CHAPTER

Infinite Series

OVERVIEW In this chapter we develop a remarkable formula that enables us
to express many functions as “infinite polynomials” and at the same time tells
how much error we will incur if we truncate those polynomials to make them
finite. In addition to providing effective polynomial approximations of differentiable
functions, these infinite polynomials (called power series) have many other uses.
They provide an efficient way to evaluate nonelementary integrals and they solve
differential equations that give insight into heat flow, vibration, chemical diffusion,
and signal transmission. What you will learn here sets the stage for the roles played
by series of functions of all kinds in science and mathematics.

e RS S e
Limits of Sequences of Numbers

Informally, a sequence is an ordered list of things, but in this chapter the things
will usually be numbers. We have seen sequences before, such as the sequence
X0, X1, -« -, Xy, ... of numbers generated by Newton’s method and the sequence
C1,€C2,...,Cn, ... of polygons that define Helga von Koch’s snowflake. These se-
quences have limits, but many equally important sequences do not.

Definitions and Notation
We can list the integer multiples of 3 by assigning each multiple a position:

Domain: 1 2 3...n...

Vel
Range: 36 9 3n

The first number is 3, the second 6, the third 9, and so on. The assignment is a
function that assigns 3n to the nth place. And that is the basic idea for constructing
sequences. There is a function that tells us where each item is to be placed.

Defmltlon

An infinite sequence (or sequence) of numbers is a function whose domain
is the set of integers greater than or equal to some integer ny.
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614 Chapter 8: Infinite Series

Usually ny is 1 and the domain of the sequence is the set of positive integers. But
sometimes we want to start sequences elsewhere. We take no = 0 when we begin
Newton’s method. We might take ny = 3 if we were defining a sequence of n-sided
polygons.

Sequences are defined the way other functions are, some typical rules being

a(n) = /n, a(n)=(—1)"+'rll, a(n) =

n—1

(Example 1 and Fig. 8.1).

To indicate that the domains are sets of integers, we use a letter like n from the
middle of the alphabet for the independent variable, instead of the x, y, z, and ¢
used widely in other contexts. The formulas in the defining rules, however, like
those above, are often valid for domains larger than the set of positive integers.
This can be an advantage, as we will see.

The number a(n) is the nth term of the sequence, or the term with index n. If
a(n) = (n — 1)/n, we have

First term Second term Third term nth term

1 2 n—1
a(l) =0 a(2)=§, a(3)=§, ceey a(n):T.

When we use the subscript notation a, for a(n), the sequence is written

1 2 n—1
=, as = a, = .
2

a1:0, a; = 5, ey n

To describe sequences, we often write the first few terms as well as a formula for
the nth term.

EXAMPLE 1
For the sequence whose

We write defining rule is
1,V2,3/3,/4,..., ... ay =+/n
! 11 1 __1
727 3, an’ an_n

11 1 1
17__9_9-—_5"'7 -—1 "+1_, . n = _1 =

23 g O an = =D

123 n—1 n—1
07_’_’_9' ) 5 n —

2°3°% n a n

12 3 n-—1 n—1
) 5 ) EREEE) -—1 ntl ) n — _1 ntl

2°'3 4 =D ( n ) a =D ( n )
3,3,3,...,3,... a, =3 a

Notation We refer to the sequence whose nth term is a, with the notation
{a,} (“the sequence a sub n”’). The second sequence in Example 1 is {1/n} (“the
sequence 1 over n”); the last sequence is {3} (“the constant sequence 3”).



8.1 The sequences of Example 1 are
graphed here in two different ways: by
plotting the numbers a, on a horizontal
axis and by plotting the points (n, a,) in
the coordinate plane.

The terms a, = +/n eventually surpass
every integer, so the sequence {a,}
diverges, . . .

... but the terms a, = 1/n decrease
steadily and get arbitrarily close to 0 as n
increases, so the sequence {a,} converges
to 0.

The terms a, = (—1)"*'(1/n) alternate in
sign but still converge to 0.

The terms a, = (n — 1)/n approach 1
steadily and get arbitrarily close as n
increases, so the sequence {a,} converges
to 1.

The terms a, = (—1)"t"[(n — 1)/n]
alternate in sign. The positive terms
approach 1. But the negative terms
approach —1 as n increases, so the
sequence {a,} diverges.

The terms in the sequence of constants
an = 3 have the same value regardless of
n, so the sequence {a,} converges to 3.

a a, az a, as

Limits of Sequences of Numbers 615

Diverges
3 (5, x/§)
) (3, \/5) . °
L) o * i)
1 e (2, \/5)
| | | | | n
0 1 2 3 4 5
an Converges to 0

0 1 2
a, = \n
a3 a4y a;
| _ ese—e Y
T *
0 1
a,=1
n o n
a a, az a a
‘2 .4-I .5-3 Al
T T
0 1

1
a,= (_1)n+l Z

a a, as
Py - ooe_l
* 1
0 1
a = n—1
n n
aga, a, a, a; as
-1 0
a :(_1)n+1(n_1)
n n
a
[ | ! - 1 !
T T T . T T
0 1 2 3 4 5
a, =3

a, Diverges
(.2 [2
1 N7 o
(1,0 °
d | | ] | [
0 1 2 3 4 5 6
-1 A I
&z 6.~%)

Converges to 3

3 e O o o o o o o o o

n

AN N Y I N I A |
of 1 23 456 78 910



616 Chapter 8: Infinite Series

0 a,a; a ay " ay,
a’l
L+e
Lp===========~ (n,a,)—=—-g————
L]
e L—¢
. . N, ay)
L]
[ ]
[ 1 1 | 1 1 n
of 1 2 3 N n

82 a,— Lify=Lisa horizontal
asymptote of the sequence of points

{(n, a,)}. In this figure, all the a,'s after ay
lie within € of L.

~
2
2
4
~

a, = (—1y! (nT_l)

Neither the e-interval about 1 nor the
e-interval about —1 contains a complete
tail of the sequence.

(1,0)
d | | ] | |
0
/[ 1\
b 62 -_z)__l_ff
L =3)-(6,%2

8.3 The sequence {(—1)"*'[(n — 1)/n]}
diverges.

Convergence and Divergence

As Fig. 8.1 shows, the sequences of Example 1 do not behave the same way. The
sequences {1/n}, {(—=1)"*'(1/n)}, and {(n — 1)/n} each seem to approach a single
limiting value as n increases, and {3} is at a limiting value from the very first. On
the other hand, terms of {(—1)"*!(n — 1)/n} seem to accumulate near two different
values, —1 and 1, while the terms of {,/n } become increasingly large and do not
accumulate anywhere.

To distinguish sequences that approach a unique limiting value L, as n increases,
from those that do not, we say that the former sequences converge, according to
the following definition.

Definitions

. The sequence {a,} converges to the number L if to every posmve number

€ there corresponds an integer N such that for all n,

n>N;u=> |>~L|<e

If no such number L exists, we say that {a.} dlverges
If {a,} converges to L, we write lim,_,a, = L, or 51mply a, = L,and
call L the limit of the sequence (Fig. 8.2).

EXAMPLE 2  Testing the definition

Show that

a) nlin;o % =0 b) nlirgo k=k (any constant k)

Solution

a) Lete > 0 be given. We must show that there exists an integer N such that for

all n,

1
n>N = l——O < e.
n

This implication will hold if (1/n) < € or n > 1/€. If N is any integer greater

than 1/e, the implication will hold for all n > N. This proves that
lim, 0 (1/n) =
b) Let e > 0 be given. We must show that there exists an integer N such that for
all n,
n>N = lk — k| < e.
Since k —k = 0, we can use any positive integer for N and the implication
will hold. This proves that lim,_,, k = k for any constant k. Q
EXAMPLE 3 Show that {(—=1)"*![(n — 1)/n]} diverges.

Solution Take a positive € smaller than 1 so that the bands shown in Fig. 8.3
about the lines y = 1 and y = —1 do not overlap. Any € < 1 will do. Convergence



Recursion formulas arise regularly in
computer programs and numerical routines
for solving differential equations.

Factorial notation

The notation n! (“n factorial”’) means the
product 1 +2+3 . ... « n of the integers
from 1 to n. Notice that

m+1)!'=((m+1) . n!l Thus,
41=1+2+3.4=24and
5!'=1+2+3+.4.5=5.4!=120. We
define 0! to be 1. Factorials grow even faster
than exponentials, as the following table
suggests.

n e" (rounded) n!
1 3 1
148 120
10 22,026 3,628,800
20 4.9 % 108 2.4 % 108
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to 1 would require every point of the graph beyond a certain index N to lie inside
the upper band, but this will never happen. As soon as a point (n, a,) lies in the
upper band, every alternate point starting with (n + 1, a,+;) will lie in the lower
band. Hence the sequence cannot converge to 1. Likewise, it cannot converge to
—1. On the other hand, because the terms of the sequence get alternately closer
to 1 and —1, they never accumulate near any other value. Therefore, the sequence
diverges. a

The behavior of {(—1)"*![(n — 1)/n]} is qualitatively different from that of
{4/n}, which diverges because it outgrows every real number L. To describe the
behavior of {\/n} we write

lim (W/n) = oo.

n—oo
In speaking of infinity as a limit of a sequence {a,}, we do not mean that the
difference between a, and infinity becomes small as n increases. We mean that a,
becomes numerically large as n increases.

Recursive Definitions

So far, we have calculated each a, directly from the value of n. But sequences are
often defined recursively by giving

1. The value(s) of the initial term or terms, and
2. A rule, called a recursion formula, for calculating any later term from terms
that precede it.

EXAMPLE 4  Sequences constructed recursively

a) The statements ¢; = 1 and a, = a,_; + 1 define the sequence 1,2, 3, ...,n,...
of positive integers. With a; = 1, we have ay =a; +1=2,a3 =a, + 1 =3,
and so on.

b) The statements a; =1 and a, = n - a,_; define the sequence 1, 2, 6, 24,
...,n!, ... of factorials. Witha; =1, wehavea, =2 a1 =2, a3 =3 - a, =
6, as =4 «- a3 = 24, and so on.

¢) The statements a; = 1, a; = 1, and a,4; = a, + a,—; define the sequence 1,
1, 2, 3, 5, ... of Fibonacci numbers. With a¢; =1 and a, = 1, we have
aa=14+1=2,a,=2+1=3,as=3+2=235, and so on.

d) As we can see by applying Newton’s method, the statements xo =1 and
Xni1 = X, — [(sinx, — xf) /(cos x, — 2x,)] define a sequence that converges
to a solution of the equation sinx — x? = 0. d

Subsequences

If the terms of one sequence appear in another sequence in their given order, we
call the first sequence a subsequence of the second.

EXAMPLE 5  Subsequences of the sequence of positive integers

a) The subsequence of even integers: 2,4,6,...,2n,...
b) The subsequence of odd integers: 1,3,5,....2n—1,...
¢) The subsequence of primes: 2,3,5 711, ... a
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The convergence or divergence of a
sequence has nothing to do with how the
sequence begins. It depends only on how
the tails behave.

Subsequences are important for two reasons:

1.

If a sequence {a,} converges to L, then all of its subsequences converge to L.
If we know that a sequence converges, it may be quicker to find or estimate
its limit by examining a particular subsequence.

If any subsequence of a sequence {a,} diverges, or if two subsequences have
different limits, then {a,} diverges. For example, the sequence {(—1)"} diverges
because the subsequence —1, —1, —1, ... of odd numbered terms converges to
—1 while the subsequence 1, 1, 1, ... of even numbered terms converges to 1,
a different limit.

Subsequences also provide a new way to view convergence. A tail of a
sequence is a subsequence that consists of all terms of the sequence from some
index N on. In other words, a tail is one of the sets {a, |n > N}. Another way
to say that a, — L is to say that every e-interval about L contains a tail of
the sequence.

Bounded Nondecreasing Sequences

Definition
A sequence {a,} with the property that a, < a,;; for all n is called a
nondecreasing sequence.

EXAMPLE 6 Nondecreasing sequences

a)
b)
©)

The sequence 1, 2, 3, ..., n, ... of natural numbers
123 n
The sequence —, -, —, ..., Y s
23 4 n+1
The constant sequence {3} a

There are two kinds of nondecreasing sequences—those whose terms increase be-
yond any finite bound and those whose terms do not.

Definitions : ‘

A sequence {a,} is bounded from above if there exists a number M such
that a, < M for all n. The number M is an upper bound for {a,}. If M is
an upper bound for {a,} but no number less than M is an upper bound for
{a,}, then M is the least upper bound for {a,}.

EXAMPLE 7

a)

b)

The sequence 1, 2, 3, ..., n,... has no upper bound.

The sequence 123 "
ucn P A ] )
e 3 1
No number less than 1 is an upper bound for the sequence, so 1 is the least

upper bound (Exercise 47). d

... is bounded above by M = 1.
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y A nondecreasing sequence that is bounded from above always has a least upper
bound. This fact is a consequence of the completeness property of real numbers

y=M but we will not prove it here. Instead, we will prove that if L is the least upper

bound, then the sequence converges to L.

Suppose we plot the points (1, s1), (2, s3), ..., (1, s,), ... in the xy-plane. If M is

y=1L
L . o an upper bound of the sequence, all these points will lie on or below the line y = M
o ° (5,'55) (8, 55) (Fig. 8.4). The line y = L is the lowest such line. None of the points (n, s,) lies
(1,s) ® above y = L, but some do lie above any lower line y = L — ¢, if € is a positive
[ ]

number. The sequence converges to L because

a) s, < L for all values of n and
b) given any € > 0, there exists at least one integer N for which sy > L — €.

8.4 If the terms of a nondecreasing The fact that {s,} is nondecreasing tells us further that
sequence have an upper bound M, they
have a limit L < M. Sp > Sy >L —¢€ forall n > N.

Thus, all the numbers s, beyond the Nth number lie within € of L. This is precisely
the condition for L to be the limit of the sequence s,.

The facts for nondecreasing sequences are summarized in the following theorem.
A similar result holds for nonincreasing sequences (Exercise 41).

Theorem 1
The Nondecreasing Sequence Theorem

A nondecreasing sequence of real numbers converges if and only if it is
bounded from above. If a nondecreasing sequence converges, it converges
to its least upper bound.

Exercises 8.1

Finding Terms of a Sequence 10. a; = -2, a, =na,/(n+1)
Each of Exercises 1-6 gives a formula for the nth term a, of a 1. gy =ay =1, G =auy +a,
sequence {a,}. Find the values of ay, a5, a3, and ay. 12 a1 =2, ay=—1, Gur=ansi/a
1—n 1
1l a, = P 2.a,l=a
-1 n+1 . . I
3.4, = (2 ) : 4 a =24 (1) Finding a Sequence’s Formula
n- In Exercises 13-22, find a formula for the nth term of the sequence.
2" 2" -1 “. with alternating
5. a,= on+l 6. a, = o 13. The sequence 1,—-1,1,—-1,1,... li:n‘:’”h alternating
I’s with alternating
Each of Exercises 7-12 gives the first term or two of a sequence along 14. The sequence —1, 1, -1,1, -1, ... si;n\:“ emann
with a recursion formula for the remaining terms. Write out the first Squares of the positive
ten terms of the sequence. 15. The sequence 1, —4,9, —16,25, ... integers, with
7o ar=1, @u=an+(1/27) alternating signs
8. a =1, aui=a,/n+1) 11 1 1 Reciprocals of squares

16. The sequence 1, ——, -, ——, —, ... of the positive integers,
9. a1=2, Gy = (=1 a,/2 49 16" 25 with alternating signs
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Squares of the positive
integers diminished
by 1

17. The sequence 0, 3, 8, 15,24, ...

Integers beginning

18. The sequence —3, —2, with 3

-1,0,1,...

Every other odd
positive integer

19. The sequence 1,5,9,13,17, ...

Every other even
positive integer

20. The sequence 2, 6, 10, 14,18, ...

21. The sequence 1,0,1,0,1,... Alternating 1’s and 0’s

Each positive
integer repeated

22. The sequence 0,1,1,2,2,3,3,4,...

B Calculator Explorations of Limits

In Exercises 23-26, experiment with a calculator to find a value of
N that will make the inequality hold for all » > N. Assuming that
the inequality is the one from the formal definition of the limit of a
sequence, what sequence is being considered in each case and what
is its limit?

23. |4/05-1 <1073 24, |¥n—1] <1073

25. (0.9)" <1073 26. 2"/n! < 1077

27. Sequences generated by Newton’s method. Newton’s method,
applied to a differentiable function f(x), begins with a starting
value xo and constructs from it a sequence of numbers {x,} that
under favorable circumstances converges to a zero of f. The
recursion formula for the sequence is

ACD)
fr)

a) Show that the recursion formula for f(x) = x> —a, a > 0,
can be written as x,.; = (x, + a/x,)/2.

b) Starting with xo = 1 and a = 3, calculate successive terms
of the sequence until the display begins to repeat. What
number is being approximated? Explain.

Xn+1 = Xp

28. (Continuation of Exercise 27.) Repeat part (b) of Exercise 27
with @ = 2 in place of a = 3.

29. Arecursive definition of /2. If you start with x; = 1 and define
the subsequent terms of {x,} by the rule x, = x,_; + cos x,_,
you generate a sequence that converges rapidly to 7 /2. (a) Try it.
(b) Use the accompanying figure to explain why the convergence
is so rapid.

COS X, _;

n-1

n-1

30. According to a front-page article in the December 15, 1992, issue
of The Wall Street Journal, Ford Motor Company now uses about
7% hours of labor to produce stampings for the average vehicle,
down from an estimated 15 hours in 1980. The Japanese need
only about 3% hours.
Ford’s improvement since 1980 represents an average decrease
of 6% per year. If that rate continues, then n years from now Ford
will use about

S, = 7.25(0.94)"

hours of labor to produce stampings for the average vehicle. As-

suming that the Japanese continue to spend 3% hours per vehicle,

how many more years will it take Ford to catch up? Find out two

ways:

a) Find the first term of the sequence {S,} that is less than or
equal to 3.5.

GRAPHER Graph f(x) = 7.25(0.94)* and use TRACE to
find where the graph crosses the line y = 3.5.

4% b)

Theory and Examples

In Exercises 31-34, determine if the sequence is nondecreasing and
if it is bounded from above.

1 !
M. g =0t 32 g, = 2!
n+1 (n+ D!
2""
3. 4= 2 Moa=2-2-L
n! n

Which of the sequences in Exercises 35—40 converge, and which
diverge? Give reasons for your answers.

1 1
35.a,=1— - 36. a, =n— —
n n

2" —1 2" —1
= 38. a, =
2 ="

39. g, = (=1)"+ 1) (” : 1)

40. The first term of a sequence is x; = cos (1). The next terms are
X, = x; or cos (2), whichever is larger; and x; = x; or cos(3),
whichever is larger (farther to the right). In general,

37. a,

Xn41 = Max {x,,cos (n'+ 1)}.

41. Nonincreasing sequences. A sequence of numbers {a,} in which
a, > a4 for every n is called a nonincreasing sequence. A se-
quence {a,} is bounded from below if there is a number M
with M < a, for every n. Such a number M is called a lower
bound for the sequence. Deduce from Theorem 1 that a non-
increasing sequence that is bounded from below converges and
that a nonincreasing sequence that is not bounded from below
diverges.

(Continuation of Exercise 41.) Using the conclusion of Exercise 41,
determine which of the sequences in Exercises 42-46 converge and
which diverge.



1 1+ /2
42. a, ="+ 3. gy = TV
n NG
1 —4n 4n+l 3n
4. a, = 45 ay = — 2
2n 4n
46. a; =1, a,41 =2a,-3

47. The sequence {n/(n + 1)} has a least upper bound of 1. Show
that if M is a number less than 1, then the terms of {n/(n + 1)}
eventually exceed M. That is, if M < 1 there is an integer N such
that n/(n + 1) > M whenever n > N. Since n/(n + 1) < 1 for
every n, this proves that 1 is a least upper bound for {n/(n + 1)}.

48. Uniqueness of least upper bounds. Show that if M, and M,
are least upper bounds for the sequence {a,}, then M; = M,. That
is, a sequence cannot have two different least upper bounds.

49. Is it true that a sequence {a,} of positive numbers must converge
if it is bounded from above? Give reasons for your answer.

50. Prove that if {a,} is a convergent sequence, then to every positive
number € there corresponds an integer N such that for all m
and n,

m>N and n>N = |a,—a,| <e.

51. Uniqueness of limits. Prove that limits of sequences are unique.
That is, show that if L, and L, are numbers such that a, — L;
and a, —> Lz, then Ll = Lz.

52. Limits and subsequences. Prove that if two subsequences of a
sequence {a,} have different limits L, # L,, then {a,} diverges.

53. For a sequence {a,} the terms of even index are denoted by ay
and the terms of odd index by ay,. Prove that if a, — L and
a4 — L, then a, — L.

54. Prove that a sequence {a,} converges to O if and only if the
sequence of absolute values {|a,|} converges to 0.

@ cas Explorations and Projects

Use a CAS to perform the following steps for the sequences in Ex-
ercises 55-66.

a) Calculate and then plot the first 25 terms of the sequence. Does
the sequence appear to be bounded from above or below? Does
it appear to converge or diverge? If it does converge, what is the
limit L?

b) If the sequence converges, find an integer N such that |a, — L| <
0.01 for n > N. How far in the sequence do you have to get for
the terms to lie within 0.0001 of L?

0.5\"
55. a, = n 56. a,,:(1+—>
n

5. a, =1, apy1=a,+—

5n

58. a, =1, a1 =a,+(=2)"

1
59. a, = sinn 60. a, = nsin —
n

' 1
6. a, = " 62. a, = =
n n
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63. a, = (0.9999)" 64. a, = 123456'/"

8" 41
65. =y 66. anzﬁ
67. Compound interest, deposits, and withdrawals. If you invest
an amount of money Ao at a fixed annual interest rate r com-
pounded m times per year, and if the constant amount b is added
to the account at the end of each compounding period (or taken
from the account if » < 0), then the amount you have after n + 1
compounding periods is

A1 = (H%) Ay +b. (1)

a) If Ap = 1000, r =0.02015, m = 12, and b = 50, calculate
and plot the first 100 points (n, A,). How much money is
in your account at the end of 5 years? Does {A,} converge?
Is {A,} bounded?

b) Repeat part (a) with Ao = 5000, r = 0.0589, m = 12, and
b = -50.

¢) If youinvest 5000 dollars in a certificate of deposit (CD) that
pays 4.5% annually, compounded quarterly, and you make
no further investments in the CD, approximately how many
years will it take before you have 20,000 dollars? What if
the CD earns 6.25%?

d) It can be shown that for any k£ > 0, the sequence defined
recursively by Eq. (1) satisfies the relation

a=(1+2) (404 22) =22 @
m r r
For the values of the constants Ao, r, m, and b given in
part (a), validate this assertion by comparing the values of
the first 50 terms of both sequences. Then show by direct
substitution that the terms in Eq. (2) satisfy the recursion
formula (1).

68. Logistic difference equation. The recursive relation
apy1 = ran(l - an)

is called the logistic difference equation, and when the initial

value gy is given the equation defines the logistic sequence {a,}.

Throughout this exercise we choose aj in the interval 0 < gy < 1,

say ap = 0.3.

a) Choose r = 3/4. Calculate and plot the points (n, a,) for the
first 100 terms in the sequence. Does it appear to converge?
What do you guess is the limit? Does the limit seem to
depend on your choice of ay?

b) Choose several values of r in the interval 1 <r < 3 and
repeat the procedures in part (a). Be sure to choose some
points near the endpoints of the interval. Describe the be-
havior of the sequences you observe in your plots.

¢) Now examine the behavior of the sequence for values of r
near the endpoints of the interval 3 < r < 3.45. The tran-
sition value r = 3 is called a bifurcation value and the
new behavior of the sequence in the interval is called an
attracting 2-cycle. Explain why this reasonably describes
the behavior.

d) Next explore the behavior for » values near the endpoints of
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each of the intervals 3.45 < r < 3.54 and 3.54 < r < 3.55.
Plot the first 200 terms of the sequences. Describe in your
own words the behavior observed in your plots for each
interval. Among how many values does the sequence appear
to oscillate for each interval? The values r =3.45 and r =
3.54 (rounded to 2 decimal places) are also called bifurcation
values because the behavior of the sequence changes as r

g

crosses over those values.

e)

The situation gets even more interesting. There is actually
an increasing sequence of bifurcation values 3 < 3.45 <
354 <-.- < ¢, < Cyyr - such that for ¢, <r < ¢,y the
logistic sequence {a,} eventually oscillates steadily among
2" values, called an attracting 2"-cycle. Moreover, the bi-
furcation sequence {c,} is bounded above by 3.57 (so it
converges). If you choose a value of r < 3.57 you will ob-
serve a 2"-cycle of some sort. Choose r = 3.5695 and plot
300 points.

Let us see what happens when r > 3.57. Choose r = 3.65
and calculate and plot the first 300 terms of {a,}. Observe
how the terms wander around in an unpredictable, chaotic
fashion. You cannot predict the value of a,; from the value
of a,.

For r = 3.65 choose two starting values of gy that are close
together, say, ap = 0.3 and gy = 0.301. Calculate and plot
the first 300 values of the sequences determined by each
starting value. Compare the behaviors observed in your
plots. How far out do you go before the corresponding terms
of your two sequences appear to depart from each other?
Repeat the exploration for r = 3.75. Can you see how the
plots look different depending on your choice of a;? We say
that the logistic sequence is sensitive to the initial condi-
tion aq.

Theorems for Calculating Limits of Sequences

The study of limits would be cumbersome if we had to answer every question
about convergence by applying the definition. Fortunately, three theorems make
this largely unnecessary. The first is a version of Theorem 1, Section 1.2.

Theorem 2

Let {a,} and {b,} be sequences of real numbers and let A and B be real
numbers. The following rules hold if lim, ., @, = A and lim,, ., b, = B.

1.

9 _ W N

Sum Rule:
. Difference Rule:
. Product Rule:

Constant Multiple Rule:

Quotient Rule:

lim, .o (@, +b,) =A+B

lim,_, (@, —b,) =A—B

lim, .o (@, +b,) =A-B

lim,, o (k+b,) =k +B (Any number k)

a A
lim, e — = — if B#0
im, 3 B i #

n

EXAMPLE 1 By combining Theorem 2 with the limit results in Example 2 of
the preceding section, we have
1 1
lim (—~) =—-1.1lm —-=-1.0=0
n—00 n n—>o0 n
n—1 . 1 . .
lim =lm(l--)=Ilm1l—-Ilm -=1-0=1
n—00 n n—00 n n—00 n—o0o n
.5 . .1
lim —=5.1lm -« lim —-=5-0.0=0
n—o0o p2 n—»00 B n—>o n
4 —7nb @/n%-7 0-7

m = = —
nsoo 14+ (3/nf) 140
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One consequence of Theorem 2 is that every nonzero multiple of a divergent
sequence {a,} diverges. For suppose, to the contrary, that {ca,} converges for some
number ¢ # 0. Then, by taking k = 1/c in the Constant Multiple Rule in Theorem
2, we see that the sequence

1
~ . ca, | = (a,)
c

converges. Thus, {ca,} cannot converge unless {a,} also converges. If {a,} does not
converge, then {ca,} does not converge.

The next theorem is the sequence version of the Sandwich Theorem in Section
1.2.

Theorem 3
The Sandwich Theorem for Sequences

Let {a,}, {b,}, and {c,} be sequences of real numbers. If a, < b, < ¢, holds
for all n beyond some index N, and if lim, 00 @, = limy0 ¢ = L, then
lim,_, o b, = L also.

An immediate consequence of Theorem 3 is that, if |b,| < ¢, and ¢, — 0, then
b, — 0 because —c, < b, < c,. We use this fact in the next example.

EXAMPLE 2 Since 1/n — 0, we know that

a) cos n 50 because cos n _ | cos n| < l;
n n n n
1 1 1
b) — =0 because — < -
2" 7~ n’
1 1
¢) (-DH)'-—->0 because (—1)”—— < -.
n n n a

The application of Theorems 2 and 3 is broadened by a theorem stating that
applying a continuous function to a convergent sequence produces a convergent
sequence. We state the theorem without proof.

: Theorem 4 ;
The Contmuous Functuon Theorem for Sequences

Let {a,,} be a sequence of real numbers. If a, — L and if f is a function
that is contlnuous at L and defined at all a,, then f(a,) — f(L).

EXAMPLE 3 Show that \/(n + 1)/n — 1.

Solution We know that (n + 1)/n — 1. Taking f(x) = +/x and L =1 in Theo-
rem 4 gives /(n + 1)/n — /1 = 1. a
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. = Technology The Sequence {2'/"} What happens if you enter 2 in your
= calculator and take square roots repeatedly? The numbers form a sequence that

i appears to converge to 1, as suggested in the accompanying table. Try it for
& yourself.

21/n

S

2 1.4142 13562

4 1.1892 07115

8 1.0905 07733

64 1.0108 89286
256 1.0027 11275
1024 1.0006 77131
16384 1.0000 42307

What is happening in the table above? The sequence {1/n} converges to 0.
By taking a, = 1/n, f(x) =2%, and L =0 in Theorem 4, we see that 2!/" =
f(/n) = f(L) =2°=1. Since the successive square roots of 2 form a sub-
sequence 2!/2,21/4 218 of {2!/"}, the square roots must converge to 1 also
(Fig. 8.5).

Using I’'Hopital’s Rule

The next theorem enables us to use I’Hopital’s rule to find the limits of some

sequences.
Theorem 5
. s Suppose that f(x) is a function defined for all x > ny and that {a,} is a
AR 1 * sequence of real numbers such that a, = f(n) for n > ny. Then
3 2

lim f(x)=1L = lim a, =L.
X—>00 n—00
85 Asn— o, 1/n — 0 and 2" — 2°,

Proof Suppose that lim,_, ., f(x) = L. Then for each positive number € there is
a number M such that for all x,

x>M = |f(x) —L| <e.
Let N be an integer greater than M and greater than or equal to ny. Then

n>N = a, = f(n) and la, —L|=|f(n)— L <e. Q1

EXAMPLE 4 Show that lim,_, o, (In n)/n =0.

Solution The function (In x)/x is defined for all x > 1 and agrees with the given
sequence at positive integers. Therefore, by Theorem 5, lim, . (In n)/n will equal
lim,_, o (In x)/x if the latter exists. A single application of 1’Hopital’s rule shows
that

In x . I/x O

Iim — = lim — =-=0.
X=>00 X X—>00 1 1



Table 8.1
1

1. 1m ~2 -0
n—00 n

2, lim Yn=1
n—-oo

3. lim xV/" =1 (x>0
n—-oo

4, lim x"=0 (x| < 1)
n—-oo

5. lim (1 + f)" —¢*  (Anyx)
n—>oo n
.ox"
6. lim - = 0 (Any x)

n—>o0 pn!

In formulas (3)—(6), x remains fixed as
n— oo.
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We conclude that lim,_, o, (In n)/n = 0. a

When we use 1’Hopital’s rule to find the limit of a sequence, we often treat n
as a continuous real variable and differentiate directly with respect to n. This saves
us from having to rewrite the formula for a, as we did in Example 4.

EXAMPLE 5 Find lim,,» (2"/5n).

Solution By I’Hopital’s rule,
.2 . 2".In2
lim — = lim ———
n—o0 Jn n—00

Limits That Arise Frequently

The limits in Table 8.1 arise frequently. The first limit is from Example 4. The next
two can be proved by taking logarithms and applying Theorem 4 (Exercises 71 and
72). The remaining proofs can be found in Appendix 6.

EXAMPLE 6 Limits from Table 8.1
2
1. ln(n)=21nn—>2-0=0 Formula 1
n n
2. Jn?2=n¥"= (nl/")2 i (1)2 =1 Formula 2

Formula 3 with x = 3, and Formula 2

3. Bn=3""@nlny51.1=1

4. (—%) -0

Formula 4 with x = —1
2
n-2\" -2\" _
5 =14 — — e 2 Formula 5 with x = =2
n n
100"
6. 0 -0 Formula 6 with x = 100 0
EXAMPLE 7 Does the sequence whose nth term is

( l)n
n
n 1

converge? If so, find lim,_,o, a,.

Solution The limit leads to the indeterminate form 1°°. We can apply 1I’Hopital’s
rule if we first change the form to oo - 0 by taking the natural logarithm of a,:
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Then,
1
lim Ina, = lim nln<n+ ) o0+ 0
n—00 n—oo n — 1
(n + 1)
In
— lim _n_—_L_ 0
n— 00 l/n 0
o Y@=
= ngglo _1/n2 Hopital's rule
2 2
= lim =2,

n—oo n2—1 -
Since In a, — 2, and f(x) = €* is continuous, Theorem 4 tells us that
a, = elna,, N 62.

The sequence {a,} converges to e2. a

*¢ Picard’s Method for Finding Roots

The problem of solving the equation

fx)=0 (M
is equivalent to that of solving the equation
gx) = fx) +x=x, )

obtained by adding x to both sides of Eq. (1). By this simple change, we cast Eq.
(1) into a form that may render it solvable on a computer by a powerful method
called Picard’s method (after the French mathematician Charles Emile Picard,
1856-1941).

If the domain of g contains the range of g, we can start with a point x in the
domain and apply g repeatedly to get

x1 = g(xo), Xy = g(x1), x3 = g(x2), 3

Under simple restrictions that we will describe shortly, the sequence generated by
the recursion formula x,,; = g(x,) will converge to a point x for which g(x) = x.
This point solves the equation f(x) = 0 because

fxX)=gx)—x=x—-—x=0. (4)

A point x for which g(x) = x is a fixed point of g. We see in Eq. (4) that the
fixed points of g are precisely the roots of f.

EXAMPLE 8  Testing the method

Solve the equation
1

— 3 =x.
4x + X
Solution By algebra, we know that the solution is x = 4. To apply Picard’s method,
we take
1
g(x) = =X + 37

4



2 glx) = %x+ 3 = xatthis point Y =X
4+ (s 80) _ y = %x +3
(1 8059) IR
— ,
3 ! P
i
| i {
+ H {
— i |
2 | i |
| i 1
| | {
- ! {
1 %0 [
| | i
i !
I R R ¥ B
w=1 2 3\ 4 5
0 X, = 3.25

8.6 The Picard solution of the equation
g(x) = (1/4)x + 3 = x (Example 8).

y
_u x=073909 /=
(.54, .86)" | (.86, .65)
| )z
=
(.54, 54) y = cosx

X
Bl TN

COORDINATES ROUNDED

8.7 The solution of cosx = x by Picard’s
method starting at xo = 1 (Example 9).

y
—>
|
|
y=dx—12/4
|
I
>
I
- 4,4)
4 \:\The fixed point of
| glx)y=4x—12is
_ < Tx=4.
Y=
Lo
Y o[A
(N
N B
TR *
0 if xp 4 'x,
N
I
I
v

8.8 Applying the Picard method to
g(x) = 4x — 12 will not find the fixed
point unless xp is the fixed point 4 itself
(Example 10).
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choose a starting point, say xo = 1, and calculate the initial terms of the sequence
Xnp1 = g(x,). Table 8.2 lists the results. In 10 steps, the solution of the original
equation is found with an error of magnitude less than 3 x 107°.

Figure 8.6 shows the geometry of the solution. We start with xo =1 and
calculate the first value g(xo). This becomes the second x-value x;. The second
y-value g(x;) becomes the third x-value x,, and so on. The process is shown as a path
(called the iteration path) that starts at xo = 1, moves up to (xg, g(xo)) = (xo, X1),
over to (xi, x;), up to (x1, g(x;)), and so on. The path converges to the point where
the graph of g meets the line y = x. This is the point where g(x) = x. a

Table 8.2 Successive iterates of g(x) =(1/4)x+3, starting with x, =1

Xn L Xni1 = gn) = (1/4) X, +3
xo =1 x1 = g(xo) = (1/4)(1) + 3 = 3.25
x; =3.25 x; = g(x;) = (1/4)(3.25) + 3 = 3.8125
x; = 3.8125 x3 = g(x) = 3.953125
x3 =3.953125 x, = 3.9882 8125
: xs = 3.9970 70313
x¢ = 3.9992 67578
x7 = 3.9998 16895
xg = 3.9999 54224
x9 = 3.9999 88556
x10 = 3.9999 97139
EXAMPLE 9 Solve the equation cos x = x.

Solution We take g(x) = cos x, choose xy = 1 as a starting value, and use the
recursion formula x,,; = g(x,) to find

xg = 1, x, =cos 1, X3 = Ccos (X1),....

We can approximate the first 50 terms or so on a calculator in radian mode by
entering 1 and taking the cosine repeatedly. The display stops changing when
cos x = x to the number of decimal places in the display.
Try it for yourself. As you continue to take the cosine, the successive approx-
imations lie alternately above and below the fixed point x = 0.739085133....
Figure 8.7 shows that the values oscillate this way because the path of the
procedure spirals around the fixed point.

EXAMPLE 10 Picard’s method will not solve the equation

g(x) =4x — 12 =x.

As Fig. 8.8 shows, any choice of xq except xo = 4, the solution itself, generates a
divergent sequence that moves away from the solution. a

The difficulty in Example 10 can be traced to the fact that the slope of the
line y = 4x — 12 exceeds 1, the slope of the line y = x. Conversely, the process
worked in Example 8 because the slope of the line y = (1/4)x + 3 was numerically
less than 1. A theorem from advanced calculus tells us that if g’(x) is continuous on a
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closed interval I whose interior contains a solution of the equation g(x) = x, and if
|g’(x)| < 1 on I, then any choice of xo in the interior of / will lead to the solution.
(See the introduction to Exercises 83 and 84 about what to do if |g'(x)| > 1.)

Exercises 8.2

Finding Limits 35. a, = Y4n 36. a, = /3t
Which of the sequences {a,} in Exercises 1-62 converge, and which _n! - .
diverge? Find the limit of each convergent sequence. 37. ay = nn (Hint: Compare with 1/n.)
n+(—1)" —4)" !
1. a, =2+ (0.1)" 2 gy = FED 38. g = P 39. a, = —
n n! 106"
1-2n 2n+1 ! 1\ /nm
3.a,= 4. g, = ——— __"m —
ST W O 0= 4 a"—(5>
1 —5n* n+3 1\" 3 n
5a,=——— 6. gy = ——— _ _(3n+1
a n4+ 8”3 a nz +5n +6 42. a, = ln (1 + r_z) 43. a, = <3n 1
2.2 1 1—n n
7. a2t 8. 4y = T o[
n—1 70 — 4n? san =\
1
9. a, =1+ (-1) 10. a, = (-1)" (1 - —) x" n
n 45. a, = , x>0
1 | 2n+1
11.a,,=<"2+ )(1——) 1\ 3.6
n n =(1—- = 29
46. a,,_(l n2> 47. W=
1 1
12. a, = (2 - —) (3 + —) (10/11)*
n " 48. n = 49. n = h
2 2 = 9710y + (11/12)" n = Tam
(=™ 1\ 2 1
13. ay = 5— 14. a, = | -3 50. a, = sinh (In ) 51. a, = zn"_ Csin ~
15. a, = |2 16 ! 52 1 ! 53 |
. a, = . Ay = . Ay = — — . a, = -
n 1 0.9)" a, =n cos — a, =tan"'n
17. a, = sin (E.,.l) 18. a, =nmcos(nm) 54. anz_.l._tan“]n 55. a, = 1 "+L
2 n Jn 3 V2r
. )
sin n sin“ n 1 200
19. 4, = — 20. a, = —, 56. a, = Yn’ +n 57. q, = 01
n
n 3" In n)’
21'“'1:; 22"’":;5 58.an=-——([i/ri) 59. a,=n—+/n?—n
n
23. ,= 200+ D 24 In n 1 11
= —— e Ay =
cn " 60. a, = 61. a, = — —d
vn In 2n a Yo R e an =~ /1 Zdx
25. a, = 8!/" 26. a, = (0.03)!/ "
7\" 1\ 62.a,,=/-—pdx, p>1
27.a,,=<1+~) 28.a,,=(1——) Px
n n
29. a, = J/10n 30. a, = V/n?
3\ Theory and Examples
31 a, = (—) 32. a, = (n + 4/ y P ) ] )
n 63. The first term of a sequence is x; = 1. Each succeeding term is
Inn the sum of all those that come before it:
33. a,= 4.0, =Inn—-In(rn+1)

nt/n Xntl = X1+ X2+ -+ Xp.



64.

65.

66.

67.

Write out enough early terms of the sequence to deduce a general
formula for x, that holds for n > 2.

A sequence of rational numbers is described as follows:
1 3 7 17 a a+2b
172512777 b a+b’

Here the numerators form one sequence, the denominators form
a second sequence, and their ratios form a third sequence. Let
x, and y, be, respectively, the numerator and the denominator of
the nth fraction r, = x,/y,.

a)  Verify that x> — 2y? = —1, x? — 2y? = +1 and, more gen-
erally, that if a> — 2b? = —1 or +1, then
(@a+2b)?> —2@+b?=+1 or -1,
respectively.
b) The fractions r, = x,/y, approach a limit as n increases.

What is that limit? (Hint: Use part (a) to show that r2 — 2 =
+(1/y,)? and that y, is not less than 7.)

Newton’s method. The following sequences come from the re-
cursion formula for Newton’s method,
Sl

)
Do the sequences converge? If so, to what value? In each case,
begin by identifying the function f that generates the sequence.

Xpt+1 = Xn

x3—2__x,, 1

a =1, =X, =ty
)Xo Xnil =X 7 >+ =
tan x, — 1
b) x0=1s Xn+1 =xn—an+
sec? x,
c) x=1, Xn+1 =x,—1
a) Suppose that f(x) is differentiable for all x in [0, 1] and

that f(0) = 0. Define the sequence {a,} by the rule a, =
nf (1/n). Show that lim,_, a, = f'(0).

Use the result in part (a) to find the limits of the following
sequences {a,}.

1
b) a,=ntan"! - ¢) a,=n'"-1)
n

2
d) a,=nln (l—l——)
n

Pythagorean triples. A triple of positive integers a, b, and ¢
is called a Pythagorean triple if a®> + b> = c%. Let a be an odd
positive integer and let

2] =

be, respectively, the integer floor
and ceiling for a?/2.

68.

& 1)

69.

70.

71.
72.
73.
74.
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a) Show that a® 4+ b? = 2. (Hint: Let a = 2n + 1 and express
b and c in terms of n.)
b) By direct calculation, or by appealing to the figure here, find

lim .
a—o0 aZ
Show that lim,_ o, (2n7)"®) =1 and hence, using Stir-

ling’s approximation (Chapter 7, Additional Exercise 50a),
that

The nth root of n!

a)

vn! =~

for large values of n.

oS

CALCULATOR Test the approximation in (a) for n = 40,

50, 60, ..., as far as your calculator will allow.
a) Assuming that lim,_, ., (1/n°) = 0 if c is any positive con-
stant, show that
In
lim — =0
n—-o00 p¢
if ¢ is any positive constant.
b) Prove that lim,_,» (1/n°) = 0if c is any positive constant.

(Hint: If € = 0.001 and ¢ = 0.04, how large should N be
to ensure that |1/n° — 0| <€ if n > N?)

The zipper theorem. Prove the “zipper theorem” for sequences:
If {a,} and {b,} both converge to L, then the sequence

ay, by, ay, by, ..., a, by, ...
converges to L.
Prove that lim,_,o, ¥/n = 1.
Prove that lim,_, o, x"/" =1, (x > 0).
Prove Theorem 3.

Prove Theorem 4.

3¢ Picard’s Method

B

CALCULATOR Use Picard’s method to solve the equations in

Exercises 75-80.

75.
71.
79.

80.
81.

82.

76. x> =x

78. cosx =x+1

Jx=x
cosx+x=0
x —sinx =0.1
Jx =4 — /14 x (Hint: Square both sides first.)

Solving the equation \/x = x by Picard’s method finds the solu-
tion x = 1 but not the solution x = 0. Why? (Hint: Graph y = x
and y = /x together.)

Solving the equation x?> = x by Picard’s method with |xo| # 1
can find the solution x = 0 but not the solution x = 1. Why?
(Hint: Graph y = x? and y = x together.)
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Slope greater than 1. Example 10 showed that we cannot apply
Picard’s method to find a fixed point of g(x) = 4x — 12. But we
can apply the method to find a fixed point of g~'(x) = (1/4)x + 3
because the derivative of g~! is 1/4, whose value is less than 1 in
magnitude on any interval. In Example 8, we found the fixed point of
g~ ! to be x = 4. Now notice that 4 is also a fixed point of g, since

g@) =4(4) - 12=4.

In finding the fixed point of g~!, we found the fixed point of g.

A function and its inverse always have the same fixed points.
The graphs of the functions are symmetric about the line y = x and
therefore intersect the line at the same points.

We now see that the application of Picard’s method is quite broad.
For suppose g is one-to-one, with a continuous first derivative whose
magnitude is greater than 1 on a closed interval / whose interior
contains a fixed point of g. Then the derivative of g~', being the
reciprocal of g’, has magnitude less than 1 on /. Picard’s method
applied to g=' on I will find the fixed point of g. As cases in point,
find the fixed points of the functions in Exercises 83 and 84.

83. g(x) =2x+3
84. g(x) =1—-4x

Infinite Series

In mathematics and science we often write functions as infinite polynomials,

such as
1

—1———=1+x+x2+x3+~'+x”+-~,
—x

Ix] <1,

(we will see the importance of doing so as the chapter continues). For any allowable
value of x, we evaluate the polynomial as an infinite sum of constants, a sum we
call an infinite series. The goal of this section and the next four is to familiarize
ourselves with infinite series.

Series and Partial Sums

We begin by asking how to assign meaning to an expression like

TR
27478716 '

The way to do so is not to try to add all the terms at once (we cannot) but rather
to add the terms one at a time from the beginning and look for a pattern in how
these partial sums grow.

Partial sum Value

first: si=1 2-1
second: =14+ ! 2 !
FoREATS 2

third 1+ ! + ! 2 !
rd: = — 4~ - =

! 53 27 % 4
th: =1+ ! + L +-oo 4 2 !

e WEITITG 201 21

Indeed there is a pattern. The partial sums form a sequence whose nth term is

1
n—=1"

Sy, =2 —



8.3 Infinite Series

This sequence converges to 2 because lim,_, o, (1/2") = 0. We say

1 1
“the sum of the infinite series 1 + 3 + 7 + -4 + .- 1827

n—1

631

Is the sum of any finite number of terms in this series equal to 2? No. Can we
actually add an infinite number of terms one by one? No. But we can still define
their sum by defining it to be the limit of the sequence of partial sums as n — oo,
in this case 2 (Fig. 8.9). Our knowledge of sequences and limits enables us to break

away from the confines of finite sums.

0 1 172 178 2

8.9 As the lengths 1, 1/2, 1/4, 1/8, ... are added one by one, the sum approaches 2.

Definitions
Given a sequence of numbers {a,}, an expression of the form

atatastotag+oo

is an infinite series. The number a, is the nth term of the series. The

sequence {s,} defined by
S1 =4

S =a+a

n
Sp=a1+a+---+a, = E .
k=1

is the sequence of partial sums of the series, the number s, being the nth
partial sum. If the sequence of partial sums converges to a limit L, we say
that the series converges and that its sum is L. In this case, we also write

00
al+a2+...+an+---zzan=L.
n=1

If the sequence of partial sums of the series does not converge, we say that

the series diverges.

When we begin to study a given series a; +a; + -+ - +a, + - - -, we might not
know whether it converges or diverges. In either case, it is convenient to use sigma

notation to write the series as

A useful shorthand

00 00
E a,, E ay, or E a, when summation from
n=1 k=1

| to oc is understood
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Equation (2) holds only if the summation
begins with n = 1.

Geometric Series

Geometric series are series of the form

00
a—i—ar—#—arz—{—---—l—ar"‘l—i—---=2:ar"_l (1)
n=1

in which a and r are fixed real numbers and a # 0. The ratio r can be positive,
as in
1+l + 1+...+(l)n_l+...,
2 4 2

or negative, as in

-2 42 (-0 -
3709

If » = 1, the nth partial sum of the series in (1) is
sp=a+al)+a)?+ - -+a()"" =na,

and the series diverges because lim,_, s, = & 00, depending on the sign of a. If
r = —1, the series diverges because the nth partial sums’alternate between a and
0. If |r| # 1, we can determine the convergence or divergence of the series in the
following way:

sp=a+ar+ar*+--- +ar"’!

rsp =ar+ar*+---+ar"' +ar" Multiply s, by r.
Subtract rs, from s,.
Sp—rs, =a—ar" Most of the terms on
the right cancel.
sp(l—=r)=a(l-r") Factor.
5 = a(l-r") r £1) We can solve for
T 1=y ) su if r# 1

If |r] <1, then r* — 0 as n — oo (as in Section 8.2) and s, — a/(1 —r). If
|r| > 1, then |r"| — oo and the series diverges.

If |r| < 1, the geometric series a + ar +ar* +--- + ar"! + - .. converges
toa/(1—r):

Zar""l = ¢ , Ir] < 1. (2)
— 1—-r

If |r| > 1, the series diverges.

EXAMPLE 1 The geometric series witha =1/9 and r = 1/3 is

1 1 1 > 1 /1\"! 1/9 1
§+ﬁ+a+"'—§§(§) == "6 -

1



(b)

8.10 (a) Example 3 shows how to use a
geometric series to calculate the total
vertical distance traveled by a bouncing
ball if the height of each rebound is
reduced by the factor r. (b) A strobo-
scopic photo of a bouncing ball.

8.3 Infinite Series

EXAMPLE 2 The series

Z(l)" 5+5 5+
16 64

is a geometric series with a = —5/4 and r = —1/4. It converges to
a  =5/4 _
1—r  1+(1/4)

633

Q

EXAMPLE 3 You drop a ball from a meters above a flat surface. Each time
the ball hits the surface after falling a distance A, it rebounds a distance rh, where
r is positive but less than 1. Find the total distance the ball travels up and down

(Fig. 8.10).

Solution The total distance is
2ar 14+r

=a

s=a+2ar+2ar*+2ar*+.---=a+
This sum is 2ar/(1 —r).

If a = 6 m and r = 2/3, for instance, the distance is

14273 m _
= 6——1 oY) _6(1/3> = 30m.

EXAMPLE 4  Repeating decimals

Express the repeating decimal 5.23 23 23 ... as the ratio of two integers.

Solution

23 23 23
5232323...=5+— —_—
+ 100 + (100)2 + (100)3

Y N P 2+
100 100 \ 100

1/(1-0.01)

23 1 23 518
) =542
=5+ 100 (0.99) + 99 99

Telescoping Series

—r 1—r

r=1/100

Unfortunately, formulas like the one for the sum of a convergent geometric series
are rare and we usually have to settle for an estimate of a series’ sum (more about
this later). The next example, however, is another case in which we can find the

sum exactly.

ad 1
EXAMPLE 5 Find the sum of the series Z _
i n(n+1)

Solution We look for a pattern in the sequence of partial sums that might lead to
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P lim s, = 1

k—o0

5 6\{ +55=5/6
1 {——s4=4/5
4:5 Lis,=3/4
1 {
3.4
15, =2/3
1 s =1- L
2-3 k k+1
15, =112
1
1-2
Lo

8.11 The partial sums of the series in
Example 5.

a formula for s;. The key, as in the integration

[ 5 ]5n
x(x+1) x+1

is partial fractions. The observation that

11 1 -
k(k+1) — k k41

permits us to write the partial sum

2ot D 12 23t T ws

GGt e
“*=\172)7a73) T kT ew)

Removing parentheses and canceling the terms of opposite sign collapses the sum
to

as

1
S L 5
Sk k+1 ©)

We now see that s, — 1 as k — 0o. The series converges, and its sum is 1 (Fig.

8.11).
sz (n+ D

Divergent Series

Geometric series with |r| > 1 are not the only series to diverge.

EXAMPLE 6 The series
Dot =1+4449+ 0+
n=l1

diverges because the partial sums grow beyond every number L. After n = 1, the
partial sum s, = 1+4 +9+--- 4+ n? is greater than n’. a

EXAMPLE 7 The series

00
+1 2 3 4 n+1
n 1 2 3 n

n=1

diverges because the partial sums eventually outgrow every preassigned number.
Each term is greater than 1, so the sum of n terms is greater than n. d

The nth-Term Test for Divergence

Observe that lim,_, ,, @, must equal zero if the series fo’:l a, converges. To see
why, let S represent the series’ sum and s, = a; +a, + - - - + a, the nth partial



Caution

Theorem 6 does not say that ¥, , a,

converges if a, — 0. It is possible for a
series to diverge when a, — 0.

8.3 Infinite Series 635

sum. When 7 is large, both s, and s,_; are close to S, so their difference, a,, is
close to zero. More formally,

-~ S—S=0. Difference Rule for

An = Sn — Sn-1 sequences

Theorem 6

o0
If Z a, converges, then a, — 0.

n=1

Theorem 6 leads to a test for detecting the kind of divergence that occurred in
Examples 6-8.

The nth-Term Test for Divergence

(o]
Zan diverges if lim a, fails to exist or is different from zero.
n—oo

n=1

EXAMPLE 8 In applying the nth-Term Test, we can see that

o0

a) an diverges because n?> — oo
n=1
o0

1
b) Z % diverges because

n=1

1
n — 1

(o ¢)
c) Z:(—l)”+1 diverges because lim,_,o, (—1)"*! does not exist

n=1

d) i g b I e Lo

iverges because lim,_, oo ——— = — = .
Loy g5 D “m+5 2 0
EXAMPLE 9 a, — 0 but the series diverges
The series

1+1+1+1+1+1+1+ + ! + : +-+ : +

2 2 4 4 4 4 n n on

S N ——

2 terms 4 terms 2" terms
diverges even though its terms form a sequence that converges to 0. d

Combining Series

Whenever we have two convergent series, we can add them term by term, subtract
them term by term, or multiply them by constants to make new convergent series.
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Theorem 7

If Y a,=A and )_ b, = B are convergent series, then

1. Sum Rule: Y@+b)=Ya,+Yb,=A+B
2. Difference Rule: @—-b)=Ya,—Yb,=A-B

3. Constant Multiple Rule: Y ka,=kY a,=kA  (Any number k).

Proof The three rules for series follow from the analogous rules for sequences in
Theorem 2, Section 8.2. To prove the Sum Rule for series, let

Ay =a+a+---+a,, B,=b+by+---+b,.
Then the partial sums of )_(a, + b,) are
Sp=(a1+b)+(@+b)+---+(a, +b,)
=(@+--+a)+bi+---+by)
= A, + B,.

Since A, — A and B, — B, we have S, — A + B by the Sum Rule for sequences.
The proof of the Difference Rule is similar.

To prove the Constant Multiple Rule for series, observe that the partial sums
of Y ka, form the sequence

Sy =ka, +kay+---+ka,=k(a,+a,+---+a,) =kA,,
which converges to kA by the Constant Multiple Rule for sequences. a
As corollaries of Theorem 7, we have

1. Every nonzero constant multiple of a divergent series diverges.

2. If ) a, converges and ) _ b, diverges, then ) (a, + b,) and Y _(a, — b,) both
diverge.

We omit the proofs.

EXAMPLE 10 Find the sums of the following series.

©3-l_1 &/ 1
a) ; 6n—1 <2n—1

n=1
o0
= Z Difference Rule
— — 6n— 1
— 1 _ 1 Geometric series with ¢ = | and
1-(1/2) 1-(1/6) r="Wx1/6
6
=2 - =
5
4
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b) XI: i =4 Z o= Constant Multiple Rule
n= n=1
_ 1 Geometric series with ¢ = 1,
=45 r=1n
1—(1/2)
=8 a

Adding or Deleting Terms

We can always add a finite number of terms to a series or delete a finite number
of terms without altering the series’ convergence or divergence, although in the
case of convergence this will usually change the sum. If )", a, converges, then
Y oo, an converges for any k > 1 and

oo o0
Yap=ar+a+-ta+ Y a,. (6)

n=1 n=k

Conversely, if Y -, a, converges for any k > 1, then Zm: a, converges. Thus,

1
— =t — 4 — 7
25 + +125+Z (7)
and
2, 1 =1 111
— = — - - =- —. 8
;5" <;5) 5 25 125 ®
Reindexing

As long as we preserve the order of its terms, we can reindex any series without
altering its convergence. To raise the starting value of the index 4 units, replace the
n in the formula for a, by n — h:

[ce] o0
E an = E np =a1+ay+az+---
n=1

n=1+h

To lower the starting value of the index /4 units, replace the n in the formula for

a, by n+ h:
o0 o0
Zan = Z Anyp =a1+az+az+---.
n=1

n=1-h

It works like a horizontal shift.

EXAMPLE 11 We can write the geometric series that starts with

1+ : + 1 +
2 4
as
Yo Yy oreen Yo
n=0 n=5 n=—4
The partial sums remain the same no matter what indexing we choose. d

We usually give preference to indexings that lead to simple expressions.
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Exercises 8.3

Finding nth Partial Sums

In Exercises 1-6, find a formula for the nth partial sum of each series
and use it to find the series’ sum if the series converges.

2 2 2 2
L2444t

3927 3n-1
2 2 +i+ o +--t 2 +
* 100 1002 ' 1003 100"

3.1_1+1_1+...+(_1)"‘1L+...
2 4 8 2n-1
4. 1-244-8+--+ (=124 ...
R N S R S
2.3 3.4 4.5 n+D@n+2)
64 D
1.2 2.3 3.4 n(n+1)

Series with Geometric Terms

In Exercises 7—14, write out the first few terms of each series to show
how the series starts. Then find the sum of the series.

2, (=1 2,
7. ; - 8.

o0 o0
9 ;41 10. 2:6(—1)":—"
11.

1 (_ 1)" el 2n+1
— 14.
) >(%

Telescoping Series

Use partial fractions to find the sum of each series in Exercises 15-22.
00 4 00 6

15. —_ 16. I —
,,Z:{ (4n—-3)(4n+1) ; @C2n-1DR2n+1)

= 40n i 2n+1

17. 2n — 1)2(2n + 1)? n%(n + 1)2

n=1 n=1

19 i 1 1 20 i L1
=AWV " \2Un T 2T
> 1 1
21. =
;(ln(n-i-Z) ln(n+1))

22. Z(tan"' (n) —tan"'(n + 1))
n=1

Convergence or Divergence

Which series in Exercises 23—40 converge, and which diverge? Give
reasons for your answers. If a series converges, find its sum.

23. 2 (f/l—i) 24. g(ﬁ)"

[oe) 3 o0

25. Z(—l)"“z—n 26. Z(—-l)”“n
n=1 n=1
(o] o0

27. Y cosn 28. ) 2
n=0 n=0 5
[ee) [ee) 1

29, ) e 30. Zln -
n=0 n=1 n
2 1

31 ZIO" 2. —, IxI>1

33. 34.

36. i%

]
e 10

N
=
w
R
—
=
I
N R
—
|
S| -
3

3s.

37.

M ik 1
'5' [y
=B
B <
+ |
Q./
&
M2
=3
—~
1Ny
+ S
N

3
Il

39.

e
A~
E N
N—
=
&
[
N

3
Il
=}
3
Il
o

Geometric Series

In each of the geometric series in Exercises 41-44, write out the first
few terms of the series to find a and r, and find the sum of the series.
Then express the inequality |r| < 1 in terms of x and find the values
of x for which the inequality holds and the series converges.

41. i(—l)"x" 42. i(——l)"xz"
n=0 n=0

00 —~1\" © (1) n
43. % 3 (i‘——> 4, 3D (——1—>

— 2 — 2 3 +sinx
In Exercises 45-50, find the values of x for which the given geometric

series converges. Also, find the sum of the series (as a function of x)
for those values of x.

[oe) [oe)
45. ) 2"x" 46. Z(—l)"x‘z"
n=0 n=0

47. 3 (1)"(x+ 1)
n=0

00
49. Z sin” x
n=0

48. Z (-%) (x — 3)"
n=0

50. i(ln x)"
n=0



Repeating Decimals

Express each of the numbers in Exercises 51-58 as the ratio of two

integers.

51. 0.23=0.23 23 23 ...

52. 0.234 =0.234 234 234 ...

53. 0.7 =0.7777...

54. 0.d =0.dddd ..., where d is a digit
55. 0.06 = 0.06666 ...

56. 1.414 = 1.414 414 414 ...

57.

58

1.24123 = 1.24 123 123 123 ...
. 3.142857 = 3.142857 142857 ...

Theory and Examples

59

61.

62.

63.

65.

66.

67.

. The series in Exercise 5 can also be written as
o0 1 > 1
Z(n+1)(n+2) Z(n+3)(n+4)'

n=1 n=-—1

Write it as a sum beginning with (a) n = =2, (b) n =0,
(c)n=>5.

. The series in Exercise 6 can also be written as

> 5
;n(n-l-l)

Write it as a sum beginning with (a) n = —1, (b) n = 3,
(c) n =20.

Make up an infinite series of nonzero terms whose sum is
a) 1 b) -3 ¢ 0.

Can you make an infinite series of nonzero terms that converges
to any number you want? Explain.

Kl 5
and Z ——(n Y

n=0

Make up an example of two divergent infinite series whose term-
by-term sum converges.

Show by example that _(a,/b,) may diverge even though ) a,
and )_ b, converge and no b, equals 0.

. Find convergent geometric series A =Y a, and B =) b, that
illustrate the fact that ) _ a,b, may converge without being equal
to AB.

Show by example that > (a,/b,) may converge to something
other than A/B even when A=) a,, B=) b, #0, and no
b, equals 0.

If Y a, converges and a, > O for all n, can anything be said
about Y (1/a,)? Give reasons for your answer.

What happens if you add a finite number of terms to a divergent
series or delete a finite number of terms from a divergent series?
Give reasons for your answer.

. If > a, converges and ) b, diverges, can anything be said
about their term-by-term sum ) _(a, + b,)? Give reasons for your
answer.

69.

70.

71.

72.

73.

74.

75.

76.

Exercises 8.3 639

Make up a geometric series Y ar"~! that converges to the number
5if
a) a=2 b) a=13/2.

Find the value of b for which
l+e’+e*+e+...=09.
For what values of r does the infinite series
1+2r+r2 428 +r* 428 +r8 4+ - -
converge? Find the sum of the series when it converges.

Show that the error (L — s,) obtained by replacing a convergent
geometric series with one of its partial sums s, is ar”/(1 —r).

A ball is dropped from a height of 4 m. Each time it strikes the
pavement after falling from a height of # meters it rebounds to
a height of 0.75h meters. Find the total distance the ball travels
up and down.

(Continuation of Exercise 73.) Find the total number of seconds
the ball in Exercise 73 is traveling. (Hint: The formula s = 4.9¢*

gives t = 4/s/4.9.)

The accompanying figure shows the first five of a sequence of
squares. The outermost square has an area of 4 m?. Each of the
other squares is obtained by joining the midpoints of the sides of
the squares before it. Find the sum of the areas of all the squares.

AN

The accompanying figure shows the first three rows and part of
the fourth row of a sequence of rows of semicircles. There are
2" semicircles in the nth row, each of radius 1/2". Find the sum
of the areas of all the semicircles.

<

_ Y
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77. Helga von Koch’s snowflake curve. Helga von Koch’s snowflake
(p- 167) is a curve of infinite length that encloses a region of finite
area. To see why this is so, suppose the curve is generated by
starting with an equilateral triangle whose sides have length 1.

a) Find the length L, of the nth curve C, and show that

lim,_, o L, = o0.

b) Find the area A, of the region enclosed by C, and calculate

lim,_, o A,.

78. The accompanying figure provides an informal proof that
3> ,(1/n?) is less than 2. Explain what is going on. (Source:
“Convergence with Pictures” by P. J. Rippon, American Mathe-
matical Monthly, Vol. 93, No. 6, 1986, pp. 476-78.)

The Integral Test for Series

of Nonnegative Terms
Given a series Y a,, we have two questions:

1. Does the series converge?
2. If it converges, what is its sum?

Much of the rest of this chapter is devoted to the first question. But as a practical
matter, the second question is just as important, and we will return to it later.

In this section and the next two, we study series that do not have negative terms.
The reason for this restriction is that the partial sums of these series form non-
decreasing sequences, and nondecreasing sequences that are bounded from above
always converge (Theorem 1, Section 8.1). To show that a series of nonnegative
terms converges, we need only show that its partial sums are bounded from above.

It may at first seem to be a drawback that this approach establishes the fact of
convergence without producing the sum of the series in question. Surely it would
be better to compute sums of series directly from formulas for their partial sums.
But in most cases such formulas are not available, and in their absence we have
to turn instead to the two-step procedure of first establishing convergence and then
approximating the sum.

Nondecreasing Partial Sums
Suppose that > | a, is an infinite series with a, > 0 for all n. Then each partial
sum is greater than or equal to its predecessor because s,+1 = s, + ay:

S] <85 853 = S8 SSppp S0

Since the partial sums form a nondecreasing sequence, the Nondecreasing Sequence
Theorem (Theorem 1, Section 8.1) tells us that the series will converge if and only
if the partial sums are bounded from above.

Corollary of Theorem 1

A rles Zn_ an of nonnegatlve terms converges 1f and only if its partial
s ims are bounded fro above ' e -




Caution

Notice that the nth-Term Test for diver-
gence does not detect the divergence of
the harmonic series. The nth term, 1/n,
goes to zero, but the series still diverges.

Nicole Oresme (1320-1382)

The argument we use to show the divergence
of the harmonic series was devised by the
French theologian, mathematician, physicist,
and bishop Nicole Oresme (pronounced “or-
rem”). Oresme was a vigorous opponent of
astrology, a dynamic preacher, an adviser of
princes, a friend of King Charles V, a pop-
ularizer of science, and a skillful translator
of Latin into French.

Oresme did not believe in Albert of Sax-
ony’s generally accepted model of free fall
(Chapter 6, Additional Exercise 26) but pre-
ferred Aristotle’s constant-acceleration mod-
el, the model that became popular among
Oxford scholars in the 1330s and that Galileo
eventually used three hundred years later.

y
— (1, £(1)
Graph of f(x) = =
1
7|\ @
L 1
3% (3,03) =
4 L )
Jr
0 1 2 3 4 n—1n

8.12 Figure for the area comparisons in
Example 2.

8.4 The Integral Test for Series of Nonnegative Terms 641

EXAMPLE 1 The harmonic series
The series
> 1
Z—_H—+ +- + +-
n 3

is called the harmonic series. It diverges because there is no upper bound for its
partial sums. To see why, group the terms of the series in the following way:

R O Y (I IS B R A
2°\374)"\57677"38 9710 m
———’

1 8 _1
=3 > 16 =

The sum of the first two terms is 1.5. The sum of the next two terms is 1/3 4+ 1/4,
which is greater than 1/4 + 1/4 = 1/2. The sum of the next four terms is 1/5 +
1/6 +1/7 + 1/8, which is greater than 1/8 + 1/8 +1/8 + 1/8 = 1/2. The sum of
the next eight terms is 1/9+1/10+1/11+1/12+1/13 +1/14 4+ 1/15 + 1/16,
which is greater than 8/16 = 1/2. The sum of the next 16 terms is greater than
16/32 = 1/2, and so on. In general, the sum of 2" terms ending with 1/2"*! is
greater than 2"/2"*! = 1/2. The sequence of partial sums is not bounded from
above: If n = 2*, the partial sum s,, is greater than k /2. The harmonic series diverges.

Q

The Integral Test

We introduce the Integral Test with a series that is related to the harmonic series,
but whose nth term is 1/n? instead of 1/n.

EXAMPLE 2 Does the following series converge”
= 1 1
E =1 — 1
o + - + 9 + T +- + 5+ (M

Solution We determine the convergence of Y .. (1/ n?) by comparing it with
floo(l /x?)dx. To carry out the comparison, we think of the terms of the series
as values of the function f(x) = 1/x? and interpret these values as the areas of
rectangles under the curve y = 1/x2.

As Fig. 8.12 shows,

T 1
S=ptmtptoots
=f+fA+fG®+---+ 1)

<ﬂD+/-%M
1 X

* 1
<1+/ —dx
;o x?

As in Section 7.6, Example 8,
<l+1=2. b

flx(l/xz)dx = 1.
Thus the partial sums of Y -, 1/n* are bounded from above (by 2) and the series
converges. The sum of the series is known to be 72/6 &~ 1.64493. a
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Caution

The series and integral need not have the
same value in the convergent case. As we
saw in Example 2, ¥ _, (1/n?) = =2/6
while [["(1/x?)dx = 1.

y
“ wﬁﬁ'
a
a, .
0 1 2 3 n n+1
(a
y
a, y = f(x)
a
2 ay
a, N
0 1 2 3 n—1n

(b)

8.13 Subject to the conditions of the
Integral Test, the series Y-, a, and the

integral f1°° f(x) dx both converge or both
diverge.

The Integral Test

Let {a,} be a sequence of positive terms. Suppose that a, = f(n), where
f is a continuous, positive, decreasing function of x for all x > N (N a
positive integer). Then the series ) . , a, and the integral [y f(x) dx both
converge or both diverge.

Proof We establish the test for the case N = 1. The proof for general N is similar.

We start with the assumption that f is a decreasing function with f(n) = a,
for every n. This leads us to observe that the rectangles in Fig. 8.13(a), which
have areas ay, ay, ..., a,, collectively enclose more area than that under the curve
y = f(x) from x =1 to x =n + 1. That is,

n+l1
f fxdx <aj+a+---+a,.
1

In Fig. 8.13(b) the rectangles have been faced to the left instead of to the right. If
we momentarily disregard the first rectangle, of area a;, we see that

a+az+---+a, 5/ f(x)dx.
1
If we include a;, we have

a+a+---+a, §a1+f fx)dx.
1

Combining these results gives
n+1

f(x)dxsa1+az+---+an§a1+/ Fx)dx. @)
1 1

If floo f(x)dx is finite, the right-hand inequality shows that Y a, is finite. If

f1°° f(x)dx is infinite, the left-hand inequality shows that )_ a, is infinite.
Hence the series and the integral are both finite or both infinite. a

EXAMPLE 3  The p-series. Show that the p-series

>0 1 _ 1 1 1 1 3)
ﬁ—ﬁ+§;+§;+"'+;+"' (

n=1
(p a real constant) converges if p > 1, and diverges if p < 1.

Solution If p > 1, then f(x) = 1/xP is a positive decreasing function of x. Since

S | 0 x—-p+l b
/ ———dxzf x"Pdx = lim
1 xP 1 b— 00 -p +1 1

_ 1 I 1 1
T 11— )4 bLIglo pp-1

_ 1 O—1)= 1
_l—p _p—l’

the series converges by the Integral Test.

b~' — ocoas b — oo
because p — 1 > 0.
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If p<1,thenl— p>0and

[ =
1 xP

T dm 7 D=

—dx =

The series diverges by the Integral Test.
If p =1, we have the (divergent) harmonic series

1 1 1
1+_+_+...+;+....

2 3

We have convergence for p > 1 but divergence for every other value of p.

Q

Exercises 8.4

Determining Convergence or Divergence

Which of the series in Exercises 1-30 converge, and which diverge?
Give reasons for your answers. (When you check an answer, remem-
ber that there may be more than one way to determine the series’

convergence or divergence.)

2.

10. 11.

13. 14.

X 1

16. —_—
n=1 ﬁ(ﬁ + 1)

17.

3

19.

n

i (In 2)"
(1/n)

3 (In n)vIn?n — 1
1

21.

M8

3
1l

23.

25.

27.

29.

o0
2e”

3

gk

iMe 18
“% 5 g

—

Mg iD8
5 ¥

=

i

N~
5
3

20.

22.

24.

26.

28.

30.

w
M3
+

3
Il
S

&
gk

S
i
3

A
Mg iR ilMe
S

3
Il

ire
/N S

—
=
S

S

S}

B

|

=
w S
S

(3]
+

3

+

+

N——
B

w

Theory and Examples

For what values of a, if any, do the series in Exercises 31 and 32
converge?

31.

33.

B 1)

34.

35.

36.

37.

& a 1 X 1 2a
- 32. -
,,;(n-l-Z n+4) E(n—l n+1>

a) Draw illustrations like those in Figs. 8.12 and 8.13 to show
that the partial sums of the harmonic series satisfy the in-

equalities

In(n+1)

n+1 1 1
/ —dx <14+ +—
\ X 2 n

IA

"1
1—+—/ —dx=1+Inn.
X

There is absolutely no empirical evidence for the divergence
of the harmonic series even though we know it diverges. The
partial sums just grow too slowly. To see what we mean,
suppose you had started with s, = 1 the day the universe
was formed, 13 billion years ago, and added a new term
every second. About how large would the partial sum s, be
today, assuming a 365-day year?

Are there any values of x for which Y o=, (1/(nx)) converges?
Give reasons for your answer.

Is it true that if Y 72 | a, is a divergent series of positive numbers
then there is also a divergent series ) .-, b, of positive numbers
with b, < a, for every n? Is there a “smallest” divergent series
of positive numbers? Give reasons for your answers.

(Continuation of Exercise 35) Is there a “largest” convergent
series of positive numbers? Explain.

The Cauchy condensation test. The Cauchy condensation test
says: Let {a,} be a nonincreasing sequence (a, > a,; for all n)
of positive terms that converges to 0. Then ) a, converges if and
only if > 2"ay converges. For example, Y (1/n) diverges be-

cause Y 2"+ (1/2") =Y 1 diverges. Show why the test works.
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38.

39.

40.

41.

Use the Cauchy condensation test from Exercise 37 to show that

o0
a) diverges;
n—anlnn
M|
by Y — converges if p > 1 and diverges if p < 1.
n=1 1

Logarithmic p-series
a) Show that

/‘ ®©  dx

5 x(In x)?
converges if and only if p > 1.

b) What implications does the fact in (a) have for the conver-

gence of the series
Z n(ln n)P

Give reasons for your answer.

(p a positive constant)

(Continuation of Exercise 39.) Use the result in Exercise 39 to
determine which of the following series converge and which di-
verge. Support your answer in each case.

00 o0 1
2) ; n(ln n) b) a2 n(ln n)1o1
00 1 o0 1
d -
O L) 'L nn

Euler’s constant. Graphs like those in Fig. 8.13 suggest that as
n increases there is little change in the difference between the
sum

l+1+ +1
2 n

"1
lnn=/ —dx.
X

To explore this idea, carry out the following steps.

and the integral

a) By taking f(x) = 1/x in inequality (2), show that

1 1
1H(n+1)§1+§+-~~+—51+lnn
n
or
1 1
0<1n(n+1)—lnn51+§+~--+——lnn§1.
n
Thus, the sequence
1 1
a,=14+-+---+——Inn
2 n

is bounded from below and from above.
b) Show that

1
n+1

n+1
</ —dx=In(n+1)—Inn,
n X

and use this result to show that the sequence {a,} in part

(a) is decreasing.
Since a decreasing sequence that is bounded from below con-
verges (Exercise 41 in Section 8.1), the numbers a, defined in
(a) converge:

1
14+ =-+---
+ > +

The number y, whose value is 0.5772 .. ., is called Euler’s con-
stant. In contrast to other special numbers like 77 and e, no other
expression with a simple law of formulation has ever been found
for y.

1
+ ——Inn—>y.
n

42. Use the integral test to show that

o0
2

—n

n=0

converges.

Comparison Tests for Series of
Nonnegative Terms

The key question in using Corollary 1 in the preceding section is how to determine
in any particular instance whether the s,’s are bounded from above. Sometimes we
can establish this by showing that each s, is less than or equal to the corresponding
partial sum of a series already known to converge.

EXAMPLE 1

The series

11 :
ZO——+ R TR TRt (1)
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converges because its terms are all positive and less than or equal to the corre-
sponding terms of

1+ii—1+1+l+i+ @)
L O 22

To see how this relationship leads to an upper bound for the partial sums of

Yoo o(1/(nh)), let

_q 1 1 1
Sp = +T!'+2—!+"'+E
and observe that, for each n,
<1+1+1+1+ + ! 1+§:1 1+ ! 3
Sp < — J—— < — = - =
2 22 2n-1 2n 1—(1/2)

n=0

Thus the partial sums of Y o (1/(n!)) are all less than 3, so > - (1/(n!)) con-
verges.

The fact that 3 is an upper bound for the partial sums of Y oo (1/(n!)) does
not mean that the series converges to 3. As we will see in Section 8.10, the series
converges to e. a

The Direct Comparison Test

We established the convergence in Example 1 by comparing the terms of the given
series with the terms of a series known to converge. This idea can be pursued
further to yield a number of tests known as comparison tests.

Direct Comparison Test for Series of Nonnegative Terms
Let ) a, be a series with no negative terms.

a) Y a, converges if there is a convergent series »_ ¢, with a, < ¢, for
all n > N, for some integer N.

b) Y a, diverges if there is a divergent series of nonnegative terms Y  d,
with a, > d, for all n > N, for some integer N.

Proof In part (a), the partial sums of ) _ a, are bounded above by

M=a +a+---+a,+ Z Cn.
n=N+1
They therefore form a nondecreasing sequence with a limit L < M.

In part (b), the partial sums of Y _ a, are not bounded from above. If they were,
the partial sums for ) d, would be bounded by

o0
M =d+d+-+dy+ Y a

n=N+1
and )_ d, would have to converge instead of diverge. u

To apply the Direct Comparison Test to a series, we need not include the early
terms of the series. We can start the test with any index N provided we include all
the terms of the series being tested from there on.
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EXAMPLE 2 Does the following series converge?

5+2+1+1+1+1+1+ + +-
3 7 3! k!
Solution We ignore the first four terms and compare the remaining terms with
those of the convergent geometric series Y .., 1/2". We see that

: + ! + 1 + 1 + - ! + < +
231 4! 2 4
Therefore, the original series converges by the Direct Comparison Test. a

To apply the Direct Comparison Test, we need to have on hand a list of series
whose convergence or divergence we know. Here is what we know so far:

Convergent series Divergent series

Geometric series with |r| < 1 Geometric series with |r| > 1

o0
1
Telescoping series like Z The harmonic series Z -

n(n+1) —
The series Z - Any series Y _ a, for which
n=o 't lim,_, », a, does not exist or
lim,_, o0 @, # 0
The p-series ; pr with p > 1 The p-series Z] = with p <1

The Limit Comparison Test

We now introduce a comparison test that is particularly handy for series in which
a, is a rational function of n.
Suppose we wanted to investigate the convergence of the series

e 2n ©_ 8n3 + 10012 + 1000
a) an n+1 b) 2n% —n+5 )

n=2

In determining convergence or divergence, only the tails matter. And when n is
very large, the highest powers in the numerator and denominator matter the most.
So in (a), we might reason this way: For n large,

2n
n2—n+1

a, =

behaves like 2n/n* = 2/n. Since Y_ 1/n diverges, we expect Y _ a, to diverge, too.
In (b) we might reason that for n large

8n3 + 100n* + 1000
2n® —n+5

a, =

will behave approximately like (8n3)/(2n®) = 4/n>. Since Y 4/n® converges (it is
4 times a convergent p-series), we expect Y _ a, to converge, too.

Our expectations about _a, in each case are correct, as the following test
shows.



We could just as well have taken b, =2/n
but 1/n is simpler.
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Limit Comparison Test
Suppose that a, > 0 and b, > 0 for all n > N (N an integer).

1. If lim dn _ ¢ > 0,then )_a, and ) _ b, both converge or both diverge.

n—>00 n

2. If lim 2 =0and > b, converges, then Y _ a, converges.

n—>00 n

3. If lim 2% = 00 and > b, diverges, then ) _ a, diverges.

n—oo n

Proof We will prove part (1). Parts (2) and (3) are left as Exercises 37 (a) and (b).
Since ¢/2 > 0, there exists an integer N such that for all n

c Limit definition with
n>N= ——C < —. €=c/2, L =c, and
bn 2 a, replaced by «, /b,
Thus, forn > N,
c a, c
-z < -——-c<g,
2 b, 2
c a, 3c
—< — < —,
2 b, 2

c 3c
(E) b, <a, < <7> b,.
If Y b, converges, then Y (3c/2)b, converges and Y _ a, converges by the Direct

Comparison Test. If >_ b, diverges, then Y (c/2)b, diverges and Y _ a, diverges by
the Direct Comparison Test.

EXAMPLE 3 Which of the following series converge, and which diverge?

35 7 9 N 2n+ 1 2, 2n+1
2 Z+9+R+_+ R il D
111 °°
b) - —
) 1+3+7+ +- ;2'1—1
o l+21n2+1+31n3+1+4ln4+ _i1+nlnn
9 14 21 &~ n?+5

Solution

a) Let a, = (2n+1)/(n*+2n + 1). For n large, we expect a, to behave like
2n/n* =2/n, so we let b, = 1/n. Since

i b, = i % diverges
n=1 n=I1

and

lim 2 = lim 20 +n
n—oo bn _n—>00 n2+2n+l

s

> a, diverges by part 1 of the Limit Comparison Test.
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b) Leta, =1/(2" —1). For n large, we expect a, to behave like 1/2", so we let
b, = 1/2". Since

o0 o0 1
Z b, = — converges
n=1 n=1 2”
and
. ay . 2"
lim — = lim
n—>o0o b, n—oo 2 — 1
li !
= lim ———
noo 1 (1/27)
=1,

> a, converges by part 1 of the Limit Comparison Test.

¢) Let a, = (1+4+nlnn)/(n®>+5). For n large, we expect a, to behave like
(nln n)/n* = (In n)/n, which is greater than 1/n for n >3, so we take
b, = 1/n. Since
[o¢] o0 l
Z b, = — diverges
=2 n

n=2 n
and
. ay n+n’lnn
Im — = lim —
n—o00 n n— oo )12 + 5
= 00,
> a, diverges by part 3 of the Limit Comparison Test. a

|
EXAMPLE 4 Does E 113-/% converge?
n
n=1

Solution Because In n grows more slowly than n¢ for any positive constant ¢
(Section 8.2, Exercise 69), we would expect to have

Inn n'/4 1

n3/2 < n3/? - ns/4
for n sufficiently large. Indeed, taking a, = (In n)/n*? and b, = 1/n%*, we have

lim — = lim —
n—o00 b n—o00 n1/4

I 1/n
= lim ———
n—00 (1/4) n—3/4

. 4
= Jim 7% =0

I"Hopital’s rule

Since Y b, = Y (1/n%*) (a p-series with p > 1) converges, Y_a, converges by
part 2 of the Limit Comparison Test. a
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Exercises 8.5

Determining Convergence or Divergence

Which of the series in Exercises 1-36 converge, and which diverge?

Give reasons for your answers.

o0 1 0 3 . sin’n
1,;m Z';n+ﬁ 3.; >
4 2 ﬂﬂ = X:: 3n2i 1 6. i:: ZZJ:/;li
00 " o 00
7 ;(3;111) 2 o 9‘;ln(llnn>
10. 2 (]nln)2 11 2:: (Inn;l)z 12. i:: (lnn?)S
o0 o 2 00
13. ; ﬁlln - 14. ; (1::372) 15. ; 1 +11n n
16. g 1+ :n n)? 17. ni;: lnr(zn++11) 18. 2 ¢! +11n2 n)
19. 2 - ,,lz — 20. 2;;/% 21. 2 ln;nn
2. 2 "njzz 23, 2 3n_11+ .o 2 3n_;”+ !
© ©
25. ;sin " 26. n;tan -
0 SIS M) poute LS .
29. 2 ta:: & 30. 2: Se}::" 31. X:: 00:2 ‘
. g tar;l’zl n 33. Hi:l: n('l/ﬁ 34, n: \nn/f
35. 0011+2+31+._ Tn 36'i1+22+321+...+n2

n=1

Theory and Examples
37. Prove (a) Part 2 and (b) Part 3 of the Limit Comparison Test.

38. If Y2, a, is a convergent series of nonnegative numbers, can

anything be said about ) o=, (a,/n)? Explain.

39. Suppose that a, > 0 and b, > 0 for n > N (N an integer). If
lim,_, o (an/b,) = oo and ) _ a, converges, can anything be said

about Y b,? Give reasons for your answer.

40. Prove that if Y a, is a convergent series of nonnegative terms,

then )" a? converges.

& CAS Exploration and Project

41. It is not yet known whether the series
00
1

2

n=1

n3sin’n

converges or diverges. Use a CAS to explore the behavior of the
series by performing the following steps.

a) Define the sequence of partial sums

k 1
Sk=z

3qinZan
‘= n’sin“n

What happens when you try to find the limit of 5, as k —
00? Does your CAS find a closed form answer for this limit?

b) Plot the first 100 points (k, s;) for the sequence of partial
sums. Do they appear to converge? What would you estimate
the limit to be?

c¢) Next plot the first 200 points (k, s;). Discuss the behavior
in your own words.

d) Plot the first 400 points (k, s;). What happens when k =
3557 Calculate the number 355/113. Explain from your cal-
culation what happened at k = 355. For what values of &k
would you guess this behavior might occur again?

You will find an interesting discussion of this series in Chapter
72 of Mazes for the Mind by Clifford A. Pickover, St. Martin’s
Press, Inc., New York, 1992.

The Ratio and Root Tests for Series of
Nonnegative Terms

Convergence tests that depend on comparing series with integrals or other series
are called extrinsic tests. They are useful, but there are reasons to look for tests that
do not require comparison. As a practical matter, we may not be able to find the
series or functions we need to make a comparison work. And, in principle, all the
information about a given series should be contained in its own terms. We therefore
turn our attention to intrinsic tests—tests that depend only on the series at hand.
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The series in Example 1 converges rapidly,
as the following computer data suggest.

n Sn

5 1.5492 06349
10 1.5702 89085
15 1.5707 83080
20 1.5707 95964
25 1.5707 96317
30 1.5707 96327
35 1.5707 96327

In proving the Ratio Test, we will make a

comparison with an appropriate geometric

series as in Example 1, but when we apply
the test there is no need for comparison.

The Ratio Test

The first intrinsic test, the Ratio Test, measures the rate of growth (or decline) of
a series by examining the ratio a,;/a,. For a geometric series ) _ ar”, this rate is
a constant ((ar"*')/(ar") =r), and the series converges if and only if its ratio is
less than 1 in absolute value. But even if the ratio is not constant, we may be able
to find a geometric series for comparison, as in Example 1.

EXAMPLE 1 Let a; =1 and let a,,| = —n——an for all n. Does the series
2n+1
> a, converge?

Solution We begin by writing a few terms of the series:

1 1 1 2 1.2 3 1.2.3
frned N ar» = — = -, = — = —, = — = ——:
“ 23Ty BT5RT3s MTI%T IS
Each term is somewhat less than 1/2 the term before it, because n/(2n + 1) is less
than 1/2. Therefore the terms of the series are less than or equal to the terms of
the geometric series

() () e (1)

which converges to 2. So our series also converges, and its sum is less than 2. The
table in the margin shows how quickly the series converges to its known limit, 7 /2.

Q

The Ratio Test

Let Y a, be a series with positive terms, and suppose that
. Apy1
lim =p
n—>oo  a,

Then

a) the series converges if p < 1,
b) the series diverges if p > 1 or p is infinite,
c) the test is inconclusive if p = 1.

Proof
a) p<1. Letr be a number between p and 1. Then the number € =r — p is
positive. Since
ani1
an

any1/a, must lie within € of p when n is large enough, say for all » > N. In
particular,
Ant1

<p+e=r, when n > N.

an



The Ratio Test is often effective when the
terms of a series contain factorials of
expressions involving n or expressions raised
to the nth power.
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That is,

a4 < ray,
2
a2 < rang) <r-aw,

3
aN43 < Tranyz <r-ay,

ANgm < TaNgm—1 < F"ay.

These inequalities show that the terms of our series, after the Nth term, approach
zero more rapidly than the terms in a geometric series with ratio r < 1. More
precisely, consider the series ) c,, where ¢, =a, for n=1,2,..., N and
CN4l =FaN, CNy2 =T2AN, ..., CNem = T"ay, . ... Now a, < ¢, for all n, and

[o¢]
ch =a+a+---+ay+ay+ray+riay+---
n=1
= ai +a2+'--+aN_1 +aN(1 +r+r2+~-).
The geometric series 1 + 7 +r? + - - - converges because |r| < 1,50 Y_ ¢, con-
verges. Since a, < ¢,, Y_ a, also converges.

b) 1< p < oo. From some index M on,

An+1
LA |
an

and apy < apy < apq2 < .

The terms of the series do not approach zero as n becomes infinite, and the
series diverges by the nth-Term Test.

c) p = 1. The two series

o0 oo
_;_ - and é -
n n
n=1 n=1

show that some other test for convergence must be used when p = 1.

© 1 " 1
For ) —: Gt _ Yt D — 1.
oyl 7} a, 1/n n+1
00 2 2
Forzi: an+41 — 1/(n+l) — n N 12:1
o1 n? a, 1/n? n+1
In both cases p = 1, yet the first series diverges while the second converges.
Q
EXAMPLE 2 Investigate the convergence of the following series.
x 2"+5 x (2n)! ® 4"n'n!
b c —_—
PR )2 ) 2 o)
Solution
a) For the series ) .- (2" +5)/3",
Anyp L4530 1 2l s 245.2™" 1 2 2
= = — . = — . o EEE— —_ — s — = —,
ay (2" +5)/3" 3 245 3 14+5.2™ 31 3

The series converges because p = 2/3 is less than 1.
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This does not mean that 2/3 is the sum of the series. In fact,

2"+5 > .5 1 5 21
Z Z() 203_":1—(2/3>+1—<1/3>=7

n=0

b) Ifa, = (2—’1)—' then a,,; = ——(%n—izl—- and
nln!’ (n+ Dln+ 1!
ane1 nIn!2n+2)2n + 1)(2n)!
an (n+ D!(n+ 1)!2n)!
_@2n+2)2n+1) 4n+2
T o+ 4+ o+l

— 4.

The series diverges because p = 4 is greater than 1.
c¢) Ifa, =4"n!n!/(2n)!, then
Ani 4" (n + Dl(n + 1)! 2n)!
4,  Q2n+2)Qn+ H2n)!  4nin)
4n+DH(n+1)  2n+1)
T @i+2)@n+1) 2n+1
Because the limit is p = 1, we cannot decide from the Ratio Test whether the
series converges. However, when we notice that a,,/a, = 2n + 2)/(2n + 1),
we conclude that a,. is always greater than a, because (2n + 2)/(2n + 1) is

always greater than 1. Therefore, all terms are greater than or equal to a; = 2,
and the nth term does not approach zero as n — 0o. The series diverges.

The nth-Root Test

The convergence tests we have so far for > a, work best when the formula for a,
is relatively simple. But consider the following.

n/2", nodd

EXAMPLE 3 Let a, = {
1/2", neven.

Does ) a, converge?

Solution We write out several terms of the series:

ad 1 1 3 1 5 1 7
Za,,:——+ mtmtatstagtat
n=1

21 122 193 T4t g5 g6 T )
—l+ +3+1+5+1+7+
) 8 16 32 64 128

Clearly, this is not a geometric series. The nth term approaches zero as n — 00, so
we do not know if the series diverges. The Integral Test does not look promising.
The Ratio Test produces

1
— nodd

neven.

As n — 00, the ratio is alternately small and large and has no limit.
A test that will answer the question (the series converges) is the nth-Root Test.

a
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The nth-Root Test

Let > a, be a series with a, > 0 for n > N, and suppose that
lim Ya, = p.

Then

a) the series converges if p <1,
b) the series diverges if p > 1 or p is infinite,
c) the test is inconclusive if p = 1.

Proof

a) p < 1. Choose an € > 0 so small that p + € < 1. Since a, — p, the terms
a, eventually get closer than € to p. In other words, there exists an index
M > N such that

Ya, < p+e when n > M.
Then it is also true that
a, <(p+e)" forn > M.

Now, > > ., (p + €)", a geometric series with ratio (p + €) < 1, converges. By
comparison, Y . .. a, converges, from which it follows that

o0 o0
_;_ a,,=a1+---+aM_1+E an
n=1 n=M

converges.

b) 1< p < oo. For all indices beyond some integer M, we have Ya, > 1, so
that a, > 1 for n > M. The terms of the series do not converge to zero. The
series diverges by the nth-Term Test.

¢) p=1. The series ) .-, (1/n) and ) .- (1/n?) show that the test is not con-
clusive when p = 1. The first series diverges and the second converges, but in

both cases /a, — 1. a
AR dd
EXAMPLE 3 (continued) Let a, = n/ "o Does ) _ a, converge?
1/2", neven.

Solution We apply the nth-Root Test, finding that
. { n/2, nodd
a, =

1/2, n even.
Therefore,
i Yn
_ < Mg < .
2 =V =T

Since &/n — 1 (Section 8.2, Table 8.1), we have lim,_, o t/a, = 1/2 by the Sand-
wich Theorem. The limit is less than 1, so the series converges by the nth-Root Test.

a
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EXAMPLE 4 Which of the following series converges, and which diverges?

00 l’l2 o0 on
— b il
Solution

2, n? {,/7 Vnz  (YUn
a) =- converges because 4/ — = —— = - - < 1.
; 2n Y 2 2

2" 2" 2 2
b) — dlverges because . - — > 1.
G a
n=1

Exercises 8.6

Determining Convergence or Divergence i ” i n
Which of the series in Exercises 1-26 converge, and which diverge? “~ (In n)" "~ (In n)e/?
Give reasons for your answers. (When checking your answers, re- wlln n
member there may be more than one way to determine a series’ Z 26. Z
. n(n +2)! n32n
convergence or divergence.)
1 V2 5 inze‘" Which of the series Y o | a, defined by the formulas in Exercises
Tl 28 " 27-38 converge, and which diverge? Give reasons for your answers.
14sinn
e - >, n! 27.a,=2, Gy =—"ay,
3. Z:n!e 4. Z 0" n
n=1 n=l l1+tan~'n
0,10 0/ 9\" 28. a, =1, apy ) =——a,
> 6y (") "
—~ 10" =\ n 1 3n—1
= "= 29. a1 ==, Gy =——a,
&\ 2 4 (-1) & (=2)" 3 2n +5
Byt=l 3 n
n=1 1.25 n=1 3 30. a = 3, Qp1 = —— gy
o0 3 n o0 1 n n + 1
2
9. Z (1 - _> 10. Z 1- §_> 3. a1 =2, apy =-ay,
n=1 n n=1 n n
= Inn 2, (In n)" _ _Yn
11. ; ? 12. ; e 32- a, = 5’ an+l - "—2— ap
n 1+Inn
> (1 1 2 (1 1 33.a, =1, a,y = a,
13. S 14. =
nz;(n n2> ;<" n2> 1 n—:lnn
34. a =
® Inn ® ninn 1 2’ n+1 n+ 10
15. —_— 16.
2 27 1 _
. (1 +1)(n +2) o Boar=3. a = Yo
1, Y aEwEs 18. Y () |
n=1 n: n=1 36. a; = 5, Apy1 = (an)"'H
2\ (n+3)! X n2"(n + 1)! ,,
19. 20. _ 2"n'n!
; 3n!3n ; 3nn! 37. a, = anr
e n! o 1! (Bm)!
7 ) Q- 2 Y2 38 g = — O
,,ZI:(ZrHI)! ; " o+ DI+ 2!
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Which of the series in Exercises 3944 converge, and which diverge? Theory and Examples

Give reasons for your answers. 45. Neither the Ratio nor the nth-Root Test helps with p-series. Try

o0 o0
(nh)" (n)" them on
39. 40.
X, n" X, n" r;l ne
4.y — 2.y —— B . ,
= 2™ = (2") and show that both tests fail to provide information about con-
0 % 1.3 n—1) vergence.
: Zl 4nnp 46. Show that neither the Ratio Test nor the nth-Root Test provides
n; information about the convergence of
1-3...-.2n-1
4.3 x 1
—[2:4. ... 203"+ 1) > ——  (p constant).
= n=2 (In n)?
n/2" if n is a prime number

47. Leta, = 172" otherwise.

Does Y a, converge? Give reasons for your answer.

Alternating Series, Absolute and
Conditional Convergence

A series in which the terms are alternately positive and negative is an alternating

series.
Here are three examples:
1 1 1 1 (=1)t!
=4+ - 24 - ... 1
2 + 371 + 5 + " + (M
1 1 1 (-4
24+l - — ... 2
+ > + 1 8+ + o (2)
1-243-445-64+ -+ (=D""n+... 3)
Series (1), called the alternating harmonic series, converges, as we will see
in a moment. Series (2), a geometric series with ratio r = —1/2, converges to
—2/[1 4 (1/2)] = —4/3. Series (3) diverges because the nth term does not approach
Zero.

We prove the convergence of the alternating harmonic series by applying the
Alternating Series Test.

Theorem 8
The Alternating Series Test (Leibniz’s Theorem)
The series

00
Z(—l)n+lun =uy—Uuptus—us+---

n=1
converges if all three of the following conditions are satisfied:

1. The u,’s are all positive.
2. u, > upyy for all n > N, for some integer N,
3. u,—0.
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8.14 The partial sums of an alternating
series that satisfies the hypotheses of
Theorem 8 for N = 1 straddle the limit
from the beginning.

Proof If n is an even integer, say n = 2m, then the sum of the first n terms is
Som = (g — u2) + (U3 —ug) + -+ -+ (Uam—1 — Uzm)
=uy — (uy — u3) — (ug — us) — -+ — (Uan—2 — Un—1) — U2p.

The first equality shows that s,,, is the sum of m nonnegative terms, since each term
in parentheses is positive or zero. Hence s5,,42 > $2,,, and the sequence {s,,,} is non-
decreasing. The second equality shows that s,,, < u,. Since {s,,,} is nondecreasing
and bounded from above, it has a limit, say
m—0o0
If n is an odd integer, say n = 2m + 1, then the sum of the first n terms is
Som+1 = Som + Udm41- Since U, — 0,

lim Uyl = 0
m-—0o0
and, as m — o0,
Sam41 = Sam +Ump —> L+0=1L. (5)

Combining the results of (4) and (5) gives lim s, = L (Section 8.1, Exercise 53).
n—oo

Q

EXAMPLE 1 The alternating harmonic series

= 1 I 1 1
E D" s =] - — - - — .
n=l( ) n 2+3 4

satisfies the three requirements of Theorem 8 with N = 1; it therefore converges.

Q

A graphical interpretation of the partial sums (Fig. 8.14) shows how an alter-
nating series converges to its limit L when the three conditions of Theorem 8 are
satisfied with N = 1. (Exercise 63 asks you to picture the case N > 1.) Starting
from the origin of the x-axis, we lay off the positive distance s; = u,. To find
the point corresponding to s, = u; — u,, we back up a distance equal to u,. Since
uy < u;, we do not back up any farther than the origin. We continue in this seesaw
fashion, backing up or going forward as the signs in the series demand. But for
n > N, each forward or backward step is shorter than (or at most the same size as)
the preceding step, because u,,; < u,. And since the nth term approaches zero as
n increases, the size of step we take forward or backward gets smaller and smaller.
We oscillate across the limit L, and the amplitude of oscillation approaches zero.
The limit L lies between any two successive sums s, and s,,; and hence differs
from s, by an amount less than u, ;.

+uy
—u,
+uy
—u,
L x
0 5y s, L 53 5
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Because
|L — sp| < Upsr forn> N,

we can make useful estimates of the sums of convergent alternating series.

Theorem9 ;
’mg Senes Estrmatlon Theorem , L
sy 1)’“‘1un satisfies the s condficne of' A

We leave the verification of the sign of the remainder for Exercise 53.

EXAMPLE 2 We try Theorem 9 on a series whose sum we know:

11 1, 1 1 1 14 1
Z( 1)" =l-ct-—ct

— 2 4 8 16 32 64 128, 256
The theorem says that if we truncate the series after the eighth term, we throw
away a total that is positive and less than 1/256. The sum of the first eight terms
is 0.6640 625. The sum of the series is
1 2
1—(=1/2) 372 3
The difference, (2/3) — 0.6640 625 = 0.0026 04166 6... , is positive and less
than (1/256) = 0.0039 0625. d

Absolute Convergence

The geometric series
1 1 1

l— -4+ ——Z4...
2+4 8+

converges absolutely because the corresponding series of absolute values

R
248
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Caution

We can rephrase Theorem 10 to say that
every absolutely convergent series
converges. However, the converse
statement is false: Many convergent
series do not converge absolutely.

converges. The alternating harmonic series does not converge absolutely. The cor-
responding series of absolute values is the (divergent) harmonic series.

Definition
A series that converges but does not converge absolutely converges condi-
tionally. :

The alternating harmonic series converges conditionally.

Absolute convergence is important for two reasons. First, we have good tests
for convergence of series of positive terms. Second, if a series converges absolutely,
then it converges. That is the thrust of the next theorem.

Theorem 10
The Absolute Convergence Test

If 3°°  |a,| converges, then 3 o2 a, converges.
Proof For each n,
=lan| < an < laal, SO 0 < a, + lax| < 2|a,|.

If Z;’i, la,| converges, then Z;’il 2la,| converges and, by the Direct Com-
parison Test, the nonnegative series » . (a, + |a,|) converges. The equality
a, = (a, + |a,|) — |a,| now lets us express Z:il a, as the difference of two con-
vergent series:

[o¢] [o¢] (e} o0
Y an =) (@ +lanl = lau) =) (@ +lan) =Y _ lay.
n=1 n=1 n=1 n=1

Therefore, > -, a, converges. Q
EXAMPLE 3 For 3o (—1y+~ =1-2 41 L L he correspondin
= e A T ponding

series of absolute values is the convergent series

i1—1+1+1+i+
n2 49 16 '

n=1

The original series converges because it converges absolutely. d

© sinn sinl sin2 sin3

EXAMPLE4  For ) —5— = 1 + 2 + 5 + - - -, the corresponding
n=1 N
series of absolute values is
2. |sin n [sin 1|  |sin 2|
Z —| = R
=ln 1 4

which converges by comparison with Y o2 (1/n?) because |sin n| <1 for every
n. The original series converges absolutely; therefore it converges. d
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EXAMPLE 5  Alternating p-series

If p is a positive constant, the sequence {1/n”} is a decreasing sequence with limit
zero. Therefore the alternating p-series

(1)"1 1 1 1
Z _1“—+3—p—4—p+"', p>0

converges.
If p > 1, the series converges absolutely. If 0 < p < 1, the series converges
conditionally.
1 1 1

Conditional convergence: -4+ —=—-—+--
: 2B
1 1 1
Absolute convergence: ~ 5 + FE R 4. Q
Rearranging Series
Theorem 11
The Rearrangement Theorem for Absolutely Convergent Series
If Zii_l a, converges absolutely, and by, bs, ..., by, ... is any arrangement

of the sequence {a,}, then )_ b, converges absolutely and

o0 [oc]
e
n=1 n=1

(For an outline of the proof, see Exercise 60.)

EXAMPLE 6 As we saw in Example 3, the series

{ 1 1 1 1yl 1
ito et e S+
converges absolutely. A possible rearrangement of the terms of the series might
start with a positive term, then two negative terms, then three positive terms, then
four negative terms, and so on: After k terms of one sign, take k + 1 terms of the
opposite sign. The first ten terms of such a series look like this:

11 1 1 1 1 1 11
l— o — b oot —— = —

4 16 9 25 49 36 64 100 144
The Rearrangement Theorem says that both series converge to the same value. In
this example, if we had the second series to begin with, we would probably be glad
to exchange it for the first, if we knew that we could. We can do even better: The
sum of either series is also equal to

o0 o]

Z (2n -1 Z (2n)2'

(See Exercise 61.) a




660 Chapter 8: Infinite Series

Caution

If we rearrange infinitely many terms of a
conditionally convergent series, we can
get results that are far different from the
sum of the original series.

The kind of behavior illustrated by this
example is typical of what can happen with
any conditionally convergent series. Moral:
Add the terms of a conditionally convergent
series in the order given.

Flowchart 8.1 Procedure for
Determining Convergence

EXAMPLE 7  Rearranging the alternating harmonic series

The alternating harmonic series

1 1+1 1+1 1+1 1+1 1+1
1 2 3 4 5 6 7 8 9 10 11

can be rearranged to diverge or to reach any preassigned sum.

a) Rearranging Y 2 (—1)"*!/n to diverge. The series of terms Y [1/(2n — 1)]
diverges to 400 and the series of terms )_(—1/2n) diverges to —oo. No matter
how far out in the sequence of odd-numbered terms we begin, we can always
add enough positive terms to get an arbitrarily large sum. Similarly, with the
negative terms, no matter how far out we start, we can add enough consecutive
even-numbered terms to get a negative sum of arbitrarily large absolute value.
If we wished to do so, we could start adding odd-numbered terms until we
had a sum greater than +3, say, and then follow that with enough consecutive
negative terms to make the new total less than —4. We could then add enough
positive terms to make the total greater than +5 and follow with consecutive
unused negative terms to make a new total less than —6, and so on. In this
way, we could make the swings arbitrarily large in either direction.

nth-Term Test } No :(L" . Series diverges. : ]
Geometric 12 - s 1 Yes " Converges toa/(1 = r)if jr] < 1.
SeriesTest| = Peh-ev @t @ - Divergesifir]= 1.
pS
Y [ e ifp>1
. es - Series convergesifp > 1.
p-Series Test . : L ‘ Series divergesifp < 1. J
Nonncgativetenns:; i Y T
and/or | IS8 . Original series converges. }
absolute convergenc S

Alternating ": - Is there an integer N such
Series Test |  thatu, > Uy =0 ?
N(’; ‘ Yes

Y

- : Series converges if u, — 0.
~ Seriesdivergesifu, $ 0.
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b) Rearranging Y o (—1)"*'/n 1o converge to 1. Another possibility is to focus
on a particular limit. Suppose we try to get sums that converge to 1. We
start with the first term, 1/1, and then subtract 1/2. Next we add 1/3 and 1/5,
which brings the total back to 1 or above. Then we add consecutive negative
terms until the total is less than 1. We continue in this manner: When the sum
is less than 1, add positive terms until the total is 1 or more; then subtract
(add negative) terms until the total is again less than 1. This process can be
continued indefinitely. Because both the odd-numbered terms and the even-
numbered terms of the original series approach zero as n — oo, the amount
by which our partial sums exceed 1 or fall below it approaches zero. So the
new series converges to 1. The rearranged series starts like this:

Determining Convergence or Divergence

Which of the alternating series in Exercises 1-10 converge, and which

diverge? Give reasons for your answers.

2.

X 1
1. —1 n+l_—
n;( ) 7

3. i:j(—l)"“ (1"—0)

1
n+l_—
5. 3 (=1) —

n=2

% In n
7. 3 (=1t =
g( ) In n2

] n+1

Absolute Convergence

Z( 1)n+1 ‘/_+ 1

10.

Which of the series in Exercises 11-44 converge absolutely, which
converge, and which diverge? Give reasons for your answers.

11. i(—l)"“(o.l)”
n=1

o 1
13 Y (-1)—
ngl( ) 7

15. 3 (1
E_]( ) .

3+1

17 3 !
. —-1)"
nz=:1( )n+3

1 ]+1+ l+l+1 1+1+ 1+1+1 1
1 2 3 4 7 9 6 13 8 15 10
+ 1 " 1 1 + 1 1 + 1 1 +.
19 21 23 25 14 27 16
L
3+n &
n+l”_ " " n
19. Z( 1) 20. "Z_:Z( 1) ln( )
1+n ) (_2)n+l
21. D i 22.
io:( 1)n+1 1 Z( ) n=1 n+5n
- 1372 00
n0=°1 ’:O" 23. X:l(_])nnZ(z/:;)n 24. Z( 1)n+l(J_)
_1\n+l 7 "= n=l
.ng( y) 10 ’s i(_l)ntan—ln 26 i(—l)"“—
Ry n o , Inn
i( - (1+ 1) 27. ;( 1)y'—— n+1 28. ngl(—l) P
. —-1)"In -
= n o (—100)" i o
29. ' 30. >(=5)
f( e VAT Y =
nst Vn+1 x (=Dt ® o (Ilmn\"
3. g 24+2n+1 32. ,,ZZ:Z(— ) (ln n2>
X cosnmw X cos nw
33. ng nn 34. ngl "
0.1)" x (=)'(n+1)" x (=) (n!)?
—1rt! 3s. _ 36. -
LD 2 Gy Z !
> (I 2 e 2y @3
st l+n 3. § D 2"n!n 38 ,,2( D 2n + 1)!
00 ! 0 00
NCA 30, ST - . Sy mEa-m
x sin n x x =n"
- 41. D" (v - 42,
El( - nz=1( ) ( n+n ﬁ) nglx/ﬁ+\/n+1

d
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[o¢]
43. > (—1)"sech n

n=1

44. Y (—1)"cschn
n=1
Error Estimation

In Exercises 45-48, estimate the magnitude of the error involved in
using the sum of the first four terms to approximate the sum of the
entire series.

45, i(—l)nﬂl It can be shown that the sum
n=1 n is In 2.

) 1
—_prtl—
nZ=:]( ) o
o (001"
n

46.

As you will see in Section

47. 8.8, the sum is In (1.01).

48, ——

1+I_Z( D", 0<t <1

i CALCULATOR Approximate the sums in Exercises 49 and 50 with
an error of magnitude less than 5 x 107S.

49. 1yt ——o
20( ) (2 )!

50. rg)(—l) ;T

As you will see in Section 8.10, the
sum is cos I, the cosine of | radian.

As you will see in Section 8.10,
the sum is e™'.

Theory and Examples

51. a) The series
1 1 1 1 1 1 1 1
3 2t it st oty Tt
does not meet one of the conditions of Theorem 8.
Which one?
b) Find the sum of the series in (a).

E s

CALCULATOR The limit L of an alternating series that satisfies
the conditions of Theorem 8 lies between the values of any two
consecutive partial sums. This suggests using the average
Sp + Sn+1
2

to estimate L. Compute

1
=5, + E(—l)"“anﬂ

+ 1 1
s .
»T2
as an approximation to the sum of the alternating harmonic series.
The exact sum is In 2 = 0.6931....

The sign of the remainder of an alternating series that satis-
fies the conditions of Theorem 8. Prove the assertion in Theo-
rem 9 that whenever an alternating series satisfying the conditions
of Theorem 8 is approximated with one of its partial sums, then
the remainder (sum of the unused terms) has the same sign as
the first unused term. (Hint: Group the remainder’s terms in con-
secutive pairs.)

53.

54.

55.
56.

57.

58.

& so.

60.

Show that the sum of the first 2»n terms of the series
R U U S S WS S U U B
2 2 3 3 4 4 5 5 6
is the same as the sum of the first n terms of the series
1 1 1 1 1

T2trat gt st ”

Do these series converge? What is the sum of the first 2n + 1
terms of the first series? If the series converge, what is their sum?

Show that if Y oo,
Show that if Y oo,

a, diverges, then Z‘f:, |an| diverges.

a, converges absolutely, then

o0 o0
D an <) lanl.
n=1 n=1

Show that if ) oc | a, and Y oo | b, both converge absolutely, then
so does

) 3 (@ +by
n=1

b) 3 (@ — by
n=1

¢) > ka, (kanynumber)

n=1

Show by example that Y oo, a,b, may diverge even if ) o a

and Y 22| b, both converge.

CALCULATOR In Example 7, suppose the goal is to arrange
the terms to get a new series that converges to —1/2. Start the
new arrangement with the first negative term, which is —1/2.
Whenever you have a sum that is less than or equal to —1/2,
start introducing positive terms, taken in order, until the new total
is greater than —1/2. Then add negative terms until the total is
less than or equal to —1/2 again. Continue this process until your
partial sums have been above the target at least three times and
finish at or below it. If s, is the sum of the first n terms of your
new series, plot the points (n, s,) to illustrate how the sums are
behaving.

Outline of the proof of the Rearrangement Theorem (The-
orem 11).

a) Let € be a positive real number, let L = Y -, a,, and let

k
Sk = Zn:l

a,. Show that for some index N; and for some

index N, > Ny,
€
Z la,) < = and |sy,—L| < =.
2
n=N,
Since all the terms a,, a,, . .., ay, appear somewhere in the

sequence {b,}, there is an index N3 > N, such that if n >
N, then (3_;_, bi) — sw, is at most a sum of terms a,, With
m > N,. Therefore, if n > N3,

}E:bk—— ji:bk—-sM
k=1

k=1

L| < + |sy, — L|

o0
<Yl +lsw, — L] <e.
k=N,



b)

The argument in (a) shows that if Z:L a, converges ab-
solutely then > oo | b, converges and Y oo by = Y oo Gp.
Now show that because Y .. | |a,| converges, Y o, |b,| con-
verges 1o Y oo |ayl.

61. Unzipping absolutely convergent series.

a)

b)

Show that if > -, |a,| converges and
Qan

by = {0

then Y 2 b, converges.

Use the results in (a) to show likewise that if Y - |ay,|
converges and

{0
Cn —3
an

then Y o7, ¢, converges.

In other words, if a series converges absolutely, its pos-
itive terms form a convergent series, and so do its negative
terms. Furthermore,

ifa, >0
ifa, <0,

ifa, >0
ifa, <0,

o0 o0

ian = Zb,, + Cn
n=1 n=1

n=1

because b, = (a, + |a,|)/2 and ¢, = (a, — |a.|)/2.

62.

63.

Power Series

8.8 Power Series 663

What is wrong here:
Multiply both sides of the alternating harmonic series

1 1 1 1 1

S=1—z4+-—=+=-—=
2+3 4+5 6+
1 1+1 l+1 1Jr
7 8§ 9 10 11 12
by 2 to get
285=2-1+
N—r
7 127 1.2 1.2 I
37275 3t 4t st et
v

Collect terms with the same denominator, as the arrows indicate,

to arrive at

1 1 1 1 1
2S=1l—-=4+-—-—-4+-==-+4---.
2 + 3 4 + 5 6 +
The series on the right-hand side of this equation is the series
we started with. Therefore, 25 = S, and dividing by § gives
2 = 1. (Source: “Riemann’s Rearrangement Theorem” by Stewart
Galanor, Mathematics Teacher, Vol. 80, No. 8, 1987, pp. 675-81.)

Draw a figure similar to Fig. 8.14 to illustrate the convergence
of the series in Theorem 8 when N > 1.

Now that we can test infinite series for convergence we can study the infinite
polynomials mentioned at the beginning of Section 8.3. We call these polynomials
power series because they are defined as infinite series of powers of some variable,
in our case x. Like polynomials, power series can be added, subtracted, multiplied,
differentiated, and integrated to give new power series.

Power Series and Convergence

We begin with the formal definition.

Definition

A power series about x = 0 is a series of the form

Equation (1) is the special case obtained by
taking a = 0 in Eq. (2).

o0
chX"=co+clx+sz2+-~~+cnx"+---. )
n=0

A power series about x = a is a series of the form

ch(x—a)" =ct+cax—a)+ax—-al+ - Fax—a)"+ Q)

n=0

in which the center a and the coefficients ¢y, ¢y, c3, . ..

, Cn,y . .. @re constants.
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8.15 The graphs of f(x) = 1/(1 — x) and
four of its polynomial approximations
(Example 1).

y
_ 1
o+ YE 1%
8
7
yo=l4x+x2+ 53 +x + 05+ + 47 +48
5
41—
y2=1-§-x+x2
2 y=1+x
y0=]
| L s x
-1 0 1

EXAMPLE 1 Taking all the coefficients to be 1 in Eq. (1) gives the geometric

power series
(o]

Yoxt=ltx4 4 x
n=0

This is the geometric series with first term 1 and ratio x. It converges to 1/(1 — x)
for |x| < 1. We express this fact by writing

1

7 =l4+x+x>+Fx"+--, —l<x<l. (3)
—x

a

Up to now, we have used Eq. (3) as a formula for the sum of the series on the right.
We now change the focus: We think of the partial sums of the series on the right as
polynomials P,(x) that approximate the function on the left. For values of x near
zero, we need take only a few terms of the series to get a good approximation. As
we move toward x = 1, or —1, we must take more terms. Figure 8.15 shows the
graphs of f(x) = 1/(1 — x), and the approximating polynomials y, = P,(x) for
n=20,1, 2, and 8.

EXAMPLE 2 The power series

1 1 1\
1—E(x—2)+z(x—2)2+--'+<—§> x—=2)"+--- (4)
matches Eq. Q) witha =2,¢co=1,¢; = -1/2,¢c, =1/4, ..., ¢, = (—1/2)". This
is a geometric series with first term 1 and ratio r = —%. The series converges
-2
forx < 1lor0<x <4. The sum is
1 1 2
1—r x—=2 x’
1
+ 2
SO
2 -2 —2)? 1y
)—Czl—(x2 )+(x4) —'---I-(—E) x=2)"4+---, 0<x <4



y
_ 3x , x*
21 n=3-g g
(2,1) / =2
1+ Y=3
=1 / _xz X
L N
0 1 2 3

8.16 The graphs of f(x) = 2/x and its first
three polynomial approximations
(Example 2).

— ' $ x
-1 0 1
| U
-1 0 1
! X
0
4 X
0
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Series (4) generates useful polynomial approximations of f(x) = 2/x for values
of x near 2:

Py(x) =1
1 X
Pl(x)=1—§(x—2)=2—§
1 1 3x  x?
P = 1——- —2 - —22= - —
2(X) 2(x )+4(x ) =3 3 + 2
and so on (Fig. 8.16). |

EXAMPLE 3 For what values of x do the following power series converge?

X X
a) ) )T =x -
2 "3
00 2n—1 3 5
n—1 X _ X
b) Zl(—) e i SR
o x" x2 3
c) ;m=1+x+a+§+

[ 0]
d Zn!x"=l+x+2!x2+3!x3+---

Solution Apply the Ratio Test to the series ) |u,|, where u, is the nth term of
the series in question.

Unt1 n
a) ., —n+1|x|—> |x].
The series converges absolutely for |x| < 1. It diverges if |x| > 1 because the
nth term does not converge to zero. At x = 1, we get the alternating harmonic
series 1 —1/2+1/3 —1/4 + ---, which converges. At x = —1 we get —1 —
1/2—1/3—-1/4 — ---, the negative of the harmonic series; it diverges. Series
(a) converges for —1 < x <1 and diverges elsewhere.
Unt1 2n —1 2 2
b) . —2n+1x — x°.
The series converges absolutely for x> < 1. It diverges for x> > 1 because the
nth term does not converge to zero. At x = 1 the series becomes 1 —1/3 4
1/5 —1/7+ ---, which converges by the Alternating Series Theorem. It also
converges at x = —1 because it is again an alternating series that satisfies the
conditions for convergence. The value at x = —1 is the negative of the value
at x = 1. Series (b) converges for —1 < x < 1 and diverges elsewhere.
Unil ol |x|
©) v | = (n+1)!.x" _n+1—>0f0reveryx.
The series converges absolutely for all x.
n+1
d |l = (nt DX\ (n + 1)|x| = oo unless x = 0.
U, n!x"
The series diverges for all values of x except x = 0. d

Example 3 illustrates how we usually test a power series for convergence, and
the possible results.
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To simplify the notation, Theorem 12 deals
with the convergence of series of the form

> anx". For series of the form Y_ a,(x —a)"
we can replace x — a by x’ and apply the
results to the series Y a,(x")".

How to Test a Power Series for Convergence

Step 1: Use the Ratio Test (or nth-Root Test) to find the interval where the
series converges absolutely. Ordinarily, this is an open interval

|x —al < R or a—R<x<a+R.

Step 2: If the interval of absolute convergence is finite, test for conver-
gence or divergence at each endpoint, as in Examples 3(a) and (b). Use a
Comparison Test, the Integral Test, or the Alternating Series Test.

Step 3: If the interval of absolute convergence isa — R < x < a+ R, the
series diverges for |x — a|l > R (it does not even converge conditionally),
because the nth term does not approach zero for those values of x.

Theorem 12
The Convergence Theorem for Power Series

o0
If Y ax" =ag+ajx +ax? + -
=0

converges for x = ¢ # 0, then it converges absolutely for all |x| < |¢|. If
the series diverges for x = d, then it diverges for all |x| > |d].

Proof Suppose the series Y o a,c" converges. Then lim,_,o a,c” = 0. Hence,
there is an integer N such that |a,c"| < 1 for all » > N. That is,

1
|a,,|<|——l— forn > N. (5)
C’l

Now take any x such that |x| < |c| and consider
lao| + larx| + -+ + lay—1 x™ ' + lay x| + lay £V + - -

There are only a finite number of terms prior to |ay x"|, and their sum is finite.
Starting with |ay x"| and beyond, the terms are less than

N+2

T (6)

Cc

because of (5). But the series in (6) is a geometric series with ratio r = |x/c|, which
is less than 1, since |x| < |c|. Hence the series (6) converges, so the original series
converges absolutely. This proves the first half of the theorem.

The second half of the theorem follows from the first. If the series diverges at
x = d and converges at a value xq with |xo| > |d|, we may take ¢ = xo in the first
half of the theorem and conclude that the series converges absolutely at d. But the
series cannot converge absolutely and diverge at one and the same time. Hence, if
it diverges at d, it diverges for all |x| > |d|. a



A word of caution

Term-by-term differentiation might not work
for other kinds of series. For example, the

trigonometric series
i sin (n! x)
2
n=1 n

converges for all x. But if we differentiate

term by term we get the series
o0

n! cos(n!x)
Y
n

n=1

which diverges for all x.
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The Radius and Interval of Convergence

The examples we have looked at, and the theorem we just proved, lead to the
conclusion that a power series behaves in one of the following three ways.

Possible Behavior of > c,(x — a)"

1. There is a positive number R such that the series diverges for |x — a| >
R but converges absolutely for |[x — a| < R. The series may or may not
converge at either of the endpoints x =a — R and x = a + R.

2. The series converges absolutely for every x (R = 00).

3. The series converges at x = a and diverges elsewhere (R = 0).

In case 1, the set of points at which the series converges is a finite interval,
called the interval of convergence. We know from the examples that the interval
can be open, half-open, or closed, depending on the particular series. But no matter
which kind of interval it is, R is called the radius of convergence of the series, and
a + R is the least upper bound of the set of points at which the series converges.
The convergence is absolute at every point in the interior of the interval. If a power
series converges absolutely for all values of x, we say that its radius of convergence
is infinite. If it converges only at x = a, the radius of convergence is zero.

Term-by-Term Differentiation

A theorem from advanced calculus says that a power series can be differentiated
term by term at each interior point of its interval of convergence.

Theorem 13
The Term-by-Term Differentiation Theorem

If ¥ c,(x —a)" converges fora — R < x < a + R for some R > 0, it de-
fines a function f:

f(x)=zcn(x—a)", a—R<x<a+R.
=0

Such a function f has derivatives of all orders inside the interval of con-
vergence. We can obtain the derivatives by differentiating the original series
term by term:

flx) = incn(x —a)"!
n=1

F'@ =) nn—De(x —a)"?,

n=2

and so on. Each of these derived series converges at every interior point of
the interval of convergence of the original series.
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EXAMPLE 4 Find series for f/'(x) and f”(x) if
1
f)=——=1l+x+x>+ +x*+- - +x"+--

1—x
o0
=Zx", —-1<x<l1
n=0
Solution
1
f)=———=1+2x+3x>+4+ - +nx""+ ...
(1-x)?
o0
=an"'1, —-l1<x<l1
n=1
" 2 2 n—2
frx) = =24+6x+ 12x* 4+ - +nn—Dx"> 4.
(1-x)3

z ( ) ’
- nn l X 1 <X < 1

Another advanced theorem states that a power series can be integrated term by term
throughout its interval of convergence.

EXAMPLE 5 A series fortan™' x, —1<x <1

Identify the function

3 xS

x
=X - — —_—e —-1< <1.
fx)=x 3+5 <x<

Solution We differentiate the original series term by term and get
ff)y=1-x*4x*=x+..., —1<x<l.

This is a geometric series with first term 1 and ratio —x2, s0

NS
o= =12




Notice that the original series in Example 5
converges at both endpoints of the original
interval of convergence, but Theorem 13 can
guarantee the convergence of the
differentiated series only inside the interval.
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We can now integrate f'(x) = 1/(1 + x?) to get

d
/f,(x)de/_1+x2 =tan"'x + C.
x

The series for f(x) is zero when x = 0, so C = 0. Hence
35 47
f(x):x—?+?—7+--~=tan_1x, —“1<x<l1. (7)

In Section 8.11, we will see that the series also converges to tan~'x at x = +1.

Qa

EXAMPLE 6 Aseriesforin(1 +x), —1<x<1

The series
1 2 .3
—— =1—t+t* =+
1+1¢

converges on the open interval —1 < ¢ < 1. Therefore,

L | 12 PE 4 X
In(l1+x)= ———dt=t——+——_+...]
0

o 141 2 3 4
x> X3 x*
=x—?+—3——7+”', -l<x <l

It can also be shown that the series converges at x = 1 to the number In 2, but that
was not guaranteed by the theorem. a

Technology Study of Series Series are in many ways analogous to inte-
grals. Just as the number of functions with explicit antiderivatives in terms of
elementary functions is small compared to the number of integrable functions,
the number of power series in x that agree with explicit elementary functions
on x-intervals is small compared to the number of power series that converge
on some x-interval. Graphing utilities can aid in the study of such series in
much the same way that numerical integration aids in the study of definite
integrals. The ability to study power series at particular values of x is built into
most Computer Algebra Systems.

If a series converges rapidly enough, CAS exploration might give us an
idea of the sum. For instance, in calculating the early partial sums of the series
Zz":l[l/(Z"“)] (Section 8.5, Example 3b), Maple returns S, = 1.6066 95152
for 31 < n < 200. This suggests that the sum of the series is 1.6066 95152 to
10 digits. Indeed,

= < =— <1.25%x107%.

The remainder after 200 terms is negligible.

However, CAS and calculator exploration cannot do much for us if the se-
ries converges or diverges very slowly, and indeed can be downright misleading.
For example, try calculating the partial sums of the series Y .- ,[1/(10'"n)].
The terms are tiny in comparison to the numbers we normally work with and
the partial sums, even for hundreds of terms, are miniscule. We might well be
fooled into thinking that the series converges. In fact, it diverges, as we can
see by writing it as (1/10'%) Y% (1/n).

We will know better how to interpret numerical results after studying error
estimates in Section 8.10.
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Multiplication of Power Series

Still another advanced theorem states that absolutely converging power series can
be multiplied the way we multiply polynomials.

Theorem 15
The Series Multiplication Theorem for Power Series

If A(x) =Y 02 anx" and B(x) = Y .., b,x" converge absolutely for
|x] < R, and

Cn=Gobn + @by + Grbno+ +ani by +anbo =Y _arbyy,
=0

then Z:io c,x" converges absolutely to A(x)B(x) for |x| < R:

(g anx”> . (2 bnx") = icnx".

n=0

EXAMPLE 7 Multiply the geometric series

o0
1
Zx”=1+x+x2+---+x"+-~-=1——, for |x| <1,
—-x

n=0
by itself to get a power series for 1/(1 — x)2, for |x| < 1.

Solution Let
o0

AX) =) ax" =l4x+x 4 +x"+--=1/(1-x)
n=0
(o ¢]

B(x)=) bx"=l+x+x+ - +x" 4. =1/1-x)
n=0

and

Cn = aob, +aiby_y + -+ ayby + - - + anbo

n+ 1 terms

=1+14--+1=n+1.
[ —
n+ 1 ones

Then, by the Series Multiplication Theorem,
o0 o0
A@) - B() = ) cux" =) (n+ D"
n=0 =0

=1+ 43" +4° +- -+ 4+ Dx" + -

is the series for 1/(1 — x)2. The series all converge absolutely for |x| < 1.
Notice that Example 4 gives the same answer because

i( 1 )_ 1
dx \1—x) (1-x)? a
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Exercises 8.8

Intervals of Convergence

In Exercises 1-32, (a) find the series’ radius and interval of conver-
gence. For what values of x does the series converge (b) absolutely,
(c) conditionally?

1. Zx" 2. Z(x+5)"
n=0 n=0
00 ) 9\
3. Z(—l)"(4x+ " 4. 2(3"72)
n=0 n=1
o0
(x =2)"
5. . 25x)"
ZO o 6 Z( x)
O pxn 2 (=) (x + 2)"
7. 8.
;n+2 ; n
X yn X (x — 1)
9. 10.
L L7
— 1\t 00 n..n
1, 3D 12.23"
n! = n!
2n+1 00 2n+1
1B S 4.y @x+3
n! s n!
xn ( 1)n n

15.

17.

19. Z >
o0 1 n .
21. Z (1 + ;> x 22.
o0 o0
23. Zn"x" 24. Z I(x—4)"
=0

20.

i (=D"'(x +2)

o0
25. 26. -2 DEx-1D"
2 — 6 ;( )" (n+1)(x — 1)
n Get the information you need

2. Z .% about Y 1/(n(In n)?) from
7z n(in n) Section 8.4, Exercise 39.

n Get the information you need about

o0
28. Z )lc > 1/(nlnn) from
nm 10N Section 8.4, Exercise 38.

00 2n+1 00 n+1
(4x — 5)+ GBx + )"t
29. Z————nm 30. Z T

n=1 n=1

w e el
n=0

)2n+l

In Exercises 33-38, find the series’ interval of convergence and, within
this interval, the sum of the series as a function of x.

33. 2 (il Vi ;"1)2" 34. 2 G+ D7 *9',,1)2" 35. i (*/7’_‘ - 1>"

n=0
oo 0 2 1 n e 2 _ n
36. 3 (In x)" 3. Z(" ;“ > 38. (x . 1)
n=0

n=0 n=0

Theory and Examples
39. For what values of x does the series

~-+<—%> (x -3+

converge? What is its sum? What series do you get if you differ-
entiate the given series term by term? For what values of x does
the new series converge? What is its sum?

1 1
1—= _ - _ 2
2(x 3)+4(x 3) +

40. If you integrate the series in Exercise 39 term by term, what
new series do you get? For what values of x does the new series

converge, and what is another name for its sum?
41. The series

b

X3 xS x7 x9 xll
sinx=x-— 45 - T
3! 70 9 11!

converges to sin x for all x.

a) Find the first six terms of a series for cos x. For what values
of x should the series converge?

b) By replacing x by 2x in the series for sin x, find a series
that converges to sin 2x for all x.

¢) Using the result in (a) and series multiplication, calculate
the first six terms of a series for 2 sin x cos x. Compare your
answer with the answer in (b).

42. The series

2 x} x4 )C5

e _l+x+-—+§+——+-5—'+

converges to e* for all x.

a) Find a series for (d/dx)e*
Explain your answer.

b) Find a series for f e*dx. Do you get the series for e*?
Explain your answer.

¢) Replace x by —x in the series for e* to find a series that
converges to e~ for all x. Then multiply the series for ¢*
and e™* to find the first six terms of a series for e™ . e*

€.
43. The series

. Do you get the series for e*?

anx N x> 2 N 17x7 N 62x°
= X —_— —_—
3 15 315 2835

converges to tan x for —mw/2 <x < m/2.

a) Find the first five terms of the series for In | sec x|. For what
values of x should the series converge?
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4.

45.

b) Find the first five terms of the series for sec? x. For what
values of x should this series converge?
¢) Check your result in (b) by squaring the series given for
sec x in Exercise 44.
The series for
sec x 1+x2+ > s o1 6 4
= —+ = - —x
2 24 720 8064

converges to sec x for —m /2 < x < /2.

8 ...

a) Find the first five terms of a power series for the function
In |sec x + tan x|. For what values of x should the series
converge?

b) Find the first four terms of a series for sec x tan x. For what
values of x should the series converge?

¢) Check your result in (b) by multiplying the series for sec x
by the series given for tan x in Exercise 43.

Uniqueness of convergent power series
a) Show that if two power series Y oo d,x" and Y oog bx"

46.

47.

48.

are convergent and equal for all values of x in an open in-
terval (—c, ¢), then a, = b, for every n. (Hint: Let f(x) =
Y an x" =Y o2 b, x". Differentiate term by term to
show that a, and b, both equal f™(0)/(n!).)

b) Show that if Z?:o a, x" =0 for all x in an open interval
(—c, ¢), then a, = 0 for every n.

The sum of the series Y »_,(n?/2"). To find the sum of this
series, express 1/(1 — x) as a geometric series, differentiate both
sides of the resulting equation with respect to x, multiply both
sides of the result by x, differentiate again, multiply by x again,
and set x equal to 1/2. What do you get? (Source: David E.
Dobbs’ letter to the editor, Illinois Mathematics Teacher, Vol. 33,
Issue 4, 1982, p. 27.)

Convergence at endpoints. Show by examples that the con-
vergence of a power series at an endpoint of its interval of con-
vergence may be either conditional or absolute.

Make up a power series whose interval of convergence is
a) (-3,3) b) (2,0 o (1,5).

Taylor and Maclaurin Series

This section shows how functions that are infinitely differentiable generate power
series called Taylor series. In many cases, these series can provide useful polynomial
approximations of the generating functions.

Series Representations

We know that within its interval of convergence the sum of a power series is a
continuous function with derivatives of all orders. But what about the other way
around? If a function f(x) has derivatives of all orders on an interval /, can it be
expressed as a power series on /? And if it can, what will its coefficients be?

We can answer the last question readily if we assume that f(x) is the sum of

a power series

fx) =

00

> an(x—a)

n=0

ay+a(x—a)+ax—ail+---+a,x—a)+---

with a positive radius of convergence. By repeated term-by-term differentiation
within the interval of convergence / we obtain

f(x)=aq +2a,(x —a) +3a3(x —a)* + -+ na,(x —a)" 4.
f'x) =1-2a,+2+3a3(x —a) + 3+ 4as(x —a)* +---
fx)=1+2-3a;+2-3-4as(x —a) +3-4-5as(x —a)’ +---,

with the nth derivative, for all n, being

f™(x) = n'a, + a sum of terms with (x — @) as a factor.
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Since these equations all hold at x = a, we have
fl(a) = ai,
f'a) = 1 - 2a,,
f"(@) =1-2-3a;,
and, in general,
f™(a) = n!a,.

These formulas reveal a marvelous pattern in the coefficients of any power series
Z:io a,(x —a)” that converges to the values of f on I (“represents f on I,” we
say). If there is such a series (still an open question), then there is only one such
series and its nth coefficient is

[

n!

If f has a series representation, then the series must be

F0) = f@) + F@x —a) + f—i—)-( ay?

1
(@ W
n'

R

x—a)" +

But if we start with an arbitrary function f that is infinitely differentiable on an
interval I centered at x = a and use it to generate the series in Eq. (1), will the series
then converge to f(x) at each x in the interior of /? The answer is maybe—for
some functions it will but for other functions it will not, as we will see.

Taylor and Maclaurin Series

| ‘efmmons

et f be a functlon w1th denvauves of all orders throughout some interval
contammg a as an mtenor pomt Then the Taylor series generated by f at

-~f(a>+f(a)<x a)+wﬂ( o
; : - (n)
Sk ! '(a)(x —ay+
s n
nerated by f is ;
e " )
© +10n e 0

the Taylor series “generated‘:by‘ fatx=0.

EXAMPLE 1 Find the Taylor series generated by f(x) = 1/x ata = 2. Where,
if anywhere, does the series converge to 1/x?
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We speak of a Taylor polynomial of order n
rather than degree n because f™(a) may be
zero. The first two Taylor polynomials of
cos x at x = 0, for example, are Py(x) =1
and P;(x) = 1. The first order polynomial
has degree zero, not one.

Solution We need to find f(2), f'(2), f”(2), .... Taking derivatives we get

S =7, fo=2"=1,
flo) = —x7, Fo =1
£ = 2157, 1oyl
f") = =3t i%gz_%’

f(n)(x) — (_l)nn!x—(n+l)’ f(n)(2) _ (-—1)"

n! - on+l *
The Taylor series is
"o (n)
FO+ 12 -2)+ fz(' )(x—-2)2+-~+ ]:1' x=2)"+---
1 x-2) (x-2)? x-2)

eI T R o e
This is a geometric series with first term 1/2 and ratio r = —(x — 2)/2. It converges
absolutely for |x — 2| < 2 and its sum is

1/2 1 1

+(x-2/2 24(x-2) x

In this example the Taylor series generated by f(x) = 1/x at a = 2 converges to
I/x for|x —2| <2o0r0<x <4

Taylor Polynomials

The linearization of a differentiable function f at a point a is the polynomial
Pi(x) = f(a) + f'(a)(x — a).

If f has derivatives of higher order at a, then it has higher order polynomial
approximations as well, one for each available derivative. These polynomials are
called the Taylor polynomials of f.

Definition

Let f be a function with derivatives of order k for k = 1,2, ..., N in some
interval containing @ as an interior point. Then for any integer n from 0
through N, the Taylor polynomial of order n generated by f at x =a is
the polynomial 3

P = f@+ @ -+ 26— o+
(k) (n)
SEE RGP S A )
k! n!



y=FPX

| | |
-0.5 0 0.5 1.0

8.17 The graph of f(x) = ¥ and its Taylor
polynomials

Pi(x) =1+x,
Py(x) = 1+ x + (x%/2!), and
Ps(x) = 1+ x + (x3/21) + (x3/31).

Notice the very close agreement near the
center x = 0.
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Just as the linearization of f at x = a provides the best linear approximation
of f in the neighborhood of a, the higher order Taylor polynomials provide the
best polynomial approximations of their respective degrees. (See Exercise 32.)

EXAMPLE 2 Find the Taylor series and the Taylor polynomials generated by
f(x)=¢e"atx =0.

Solution Since

fx) = e, fl(x) =e", e, F®(x) = e, e
we have

fO==1, fO=1, s R0 =1,
The Taylor series generated by f at x =0 is

f”() (0
XA -

FO + fOx +—— X

x? x"
=1+x+—+-~-+;+~'~

-TE

k=0

{1

By definition, this is also the Maclaurin series for ¢*. In Section 8.10 we will see
that the series converges to e* at every x.

The Taylor polynomial of order n at x =0 is

2 x"

X
Pa(x) =1+x+ =+ +—.
2 n!

See Fig. 8.17. d

EXAMPLE 3 Find the Taylor series and Taylor polynomials generated by
f(x) =cosx at x =0.

Solution The cosine and its derivatives are

fx) = cos X flix) = —sin x,
f'(x) = —cos X, ) = sin x,
£ (x) = (=" cos x, £+ (x) = (=D"*!sin x.

At x = 0, the cosines are 1 and the sines are 0, so
fO0) = (1" fO0) =0
The Taylor series generated by f at O is

" " (n)
IO P IO W

O + £ + 5 -

2n

x
140-x—23+0- x’ +—+ -+ (=D

4! @ *
_ i( l)n 2n
B @2n)!

n=0
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8.18 The polynomials
Pan (%) = ) [(=1x*/(2k)!]
k=0

converge to cosx as n — . We can
deduce the behavior of cos x arbitrarily
far away solely from knowing the values
of the cosine and its derivatives at x = 0.

Infinitely differentiable functions that are
represented by their Taylor series only at
isolated points are, in practice, very rare.

Who invented Taylor series?

Brook Taylor (1685-1731) did not invent
Taylor series, and Maclaurin series were not
developed by Colin Maclaurin (1698-1746).
James Gregory was already working with
Taylor series when Taylor was only a few
years old, and he published the Maclaurin
series for tan x, sec x, tan~'x, and sec™'x
ten years before Maclaurin was born.
Nicolaus Mercator discovered the Maclaurin
series for In (1 4+ x) at about the same time.

Taylor was unaware of Gregory’s work
when he published his book Methodus
incrementorum directa et inversa in 1715,
containing what we now call Taylor series.
Maclaurin quoted Taylor’s work in a calculus
book he wrote in 1742. The book
popularized series representations of
functions and although Maclaurin never
claimed to have discovered them, Taylor
series centered at x = 0 became known as
Maclaurin series. History evened things up in
the end. Maclaurin, a brilliant mathematician,
was the original discoverer of the rule for
solving systems of equations that we call
Cramer’s rule.

By definition, this is also the Maclaurin series for cos x. In Section 8.10, we will
see that the series converges to cos x at every x.
Because f@*V(0) = 0, the Taylor polynomials of orders 2n and 2n + 1 are

identical:
2 4 2n

X 4 x + (=1 x
20 4! @n)!"

Figure 8.18 shows how well these polynomials approximate f(x) = cos x near

x = 0. Only the right-hand portions of the graphs are given because the graphs are

symmetric about the y-axis.

P2n(x) = P2n+1(x)

EXAMPLE 4 A function f whose Taylor series converges at every x but
converges to f(x) only at x=0

It can be shown (though not easily) that
x=0

0,
f(x) = {e—l/xz’ x#0

(Fig. 8.19) has derivatives of all orders at x = 0 and that £®(0)
means that the Taylor series generated by f at x =0 is

f”() 2 0 ,
n'

= 0 for all n. This

fO + f'(O)x +

ot

x4

=040-x4+0-x>4+---+0.x"+---
=0+0+---+0+---.

The series converges for every x (its sum is 0) but converges to f(x) only at x = 0.

u
Two questions still remain.

1. For what values of x can we normally expect a Taylor series to converge to
its generating function?



8.19 The graph of the continuous
extension of y = e~ is so flat at the
origin that all of its derivatives there are '
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zero (Example 4). -4

2. How accurately do a function’s Taylor polynomials approximate the function
on a given interval?

The answers are provided by a theorem of Taylor in the next section.

Exercises 8.9

Finding Taylor Polynomials

In Exercises 1-8, find the Taylor polynomials of orders 0, 1, 2, and
3 generated by f at a.

1. fx)=Inx, a=1

2. fx)=In(1+x), a=0
3. fx)=1/x, a=2

4. fx)=1/(x+2), a=0
5. f(x)=sinx, a=mn/4

6. f(x)=cosx, a=mn/4
7. f(x) =%, a=4

8. f(x)=vVx+4, a=0

Finding Maclaurin Series

Find the Maclaurin series for the functions in Exercises 9-20.

9. e 10. ¢/

1
11. T _{l_x 12. T—>
13. sin 3x 14. sin %
15. 7cos (—x) 16. S5cos Tx
17. coshx = et

18. sinhx = = ¢

19. x* —2x3—5x +4
20. (x +1)?

Finding Taylor Series

In Exercises 21-28, find the Taylor series generated by f at x = a.
2. f(x)=x>—-2x+4, a=2

22. fx)=2x4+x*+3x—8, a=1

23. f(x) =x*4+x*+1, a=-2

24, f(x)=3x"—x*+2x*+x2-2, a=-1

25. f(x)=1/x%, a=1

26. f(x)=x/(1—-x), a=0
27. f(x)=¢€*, a=2
28. f(x)=2*, a=1

Theory and Examples
29. Use the Taylor series generated by e* at x = a to show that

. . ()c—a)2
ef=e'[l14+(x—a)+ 2 4+

30. (Continuation of Exercise 29.) Find the Taylor series generated by
¢* at x = 1. Compare your answer with the formula in Exercise
29.

31. Let f(x) have derivatives through order n at x = a. Show that
the Taylor polynomial of order n and its first n derivatives have
the same values that f and its first n derivatives have at x = a.
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32. Of all polynomials of degree < n, the Taylor polynomial of
order n gives the best approximation. Suppose that f(x) is
differentiable on an interval centered at x = a and that g(x) =
by +by(x —a)+---+ b,(x —a)" is a polynomial of degree n
with constant coefficients by, - - -, b,. Let E(x) = f(x) — g(x).
Show that if we impose on g the conditions

a) E@=0 The approximation error is zero at x = a.
. E(x) The error is negligible
b) )I,I_IB, (x — a)" =Y when compared to (x — a)".
then
, " a
gx) = fla)+ fl(a(x —a) + f2(' )(x —a)y 4+
(n)
+ 7@ x —a)".

n!

Thus, the Taylor polynomial P,(x) is the only polynomial of
degree less than or equal to n whose error is both zero at x = a
and negligible when compared with (x — a)".

Quadratic Approximations

The Taylor polynomial of order 2 generated by a twice-differentiable
function f(x) at x = a is called the quadratic approximation of
f at x = a. In Exercises 33-38, find the (a) linearization (Taylor
polynomial of order 1) and (b) quadratic approximation of f at x = 0.
34, f(x) =ein*

36. f(x) =coshx

38. f(x) =tan x

33. f(x) =In(cos x)
35. f(x) =1/4/1—x2
37. f(x) =sin x

Convergence of Taylor Series;

Error Estimates

This section addresses the two questions left unanswered by Section 8.9:

1. When does a Taylor series converge to its generating function?
2. How accurately do a function’s Taylor polynomials approximate the function
on a given interval?

Taylor’s Theorem

We answer these questions with the following theorem.

Theorem 16

Taylor’s Theorem

If f and its first n derivatives f/, f”,..., f® are continuous on [a, b] or
on [b,al, and f® is differentiable on (a, b) or on (b, a), then there exists
a number ¢ between a and b such that

f(b)=f(a)+f’(a)(b—a)+%(b—a)z-i-m
f(n)(a) . f(n+1)(c) il
T Gy

Taylor’s theorem is a generalization of the Mean Value Theorem (Exercise 39).
There is a proof of Taylor’s theorem at the end of this section.

When we apply Taylor’s theorem, we usually want to hold a fixed and treat b
as an independent variable. Taylor’s formula is easier to use in circumstances like
these if we change b to x. Here is how the theorem reads with this change.
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Corollary to Taylor's Theorem
Taylor’s Formula

If f has derivatives of all orders in an open interval I containing a, then
for each positive integer n and for each x in I,

f@) =f@+ fl@)x—a)+ f2('a)(x —a) s
n)
+ 2D oyt R, (1)
where
(n+1)
R,(x) = f———“(—cl(x —a)y*t! for some cbetween aand x. (2)
(n+ 1!

When we state Taylor’s theorem this way, it says that for each x in 7,
f(x) = Pu(x) + Ru(x).

Pause for a moment to think about how remarkable this equation is. For any value
of n we want, the equation gives both a polynomial approximation of f of that
order and a formula for the error involved in using that approximation over the
interval [.

Equation (1) is called Taylor’s formula. The function R,(x) is called the
remainder of order n or the error term for the approximation of f by P,(x) over
I.If R,(x) - Oasn — oo forall x in I, we say that the Taylor series generated
by f at x = a converges to f on I, and we write

o £k
flx) = Z AC) (x — o)k

— K

EXAMPLE 1 The Maclaurin series for e*

Show that the Taylor series generated by f(x) = e* at x = 0 converges to f(x)
for every real value of x.

Solution The function has derivatives of all orders throughout the interval I =
(—o00, 00). Equations (1) and (2) with f(x) = e* and a = 0 give

x2 X" Polynomial from
e=1+x+—+---+—+R,(x) Section 8.9,
2! n! Example 2
and
eC
R.(x) = ntl for some ¢ between 0 and x.
(n+ 1)

Since €* is an increasing function of x, e° lies between e’ =1 and ¢*. When x is
negative, so is ¢, and e < 1. When x is zero, ¢ =1 and R,(x) = 0. When x is
positive, so is ¢, and e° < e*. Thus,

|x|n+1

[Rn(x)| < D!

when x <0,
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and

n+l1

IR, (x)| < exm when x > 0.
n :

Finally, because

xn+l
m ———=0 for every x, Section 8.2

li
n—oo (n+ 1)!

lim R,(x) =0, and the series converges to e* for every x.
n—0c

N ooxk x2 xk
e =;E=1+X+E+"'+H+"’

Estimating the Remainder

It is often possible to estimate R,(x) as we did in Example 1. This method of
estimation is so convenient that we state it as a theorem for future reference.

Theorem 17
The Remainder Estimation Theorem

If there are positive constants M and r such that | f®**+D ()| < Mr**! for
all ¢ between a and x, inclusive, then the remainder term R, (x) in Taylor’s
theorem satisfies the inequality

rn+1|x _ a|n+1

IR, (x)| < MW

If these conditions hold for every n and all the other conditions of Taylor’s
theorem are satisfied by f, then the series converges to f(x).

In the simplest examples, we can take » = 1 provided f and all its derivatives
are bounded in magnitude by some constant M. In other cases, we may need to
consider r. For example, if f(x) = 2cos (3x), each time we differentiate we get a
factor of 3 and r needs to be greater than 1. In this particular case, we can take
r = 3 along with M = 2.

We are now ready to look at some examples of how the Remainder Estimation
Theorem and Taylor’s theorem can be used together to settle questions of conver-
gence. As you will see, they can also be used to determine the accuracy with which
a function is approximated by one of its Taylor polynomials.

EXAMPLE 2 The Maclaurin series for sin x

Show that the Maclaurin series for sin x converges to sin x for all x.
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Solution The function and its derivatives are
fx) = sinx,  f'(x) = cos x,

f'x)y = —sinx, f"(x) = —cos x,

f@(x) = (=D¥sinx,  fA&**D(x) = (=1)*cosx,
SO
F®0) =0 and FED©O) = (—Dk

The series has only odd-powered terms and, for n = 2k + 1, Taylor’s theorem gives

. »¥ X (—Dkx 2+l
smx=x——+——---+

3 s I

All the derivatives of sin x have absolute values less than or equal to 1, so we can
apply the Remainder Estimation Theorem with M =1 and r = 1 to obtain

R : |x12k+2
<1.-—-20
[Ry41(x)| < 2k 12!

Since (|x|**2/(2k +2)!) — 0as k — oo, whatever the value of x, Ry (x) —
0, and the Maclaurin series for sin x converges to sin x for every x.

. x (__l)kx2k+l )C3 x5 )C7
Slnx=kz(;—(2k+1)! =X—§+§—ﬁ+'”- (3

EXAMPLE 3  The Maclaurin series for cos x
Show that the Maclaurin series for cos x converges to cos x for every value of x.

Solution We add the remainder term to the Taylor polynomial for cos x (Section

8.9, Example 3) to obtain Taylor’s formula for cos x with n = 2k:

x2 x4 X2k

- —_— — —_— e e e . — k
cosx =1 T +4! + (—1) 20!

+ Ry (x).

Because the derivatives of the cosine have absolute value less than or equal to 1,
the Remainder Estimation Theorem with M =1 and r = 1 gives
l x|2k+l

TRk+ D!

For every value of x, Ryy — 0as k — oo. Therefore, the series converges to cos x
for every value of x.

|Ru(x)| < 1

2, (—1)kx* xr  xt xS
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EXAMPLE 4  Finding a Maclaurin series by substitution
Find the Maclaurin series for cos 2x.

Solution We can find the Maclaurin series for cos 2x by substituting 2x for x in
the Maclaurin series for cos x:

cos2x = c- (;1_)]((2—)6)2’( -1— (ZX)2 + (2)6)4 _ (2)6)6 4. Eq. (4) with
R 2! 41 6! 2x for x
_1 22x2 24x% 28x6
R TR TR TR
_ i(— )kzszZk
= 2k)!

Eq. (4) holds for —0o < x < 0o, implying that it holds for —oo < 2x < 00, so the
newly created series converges for all x. Exercise 45 explains why the series is in
fact the Maclaurin series for cos 2x. Q

EXAMPLE 5  Finding a Maclaurin series by multiplication
Find the Maclaurin series for x sin x.

Solution We can find the Maclaurin series for x sin x by multiplying the Maclaurin
series for sinx (Eq. 3) by x:

e L
xsmx:x(x—§+_5_!_:7_!+...>

The new series converges for all x because the series for sin x converges for all x.
Exercise 45 explains why the series is the Maclaurin series for x sin x. Q

Truncation Error

The Maclaurin series for e* converges to e¢* for all x. But we still need to decide
how many terms to use to approximate e* to a given degree of accuracy. We get
this information from the Remainder Estimation Theorem.

EXAMPLE 6  Calculate e with an error of less than 107°.
Solution We can use the result of Example 1 with x = 1 to write

1 1
e=14+14+—4+---4+—+ R, (1),
2! n!

with

R, (1) = ¢ —— for some ¢ between 0 and 1.

(n+ 1)

For the purposes of this example, we assume that we know that e < 3. Hence, we
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n (_1)kxzk4-1

Panp1 () = ) =
i Z; 2k +1)!

converge to sin x as n — .
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are certain that

— <R()< ———
(n+ 1! (n+ 1!
because 1 < e <3 for0<c < 1.
By experiment we find that 1/9! > 1076, while 3/10! < 107%. Thus we should
take (n + 1) to be at least 10, or n to be at least 9. With an error of less than 107°,
1

1 1
e=l+1+z+5++5 8 Q

EXAMPLE 7 For what values of x can we replace sin x by x — (x*/3!) with
an error of magnitude no greater than 3 x 107*?

Solution Here we can take advantage of the fact that the Maclaurin series for sin x
is an alternating series for every nonzero value of x. According to the Alternating
Series Estimation Theorem (Section 8.7), the error in truncating

. x3 X
smx=x——§:'+—5—!—---
after (x®/3!) is no greater than
xS _ |x|5
517 120°

Therefore the error will be less than or equal to 3 x 107 if

|x|5 _4 5 4~ Rounded down,
50 <3x10 or |x] < v/360 x 10~% = 0.514. 10 be safe

The Alternating Series Estimation Theorem tells us something that the Re-
mainder Estimation Theorem does not: namely, that the estimate x — (x3/3!) for
sinx is an underestimate when x is positive because then x°/120 is positive.

Figure 8.20 shows the graph of sinx, along with the graphs of a number of
its approximating Taylor polynomials. The graph of P3(x) = x — (x*/3!) is almost
indistinguishable from the sine curve when —1 <x < 1.
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One of the amazing consequences of Euler’s
formula is the equation
e = —1.

When written in the form ¢ + 1 = 0, this
equation combines the five most important
constants in mathematics.

[
"

You might wonder how the estimate given by the Remainder Estimation The-
orem compares with the one just obtained from the Alternating Series Estimation

Theorem. If we write
3

sinx:x—§+R3,

then the Remainder Estimation Theorem gives
IxI* lx®
41 247

|R3| <1-

which is not as good. But if we recognize that x — (x*/3!) =0+ x + 0x2 —
(x3/3!) + 0x* is the Taylor polynomial of order 4 as well as of order 3, then

3
sinx =x — — + 04 Ry,

3!
and the Remainder Estimation Theorem with M =r =1 gives
X IxP
R < 1 . = —
Rl =1+ =120
This is what we had from the Alternating Series Estimation Theorem. d

Combining Taylor Series

On the intersection of their intervals of convergence, Taylor series can be added,
subtracted, and multiplied by constants, and the results are once again Taylor series.
The Taylor series for f(x) + g(x) is the sum of the Taylor series for f(x) and g(x)
because the nth derivative of f + g is f™ 4+ g™, and so on. Thus we obtain the
Maclaurin series for (1 4 cos2x)/2 by adding 1 to the Maclaurin series for cos 2x
and dividing the combined results by 2, and the Maclaurin series for sin x + cos x
is the term-by-term sum of the Maclaurin series for sinx and cos x.

Euler's Formula

As you may recall, a complex number is a number of the form a + bi, where a and
b are real numbers and i = +/—1. If we substitute x = i (6 real) in the Maclaurin
series for e* and use the relations

2= -1, PP =% = —i, t=i%r=1, P ==,

and so on, to simplify the result, we obtain
0 i’0% i%0® ‘6t %95 %S
TR T TR TR 6!
6* o+ 6° 0 6
= (1——-+—————+~--)+i(0———+———---) =cosf +isinf.

This does not prove that €' = cos 6 + i sin@ because we have not yet defined
what it means to raise e to an imaginary power. But it does say how to define e’
to be consistent with other things we know.

 Definition

~ Forany real number 6, ¢
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Equation (5), called Euler’s formula, enables us to define e**? to be e* . %

for any complex number a + bi.

A Proof of Taylor's Theorem

We prove Taylor’s theorem assuming a < b. The proof for a > b is nearly the same.
The Taylor polynomial

f"(a)

n!

f"(@)

5 (x—a)’+---+

P.(x) = f(@)+ fl(@)(x —a) + (x —a)"

and its first n derivatives match the function f and its first n derivatives at x = a.
We do not disturb that matching if we add another term of the form K (x — a)"*!,
where K is any constant, because such a term and its first n derivatives are all
equal to zero at x = a. The new function

¢n(x) = Pn(x) + K(x —_ a)n+1

and its first n derivatives still agree with f and its first n derivatives at x = a.
We now choose the particular value of K that makes the curve y = ¢, (x) agree
with the original curve y = f(x) at x = b. In symbols,

_ f(b) = P.(b)

f)y=P,b)+Kb-a)"", o K= b oy (6)

With K defined by Eq. (6), the function
F(x) = f(x) — ¢n(x)

measures the difference between the original function f and the approximating
function ¢, for each x in [a, b].

We now use Rolle’s theorem (Section 3.2). First, because F(a) = F(b) =0
and both F and F’ are continuous on [a, b], we know that

F'(c;)) =0 for some c; in (a, b).

Next, because F'(a) = F’(¢;) = 0 and both F’ and F” are continuous on [a, ¢;],
we know that

F'(c;) =0 for some ¢, in (a, c;).

Rolle’s theorem, applied successively to F”, F”, ..., F®~D implies the existence
of

¢3 in (a, cy) such that F"'(c3) =0,

¢4 1in (a,c3) such that F®(c,) =0,

¢, in(a,cy,_1) such that F(n)(cn) =0.

Finally, because F™ is continuous on [a, c,] and differentiable on (a, c,), and
F®(a) = F"(c,) =0, Rolle’s theorem implies that there is a number c,;; in
(a, c,) such that

F® (1) = 0. )]

If we differentiate F(x) = f(x) — P,(x) — K(x —a)"*! a total of n+ 1 times,
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we get
Fm(x)y = fo(x) =0 - (n + 1)!K. (8)
Equations (7) and (8) together give
(n+1)
% for some number ¢ = ¢,y in (a, b). 9)
Equations (6) and (9) give
f(n-i—l)(c)
b) = P,(b) + ————=(b—a)"".
f ) ()+(n+1)!( a)
This concludes the proof. a

Exercises 8.10

Maclaurin Series by Substitution

Use substitution (as in Example 4) to find the Maclaurin series of the
functions in Exercises 1-6.

1. e 2. e7*/?

4. sin (7%) 5. cos /x

More Maclaurin Series

Find Maclaurin series for the functions in Exercises 7-18.
2
x 2o x
7. xe 8. x“sinx 9. 5~ 1+ cosx

3. 5sin(—x)
6. cos (x32//2)

3
. x

10. sinx — x + 31

13. cos’x (Hint: cos? x = (1 + cos2x)/2.)

x2

1—2x
1 2

17. a2 18. a2y

11. xcosmx 12. x?cos (x?)

14. sin’x 15. 16. xIn(1 + 2x)

Error Estimates
19. For approximately what values of x can you replace sin x by

x — (x3/6) with an error of magnitude no greater than 5 x 10747
Give reasons for your answer.

20. If cos x is replaced by 1 — (x2/2) and |x| < 0.5, what estimate
can be made of the error? Does 1 — (x2/2) tend to be too large,
or too small? Give reasons for your answer.

21. How close is the approximation sin x = x when |x| < 1073? For
which of these values of x is x < sinx?

22. The estimate 4/1 +x = 1 + (x/2) is used when x is small. Es-
timate the error when |x| < 0.01.

23. The approximation ¢* = 1 + x + (x2/2) is used when x is small.
Use the Remainder Estimation Theorem to estimate the error
when |x| < 0.1.

24. (Continuation of Exercise 23.) When x < 0, the series for e*
is an alternating series. Use the Alternating Series Estimation
Theorem to estimate the error that results from replacing ¢* by
1+ x + (x2/2) when —0.1 < x < 0. Compare your estimate with
the one you obtained in Exercise 23.

25. Estimate the error in the approximation sinh x = x + (x3/3!)
when |x| < 0.5. (Hint: Use R4, not R3.)

26. When 0 < h < 0.01, show that " may be replaced by 1 + % with
an error of magnitude no greater than 0.6% of 4. Use ¢*°! = 1.01.

27. For what positive values of x can you replace In (1 + x) by x
with an error of magnitude no greater than 1% of the value of x?

28. You plan to estimate 77 /4 by evaluating the Maclaurin series for
tan~! x at x = 1. Use the Alternating Series Estimation Theorem
to determine how many terms of the series you would have to
add to be sure the estimate is good to 2 decimal places.

29. a) Use the Maclaurin series for sin x and the Alternating Series
Estimation Theorem to show that

2

R LA YY)
6
%@ b) GRAPHER Graph f(x) = (sinx)/x together with the func-
tions y = 1 — (x2/6) and y = 1 for —5 < x < 5. Comment
on the relationships among the graphs.
30. a) Use the Maclaurin series for cos x and the Alternating Series

Estimation Theorem to show that
1 x? 1 —cosx 1
- - — < < =,

2 24 x2 2
(This is the inequality in Section 1.2, Exercise 46.)

x #0.



%% b)

GRAPHER Graph f(x) = (1 — cos x)/x? together with y =
(1/2) — (x*/24) and y = 1/2 for =9 < x < 9. Comment on
the relationships among the graphs.

Finding and Identifying Maclaurin Series

Each of the series in Exercises 31-34 is the value of the Maclaurin
series of a function f(x) at some point. What function and what
point? What is the sum of the series?

31.

32.

34.

©.1) 0.1 (0.1 (—1)*(0.1)%+!
' 3! 5! 2k + 1)!
2 4 — 1) ()%
1_ T T —+( )(77) _+_
42.21  44. 4 4% o (2k!)
T 7T3 775 (—l)kﬂ2k+l
33, — - —— -1 4.
3 33-3+35-5 +32"+‘(2k+1)+
n? wk
L (=D Tl
T— =+ 3 + (=1 . +
Multiply the Maclaurin series for ¢* and sin x together to find

35.

36.

37.

38.

the first five nonzero terms of the Maclaurin series for e* sinx.

Multiply the Maclaurin series for e* and cos x together to find
the first five nonzero terms of the Maclaurin series for e* cos x.

Use the identity sin?x = (1 — cos2x)/2 to obtain the Maclau-
rin series for sin® x. Then differentiate this series to obtain the
Maclaurin series for 2 sin x cos x. Check that this is the series for
sin 2x.

(Continuation of Exercise 37.) Use the identity cos? x = cos 2x +
sin x to obtain a power series for cos?x.

Theory and Examples

39.

40.

41.

42.

Taylor’s theorem and the Mean Value Theorem. Explain how
the Mean Value Theorem (Section 3.2, Theorem 4) is a special
case of Taylor’s theorem.

Linearizations at inflection points (Continuation of Section
3.7, Exercise 63). Show that if the graph of a twice-differentiable
function f(x) has an inflection point at x = a, then the lineariza-
tion of f at x = a is also the quadratic approximation of f at
x = a. This explains why tangent lines fit so well at inflection
points.

The (second) second derivative test. Use the equation
y "(c2)
0= f@+ f@e—a+ L2 —ay

to establish the following test.
Let f have continuous first and second derivatives and sup-
pose that f'(a) = 0. Then

a) f hasalocal maximum ata if f” < 0 throughout an interval
whose interior contains a;

b) f has alocal minimum at a if f” > 0 throughout an interval
whose interior contains a.

A cubic approximation. Use Taylor’s formula with a =0

and n = 3 to find the standard cubic approximation of f(x) =
1/(1 —x) at x = 0. Give an upper bound for the magnitude of
the error in the approximation when |x| < 0.1.

43.

4.
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a) Use Taylor’s formula with n = 2 to find the quadratic ap-
proximation of f(x) = (1 4+ x)* at x = 0 (k a constant).

b) If k = 3, for approximately what values of x in the interval
[0, 1] will the error in the quadratic approximation be less
than 1/100?

Improving approximations to n.

a) Let P be an approximation of 7 accurate to n decimals.

Show that P + sin P gives an approximation correct to 3n
decimals. (Hint: Let P =7 + x.)

B b) Try it with a calculator.

45.

46.

47.

i 48.

00

The Maclaurin series generated by f(x) =), jan,x" is
S oanx". A function defined by a power series Y .o a, x"
with a radius of convergence ¢ > 0 has a Maclaurin series that
converges to the function at every point of (—c, ¢). Show this by
showing that the Maclaurin series generated by f(x) = Z:‘;O a, x"
is the series Y ., a, x" itself.

An immediate consequence of this is that series like

. __2_x_4 x® x8+
xsmmx =x 3!+§_ﬁ -
and
4 5
2v 2 3 X L
xe_x+x+2!+3!+ >

obtained by multiplying Maclaurin series by powers of x, as well
as series obtained by integration and differentiation of convergent
power series, are themselves the Maclaurin series generated by
the functions they represent.

Maclaurin series for even functions and odd functions (Con-
tinuation of Section 8.8, Exercise 45). Suppose that f(x) =
Z:o:o a, x" converges for all x in an open interval (—c, ¢). Show
that

a) If f is even, then a; =a3 =as =--- =0, i.e., the series
for f contains only even powers of x.
b) If fisodd, thenay =a, =a, = --- =0, i.e., the series for
f contains only odd powers of x.
Taylor polynomials of periodic functions
a) Show that every continuous periodic function f(x), —00 <
X < 00, is bounded in magnitude by showing that there ex-
ists a positive constant M such that | f(x)| < M for all x.
b) Show that the graph of every Taylor polynomial of positive
degree generated by f(x) = cosx must eventually move
away from the graph of cos x as |x| increases. You can see
this in Fig. 8.18. The Taylor polynomials of sin x behave
in a similar way (Fig. 8.20).
GRAPHER
a) Graphthecurves y = (1/3) — (x2)/5and y = (x — tan™! x) /x>
together with the line y = 1/3.
b) Use a Maclaurin series to explain what you see. What is
lim —tan~!x )
x—=0 x3
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Euler's Formula
49. Use Eq. (5) to write the following powers of e in the form a + bi.

3) e-in b) ein/4 C) e—in/Z
50. Euler’s identities. Use Eq. (5) to show that
) e + =0 4 sino oi0 _ o=if
cos§ = —— and sinf = ——
2 2i

51. Establish the equations in Exercise 50 by combining the formal
Maclaurin series for ¢’ and e~*.

52. Show that
a) cosh i = cos#, b)

53. By multiplying the Maclaurin series for ¢* and sin x, find the
terms through x> of the Maclaurin series for e* sin x. This series
is the imaginary part of the series for

sinh i@ =i sin6.

&& .+ et = €(l+l)x.

Use this fact to check your answer. For what values of x should
the series for e* sinx converge?
54. When a and b are real, we define ¢“+»* with the equation

e(a+zb)x —_ eax . ezb

* = e (cos bx + i sinbx).

Differentiate the right-hand side of this equation to show that
ie(aﬂb)x — (a + ib)e(a+ib)x.
dx

Thus the familiar rule (d/dx)e** = ke** holds for k complex as
well as real.

55. Use the definition of e® to show that for any real numbers 6, 6;,
and 0,,
a) el gt — (i6i16)
b) e =1/e".

356. Two complex numbers a + ib and ¢ + id are equal if and only
if a = ¢ and b = d. Use this fact to evaluate

/e’”‘ cosbxdx and /e“ sin bx dx

from

/e(a+ib)xdx — a—ib e(a-Hb)x +C
a’ +b?

where C = C; +iC; is a complex constant of integration.

€ CAS Explorations and Projects—Linear, Quadratic,

and Cubic Approximations

Taylor’s formula with n =1 and a = 0 gives the linearization of a
function at x = 0. With n =2 and n =3 we obtain the standard
quadratic and cubic approximations. In these exercises we explore
the errors associated with these approximations. We seek answers to
two questions:

a) For what values of x can the function be replaced by each ap-
proximation with an error less than 1072?

b) What is the maximum error we could expect if we replace the
function by each approximation over the specified interval?

Using a CAS, perform the following steps to aid in answering
questions (a) and (b) for the functions and intervals in Exercises 57-62.

Step 1: Plot the function over the specified interval.

Step 2: Find the Taylor polynomials P, (x), P,(x), and P;(x) at
x=0.

Step 3: Calculate the (n + 1)st derivative f®+D(c) associated
with the remainder term for each Taylor polynomial. Plot the
derivative as a function of ¢ over the specified interval and es-
timate its maximum absolute value, M.

Step 4: Calculate the remainder R, (x) for each polynomial. Us-
ing the estimate M from step 3 in place of "V (c), plot R,(x)
over the specified interval. Then estimate the values of x that
answer question (a).

Step 5: Compare your estimated error with the actual error
E,(x) = |f(x) — P,(x)| by plotting E,(x) over the specified
interval. This will help answer question (b).

Step 6: Graph the function and its three Taylor approximations

together. Discuss the graphs in relation to the information dis-
covered in steps 4 and 5.

1 3
57. =—, x|<>
f(x) NiET el <4
1
58. f(x) = (1+x)*?, —3=x=<2
§9. f(x) = ———, kI <2
. by _x2+l’ X| =

60. f(x)= (cosx)(sin2x), |x| <2
6l. f(x) =e*cos2x, |x| <1
62. f(x)=e"?sin2x, |x| <2

Applications of Power Series

This section introduces the binomial series for estimating powers and roots and
shows how series are sometimes used to approximate the solution of an initial
value problem, to evaluate nonelementary integrals, and to evaluate limits that lead
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to indeterminate forms. We provide a self-contained derivation of the Maclaurin
series for tan~! x and conclude with a reference table of frequently used series.

The Binomial Series for Powers and Roots

The Maclaurin series generated by f(x) = (1 4+ x)™, when m is constant, is
mm—1) , mm—-1)m-2) ,
o ot 31 A
mm—1)(m—2)---(m —k+1
+ ( )( k)‘ ( )x" +

1+mx+

(1

This series, called the binomial series, converges absolutely for |x| < 1. To derive
the series, we first list the function and its derivatives:

fx)=0Q4+x)"
') =m@1+x)"!
f'(x) =m@m — 1)1+ x)">
7 (x) = m(m — Dm = 2)(1 +x)"3

fOX)=mm —-1)m—2)---(m —k+ 1A +x)"*.

We then evaluate these at x = 0 and substitute into the Maclaurin series formula
to obtain the series in (1).

If m is an integer greater than or equal to zero, the series stops after (m + 1)
terms because the coefficients from k = m + 1 on are zero.

If m is not a positive integer or zero, the series is infinite and converges for
|x| < 1. To see why, let u; be the term involving x*. Then apply the Ratio Test for
absolute convergence to see that

Ut

Ug

X

’m-—

— |x] as k — oo.
k+1

Our derivation of the binomial series shows only that it is generated by (1 + x)™
and converges for |x| < 1. The derivation does not show that the series converges
to (14 x)™. It does, but we assume that part without proof.

For -1 <x <1,

(1+x)”’=1+2(r;:)xk, )
k=1

mY _ mY\ m(m—1)
1 )= ™ 2)7 2

m\ mm-1)m—=2)---(m—k+1)
k)_ k!

where we define

and

for k > 3.
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EXAMPLE 1  If m = —1,
-1\ _ -1\ _ —-1(=2)

C1\  —U=(=3) - (m1—k+ 1) k!
( k ) - k! = (75) =D~

and

With these coefficient values, Eq. (2) becomes the geometric series

o0
1+x)7"'= 1+Z(—-1)kxk=1——x+x2—x3+-~+(—1)"xk+---.
k=1

EXAMPLE 2 We know from Section 3.7, Example 1, that /1 —x &~ 1 4 (x/2)
for |x| small. With m = 1/2, the binomial series gives quadratic and higher order
approximations as well, along with error estimates that come from the Alternating
Series Estimation Theorem:

L 00, BE)E),

1+0"? =1+ +

2 2! 3!
1 | 3 5
2 2 2 2) 4
+ I x4
. x2+x3 Sx“+
2 8 16 128 ‘
Substitution for x gives still other approximations. For example,
2 4
Vi—xe2~1-2 22 for |x? small
2 8
1 ! | ! ! f 1, ie., |x|1
e or [—|small, i.e., |x|large.
X 2x  8x? g Q

Power Series Solutions of Differential Equations and
Initial Value Problems

When we cannot find a relatively simple expression for the solution of an initial
value problem or differential equation, we try to get information about the solution
in other ways. One way is to try to find a power series representation for the solution.
If we can do so, we immediately have a source of polynomial approximations of
the solution, which may be all that we really need. The first example (Example 3)
deals with a first order linear differential equation that could be solved with the
methods of Section 6.11. The example shows how, not knowing this, we can solve
the equation with power series. The second example (Example 4) deals with an
equation that cannot be solved by previous methods.
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EXAMPLE 3 Solve the initial value problem
y-y=x, y0)=1L
Solution We assume that there is a solution of the form
y=atax+ax’+-+a,_ 1 xX" " tax" . 3)

Our goal is to find values for the coefficients a; that make the series and its first
derivative

y = a; +2ax +3a3x*> + -+ na,x" "4 - 4)

satisfy the given differential equation and initial condition. The series y’ — y is the
difference of the series in Egs. (3) and (4):

y =y =(a—ap) + (2ay — a))x + (3as — a))x* + - -~
+(nan_anfl)xn_l+"'- (5)

If y is to satisfy the equation y’ — y = x, the series in (5) must equal x. Since power
series representations are unique, as you saw if you did Exercise 45 in Section 8.8,
the coefficients in Eq. (5) must satisfy the equations

a—ayg =20 Constant terms
20, —a; = 1 Coefficients of x
3a3 —a, =0 Coefficients of x>
na, —a,_; =0 Coefticients of x"~!

We can also see from Eq. (3) that y = gy when x = 0, so that gy = 1 (this being
the initial condition). Putting it all together, we have

_l+a 141 2

= 1 = = 1, = — = —,
ap s a; Qo a > ) 2
ar 2 2 (7] 2
a = — — — — —, BN n = = —,
3T 3T 3273 = T

Substituting these coefficient values into the equation for y (Eq. 3) gives

x? x3 x"

_ 5 x2 x3 x"
=1+x+ E+§+"'+m+"'

the Maclaurin series for ¢* — 1 — x
=14+x+2("—1—x)=2"—-1—1x.

The solution of the initial value problem is y = 2¢* — 1 — x.
As a check, we see that

y0) =2"-1-0=2-1=1
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and

Y=y=Q@Q&—1)— Qe —1-x)=x. 0

EXAMPLE 4 Find a power series solution for
y' +x%y = 0. (6)
Solution We assume that there is a solution of the form
y=aytax+ax’+--+ax"+---, @)

and find what the coefficients a; have to be to make the series and its second
derivative

"=2a4+32a3x 4+ - +n@m— Dax"F+--- (8)
satisfy Eq. (6). The series for x2y is x? times the right-hand side of Eq. (7):
X2y =apx? +ax +apxt + - 4 ax"r 4 9)
The series for y” + x2y is the sum of the series in Eqgs. (8) and (9):
Y+ x%y = 2a, + 6asx + (12a4 + ag)x* + (20as + ap)x* 10
oo ((n = Da, + apg)x" 4

Notice that the coefficient of x"~2 in Eq. (9) is a,_4. If y and its second derivative
/1

y” are to satisfy Eq. (6), the coefficients of the individual powers of x on the
right-hand side of Eq. (10) must all be zero:

2a; =0, 6as =0, 12a4 +ap =0, 20as +a; =0, (11)
and for all n > 4,
nin—Da, +a,_4 = 0. (12)
We can see from Eq. (7) that
apo=y0), a =y(0).

In other words, the first two coefficients of the series are the values of y and y’ at
x = 0. The equations in (11) and the recursion formula in (12) enable us to evaluate
all the other coefficients in terms of ay and a;.

The first two of Eqgs. (11) give

a = 0, as = 0.
Equation (12) shows that if a,_4 = 0, then a, = 0; so we conclude that
as = 0, a; =0, ap =0, a; =0,

and whenever n = 4k + 2 or 4k + 3, a, is zero. For the other coefficients we have

—0Qn—4
a, = ————
nn—1)
so that
a_—ao a_—a4_ ap
YT 43 8T 8.7 3.4.7.8
—ag —ay
ap

T 112 3.4.-7-8-11-12



Integrals like [ sin x?dx arise in the study of
the diffraction of light.
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and
—a —as ap
as = —, Ao = =
ST 5. °79.8 4.5.8.9
—ag —a)

“12-13 4.5.8-9.12-13°

as

The answer is best expressed as the sum of two separate series—one multiplied by
ay, the other by aj:

x4 X8 x12
— 1-— _
Y “°( 3.473.4.7.8 3-4-7-8-11-12+)
5 9

+ = x +
alx — - ).
! 4.5 4.5.8.9 4.5.8.9.12.13

Both series converge absolutely for all x, as is readily seen by the ratio test.

Evaluating Nonelementary Integrals

Maclaurin series can be used to express nonelementary integrals in terms of series.

EXAMPLE 5  Express / sin x?dx as a power series.

Solution From the series for sin x we obtain

) ) x6 xlo xl4 xls
sin x° = x —§+§——7'—+—9’——-"
Therefore,
3 7 11 15 19
. X x x x x
nxldx=C+ = — - .
fs”c R T TR T T TR TR 0

1
EXAMPLE 6 Estimate / sin x? dx with an error of less than 0.001.
0

Solution From the indefinite integral in Example 5,

/‘ sin P dy = L 1 N 1 1 N 1
inx“dx = - — - —
0 3 7.3 11.5! 15.71  19.9!

The series alternates, and we find by experiment that

1
—— =~ 0.0007 6
11.5!

is the first term to be numerically less than 0.001. The sum of the preceding two
terms gives

o, 11
sin x“dx ~ - — — ~ (0.310.
0 3 42
With two more terms we could estimate
1
/ sin x2dx ~ 0.3102 68
0

with an error of less than 107%. With only one term beyond that we have

! 1 1 1 1 1
inx?dx ~ = — — - ~ 0.3102 68303,
fo SMXEX ™ 3T T 1320 T 75600 | 6894720
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We take this route instead of finding the
Maclaurin series directly because the
formulas for the higher order derivatives of
tan~! x are unmanageable.

with an error of about 1.08 x 10~°. To guarantee this accuracy with the error formula

for the trapezoidal rule would require using about 8,000 subintervals. a
Arctangents
In Section 8.8, Example 5, we found a series for tan~! x by differentiating to get
1

—tan"!x = =1-x>4+x*=x+...

e x . xX+x"—-x"+
and integrating to get

. ¥ x5 X
tan" x =x— — 4+ ———+---.
xX=x 3 + 5 7 +

However, we did not prove the term-by-term integration theorem on which this

conclusion depended. We now derive the series again by integrating both sides of

the finite formula
1

1412

(_1)n+lt2n+2

=1-24 =14 4 (D) 4+ , (13)

1412

in which the last term comes from adding the remaining terms as a geometric series
with first term a = (—1)"*1¢2"+? and ratio r = —°. Integrating both sides of Eq.
(13) from t =0 to t = x gives

1 P I L2+

tan~ x =x—— 4+ —— —+---+ (-1 R(n, x),
nrx=x-gtg ot ED g R0

where
X
(_1)n+lt2n+2
R(n,x) = - dt.
(n, x) A 17

The denominator of the integrand is greater than or equal to 1; hence
" e x>+
R(n,x)| < " dt = ———.

If |x| < 1, the right side of this inequality approaches zero as n — oo. Therefore
lim, .0, R(n,x)=0if |[x] <1 and

e (_ l)nx2n+l

tan™! =§ -— <1
an~ x 2 ont1 x| <
x3 x5 X7
t; -1 = —_— —_—— — ceey <1 14
an” x = x — = + 5 5 + x| < (14)

When we put x = 1 in Eq. (14), we get Leibniz’s formula:

gl ol Pl
4 35 79 2n + 1 :

This series converges too slowly to be a useful source of decimal approximations
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of 7. It is better to use a formula like
1 1 1
=48 tan”' — +32tan"! — — 20 tan”! —,
T an 13 + an 57 an 739
which uses values of x closer to zero.

Evaluating Indeterminate Forms

We can sometimes evaluate indeterminate forms by expressing the functions in-
volved as Taylor series.

EXAMPLE 7 Evaluate lim

x—>1 _x—l

Solution We represent In x as a Taylor series in powers of x — 1. This can be
accomplished by calculating the Taylor series generated by In x at x = 1 directly
or by replacing x by x — 1 in the series for In x in Section 8.8, Example 6. Either
way, we obtain

1 2
1nx=(x—1)—§(x—1) +-e,

from which we find that

. Inx . 1
tiy 7 =t (1o v ) =t a

EXAMPLE 8  Evaluate lim —n* — %0 %

x—0 x3

Solution The Maclaurin series for sin x and tan x, to terms in x°, are

in )63—1-)65 ta +x3+2x5+
sinx=x——+——---, nx=x+—+—+---.
31 5 3 15
Hence,
sin tan x = ©_x =x* 1_#
o TTETTUR I
and
. sinx—tanx . 1 x?
lim ————=Ilm (- — — —---
x—0 x3 x—>0 2 8
1

If we apply series to calculate lim,_,o((1/sin x) — (1/x)), we not only find the
limit successfully but also discover an approximation formula for csc x.

EXAMPLE 9  Find lim ( L _ -1-)

x=0 \sinx x
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Solution
1
sin x
Therefore,
lim
x—0

2 %
1 x—sinx _(x_§+§ )
x  xsinx x X3
X (x—i-i-; )
x3(—1——£2- ) _1__52
_ 3t 5! _ .3 5!
x2(1—x—2+ ) -5y
3! 3!
1 x?
—l>=lim —3—'— .5—‘—+ =0.
sinx  x x—0 l_x_2+“
3!

From the quotient on the right, we can see that if |x| is small, then

! ! ! X or csC X 1+x
— — R — = — - -
sinx x 3! 6 x 6
Frequently Used Maclaurin Series
1 o0
m=1+x+x2+---+x"+---=2x", x| <1
1 o0
1+x=1—x+x2—-~~+(—x)"+---=Z(—1)"xn x| <1
2 00xn
e—1+x+5'-+ +—+ =)= l<oo
n=0
x3 xS 2n+1 00( l)n 2n+1
— _____+_._... —1 -_— b
Sinx =% =4 T G ot ZO @n + 1) Ixl < o0
x2 x4 nx2n 00( l)n 2n
cosx—l-—z‘-—l———---—l—(—l) e )' Z ol x| < o0
x? X3 X" (1)"1
In(142) = x = 5=+ =4 (=" Z —l<x=1
1+x 35S 2n+1 0 20+l
In —= =2tanh'x =2 ) =2 , 1
n anh™! x (x+3+5+ +2 +1+ ) ;2n+1 x| <
x3 x5 2n+1 o (—1)”x2"+1
tan lx=x -4+ — ... (=1)" U -~ <1
amox=xo ot tED St 2+ 1 Ixl =

n=0

(Continued)
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where

at x™ and the result converges for all x.

— Dx? — _ 3
(1+x)’”=1+mx+m(m )x” | mim = D(m = 2)x
2! 3!
— o~ (m k
_1+kz;:<k)x, x| <1,

m\ _ m\ _m@m—1) m
1)="™ 2)T T

Note: To write the binomial series compactly, it is customary to define (

usually excluded case where x = 0), yielding (14+x)" =Y o, (r]r: ) xk. If m is a positive integer, the series terminates

— — e —_— k
”+m(m (m 22‘ (m—k+1x "

—D--m—k+1
:m(m ) k'(m +D for k > 3.

m

0 ) to be 1 and to take x° = 1 (even in the

Exercises 8.11

Binomial Series

Find the first four terms of the binomial series for the functions in
Exercises 1-10.

1. (1+x)? 2. (1+x)73 3. 1—x)"12

x\ 2 X\ 2
5. (1+§) 6. (1—5)
7. (14 x3)~172 8. (14+x?)"13
1/2 1/3
2
9. <1 + l) 10. <1 - —>
X X

Find the binomial series for the functions in Exercises 11-14.
11. (1 + x)* 12. (1 +x?)3

14. (1 - %)4

4, (1-2x)\2

13. (1 —2x)?

Initial Value Problems

Find series solutions for the initial value problems in Exercises 15-32

15. y+y=0, y0O)=1 16. y' —2y =0, y(0)=1
17. y —y=1, y(0)=0 18. y+y=1, y(0)=2
19. y —y=x, y0)=0 20. y+y=2x, y0)=-1
21 y —xy =0, y0)=1 22,y —x%y =0, y0)=1

23. 1—-x)y —y=0, y©0) =2

24, (1+x%)y +2xy=0, y(0)=3

25, y"—y=0, y(0)=1andy0)=0
26. y"+y=0, y'(0)=0and y(0) =1

27. y'+y=x, Y(©)=1and y0) =2

y'(0) =2 and y(0) = —1
y(2)=-2and y(2) =0

30. y' —x’y =0, y(©0)=band y0)=a

3. y"+x*y=x, y(0)=bandy(0) =a

32. y" =2y +y=0, y(0)=1and y0) =0

28. y' —y=ux,
29. y' —y=—x,

Approximations and Nonelementary Integrals

@ CALCULATOR In Exercises 33-36, use series to estimate the inte-

grals’ values with an error of magnitude less than 1073. (The answer
section gives the integrals’ values rounded to 5 decimal places.)

0.2 0.2 e* —1
33, / sin x2dx 34, / dx
0 0

x
0.1 025
3s. ——dx 36. vV1+x2dx
0 A/ 1 + x4 0

B CALCULATOR Use series to approximate the values of the integrals

in Exercises 37-40 with an error of magnitude less than 10~%. (The an-
swer section gives the integrals’ values rounded to 10 decimal places.)

0.1 o 0.1
3. / Y ax 38. / e dx
0 x 0

0.1
39. V1+xtdx
0

1
1__
40./ 2
0 X

+ 8
41. Estimate the error if cos t? is approximated by 1 — 3 + m in
the integral fol cos t%dt. ;
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t t
42. Estimate the error if cos /7 is approximated by 1 — = + —

In

2 13

2 4! 6!

in the integral fol cos /1 dt.

Exercises 4346, find a polynomial that will approximate F(x)

throughout the given interval with an error of magnitude less than

10

43.

44

45

46.

-3

F(x)=/ sin £2dt, [0, 1]
0

. F(x)=/x e~ dt, [0,1]

0

. F(x):/xtan_l tdt, a) [0,0.5] b) [0,1]
0

F@%:/’Eiktﬁdn
0

; a) [0,0.5]

b) [0, 1]

Indeterminate Forms
Use series to evaluate the limits in Exercises 47-56.
(1 X __ ,—X
47, tim &= LF® 48. lim & —°¢
x—0 x2 x—0 X
1— — (2 in 0 — 6%/6
49, lim L= 1=/ 50, lim 200 =0+ 67/6)
t—0 t4 60 05
—an—1 B
51. lim 222 Y 52, lim 20y —siny
y—0 »3 y=0 y3cos y
53. lim x2(e”'/** — 1) 54. lim (x + 1)sin
X—>00 xX—>00 x +
In (1 + x? 2_4
55, fim U+ xD 56. lim ——
x>0 1 —cos x =2 In(x — 1)

Theory and Examples

57

58.

59.

60.

H 61.

. Replace x by —x in the Maclaurin series for In (1 + x) to obtain
a series for In (1 — x). Then subtract this from the Maclaurin
series for In (1 + x) to show that for |x| < 1,

3 xS
=2 —_4 — o).
<x + 3 5 + )

1+x

1—x
How many terms of the Maclaurin series for In (1 + x) should you
add to be sure of calculating In (1.1) with an error of magnitude
less than 10782 Give reasons for your answer.

In

According to the Alternating Series Estimation Theorem, how
many terms of the Maclaurin series for tan~! 1 would you have
to add to be sure of finding 7 /4 with an error of magnitude less
than 1073? Give reasons for your answer.

Show that the Maclaurin series for f(x) = tan~! x diverges for
x| > 1.

CALCULATOR About how many terms of the Maclaurin series
for tan~! x would you have to use to evaluate each term on the
right-hand side of the equation

1 1
7 =48tan”! T +32tan”! — — 20tan™!

1
57 239

62.

63.

64.

B

65.

B 6s.

69.

70.

with an error of magnitude less than 107? In contrast, the con-
vergence of Y7 (1/n?) to 2/6 is so slow that even 50 terms
will not yield two-place accuracy.

Integrate the first three nonzero terms of the Maclaurin series for
tan ¢ from O to x to obtain the first three nonzero terms of the
Maclaurin series for In sec x.

a)

Use the binomial series and the fact that
d
—sin"lx = (1 —-x%)7?
dx

to generate the first four nonzero terms of the Maclaurin
series for sin~! x. What is the radius of convergence?
Use your result in (a) to find the first five nonzero terms of

the Maclaurin series for cos™! x.

b)

Find the first four nonzero terms of the Maclaurin series for
*odt
sinh~™'x = f )
0o V/1+122

CALCULATOR Use the first three terms of the series in
(a) to estimate sinh~'0.25. Give an upper bound for the
magnitude of the estimation error.

a)

Obtain the Maclaurin series for 1/(1 + x)? from the series for
—1/(1 + x).

. Use the Maclaurin series for 1/(1 — x?) to obtain a series for

D 6.

2x /(1 — x%)2.

CAS The English mathematician Wallis discovered the formula
T 2:4:4.6-6-8. ..
4 3+43.5.5.7 7. ...

Find 7 to 2 decimal places with this formula.

CALCULATOR Construct a table of natural logarithms In #n for
n=1,2,3,..., 10 by using the formula in Exercise 57, but tak-
ing advantage of the relationships In 4=2In2, In6=1n2+
In3,In8=3In2,In9=2In3,and In10=1In2+1n 5 to re-
duce the job to the calculation of relatively few logarithms by
series. Start by using the following values for x in Exercise 57:

1 1 1 1

357 9 13
Integrate the binomial series for (1 — x2)~/2 to show that for
[x] <1,

00

sin'x=x+ E
n=1

Series for tan~" x for |x| > 1. Derive the series

1:3.5¢....2n—1) x¥*!
2:4.6+---+2n) 2n+1

[an_1x=£_l L__l___}_..., x>1
2 x  3x3  5x5
tan_lx—_-_z_l L _1_.+, x < —1
2 x  3x3 5x5 ’

by integrating the series
11 1 1 1 1 1
1412 AR A A

T2 lvqe e
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in the first case from x to oo and in the second case from —o0
to x.

The value of 37, tan™'(2/n?)

a) Use the formula for the tangent of the difference of two
angles to show that

2
tan(tan”'(n + 1) —tan™' (n — 1)) = —
n

Questions to Guide Your Review 699

QUESTIONS TO GUIDE YOUR REVIEW

10

11

12.

13

14.
15.

16

What is an infinite sequence? What does it mean for such a
sequence to converge? to diverge? Give examples.

What uses can be found for subsequences? Give examples.

What is a nondecreasing sequence? Under what circumstances
does such a sequence have a limit? Give examples.

What theorems are available for calculating limits of sequences?
Give examples.

What theorem sometimes enables us to use 1’'Hopital’s rule to
calculate the limit of a sequence? Give an example.

What six sequence limits are likely to arise when you work with
sequences and series?

What is Picard’s method for solving the equation f(x) = 0? Give
an example.

What is an infinite series? What does it mean for such a series
to converge? to diverge? Give examples.

What is a geometric series? When does such a series converge?
diverge? When it does converge, what is its sum? Give examples.

Besides geometric series, what other convergent and divergent
series do you know?

What is the nth-Term Test for Divergence? What is the idea
behind the test?

What can be said about term-by-term sums and differences of
convergent series? about constant multiples of convergent and
divergent series?

What happens if you add a finite number of terms to a convergent
series? a divergent series? What happens if you delete a finite
number of terms from a convergent series? a divergent series?

How do you reindex a series? Why might you want to do this?

Under what circumstances will an infinite series of nonnegative
terms converge? diverge? Why study series of nonnegative terms?

What is the Integral Test? What is the reasoning behind it? Give
an example of its use.

17.

18

19.

20.

21.

22

23.

24,

25,

26

27.
28

When do p-series converge? diverge? How do you know? Give
examples of convergent and divergent p-series.

What are the Direct Comparison Test and the Limit Comparison
Test? What is the reasoning behind these tests? Give examples
of their use.

What are the Ratio and Root Tests? Do they always give you the
information you need to determine convergence or divergence?
Give examples.

What is an alternating series? What theorem is available for de-
termining the convergence of such a series?

How can you estimate the error involved in approximating the
sum of an alternating series with one of the series’ partial sums?
What is the reasoning behind the estimate?

What is absolute convergence? conditional convergence? How
are the two related?

What do you know about rearranging the terms of an absolutely
convergent series? of a conditionally convergent series? Give ex-
amples.

What is a power series? How do you test a power series for
convergence? What are the possible outcomes?

What are the basic facts about

a) term-by-term differentiation of power series?
b) term-by-term integration of power series?
¢) multiplication of power series?

Give examples.

What is the Taylor series generated by a function f(x) at a point
x = a? What information do you need about f to construct the
series? Give an example.

What is a Maclaurin series?

Does a Taylor series always converge to its generating function?
Explain.
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29. What are Taylor polynomials? Of what use are they?

30. What is Taylor’s formula? What does it say about the errors
involved in using Taylor polynomials to approximate functions?
In particular, what does Taylor’s formula say about the error in
a linearization? a quadratic approximation?

31. What is the binomial series? On what interval does it converge?
How is it used?

CHAPTER

PRACTICE EXERCISES

32. How can you sometimes use power series to solve initial value
problems?

33. How can you sometimes use power series to estimate the values
of nonelementary definite integrals?

34. What are the Maclaurin series for 1/(1 — x), 1/(1 + x), €%, sin x,
cos x,In(1 4+ x), In[(1 4+ x)/(1 — x)], and tan™! x? How do you
estimate the errors involved in replacing these series with their
partial sums?

Convergent or Divergent Sequences

Which of the sequences whose nth terms appear in Exercises
1-18 converge, and which diverge? Find the limit of each conver-
gent sequence.

- 1-(D"
l.an=l+( ) 2.a,,=#
n NG
1-2
3.a,= o 4, a, =1+ (0.9)"
San—sin% 6. a, =sin nw
7. a In (n?) 8 a, — In@n+1)
n n
3
9, an=n+lnn 10. an:ln(2n +1)
n n
-5\" I\N™"
1o, = (222 2. 0= (14 0
n n
n 1/n
13. a, = ) ¥ 14. a, = (E)
n n
15. a, =n2Y" -1) 16. a, = /2n + 1
! 4\
17. gy = 2! 18. ¢, = =2
n! n!
Convergent Series
Find the sums of the series in Exercises 19-24.
= 1 = -2
9 _— 20. —_—
Z(Zn—3)(2n—1) Zn(n+1)
o0 9 o0
21. S 22. - -
; Bn-1)3Bn+2) ; (4n — 3)(4n +1)
o0
23. e 24. (_1)"_

Convergent or Divergent Series

Which of the series in Exercises 25-40 converge absolutely, which
converge conditionally, and which diverge? Give reasons for your

answers.
00 1 0 -5 00 ( 1),,
25. — 26. — 27.
28 ii i L 30 i
" = 2’ — In(n+1) " 2= n(In n)?
X lnn X Inn
1. —_— 2.
3 ; n3 3 ;ln(ln n)
o~ (D" 2, (—1)"3n?
33. _— 34. —
; nv/n? 41 ,,Z=1: n+1
X n+1 X (=D +1)
3s. ; - 36. g————znzﬂ_l
ol (_3)n e on 3n
37. 2_1: — 38. Z; -

1
40.

39. S — -
;\/n(n+l)(n+2) ;n n?—1

Power Series

In Exercises 41-50, (a) find the series’ radius and interval of conver-
gence. Then identify the values of x for which the series converges
(b) absolutely and (c) conditionally.

(x — 1)2n—2

2n - 1!

r

g
:Q
=

S
gk

=I
|

3
Il

n+DHC2x+ D"
2n +1)2"

n

&
>

2 (=1 G = 1)
43. X_;_Vlz—

X

&
1M
Sk
5
iMe 1M
B



1)2n+l

°° (n+1)x2" ! (1) -
47. Z 48. Z T

n=0 n=0

49. Z (cschn) x"

n=1

50. Z (cothn) x"
n=l1

Maclaurin Series

Each of the series in Exercises 51-56 is the value of the Maclaurin
series of a function f(x) at a particular point. What function and
what point? What is the sum of the series?

11
Lleocod——... n_
5 FRERIUER G
2 4 8 oy
52, = - — 4 — — ... 1!
37 B8 FEDTS
7T3 775 7.[2n+1
o - 4yl
Tyt D ST T
7T2 7T4 2n
54. 1— (-
9.2l TRI-4 T eyt
122 n
55. 1+1n 2+(“ ) +(1"'2) Foe
1 1 1
56 —= — ——F —— —
V3 93 453
+ (=t !

- WA

Find Maclaurin series for the functions in Exercises 57-64.

1 1
57. 58, ——
1—2x 1+ x3
2
59. sin 7 x 60. sin —31
61. cos (x°/?) 62. cos v/5x
63. ¢mx/2 64. e’

Taylor Series

In Exercises 65-68, find the first four nonzero terms of the Taylor
series generated by f at x = a.

65. f(x)=+3+x2 at x=-1
66. f(x)=1/(1—x) at x=2
67. f)=1/(x+1) at x=3
68. f(x)=1/x at

x=a>0

Initial Value Problems

Use power series to solve the initial value problems in Exercises
69-76.

69. y +y=0, y0)=-
71. y +2y =0, y0)=3
3.y —y=3x, y(0)=-

70. y =y =0, y©0)=-
72. y+y=1, y0) =
74. Y +y=x, y0) =

Practice Exercises 701

75. y —y=x, y(0)=1 76. y —y=—x, y(0)=2

Nonelementary Integrals

Use series to approximate the values of the integrals in Exercises 77—
80 with an error of magnitude less than 1078, (The answer section
gives the integrals’ values rounded to 10 decimal places.)

1/2 s 1
717. / e dx 78. / x sin (x3) dx
0 0

172 tan-1 1/64 a1
79. / X ix 80. f ol ¥
0 X 0

Jx
Indeterminate Forms
In Exercises 81-86:

a) Use power series to evaluate the limit.

1% b) GRAPHER Then use a grapher to support your calculation.

: 6 _ -6 _
81, lim —om* 82, lim ~—¢ — %
=0 e — 1 6—0 6 —sin 6
. 1 1 . (snh)/h—cosh
83. iy (ﬁ - 72) e
1 — cos? 2
85. lim — > % 86. lim 4

=0 In(l —z)+sin z y=>0 cos y —cosh y

87. Use a series representation of sin 3x to find values of r and s

for which
in 3
im (2 4+ 2 45) =0
x—0 x3 xZ
88. a) Show that the approximation csc x =~ 1/x + x/6 in Sec-

tion 8.11, Example 9, leads to the approximation sin x =~
6x/(6 + x?).

GRAPHER EXPLORATION Compare the accuracies of the
approximations sin x ~ x and sin x &~ 6x/(6 + x2) by com-
paring the graphs of f(x) = sin x — x and g(x) = sin x —
(6x/(6 + x2)). Describe what you find.

44 b)

Theory and Examples

89. a) Show that the series

2 /.1 . 1
Z sin — — sin
2n 2n +1

n=1

converges.

= b) CALCULATOR Estimate the magnitude of the error in-
volved in using the sum of the sines through n = 20 to
approximate the sum of the series. Is the approximation

too large, or too small? Give reasons for your answer.

90. a)

B 1)

o0
. 1
Show that the series (tan — —tan

1
——— ) converges.
2n 2n + 1)

CALCULATOR Estimate the magnitude of the error in us-
ing the sum of the tangents through —tan (1/41) to ap-



702 Chapter 8: Infinite Series

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

proximate the sum of the series. Is the approximation too
large, or too small? Give reasons for your answer.

Find the radius of convergence of the series

§°:°:2.5.8.... -@Gn-1 ,
246+ ---+(2n) x

n=1
Find the radius of convergence of the series
X 35T 2041

G914 enopt "

n=1
Find a closed-form formula for the nth partial sum of the series
Z:iz In(1 — (1/n?)) and use it to determine the convergence
or divergence of the series.
Evaluate Y ;2, (1/(k* — 1)) by finding the limit as n — oo of
the series’ nth partial sum.

a) Find the interval of convergence of the series
1 1
=14+-x4+—x+.--
y + 6x + 1 80x +
1ede7e - e (3n—=2) ,,
x
(Bn)!
b) Show that the function defined by the series satisfies a
differential equation of the form
d?y B
W =Xy + b

and find the values of the constants a and b.

a) Find the Maclaurin series for the function x2/(1 + x).
b) Does the series converge at x = 1? Explain.

If Y2 a, and ) oo, b, are convergentwseries of nonnegative
numbers, can anything be said about Y - | a,b,? Give reasons
for your answer.

If Y22 a, and Y o2, b, are divergent series of nonnegative
numbers, can anything be said about Y .-, a,b,? Give reasons
for your answer.

Prove that the sequence {x,} and the series Z:il(xk“ — Xx)
both converge or both diverge.

Prove that Zi‘;l(an/ (1 + a,)) converges if a, > 0 for all n and
3" | a, converges.

101.

102.

103.

(Continuation of Section 3.8, Exercise 25.) If you did Exercise
25 in Section 3.8, you saw that in practice Newton’s method
stopped too far from the root of f(x) = (x — 1)* to give a
useful estimate of its value, x = 1. Prove that nevertheless, for
any starting value xo # 1, the sequence xo, X1, X2 , ..., Xp, - ..
of approximations generated by Newton’s method really does
converge to 1.

a) Suppose that a, ay, a3, ..., a, are positive numbers sat-
isfying the following conditions:

) aizap>a3>---;
ii) the series a; + a4 + ag + a6 + - - - diverges.

Show that the series
ai a

+24:24
17273

diverges.
b) Use the result in (a) to show that

>1
1
+§n1nn

diverges.

Suppose you wish to obtain a quick estimate for the value of
fol x2e* dx. There are several ways to do this.

a) Use the trapezoidal rule with n = 2 to estimate fol x%e*dx.

b) Write out the first three nonzero terms of the Maclaurin
series for x ¢* to obtain the fourth Maclaurin polynomial
P(x) for x2 e*. Use fol P (x) dx to obtain another estimate
for fol x%e* dx.

¢) The second derivative of f(x) = x?e* is positive for all
x > 0. Explain why this enables you to conclude that the
trapezoidal rule estimate obtained in (a) is too large. (Hint:
What does the second derivative tell you about the graph
of a function? How does this relate to the trapezoidal ap-
proximation of the area under this graph?)

d) All the derivatives of f(x) = x*e* are positive for x > 0.
Explain why this enables you to conclude that all Maclaurin
polynomial approximations to f(x) for x in [0, 1] will be
too small. (Hint: f(x) = P,(x) + R,(x).)

e) Use integration by parts to evaluate fol x%e*dx.



CHAPTER

Additional Exercises—Theory, Examples, Applications 703
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Convergence or Divergence

Which of the series Y oo, a, defined by the formulas in Exercises
1-4 converge, and which diverge? Give reasons for your answers.

% 1 ® (tan”'n)® In)?

Ly —
E (Bn — 2)r+1/ f=r
& og,,(n')

=2

M

3. Y (—D)"tanh n

n=1

Which of the series ) . a, defined by the formulas in Exercises

5-8 converge, and which diverge? Give reasons for your answers.
nn+1)

- 7 a,

(n+2)(n+3)

(Hint: Write out several terms, see which factors cancel, and then

generalize.)

3

Scar=1, a1 =

n

6. = = 7, n = —
h=a I = D+ D)

a, ifn>2

1+a,

8. a,=1/3"if nis odd, a, =n/3"if nis even

Choosing Centers for Taylor Series
Taylor’s formula

fx) =

x—a) +

J"(a)
21

() ARG k1
n! x—a)y+ (n+ 1! x-a)
expresses the value of f at x in terms of the values of f and its
derivatives at x = a. In numerical computations, we therefore need f
to be a point where we know the values of f and its derivatives. We
also need a to be close enough to the values of f we are interested

in to make (x — a)"*' so small we can neglect the remainder.

In Exercises 9-14, what Taylor series would you choose to rep-
resent the function near the given value of x? (There may be more
than one good answer.) Write out the first four nonzero terms of the

series you choose.

+

x=63
x=1.3
x=2

9. cosx near x =1 10. sin x near
11. ¢*

13. cos x near

near x =04 12. In x near

x =69 14. tan~'x near

Theory and Examples

15. Let a and b be constants with 0 < a < b. Does the sequence
{(a" + b")/"} converge? If it does converge, what is the limit?

16. Find the sum of the infinite series
2 3 7 2 3 7 2 3 7

I+ =+ S+ —+ ottt =ttt

10 10 100 104 10° 106 107 108 10°

17. Evaluate

00 n+l 1
3
=) 1+

18. Find all values of x for which

n

Z (n+ 1)(2x + )"

n=1
converges absolutely.

19. Generalizing Euler’s constant. Figure 8.21 shows the graph
of a positive twice-differentiable decreasing function f whose
second derivative is positive on (0, 0o). For each n, the number
A, is the area of the lunar region between the curve and the line
segment joining the points (n, f(n)) and (n + 1, f(n 4 1)).

a)  Use the figure to show that Y oo, A, < (1/2)(f(1) — f(2)).
b) Then show the existence of

n 1 n
Jim [Zf<k>—§<f<1>+f<n>>— /1 f(x)dx].
k=1

¢) Then show the existence of
lim fk) —/ f)dx|.

If f(x) =1/x, the limit in (c) is Euler’s constant (Section
8.4, Exercise 41). (Source: “Convergence with Pictures” by P. J.
Rippon, American Mathematical Monthly, Vol. 93, No. 6, 1986,
pp. 476-78.)

8.21 The figure for Exercise 19.
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20.

This exercise refers to the “right side up” equilateral triangle with
sides of length 2b in the accompanying figure. “Upside down”
equilateral triangles are removed from the original triangle as the
sequence of pictures suggests. The sum of the areas removed
from the original triangle forms an infinite series.

a) Find this infinite series.

b) Find the sum of this infinite series and hence find the total
area removed from the original triangle.

¢) Is every point on the original triangle removed? Explain
why or why not.

O 21

22.

23.

24.

25.

CAS EXPLORATION

a) Does the value of

(1_ cos (a/n)

n

lim

n—oo

n
) , a constant,

appear to depend on the value of a? If so, how?

b) Does the value of
) cos (a/n)
bn

appear to depend on the value of b? If so, how?
¢) Use calculus to confirm your findings in (a) and (b).

im

n—oo

) , a and b constant, b # 0,

Show that if Y o, a, converges, then

© (1+sin(a,)\"

£ (55

n=1
converges.
Find a value for the constant b that will make the radius of
convergence of the power series

00 bn xn

n=2 ln n

equal to 5.

How do you know that the functions sin x, In x, and ¢* are not
polynomials? Give reasons for your answer.

Find the value of a for which the limit

. sin(ax) —sin x — x

lim
x—=0 x3

is finite and evaluate the limit.

26.

27.

28.

29.

30

31.

32.

E1)

33.

Find values of a and b for which
cos(ax) — b

lim ————— = -1.
xl—l-;r(l) 2x2 1

Raabe’s (or Gauss’s) test. The following test, which we state
without proof, is an extension of the Ratio Test.
Raabe’s test: If 3 o2 u, is a series of positive constants and

there exist constants C, K, and N such that
Up C n
+ fn)

Un+1 n

(1)

where | f(n)| < K for n > N, then Zif’:, u, converges if C > 1
and diverges if C < 1.

Show that the results of Raabe’s test agree with what you know
about the series Y ov,(1/n%) and Y 22 (1/n).
(Continuation of Exercise 27.) Suppose that the terms of > oo, u,
are defined recursively by the formulas

n —1)?
——u
@2n)2n+1)

ur =1, upp = n-

Apply Raabe’s test to determine whether the series converges.
If Z:‘;, a, converges, and if a, # 1 and a, > 0 for all n,

a) Show that Y 2, a? converges.

b) Does Y 2, a,/(1 — a,) converge? Explain.

(Continuation of Exercise 29.) If Y 2, a, converges, and if
1>a, >0 for all n, show that Z;“f__l In(1 —a,) converges.
(Hint: First show that |In(1 — a,)| < a,/(1 —a,).)

Nicole Oresme’s theorem. Prove Nicole Oresme’s theorem that

1 1
1+5.2+_.3+...+ + ... =4,

4 2t

(Hint: Differentiate both sides of the equation 1/(1 —x) =
L+ 302, xm)
a) Show that

for [x| > 1 by differentiating the identity
o n+l _
,,;1 o 1—x
twice, multiplying the result by x, and then replacing x by
1/x.
CALCULATOR Use part (a) to find the real solution greater
than 1 of the equation

x® nn+1)
n=1 x" )

A fast estimate of n/2. As you saw if you did Exercise 29
in Section 8.1, the sequence generated by starting with xo =1



and applying the recursion formula x,,; = x, + cos x, converges
rapidly to 7 /2. To explain the speed of the convergence, let
€, = (7 /2) — x,. (See the accompanying figure.) Then

b4
€nsl = 3 — X, — COS X,
b4
= €, — COS 7 — €,
=€, —sin €,

-31—!(6,,)3 - 51—!(6,,)5 + -
Use this equality to show that

1
O<eni <z (&)’

y
1 €n
xn
cosXx,
xn
X
0 1

34. If 372 a, is a convergent series of positive numbers, can any-

thing be said about the convergence of Zi‘;l In (1 + a,)? Give
reasons for your answer.

35. Quality control

Differentiate the series

1
—— =l x XX
I—x

a)

to obtain a series for 1/(1 — x)2.

In one throw of two dice, the probability of getting a roll of 7
is p = 1/6. If you throw the dice repeatedly, the probability
that a 7 will appear for the first time at the nth throw is
q""'p, where ¢ = 1 — p = 5/6. The expected number of
throws until a 7 first appears is Y .., ng"~" p. Find the sum
of this series.

As an engineer applying statistical control to an industrial
operation, you inspect items taken at random from the as-
sembly line. You classify each sampled item as either “good”
or “bad.” If the probability of an item’s being good is p and
of an item’s being bad is ¢ = 1 — p, the probability that the
first bad item found is the nth one inspected is p"~'q. The
average number inspected up to and including the first bad
item found is > oo, np"~'q. Evaluate this sum, assuming
O<p<l.

b)

©)

36. Expectedvalue. Suppose that a random variable X may assume

the values 1, 2, 3, ..., with probabilities pi, ps, p3, ..., where
Dx s the probability that X equals k (k =1,2,3, ... ). Suppose
also that p; > O and that Y ;- | p, = 1. The expected value of X,

Additional Exercises-Theory, Examples, Applications

H 37.

38.

705

denoted by E(X), is the number Y ;- kpy, provided the series
converges. In each of the following cases, show that Y ,o, px = 1
and find E(X) if it exists. (Hint: See Exercise 35.)

Sk—l

— 9k
pr=2 I

a) b) p=

11 1
k(k+1)  k k+1

Safe and effective dosage. The concentration in the blood re-
sulting from a single dose of a drug normally decreases with
time as the drug is eliminated from the body. Doses may there-
fore need to be repeated periodically to keep the concentration
from dropping below some particular level. One model for the ef-
fect of repeated doses gives the residual concentration just before
the (n + 1)st dose as

Rn — CO e—kto + CO e—Zktn NI CO e—nklo’

) m=

where Cy = the change in concentration achievable by a single
dose (mg/ml), k = the elimination constant (h™"), and ty = time
between doses (h). See Fig. 8.22.

Concentration (mg/mL)

— —kt,
R, = Cye™

1 | | | ;

o N

Time (h)

8.22 One possible effect of repeated doses on the
concentration of a drug in the bloodstream.

a) Write R, in closed form as a single fraction, and find R =
lim,, . R,.

b) Calculate R, and Ryo for Co = 1 mg/ml, k =0.1h~", and
to = 10 h. How good an estimate of R is R;o?

¢) Ifk=0.01h""and t, = 10h, find the smallest n such that

R, > (1/2)R.

(Source: Prescribing Safe and Effective Dosage, B. Horelick and
S. Koont, COMAP, Inc., Lexington, MA.)

(Continuation of Exercise 37.) If a drug is known to be ineffec-
tive below a concentration C; and harmful above some higher
concentration Cy, one needs to find values of Cy and #, that will
produce a concentration that is safe (not above Cy) but effective
(not below C_). See Fig. 8.23. We therefore want to find values

for Cy and 1y for which
R=CL and C0+R=CH

Thus Cy = Cy — C,. When these values are substituted in the
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39.

40.

=]
=}
o .
el _ Highest - safe level
ER
5 C
2 0
Eold NN N
§ L | | Lowest effective level
g |<—t0—>|
o | |
- t
0 Time

8.23 Safe and effective concentrations of a drug. G is
the change in concentration produced by one dose; to is
the time between doses.

equation for R obtained in part (a) of Exercise 37, the resulting
equation simplifies to

th = 1 In C—H
kK Cp
To reach an effective level rapidly, one might administer a “load-
ing” dose that would produce a concentration of Cy mg/ml.
This could be followed every 7, hours by a dose that raises the
concentration by Cp = Cy — C;, mg/ml.

a) Verify the preceding equation for #.

b) Ifk =0.05h" and the highest safe concentration is e times
the lowest effective concentration, find the length of time
between doses that will assure safe and effective concentra-
tions.

¢) Given Cy =2 mg/ml, C;, = 0.5 mg/ml, and k = 0.02h™",
determine a scheme for administering the drug.

d) Suppose that k = 0.2h™" and that the smallest effective con-
centration is 0.03 mg/ml. A single dose that produces a con-
centration of 0.1 mg/ml is administered. About how long
will the drug remain effective?

An infinite product. The infinite product
o0

(I+a)=0+a)d+a)l+a)---

n=1

is said to converge if the series

iln(l +a,),
n=1

obtained by taking the natural logarithm of the product, converges.
Prove that the product converges if a, > —1 for every »n and if
> | lan| converges. (Hint: Show that

a
—M—<2|a,,|

|In(1 +a,)| < <
1- Ian|

when |a,| < 1/2.)

If p is a constant, show that the series

o0
1
1
+,Z=;n « Inn - [In(n n)}?

(a) converges if p > 1, (b) diverges if p < 1. In general, if
filx) =x, fop1(x) =In(f,(x)), and n takes on the values 1,

2,3, ..., we find that f,(x) =1n x, f3(x) = In(In x), and so on.
If f,(a) > 1, then

i dx
/a [iGx) fo(x) -+ fu ) (fasr ()P
converges if p > 1 and diverges if p < 1.
41. a)

Prove the following theorem: If {c,} is a sequence of
numbers such that every sum ¢, = ZL, ¢, is bounded,
then the series Y - | c,/n converges and is equal to Y - | 7,/
(n(n +1)).

Outline of proof: Replace c; by t; and ¢, by t, —t,_; for

n>2.1f spup1 = S0t ci/k, show that

1 1 1
Sl = 0 1—5 thls-3

1 1
.. t" —  ——
+ +2(2n 2n+1)+

fon+1
2n+1°

Ton+1
2n+1

converges absolutely and s;,4; has a limit as n — oo. Fi-
nally, if 55, = Zi’;, ci/k,then sy, | — $2, = Conp1/(2n + 1)
approaches zero as n — 0o because |con41| = |f2n41 — t2n]
< 2M. Hence the sequence of partial sums of the series
3" ci/k converges and the limit is Y oo, #/(k(k + 1)).

b) Show how the foregoing theorem applies to the alternating
harmonic series

11_1_1 1+1 1+
2 3 4 5 6

¢) Show that the series
! 1 1 1 + 1 1 1
2 3 4 5 6 17
converges. (After the first term, the signs are two negative,
two positive, two negative, two positive, and so on in that
pattern.)
42. The convergence of Y [(=1)"""x"}/n to In(1+x) for
-1<x<1
a) Show by long division or otherwise that
(_1)n+1tn+l

=1—t4+2—P 4+ (=D
+ +-+ =D+ T

1+t

b) By integrating the equation of part (a) with respect to ¢ from
0 to x, show that

xr X x
In(1 —x— 4y
n(l+x)=x 2+3 4+
xn+l
-1)" R,
+( )n+1+ +1



where

X tn+1
Rosr = (—1)*! / dr.
0

1+1¢
¢) If x >0, show that

x .X"+2
|Rut1| < [ "tde =
0

(Him‘: As ¢t varies from O to x,

1+t>1 and /(1 41) <™,

and

’/()Xf(t)dt s/ox f@®

d,.)

n+2

Additional Exercises-Theory, Examples, Applications
d) If -1 < x <0, show that
X gntl n+2
/ dr|= — 27
o 1—|x| (n+2)1 - Ix])

(Hint: Ifx <7 <0, then |1+ > 1— |x| and

<

Rn+|

Pian !t|n+‘1
< )
1+ 7 1 —|x|
e) Use the foregoing results to prove that the series
x2 N x3 x4 + N (_l)nxn+l +
X— — =TT
2 3 4 n+1

converges to In (1 +x) for -1 <x < 1.
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