 <y <In 2, about the y-axis.

a) Show that [Inxdx =xInx —x +C.

b) Find the average value of In x over [1, e].
Find the average value of f(x) = 1/x on [1, 2].
The linearization of e* at x =0

a) Derive the linear approximation e* & 1 4+ x at x = 0.

a b) CALCULATOR Estimate to 5 decimal places the magnitude

of the error involved in replacing e* by 1 + x on the interval
[0, 0.2].

. ¢) GRAPHER Graph e* and 1 + x together for —2 < x < 2.
Use different colors, if available. On what intervals does the
approximation appear to overestimate e* ? underestimate e*?

78. Laws of Exponents.

B 7.
B s0.

a) Starting with the equation e*e* = e*'**2, derived in the
text, show that e™ = 1/e* for any real number x. Then
show that e*' /e™ = "™ for any numbers x; and x,.

b) Show that (¢*')* = e"** = (¢*)* for any numbers x; and x;.

A decimal representation of e. Find e to as many decimal
places as your calculator allows by solving the equation In x = 1.

The inverse relation between e* and In x. Find out how good
your calculator is at evaluating the composites

elnx In (e*).

and
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81. Show that for any number a > 1 c)

a Ina
/ lnxdx+/ e’dy =alna.
1 0

(See accompanying figure.)

y
y=Inx

Ina

82. The geometric, logarithmic, and arithmetic mean inequality
a) Show that the graph of e* is concave up over every interval
of x-values.
b) Show, by reference to the accompanying figure, that if 0 <
a < b then

Inb
eatind/2 . (n p —1n q) < / e*dx <

Ina
elna +e|nh

3 «(In b —1In a).

a- and log, x

Use the inequality in (b) to conclude that

b—a a+b
Jab .
@ <mb-—lna 2

This inequality says that the geometric mean of two positive
numbers is less than their logarithmic mean, which in turn
is less than their arithmetic mean.

(For more about this inequality, see “The Geometric,
Logarithmic, and Arithmetic Mean Inequality” by Frank
Burk, American Mathematical Monthly, Vol. 94, No. 6,
June-July 1987, pp. 527-528.)

A | | D X
Ina Ina+Inb Inb
2
NOT TO SCALE

While we have not yet devised a way to raise positive numbers to any but rational
powers, we have an exception in the number e. The definition ¢* = In~! x defines
e* for every real value of x, irrational as well as rational. In this section, we show
how this enables us to raise any other positive number to an arbitrary power and
thus to define an exponential function y = a* for any positive number a. We also
prove the Power Rule for differentiation in its final form (good for all exponents)
and define functions like x* and (sinx)™ * that involve raising the values of one
function to powers given by another.

Just as e* is but one of many exponential functions, In x is one of many loga-
rithmic functions, the others being the inverses of the function a*. These logarithmic
functions have important applications in science and engineering.

The Function a&"

Since a = e™¢ for any positive number a, we can think of a* as (e ¢)* = e*In ¢,
We therefore make the following definition.

Definition
For any numbers a > 0 and x,

ax — exlna‘ (1)



Table 6.3 Laws of exponents

1.

2.

For a > 0, and any x and y:

a«a’=at
|

a = -
a*

i 4
a’
@) =a” = (@)"
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EXAMPLE 1
a) 23 =¢V32
b) 2T — o7 In2 D

The function a* obeys the usual laws of exponents (Table 6.3). We omit the
proofs.

The Power Rule (Final Form)

We can now define x" for any x > 0 and any real number n as x" = ¢"'"*, Therefore,
the n in the equation In x” = nInx no longer needs to be rational—it can be any
number as long as x > 0:

Inx"=In("™)=nlnx-Ilne e =uanyu
=nlnx.

Together, the law a*/a” = a*™> and the definition x" = ¢""™* enable us to
establish the Power Rule for differentiation in its final form. Differentiating x" with
respect to x gives

—X = —e Definition of x", x > 0

d
=e «—(n In x) Chain Rule for ¢”
dx

n
=x".- The definition again
X
=nx""L. Table 6.3, Law 3
In short, as long as x > 0,
d
—x"=nx""\.
dx

The Chain Rule extends this equation to the Power Rule’s final form.

Power Rule (Final Form)

If u is a positive differentiable function of x and » is any real number, then
u" is a differentiable function of x and

d n n-—ldu
—Uu = nu -_—.
dx dx
EXAMPLE 2
a) 4o (ks 0)
dx
b) d (sin x)” (sin x)* ' co (sin 0)
- — >
7 (sinx 7 X S X sin x 0
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-1 0 1

6.12 Exponential functions decrease if
0<a<1andincrease if a > 1. As x — oo,
we have @ - 0if 0<a <1 and a* — o if
a>1 Asx - —, we have & — o if
O<a<landa*—0ifa>1.

The Derivative of a*

We start with the definition a* = ¥ 4;

d d d
—a" = —e*M =¢""%. _(xIna)  ChainRule
dx dx dx

=a*In a.

If a > 0, then

X X
—a* =a"n a.
dx

With the Chain Rule, we get a more general form.

If a > 0 and u is a differentiable function of x, then a* is a differentiable
function of x and
du

Ea“ =d“lna I 2)

Equation (2) shows why e* is the exponential function preferred in calculus. If
a = e, then In a = 1 and Eq. (2) simplifies to

ef=¢e*lne=c¢e".

dx
EXAMPLE 3
d
L33t 3
a) Ix n
d d
L3 o3 3L (x) = =371
b) I n dx( Xx) n3
o Lanr _gsnxyn 39 in 1) = 35 (n 3)cos
dx - dx Sin x) = * (|

From Eq. (2), we see that the derivative of a* is positive if Ina > 0, ora > 1,
and negative if In a < 0, or 0 < a < 1. Thus, a* is an increasing function of x if
a > 1 and a decreasing function of x if 0 < a < 1. In each case, a* is one-to-one.
The second derivative

d? d
zl—;z-(a") = d—x(a" In @) = (In a)’a*
is positive for all x, so the graph of a* is concave up on every interval of the real
line (Fig. 6.12).

Other Power Functions

The ability to raise positive numbers to arbitrary real powers makes it possible
to define functions like x* and x™* for x > 0. We find the derivatives of such
functions by rewriting the functions as powers of e.
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EXAMPLE 4  Find dy/dx if y = x*, x> 0.

Solution Write x* as a power of e:
y=x"=e"1nx‘ Eq. (1) witha = x
Then differentiate as usual:
dy d
_— = —¢
dx dx

d
= e‘l""a(x In x)

1
=x"(x-—+lnx)
x

= x*(1 + In x). |

The Integral of a¥

If a # 1, so that In a # 0, we can divide both sides of Eq. (2) by In a to obtain

du 1
- L.

dx Inadx

Integrating with respect to x then gives

1 d 1
_d = _— u = — e ud = —2a" C
/a = _/lnadx( )dx lna_/dx(a)x lnaa+

Writing the first integral in differential form gives

/a“du = la +C. (3)

na

EXAMPLE 5

2)(
2 dx =
2) f o In 2 +

b) / 250 % cos x dx

2M
= [ 2%du = C
/ " In 2 +

C Eq. 3) witha =2, u = x

zsin x

= +C u = sin x in Eq. (3)

Logarithms with Base a

As we saw earlier, if a is any positive number other than 1, the function a* is one-
to-one and has a nonzero derivative at every point. It therefore has a differentiable
inverse. We call the inverse the logarithm of x with base a and denote it by

log, x.



478 Chapter 6: Transcendental Functions

e
: FOr any poSitive number a 7_(: 1, :

~ log,x = inverse of a*.

2
—/llllll

x The graph of y =log, x can be obtained by reflecting the graph of y = a*
across the line y = x (Fig. 6.13).
Since log,x and a* are inverses of one another, composing them in either order
gives the identity function.

6.13 The graph of 2* and its inverse,
log, x. Inverse Equations for ¢* and log, x
ae* = x (x > 0) (4
log,(a*) = x (all x) (5)
EXAMPLE 6
a) log, (2°) =5 b) log;o (1077) = 7
¢ 2°&®=3 d) 10"20® =4 a

The Evaluation of log, x

The evaluation of log, x is simplified by the observation that log, x is a numerical
multiple of In x.

1 In x
log,x=—+Inx=— (6)
In a In a
We can derive Eq. (6) from Eq. (4):
aloga(x) = x Eq. (4)
log,(x) _ Take the natural logarithm
Ina In x of both sides.
loga x)-Ina=1Inx The Power Rule in Table 6.1
In
log, x = _x Solve for log,.x.
“ Ina

EXAMPLE 7

6931
In2 069315 .

1 2 = —
%810 = 17770 2.30259 0



Table 6.4
Properties of base a logarithms

For any numbers x > 0 and y > O,

1. Product Rule:
log, xy =log, x +log, y
2. Quotient Rule:

log, = = log, x — log,
y
3. Reciprocal Rule:
1
log, — = —log, y
y

4. Power Rule:
log, x” = ylog, x
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The arithmetic properties of log, x are the same as the ones for In x (Table 6.4).
These rules can be proved by dividing the corresponding rules for the natural
logarithm function by In a. For example,

Rule 1 for natural
logarithms ...

Inxy=Inx+1Iny

Inxy Inx Iny

= ...dividedby Ina...
Ina Ina Ina

... gives Rule | for base «
log, xy = log, x +log, y. logarithms.

The Derivative of log,u

To find the derivative of a base a logarithm, we first convert it to a natural logarithm.
If u is a positive differentiable function of x, then

d (lo ) d (Inu 1 d (In ) 1 1du
—_— = — S = ————(In = — -,
dx Balt dx \Ina In adx " Ina wudx
d 1 1du
—q = . - 7
dx(Og“u) Ina udx )
EXAMPLE 8
d 1 1 d 3
——log,,Bx +1) = —@Bx+1) =

dx In 10  3x + 1dx n10Gx+1) Q4

Integrals Involving log, x

To evaluate integrals involving base a logarithms, we convert them to natural log-
arithms.

EXAMPLE 9
log, x 1 In x ~_Inx
f y P Tma) T e T
_ L udu u=Inx. du= %zl.\‘
In 2
1 u? 1 d 2 1 2
R BUGRPN S G PR (L) g
In2?2 In2 2 21n 2 |

*Base 10 Logarithms

Base 10 logarithms, often called common logarithms, appear in many scientific
formulas. For example, earthquake intensity is often reported on the logarithmic
Richter scale. Here the formula is
. a
Magnitude R = log,, (7> + B,
where a is the amplitude of the ground motion in microns at the receiving station,
T is the period of the seismic wave in seconds, and B is an empirical factor that



480 Chapter 6: Transcendental Functions

allows for the weakening of the seismic wave with increasing distance from the
epicenter of the earthquake.

EXAMPLE 10 For an earthquake 10,000 km from the receiving station, B =
6.8. If the recorded vertical ground motion is @ = 10 microns and the period is
T =1 sec, the earthquake’s magnitude is

10
R =log,, (—1—> +68=1+68=7.38.

An earthquake of this magnitude does great damage near its epicenter. a

The pH scale for measuring the acidity of a solution is a base 10 logarithmic

Most foods are acidic (pH <7). scale. The pH value (hydrogen potential) of the solution is the common logarithm

Food pH Value of the reciprocal of the solution’s hydronium ion concentration, [H;O*]:

Bananas 4.5-4.7 1 .

Grapefruit ~ 3.0-3.3 PH = logjo -Gy = ~logi [F:07].

Oranges 3.0-4.0

Limes 1.8-2.0 The hydronium ion concentration is measured in moles per liter. Vinegar has a pH
Milk 6.3-6.6 of 3, distilled water a pH of 7, seawater a pH of 8.15, and household ammonia a
Soft drinks 2.0-4.0 pH of 12. The total scale ranges from about 0.1 for normal hydrochloric acid to 14
Spinach 5.1-5.7 for a normal (1 N) solution of sodium hydroxide.

Another example of the use of common logarithms is the decibel or db (“dee
bee”) scale for measuring loudness. If / is the intensity of sound in watts per
square meter, the decibel level of the sound is

Sound level = 10 log,, (I x 10'?) db. (8)

If you ever wondered why doubling the power of your audio amplifier increases the
sound level by only a few decibels, Eq. (8) provides the answer. As the following
example shows, doubling / adds only about 3 db.

EXAMPLE 11 Doubling I in Eq. (8) adds about 3 db. Writing log for logj (a

Typical sound levels .
common practice), we have

Threshold of hearing 0db .
1 12 Eq. (8) with
Rustle of leaves 10 db Sound level with I doubled = 10 log (21 x 10'“) 27 for I
AV(?rage Whlsper 20 db — 10 lOg (2 I X 1012)
Quiet automobile 50 db
Ordinary conversation 65 db = 10 log 2 + 10 log (I x 10'%)
Pneumatic drill 10 feet away 90 db .
Threshold of pain 120 db = original sound level 4+ 10 log 2
~ original sound level + 3. log, 2~ 0.30
Q
Exercises 6.4
Algebraic Calculations O log, 16 ) log. /3 n 1 (1)
o e) lo og, | =
Simplify the expressions in Exercises 1-4. 8 B . 4

1. 2) 5]0g5 7 b) 8|°ga V2 C) 1.31081 375 2. a) 2log2 3 b) lolog,o (1/2) C) ”Iog,, 7



1
d) log;, 121 e) log, 11 f) log, (5)
3. a) zlog,,x b) 9log3x C) lng (e(ln 2)(sin x))
4. a) 25'806x) b) log,(e) ¢ log, (25" %)

Express the ratios in Exercises 5 and 6 as ratios of natural logarithms
and simplify.

5. a) log,x log, x 0 log.a
logsx logg x log,.a
6. 2) logy x log /15 x 0 log, b
log;x log 5 x log,a

Solve the equations in Exercises 7-10 for x.
7. 3log3 7 + 210g1(5) — 5log5 (x)

8. 8log3(3) _ eln 5 — x2 _ 7log7 (3x)

9, 3log = — Selnx _ 3. 108102

1
10. Ine + 4721°8® = —Jog,, (100)
x

Derivatives

In Exercises 11-38, find the derivative of y with respect to the given
independent variable.

1. y=2¢ 12. y =3~

13. y =5 14. y =269

15. y =x" 16. y =1t'"¢

17. y = (cos9)¥? 18. y = (In )"

19. y=7%In7 20, y =3¢ 3

21, y =2in¥ 22, y=5cou

23. y =log, 56 24. y =log;(1+61In3)
25. y = log, x + log, x* 26. y = log,s ¥ — logs \/x
27. y =log,r - log,r 28. y =log;r - logyr

1 7 Ins
29. y = log, ((’“L 1) ) 30. y = log; (3—i2>
- X

in 0 0
31. y =0sin(log,6) 32. y =log, (%)

6 2«9
xzez
33. y =logs e* 34. y=1lo
Y= =oe(575)
35. y = 3b&! 36. y =3 logg(log, t)
37. y = log,(8:"%) 38. y =1 log; (e ")

Logarithmic Differentiation

In Exercises 39-46, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

39, y=(x+ 1) 40. y = x&+D
41 y= (V1) 2. y=r"
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43. y = (sin x)*
45, y = x~x

44. y = xtinx
46. y = (In x)"~

Integration

Evaluate the integrals in Exercises 47-56

47. /Sde 48. /(1.3)‘dx
1 0

49, / 27946 50. / 579do
0 -2
V2 , 4 QVx

51./ x209 dx 52./ dx
1 1 ﬁ

/2 n/4 1 tan ¢
53. / 7" sin t dt 4 f (—) sec’ t dt
0 0 3
2 21n x

4
5S. / xZ(1 +1n x)dx
2

Evaluate the integrals in Exercises 57-60.

57. f3xﬁdx 58. fxﬁ-‘dx

e
60. f x(" D-ldx
1

Evaluate the integrals in Exercises 61-70.

4
6l. /log—loxdx 62./ %% v
X 1 X

. /4ln210g2xdx 6. /“2ln lOlog,Oxdx

6. / logz(x+2) 66. /'0 log,O(IOx)

3
59 / (2 + DxY2dx
0

x+2 1/10
21 -1
67. / Mﬂdx 68. f de
0 X+ l 2 X — 1
d d
69. fix 70. f—x
x log,, x x(logg x)?

Evaluate the integrals in Exercises 71-74.

In x 1 e l
71. / —-dt, x>1 72. / —dt
1 t ot

g L[
73./ —-dt, x>0 74. — —-dt, x>0
1 t Ina 1t

Theory and Applications

75. Find the area of the region between the curve y = 2x/(1 + x%)
and the interval —2 < x < 2 of the x-axis.

76. Find the area of the region between the curve y = 2'=* and the
interval —1 < x <1 of the x-axis.
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77. Blood pH. The pH of human blood normally falls between 7.37
and 7.44. Find the corresponding bounds for [H30 *].

78. Brain fluid pH. The cerebrospinal fluid in the brain has a hy-
dronium ion concentration of about [H3;0*] = 4.8 x 10~® moles
per liter. What is the pH?

79. Audio amplifiers. By what factor k do you have to multiply the
intensity of / of the sound from your audio amplifier to add 10
db to the sound level?

80. Audio amplifiers. You multiplied the intensity of the sound of
your audio system by a factor of 10. By how many decibels did
this increase the sound level?

81. In any solution, the product of the hydronium ion concentration
[H;0 *] (moles/L) and the hydroxyl ion concentration [OH™]
(moles/L) is about 107,

a) What value of [H;0%] minimizes the sum of the concentra-
tions, S = [H30 *] + [OH™]? (Hint: Change notation. Let
x = [H;07].)

b) What is the pH of a solution in which S has this minimum
value?

¢) What ratio of [H;O*] to [OH~] minimizes S?

82. Could log, b possibly equal 1/log, a? Give reasons for your
answer.

Grapher Explorations

83. The equation x? = 2* has three solutions: x = 2, x = 4, and one
other. Estimate the third solution as accurately as you can by
graphing.

84. Could x'"? possibly be the same as 2" * for x > 0? Graph the
two functions and explain what you see.

85. The linearization of 2*

a) Find the linearization of f(x) =2* at x = 0. Then round
its coefficients to 2 decimal places.

b) Graph the linearization and function together for —3 < x <
3and -1 <x <1.

86. The linearization of log; x

a) Find the linearization of f(x) = log, x atx = 3. Then round
its coefficients to 2 decimal places.

b) Graph the linearization and function together in the window
O0<x<8and2=<x <4

Calculations with Other Bases

B 87. CALCULATOR Most scientific calculators have keys for log;, x

and In x. To find logarithms to other bases, we use the equation
log, x = (In x)/(In a).

To find log, x, find In x

In5
and divide by In 2: log, 5 = ln—2 ~2.3219.
n

To find In x given log, x,

multiply by In 2: In5=1log,5 - In 2 =~ 1.6094.

Find the following logarithms to 5-decimal places.

a) log;8 b) log,0.5
c) logy, 17 d) log,s7
e) In x,giventhatlog,,x = 2.3

f) In x,giventhatlog, x = 1.4

g) In x,giventhatlog, x = —1.5

h) In x, given thatlog,, x = —0.7

88. Conversion factors

a) Show that the equation for converting base 10 logarithms
to base 2 logarithms is

In 10
log, x = T2 log;o x.

b) Show that the equation for converting base a logarithms to
base b logarithms is
Ina

1 =
%X =10

log, x.

Growth and Decay

In this section, we derive the law of exponential change and describe some of
the applications that account for the importance of logarithmic and exponential

functions.

The Law of Exponential Change

To set the stage once again, suppose we are interested in a quantity y (velocity,
temperature, electric current, whatever) that increases or decreases at a rate that at
any given time ¢ is proportional to the amount present. If we also know the amount
present at time ¢ = 0, call it yy, we can find y as a function of ¢ by solving the
following initial value problem:
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d
Differential equation: d—i) = ky
(1
Initial condition: y=1yy when ¢=0.

If y is positive and increasing, then k is positive, and we use Eq. (1) to say that
the rate of growth is proportional to what has already been accumulated. If y is
positive and decreasing, then k is negative, and we use Eq. (1) to say that the rate
of decay is proportional to the amount still left.
We see right away that the constant function y = 0 is a solution of Eq. (1). To

find the nonzero solutions, we divide Eq. (1) by y:

Lody _y

y dt

Integrate with respect to 1;

Inlyl =kt +C /() du=nul +C.

ly| = ekitc Exponentiate.
k
Iyl = €€ « e e = e e b
y = 4+ eCett If |y] =r, then y = %r.
_ kt . .
y = Ae". A is a more convenient name

for £e€.

By allowing A to take on the value 0 in addition to all possible values + €, we
can include the solution y = 0 in the formula.

We find the right value of A for the initial value problem by solving for A
when y = yg and t = 0:

yo = Aek "0 = A.

The solution of the initial value problem is therefore y = y, e*’.

The Law of Exponential Change
y=yoe" @
Growth: k>0 Decay: k<0

The number k is the rate constant of the equation.

The derivation of Eq. (2) shows that the only functions that are their own
derivatives are constant multiples of the exponential function.

Population Growth

Strictly speaking, the number of individuals in a population (of people, plants,
foxes, or bacteria, for example) is a discontinuous function of time because it takes
on discrete values. However, as soon as the number of individuals becomes large
enough, it can safely be described with a continuous or even differentiable function.
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If we assume that the proportion of reproducing individuals remains constant and
assume a constant fertility, then at any instant ¢ the birth rate is proportional to
the number y(¢) of individuals present. If, further, we neglect departures, arrivals,
and deaths, the growth rate dy/dt will be the same as the birth rate ky. In other
words, dy/dt = ky, so that y = yp e*'. As with all kinds of growth, there may be
limitations imposed by the surrounding environment, but we will not go into these
here.

EXAMPLE 1 One model for the way diseases spread assumes that the rate
dy/dt at which the number of infected people changes is proportional to the number
y. The more infected people there are, the faster the disease will spread. The fewer
there are, the slower it will spread.

Suppose that in the course of any given year the number of cases of a disease
is reduced by 20%. If there are 10,000 cases today, how many years will it take to
reduce the number to 1000?

Solution We use the equation y = y, e, There are three things to find:

1. the value of yy,
2. the value of k,
3. the value of ¢ that makes y = 1000.

Step 1: The value of y,. We are free to count time beginning anywhere we want. If
we count from today, then y = 10,000 when ¢ = 0, so y, = 10,000. Our equation
is now

y = 10,000 €. 3)

Step 2: The value of k. When ¢t = 1 year, the number of cases will be 80% of its
present value, or 8000. Hence,

8000 = 10,0000 LT
=08
In(e*) = In 0.8
k =1n0.8.
At any given time ¢,
y = 10,000 0¥ 4

Step 3: The value of t that makes y = 1000. We set y equal to 1000 in Eq. (4) and
solve for t:

1000 = 10,000 08"

e(lno.g)l — 01
(In 0.8)t =1In 0.1 Logs of both sides
In 0.1
= 12 08 ~ 10.32 years.

It will take a little more than 10 years to reduce the number of cases to 1000. ]



Evaluating
I r\ kt
Jim o (1+7)

involves what is called the indeterminate
form 1%°. We will see how to evaluate limits
of this type in Section 6.6.

For radon-222 gas, ¢ is measured in days and
k = 0.18. For radium-226, which used to be
painted on watch dials to make them glow at
night (a dangerous practice), ¢ is measured in
years and k = 4.3 x 10~*, The decay of
radium in the earth’s crust is the source of the
radon we sometimes find in our basements.

It is conventional to use —k (k > 0) here
instead of k (k < 0) to emphasize that y is
decreasing.
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Continuously Compounded Interest

If you invest an amount Ay of money at a fixed annual interest rate r (expressed
as a decimal) and if interest is added to your account k times a year, it turns out
that the amount of money you will have at the end of ¢ years is

A = A (1 + %)k'. (5)

The interest might be added (“compounded,” bankers say) monthly (k = 12), weekly
(k = 52), daily (k = 365), or even more frequently, say by the hour or by the minute.
But there is still a limit to how much you will earn that way, and the limit is
kt
fim A, = lim 4 (1+7)

k— 00 k—00
= AO €rt.

The resulting formula for the amount of money in your account after ¢ years
is
A@t) = Age™. (6)

Interest paid according to this formula is said to be compounded continuously.
The number r is called the continuous interest rate.

EXAMPLE 2 Suppose you deposit $621 in a bank account that pays 6% com-
pounded continuously. How much money will you have 8 years later?

Solution We use Eq. (6) with Ag = 621, r = 0.06, and ¢t = 8:
A(8) = 62109® = 621 %4 = 1003.58

Nearest cent

Had the bank paid interest quarterly (k =4 in Eq. (5)), the amount in your
account would have been $1000.01. Thus the effect of continuous compounding,
as compared with quarterly compounding, has been an addition of $3.57. A bank
might decide it would be worth this additional amount to be able to advertise,
“We compound interest every second, night and day—better yet, we compound the
interest continuously.” d

Radioactivity

When an atom emits some of its mass as radiation, the remainder of the atom
re-forms to make an atom of some new element. This process of radiation and
change is called radioactive decay, and an element whose atoms go spontaneously
through this process is called radioactive. Thus, radioactive carbon-14 decays into
nitrogen; radium, through a number of intervening radioactive steps, decays into
lead.

Experiments have shown that at any given time the rate at which a radioactive
element decays (as measured by the number of nuclei that change per unit time) is
approximately proportional to the number of radioactive nuclei present. Thus, the
decay of a radioactive element is described by the equation dy/dt = —ky, k > 0. If
Yo is the number of radioactive nuclei present at time zero, the number still present
at any later time ¢ will be

y = yoe ¥, k>0.
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EXAMPLE 3  Half-life

The half-life of a radioactive element is the time required for half of the radioactive
nuclei present in a sample to decay. It is a remarkable fact that the half-life is a
constant that does not depend on the number of radioactive nuclei initially present
in the sample, but only on the radioactive substance.

To see why, let y; be the number of radioactive nuclei initially present in the
sample. Then the number y present at any later time ¢ will be y = yoe ™. We seek
the value of ¢ at which the number of radioactive nuclei present equals half the
original number:

1
yoe ™ = 5}’0
L
2
—kt = lnl = —In2 Reciprocal Rule for
logarithms
= In2
Tk
This value of ¢ is the half-life of the element. It depends only on the value of k;
the number y, does not enter in. a
. In2
Half-life = - )

EXAMPLE 4 Polonium-210

The effective radioactive lifetime of polonium-210 is so short we measure it in
days rather than years. The number of radioactive atoms remaining after ¢ days in
a sample that starts with y, radioactive atoms is

y =y e—5x10‘3t.
Find the element’s half-life.
Solution
. In2
Half-life = V Eq. (7)

. In2 The k from polonium’s decay

- 5% 10-3 equation

~ 139 days a

EXAMPLE 5  Carbon-14

People who do carbon-14 dating use a figure of 5700 years for its half-life (more
about carbon-14 dating in the exercises). Find the age of a sample in which 10%
of the radioactive nuclei originally present have decayed.



Carbon-14 dating

The decay of radioactive elements can
sometimes be used to date events from the
Earth’s past. The ages of rocks more than 2
billion years old have been measured by the
extent of the radioactive decay of uranium
(half-life 4.5 billion years!). In a living
organism, the ratio of radioactive carbon,
carbon-14, to ordinary carbon stays fairly
constant during the lifetime of the organism,
being approximately equal to the ratio in the
organism’s surroundings at the time. After
the organism’s death, however, no new
carbon is ingested, and the proportion of
carbon-14 in the organism’s remains
decreases as the carbon-14 decays. It is
possible to estimate the ages of fairly old
organic remains by comparing the proportion
of carbon-14 they contain with the proportion
assumed to have been in the organism’s
environment at the time it lived.
Archaeologists have dated shells (which
contain CaCQ3), seeds, and wooden artifacts
this way. The estimate of 15,500 years for
the age of the cave paintings at Lascaux,
France, is based on carbon-14 dating. After
generations of controversy, the Shroud of
Turin, long believed by many to be the burial
cloth of Christ, was shown by carbon-14
dating in 1988 to have been made after A.D.
1200.
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Solution We use the decay equation y = y, e . There are two things to find:

1. the value of k,

—kt ke 90% of the radioactive
2. the value of t when ype ™ = 0.9y, or e ™™ = 0.9

nuclei still present

Step 1: The value of k. We use the half-life equation:
_ In2  In2
* half-life 5700

Step 2: The value of t that makes e™* = 0.9.

(about 1.2 x 107%)

e M =09
o~ (In2/57001 _ 0 g
In2 .
— t =1n0.9 Logs of both sides
5700
57001In0.9
= 2T o 866 years.
In2
The sample is about 866 years old. a

Heat Transfer: Newton’s Law of Cooling

Soup left in a tin cup cools to the temperature of the surrounding air. A hot silver
ingot immersed in water cools to the temperature of the surrounding water. In
situations like these, the rate at which an object’s temperature is changing at any
given time is roughly proportional to the difference between its temperature and
the temperature of the surrounding medium. This observation is called Newton’s
law of cooling, although it applies to warming as well, and there is an equation for
it.

If T is the temperature of the object at time ¢, and Ty is the surrounding
temperature, then

ar
— = —k(T = Ty). 8
T ( 5) t)
If we substitute y for (T' — Ts), then
dy d dT d
— = —(T-Tg) = — — —(T.
ar = art D= " @
— d_T -0 T is a constant.
dt
_dar
T odt
In terms of y, Eq. (8) therefore reads
dy
= —ky,
dt Y
and we know that the solution to this differential equation is
y=ye*.
Thus, Newton’s law of cooling is
T —Ts = (Ty— Ts)e™, 9)

where Tj is the value of T at time zero.



488 Chapter 6: Transcendental Functions

EXAMPLE 6 A hard-boiled egg at 98°C is put in a sink of 18°C water. After
5 minutes, the egg’s temperature is 38°C. Assuming that the water has not warmed
appreciably, how much longer will it take the egg to reach 20°C?

Solution We find how long it would take the egg to cool from 98°C to 20°C and
subtract the 5 minutes that have already elapsed.
According to Eq. (9), the egg’s temperature ¢ minutes after it is put in the sink
is
T = 18+ (98 — 18)e™* = 18 4 80e X
To find k, we use the information that 7 = 38 when ¢t = 5:
38 = 18 4 80e >

1
-5k _ *
et = 2

-5k =lnl = —1In4
4

k = é In4=0.2 In4 (about 0.28).

The egg’s temperature at time ¢ is 7 = 18 + 80e~©-2"¥" Now find the time ¢ when
T =20:

20 = 18 4 80e~ 024
808—(0.2]n4)t =2

1
o—O2may _
40

1
—(0. =In—=-1
(0.2In4)t = In 0 n 40

In 40

= x 13 min.
' = 024 fn

The egg’s temperature will reach 20°C about 13 min after it is put in water to cool.
Since it took 5 min to reach 38°C, it will take about 8 min more to reach 20°C.

Q
Exercises 6.5
The answers to most of the following exercises are in terms of log- a) If 7 represents time in years and y represents tooth size, use
arithms and exponentials. A calculator can be helpful, enabling you the condition that y = 0.99y, when ¢ = 1000 to find the

to express the answers in decimal form.

1. Human evolution continues. The analysis of tooth shrinkage
by C. Loring Brace and colleagues at the University of Michi-
gan’s Museum of Anthropology indicates that human tooth size
is continuing to decrease and that the evolutionary process did )
not come to a halt some 30,000 years ago as many scientists con-

value of k in the equation y = y,e*'. Then use this value
of k to answer the following questions.
b) In about how many years will human teeth be 90% of their
present size?
What will be our descendants’ tooth size 20,000 years from
now (as a percentage of our present tooth size)?

tend. In northern Europeans, for example, tooth size reduction (Source: LSA Magazine, Spring 1989, Vol. 12, No. 2, p. 19, Ann

now has a rate of 1% per 1000 years.

Arbor, MI.)



2. Atmospheric pressure. The earth’s atmospheric pressure p is of-

ten modeled by assuming that the rate dp/dh at which p changes
with the altitude 4 above sea level is proportional to p. Suppose
that the pressure at sea level is 1013 millibars (about 14.7 pounds
per square inch) and that the pressure at an altitude of 20 km is
90 millibars.

a) Solve the initial value problem

Differential equation: dp/dh = kp (k a constant)

Initial condition: p=powhen h =0

to express p in terms of 4. Determine the values of p, and
k from the given altitude-pressure data.

b) What is the atmospheric pressure at ~ = 50 km?

¢) At what altitude does the pressure equal 900 millibars?

. First order chemical reactions. In some chemical reactions, the
rate at which the amount of a substance changes with time is
proportional to the amount present. For the change of §-glucono
lactone into gluconic acid, for example,

dy

— =-0.6

dt Y
when ¢ is measured in hours. If there are 100 grams of §-glucono
lactone present when ¢ = 0, how many grams will be left after
the first hour?

. The inversion of sugar. The processing of raw sugar has a step
called “inversion” that changes the sugar’s molecular structure.
Once the process has begun, the rate of change of the amount of
raw sugar is proportional to the amount of raw sugar remaining.
If 1000 kg of raw sugar reduces to 800 kg of raw sugar during
the first 10 h, how much raw sugar will remain after another 14
h?

. Working underwater. The intensity L(x) of light x feet beneath
the surface of the ocean satisfies the differential equation

dL

dx
As a diver, you know from experience that diving to 18 ft in
the Caribbean Sea cuts the intensity in half. You cannot work
without artificial light when the intensity falls below one-tenth
of the surface value. About how deep can you expect to work
without artificial light?

—kL.

. Voltage in a discharging capacitor. Suppose that electricity
is draining from a capacitor at a rate that is proportional to the
voltage V across its terminals and that, if ¢ is measured in seconds,
dv 1
dr a0
Solve this equation for V, using V, to denote the value of V

when ¢t = 0. How long will it take the voltage to drop to 10% of
its original value?

. Cholera bacteria. Suppose that the bacteria in a colony can grow
unchecked, by the law of exponential change. The colony starts
with 1 bacterium and doubles every half hour. How many bacteria
will the colony contain at the end of 24 h? (Under favorable
laboratory conditions, the number of cholera bacteria can double

10.

11.

12,

L1/}
an

13.
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every 30 min. In an infected person, many bacteria are destroyed,
but this example helps explain why a person who feels well in
the morning may be dangerously ill by evening.)

. Growth of bacteria. A colony of bacteria is grown under ideal

conditions in a laboratory so that the population increases expo-
nentially with time. At the end of 3 h there are 10,000 bacteria.
At the end of 5 h there are 40,000. How many bacteria were
present initially?

. The incidence of a disease (Continuation of Example 1). Sup-

pose that in any given year the number of cases can be reduced
by 25% instead of 20%.

a) How long will it take to reduce the number of cases to 1000?
b) How long will it take to eradicate the disease, that is, reduce
the number of cases to less than 1?

The U.S. population. The Museum of Science in Boston dis-
plays a running total of the U.S. population. On May 11, 1993, the
total was increasing at the rate of 1 person every 14 sec. The dis-
played population figure for 3:45 pM. that day was 257,313,431.

a) Assuming exponential growth at a constant rate, find the
rate constant for the population’s growth (people per 365-
day year).

b) At this rate, what will the U.S. population be at 3:45 PM.
Boston time on May 11, 2001?

Oil depletion. Suppose the amount of oil pumped from one of
the canyon wells in Whittier, California, decreases at the contin-
uous rate of 10% per year. When will the well’s output fall to
one-fifth of its present value?

Continuous price discounting. To encourage buyers to place
100-unit orders, your firm’s sales department applies a continuous
discount that makes the unit price a function p(x) of the number
of units x ordered. The discount decreases the price at the rate
of $0.01 per unit ordered. The price per unit for a 100-unit order
is p(100) = $20.09.

a) Find p(x) by solving the following initial value problem:

dp 1
Differential tioni — =-———
1fierential equation dx 100 p

p(100) = 20.09.

b) Find the unit price p(10) for a 10-unit order and the unit
price p(90) for a 90-unit order.

¢) The sales department has asked you to find out if it is dis-
counting so much that the firm’s revenue, r(x) = x « p (x),
will actually be less for a 100-unit order than, say, for a
90-unit order. Reassure them by showing that r has its max-
imum value at x = 100.

d) GRAPHER Graph the revenue function r(x) = xp(x) for
0 < x <200.

Continuously compounded interest. You have just placed A,
dollars in a bank account that pays 4% interest, compounded
continuously.

Initial condition:

a) How much money will you have in the account in 5 years?
b) How long will it take your money to double? to triple?
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14.

15.

16.

John Napier’s question. John Napier (1550-1617), the Scottish
laird who invented logarithms, was the first person to answer the
question What happens if you invest an amount of money at
100% interest, compounded continuously?

a) What does happen?
b) How long does it take to triple your money?
¢) How much can you earn in a year?

Give reasons for your answers.

Benjamin Franklin’s will. The Franklin Technical Institute of
Boston owes its existence to a provision in a codicil to Benjamin
Franklin’s will. In part the codicil reads:

I wish to be useful even after my Death, if possible, in
forming and advancing other young men that may be ser-
viceable to their Country in both Boston and Philadelphia.
To this end I devote Two thousand Pounds Sterling, which
I give, one thousand thereof to the Inhabitants of the Town
of Boston in Massachusetts, and the other thousand to the
inhabitants of the City of Philadelphia, in Trust and for
the Uses, Interests and Purposes hereinafter mentioned and
declared.

Franklin’s plan was to lend money to young apprentices at 5%
interest with the provision that each borrower should pay each
year along

. .. with the yearly Interest, one tenth part of the Principal,
which sums of Principal and Interest shall be again let to
fresh Borrowers. . . . If this plan is executed and succeeds
as projected without interruption for one hundred Years,
the Sum will then be one hundred and thirty-one thousand
Pounds of which I would have the Managers of the Donation
to the Inhabitants of the Town of Boston, then lay out at
their discretion one hundred thousand Pounds in Public
Works. . . . The remaining thirty-one thousand Pounds, I
would have continued to be let out on Interest in the manner
above directed for another hundred Years. . . . At the end of
this second term if no unfortunate accident has prevented
the operation the sum will be Four Millions and Sixty-one
Thousand Pounds.

It was not always possible to find as many borrowers as
Franklin had planned, but the managers of the trust did the best
they could. At the end of 100 years from the reception of the
Franklin gift, in January 1894, the fund had grown from 1000
pounds to almost exactly 90,000 pounds. In 100 years the original
capital had multiplied about 90 times instead of the 131 times
Franklin had imagined.

What rate of interest, compounded continuously for 100
years, would have multiplied Benjamin Franklin’s original capital
by 90?

(Continuation of Exercise 15.) In Benjamin Franklin’s estimate
that the original 1000 pounds would grow to 131,000 in 100
years, he was using an annual rate of 5% and compounding
once each year. What rate of interest per year when compounded

17.

18.

19.

20.

21.

22.

23.

24,

continuously for 100 years would multiply the original amount
by 1317

Radon-222. The decay equation for radon-222 gas is known to
be y = yoe %'¥ with ¢ in days. About how long will it take
the radon in a sealed sample of air to fall to 90% of its original
value?

Polonium-210. The half-life of polonium is 139 days, but your
sample will not be useful to you after 95% of the radioactive
nuclei present on the day the sample arrives has disintegrated.
For about how many days after the sample arrives will you be
able to use the polonium?

The mean life of a radioactive nucleus. Physicists using the
radioactivity equation y = ype~* call the number 1/k the mean
life of a radioactive nucleus. The mean life of a radon nucleus is
about 1/0.18 = 5.6 days. The mean life of a carbon-14 nucleus
is more than 8000 years. Show that 95% of the radioactive nuclei
originally present in a sample will disintegrate within three mean
lifetimes, i.e., by time ¢ = 3/k. Thus, the mean life of a nucleus
gives a quick way to estimate how long the radioactivity of a
sample will last.

Californium-252. 'What costs $27 million per gram and can be
used to treat brain cancer, analyze coal for its sulfur content, and
detect explosives in luggage? The answer is californium-252, a
radioactive isotope so rare that only 8 g of it have been made in
the western world since its discovery by Glenn Seaborg in 1950.
The half-life of the isotope is 2.645 years—long enough for a
useful service life and short enough to have a high radioactivity
per unit mass. One microgram of the isotope releases 170 million
neutrons per second.

a) What is the value of & in the decay equation for this isotope?

b) What is the isotope’s mean life? (See Exercise 19.)

¢) How long will it take 95% of a sample’s radioactive nuclei
to disintegrate?

Cooling soup. Suppose that a cup of soup cooled from 90°C to
60°C after 10 minutes in a room whose temperature was 20°C.
Use Newton’s law of cooling to answer the following questions.

a) How much longer would it take the soup to cool to 35°C?

b) Instead of being left to stand in the room, the cup of 90°C
soup is put in a freezer whose temperature is —15°C. How
long will it take the soup to cool from 90°C to 35°C?

A beam of unknown temperature. An aluminum beam was
brought from the outside cold into a machine shop where the
temperature was held at 65°. After 10 minutes, the beam warmed
to 35°F and after another 10 minutes it was 50°F. Use Newton’s
law of cooling to estimate the beam’s initial temperature.
Surrounding medium of unknown temperature. A pan of
warm water (46°C) was put in a refrigerator. Ten minutes later,
the water’s temperature was 39°C; 10 minutes after that, it was
33°C. Use Newton’s law of cooling to estimate how cold the
refrigerator was.

Silver cooling in air. The temperature of an ingot of silver is
60°C above room temperature right now. Twenty minutes ago, it



25.

26.

was 70°C above room temperature. How far above room temper-
ature will the silver be

a) 15 minutes from now?

b) two hours from now?

¢) When will the silver be 10°C above room temperature?

The age of Crater Lake. The charcoal from a tree killed in the
volcanic eruption that formed Crater Lake in Oregon contained
44.5% of the carbon-14 found in living matter. About how old
is Crater Lake?

The sensitivity of carbon-14 dating to measurement. To see
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the effect of a relatively small error in the estimate of the amount
of carbon-14 in a sample being dated, consider this hypothetical
situation:

a) A fossilized bone found in central Illinois in the year A.D.
2000 contains 17% of its original carbon-14 content. Esti-
mate the year the animal died.

b) Repeat (a) assuming 18% instead of 17%.

¢) Repeat (a) assuming 16% instead of 17%.

27. Art forgery. A painting attributed to Vermeer (1632-1675),

which should contain no more than 96.2% of its original carbon-

14, contains 99.5% instead. About how old is the forgery?

L'Hépital’s Rule

In the late seventeenth century, John Bernoulli discovered a rule for calculating
limits of fractions whose numerators and denominators both approach zero. The
rule is known today as I’Hépital’s rule, after Guillaume Frangois Antoine de

I’Hopital (1661-1704), Marquis de St. Mesme, a French nobleman who wrote the
first introductory differential calculus text, where the rule first appeared in print.

Indeterminate Quotients

If functions f(x) and g(x) are both zero at x = a, then lim,_,, f(x)/g(x) cannot
be found by substituting x = a. The substitution produces 0/0, a meaningless
expression known as an indeterminate form. Our experience so far has been that
limits that lead to indeterminate forms may or may not be hard to find. It took a
lot of work to find lim,_,o (sin x)/x in Section 2.4. But we have had remarkable
success with the limit
f@ i TW @
X—a X —a

from which we calculate derivatives and which always produces 0/0. L’Hdpital’s
rule enables us to draw on our success with derivatives to evaluate limits that lead
to indeterminate forms.

Theorem 2
L’'Hopital’s Rule (First Form)
Suppose that f(a) = g(a) = 0, that f'(a) and g'(a) exist, and that g'(a) #
0. Then

1) _ @

= . 1
e g() | 2@ M
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Caution

To apply I'Hopital’s rule to f/g, divide the
derivative of f by the derivative of g. Do
not fall into the trap of taking the
derivative of f/g. The quotient to use is
f'lg, not (fig)'.

A misnamed rule and the first
differential calculus text

In 1694 John Bernoulli agreed to accept a
retainer of 300 pounds per year from his
former student 1’Hopital to solve problems
for him and keep him up to date on calculus.
One of the problems was the so-called 0/0
problem, which Bernoulli solved as agreed.
When I’Hopital published his notes on
calculus in book form in 1696, the 0/0 rule
appeared as a theorem. L’Hopital
acknowledged his debt to Bernoulli and, to
avoid claiming authorship of the book’s
entire contents, had the book published
anonymously. Bernoulli nevertheless accused
I’Hbpital of plagiarism, an accusation
inadvertently supported after I’Hopital’s
death in 1704 by the publisher’s promotion of
the book as ’Hopital’s. By 1721, Bernoulli, a
man so jealous he once threw his son Daniel
out of the house for accepting a mathematics
prize from the French Academy of Sciences,
claimed to have been the author of the entire
work. As puzzling and fickle as ever, history
accepted Bernoulli’s claim (until recently),
but still named the rule after I’'Hopital.

Proof Working backward from f’(a) and g’(a), which are themselves limits, we

have
, f(x) = f(a) f&x) — fa)
’ im ———~ _
f(a): x—a X —a X —a
g'(a) lim g(x) —g(a) x~a g(x)— g(a)
X—>a X —da X —a
, f(x)— f(a)
=lim —————
x—a g(x) — g(a)
I fx)—=0
= lim ———
x=a g(x) =0
I fx)
= lim .
x—a g(x)
EXAMPLE 1
a) lim 3x—s1nx=3—cosx —5
x—0 X 1 =0
_
b) lim YA TX—l_2J/1+x) 1
x—=0 X 1 =0 2
. x-—sinx 1—cos x 0
= =7 ill =
c) ll_r)% e 32 » ] Still 5

Q

What can we do about the limit in Example 1(c)? A stronger form of ’Hopital’s

rule says that whenever the rule gives 0/0 we can apply it again, repeating the

process until we get a different result. With this stronger rule we get

1—cos x
3x2

sin x

x—0 6x
CoS X 1
x—0 6

Theorem 3
L'Hépital’s Rule (Stronger Form)

(o]

0
Still 6; apply the
rule again.

0
Still 6; apply the

rule again.

A different
result. Stop.

Suppose that f(a) = g(a) = 0 and that f and g are differentiable on an open
interval / containing a. Suppose also that g'(x) # 0 on I if x % a. Then

lim S ()

F0) i
=1 ;
x—a ’g(x) xl—r3 g’(x)

if the limit on the right exists (or is 6o or —00).

You will find a proof of the finite-limit case of Theorem 3 in Appendix 5.

@
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EXAMPLE 2
. NTHx—1-(x/2) 0
lim 0
x—0 _x2
1/2)(1 -1z _(1/2
— lim (1/2)(1 + x) 1/2) sin ©
x—>0 2x 0

g —WAHA+0T2 1 N %; limit is
—x—>0 2 - 8

found

a

When you apply 1’Hdpital’s rule, look for a change from 0/0 to something
else. This is where the limit is revealed.

EXAMPLE 3
. 1 —cos x
lim ——
x>0 x4 x2

(=) N

sin x 0 0
- =0 Not 6; limit is found.

=lm =
o0 T+2x 1

If we continue to differentiate in an attempt to apply 1’Hopital’s rule once more,
we get

. 1—cosx . sin x . COoS X 1
lim ——— = lim = lim = —,
=0 x4+ _x2 =0 14 2x x—0 2 2
which is wrong. |
EXAMPLE 4
. sinx 0
lim =
=0+t x2 0
COS X 0
= lim =0 Not —; answer is found.
x>0t 2x 0 D

L’Hbpital’s rule also applies to quotients that lead to the indeterminate form
oo/oo. If f(x) and g(x) both approach infinity as x — a, then

lim M = lim f/(X),
x—>a g(x) x—a g’(x)

provided the latter limit exists. The a here may itself be either finite or infinite.

EXAMPLE 5
sec x e
a) im — oo
x—>@@/2~ 1+ tan x
. sec x tan x . .
= lim — = lim sinx =1
x—(m/2)~  Seccx x—>(7/2)”

b) fim % = fim 22— Jim =0
—_— = —_— = llm — =
X—00 Zﬁ X—00 ]/\/E X—00 ﬁ 4
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Indeterminate Products and Differences

We can sometimes handle the indeterminate forms O - co and 0o — 0o by using
algebra to get 0/0 or oo/oo instead. Here again, we do not mean to suggest that
there is a number 0 - 0o or co — 0o any more than we mean to suggest that there is
a number 0/0 or co/oc. These forms are not numbers but descriptions of function
behavior.

EXAMPLE 6

lim xcot x 0 » o0; rewrite x cot .

x—0%
1 1

= lim x - cot x =
x—0* tan x tan x

= lim
x—0* tan x
i 1 1 )

= 1im = —-=
-0t secz x 1 a

0
Now —
0

EXAMPLE 7 Find lim ( L l) .

x>0 \sinx X

Solution If x — 0%, then sinx — 01 and
1 1

Similarly, if x — 07, then sinx — 0~ and

1 1
- —— = —00— (—00) = —00 4 0.
sinx x

Neither form reveals what happens in the limit. To find out, we first combine the
fractions.

1 1 _ x —sin x Common denominator is
o X osin x.

sinx  x x sinx ’

and then apply 1’Hopital’s rule to the result:

. 1 1 . x-—sinx 0
lim - —— ) =Ilm —— e
x»0 \sinx x x—0 x sin x 0
. 1 —cos x 0
=lim —m8 ——— Still ~
x—0 sin x + x COS x 0
. sin x 0
= lim - ==-=0
x>0 2cosx —xsinx 2 a

Indeterminate Powers

Limits that lead to the indeterminate forms 1%, 0°, and oo® can sometimes be
handled by taking logarithms first. We use 1’Hdopital’s rule to find the limit of the
logarithm and then exponentiate to find the original function behavior.

0
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Find the limit
. some other -
- owap

numerator
~and
denommator
differentiable?

Results circular
ornot

‘numerator to ative:
| of the denominator. -

\
[ Does the hmlt of the new rat:o as ]
x 7

Yes

—a lead to an mdetermmate fprm

No

Y

Stop dlffcrenuatmg ch have found |
the lnmt or determined that the Timit
e does not ex1st

If lim,_,, In f(x) =L, then

hm f(x) = lim e™/® =L

X—a

Here a may be either finite or infinite.

Flowchart 6.1 L'Hopital’s rule

EXAMPLE 8 Show that lim,_+ (14 x)/* =e.

Solution The limit leads to the indeterminate form 1°. We let f(x) = (1 + x)!/*
and find lim,_, o+ In f(x). Since

In f(x) =In(14x)"”*

1
= —In(1+x),
X

I’Hoépital’s rule now applies to give

In (1
lim In f(r) = lim 2UFD 0
x—>0t x—>0+ X 0
1
— lim 14+x
x—0* 1
1=
Therefore,
lim (14+x)* = lim f(x) = lim &"/® =¢' =e.
x—0% x—0* x—0* D

EXAMPLE 9 Find lim, o x!/*.

Solution The limit leads to the indeterminate form oc®. We let f(x) = x'/* and
find lim,_, o In f(x). Since
In f(x) =Inx'*
In x
=—
I’Hopital’s rule gives
1
11m In f(x) = lim nx x©
x—00 X oC
. 1/x
= lim —
x—o00 |
0
=-=0.
1
Therefore,
lim x* = lim f(x) = lim "/® =¢"=1. Q
X—>00 X—>00 X—>00
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Exercises 6.6

Applying I'Hopital’s Rule

Use ’Hopital’s rule to find the limits in Exercises 1-42.

1.

11.

12.

13.

. lim

. lim

. x—2
lim
x—2 x2—4

1B —4r+15

m —

»-3 t2—t—12
. 5x%—3x
lll’l’l —_
x—o0 Tx?2 41

sin #2

t—0 t
8x?
cos x — 1
20 —m
o572 cos (21 — 6)
360 +n

x—0

2. lim

10.

lim ——
6—-n/3 sin (6 + (1 /3))

lim 1 —sin @
0->r/2 14 cos 20

X2

15. lim

17.

19.

20.

21.

23.

25.

27.

29.

30.

31.

32.

33.

x>0 In (sec x)
t(l1 —cost)
t—sint

lim

t—0

. b4
lim ( - —) secx
x—(1/2)" 2
lim

V4
(— - x) tan x
x—>(m/2)"\ 2

. 3sin 6 __ 1
lim ———
-0 0

x2*
2* —1
In(x +1)
log, x
In (x% 4 2x)
—
lim Yy +25-3
y—=0 y
Vay+a>—a

lim —,
y—0 y

lim

x—>0

lim

X—>00

lim

x—>0*

14.

16.

18.

22.

24. 1

26. lim

28.

a>0

lim (In 2x —In(x + 1))

lim

x—0*

(In x — In sin x)

lim

1 1
x—>0" \ X sin x

. lim

. x2=125
-5 x+5
-1

. lim —
1>1 43—t -3

lim X 8x?
im
x—>o0 12x2 + 5x

sin 5¢

=0

. sinx—x
lim ——
x—0 x3

. x—1
lim ———
x>1 In x —sin wx

In (csc x)

2 =@y

. tsin t
lim ——
>0 1 —cost

- (1/2)° =1
lim —
6—0

L 3F—1

20 > —1

log, x

x=e0 logy (x +3)

In(e* — 1)
In x

lim

x—0*

34.

lim
x—>0*

35. lim

36.

37.

39. 1

40.

41.

42.

x—>1*
lim
x—>0*

lim

xX—>00

im
6—0
lim
h—0
lim
1—o00

lim
X—>00

3x+1 1
x sin x
1 _ 1

x—1 Inx

(csc x — cot x + cos x)

2x
—dt
.t
cos 6 —1
e —0—1
e"— (1 +h)
h2
e+ 12
e —t

x%e™*

38.

1 X
lim / In ¢t dt
x=o00 x In x J4

Limits Involving Bases and Exponents

Find the limits in Exercises 43-52.

43, lim x/(-®

45.

47.

49.

51.

Theory and Applications
L’Hopital’s rule does not help with the limits in Exercises 53-56. Try

x—>1*
lim

X—>00
lim

x—0%
lim

X—>00

lim
x—>0*

(In x)/*

x—1/nx

(1 + 2x)l/(2]n x)

4.

46.

48.

50.

52.

lim x1/&=D

x—>1*
lim (In x)Y/&-9
x—et

lim x'/"*
X—=>00

liII(l) (e* +x)i/*

1\*
lim (1 + —)
x—0* X

it—you just keep on cycling. Find the limits some other way.

53.

55.

57.

58.

lim
X—>00

V9x +1
x+1
secx

1m
x—(r/2)” tanx

Which one is correct, and which one is wrong? Give reasons for

your answers.

a)

b)

Which one is correct, and which one is wrong? Give reasons for

I x—3_l, I

XI—>H; x2—3_xl—rg 2x
x—3 0

li =-=0

xlgé x2-3 6

your anSwers.

54.

56. 1

WX
lim
x=>0% 4/sin x

cotx

im
x>0 CSCX




59.

60.

61.

62.

63.

. x?—2x . 2x —2
a) lim ———— =lim —«—
x=0 x%2—sinx x>0 2x —cOoSx
I 2 2 1
=um — = — =
x=>0 2+ sinx 240
22 2x —2 -2
b) lim —— 2 — fim —= = -2
x>0 x2 —sinx x>0 2x —cosx O0-—1

Only one of these calculations is correct. Which one? Why are
the others wrong? Give reasons for your answers.

a)

lim xInx =0+ (—00)=0

x—0*
b) lir(r)l+ xInx=0-.(—00) =—00
. . In x —00
¢) lim xlnx = lim = =—
x#=>0" x>0t (1/x) 00
1
@) lm xinx = lim (111/;)
(1/x)
= = —_ = O
B e a0
Let
x+2, x#0
f@) = {O i
x+1, x#0
80 = {O x i 0.
Show that
m L% 4 burthar tim Z& o)
x>0 g'(x) >0 g(x)

Doesn’t this contradict 1’Hopital’s rule? Give reasons for your
answers.

Find a value of ¢ that makes the function
x#0
x=0

continuous at x = 0. Explain why your value of ¢ works.

9x — 3sin3x

5x3 ’
c,

fx) =

Find a value of ¢ that makes the function

(tan §)?2
sin (402 /m)’
c,

0#0
6=0

g@) =

continuous from the right at & = 0. Explain why your value of
¢ works.

The continuous compound interest formula. In deriving the
formula A(t) = Age" in Section 6.5, we claimed that
. r
Jim Ao(1+ )

kt
= A() e”.

This equation will hold if
: r\k rt
i (14g) ="

64.

/]
an

)

66.

67.
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and this, in turn, will hold if

1—{—i k:e’.
(1+%)

As you can see, the limit leads to the indeterminate form 1°°.
Verify the limit using 1’Hopital’s rule.

lim

k—o0

Given that x > 0, find the maximum value, if any, of

a) xl/x
b) x!'/¥
¢ x!'*" (n a positive integer)

d) Show that lim,_, ., x!/* = 1 for every positive integer n.

Grapher Explorations
65.

Determining the value of e.

a) Use I’Hopital’s rule to show that

1 X
<1+—) =e.
x

CALCULATOR See how close you can come to
e =2.7 1828 1828 45 90 45

lim

X—>00

by evaluating f(x) = (1 + (1/x))* for x = 10, 10* , 10°,
...and so on. You can expect the approximations to ap-
proach e at first, but on some calculators they will move
away again as round-off errors take their toll.

If you have a grapher, you may prefer to do part (b) by
graphing f(x) = (1 + (1/x))* for large values of x, using
TRACE to display the coordinates along the graph. Again,
you may expect to find decreasing accuracy as x increases
and, beyond x = 10'° or so, erratic behavior.

©

This exercise explores the difference between the limit

1 X
<l+;)
<l+l) =e,

X

lim

X—>00

and the limit

lim

X—>00

studied in Exercise 65.

a) Graph
1\* 1\*
fx) = <1+—2> and g(x)=<1+—)
x x
together for x > 0. How does the behavior of f compare
with that of g? Estimate the value of lim,_, o, f(x).
b) Confirm your estimate of lim,_ f(x) by calculating it
with I’Hopital’s rule.
a) Estimate the value of

lim (x — vVx%+x)
X—>00

by graphing f(x) = x — +/x2 4+ x over a suitably large in-
terval of x-values.
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68.

69.

70.

71.

B

72.

b) Now confirm your estimate by finding the limit with I’ Hopi-
tal’s rule. As the first step, multiply f(x) by the fraction
(x ++vx24+x)/(x + +/x2 + x) and simplify the new nu-

merator.

Estimate the value of

. x2 -4
im —
=2 \/x24+5-3

by graphing. Then confirm your estimate with I’H6pital’s rule.

Estimate the value of
2% — Bx + 1)/x +2

x—1

lim

x—1

by graphing. Then confirm your estimate with I’Hopital’s rule.
a) Estimate the value of

. (x — 1)
lim
x=>1 xIlnx —x —cosmx

by graphing f(x) = (x — 1)*/(xIn x — x — cosx) near
x = 1. Then confirm your estimate with I’'Hopital’s rule.
b) Graph f for0 <x < 11.

The continuous extension of (sinx)* to [0, ]

a) Graph f(x) = (sinx)* on the interval 0 < x < m. What
value would you assign to f to make it continuous at x = 0?

b) Verify your conclusion in (a) by finding lim,_, ¢+ f(x) with
I’Hopital’s rule.

¢) Returning to the graph, estimate the maximum value of f
on [0, ]. About where is max f taken on?

d) Sharpen your estimate in (c) by graphing f’ in the same
window to see where its graph crosses the x-axis. To sim-
plify your work, you might want to delete the exponential
factor from the expression for f’ and graph just the factor
that has a zero.

e) Sharpen your estimate of the location of max f further still
by solving the equation f’ = 0 numerically.

CALCULATOR Estimate max f by evaluating f at the lo-
cations you found in (c), (d), and (e). What is your best
value for max f?

The function (sin x)'®" *. (Continuation of Exercise 71.)
a) Graph f(x) = (sinx)"“"* on the interval —7 < x < 7. How

b)

c)

73.

74.

do you account for the gaps in the graph? How wide are
the gaps?

Now graph f on the interval 0 < x < . The function is not
defined at x = /2, but the graph has no break at this point.
What is going on? What value does the graph appear to give
for f at x = /27 (Hint: Use I’Hopital’s rule to find lim f as
x — (m/2)” and x - (w/2)*.)

Continuing with the graphs in (b), find max f and min f as
accurately as you can and estimate the values of x at which they
are taken on.

The place of In x among the powers of x. The natural loga-

rithm
1
Inx = / —dt
1t
fills the gap in the set of formulas
£k
/t""d: = ?+c, k#£0, (3)

but the formulas themselves do not reveal how well the logarithm
fits in. We can see the nice fit graphically if we select from Eq.
(3) the specific antiderivatives

x k
k-1 x—1
tdt = ———,
/1 k

and compare their graphs with the graph of In x.

a) Graph the functions f(x) = (x* — 1)/k together with In x
on the interval 0 <x <50 for k==+1, £0.5, £0.1,
and £ 0.05.

b) Show that

x>0,

Coxk—1
lim =In x.
k=0

(Based on “The Place of In x Among the Powers of x” by
Henry C. Finlayson, American Mathematical Monthly, Vol.
94, No. 5, May 1987, p. 450.)

Confirmation of the limit in Section 5.7, Exercise 42. Estimate
the value of

. sina —acosa
lim —mM8M8M8 —

a—>0" o — o CoSU

as closely as you can by graphing. Then confirm your estimate
with I"Hopital’s rule.

Relative Rates of Growth

This section shows how to compare the rates at which functions of x grow as x
becomes large and introduces the so-called little-oh and big-oh notation sometimes
used to describe the results of these comparisons. We restrict our attention to
Junctions whose values eventually become and remain positive as x — o0.
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Relatives Rates of Growth

You may have noticed that exponential functions like 2* and e* seem to grow more
rapidly as x gets large than the polynomials and rational functions we graphed
in Chapter 3. These exponentials certainly grow more rapidly than x itself, and
you can see 2° outgrowing x? as x increases in Fig. 6.14. In fact, as x — oo, the
functions 2* and e* grow faster than any power of x, even x990 (Exercise 19).

To get a feeling for how rapidly the values of y = ¢* grow with increasing
x, think of graphing the function on a large blackboard, with the axes scaled in
centimeters. At x = 1 cm, the graph is e! &~ 3 c¢cm above the x-axis. At x = 6 cm,
the graph is ¢® ~ 403 cm ~ 4 m high (it is about to go through the ceiling if it
hasn’t done so already). At x = 10 cm, the graph is e'® &~ 22,026 cm ~ 220 m
high, higher than most buildings. At x = 24 cm, the graph is more than halfway
to the moon, and at x = 43 c¢m from the origin, the graph is high enough to reach
past the sun’s closest stellar neighbor, the red dwarf star Proxima Centauri:

e¥ ~ 473 x 10" cm

=4.73 x 10" km

. In a vacuum, light travels
~ 1.58 x 108 llght-seconds at 300,000 km/sec.
~ 5.0 light-years

The distance to Proxima Centauri is about 4.22 light-years. Yet with x = 43 cm
from the origin, the graph is still less than 2 feet to the right of the y-axis.

In contrast, logarithmic functions like y =log,x and y =In x grow more
slowly as x — oo than any positive power of x (Exercise 21). With axes scaled in
centimeters, you have to go nearly 5 light-years out on the x-axis to find a point
where the graph of y =1In x is even y = 43 cm high. See Fig. 6.15.

These important comparisons of exponential, polynomial, and logarithmic func-
tions can be made precise by defining what it means for a function f(x) to grow
faster than a function g(x) as x — o0.

Definition
Rates of Growth as x — oo
Let f(x) and g(x) be positive for x sufficiently large.

1. f grows faster than g as x — oo if

im L% _ oo
X—00 g(x)

or, equivalently, if
lim £
X—>00 f(x)

We also say that g grows slower than f as x — oo.
2. f and g grow at the same rate as x — oo if
lim &)

=L #0. L finite and not zero
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According to these definitions, y = 2x does not grow faster than y = x. The
two functions grow at the same rate because

2
lim 2 = lim 2=2,

xX—=00 X X—>00

which is a finite, nonzero limit. The reason for this apparent disregard of common
sense is that we want “f grows faster than g” to mean that for large x-values g is
negligible when compared with f.

EXAMPLE 1 e* grows faster than x? as x — oo because

X X X
lim — = lim — = lim — = 00 Using I’'Hopital’s rule
x—>00 x2 x—>00 2x x>0 2 twice
——
00/00 00/00 U

EXAMPLE 2
a) 3* grows faster than 2* as x — oo because

lim Z—lim §X—oo
— 5) =0o°

x—>o00 2% Xx—>00

b) As part (a) suggests, exponential functions with different bases never grow at
the same rate as x — oo. If @ > b > 0, then a* grows faster than b*. Since
(a/b) > 1,

X

lim & = lim (2)" =
Jim 5 = Jim (5) =o g
EXAMPLE 3 x? grows faster than In x as x — oo because
2
lim —x— = lim —21—6— = lim 2x2 = 00. I’Hopital’s rule
x—oo ln x X—>00 ]/x X—00
]
EXAMPLE 4 In x grows slower than x as x — oo because
lim M = lim & I’Hopital’s rule
x>0 X X—>00
o1
= len;o 1= 0. 0

EXAMPLE 5 In contrast to exponential functions, logarithmic functions with
different bases a and b always grow at the same rate as x — oo:

log,x . Inx/lna Inb

lim = lim — = —.
x—oo Jogy,x x—cc Inx/Inb Ina

The limiting ratio is always finite and never zero. a

If f grows at the same rate as g as x — oo, and g grows at the same rate as
h as x — oo, then f grows at the same rate as 4 as x — c0. The reason is that

im L =2, ad  lim &=L,

X—>00 g X—=>00
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together imply

SIE

lim = lim
X—>00 X—>00

S| 0o

== L]Lz.

o |~

If L, and L, are finite and nonzero, then so is L;L,.

EXAMPLE 6 Show that +/x2 + 5 and (24/x — 1)? grow at the same rate as
X — 00.

Solution We show that the functions grow at the same rate by showing that they
both grow at the same rate as the function x:

/X2 +
lim al = lim 1+—2
x

X—>00 X—> 00
2/x — 1) 2Jx -1 1)
lim (ﬁ—) = lim 2/5 -1 =lim (2- —) =4.
X—>00 X X—>00 ﬁ X—>00 \/35— D

Order and Oh-Notation

Here we introduce the “little-oh” and “big-oh” notation invented by number theorists
a hundred years ago and now commonplace in mathematical analysis and computer
science.

- Definition .

A function f is of smaller order than g as x — oo if lim 0 =0. We
X—=>00 g

 indicate this by writing f = o(g) (“f is little-oh of g”).

Notice that saying f = o(g) as x — oo is another way to say that f grows slower
than g as x — oo.

EXAMPLE 7
In x
Inx =o0(x) as x > oo because lim — =0
x>0 X
%2
x> =o(x*+1) as x > 0o because Xll)rglo e =0 0

Definition
~ Let f(x) and g(x) be positive for x sufficiently large. Then £ is of at most
the order of g as x — oo if there is a positive integer M for which
A | f&@
(x) =
for x sufﬁc1ently large We indicate this by writing f = 0( g) (“f is big-oh
piEdi s



502 Chapter 6: Transcendental Functions

EXAMPLE 8
x +sinx = O(x) as x —> oo because x_—%l_x < 2 for x sufficiently large.
]
EXAMPLE 9

e + x?2

e +x% = O(¢*) as x — oo because — 1 as x = o0,

x = O(e*) as x — oo because —x——>0asx—>oo. 0
eX
If you look at the definitions again, you will see that f = o(g) implies f = O(g)
for functions that are positive for x sufficiently large. Also, if f and g grow at the
same rate, then f = O(g) and g = O(f) (Exercise 11).

Sequential vs. Binary Search

Computer scientists sometimes measure the efficiency of an algorithm by counting
the number of steps a computer must take to make the algorithm do something.
There can be significant differences in how efficiently algorithms perform, even if
they are designed to accomplish the same task. These differences are often described
in big-oh notation. Here is an example.

Webster’s Third New International Dictionary lists about 26,000 words that
begin with the letter a. One way to look up a word, or to learn if it is not there, is
to read through the list one word at a time until you either find the word or determine
that it is not there. This method, called sequential search, makes no particular use
of the words’ alphabetical arrangement. You are sure to get an answer, but it might
take 26,000 steps.

Another way to find the word or to learn it is not there is to go straight to the
middle of the list (give or take a few words). If you do not find the word, then go to
the middle of the half that contains it and forget about the half that does not. (You
know which half contains it because you know the list is ordered alphabetically.)
This method eliminates roughly 13,000 words in a single step. If you do not find
the word on the second try, then jump to the middle of the half that contains it.
Continue this way until you have either found the word or divided the list in half
so many times there are no words left. How many times do you have to divide the
list to find the word or learn that it is not there? At most 15, because

(26,000/2"%) < 1.

That certainly beats a possible 26,000 steps.

For a list of length n, a sequential search algorithm takes on the order of n
steps to find a word or determine that it is not in the list. A binary search, as the
second algorithm is called, takes on the order of log, n steps. The reason is that if
2ml < p<2™ thenm—1 < log, n < m, and the number of bisections required
to narrow the list to one word will be at most m = [log, n], the integer ceiling for
log, n.

Big-oh notation provides a compact way to say all this. The number of steps in
a sequential search of an ordered list is O(n); the number of steps in a binary search
is O(log, n). In our example, there is a big difference between the two (26,000 vs.
15), and the difference can only increase with n because n grows faster than log, n
as n — oo.
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To find an item in a list of length n:

A sequential search takes O(n) steps.
A binary search takes O (log, n) steps.

Exercises 6.7

Comparisons with the Exponential e* a) log,(x?) b) log,, 10x
1. Which of the following functions grow faster than e* as x — 00? o 1/Vx d) 1{ fz
Which grow at the same rate as e*? Which grow slower? e x—2lnx f) e
.2 g) In(Inx) h) In 2x+)5)
a) x+3 b) x3 +sin’x
c x d . .
e; é;z)x £) Ordering Functions by Growth Rates
g) €/2 h) log,,x 7. Order the following functions from slowest growing to fastest
2. Which of the following functions grow faster than e* as x — 00? growing as x — 0o.
Which grow at the same rate as e*? Which grow slower? a) ef b) x* ¢ (Inx) d) o2
a) 10x*+30x + 1 b) xlnx—x 8. Order the following functions from slowest growing to fastest
¢ J1+x* d) (572 growing as x — 00.
e e ) xet a) 2 b X O 2 @ ¢
g) 008X h) ex—l
Comparisons with the Power x? Big-oh and Little-oh; Order
3. Which of the following functions grow faster than x2 as x — c0? 9. True, or false? As x — oo,
Which grow at the same rate as x>? Which grow slower? a) x =o(x) b) x=o0(x+5)
a) x%+4x by x5 —x? ¢c) x=0x+5) d) x=0@2x)
X = o(e* f) x+Inx=0()
0 VX A (x+3)7? e e =o(")
e xlnx f)y 2 g) In x =o(ln 2x) h) V/x2+5=0()
g) xde* h) 8x? 10. True, or false? As x — 00,
4. Which of the following functions grow faster than x? as x — 00? 1 0 1 b) 1 + 1 0 1
Which grow at the same rate as x>? Which grow slower? a) x+3  \x * x2 T\x
a) Xz + ﬁ b) 10x2 1 1 1
c) xle~* d) loglo(xz) C) ; — ;E =0 ; d) 2+4+cosx =0(Q2)
3,2 x
©) xl | f f}i (13/10_)11)0 e) e +x=0() f) xlnx=o0(x%
g (@D ) X+ 100x g) In(n x)=O(n x) h) In (x) = o(n (x> + 1))
Comparisons with the Logarithm In x 11. Show that if positive functions f(x) and g(x) grow at the same
5. Which of the following functions grow faster than In x as x — 00? rate as x — 0o, then f = O(g) and g = O(f).
Which grow at the same rate as In x? Which grow slower? 12. When is a polynomial f(x) of smaller order than a polynomial
g P!
a) logix b) In2x g(x) as x — co? Give reasons for your answer.
¢ In.x d Jx 13. When is a polynomial f(x) of at most the order of a polynomial
e x f) Slhhx g(x) as x — 00? Give reasons for your anwer.
g 1/x h) ¢ 14. Simpson’s rule and the trapedzoidal rule. The definitions in

6. Which of the following functions grow faster than In x as x — 0c0? the present section can be made more general by lifting the re-
Which grow at the same rate as In x? Which grow slower? striction that x — oo and considering limits as x — a for any
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real number a. Show that the error Eg in the Simpson’s rule
approximation of a definite integral is O(h*) as h — 0 while the
error E7 in the trapezoidal rule approximation is O(h?). This
gives another way to explain the relative accuracies of the two
approximation methods.

Other Comparisons

15.

% 16.

17.

18

19.

20.

21.

What do the conclusions we drew in Section 3.5 about the limits
of rational functions tell us about the relative growth of polyno-

mials as x — 00?
GRAPHER
a) Investigate
1 1
lim Inx+1) and

X—>00 ln X

In (x +999)
im —————.

X—>00 ln X

Then use I’Hopital’s rule to explain what you find.
Show that the value of
In (x +a)

In x

b)

X—>00

is the same no matter what value you assign to the constant
a. What does this say about the relative rates at which the
functions f(x) =1In (x + a) and g(x) = In x grow?

Show that +/10x + 1 and +/x + 1 grow at the same rate as x —
00 by showing that they both grow at the same rate as /x as
X — 00.

Show that 4/x% + x and +/x* — x3 grow at the same rate as x —
oo by showing that they both grow at the same rate as x? as
X = 00.

Show that e* grows faster as x — 0o than x" for any positive
integer n, even x %090 (Hint: What is the nth derivative of x"?)

)

22.

ally overtake the values of In x, you have to go way out
on the x-axis before this happens. Find a value of x greater
than 1 for which x /19000 > In x. You might start by observ-
ing that when x > 1 the equation In x = x!/1:000000 j5 equivalent
to the equation In (In x) = (In x)/1,000,000.

CALCULATOR Even x'/10 takes a long time to overtake
In x. Experiment with a calculator to find the value of x at
which the graphs of x!/!° and In x cross, or, equivalently, at
which In x = 10 In (In x). Bracket the crossing point between
powers of 10 and then close in by successive halving.

GRAPHER (Continuation of part c.) The value of x at which
In x =10 In (In x) is too far out for some graphers and root
finders to identify. Try it on the equipment available to you and
see what happens.

The function In x grows slower than any polynomial. Show
that In x grows slower as x — oo than any nonconstant polyno-
mial.

Algorithms and Searches

23.

L/}
am

24.

a) Suppose you have three different algorithms for solving the
same problem and each algorithm takes a number of steps

that is of the order of one of the functions listed here:

3/2

nlog,n, n*?%,  n(log,n)’.

Which of the algorithms is the most efficient in the long
run? Give reasons for your answer.

GRAPHER Graph the functions in part (a) together to get
a sense of how rapidly each one grows.

b)

Repeat Exercise 23 for the functions

n, «/nlog,n, (log,n)>.

The function e* outgrows any polynomial. Show that e* grows [ 5. CALCULATOR Suppose you are looking for an item in an or-

faster as x — oo than any polynomial
apx" 4+ ap_1 x" N+ -+ ayx +a.

Show that In x grows slower as x — oo than x
positive integer 7, even x!/1:000.000,

1/n

a) for any

B b CALCULATOR Although the values of x!/1:900.00 eventy-

B 2.

dered list one million items long. How many steps might it take
to find that item with a sequential search? a binary search?

CALCULATOR You are looking for an item in an ordered list
450,000 items long (the length of Webster’s Third New Interna-
tional Dictionary). How many steps might it take to find the item
with a sequential search? a binary search?

Inverse Trigonometric Functions

Inverse trigonometric functions arise when we want to calculate angles from side
measurements in triangles. They also provide useful antiderivatives and appear
frequently in the solutions of differential equations. This section shows how the
functions are defined, graphed, and evaluated.



6.8 Inverse Trigonometric Functions 505

Defining the Inverses

The six basic trigonometric functions are not one-to-one (their values repeat), but
we can restrict their domains to intervals on which they are one-to-one.

Domain Restrictions That Make the Trigonometric Functions
One-to-One

Function Domain Range

sin x [—7/2, 7 /2] [—1,1]

COS X [0, 7] [—1, 1]

tan x (—m/2, ®/2) (—00, 00)

cot x (0, ) (—00, 00)

sec x [0, 7/2) U (r /2, 7] (—o0, — 1JU 1, o0)

cscx [—m/2,0)U (0, /2] (=00, —11U[1, 00)

Since these restricted functions are now one-to-one, they have inverses, which

we denote by

y =sin"'x or y = arc sinx

y=cosT'x or y=arc cosx

y=tan"'x or y=arc tanx

y = cot™! x or y = arc cotx

y = sec”! x or y = arc secx

y=csc'x or y=arc cscx

These equations are read “y equals the arc sine of x” or “y equals arc sin x” and
SO on.

Caution The —1 in the expressions for the inverse means “inverse.” It does not
mean reciprocal. For example, the reciprocal of sin x is (sinx)~! = 1/sinx = cscx.

The domains of the inverses are chosen to satisfy the following relationships.

sec™! x = cos™!(1/x) (1)
csc”x = sin7!(1/x) (2)
cot/'x =m/2 —tan"' x (3)

We can use these relationships to find values of sec™! x, csc™! x, and cot™! x on
calculators that give only cos™! x, sin™' x, and tan~! x. As in some of the examples
that follow, we can also find a few of the more common values of sec™! x, csc™! x,

and cot™! x using reference right triangles.

The Arc Sine and Arc Cosine

The arc sine of x is an angle whose sine is x. The arc cosine is an angle whose
cosine is x.
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y=sinx,—7—rsxsg

y 2
Domain: [-7/2, /2]
Range: [-1, 1]
1 ~<
N,
| I
N2 2 S

N .
X = sin
N y

N o=l
N y=sin_'x

g — Domain: [-1, 1]
Range: [-7/2, m/2]
1 Ly
-1 0 1
LY
2

(b)

6.16 The graphs of (a) y = sinx,

—n/2 < x < /2, and (b) its inverse,

y =sin~" x. The graph of sin~" x, obtained
by reflection across the line y = x, is a
portion of the curve x =sin y.

x sin!x
V372 7/3
V2/2 /4

12 7/6
-1/2 —n/6
—v2/2 —n/4
—/3/2 —n/3

y
y=cosx,0=sx<m

Domain: [0, ]
Range: [-1,1]

\
—_

\Rangei (0, m
X

//
7
/
/
T —
y= cos ! x
Domain: [-1, 1]
™
2
|
10

Definition

6.17 The graphs of (a) y = cosx,

0 <x <, and (b) its inverse, y = cos™" x.
The graph of cos™" x, obtained by
reflection across the line y = x, is a
portion of the curve x = cos y.

y = sin~! x is the number in [—7 /2, 7 /2] for which siny = x.

y = cos~!x is the number in [0, 7] for which cos y = x.

The graph of y = sin™! x (Fig. 6.16) is symmetric about the origin (it lies along
the graph of x = sin y). The arc sine is therefore an odd function:

sin”!(—=x) = —sin”' x. (4)

The graph of y = cos™! x (Fig. 6.17) has no such symmetry.

EXAMPLE 1

Common values of sin~" x

The angles come from the first and fourth quadrants because the range of

sin™' x is [-7 /2 , 7/2].

a



x cos lx
V372 7/6
V272 n/4

1/2 n/3
-1/2 21 /3
—2/2 3 /4
—/3/2 57/6

cos™! (=x)

6.18 cos ' x+cos ' (—x) =n

6.19 In this figure,

sin"'x +cos™ ' x = n/2.

Y -1
y=tan"'x
™ Domain: (—oo, o)
2 Range: (—m/2, m/2)
x
0
T
2

6.20 The graph of y =tan™"x.
y

- y= cot™lx
Domain: (—oo, o)
\ Range: (0’ 77)

6.21 The graph of y = cot™" x.

DIy

X
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EXAMPLE 2 Common values of cos™ x

The angles come from the first and second quadrants because the range of cos™! x

is [0, 7]. |

Identities Involving Arc Sine and Arc Cosine
As we can see from Fig. 6.18, the arc cosine of x satisfies the identity
cos 'x +cos7H(—x) = 7, (5)
or
cos ' (=x) = 7w —cos™ ! x. (6)
And we can see from the triangle in Fig. 6.19 that for x > 0,
sin"!x 4+ cos™'x = 7/2. (7)

Equation (7) holds for the other values of x in [—1, 1] as well, but we cannot
conclude this from the triangle in Fig. 6.19. It is, however, a consequence of Egs.
(4) and (6) (Exercise 55).

Inverses of tan x, cot x, sec x, and csc x

The arc tangent of x is an angle whose tangent is x. The arc cotangent of x is an
angle whose cotangent is x.

Definition ;
y = tan~'x is the number in (—x /2, 7 /2) for which tany = x.

1 x is the number in (0, 7) for which coty = x.

y=co

We use open intervals to avoid values where the tangent and cotangent are undefined.

The graph of y = tan~! x is symmetric about the origin because it is a branch
of the graph x = tan y that is symmetric about the origin (Fig. 6.20). Algebraically
this means that

tan"!(—x) = —tan"! x; (8)

the arc tangent is an odd function. The graph of y = cot™! x has no such symmetry
(Fig. 6.21).
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y= sec”lx

Domain: |x| = 1

_J I~ Range: [0, 7/2) U (@/2, o
m
2 f—
| é x
-1 0 1

6.22 The graph of y = sec™' x.

Y y=csclx
Domain: x| = 1
| Range: [-7/2,0) U (0, 7/2]
2
| |

T

6.23 The graph of y = csc™' x.

x tan~lx

V3 /3

1 /4
V3/3 n/6
—/3/3 —/6
-1 - /4
-3 —/3

The inverses of the restricted forms of secx and cscx are chosen to be the
functions graphed in Figs. 6.22 and 6.23.

Caution  There is no general agreement about how to define sec™! x for negative

values of x. We chose angles in the second quadrant between 7 /2 and m. This
choice makes sec™! x = cos™!(1/x). It also makes sec™! x an increasing function
on each interval of its domain. Some tables choose sec™! x to lie in [—7, — 7/2)
for x < 0 and some texts choose it to lie in [z, 37/2) (Fig. 6.24). These choices
simplify the formula for the derivative (our formula needs absolute value signs) but
fail to satisfy the computational equation sec™' x = cos™!(1/x).

y
3w
2
B
| Domain: [x| =1
Range: OSySW,y¢lT
A 2
u
. /2
y = sec™lx +——ry
| { x
R I N
2
C
7 _W—
37
2

6.24 There are several logical choices for the left-hand branch of y = sec™! x. With
choice A, Eq. (1) holds, but the formula for the derivative of the arc secant is
complicated by absolute value bars. Choices B and C lead to a simpler derivative
formula, but Eq. (1) no longer holds. Most calculators use Eq. (1), so we chose A.

EXAMPLE 3 Common values of tan~" x

The angles come from the first and fourth quadrants because the range of tan™! x
is [-m/2, m/2].



V5

6.25 If  =sin~'(2/3), then the values

of the other basic trigonometric functions
of a can be read from this triangle
(Example 4).

The "arc” in arc sine and arc cosine

In case you are wondering about the “arc,”
look at the accompanying figure. It gives a
geometric interpretation of y = sin™! x and

y = cos™! x for angles in the first quadrant.
For a unit circle, the equation s = ré
becomes s = 6, so central angles and the
arcs they subtend have the same measure. If
x = siny, then, in addition to being the angle
whose sine is x, y is also the length of arc
on the unit circle that subtends an angle
whose sine is x. So we call y “the arc whose
sine is x.” When angles were measured by
intercepted arc lengths, as they once were,
this was a natural way to speak. Today it can
sound a bit strange, but the language has
stayed with us. The arc cosine has a similar
interpretation.

Arc whose sine is x
P+yr=1

Arc whose
Angle whose cosine is x
sine is x g,/
4 X
0 X 1

Angle whose
cosine is x

6.8 Inverse Trigonometric Functions 509

EXAMPLE 4 Find cosa, tana, sec«a, csca, and cotoa if
2
=sin™! =. 12
o = sin 3 (12)

Solution Equation (12) says that sinoe = 2/3. We picture « as an angle in a
right triangle with opposite side 2 and hypotenuse 3 (Fig. 6.25). The length of the
remaining side is

V3?2 =22 =v/9—4=1/5.

We add this information to the figure and then read the values we want from the
completed triangle:

Pythagorean theorem

cotax = —

3
t = = 7 ) .
an o seco 2 ) D

V5 V5

5
cosa = —, csco =

2
EXAMPLE 5 Find cot ( sec™! (——) + csc“l(—Z)).
( V3

Solution We work from inside out, using reference triangles to exhibit ratios and
angles.

Step 1. Negative values of the secant come from second-quadrant angles:

w(-5)==(Zp) =) F ]

2 S
_T 1 N 6
6 6 .
3 ()|

Step 2: Negative values of the cosecant come from fourth-quadrant angles:

2
csc!(=2) = csc™! (jl—) [ cse (_76_7) )
T \3
=—-=- 0 LT *
6 : |
2
Step 3:
cot( ‘1< 2 ) + csc7I( 2)) A
sec! | ——= —
27y _ 1
ﬁ cot (—g—) = \/3
" St =& )
=cot| — — —
6 6 V3 2

Il
o
Q
S
N
[\®}
w|§
N—"
|
wiy
=i V)
L
=
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EXAMPLE 6  Find sec (tan-l g)

lan0=§

Solution We let 6 = tan~!(x/3) (to give the angle a name) and picture 6 in a
right triangle with

tan & = opposite/adjacent = x /3.
The length of the triangle’s hypotenuse is
Va2 432 = /x2 49,

Thus,
X
sec (tan g) = secH

x2+9 hypotenuse
= —. secl) = ————

3 adjacent [}

Chicago

EXAMPLE 7  Drift correction

During an airplane flight from Chicago to St. Louis the navigator determines that the
plane is 12 mi off course, as shown in Fig. 6.26. Find the angle a for a course parallel
to the original, correct course, the angle b, and the correction angle ¢ = a + b.

Springfield

St. Louis Solution "
a = sin”! — ~ 0.067 radian =~ 3.8°
180
. 12 N L o
6.26 Diagram for drift correction b = sin 6 0.195 radian ~ 11.2
(Example 7), with distances rounded to
the nearest mile (drawing not to scale). c=a+b~15. a

Exercises 6.8

Common Values of Inverse
Trignonometric Functions
Use reference triangles like those in Examples 1-3 to find the angles 2. a) tan"'(=1) b) tan~'/3 ¢) tan”! (

in Exercises 1-12.
1 — _
1. a) tan'l b) tan!(—/3) ¢) tan”! (*-) 3. a) sin™! (—1) ) sin”! (%) ¢) sin™! (

V3 2

SlL
S——"

=

N ‘
w
SNS—
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ﬁ) 26. sec (cot™! /3 + csc™!(=1))
2

27w s (-2)

(The answer is not — /6.)

5.a) cos”! (%) b) cos~! <;_;) ¢) cos”! ?) 28. cot™! (cot (—%)) (The answer is not —m /4.)
6oa cos () b cos (L) @ cos -3 Finding Trigonometric Expressions
o8 2 © 2 2 Evaluate the expressions in Exercises 29-40.
a X -1
7.83) sec'(—v3) b) sec! (%) 0 sec'(—2) 29. sec (tan 2) 30. sec (tan~! 2x)
) 31. tan (sec™! 3y) 32. tan (sec‘l X)
8. a) sec!2 b) sec™! (———) c) sec!2 5
V3 33. cos(sin"!x) 34. tan (cos'x)
-2
9.a) csc'V2 b) csc! (%) ¢) csc'2 35. sin(tan™' VX2 — 2x), x>2
10 (=3 af 2 “1(_o 36. sin (tan“ ——x-———>
. a) cscT(—+/2) b) csc ﬁ c) csc(=2) /%2 + 1
-1 .2y 1Y
11. a) cot™'(=1) b) cot'4/3 ¢ cot™! <%) 37. cos (sm ! ?) 38. cos (sm ! §)
1 . X . x2 44
-1 -1(— - 9. 12 40. -
12. a) cot™'l b) cot™'(—v/3) ¢ cot («/3) 39. sin (sec 4) sin  sec . )

Limits

Trigonometric Function Values Find the limits in Exercises 41-48. (If in doubt, look at the function’s

13.

14.

15.

16.

Given that o = sin“(5/13), find cos, tan«, seca, csca, and
cota.

Given that o =tan~!(4/3), find sina, cosa, seca, csca, and
cota.

Given that o = sec™! (—+/5), find sine, cose, tanc, csca, and
cota.

Given that o = sec™!(—+/13/2), find sine, cosa, tana, csca,
and cota.

Evaluating Trigonometric and Inverse
Trigonometric Terms

Find the values in Exercises 17-28.

17.

19.

21.
22.

23.

24,

25.

2 1
sin cos™! %—) 18. sec (cos"1 5)

tan (sin‘1 (—%)) 20. cot sin~! —?))

csc (sec™! 2) + cos (tan~! (—+/3))
tan (sec™! 1) + sin (csc™'(=2))

o (e ()
() =)

sec (tan™' 1 +csc™!' 1)

graph.)

41. lim sin™'x
x—>1"

43. lim tan"'x
X—>00

45, lim sec™!x
xX—>00

47. lim csc™!x
X—>00

Applications and Theory

49. You are sitting in a classroom next to the wall looking at the
blackboard at the front of the room. The blackboard is 12 ft long
and starts 3 ft from the wall you are sitting next to. Show that
your viewing angle is

42.

4.

46.

48.

lim cos™'x
x—>—1%

lim tan~!x
X—> =00

lim sec™!x
X—>—00

lim csc™'x
X—>—00

-1 X -1 %
a =cot™!' — —cot 3

Blackboard

15

if you are x ft from the front wall.




512 Chapter 6: Transcendental Functions

50. The region between the curve y = sec™! x and the x-axis from
x =1 to x =2 (shown here) is revolved about the y-axis to
generate a solid. Find the volume of the solid.

y
T
3“ y= sec™!

0 1

X

51. The slant height of the cone shown here is 3 m. How large should
the indicated angle be to maximize the cone’s volume?

What angle here
gives the largest
volume?

52. Find the angle .

21

50 B

53. Here is an informal proof that tan™! 1+ tan™!2 + tan™!3 = x.
Explain what is going on.

/

54. Two derivations of the identity sec”'(—x) = m — sec™' x.
a) (Geometric) Here is a pictorial proof that sec™!(—x) = 7 —

sec™! x. See if you can tell what is going on.

1

b)

(Algebraic) Derive the identity sec™!(—x) = 7 — sec™
combining the following two equations from the text:

x by

1

cos™!(=x) =7 —cos™' x Eq. (6)

- Eq. (1)

sec™! x = cos~!(1/x)

55. Theidentitysin™' x + cos~' x = /2. Figure 6.19 establishes the
identity for 0 < x < 1. To establish it for the rest of [—1, 1], ver-
ify by direct calculation that it holds for x = 1, 0, and —1. Then,
for values of x in (—1, 0), let x = —a, a > 0, and apply Eqgs. (4)
and (6) to the sum sin~'(—a) + cos™!(—a).

56. Show that the sum tan~! x 4 tan™'(1/x) is constant.

Which of the expressions in Exercises 57-60 are defined, and which
are not? Give reasons for your answers.

57. a) tan~!2 b) cos™'2
1
58. a) csc”! 5 b) csc7!2
59. a) sec”'0 b) sin”'4/2
1
60. a) cot™! (—-5) b) cosI(=5)
B Calculator Explorations

61. Find the values of

a) sec”!'1.5 b) csc”!(—1.5) c) cot™l2
62. Find the values of

a) sec”!(=3) b) csc7'1.7 c) cot7l(=2)

/]

us Grapher Explorations

In Exercises 63-65, find the domain and range of each composite
function. Then graph the composites on separate screens. Do the
graphs make sense in each case? Give reasons for your answers.
Comment on any differences you see.

63. a) y=tan"!(tanx) b) y =tan(tan"!x)
64. a) y=sin"!(sinx) b) y =sin(sin"'x)
65. a) y = cos~!(cosx) b) y =cos(cos™x)
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66. Graph y = sec (sec™!x) = sec (cos™!(1/x)). Explain what you  68. Graph the rational function y = (2 — x?)/x2. Then graph y =
see. cos (2sec™! x) in the same graphing window. What do you see?

67. Newton’s serpentine. Graph Newton’s serpentine, y = 4x /(x? + Explain.

1). Then graph y = 2sin(2tan"! x) in the same graphing win-
dow. What do you see? Explain.

Derivatives of Inverse Trigonometric Functions;
Integrals
Inverse trigonometric functions provide antiderivatives for a variety of functions

that arise in mathematics, engineering, and physics. In this section we find the
derivatives of the inverse trigonometric functions (Table 6.5) and discuss related

integrals.
EXAMPLE 1
a) d sin™! (x?) ! d (x%) >
—_— = — e« — (X = ——
dx /1 — (x2)2 dx /T — x*
d 1 d
b) —tan ' Vrxtl=—on— . —(Wx+1)
dx 14+ Wx +1)? dx(
_ 1 1 _ 1
T x+2 2Wr+1 2Jx+ 1(x+2
Table 6.5 Derivatives of the inverse 4 : 4 ( )
trigonometric functions ) —sec™!(=3x) = . —(=3x)
x | —3x]/(=3x)2—1 dx
; d(sin'u)  du/dx < 1 _ -3 _ -1
T dx VI—u? Bx[v9x2—1 |x|Vox2—1 a
5 d(cos™ ' u) _ dujdx Wl <1
dx vi-u? EXAMPLE 2 ”
d(tan'u)  du/dx 1 tan'x /4 u=tan"'x, du= T
3. = e +x
dx 1+u? / —dx =[ e“du u©0) =0, u(l)=mn/4
-1 0 1+ x2 0
4 d(cot™" u) _ du/dx
T a1+ e
d s ) d 1:1 =eu] =eil
s, sec™ u _ u/dx > 1 0 4
dx |ulv/u? -1 . . .
B We derive Formulas 1 and 5 from Table 6.5. The derivation of Formula 3 is similar.
6. d(csc™' u) _ —du/dx > 1 Formulas 2, 4, and 6 can be derived from Formulas 1, 3, and 5 by differentiating
dx ulv/u? —1 appropriate identities (Exercises 81-83).

The Derivative of y sin-'u

We know that the function x = sin y is differentiable in the interval —7 /2 <y <
7 /2 and that its derivative, the cosine, is positive there. Theorem 1 in Section 6.1
therefore assures us that the inverse function y = sin™! x is differentiable throughout
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T
]
x =siny"
N — oin-!
T y=sin""x
2 Domain: -l1=x=<1
Range: — /2 <y<7/2
l | x
-1 1
_m
2
\

6.27 The graph of y =sin™" x has vertical
tangents at x = —1and x = 1.

1—x2

6.28 In the reference right triangle
above,

—1x

siny =

1—x2
cosy = X =+/1-x2

6.29 In both quadrants, sec y = x. In the
first quadrant,

tany = Vx2 —1/1=+/x2 - 1.

In the second quadrant,

tany = vVx2 —1/(-1) = —y/x2 - 1.

siny = x

d(' ) =1
—(siny) =
dx Y

cosyj—yzl

x
dy 1
dx  cosy

—

to y = sin™! u to obtain

V1 —x2

The derivative of y = sin~' x with respect to x is

d . _, 1
E(sm .X') = ——1\/——_——;-2-
dy dydu
dx  du dx
—(sin™'u) = _L _du
d 1 —u? dx’

The Derivative of y= sec 'u

We find the derivative of y = sec™! x, |x| > 1, in a similar way.

secy = x

d
E(sec y) =1

the interval —1 < x < 1. We cannot expect it to be differentiable at x = lorx = —1
because the tangents to the graph are vertical at these points (see Fig. 6.27).
We find the derivative of y = sin™! x as follows:

y=sinT'x & sinyv=x

Derivative of both sides with

respect to x

Chain Rule

We can divide because cosy > 0
for —m/2 <y<m/2.

Fig. 6.28

If u is a differentiable function of x with |u| < 1, we apply the Chain Rule

v=secT'x & secy=ux

Derivative of both sides
with respect to x

dy
secytany — =1 Chain Rule
dx
dy 1 Since |x| > 1, y lies in
— = (0,7/2)U (/2 , ) and
dx secy tany sec ytany # 0.
=+ 1 Fig. 6.29
xa/x?2 =1
y
x -x(x<0)
Vx2-1 Vx2 -1
Y Y
x




Y =1
y =sec”lx
L
/ ‘I_T
Y
| x
-1 0 1

6.30 The slope of the curve y =sec™'x is
positive for both x < —1 and x > 1.
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What do we do about the sign? A glance at Fig. 6.30 shows that for |x| > 1 the
slope of the graph of y = sec™! x is always positive. Therefore,

1

d —21 ifx>1
—1 XA/ X —

_ = 1
dx(sec x) ) (1)
—_— if x < —1.

x/x2 =1

With absolute values, we can write Eq. (1) as a single formula:

d 1
—(sec™ ' x) =

dx Ix|V/xZT =1

If u is a differentiable function of x with |u| > 1, we can then apply the Chain
Rule to obtain

|x| > 1.

d (sec" u) 1 du
—_— U) = — —,
dx lu|lv/u? — 1 dx

lul > 1.

Integration Formulas

The derivative formulas in Table 6.5 yield three useful integration formulas in
Table 6.6.

Table 6.6 Integrals evaluated with inverse trigonometric functions

The following formulas hold for any constant a # 0.

d

1. / — "_ — = sin”! (Z) e (Valid for u? < a?) )
du 1, u .

2. /m = ; tan (;) +C (Valld for all u) (3)

—1|u . 2 2
—sec” |[—-|+C (Valid for u* > a*) 4)
a

The derivative formulas in Table 6.5 have a = 1, but in most integrations a # 1, and
the formulas in Table 6.6 are more useful. They are readily verified by differentiating
the functions on the right-hand sides.

EXAMPLE 3
V3/2 V32
a) — = sin‘l(x)]
Va2 A1 —x? V22
S.n_l '\/§ sin_l \/5 b T T
= S1 ] - —_— = - = —
2 2 3412
b) /1 D) l—tan"(l) tan~'(0) =~ —0="2
o 1452 e =377 7%
0 /ﬁ dx sec=( )]ﬁ T 7w T
—_— = SE X = —_— - — = —
2/«/:; x\/xz_ 1 2/J§ 4 6 12 D
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For more about completing the square, see
the end papers of this book.

EXAMPLE 4

Eq. (2) witha =3,

u=x

dx
? /J_—_ fm‘

b) L_l a=+/3, u=2x,
J3 —4x2 2 /a2 — 2 and du/2 = dx
= ! sin™! (Z) +C Eq. (2)
a

2
1
2

2x
= —sin™! (—) +C
V3

dx
Evaluate / —
Vax — x?

Solution The expression +/4x — x? does not match any of the formulas in Table
6.6, so we first rewrite 4x — x? by completing the square:

EXAMPLE 5

dx —x’=—(x*—4x) = —(x* —dx+4) +4=4—(x -2~
Then we substitute a = 2, u = x — 2, and du = dx to get
/‘ dx _f dx
Vix—x2 ] Ja—(x-22
_ u a=2, u=x—2, and
- m du = dx
—sin~! (¥ Eq. 2)
sin (a) +C
_sin (222 4 c
- 2 Q
EXAMPLE 6
x .
=——tan"' | — ) +C Eq. 3) witha = /10, u =x
2) /10+x2 V10 («/ﬁ)
) / — / a =7, u=+3x, and du/\/g:dx
7+ 3x? f a’ 4 u?
= —t -1 C Eq. (3)
ﬁ a an ( )+
1
=—". —tan V3x +C
NCERVS] N
1 3
= ——tan™! v3x +C
V21 N4 a
dx
EXAMPLE 7 Evaluate / —_—
4x?2 +4x +2
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Solution We complete the square on the binomial 4x? + 4x:
2 2 2 1 4
4x +4x +2=4(x"+x)+2=4 x+x+z +2_Z

1 2
=4(x+§) +1=0Cx+1)*+1.

Then we substitute a = 1, u = 2x + 1, and du/2 = dx to get

f dx _ dx _ 1/ du a:;, I and
4x2 +4x+2 ) Cx+1)2+1 2] u?+a? Zru_/zitrx’an
1 1 L U
=~ . S (X Eq. (3)
5 aan (a)
1 ~1 a=1,
:Etan Cx+1)+C u=2x+1
|
EXAMPLE 8  Evaluat f dx
valuate | ————.
xa/4x%2 -5
Solution
du

u=2ux,x=u/2,
dx =du/2,

dx D
fo4x2—5_]Z,/u2_a2 11:\/—5-
2

d
= / ”'7“‘“«/% The 2’s cancel.
= 1sec“1 'Ei—i—C Eq. (4)
a a
1 -1 <2|x[>
= ——sec — 14+ C a=+5 u=2x
V5 NE]
a
EXAMPLE9  Evaluat / _dx
valuate .
Jex —6
Solution .
u=e”*,
dx _ du/u du = e*dx,
[e2x — 6 - m dx =}u/e‘ =du/u,
a=+6
_ / du
) wiri—a?
= 1sec"1 |E| +C Eq. (4)
a a

—Lsec"l(ex>+c
7\ .
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Exercises 6.9

Finding Derivatives 40. / dx
In Exercises 1-22, find the derivative of y with respect to the appro- (c+3)V/(x+3)?-25
priate variable. a1 /”/2 2cosf df 0 /‘”/4 csc x dx

1. y =cos™'(x?) 2. y =cos~!(1/x) a2 1+ (sin6)? 56 1+ (cotx)?
3. y=sin"' V2t 4. y =sin"'(1 1) 43 f‘"ﬁ e dx . / 4dt
5. y=sec”!2s+1) 6. y =sec!5s b 1+ e St +1% )
7. y=csc'(x2+1), x>0 45 ydy 46 sec? ydy
Sy—csc“ic- v1-y V1 —tan?y
f 3 Evaluate the integrals in Exercises 47-56.
P ol 2
9. y =sec . 0<r<l1 10. y =sin 2 47./ dx 48./ dx
N=x2+4x -3 V2x — x?
11. y =cot™! /¢ 12. y=cot™' /1 -1 o 6 dt | 64t
— -1 — tan—l 49, f _— 50. —_—
13. y =In (tan™" x) 14. y =tan"'(In x) B -n 2 3 + 4 — 42
— =1t — —l¢,—t
15. y =csc™'(€") 16. y =cos™'(e7") 51 / dy 5. / dy
17. y = s4/1 —s2+cos7's y:—2y+5 y2+6y+10
18. y=+/s2—1—sec’!s 53 /'2 8dx 54 /4 2dx
19. y=tan'v/x2— 1 +csc 'y, x>1 "o -2x 42 " a2 —6x+10
1 dx dx
20. y=cot™! = —tan™! 55. /— 56. /
y=cot™ — —tan" x G+ DV + 2x (x—2)VxZT—4x+3
P Ve —1
2L y=xsin” x + 1 -2 Evaluate the integrals in Exercises 57-64.
22. y=In(x*+4) — xtan™! (%) 5 e X x 58 e *dx
Evaluating | | e A
valuating Integrals
Eval i\ g g s 5 (sin™' x)%dx 60 f Vtan=! x dx
valuate t de integrals in Exercnsesd 3-46. . . == . .
23 [ 2 24, / Y s / X dy dy
NCE e JT=ax2 17+ 22 61. /——_T—~—2 62. /————
dx dx dx (tan™" y)(1 +y°) (sin”"! MV1—y?
26. | —— 27. | ——— 28, | ——— - -
5530 [o= == @ [ " sec (see 1) dx o4 | | costee Dy
" U ads % /3¢§/4 ds V2 xa/x?2 =1 23 xA/x?—1
"o VA=S? ' V9 =452 -
° ’ ° : Limits
2 oar 2 odt
31. / —_— 32. / Find the limits in Exercises 65-68.
o 8+212 24432 .
. sin”' 5x . x2—1
-V2/2 d -V2/3 d 65. lim 66. lim —
33, / Yy 34, / y x—0 X x—=1* Ssec™' x
-1 YAy -1 -3 Y9y -1 , 2 . 2tan”' 3x?
67. lim xtan~' = 68. lim ————
35 3dr 36 / 6dr xX—00 X x—0 Tx?
) 1—4(r — 1)2 A=+
. / dx 38 / dx Integration Formulas
24—y S 1+ Gx+1)? Verify the integration formulas in Exercises 69-72.
dx tan™' x 1 tan~! x
39. / . = —Z-In 2y
2x—)Jx - 12 -4 69 / s dx=1Inx 2n(+)c) P +C



70.

71.

72.

x*dx

V1 —=25x%2
/(sin‘l x)2dx = x(sin”' %) = 2x +2v/1 —x2sin"'x + C

4 5
/x3 cos”! 5xdx = % cos™!5x + 2

/ln (@ + x%)dx = xIn (@* + x*) — 2x + 2atan™! fc——l—C
a

Initial Value Problems

Solve the initial value problems in Exercises 73-76.

73.

74.

75.

76.

Z—z:m—l, y(0) =1
%:ﬁ, x>1; yQ=nm

Theory and Examples

77.

78.

79.

80.

(Continuation of Exercise 49, Section 6.8.) You want to position
your chair along the wall to maximize your viewing angle o.
How far from the front of the room should you sit?

What value of x maximizes the angle 6 shown here? How large
is @ at that point? Begin by showing that § = 7 — cot™! x —
cot™' (2 — x).

U
0 X 2

X

Can the integrations in (a) and (b) both be correct? Explain.
dx
a) /7=sin"x+c
V1 —x2
b) / dx / dx lx4cC
——=— ————— = —c0s ' x
A1 —x? V1 —x?

Can the integrations in (a) and (b) both be correct? Explain.

a) / d f dx s'x+C
—  =— | ———— =—cos"'x
1 —x2 A1 —x?

b) / dx =/ —du X =—u,

View ) oo b=
__/ —du
B V1 —u?
=coslu+C
=cos I(=x)+C u=—x

81.

82.

83.

84.

85.

86.

87.

88.

89.
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Use the identity

-1

Cos !

s .-
U= ——sin" u
2

to derive the formula for the derivative of cos™! « in Table 6.5

from the formula for the derivative of sin™' u.

Use the identity

-1, _ T -1
cot' 'y =——tan u
2

to derive the formula for the derivative of cot™' u in Table 6.5
from the formula for the derivative of tan™' u.

Use the identity

-1

CSC !

s -
U= ——sec  u
2

to derive the formula for the derivative of csc™! u in Table 6.5
from the formula for the derivative of sec™! u.
Derive the formula

dy 1

dx  1+x2

for the derivative of y = tan~! x by differentiating both sides of
the equivalent equation tany = x.
Use the Derivative Rule in Section 6.1, Theorem 1, to derive
—sin"'x = !
dx VT=x%
Use the Derivative Rule in Section 6.1, Theorem 1, to derive
—tan”'x = —1—
dx 1+ x2
What is special about the functions

—1
F) =sin”' 2= x>0, and g(x)=2tan"' vx?
X

+1 -
Explain.
What is special about the functions
1 1
(x) = sin”! and g(x) =tan™' =7
f o g T
Explain.

Find the volume of the solid of revolution shown here.
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90. Find the length of the curve y = +/1-x2, —1/2 <x < 1/2. Calculator and Grapher Explorations
& 93. CALCULATOR Use numerical integration to estimate the
Volumes by Slicing value of o
Find the volumes of the solids in Exercises 91 and 92. sin~1 0.6 = / d_x
s . . 0o ~1—x2
91. The solid lies between planes perpendicular to the x-axis at x =
—1 and x = 1. The cross sections perpendicular to the x-axis are For reference, sin™! 0.6 = 0.64350 to 5 places.
a) circles whose diameters stretch from the curve & 9a. CALCULATOR Use numerical integration to estimate the
y = —=1/4/1+4+x2 to the curve y = 1/4/1 + x2%; value of
b) vertical squares whose base edges run from the curve |
y = —=1/4/1+x2 to the curve y = 1/4/1 + x2. ”=4/o 1+x2dx.
92. The solid lies between planes perpendicular to the x-axis at 4% 95. GRAPHER Graph f(x)=sin"'x together with its first two
x = —+/2/2 and x = /2/2. The cross sections are derivatives. Comment on the behavior of f and the shape of
a) circles whose diameters stretch from the x-axis to the curve its graph in relation to the signs and values of f’ and f”.
4
y=2/v1-x2 W% 96. GRAPHER Graph f(x) =tan"!x together with its first two
b) squares whose diagonals stretch from the x-axis to the curve derivatives. Comment on the behavior of f and the shape of
4
y=2/v1-x% its graph in relation to the signs and values of f’ and f”.

Hyperbolic Functions

Every function f that is defined on an interval centered at the origin can be written
in a unique way as the sum of one even function and one odd function. The
decomposition is

fO+f(=0) | f@ = (=)
2 + 2 '

even part odd part

fx) =

If we write e* this way, we get

X —X

ef+e* e —e
e = +
2 2

— S———

even part odd part
The even and odd parts of e*, called the hyperbolic cosine and hyperbolic sine of
The notation cosh x is often read “kosh x,” x, respectively, are useful in their own right. They describe the motions of waves
rhyming with either “gosh x” or “gauche x,” in elastic solids, the shapes of hanging electric power lines, and the temperature

a{{d Sif‘h x is PfonounCCd as if spelled “cinch  gistributions in metal cooling fins. The center line of the Gateway Arch to the West
x” or “shine x. in St. Louis is a weighted hyperbolic cosine curve.

Definitions and Identities

The hyperbolic cosine and hyperbolic sine functions are defined by the first two
equations in Table 6.7. The table also lists the definitions of the hyperbolic tangent,
cotangent, secant, and cosecant. As we will see, the hyperbolic functions bear a
number of similarities to the trigonometric functions after which they are named.
(See Exercise 86 as well.)
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Table 6.8 Identities for hyperbolic

Table 6.7 The six basic hyperbolic functions (See Fig. 6.31 for graphs.) functions
. . e +e” : :
Hyperbolic cosine of x: cosh x = > sinh 2x =2 sinh x cosh x
. cosh 2x = cosh? x + sinh? x
Hyperbolic sine of x: sinh x = 2 cosh 2x +1
2 cosh” x = —
. sinh x e —e™”*
Hyperbolic tangent: tanh x = = .2 cosh 2x — 1
cosh x e*+e* sinh”x = —
h X —-X
Hyperbolic cotangent: coth x = C?S r_¢ e cosh? x — sinh® x = 1
sinh x e&* —e™”* ) 2
1 2 tanh“x = 1 — sech” x
Hyperboli t: h x = = 2. _ 2
yperbolic secan secn x cosh x Lo cothx =1+ csch” x
Hyperbolic co t sch ! 2
olic cosecant: csch x = =
P sinh x e*—e™*
Table 6.9 Derivatives of hyperbolic Identities

functions

d

—(sinh u) = cosh u d

dx x

d

—(cosh u) = sinh u e

dx x

d d

E(tanh u) = sech’u d_)uc

d d

—(coth u) = —csch®u @

dx dx

d d

—(sech u) = —sech u tanh u dad
dx

dx

d d
zi;(csch u) = —csch u coth u %

Table 6.10 integral formulas for
hyperbolic functions

/ sinh udu = coshu +C

cosh udu = sinh u + C
sech’udu = tanh u + C
csch’udu = —coth u + C
sechutanhudu = —sech u + C

cschucothudu = —csch u + C

— — Y Y —

Hyperbolic functions satisfy the identities in Table 6.8. Except for differences in
sign, these are identities we already know for trigonometric functions.

Derivatives and Integrals

The six hyperbolic functions, being rational combinations of the differentiable func-
tions e* and e™*, have derivatives at every point at which they are defined (Table
6.9). Again, there are similarities with trigonometric functions. The derivative for-
mulas in Table 6.9 lead to the integral formulas in Table 6.10.

EXAMPLE 1

—% (tanh 1+ tz) = sech?y/1 412 . % (\/1 + t2)

t
= ——— sech?’y/1 + 12
V1412 a
EXAMPLE 2
h5 1 d u = sinh5x,
/ cothSx dx = / C?s Tax=- | & du = Scosh5xdx
sinh 5x 5 u
= l1n|u| +C= l 1n|sinh5x| +C
5 5 a
EXAMPLE 3
! "cosh 2x — 1
f sinh®xdx = / COMEX = L ix Table 6.8
0 0 2
1 [ 1 [sinh 2 !
= 5/0 (cosh 2x — dx = 2 [sz al ——x]o
sinh2 1
= — — =~ 0.40672
4 2 a
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- - - EXAMPLE 4
Evaluating hyperbolic functions n2 M2 x e In2
Like many standard functions, hyperbolic / 4¢* sinh xdx = / 46" ——i_d X = / (2e*” —2)dx
functions and their inverses are easily 0 0 0
evaluated with calculators, which have special = [¢¥ — 2x]g’ 2=(*"2-21In2)—(1-0)
keys or keystroke sequences for that purpose.
=4-2n2-1

~ 1.6137

The Inverse Hyperbolic Functions

We use the inverses of the six basic hyperbolic functions in integration. Since
d(sinh x)/dx = cosh x > 0, the hyperbolic sine is an increasing function of x. We

denote its inverse by

y = sinh ™! x.

For every value of x in the interval —oo < x < 0o, the value of y = sinh™' x is
the number whose hyperbolic sine is x. The graphs of y = sinh x and y = sinh™" x

are shown in Fig. 6.32(a).

y y
_e

3 y=3 y = cothx

2 r

y=1
X x | | | |
-2 -1 0 1 2
y=-1
= coth x
y ol
(b) The hyperbolic cosine and its (c) The graphs of y = tanh x and
(2) The hyperbolic sine and its component exponentials. y = coth x = 1/tanh x.

component exponentials.

'x% f
\ 2 /y=coshx

‘\\ S y=1

6.31 The graphs of the six hyperbolic (d) The graphs of y = cosh x and (e) The graphs of y = sinh x and
functions. y = sech x = 1/cosh x. y = cschx = 1/sinh x.
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y y y
y=cosh x,
y = sinh x y=x x=0 y =sech™!x
(x =sechy,y=0) y=x
B 3
2 y = sinh ™! x
1H (x = sinh y) 1 1
I I I I I I | x y =cosh™" x
—6-5-4-3-2 - 23456 (x = cosh y, y = 0) y =sechx,x=0
B I T O N X I x
— 0 1 2 3 4 5 6 7 0 1 2 3
B (b) ©
The function y = cosh x is not one-to-one, as we can see from the graph in
Fig. 6.31. But the restricted function y = cosh x, x > 0, is one-to-one and therefore

(@

6.32 The graphs of the inverse hyperbolic
sine, cosine, and secant of x. Notice the
symmetries about the line y = x.

6.33 The graphs of the inverse hyperbolic
tangent, cotangent, and cosecant of x.

x =|tanhy
y =[tanh~1x

has an inverse, denoted by
y = cosh™'x.

For every value of x > 1, y = cosh™'x is the number in the interval 0 < y < 00
whose hyperbolic cosine is x. The graphs of y = coshx, x > 0, and y = cosh™" x
are shown in Fig. 6.32(b).

Like y = cosh x, the function y = sech x = 1/cosh x fails to be one-to-one,
but its restriction to nonnegative values of x does have an inverse, denoted by

y = sech™'x.

For every value of x in the interval (0, 1], y = sech™'x is the nonnegative number
whose hyperbolic secant is x. The graphs of y =sech x, x > 0, and y = sech™'x
are shown in Fig. 6.32(c).

The hyperbolic tangent, cotangent, and cosecant are one-to-one on their do-
mains and therefore have inverses, denoted by

y=tanh™'x, y=coth™'x, y=-csch'x.
These functions are graphed in Fig. 6.33.
y y
x = cothy x = cschy
y = coth™lx y = csch™lx

(a)

(b) ©
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Table 6.11 Identities for inverse Useful Identities

hyperbolic functions We use the identities in Table 6.11 to calculate the values of sech~!x, csch~!x, and

coth™'x on calculators that give only cosh~'x, sinh~!x, and tanh™!x.

sech™'x = cosh™!
Derivatives and Integrals

The chief use of inverse hyperbolic functions lies in integrations that reverse the
derivative formulas in Table 6.12.

The restrictions |u| < 1 and |u| > 1 on the derivative formulas for tanh~!u and
coth~!u come from the natural restrictions on the values of these functions. (See
Figs. 6.33a and b.) The distinction between |u| < 1 and |#| > 1 becomes important
when we convert the derivative formulas into integral formulas. If |u| < 1, the
integral of 1/(1 — u?) is tanh™'u + C. If |u| > 1, the integral is coth™! u + C.

csch™'x = sinh™!

coth™'x = tanh™!

X|—= R = 5=

Table 6.12 Derivatives of inverse

hyperbolic functions o . .
EXAMPLE 5 Show that if « is a differentiable function of x whose values are

greater than 1, then
d(sinh™'u) _ 1 du d - 1 du
dx V1T +uZdx a—;(cos u) = _—«/uT———lE
d(cosh™'u) 1 du
dx  Ju—iax 7 Solution First we find the derivative of y = cosh™'x for x > 1:
d(tanh™'u) 1 du Wl <1 y = cosh™!x
dx S l-wdy = h Equivalent equation
d(coth™'u) 1 du X =cosly
= s—, lul>1 , dy A o
dx 1 —u?dx 1 =sinh y —= Differentiation with respect to x
d(sech™'u) —du/dx 0 | d 1 * ]
= N <u<
dx u1 —u? —X = — = = Since x > 1,y > 0 and sinhy > 0
d(csch™'u) —du/dx £0 dx sinh y veosh®y — 1
= , u
dx lu|/1 + u? 1
= — coshy =x
x2—1
Ihrtd( h~!x) ! The Chain Rule gives the final result
n short, — (cosh™ x) = ————. The Chain Rule gives the final result:
dx Vx?—1 g
d 1 du
—(cosh™!u) = ———.
dx( ) Ju? —1dx a

With appropriate substitutions, the derivative formulas in Table 6.12 lead to
the integration formulas in Table 6.13.

U 2dx
EXAMPLE 6 Evaluate / —_—
0 /34 4x?
Solution The indefinite integral is
2dx du 2x, du=2d V3
= U = 2LX, u = X, a = 3
Brae ) JEre
= Sil'lh_1 (Z) +C Formula from Table 6.13
a

2
sinh™! (7);) + C.
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Table 6.13 Integrals leading to inverse hyperbolic functions

ol
\
Q
)
| I
<
<
©

F >N

1 du
) Va2 +u?
du
2.
ur—a

/du R
" we—e  a

/du _1
C ) ware a

1
— tanh™! (E)-}-C if u?*<a®
a a
= coth™! (Z)+C if u?>a®
a
——sech‘1(5)+C, O<u<a
a

Therefore,

[

2dx
V3 +4x2

1
= sinh™! (—%)] = sinh™! (%) — sinh™'(0)
0

= sinh™! (

) — 0= 0.98665.

Siv

Exercises 6.10

Hyperbolic Function Values and Identities

Each of Exercises 1-4 gives a value of sinh x or cosh x. Use the
definitions and the identity cosh? x —sinh?x =1 to find the values
of the remaining five hyperbolic functions.

. 3 . 4
1. sinh x = —— 2. sinh x = =
4 3
13
3. coshx=—, x>0 4. coshx=—, x>0
15 5

Rewrite the expressions in Exercises 5-10 in terms of exponentials
and simplify the results as much as you can.

5. 2 cosh (In x) 6. sinh (2 In x)

7. cosh 5x + sinh 5x 8. cosh 3x — sinh 3x
9. (sinh x + cosh x)*

10. In (cosh x+ sinh x) + In (cosh x —sinh x)

11. Use the identities
sinh (x + y) = sinh x cosh y 4 cosh x sinh y
cosh (x + y) = cosh x cosh y + sinh x sinh y

to show that

a) sinh 2x = 2 sinh x cosh x;
b) cosh 2x = cosh? x+ sinh?® x.

12. Use the definitions of cosh x and sinh x to show that

cosh®x — sinh®x = 1.

Derivatives

In Exercises 13-24, find the derivative of y with respect to the ap-
propriate variable.

1
13. y=6sinh§ 14. y = > sinh 2x + 1)

15. y =24/t tanh+/t

17. y =In (sinh z)
19. y =sech 6(1 —In sech )

1
16. y =t? tanh "
18. y =In (cosh 2)
20. y =csch 6(1 —In csch 6)

1 1
21. y =1In cosh v — 3 tanh®v 22. y =1In sinh v — 3 coth®v
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23. y = (x2 + 1) sech (In x)
(Hint: Before differentiating, express in terms of exponentials
and simplify.)

24. y = (4x* — 1) csch (In2x)

In Exercises 25-36, find the derivative of y with respect to the ap-
propriate variable.

25, y = sinh™!'\/x 26. y =cosh™ 2/x +1
27. y=(1-6) tanh™'6 28. y = (#*+20) tanh™' (6 + 1)
29. y = (1 —1t) coth™'\/t 30. y = (1 —1¢%) coth™'t

31. y=cos™!x —x sech™'x 32. y=Inx++/1T—xZsech'x
1\°
33. y = csch™! (5) 34. y = csch™'2?

35. y = sinh™!(tan x)
36. y= cosh™!(sec x), 0<x < /2

Integration Formulas
Verify the integration formulas in Exercises 37—40.

37. a) / sech x dx = tan™!(sinh x) + C
b) j sech x dx = sin”'(tanh x) + C
2

1
% sech™'x — 5\/ 1-x24+C

x2—1

38. /x sech 'xdx =

39. /x coth'xdx = coth 'x + % +C

1
40. f tanh~'x dx = x tanh ™' x + 2 In(1-x})+C

Indefinite Integrals
Evaluate the integrals in Exercises 41-50.

41. / sinh 2x dx 42. / sinh %dx

43. / 6 cosh (-’25 —In 3) dx 44. / 4 cosh 3x — In2)dx

45. / tanh ;dx

47. / sech? (x - %) dx

sech /7 tanh /7 dt
49.
/i

Definite Integrals
Evaluate the integrals in Exercises 51-60.

0
46. / coth — d6
V3

48. / csch?(5 — x) dx

50. /csch (In 1) ctmh (In t)dt

In4
51. / coth x dx
1

In2
52, / tanh 2x dx
n 2 0

—In2
53. / 2¢° cosh 0 d6

In2
54, / 4¢7?% sinh 6 d6
Ind 0

/4
55. / cosh (tan 6) sec? 6 d@
—-n/4

/2
56. / 2 sinh (sin 0) cos 6 dO
0

57, /2 cosh (In t)dt ss. 48 cosh /x
1 t 1 Vx

59, /_iz coshz(%)dx 60. /Omm4 sinhz(%)dx

Evaluating Inverse Hyperbolic Functions and
Related Integrals
When hyperbolic function keys are not available on a calculator, it is

still possible to evaluate the inverse hyperbolic functions by expressing
them as logarithms as shown in the table below.

dx

sinh~! x =1n(x+Vx2+1), —00 <X <00

cosh“1x=ln(x+m), x>1

1 14+x
tanh~'x = = In ——, 1
anh~'x = = In —— |x] <
14+4/1—x2
sech“x:ln(;), 0<x<1
x

1 V1 2
csch™'x =In (—+ |+|x), x#0
x x

x+1
th™'x = —In——,
co x ) n ]

[x] > 1

Use the formulas in the table here to express the numbers in Exercises
61-66 in terms of natural logarithms.

61. sinh~'(—5/12) 62. cosh™'(5/3)
63. tanh~'(=1/2) 64. coth™'(5/4)
65. sech™'(3/5) 66. csch™! (—1 /ﬁ)

Evaluate the integrals in Exercises 67-74 in terms of (a) inverse
hyperbolic functions, (b) natural logarithms.

243 d 1/3 6d
67. = 68. | 24
0 V4 + x? 0o A/1+9x2
2 172
69. f _dx 70. / dx
sia 1 —x2 o 1—x?
3/13 d 2
7. / _x 7. / _dx
15 /1 —16x2 1 x4+ x2



73.

T cosxdx

¢ dx
_cosxdx 74./ L
0 1 +sin’x 1 xy/1+ (In x)?

Applications and Theory

75.

76.

71.

@c)

78.

79.

a) Show thatif a function f is defined on an interval symmetric
about the origin (so that f is defined at —x whenever it is
defined at x), then

fo={RHICD  fo -t

Then show that (f(x)+ f(—x))/2 is even and that
(f(x) = f(=x))/2 is odd.

b) Equation (1) simplifies considerably if f itself is (i) even
or (ii) odd. What are the new equations? Give reasons for
your answers.

Derive the formula sinh~'x = In (x +/x2+ 1) ,—00 < X < O0.

Explain in your derivation why the plus sign is used with the
square root instead of the minus sign.

Skydiving. If a body of mass m falling from rest under the action
of gravity encounters an air resistance proportional to the square
of the velocity, then the body’s velocity ¢ seconds into the fall
satisfies the differential equation
dv
md_t =mg — kv?,

where k is a constant that depends on the body’s aerodynamic
properties and the density of the air. (We assume that the fall is
short enough so that the variation in the air’s density will not
affect the outcome.)

a) Show that
N - ,/&)
k m

satisfies the differential equation and the initial condition
that v = 0 when ¢ = 0.
b) Find the body’s limiting velocity, lim,_, « v.
CALCULATOR For a 160-1b skydiver (mg = 160), with time
in seconds and distance in feet, a typical value for k is 0.005.
What is the diver’s limiting velocity?

Accelerations whose magnitudes are proportional to dis-
placement. Suppose that the position of a body moving along
a coordinate line at time ¢ is

a) s =acoskt+ bsinkt,
b) s =a cosh kt + b sinh kt.

Show in both cases that the acceleration d’s/dt? is proportional
to s but that in the first case it is directed toward the origin while
in the second case it is directed away from the origin.

Tractor trailers and the tractrix. When a tractor trailer turns
into a cross street or driveway, its rear wheels follow a curve like
the one shown here. (This is why the rear wheels sometimes ride
up over the curb.) We can find an equation for the curve if we
picture the rear wheels as a mass M at the point (1, 0) on the
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x-axis attached by a rod of unit length to a point P representing
the cab at the origin. As the point P moves up the y-axis, it drags
M along behind it. The curve traced by M, called a tractrix from
the Latin word tractum for “drag,” can be shown to be the graph
of the function y = f(x) that solves the initial value problem

dy 1 x
Differential equation: — = — + R
d dx x/1—=x2 /1 —x2
Initial condition: y=0 when x=1.

Solve the initial value problem to find an equation for the curve.
(You need an inverse hyperbolic function.)

0 (1,0

80. Show that the area of the region in the first quadrant enclosed by

81.

the curve y = (1/a) cosh ax, the coordinate axes, and the line
x = b is the same as the area of a rectangle of height 1/a and
length s, where s is the length of the curve from x = 0 to x = b.

y = Zcoshax

o

A region in the first quadrant is bounded above by the curve
y = cosh x, below by the curve y = sinh x, and on the left and
right by the y-axis and the line x = 2, respectively. Find the
volume of the solid generated by revolving the region about the
x-axis.
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82.

83.

84.

85.
E b) CALCULATOR Evaluate the coordinates to 2 decimal places.

86.

The region enclosed by the curve y = sech x, the x-axis, and
the lines x = £ 1In+/3 is revolved about the x-axis to generate a
solid. Find the volume of the solid.

a) Findthelength of the segment of the curve y = (1/2) cosh 2x
from x =0 to x = In+/5.

b) Findthelengthofthe segmentof thecurve y = (1/a) cosh ax
fromx =0tox =b > 0.

A minimal surface. Find the area of the surface swept out by
revolving about the x-axis the curve y = 4 cosh (x/4), —In16 <
x <In81.

y = 4cosh (x/4)
B(In 81, 6.67)
A(-In 16, 5)

It can be shown that, of all continuously differentiable curves
joining points A and B in the figure, the curve y = 4 cosh (x/4)
generates the surface of least area. If you made a rigid wire frame
of the end-circles through A and B and dipped them in a soap-
film solution, the surface spanning the circles would be the one
generated by the curve.

a) Find the centroid of the curve y =coshx, —In2 < x < In2.

Then sketch the curve and plot the centroid to show its re-
lation to the curve.

The hyperbolic in hyperbolic functions. In case you are won-
dering where the name hyperbolic comes from, here is the answer:
Just as x = cosu and y = sinu are identified with points (x, y)
on the unit circle, the functions x = cosh # and y = sinh u are
identified with points (x, y) on the right-hand branch of the unit
hyperbola, x? — y? = 1 (Fig. 6.34).

Another analogy between hyperbolic and circular functions
is that the variable u in the coordinates (cosh u, sinh u) for the
points of the right-hand branch of the hyperbola x> — y? =1 is
twice the area of the sector AOP pictured in Fig. 6.35. To see
why this is so, carry out the following steps.

a) Show that the area A(u) of sector AOP is given by the
formula

1 coshu
Au) = 3 cosh u sinh u ~f Vx*—1dx.
1

6.34 Since cosh? u — sinh?u = 1, the point (cosh u, sinh u)
lies on the right-hand branch of the hyperbola
x2 —y? =1 for every value of u (Exercise 86).

P(cos u, sin u)

4 P(cosh u, sinh u)
lu is twice the area

of sector AOP. ,
oN. AN, —o ' 0 *
u is twice the area
of sector AOP.
\

6.35 One of the analogies between hyperbolic and
circular functions is revealed by these two diagrams
(Exercise 86).

a) Differentiate both sides of the equation in (a) with respect
to u to show that
, 1
A(u) = 3
b)  Solve this last equation for A(ux). What is the value of A(0)?
What is the value of the constant of integration C in your

solution? With C determined, what does your solution say
about the relationship of u to A(u)?

Hanging Cables

87. Imagine a cable, like a telephone line or TV cable, strung from

one support to another and hanging freely. The cable’s weight
per unit length is w and the horizontal tension at its lowest point
is a vector of length H. If we choose a coordinate system for
the plane of the cable in which the x-axis is horizontal, the force
of gravity is straight down, the positive y-axis points straight up,
and the lowest point of the cable lies at the point y = H/w on
the y-axis (Fig. 6.36), then it can be shown that the cable lies



Hanging cable

=
T =

6.36 In a coordinate system chosen to match H and w in
the manner shown, a hanging cable lies along the
hyperbolic cosine y = (H/w) cosh (wx/H).

88.

along the graph of the hyperbolic cosine

H h w
y = — cosh — x.
w H
Such a curve is sometimes called a chain curve or a catenary,
the latter deriving from the Latin catena, meaning “chain.”

a) Let P(x,y) denote an arbitrary point on the cable. Figure
6.37 displays the tension at P as a vector of length (mag-
nitude) T, as well as the tension H at the lowest point A.
Show that the cable’s slope at P is

dy w
tang = — = sinh — x.
¢ dx H

b) Using the result from part (a) and the fact that the tension

at P must equal H (the cable is not moving), show that

T = wy. This means that the magnitude of the tension at
P(x,y) is exactly equal to the weight of y units of cable.

(Continuation of Exercise 87.) The length of arc AP in Fig. 6.37
is s = (1/a) sinh ax, where a = w/H. Show that the coordinates
of P may be expressed in terms of s as

1 |, 1
y= S+—2
a a

89.

/]
am

/]
am

ot S
First Order Differential Equations

In Section 6.5 we derived the law of exponential change, y = y, e*, as the solution

529

6.11

Hyperbolic Functions

6.37 As discussed in Exercise 87, T = wy in this
coordinate system.

The sag and horizontal tension in a cable. The ends of a cable
32 ft long and weighing 2 1b/ft are fastened at the same level to
posts 30 ft apart.

a) Model the cable with the equation

1
y=—coshax, —15<x<15.

a
Use information from Exercise 88 to show that a satisfies
the equation

16a = sinh 15a. (2)

b) GRAPHER Solve Eq. (2) graphically by estimating the co-
ordinates of the points where the graphs of the equations
y = 16a and y = sinh 15a intersect in the ay-plane.

¢) EQUATION SOLVER or ROOT FINDER Solve Eq. (2) for
a numerically. Compare your solution with the value you
found in (b).

d) Estimate the horizontal tension in the cable at the cable’s
lowest point.

e) GRAPHER Graph the catenary

1
y = — cosh ax
a

over the interval —15 < x < 15. Estimate the sag in the
cable at its center.

of the initial value problem dy/dt = ky, y(0) = y,. As we saw, this problem models
population growth, radioactive decay, heat transfer, and a great many other phenom-
ena. In the present section, we study initial value problems based on the equation
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dy/dx = f(x, y), in which f is a function of both the independent and dependent
variables. The applications of this equation, a generalization of dy/dt = ky (think
of ¢t as x), are broader still.

First Order Differential Equations

A first order differential equation is a relation
d
== fy) M
dx
in which f(x, y) is a function of two variables defined on a region in the xy-plane.
A solution of Eq. (1) is a differentiable function y = y(x) defined on an interval
of x-values (perhaps infinite) such that

d
Ix yx) = fx, y(x))
X

on that interval. The initial condition that y(xy) = yo amounts to requiring the
solution curve y = y(x) to pass through the point (xo, yo)-

EXAMPLE 1 The equation

a_, 7
dx x
is a first order differential equation in which f(x, y) =1 — (y/x). a
EXAMPLE 2 Show that the function
_ 1 + X
y= x 2

is a solution of the initial value problem
dy

y 3
- =1-=, 2) = —.
dx X 2 2

Solution The given function satisfies the initial condition because

1 x 1 2 3
2 = - — = — _= -,
@ <x+2)x=2 )

To show that it satisfies the differential equation, we show that the two sides of the
equation agree when we substitute (1/x) + (x/2) for y.

dy d (1 «x 1 1
Othl N —_ = —| - — [ —
" the left dx dx<x+2> x2+2
1/1
On the right: 1—X=1——<—+i)
X x\x 2
_ 1 11 1
T ox2 27 x2 2

The function y = (1/x) + (x/2) satisfies both the differential equation and the
initial condition, which is what we needed to show. 4



We sometimes write y' = f(x, y) for
dy/dx = f(x, y).
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Separable Equations

The equation y’ = f(x, y) is separable if f can be expressed as a product of a
function of x and a function of y. The differential equation then has the form
dy
i 8(x)h(y).
x

If h(y) # 0, we can separate the variables by dividing both sides by # and mul-
tiplying both sides by dx, obtaining

1
—— dy = g(x)dx.
h(y)
This groups the y-terms with dy on the left and the x-terms with dx on the right.
We then integrate both sides, obtaining

1

The integrated equation provides the solutions we seek by expressing y either
explicitly or implicitly as a function of x, up to an arbitrary constant.

EXAMPLE 3 Solve the differential equation

dy )
== 5,
Ix (I+y9)e

Solution Since 1 + y? is never zero, we can solve the equation by separating the
variables.

dy
—=(1+y)e
dx

Treat dy/dx as a quotient

dy =1+ y2) e*dx of differentials and multiply
both sides by dx.

% =5 dx Divide by (I + y?).
y
d
/ 1+}’ S = /ex dx Integrate both sides.
y

C represents the combined
constants of integration.

tan"'y =" +C

The equation tan~! y = ¢* 4 C gives y as an implicit function of x. In this case,
we can solve for y as an explicit function of x by taking the tangent of both sides:

tan (tan~!' y) = tan (¢* + C)
y = tan (¢* + C). d

Linear First Order Equations
A first order differential equation that can be written in the form
dy

I T P®y = 0), ()
X

where P and Q are functions of x, is a linear first order equation. Equation (2) is
the equation’s standard form.
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We call v(x) an integrating factor for Eq.
(3) because its presence makes the equation
integrable.

EXAMPLE 4 Put the following equation in standard form

d
x—y = x? 4 3y, x>0
dx

Solution

x dy

dx

dy

dx

dy 3 Standard form with
dx < * P(x) = —3/x and Q(x) = x

=x24+3y

3
=x+ -y Divide by x.
X

Notice that P(x) is —3/x, not +3/x. The standard form is y' + P(x)y = Q(x), so
the minus sign is part of the formula for P (x).

EXAMPLE 5 The equation
dy
22—k
dx Y

with which we modeled bacterial growth, radioactive decay, and temperature change
in Section 6.5 is a linear first order equation. Its standard form is

dy
— —ky=0. P(x) = —kand Q(x) =0
dx y X an X D
We solve the equation
d
Z+ Py = 0() €)
x

by multiplying both sides by a positive function v(x) that transforms the left-hand
side into the derivative of the product v(x) « y. We will show how to find v in a
moment, but first we want to show how, once found, it provides the solution we
seek.

Here is why multiplying by v works:

dy — Original equation
E + P(x)y - Q(x) is in standard form.
dy
v(X)E; + P(x)v(x)y = v(x)Q(x) Multiply by v(x).

v(x) is chosen to make

d
7y P - ) = v(x)Q(x)
X

dy d
v—+ Py =—(@w-V)
dx

l dx
v -y = [0 dx o
1
y = v_(x_)_ f v(x)Q(x)dx Solve for y. (4)

Equation (4) expresses the solution of Eq. (3) in terms of the functions v(x) and
Q(x).

Why doesn’t the formula for P(x) appear in the solution as well? It does, but
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indirectly, in the construction of the positive function v(x). We have

d dy —
E(vy) = vzi; + va Condition imposed on v
dy dv dy Product Rule for
UE + ya = UE; + Pvy derivatives
ﬂ = Pv The terms @ 1
ydx = y e terms v—— cancel.
This last equation will hold if
dv
— = Pv
dx
d_v = Pdx Variables separated
v
dv
— = / Pdx Integrate both sides.
v

1 _ Pd Since v > 0, we do not need
nv= X absolute value signs in In v.

n v f Pdx Exponentiate both sides to solve
€ =e for v.

v=edeX )

From this, we see that any function v that satisfies Eq. (5) will enable us to solve
Eq. (3) with the formula in Eq. (4). We do not need the most general possible v,
only one that will work. Therefore, it will do no harm to simplify our lives by
choosing the simplest possible antiderivative of P for [ P dx.

Theorem 4
The solution of the equation
d
4Py = 0w 6)
X
is
1
y = ——fv(X) Q(x)dx, @
v(x)
where
v(x) = ef Feax 8)

In the formula for v, we do not need the most general antiderivative of
P(x). Any antiderivative will do.

EXAMPLE 6 Solve the equation

d
x-}i:x2+3y, x > 0.
dx
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How to Solve a Linear First Order
Equation

1. Put it in standard form.

Find an antiderivative of P(x).
Find v(x) = ef P®.

2.
3.
4. Use Eq. (7) to find y.

Solution We solve the equation in four steps.
Step 1: Put the equation in standard form to identify P and Q.
O(x) = x.

P(x) = _E’ Example 4
X

Step 2: Find an antiderivative of P(x) (any one will do).
3 1
/P(x)dx=f——dx=—3/—dx=—31n|x|=—3lnx (x>0
X X

Step 3: Find the integrating factor v(x).
[ Ptxyax

v(x) =e =e73nx = 7 Eq. (8)

Step 4: Find the solution.

1
y = —/v(X)Q(X)dx
v(x)

1 1
=(Uﬁ>f<5)“”“

Eq. (7)

Values from steps 1-3

Don’t forget the C ...

... it provides part of the

=—x*4+Cx* answer.
The solution is y = —x2 4+ Cx3, x > 0. a
EXAMPLE 7 Solve the equation
xy = x*+ 3y, x>0,
given the intial condition y(1) = 2.
Solution We first solve the differential equation (Example 6), obtaining
y=-x>4+Cx%  x>0.
We then use the initial condition to find the right value for C:
y=—x*+Cx’
2=-1)?+CA)° =2 when =1
C=2+1)?*=3.
The solution of the initial value problem is the function y = —x2 + 3x3. a

Resistance Proportional to Velocity

In some cases it makes sense to assume that, other forces being absent, the resis-
tance encountered by a moving object, like a car coasting to a stop, is proportional
to the object’s velocity. The slower the object moves, the less its forward progress
is resisted by the air through which it passes. We can describe this in mathematical
terms if we picture the object as a mass m moving along a coordinate line with
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position s and velocity v at time ¢. The resisting force opposing the motion is mass
x acceleration = m(dv/dt), and we can write

dv
m-(;; = —kv k > 0) (9)

to say that the force decreases in proportion to velocity. If we rewrite (9) as

d k
d—;} +—v=0 Standard form (10)

and let vy denote the object’s velocity at time t = 0, we can apply Theorem 4 to
arrive at the solution

v =vge /Mt (11)

(Exercise 42).

What can we learn from Eq. (11)? For one thing, we can see that if m is
something large, like the mass of a 20,000-ton ore boat in Lake Erie, it will take
a long time for the velocity to approach zero. For another, we can integrate the
equation to find s as a function of ¢.

Suppose a body is coasting to a stop and the only force acting on it is a
resistance proportional to its speed. How far will it coast? To find out, we start with
Eq. (11) and solve the initial value problem

ds
— —(k/m)t —
=ye , s(0) =0.
o 0 0
Integrating with respect to ¢ gives

vom
(;( e k/mi 4 .

Substituting s = 0 when t = 0 gives
0=-24c ad c=2"
k k

The body’s position at time ¢ is therefore

YOI —teymye DO Lo

s(t) = ——¢ T p (1 — e~ &/mry,

To find how far the body will coast, we find the limit of s(z) as t — o0o. Since
—(k/m) < 0, we know that e~*/™" _ 0 as t — o0, so that

lim s(¢) = lim _v_(ﬁ(l _ e-—(k/m)t)
t—>00 t—>o00 k
Vom vom
=—(1-0=—.
T ( ) P
Thus,
Distance coasted = Pflgn_. (12)

This is an ideal figure, of course. Only in mathematics can time stretch to
infinity. The number vy m/k is only an upper bound (albeit a useful one). It is true
to life in one respect, at least—if m is large, it will take a lot of energy to stop
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Weight vs. mass

Weight is the force that results from gravity
pulling on a mass. The two are related by the
equation in Newton’s second law,

Weight = mass x acceleration.

To convert mass to weight, multiply by the
acceleration of gravity. To convert weight to
mass, divide by the acceleration of gravity. In
the metric system,

Newtons = kilograms x 9.8
and
Newtons/9.8 = kilograms.

In the English system, where weight is
measured in pounds, mass is measured in
slugs. Thus,

Pounds = slugs x 32

and
Pounds/32 = slugs.

A skater weighing 192 Ib has a mass of
192/32 = 6 slugs.

6.38 The RL circuit in Example 9.

the body. That is why ocean liners have to be docked by tugboats. Any liner of
conventional design entering a slip with enough speed to steer would smash into
the pier before it could stop.

EXAMPLE 8 For a 192-Ib ice skater, the k in Eq. (11) is about 1/3 slug/sec
and m = 192/32 = 6 slugs. How long will it take the skater to coast from 11 ft/sec
(7.5 mph) to 1 ft/sec? How far will the skater coast before coming to a complete
stop?

Solution We answer the first question by solving Eq. (11) for #:

e = T,
e =1/11
—t/18 =In (1/11) = —1n 11
t = 18In 11 =~ 43 sec.
We answer the second question with Eq. (12):
Distance coasted = Yo _ -6
k 1/3
= 198 ft. a

RL Circuits

The diagram in Fig. 6.38 represents an electrical circuit whose total resistance is a
constant R ohms and whose self-inductance, shown as a coil, is L henries, also a
constant. There is a switch whose terminals at a and » can be closed to connect a
constant electrical source of V volts.
Ohm’s law, V = RI, has to be modified for such a circuit. The modified form
is
di .
L—+Ri=YV, (13)
dt
where i is the intensity of the current in amperes and ¢ is the time in seconds. By
solving this equation, we can predict how the current will flow after the switch is
closed.

EXAMPLE 9 The switch in the RL circuit in Fig. 6.38 is closed at time ¢ = 0.
How will the current flow as a function of time?

Solution Equation (13) is a linear first order differential equation for i as a function
of ¢. Its standard form is

di + R, V (14)
— Y+ —i=—,
dt L L

and the corresponding solution, from Theorem 4, given that i = 0 when ¢t =0, is
Vv Vv
_e—(R/L)t

i=—

R R (13)



6.39 The growth of the current in the RL
circuit in Example 9. / is the current’s
steady state value. The number t = L/R is
the time constant of the circuit. The
current gets to within 5% of its steady
state value in 3 time constants

(Exercise 53).
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_v
I—R II
€ i= %(1 _e—Rt/L)
l | l L 5y
0 L L L L
R R R ‘R

(Exercise 54). Since R and L are positive, —(R/L) is negative and e~ ®/1)" — 0
as t — 0o. Thus,

lim i = tim (% - Lewmr) Y _ Y oY
1—00 t—>o00 \ R R R R R

At any given time, the current is theoretically less than V/R, but as time passes the
current approaches the steady state value V/R. According to the equation
Ldi Ri =V
i +Ri =V,
I = V/R is the current that will flow in the circuit if either L = 0 (no inductance)
or di/dt = 0 (steady current, { = constant) (Fig. 6.39).
Equation (15) expresses the solution of Eq. (14) as the sum of two terms: a
steady state solution V/R and a transient solution —(V/R)e~®/D* that tends to
zero as t — 00. a

Exercises 6.11
Verifying Solutions

In Exercises 5-8, show that each function is a solution of the given
initial value problem.

In Exercises 1 and 2, show that each function y = f(x) is a solution

of the accompanying differential equation.

1. 2y’ +3y=¢*
a y=e”

b) y=e ™+ G/

) y=e* 4+ Ce ¥/

2.y =y

1
ay=-—- b) y=—
X

x+3

In Exercises 3 and 4, show that the function y = f(x) is a solution

of the given differential equation.

1 X l

3.y=~ —-dt X2y +xy=¢é
x 1

4. y /\/l+t4dt
1+x"' 1+

Differential Initial Solution
equation condition candidate
’ 2 — — X -1 2e*
5.y+y:m y(=In2)=— y =e *tan"'(2¢*)
6. y=e —2xy y2)=0 y=(x—2e™
7. xy'+y=—sinx, y(%):O y=cosx
— X
oy= T+ C x>0
X
8. X%y =xy -y yle)=e y=—
Inx

x> 1

Separable Equations

Solve the differential equations in Exercises 9-14.

d d
9. 2 0+ y2x) 10. b+ DZ =y -1
dx dx
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11.

13.

d d
2./xyd—i—)=1, x,y>0 12.%:)62\/_, y>0

d
2 = e 14.

dx dx ~

Linear First Order Equations

Solve the differential equations in Exercises 15-20.

15.
16.

17.

18.

19.

20.

dy B
x—+y=¢€, x>0
dx

d
e"ﬁ+2@"y=l

sin x

xy +3y= , x>0

x2

y' + (tan x)y =cos’x, —-m/2<x <m/2

d 1
x—y+2y=1—-—, x>0
dx x

A+x)y +y=4x

First Order Equations

Solve the differential equations in Exercises 21-34.
21.

22.

23.
24.

25.

26.
27.
28.
29.
30.
31.
32.
33.

3.

2y/=ex/2+y
d

ﬁ%:e”ﬁ, x>0
x

¥y +2e¥y=2x

xy —y=2xInx
dy :
sec x —— = eI
dx
dy cosx
xa= T -2y, x>0

d
(t—1)3d—j+4(t—1)2s=t+1, t>1

ds 1
t+1)—+2s=30+1 P
4D 7 +25 =36+ D+ s,

(sect ) 2 = 3

dx b4 b4
int — 21) - =0, —=—<t<—
sin (x cos )dt > <t< >

d
sin@é—i—(cos@)r:tan@, 0<b6<m/2
tan9£+ =sin*f, 0<6 2

70 r =sin“ 6, <0 <m/

d
cosh xé + (sinh x)y = e~

d
sinh xc_il + 3(coshx)y = cosh x sinh x
x

dy _2x2+1

t>—

Solving Initial Value Problems

Solve the initial value problems in Exercises 35-40.

Differential Initial
equation condition
dy
35, —+2y=3 0) =1
P y(0)
d
36. t:%—}-Zy:tS, t>0 y2) =1
dy .
37. 935+y=sm9, 6>0 y(m/2) =1
dy 3
38. e)%—zyze secftanf, 6 >0 y(m/3)=2
39 (x+1)d—y—2(x2+x) = i x> —1 0 =5
’ dx YT Y
dy
40. — +xy=x y(0) = —6
dx
41. What do you get when you use Theorem 4 to solve the following
initial value problem for y as a function of #?
d
d—i] =ky (k constant), y(0)= yo

42.

Use Theorem 4 to solve the following initial value problem for
v as a function of 7.

d k
Elt—} + —v =0 (k and m positive constants), v(0) = v
m

Theory and Examples

43.

4.

45.

Is either of the following equations correct? Give reasons for
your answers.

1
a) x/—dx=x1n|x|+C
x

1
b) x/—dx=x1n|x|+Cx
x

Is either of the following equations correct? Give reasons for
your answers.

a)

/cosx dx =tanx + C
coS x

b)

Cos x

C
/cosxdx =tanx +
cos x

Blood sugar. If glucose is fed intravenously at a constant rate,
the change in the overall concentration c(¢) of glucose in the
blood with respect to time may be described by the differential
equation

dc G

o ¥ ke
ar 100v ¢

In this equation, G, V, and k are positive constants, G being the



46.

rate at which glucose is admitted, in milligrams per minute, and
V the volume of blood in the body, in liters (around 5 liters
for an adult). The concentration c(t) is measured in milligrams
per centiliter. The term —kc is included because the glucose is
assumed to be changing continually into other molecules at a rate
proportional to its concentration.

a) Solve the equation for c(t), using ¢y to denote c(0).
b) Find the steady state concentration, lim,_, » c(?).

Continuous compounding. You have $1000 with which to open
an account and plan to add $1000 per year. All funds in the ac-
count will earn 10% interest per year, compounded continuously.
If the added deposits are also credited to your account continu-
ously, the number of dollars x in your account at time ¢ (years)
will satisfy the initial value problem

dx

i 1000 + 0.10x,  x(0) = 1000.

a) Solve the initial value problem for x as a function of ¢.

@ b) CALCULATOR About how many years will it take for the

47.

48.

amount in your account to reach $100,000?

How long will it take a tank to drain? If we drain the water
from a vertical cylindrical tank by opening a valve at the base
of the tank, the water will flow fast when the tank is full but
slow down as the tank drains. It turns out that the rate at which
the water level drops is proportional to the square root of the
water’s depth, y. This means that

dy

— = —k./y.
dt vy

The value of k depends on the acceleration of gravity, the shape
of the hole, the fluid, and the cross-section areas of the tank and
drain hole.

Suppose ¢ is measured in minutes and £k = 1/10. How long
does it take the tank to drain if the water is 9 ft deep to start
with?

Escape velocity. The gravitational attraction F exerted by an
airless moon on a body of mass m at a distance s from the
moon’s center is given by the equation F = —mg R%s™2, where
g is the acceleration of gravity at the moon’s surface and R is
the moon’s radius (Fig. 6.40). The force F is negative because
it acts in the direction of decreasing s.

a) If the body is projected vertically upward from the moon’s
surface with an initial velocity vy at time ¢t = 0, use New-
ton’s second law, F = ma, to show that the body’s velocity
at position s is given by the equation

2gR?
v = B2 402 2R
s

Thus, the velocity remains positive as long as vy > +/2gR.
The velocity vy = +/2gR is the moon’s escape velocity. A
body projected upward with this velocity or a greater one
will escape from the moon’s gravitational pull.
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MassmI
R2
F= - MR

s

— T

Moon’s |
center

6.40 Diagram for Exercise 48.

b) Show that if vy = /2gR, then

3v0 23
=R|1+ —¢ .
s ( + 2R )

RESISTANCE PROPORTIONAL TO VELOCITY

49.

50.

For a 145-Ib cyclist on a 15-Ib bicycle on level ground, the &k in
Eq. (11) is about 1/5 slug/sec and m = 160/32 = 5 slugs. The
cyclist starts coasting at 22 ft/sec (15 mph).

a) About how far will the cyclist coast before reaching a com-
plete stop?

b) To the nearest second, about how long will it take the cy-
clist’s speed to drop to 1 ft/sec?

For a 56,000-ton Iowa class battleship, m = 1,750,000 slugs and
the k in Eq. (11) might be 3000 slugs/sec. Suppose the battleship
loses power when it is moving at a speed of 22 ft/sec (13.2
knots).

a) About how far will the ship coast before it stops?
b) About how long will it take the ship’s speed to drop to 1

ft/sec?
RL CIRCUITS
51. Current in a closed RL circuit. How many seconds after the
switch in an RL circuit is closed will it take the current i to
reach half of its steady state value? Notice that the time depends
on R and L and not on how much voltage is applied.
52. Currentin an open RL circuit. If the switch is thrown open after

the current in an RL circuit has built up to its steady state value,
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the decaying current (graphed here) obeys the equation
di :
LZ 4 Ri =0, (16)
dt

which is Eq. (13) with V = 0.

a) Solve Eq. (16) to express i as a function of ¢.

b) How long after the switch is thrown will it take the current
to fall to half its original value?

¢) What is the value of the current when ¢ = L/R? (The sig-
nificance of this time is explained in the next exercise.)

i<

|~
D fe—,

[\
it~

w
-l

@ 53. Time constants. Engineers call the number L/R the time constant
of the RL circuit in Fig. 6.39. The significance of the time con-
stant is that the current will reach 95% of its final value within
3 time constants of the time the switch is closed (Fig. 6.39).
Thus, the time constant gives a built-in measure of how rapidly
an individual circuit will reach equilibrium.

a) Find the value of i in Eq. (15) that corresponds to ¢t = 3L/R
and show that it is about 95% of the steady state value
I =V/R.

b) Approximately what percentage of the steady state current
will be flowing in the circuit 2 time constants after the switch
is closed (i.e., when t = 2L/R)?

54. (Derivation of Eq. (15) in Example 9.)

a) Use Theorem 4 to show that the solution of the equation
di R. Vv

aL'TL
is
vV
| = — + CeR/DY,
l R e

b) Then use the initial condition i(0) = 0 to determine the
value of C. This will complete the derivation of Eq. (15).
¢) Show that i = V/R is a solution of Eq. (14) and that i =
Ce~(RID) satisfies the equation
di R,

MIXTURE PROBLEMS

A chemical in a liquid solution (or dispersed in a gas) runs into a
container holding the liquid (or the gas) with, possibly, a specified

amount of the chemical dissolved as well. The mixture is kept uniform
by stirring and flows out of the container at a known rate. In this
process it is often important to know the concentration of the chemical
in the container at any given time. The differential equation describing
the process is based on the formula

Rate of change rate at which rate at which
of amount = ( chemical ) — ( chemical ) (17)
in container arrives departs.

If y(¢) is the amount of chemical in the container at time # and V (¢) is
the total volume of liquid in the container at time ¢, then the departure
rate of the chemical at time ¢ is
y(@)
V()
_{ concentration in
o (container at time ¢

Departure rate - (outflow rate)
(18)

) « (outflow rate).

Accordingly, Eq. (17) becomes
dy y(®)

i (chemical’s arrival rate) — D « (outflow rate). (19)

If, say, y is measured in pounds, V in gallons, and ¢ in minutes, the
units in Eq. (19) are
pounds  pounds pounds  gal
min min _ gal  min

55. A tank initially contains 100 gal of brine in which 50 Ib of salt
are dissolved. A brine containing 2 lb/gal of salt runs into the
tank at the rate of 5 gal/min. The mixture is kept uniform by
stirring and flows out of the tank at the rate of 4 gal/min.

a) At what rate (Ib/min) does salt enter the tank at time ¢?

b) What is the volume of brine in the tank at time ¢?

¢) At what rate (Ib/min) does salt leave the tank at time #?

d) Write down and solve the initial value problem describing
the mixing process.

e) Find the concentration of salt in the tank 25 min after the
process starts.

56. In an oil refinery a storage tank contains 2000 gal of gasoline that
initially has 100 Ib of an additive dissolved in it. In preparation
for winter weather, gasoline containing 2 1b of additive per gallon
is pumped into the tank at a rate of 40 gal/min. The well-mixed
solution is pumped out at a rate of 45 gal/min. Find the amount
of additive in the tank 20 min after the process starts.

57. A tank contains 100 gal of fresh water. A solution containing 1
Ib/gal of soluble lawn fertilizer runs into the tank at the rate of
1 gal/min, and the mixture is pumped out of the tank at the rate
of 3 gal/min. Find the maximum amount of fertilizer in the tank
and the time required to reach the maximum.

58. An executive conference room of a corporation contains 4500
cubic feet of air initially free of carbon monoxide. Starting at
time ¢t = 0, cigarette smoke containing 4% carbon monoxide is
blown into the room at the rate of 0.3 ft 3/min. A ceiling fan
keeps the air in the room well circulated and the air leaves the
room at the same rate of 0.3 ft >/min. Find the time when the
concentration of carbon monoxide in the room reaches 0.01%.
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Slope Fields

6.12 Euler's Numerical Method;
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Slope = f(x;, 3p)
Y ol

0

6.42 The equation of the tangent line is
¥ = L) = yo + f(xo, Yo)(x — Xo).

y
Euler approximation (x3 3)
(¥

|

I . |

Tiue solution|curve |

(% Yo) y := yx) I I

| | |

! dx l dx I dx I
| ] | L 5

0 X X, x, X

6.43 Three steps in the Euler
approximation to the solution of the
initial value problem y’ = f(x, y), y = yo
when x = xo. The errors involved usually
accumulate as we take more steps.

Using Linearizations

If we are given a differential equation dy/dx = f(x, y) and an initial condition
y(xo0) = yo, We can approximate the solution curve y = y(x) by its linearization

d
L(x) = y(xp) + d—y (x — xo0)
X

X=Xp

or

L(x) = yo + f(x0, Yo)(x — Xo). (1

The function L(x) will give a good approximation to the solution y(x) in a short
interval about xo (Fig. 6.42). The basis of Euler’s method is to patch together a
string of linearizations to approximate the curve over a longer stretch. Here is how
the method works.

We know the point (xg, yo) lies on the solution curve. Suppose we specify a
new value for the independent variable to be x; = x¢ + dx. If the increment dx is
small, then

y1 = L(x;) = yo+ f(x0, yo)dx

is a good approximation to the exact solution value y = y(x;). So from the point
(x0, Y0), which lies exactly on the solution curve, we have obtained the point
(x1, y1), which lies very close to the point (x;, y(x;)) on the solution curve.
Using the point (x;, y;) and the slope f(x;, y;), we take a second step. Setting
X, = x; +dx, we calculate
y2 = y1 + f(x1, y) dx,

to obtain another approximation (x,, y,) to values along the solution curve y = y(x)
(Fig. 6.43). Continuing in this fashion, we take a third step from the point (x,, y,)
with slope f(x;, y,) to obtain the next approximation

y3 = Y2+ f(xa, y2)dx,

and so on.

EXAMPLE 1 Find the first three approximations y;, y,, y; using the Euler
approximation for the initial value problem
y=1+y, y0=1,

starting at xo = 0 and using dx = 0.1.

Solution

First: Y1 = Yo+ f(xo0, Yo)dx
=yo+ (1 + yo)dx
=1+0+1)0.1)=1.2
Second:  y, =y + f(x1, y1)dx
=y1+ (1 +y)dx
=124+ 1+12)0.1)=1.42
Third: v3i =y + 1+ y)dx
= 1.42 + (1 4+ 1.42)(0.1) = 1.662 a
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The Euler Method

To continue our discussion, the Euler method is a numerical process for generating
a table of approximate values of the function that solves the initial value problem

' = f(-xa )’), }’(XO) = Yo-

If we use equally spaced values for the independent variable in the table and generate
n of them, we first set

X1 = xo+dx,
Xy = x; +dx,
. ()

Xy = Xy +dx.
Then we calculate the solution approximations in turn:

Y1 = Yo+ f(xo, Yo) dx,

y2 =y + flx, y)dx,
) 3

Yn = Yn-1 + f(xn—h yn—l)dx-

The number n of steps can be as large as we like, but errors may accumulate if #
is too large.

EXAMPLE 2 Investigate the accuracy of the Euler approximation method for
the initial value problem

‘=1+y, y0) =1
in Example 1 over the interval 0 < x < 1, starting at xo = 0 and taking dx = 0.1.

Solution The exact solution to the initial value problem is y = 2¢* — 1 (using
either method discussed in Section 6.11). Table 6.14 shows the results of the Euler
approximation method using Egs. (2) and (3) and compares them to the exact results

Table 6.14 Euler solution of y’' =1+y, y(0) = 1, increment size dx = 0.1

x y (approx) y (exact) " Error =y (exact) —y (approx)
0 1 1 0

0.1 1.2 1.2103 0.0103
0.2 1.42 1.4428 0.0228
0.3 1.662 1.6997 0.0377
04 1.9282 1.9836 0.0554
0.5 2.2210 2.2974 0.0764
0.6 2.5431 2.6442 0.1011
0.7 2.8974 3.0275 0.1301
0.8 3.2872 34511 0.1639
0.9 3.7159 3.9192 0.2033
1.0 4.1875 4.4366 0.2491
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rounded to 4 decimal places. By the time we reach x = 1 (after 10 steps), the error
is about 5.6%.

EXAMPLE 3 Investigate the accuracy of the Euler method for the initial value
problem

y=14+y, y0) =1

over the interval 0 < x < 1, starting at xo = 0 and taking dx = 0.05.

Solution Table 6.15 shows the results and their comparisons with the exact solu-
tion. Notice that in doubling the number of steps from 10 to 20 we have reduced
the error. This time when we reach x = 1 the error is only about 2.9%. a

It might be tempting to reduce the increment size even further to obtain greater
accuracy. However, each additional calculation not only requires additional com-
puter time but more importantly adds to the buildup of round-off errors due to the
approximate representations of numbers in the calculations.

The analysis of error and the investigation of methods to reduce it when making
numerical calculations is important, but appropriate for a more advanced course.
There are numerical methods that are more accurate than Euler’s method, as you
will see when you study differential equations. In the exercises you will have the
opportunity to explore the trade-offs involved in trying to reduce error by taking
more but smaller increment steps.

Table 6.15 Euler solution of y' =1+, y(0) = 1, increment size dx = 0.05

x y (approx) y (exact) Error = y (exact) —y (approx)
0 1 1 0
0.05 1.1 1.1025 0.0025
0.10 1.205 1.2103 0.0053
0.15 1.3153 1.3237 0.0084
0.20 1.4310 1.4428 0.0118
0.25 1.5526 1.5681 0.0155
0.30 1.6802 1.6997 0.0195
0.35 1.8142 1.8381 0.0239
0.40 1.9549 1.9836 0.0287
045 2.1027 2.1366 0.0339
0.50 2.2578 2.2974 0.0396
0.55 2.4207 2.4665 0.0458
0.60 2.5917 2.6442 0.0525
0.65 2.7713 2.8311 0.0598
0.70 2.9599 3.0275 0.0676
0.75 3.1579 3.2340 0.0761
0.80 3.3657 34511 0.0854
0.85 3.5840 3.6793 0.0953
0.90 3.8132 39192 0.1060
0.95 4.0539 4.1714 0.1175
1.00 4.3066 4.4366 0.1300
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Exercises 6.12
x+y
X =Yy

12. '
4. y

S NN

[ SO NSNS

N

(b)

1
7
) 2
y
7
7>

y%/4/x and y(1) = —1. What is the exact value of

=_xy
X

’

y(2) if y =y —e* and y(0) = 1. What is the exact value of

and y(1) = 2. What is the exact value of y(2)?
¥(2)?

@ 9. CALCULATOR Use the Euler method with dx = 0.5 to estimate

y(5) if y’

y(5)?
E 10. CALCULATOR Use the Euler method with dx = 1/3 to estimate

8. Use the Euler method with dx = 0.2 to estimate y(2) if y' = y/x
In Exercises 11-14, match the differential equations with the solution

curves sketched below in the slope fields (a)—(d).

1L y

Slope Fields

13. y

y

/

(@)

O D P i PP i P PP

dx =0.5

0.2 to estimate y(1) if y

y(0) =2,

0.5
dx =05

dx =02

dx
dx =0.2
-2,

-1,
y=n=1,

y(1) =0,
y(0) =3,

use Euler’s method to calculate the first three approx-
¥y =

imations to the given initial value problem for the specified increment
size. Calculate the exact solution and investigate the accuracy of your

6.12
approximations. Round your results to 4 decimal places.

»)s
y2(1 +2x),
B 5. CALCULATOR ' = 2xe®, y(0)=2, dx =0.1

2xy + 2y,
B 6. CALCULATOR y' =y + &

x(1 —

and y(0) = 1. What is the exact value of y(1)?

7. Use the Euler method with dx

Ly =1
2.y
3.y
4. y

Calculating Euler Approximations

Exercises
In Exercises 1-6

@

©
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In Exercises 15 and 16, copy the slope fields and sketch in some of
the solution curves.

15. y = +2)(y—2)

NI
PIIIITIIIIIIIIIIITITT
IR I
HI T
TR
SRR
MARARRAARARRRARRRARRRA AN
AAARAAHAR RN
T
T

e e T i
e e e s i
N T N T N s N N N N N NN N SN N NN NN
R T B Tt N T St PO

I FCMICICUC I VI

B I T T et

T o T

P g g g

P el g s P B g g

D e g g  aa
S

_—

N
\
\

_—

D
VA

_—

INNNY
NN
VALY

———

wh
VAL

S~

S
VAN
VAN

N
W
W

—l ]

NS
N
VA

-7 ]

In Exercises 17-20, sketch part of the slope field. Using the slope
field, sketch the solution curves that pass through the given points.

17. y=y with (a) (0, 1), (b) (0,2), (c) (0, 1)
18. y =2(y —4) with (a) (0, 1), (b)(0,4), (c)(O,5)

19. y =y@2—y) with (a)(0,1/2), (b)(0,3/2), (c)(0,2),
(d (©, 3)

20. y =y* with (a)(0,1), (b)(0,2), (c)(0,—1), (d) (0,0)

& CAS Explorations and Projects

Use a CAS to explore graphically each of the differential equations
in Exercises 21-24. Perform the following steps to help with your
explorations.

a) Plot a slope field for the differential equation in the given xy-
window.

b)
©)
d)

e)

f)

g)

21.

22.
23.

24.

Find the general solution of the differential equation using your
CAS DE solver.

Graph the solutions for the values of the arbitrary constant C =
-2, —1, 0, 1, 2 superimposed on your slope field plot.

Find and graph the solution that satisfies the specified initial
condition over the interval [0, b].

Find the Euler numerical approximation to the solution of the
initial value problem with 4 subintervals of the x-interval and plot
the Euler approximation superimposed on the graph produced in
part (d).

Repeat part (e) for 8, 16, and 32 subintervals. Plot these three
Euler approximations superimposed on the graph from part (e).
Find the error y (exact) —y (Euler) at the specified point x = b
for each of your four Euler approximations. Discuss the improve-
ment in the percentage error.

y=x+y, y0=-7/10; -4<x<4, -4<y<4 b=1
y=-=x/y, y0)=2; -3<x<3, -3<y<3 b=2
A logistic equation. y = y(2—y), y(0)=1/2; 0<x <4,
0<y=<3 b=3

y' = (sinx)(siny), y(0)=2; -6<x<6 —-6<y<6

b=3m/2

Exercises 25 and 26 have no explicit solution in terms of elementary
functions. Use a CAS to explore graphically each of the differential
equations, performing as many of the steps (a)—(g) above as possible.

25.
26.

27.

28.

y=cos(2x~y), y0)=2; 0<x<5 0<y<5 yQ2
A Gompertz equation. y' = y(1/2—1n y), y(0)=1/3;
0<x<4 0<y<35 y3

Use a CAS to find the solutions of y' + y = f(x) subject to the
initial condition y(0) = 0, if f(x) is

a) 2x
b) sin2x
c) 32

d) 2e*%cos2x.

Graph all four solutions over the interval —2 < x < 6 to compare
the results.

a) Use a CAS to plot the slope field of the differential equation
. 3x2+4x +2
20 -1

over the region —3 <x <3 and -3 <y <3.

b) Separate the variables and use a CAS integrator to find the
general solution in implicit form.

¢) Using a CAS implicit function grapher, plot solution curves
for the arbitrary constant values C = —6, —4, -2, 0, 2,
4, 6.

d) Find and graph the solution that satisfies the initial condition
y(0) =-1.
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QUESTIONS TO GUIDE YOUR REVIEW

What functions have inverses? How do you know if two functions
f and g are inverses of one another? Give examples of functions
that are (are not) inverses of one another.

. How are the domains, ranges, and graphs of functions and their

inverses related? Give an example.

. How can you sometimes express the inverse of a function of x

as a function of x?

. Under what circumstances can you be sure that the inverse of a

function f is differentiable? How are the derivatives of f and
£~ ! related?

. What is the natural logarithm function? What are its domain,

range, and derivative? What arithmetic properties does it have?
Comment on its graph.

6. What is logarithmic differentiation? Give an example.

B

7. What integrals lead to logarithms? Give examples. What are the

integrals of tan x and cot x?

. How is the exponential function e* defined? What are its domain,

range, and derivative? What laws of exponents does it obey?
Comment on its graph.

. How are the functions a* and log, x defined? Are there any

10.
11.

12.

13.

14.

restrictions on a? How is the graph of log, x related to the graph
of In x? What truth is there in the statement that there is really
only one exponential function and one logarithmic function?

Describe some of the applications of base 10 logarithms.

What is the law of exponential change? How can it be derived
from an initial value problem? What are some of the applications
of the law?

How do you compare the growth rates of positive functions as
x — 00?

What roles do the functions ¢* and In x play in growth compar-
isons?

Describe big-oh and little-oh notation. Give examples.

15

16.

17.

18.

19.

20.

21.

22,

23.
24.

25,
26.
27.

28.

. Which is more efficient—a sequential search or a binary search?
Explain.

How are the inverse trigonometric functions defined? How can
you sometimes use right triangles to find values of these func-
tions? Give examples.

1 1

How can you find values of sec™
a calculator’s keys for cos™!

x, and cot™! x using
1

X, csc”

x, sin"' x, and tan™! x?

What are the derivatives of the inverse trigonometric functions?
How do the domains of the derivatives compare with the domains
of the functions?

What integrals lead to inverse trigonometric functions? How do
substitution and completing the square broaden the application
of these integrals?

What are the six basic hyperbolic functions? Comment on their
domains, ranges, and graphs. What are some of the identities
relating them?

What are the derivatives of the six basic hyperbolic functions?
What are the corresponding integral formulas? What similarities
do you see here with the six basic trigonometric functions?

How are the inverse hyperbolic functions defined? Comment on
their domains, ranges, and graphs. How can you find values
of sech™!x, csch™!x, and coth™'x using a calculator’s keys for
cosh™!x, sinh~!x, and tanh~!x?

What integrals lead naturally to inverse hyperbolic functions?

What is a first order differential equation? When is a function a
solution of such an equation?

How do you solve separable first order differential equations?
How do you solve linear first order differential equations?

What is the slope field of a differential equation y’' = f(x, y)?
What can we learn from such fields?

Describe Euler’s method for solving the initial value problem
Yy = f(x, y), y(xo) = yo numerically. Give an example. Com-
ment on the method’s accuracy. Why might you want to solve
an initial value problem numerically?
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CHAPTER

PRACTICE EXERCISES

Differentiation

In Exercises 1-24, find the derivative of y with respect to the appro-
priate variable.

1. y =10e~*/ 2.y = «/Eeﬁ’(
1 1
3.y= er‘”‘ - 1—6e4" 4, y = x%e >

5. y =In(sin? @) 6. y = In(sec?6)

7. y =log, (x¥2) 8. y=logs; 3x—17)

9. y=8" 10. y =9%
11, y =5x36 12. y=/2x"2
13, y = (x +2)**?2 14. y = 2(In x)*/?

15. y =sin~' /1 —u2,

1
16.y=sin"<— , v>1
NG

17. y =In cos™!

O<u<l

V1—22

1
19.y=ttan‘1t—§lnt

18. y=zcos7!z—

20. y=(1+1%) cot™'2t

2. y=zseclz—v22 -1, z>1
22, y=2/x—1sec!/x

23. y=csc!(sec §), 0<0 <m/2

24. y = (1 +x?)e™ >

Logarithmic Differentiation

In Exercises 25-30, use logarithmic differentiation to find the deriva-
tive of y with respect to the appropriate variable.

2(x*+1) 10/3x +4
25, y = ———= 26 y= 9~
Y J/cos 2x Y 2x — 4
ne -1\’
27. y= <M_Z> , t>2
(=2 +3)
2u2"
28. y=
Y uz+1

29. y = (sin 6)¥? 30. y = (In x)"/tn®

Integration

Evaluate the integrals in Exercises 31-50.

31. fe“ sin (e*) dx 32. /e’ cos (3¢' —2)dt

33. /e‘ sec’ (e — 7)dx

34. /ey csc (e + 1)cot(e? + 1) dy

35, / sec?(x)e™ * dx 36.
1
37. f dx 38.
—1 3x —4
39, / tan = dx 40.
A 3
4
a. | 2L _ar 42.
/0 1225
43. f tan (nv) 44,
v
1 -3
g5, [O 4, 46.
1 2
47. — csc“(1+1n r)dr 48.
r
49. f x3* dx 50.

Evaluate the integrals in Exercises 51-64.

7
51.f de 52.
1

X

4 x 1
53, i )a 54,
fl (8+2x> o

-1
55, f e D dx 56.
-2
Ins
57. f e @B + 1) ar 58.
0
1
s9.f (147 Inx)"dx 60.
1 X
3 1 1 2
6r. [ +D" 62.
1 U+1
8
6
63. / k’%d@ 64.
1

Evalute the integrals in Exercises 65-78.

3/4
65. f _Sdx 66.

_3/4 /9 — 4x?

RS
/«/ﬂ

1/4
/ 2cot mx dx
1/6

CoS ¢
—n/2 1 — sin t

-1
/‘cos(l n v)d
v

/ 20 ¥ sec? x dx

32
1
—d
_/1 S5x x
8/2 8
———=d
_/;(3x x2) x
0
/ e dw
—In2

In9
f & —1)2do
0

1
——dx
/; x+/In x

4
f 1+ Int)t Intdt
2

c8In31 0
/&d(,
1 0

/1/5 6dx
~1/5 /4 — 25x2



67 /2 3dt 68 /3 dt

"), 4+30 " Ja3+12

69 / _ 4y 70 /ﬂ
y4yr —1 yV/y2—16

7 / T__dy 72 f 4y

s 9y =1 s V5?3

73 74

/‘ dx / dx

R RV R VAo P |
to2d ' 3d

75./ v 76./ e
o V2 4+4v+5 42 4+4v+4

dt dt
71. 78. T
/ t+1DV/t2 42t -8 f (3t + 1)4/9¢% + 6¢

Solving Equations with Logarithmic or
Exponential Terms

In Exercises 7984, solve for y.
79. 37 = 2+
81. 9¢¥ = x2

8. In(y—1)=x+Iny

80. 47y =3+2
82. 3V =3Inx
84. In (10In y) =1n 5x

Evaluating Limits
Find the limits in Exercises 85-96.

100 -1 3¢ -1
85. lim 86. lim
x—0 X 6—0 0
zsinx_l 2—sinx_1
87. lim ——— 88. lim ——
=0 e* —1 =0 ¥ —1
5-5 4 — 4¢*
89. lim > =% 90. lim ¢
=0 X —x—1 x—0 xex
— 2 in?
91. lim ﬂl_j—_t) 92. lim M
>0+ 12 x—>4 e 44+ 3 —x
) e 1 .
93. lim { — — - 94. lim e Iny
t—>0* t t y—0t
3\* 3\*
95. lim (1 + —) 96. lim (1 + —)
X—>00 X x—>0* X

Comparing Growth Rates of Functions

97. Does f grow faster, slower, or at the same rate as g as x — 00?

Give reasons for your answers.

a) f(x)=logx, g(x)=logyx
1

b) f(x)=x, g(x)=x+;

¢ f(x)=x/100, g(x)=xe™*

d f@&x)=n=x, g(x) =tan"' x

e) f(x)=csc'x, gx)=1/x

f) f(x)=sinhx, gkx)=¢€"

98

99.

100.

Practice Exercises 549

. Does f grow faster, slower, or at the same rate as g as x — 00?
Give reasons for your answers.

a) f(x)=37", gx)=27"
b) f(x)=In2x, g(x) =In x?
) f(x)=10x3+2x%, gx)=¢e"
d)  f(x)=tan'(1/x), gx)=1/x
e f(x)=sin"'(1/x), gx)=1/x’
f) f(x) =sechx, gx)y=e*

True, or false? Give reasons for your answers.

1 1 1 1 1 1
2 x—zW:O(ﬁ) b F+F=0(x_4)
¢) x=o(x+Inx) d) In(ln x) =o(n x)
e) tan~'x =0() f) cosh x = O(e¥)
True, or false? Give reasons for your answers.

1 1 1 1 1 1
2 F=0(;+;) b )7:"(;2*;)
¢) Inx=o0o(x+1) d) In2x =0(n x)

e) seclx=0() f) sinh x = O(¢e¥)

Theory and Applications

101

102

. The function f(x) = e* + x, being differentiable and one-to-
one, has a differentiable inverse f~'(x). Find the value of
df~!/dx at the point f(In 2).

. Find the inverse of the function f(x) = 1 + (1/x), x # 0. Then
show that f~'(f(x)) = f(f~'(x)) = x and that
df! 1
dx |,  ['x)

In Exercises 103 and 104, find the absolute maximum and minimum
values of each function on the given interval.

1 e
103. y=xIn2x —x, | —, =
y=xln2x —x [Ze 2]
104. y=10x 2 —=1nx), (0,¢?%]
10S. Find the area between the curve y = 2(In x)/x and the x-axis
fromx=1tox =e.
106. a) Show that the area between the curve y = 1/x and the
x-axis from x = 10 to x =20 is the same as the area
between the curve and the x-axis from x =1 to x = 2.
b) Show that the area between the curve y = 1/x and the x-
axis from ka to kb is the same as the area between the curve
and the x-axis fromx =atox=b (0 <a < b,k > 0).
107. A particle is traveling upward and to the right along the curve
y =In x. Its x-coordinate is increasing at the rate (dx/dt) =
»/x m/sec. At what rate is the y-coordinate changing at the point
(€2, 2)?
108. A girl is sliding down a slide shaped like the curve y = 9¢~*/3,

Her y-coordinate is changing at therate dy /dt = (—1/4)/9 —y
ft/sec. At approximately what rate is her x-coordinate changing
when she reaches the bottom of the slide at x = 9 ft? (Take &3
to be 20 and round your answer to the nearest ft/sec.)
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109.

110.

111

.

112.

113.

4% 114.

% 115.

% 116.

B 117.

B 11s.

The rectangle shown here has one side on the positive y-axis,
one side on the positive x-axis, and its upper right-hand vertex
on the curve y = e~ . What dimensions give the rectangle its
largest area, and what is that area?

The rectangle shown here has one side on the positive y-axis,
one side on the positive x-axis, and its upper right-hand vertex
on the curve y = (In x)/x2. What dimensions give the rectangle
its largest area, and what is that area?

X —Inx
02+ Y=
{ L.
o] 1f

The functions f(x) = In 5x and g(x) = In 3x differ by a con-
stant. What constant? Give reasons for your answer.

a) If (Inx)/x = (In 2)/2, must x = 2?
b) If (nx)/x=-2 In2, must x =1/2?

Give reasons for your answers.

The quotient (log, x)/(log, x) has a constant value. What value?
Give reasons for your answer.

logy (2) vs. log, (x). How does f(x) =log, (2) compare with
g(x) = log,(x)? Here is one way to find out:

a) Use the equation log, » = (In b)/(In a) to express f(x)
and g(x) in terms of natural logarithms.

b) Graph f and g together. Comment on the behavior of f
in relation to the signs and values of g.

GRAPHER Graph the following functions and use what you see
to locate and estimate the extreme values, identify the coordi-
nates of the inflection points, and identify the intervals on which
the graphs are concave up and concave down. Then confirm your
estimates by working with the functions’ derivatives.

a) y=(n x)/J/x b)
c) =({1+4+x)e™

GRAPHER Graph f(x) = xIn x. Does the function appear to
have an absolute minimum value? Confirm your answer with
calculus.

CALCULATOR What is the age of a sample of charcoal in which
90% of the carbon-14 originally present has decayed?

XZ

y=e"

Cooling a pie. A deep-dish apple pie, whose internal temper-
ature was 220°F when removed from the oven, was set out on

B 119.

120.

a breezy 40°F porch to cool. Fifteen minutes later, the pie’s
internal temperature was 180°F. How long did it take the pie
to cool from there to 70°F?

Locating a solar station. You are under contract to build a solar
station at ground level on the east-west line between the two
buildings shown here. How far from the taller building should
you place the station to maximize the number of hours it will
be in the sun on a day when the sun passes directly overhead?
Begin by observing that

x
0 =m —cot™! — —cot™!
60

Then find the value of x that maximizes 6.

50 m

A round underwater transmission cable consists of a core of
copper wires surrounded by nonconducting insulation. If x de-
notes the ratio of the radius of the core to the thickness of the
insulation, it is known that the speed of the transmission signal
is given by the equation v = x?In (1/x). If the radius of the
core is 1 cm, what insulation thickness # will allow the greatest
transmission speed?

Initial Value Problems
Solve the initial value problems in Exercises 121-124.

121.

122.

123.

124.

Differential equation Initial condition

dy oy

d—x:e y-2 )’(0):_2

dy ylny )

dx = 142 y(0) =e
dy

x+D)—+2y=x, x>-1 y(0) =1
dx

d

x—y+2y=x2+1, x>0 y()=1

dx



Slope Fields and Euler's Method

In Exercises 125128, sketch part of the equation’s slope field. Then
add to your sketch the solution curve that passes through the point
P(1, —1). Use Euler’s method with x; = 1 and dx = 0.2 to estimate
¥(2). Round your answers to 4 decimal places. Find the exact value
of y(2) for comparison.
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ADDITIONAL EXERCISES—THEORY, EXAMPLES, APPLICATIONS

Limits
Find the limits in Exercises 1-6

b
d
1 lim/ _
b1 Jo /1 —x2
N B A
2. lim - tan~ tdt
x—=00 x Jo

3. lirgl (cos /x)V*
x—0*

. lim (x + %)%~
X =00

1 n 1 + +1
n+l1 n+2 2n

(el/n+82/n+_“+e(n—l)/n+en/n>

5. lim

n—0o0

1
6. lim —
n—-oo n
7. Let A(t) be the area of the region in the first quadrant enclosed
by the coordinate axes, the curve y = e™*, and the vertical line
x =t,t>0. Let V(¢) be the volume of the solid generated by
revolving the region about the x-axis. Find the following limits.
a) lim A(®) b) lim V(@)/A@Ft) ¢ lim V(#)/A(¢)
t—00 =00 t—>0%
8. Varying a logarithm’s base
a)

% b)

Find lim log,2 as a — 0%, 17, 17, and oo.

GRAPHER Graph y =1log,2 as a function of a over the
interval 0 < a < 4.

Determining Parameter Values

9. Find values of a and b for which

i sinax+bx_ 4
xl-rf(l) x3 3

10. Find values of a and b for which

. a cos x —cos bx
lim — =4,
x—0 x2

Theory and Examples

11.

s 12.

13.

s 14.

15.

16.

17.

18.

Find the areas between the curves y = 2(log,x)/x and y =
2(log, x)/x and the x-axis from x =1 to x =e. What is the
ratio of the larger area to the smaller?

GRAPHER Graph f(x) =tan™'x +tan~!(1/x) for =5 <x <
5. Then use calculus to explain what you see. How would you
expect f to behave beyond the interval [—5, 5]? Give reasons for
your answer.

For what x > 0does x*" = (x*)*? Give reasons for your answer.
GRAPHER Graph f(x) = (sin x)%" * over [0, 3 7 ]. Explain what
you see.

S
Find f'(2) if = e8™ and = — dt.
ind f'(2) if f(x) = e** and g(x) /2 T

a) Find df/dx if
“21nt
fx)= / dt.
1 t
b) Find £(0).
¢) What can you conclude about the graph of f? Give reasons

for your answer.

The figure here shows an informal proof that

1
tan~! = + tan™!
an 2—i-an 3

/

—T
e

B

How does the argument go? (Source: “Behold! Sums of Arctan,”
by Edward M. Harris, College Mathematics Journal, Vol. 18, No.
2, March 1987, p. 141.)

€ <e’

a) Why does Fig. 6.44 (on the following page) “prove” that
¢ < "7 (Source: “Proof Without Words,” by Fouad Nakhil,
Mathematics Magazine, Vol. 60, No. 3, June 1987, p. 165.)
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b) Figure 6.44 assumes that f(x) = (In x)/x has an absolute
maximum value at x = e. How do you know it does?

y
6.44 The figure for Exercise 18.

ﬁ’a‘ m|5
N "

0 /I
NOT TO SCALE

19. Use the accompanying figure to show that

/2 T 1
/ sinxdx = = ——f sin”! x dx.
0 2 Jo

y

T
2

| I — -

A
y =sinx,

X

|
|
|
|
|
|
0 1 T
2

20. Napier’s inequality. Here are two pictorial proofs that
1 Inb-Ina 1

b 0 — < -
>a > = b< b—a <a

Explain what is going on in each case.
a Y

by Y

0 a b

(Source: Roger B. Nelson, College Mathematics Journal, Vol. 24,
No. 2, March 1993, p. 165.)

21. Even-odd decompositions

22.

a) Suppose that g is an even function of x and % is an odd
function of x. Show that if g(x) + A(x) = 0 for all x then
g(x) =0 for all x and h(x) = O for all x.

b) Use the result in (a) to show that if f(x) = fe(x) + fo(x)
is the sum of an even function fg(x) and an odd function
fo(x), then

Jex) = (f(xX) + f(=x))/2 and  fo(x) = (f(x) = f(=x))/2.
c¢) What is the significance of the result in (b)?
Let g be a function that is differentiable throughout an open inter-
val containing the origin. Suppose g has the following properties:

. g(x)+g(»)
) gx+y)=————-—
1—g(x)g(y)
x + y in the domain of g.
ii) lim g(h) =0
ity im £ =
h—0 h
a) Show that g(0) = 0.
b) Show that g’'(x) =1 + [g(x)]?.
¢) Find g(x) by solving the differential equation in (b).

for all real numbers x, y, and

1

Applications

23.

24.

25.

Find the center of mass of a thin plate of constant density covering
the region in the first and fourth quadrants enclosed by the curves

=1/(1 +x?)and y = —1/(1 + x?) and by the lines x = 0 and
x =1

The region between the curve y = 1/(24/x) and the x-axis from
x = 1/4 to x = 4 is revolved about the x-axis to generate a solid.

a) Find the volume of the solid.
b) Find the centroid of the region.

The Rule of 70. If you use the approximation In 2 ~ 0.70 (in
place of 0.69314...), you can derive a rule of thumb that says,
“To estimate how many years it will take an amount of money
to double when invested at r percent compounded continuously,
divide r into 70.” For instance, an amount of money invested



26.

27.

at 5% will double in about 70/5 = 14 years. If you want it to
double in 10 years instead, you have to invest it at 70/10 = 7%.
Show how the Rule of 70 is derived. (A similar “Rule of 72”
uses 72 instead of 70, because 72 has more integer factors.)

Free fall in the fourteenth century. In the middle of the four-
teenth century, Albert of Saxony (1316-1390) proposed a model
of free fall that assumed that the velocity of a falling body was
proportional to the distance fallen. It seemed reasonable to think
that a body that had fallen 20 ft might be moving twice as fast as
a body that had fallen 10 ft. And besides, none of the instruments
in use at the time were accurate enough to prove otherwise. To-
day we can see just how far off Albert of Saxony’s model was by
solving the initial value problem implicit in his model. Solve the
problem and compare your solution graphically with the equation
s = 16t2. You will see that it describes a motion that starts too
slowly at first and then becomes too fast too soon to be realistic.

The best branching angles for blood vessels and pipes. When
a smaller pipe branches off from a larger one in a flow system, we
may want it to run off at an angle that is best from some energy-
saving point of view. We might require, for instance, that energy
loss due to friction be minimized along the section AOB shown
in Fig. 6.45. In this diagram, B is a given point to be reached
by the smaller pipe, A is a point in the larger pipe upstream
from B, and O is the point where the branching occurs. A law
due to Poiseuille states that the loss of energy due to friction in
nonturbulent flow is proportional to the length of the path and
inversely proportional to the fourth power of the radius. Thus,
the loss along AO is (kd;)/R* and along OB is (kd,)/r*, where
k is a constant, d; is the length of AO, d, is the length of OB, R
is the radius of the larger pipe, and r is the radius of the smaller
pipe. The angle 6 is to be chosen to minimize the sum of these
two losses:

d,
L:k—]—ez—l—k

d

2
ré’

6.45 Diagram for Exercise 27.

In our model, we assume that AC =a and BC = b are fixed.
Thus we have the relations

di +dycos @ =a dysinf =b,
so that
dy, = b csch,

di =a—dycos 8 =a—bcoth.
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We can express the total loss L as a function of 6:

a—bcotf becesch
L=k T + p .
a) Show that the critical value of 8 for which dL/d6 equals
zero is

6., =cos™ —
CALCULATOR If the ratio of the pipe radii is /R = 5/6,
estimate to the nearest degree the optimal branching angle
given in part (a).

The mathematical analysis described here is also used to explain
the angles at which arteries branch in an animal’s body. (See
Introduction to Mathematics for Life Scientists, Second Edition,
by E. Batschelet [New York: Springer-Verlag, 1976].)

. Group blood testing. During World War II it was necessary to

administer blood tests to large numbers of recruits. There are two
standard ways to administer a blood test to N people. In method 1,
each person is tested separately. In method 2, the blood samples
of x people are pooled and tested as one large sample. If the
test is negative, this one test is enough for all x people. If the
test is positive, then each of the x people is tested separately,
requiring a total of x + 1 tests. Using the second method and
some probability theory it can be shown that, on the average, the
total number of tests y will be

1
y=N(1——qX+—).
x

With ¢ =0.99 and N = 1000, find the integer value of x that
minimizes y. Also find the integer value of x that maximizes y.
(This second result is not important to the real-life situation.) The
group testing method was used in World War II with a savings of
80% over the individual testing method, but not with the given
value of gq.

Transport through a cell membrane. Under some conditions
the result of the movement of a dissolved substance across a cell’s
membrane is described by the equation

dy

2oy
dar Ly

In this equation, y is the concentration of the substance inside
the cell and dy/dt is the rate at which y changes over time. The
letters k, A, V, and ¢ stand for constants, k being the permeability
coefficient (a property of the membrane), A the surface area of
the membrane, V the cell’s volume, and ¢ the concentration of
the substance outside the cell. The equation says that the rate at
which the concentration changes within the cell is proportional
to the difference between it and the outside concentration.

a)
b)

Solve the equation for y(t), using yo to denote y(0).

Find the steady state concentration, lim,_, o y(f).

(Based on Some Mathematical Models in Biology by R. M.
Thrall, J. A. Mortimer, K. R. Rebman, R. F. Baum, Eds.,
Revised Edition, December 1967, PB-202 364, pp. 101-103;
distributed by N.T.L.S., U.S. Department of Commerce.)






