CHAPTER

Multivariable
Functions and Partial
Derivatives

OVERVIEW Functions with two or more independent variables appear more often
in science than functions of a single variable, and their calculus is even richer.
Their derivatives are more varied and more interesting because of the different
ways in which the variables can interact. Their integrals lead to a greater variety of
applications. The studies of probability, statistics, fluid dynamics, and electricity, to
mention only a few, all lead in natural ways to functions of more than one variable.
The mathematics of these functions is one of the finest achievements in science.

Functions of Several Variables

Many functions depend on more than one independent variable. The function V =
mr?h calculates the volume of a right circular cylinder from its radius and height.
The function f(x, y) = x? 4+ y? calculates the height of the paraboloid z = x? + y?
above the point P(x, y) from the two coordinates of P. In this section, we define
functions of more than one independent variable and discuss ways to graph them.

Functions and Variables

Real-valued functions of several independent real variables are defined much the
way you would imagine from the single-variable case. The domains are sets of
ordered pairs (triples, quadruples, whatever) of real numbers, and the ranges are
sets of real numbers of the kind we have worked with all along.

Definitions

Suppose D is a set of n-tuples of real numbers (xy, x2,...,x,). A real-
valued function f on D is a rule that assigns a real number

w= f(x;,x2,...,%,)

to each element in D. The set D is the function’s domain. The set of w-
values taken on by f is the function’s range. The symbol w is the dependent
variable of f, and f is said to be a function of the n independent variables
x| to x,. We also call the x’s the function’s input variables and call w the
function’s output variable.
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910 Chapter 12: Multivariable Functions and Partial Derivatives

If f is a function of two independent variables, we usually call the independent
variables x and y and picture the domain of f as a region in the xy-plane. If f
is a function of three independent variables, we call the variables x, y, and z and
picture the domain as a region in space.

In applications, we tend to use letters that remind us of what the variables stand
for. To say that the volume of a right circular cylinder is a function of its radius
and height, we might write V = f(r, h). To be more specific, we might replace the
notation f(r, h) by the formula that calculates the value of V from the values of
r and h, and write V = mr?h. In either case, r and & would be the independent
variables and V the dependent variable of the function.

As usual, we evaluate functions defined by formulas by substituting the values
of the independent variables in the formula and calculating the corresponding value

of the dependent variable.

EXAMPLE 1

The value of f(x, y, z) = /x*+ y? + z? at the point (3, 0, 4) is

£3.0.4) =32+ 07 + (4?2 =v25=5. Q

Domains

In defining functions of more than one variable, we follow the usual practice of
excluding inputs that lead to complex numbers or division by zero. If f(x,y) =
vy — x2,y cannot be less than x2. If f(x,y) = 1/(xy), xy cannot be zero. The
domains of functions are otherwise assumed to be the largest sets for which the
defining rules generate real numbers.

EXAMPLE 2 Functions of two variables
Function Domain Range
w=.y—x? y > x? [0, o)
1
w=— xy #0 (—00,0) U (0, 00)
Xy
w = sinxy Entire plane [—1,1] ]
EXAMPLE 3 Functions of three variables
Function Domain Range
w=./x2+y2+7? Entire space [0, o0)
1
= Y, 0,0,0 0,
R S (x,y,2) # ( ) (0,00)
w=xylnz Half-space z > 0 (=00, 00) a

The domains of functions defined on portions of the plane can have interior
points and boundary points just the way the domains of functions defined on intervals

of the real line can.
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y y y
)\
-
NS
(&) Interior point (a2 +y <1y (e [x2+yi=1) ()| x2+y2=1)
Open unit disk. Boundary of unit Closed unit disk.
Every point an disk. (The unit Contains all
interior point. circle.) boundary points.

12.2 Interior points and boundary points of the unit disk in the plane.

Definitions
A point (xg, yo) in a region (set) R in the xy-plane is an interior point of
~_/ R if it is the center of a disk that lies entirely in R (Fig. 12.1). A point
(b) Boundary point (x0, Yo) is a boundary point of R if every disk centered at (xo, yo) contains
points that lie outside of R as well as points that lie in R. (The boundary
12.1 Interior points and boundary points point itself need not belong to R.)
of a plane region R. An interior point is The interior points of a region, as a set, make up the interior of the

necessarily a point of R. A boundary

point of R need not belong to R. region. The region’s boundary points make up its boundary. A region is

open if it consists entirely of interior points. A region is closed if it contains
all of its boundary points (Fig. 12.2).

As with intervals of real numbers, some regions in the plane are neither open
nor closed. If you start with the open disk in Fig. 12.2 and add to it some but not all
of its boundary points, the resulting set is neither open nor closed. The boundary
points that are there keep the set from being open. The absence of the remaining
boundary points keeps the set from being closed.

Definitions

A region in the plane is bounded if it lies inside a disk of fixed radius. A
region is unbounded if it is not bounded.

y

Interior points,

where y — x2 > 0

/ EXAMPLE 4
Bounded sets in the plane: Line segments, triangles, interiors of
\ triangles, rectangles, disks
; _Orﬁsfed )Th_efc’gribgla Unbounded sets in the plane:  Lines, coordinate axes, the graphs of
I is the boundary. functions defined on infinite intervals,
| | quadrants, half-planes, the plane itself
X
-1 0 1

12.3 The domain of f(x,y) = \/y - x EXAMPLE 5. The domain of the functizop flx,y)=+yy—x2is closed and
consists of the shaded region and its unbounded (Fig. 12.3). The parabola y = x~ is the boundary of the domain. The

bounding parabola y = x2. points above the parabola make up the domain’s interior. |
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(x0» Yo» 20)

(a) Interior point

(X0, Y05 Z)

(b) Boundary point

12.4 Interior points and boundary points
of a region in space.

2

I/ 100
fey)=15 The surface

z=f(x,y
=100 — x2 —y?
is the graph of f.

flx,y) =51
(A typical
level curve in
the function's
domain)

12.5 The graph and selected level curves
of the function f(x, y) = 100 — x? — y2.

The definitions of interior, boundary, open, closed, bounded, and unbounded
for regions in space are similar to those for regions in the plane. To accommodate
the extra dimension, we use balls instead of disks. A closed ball consists of the
region of points inside a sphere together with the sphere. An open ball is the region
of points inside a sphere without the bounding sphere.

Definitions
A point (xo, o, Zo) in a region D in space is an interior point of D if it is
the center of a ball that lies entirely in D (Fig. 12.4). A point (xg, Yo, Z0)
is a boundary point of D if every sphere centered at (xo, yo, Zo) encloses
points that lie outside D as well as points that lie inside D. The interior
of D is the set of interior points of D. The boundary of D is the set of
boundary points of D.

A region D is open if it consists entirely of interior points. A region is
closed if it contains its entire boundary.

EXAMPLE 6

Open sets in space: Open balls; the open half-space z > 0; the first
octant (bounding planes absent); space itself

Closed sets in space: Lines; planes; closed balls; the closed half-
space z > 0; the first octant together with its
bounding planes; space itself

Neither open nor closed: A closed ball with part of its bounding sphere
removed; solid cube with a missing face, edge,
or corner point 4

Graphs and Level Curves of Functions of Two Variables

There are two standard ways to picture the values of a function f(x, y). One is to
draw and label curves in the domain on which f has a constant value. The other
is to sketch the surface z = f(x, y) in space.

Definitions

The set of points in the plane where a function f(x, y) has a constant value
f(x, y) = cis called a level curve of f. The set of all points (x, y, f(x, y))
in space, for (x, y) in the domain of f, is called the graph of f. The graph
of f is also called the surface z =f(x,y).

EXAMPLE 7 Graph f(x,y) = 100 — x*> — y? and plot the level curves f(x, y) =
0, f(x,y)=>51, and f(x,y) =75 in the domain of f in the plane.

Solution The domain of f is the entire xy-plane, and the range of f is the
set of real numbers less than or equal to 100. The graph is the paraboloid z =
100 — x? — y2, a portion of which is shown in Fig. 12.5.

The level curve f(x,y) = 0 is the set of points in the xy-plane at which

fx,y) =100—-x2—y>=0, or  x*4 y>=100,



The contour line f(x, y) = 100 — x2 — y2 = 75
is the circle x2 + y2 = 25 in the plane z = 75.

Plane z = 75

The level curve f(x, y) = 100 — x2 — y2 =75
is the circle x2 + y? = 25 in the xy-plane.

12.6 The graph of f(x,y) = 100 — x? — y?

and its intersection with the plane z = 75.

12.7 Contours on Mt. Washington in
north central New Hampshire. The
streams, which follow paths of steepest
descent, run perpendicular to the
contours. So does the Cog Railway.
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which is the circle of radius 10 centered at the origin. Similarly, the level curves
f(x,y)y=51and f(x,y) =75 (Fig. 12.5) are the circles

f(x,y) =100 — x* — y? = 51, or
f(x,y) =100 — x* — y* =175, or

x4+ y? =49,
x? + y? =25,

The level curve f(x, y) = 100 consists of the origin alone. (It is still a level curve.)
d
Contour Lines
The curve in space in which the plane z = ¢ cuts a surface z = f(x, y) is made
up of the points that represent the function value f(x,y) =c. It is called the
contour line f(x, y) = c to distinguish it from the level curve f(x,y) = c in the
domain of f. Figure 12.6 shows the contour line f(x, y) = 75 on the surface z =
100 — x* — y? defined by the function f(x, y) = 100 — x> — y2. The contour line
lies directly above the circle x? + y? = 25, which is the level curve f(x,y) =75
in the function’s domain.

Not everyone makes this distinction, however, and you may wish to call both
kinds of curves by a single name and rely on context to convey which one you have
in mind. On most maps, for example, the curves that represent constant elevation
(height above sea level) are called contours, not level curves (Fig. 12.7).

Level Surfaces of Functions of Three Variables

In the plane, the points where a function of two independent variables has a constant
value f(x, y) = ¢ make a curve in the function’s domain. In space, the points where
a function of three independent variables has a constant value f(x, y, z) = ¢ make
a surface in the function’s domain.

Definition
The set of points (x, y, z) in space where a function of three independent
variables has a constant value f(x, y, z) = c is called a level surface of f.
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12.8 The level surfaces of f(x,y,2) =

VX% + y? + 22 are concentric spheres.

w

Temperature

(Generated by Mathematica)

12.9 This computer-generated graph of
w = cos(1.7 x 1072t — 0.2x)e™ %

shows the seasonal variation of the
temperature below ground as a fraction
of surface temperature. At x = 15 ft the
variation is only 5% of the variation at
the surface. At x = 30 ft the variation is
less than 0.25% of the surface variation.
(Adapted from art provided by Norton
Starr for G. C. Berresford’s "Differential
Equations and Root Cellars,” The UMAP
Journal, Vol. 2, No. 3 [1981], pp. 53-75.)

EXAMPLE 8 Describe the level surfaces of the function

fl,y,2) = Vat+y2 4+ 22

Solution The value of f is the distance from the origin to the point (x, y, ).

Each level surface \/x? + y? +z2=¢, ¢ > 0, is a sphere of radius ¢ centered at
the origin. Figure 12.8 shows a cutaway view of three of these spheres. The level
surface \/x2 + y2 + z2 = 0 consists of the origin alone.

We are not graphing the function here. The graph of the function, made up of
the points (x, y, z, /x2 + y2 + z?), lies in a four-variable space. Instead, we are
looking at level surfaces in the function’s domain.

The function’s level surfaces show how the function’s values change as we
move through its domain. If we remain on a sphere of radius ¢ centered at the
origin, the function maintains a constant value, namely c. If we move from one
sphere to another, the function’s value changes. It increases if we move away from
the origin and decreases if we move toward the origin. The way the function’s
values change depends on the direction we take. The dependence of change on
direction is important. We will return to it in Section 12.7. a

Computer Graphing

The three-dimensional graphing programs for computers make it possible to graph
functions of two variables with only a few keystrokes. We can often get information
more quickly from a graph than from a formula.

EXAMPLE 9 Figure 12.9 shows a computer-generated graph of the function
w = cos (1.7 x 1072 — 0.2x) e~ %2*, where ¢ is in days and x is in feet. The graph
shows how the temperature beneath the earth’s surface varies with time. The vari-
ation is given as a fraction of the variation at the surface. At a depth of 15 ft,
the variation (change in vertical amplitude in the figure) is about 5 percent of the
surface variation. At 30 ft, there is almost no variation during the year.

The graph also shows that the temperature 15 ft below the surface is about half
a year out of phase with the surface temperature. When the temperature is lowest
on the surface (late January, say) it is at its highest 15 ft below. Fifteen feet below
the ground, the seasons are reversed. 4

Exercises 12.1

Domain, Range, and Level Curves

In Exercises 1-12, (a) find the function’s domain, (b) find the func-
tion’s range, (c) describe the function’s level curves, (d) find the

6. f(x,y) =y/x?

8. f(x,y)=+9—x%—y?

5. flx,y)=xy

7. fx,y) = ————
flxy 16 — x2 — y?

boundary of the function’s domain, (¢) determine if the domain is an

open region, a closed region, or neither, and (f) decide if the domain

is bounded or unbounded.
1' f(x,}’)zy_x
3. f(x,y) =4x? 4+ 9y?

2' f(xvy)z\/y_x
4. flx,y)=x>—y?

9. f(x,y) =In(x?+y?) 10. f(x,y) = e &t
11. f(x,y) =sin"!(y — x)

12. f(x,y) = tan™' (%)



Identifying Surfaces and Level Curves

Exercises 13—18 show level curves for the functions graphed in (a)—(f).
Match each set of curves with the appropriate function.

z = (cos x)(cos y) e~ V¥

Exercises 12.1 915

@

z=eYcosx
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Identifying Functions of Two Variables

Display the values of the functions in Exercises 19-28 in two ways: (a)
by sketching the surface z = f(x, y) and (b) by drawing an assortment
of level curves in the function’s domain. Label each level curve with

its function value.
19.
21.

23.
25.
27.

Level Surfaces

flx,y) =x*+y?

fle,y)=1-1yl|

20. f(x,y)=4-
22' f(x,)’)= VX2+y2

4. fl,y)=4-x=)*

26. f(x,y) =4x2+y*+1
28. flx,y)=1—Ix| =yl

In Exercises 29-36, sketch a typical level surface for the function.

29.
30.
31.
33.
3s.
36.

f,y, ) =x>+y"+2
=In(x*+y*+ 7%
f,y,20)=x+z

f,y,2) =x*+y?
f(x,y,z)=z—)c2—y2

= (x?/25) + (y*/16) + (z%/9)

32, f(x,y,2) =z
4. f(x,y,2)=y*+722
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Finding a Level Curve

In Exercises 37— 40, find an equation for the level curve of the function
f(x, y) that passes through the given point.

37, f(x,y) =16 —x%—y?, (2\/5, ﬁ)
38. f(x,y)=+x2—1, (1,0)

. f(y) = /m (—v2.42)

[ o) x n
40. f(x,y)=Z(—) . (1LY

n=0 y
Finding a Level Surface
In Exercises 41-44, find an equation for the level surface of the
function through the given point.

41. f(x,y,z2)=+/x—y—Inz, (3,-1,1)

2. fx,y, 0=l +y+27%), (-1,2,1)
00 n
43. g(x,y.2) = ("Tf) . (In2,1n4,3)
n=0 N:2
Y do ¢ dt
M4 gx,y,)=| —+ ——, (0,1/2,2
8(x,y,2) /x 57 T 0,1/2,2)

Theory and Examples

45. The maximum value of a function on a line in space. Does
the function f(x, y, z) = xyz have a maximum value on the line
x =20—1t,y =t,z=20?If so, what is it? Give reasons for your
answer. (Hint: Along the line, w = f(x, y, z) is a differentiable
function of ¢.)

46. The minimum value of a function on a line in space. Does
the function f(x, y,z) = xy — z have a minimum value on the
linex=t—1,y=1t—-2,z=1t+7?If so, what is it? Give rea-
sons for your answer. (Hint: Along the line, w = f(x,y,z) is a

differentiable function of z.)

47. The Concorde’s sonic booms. The width w of the region in
which people on the ground hear the Concorde’s sonic boom

directly, not reflected from a layer in the atmosphere, is a function

air temperature at ground level (in degrees Kelvin),
= the Concorde’s altitude (in km),

the vertical temperature gradient (temperature drop
in degrees Kelvin per km).

The formula for w is
w = 4(Th/d)".

See Fig. 12.10.

The Washington-bound Concorde approaches the United
States from Europe on a course that takes it south of Nantucket
Island at an altitude of 16.8 km. If the surface temperature is
290 K and the vertical temperature gradient is 5 K/km, how many

Sonic boom carpet

12.10 Sound waves from the Concorde bend as the
temperature changes above and below the altitude at
which the plane flies. The sonic boom carpet is the
region on the ground that receives shock waves directly
from the plane, not reflected from the atmosphere or
diffracted along the ground. The carpet is determined
by the grazing rays striking the ground from the point
directly under the plane (Exercise 47).

kilometers south of Nantucket must the plane be flown to keep
its sonic boom carpet away from the island? (From “Concorde
Sonic Booms as an Atmospheric Probe” by N. K. Balachandra,
W. L. Donn, and D. H. Rind, Science, July 1, 1977, Vol. 197,
pp. 47-49).

As you know, the graph of a real-valued function of a sin-
gle real variable is a set in a two-coordinate space. The graph
of a real-valued function of two independent real variables is
a set in a three-coordinate space. The graph of a real-valued
function of three independent real variables is a set in a four-
coordinate space. How would you define the graph of a real-
valued function f(xj, x2, x3, x4) of four independent real vari-
ables? How would you define the graph of a real-valued function
f(xy,x2,x3,...,x,) of n independent real variables?

48.

& CAS Explorations and Projects—Explicit Surfaces
Use a CAS to perform the following steps for each of the functions

in Exercises 49-52.

Plot the surface over the given rectangle.
Plot several level curves in the rectangle.
Plot the level curve of f through the given point.

a)
b)
c)

49. f(x,y):xsin%-i—ysian, 0<x<57, 0<y<o5n,

PQ3m,3m)

flx,y) = (sinx)(cosy)e\'"zﬂz/s, 0<x<5m, 0<y<5m,
P4, 4m)

f(x,y) =sin(x +2cosy),
P(m, )
fl,y)=e""Vsin(x2+y?), 0<x<2r, -2r<y<m,
P(m,—m)

50.

51. =2 <x <2m, 27 <y<2m,

52.
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& CAS Explorations and Projects—Implicit Surfaces  tionsx = f(u, v), y = g(u, v), z = h(u, v) defined on some parame-
ter rectangle a < u < b, ¢ < v < d. Many computer algebra systems

Use a CAS to plot the level surfaces in Exercises 53-56. . . . .
permit you to plot such surfaces in parametric mode. (Parametrized

53. 4ln(x* +y*+2) =1 54. X2+ 22 =1 surfaces are discussed in detail in Section 14.6.) Use a CAS to plot
55. x+y2—322=1 the surfaces in Exercises 57-60. Also plot several level curves in the
. xy-plane.

56. 5i“<§> — (cosy)vx*+ 22 =2 57. x =ucosv, y=usinv, z=u, 0<u<2, 0<v<2r7

58. x =ucosv, y=usinv, z=v, 0<u<2, 0<v<2nm
& CAS Explorations and Projects— 59. x = (2+cosu)cosv, y=(2+cosu)sinv, z=sinu,

Parametrized Surfaces O<u<2r, O<svs=2r

Just as you describe curves in the plane parametrically with a pair ~ 60. x =2cosucosv, y=2cosusinv, z=2sinu,

of equations x = f(t), y = g(¢) defined on some parameter interval 0<u<2r, 0<sv=m

I, you can sometimes describe surfaces in space with a triple of equa-

A R AR RN
Limits and Continuity

This section treats limits and continuity for multivariable functions.

Limits

If the values of f(x, y) lie arbitrarily close to a fixed real number L for all points
(x, y) sufficiently close to a point (xg, yo), We say that f approaches the limit L as
(x, y) approaches (xo, yo). This is similar to the informal definition for the limit of
a function of a single variable. Notice, however, that if (xg, yo) lies in the interior
of f’s domain, (x, y) can approach (xg, yo) from any direction. The direction of
approach can be an issue, as in some of the examples that follow.

Definition
We say that a function f(x, y) approaches the limit L as (x, y) approaches
(x0, Yo0), and write

lim f(x,y)=1L

(x,y)—>(x0,Y0)

if, for every number € > 0, there exists a corresponding number § > 0 such
that for all (x, y) in the domain of f,

0<Vx—x)2+G-y)2<8 = |fx,y)—Ll<e. (1)

The §-€ requirement in the definition of limit is equivalent to the requirement that,
given € > 0, there exists a corresponding § > 0 such that for all x,

O<|x—x <8 and O<|y—yl <$§ = |[f(x,y)— Ll <e (2)

(Exercise 59). Thus, in calculating limits we can think either in terms of distance
in the plane or in terms of differences in coordinates.

The definition of limit applies to boundary points (xq, yo) as well as interior
points of the domain of f. The only requirement is that the point (x, y) remain in
the domain at all times.
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It can be shown, as for functions of a single variable, that
Iim x = xp
(x,¥)— (x0,¥0)

lim y=y (3)

(x,¥)—>(xo0,¥0)

lim k=xk. (Any number k)

(x, )= (x0,y0)

It can also be shown that the limit of the sum of two functions is the sum of their
limits (when they both exist), with similar results for the limits of the differences,
products, constant multiples, quotients, and powers.

Theorem 1
Properties of Limits of Functions of Two Variables
The following rules hold if

li ) =L d li ) =M.
(xvy)ir(r)lco,yo) f&x. ) an (x.y)—lg}ro.yo)g(x Y)
1. Sum Rule: lim[f(x,y)+gx,)]l=L+M
2. Difference Rule: lim[f(x,y) —gx,y)]=L-M
3. Product Rule: lim f(x,y)-gx,y) =L -M
4. Constant Multiple Rule: lim kf (x, y) = kL (Any number k)
, L .
5. Quotient Rule: lim M =— if M#0.
gx,y) M
6. Power Rule: If m and n are integers, then

lim[f(x, y)]™/" = L™/",
provided L™" is a real number.

All limits are to be taken as (x, y) — (xo, Yo), and L and M are to be real
numbers.

When we apply Theorem 1 to the limits in Egs. (3), we obtain the useful result
that the limits of polynomials and rational functions as (x, y) — (xo, yo) can be
calculated by evaluating the functions at (xg, yo). The only requirement is that the
functions be defined at (xo, yo)-

EXAMPLE 1
. x—xy+3 0—@O)(1)+3
a) lim = - _3
)= 0.0 x2y + Sxy — y3  (0)2(1) + 5(0)(1) — (1)3
by  lim V242 =/(3)2+ (-4 =V25=5 d

EXAMPLE 2 Find
x2—xy

Im ——.
()= 0.0) /X — JY

Solution Since the denominator /x — /¥ approaches 0 as (x, y) — (0,0), we
cannot use the Quotient Rule from Theorem 1. However, if we multiply numerator
and denominator by /x + ,/y, we produce an equivalent fraction whose limit we



(Generated by Mathematica)

(a)

y
-0.8 0 o8
-1 1
-0.8 0.8
0
X
0.8 -0.8
1 -1
0.8 0 -0.8
(b)
12.11 (a) The graph of
2xy
—, (x, 0,0
fooy) = | vy ¥P#O0
0, (x,y)=1(0,0)

The function is continuous at every point
except the origin. (b) The level curves
of f.
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can find:
x2_xy lim (x _xy)(~/_+\/_)
o0 TF= 5 w0 (Vx = v5) (V5 + v5)
= lim x(x - )’) (\/-; + ﬁ) Algebra
(x,y)—(0,0) x—y
i \/_ Cancel the
- (X..\')lvrsz.O)x ( x+ ﬁ) :‘.iL'I:w['\ )
Continuity

As with functions of a single variable, continuity is defined in terms of limits.

Definitions
A function f(x, y) is continuous at the point (xg,yo) if

1. f is defined at (xq, yo),

2. lim  f(x,y) exists,
(x,y)— (x0,¥0)

3. lim  f(x,y) = f(xo0, Yo)-

(x,y)—> (x0.Y0)

A function is continuous if it is continuous at every point of its domain.

As with the definition of limit, the definition of continuity applies at boundary
points as well as interior points of the domain of f. The only requirement is that
the point (x, y) remain in the domain at all times.

As you may have guessed, one of the consequences of Theorem 1 is that
algebraic combinations of continuous functions are continuous at every point at
which all the functions involved are defined. This means that sums, differences,
products, constant multiples, quotients, and powers of continuous functions are
continuous where defined. In particular, polynomials and rational functions of two
variables are continuous at every point at which they are defined.

If z = f(x, y) is a continuous function of x and y, and w = g(z) is a continuous
function of z, then the composite w = g(f(x, y)) is continuous. Thus,

x—y Xy
x2+1
are continuous at every point (x, y).

As with functions of a single variable, the general rule is that composites of
continuous functions are continuous. The only requirement is that each function be
continuous where it is applied.

s In(1 +x2y2)

EXAMPLE 3 Show that

2xy
fay =1 a1y @N#EOO

0, (x,y)=(0,0)

is continuous at every point except the origin (Fig. 12.11).
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(a)

(b)

12.12 (a) The graph of f(x, y) =

2x%yl(x* + y?). As the graph suggests and
the level-curve values in (b) confirm,
lim,)- (0,0 f(x, y) does not exist.

Solution The function f is continuous at any point (x, y) # (0, 0) because its
values are then given by a rational function of x and y.

At (0, 0) the value of f is defined, but f, we claim, has no limit as (x, y) —
(0,0). The reason is that different paths of approach to the origin can lead to
different results, as we will now see.

For every value of m, the function f has a constant value on the “punctured”
line y = mx, x # 0, because

2xy 2x(mx) 2mx? 2m
fx,y) =2 2 =2 2 2 2,2 2°
vemy X2V o x2 4+ (mx) x2 4+ m?x 14+m
Therefore, f has this number as its limit as (x, y) approaches (0, 0) along the line:

(x,y)—(0.0) x.y)—(0,0)
along y=mx

lim f(x,y)=( lim [f(x,y)

_ 2m
y=mx B 1+m2

This limit changes with m. There is therefore no single number we may call the
limit of f as (x, y) approaches the origin. The limit fails to exist, and the function
is not continuous. d

Example 3 illustrates an important point about limits of functions of two vari-
ables (or even more variables, for that matter). For a limit to exist at a point, the
limit must be the same along every approach path. Therefore, if we ever find paths
with different limits, we know the function has no limit at the point they approach.

The Two-Path Test for the Nonexistence of a Limit

If a function f(x, y) has different limits along two different paths as (x, y)

approaches (xo, yo), then lim  f(x,y) does not exist.
(x.¥)—>(x0,¥0)

EXAMPLE 4 Show that the function
2x%y
x4 + y2

flx,y) =

(Fig. 12.12) has no limit as (x, y) approaches (0, 0).

Solution Along the curve y = kx2, x # 0, the function has the constant value

2x%(kx?) 2kx* 2k

- x4 4 (kx2)2 x4 + kx4 Ttk

:| _ 2k
y=kx® I+ k%

This limit varies with the path of approach. If (x, y) approaches (0, 0) along the
parabola y = x2, for instance, k = 1 and the limit is 1. If (x, y) approaches (0, 0)
along the x-axis, k = 0 and the limit is 0. By the two-path test, f has no limit as
(x, y) approaches (0, 0).

2%y

T 44 2
y:kx2 X +y

fx,y)

y=kx

Therefore,

lim f(x,y)=( lim [f(x,y)

(x,»)—(0.0) x,y)—(0,0)
along y=kx?
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The language here may seem contradictory. You might well ask, “What do you
mean f has no limit as (x, y) approaches the origin—it has lots of limits.” But that is
the point. There is no single path-independent limit, and therefore, by the definition,
lim,, y) .0y f (x, y) does not exist. It is our translating this formal statement into
the more colloquial “has no limit” that creates the apparent contradiction. The
mathematics is fine. The problem arises in how we talk about it. We need the
formality to keep things straight. d

Functions of More Than Two Variables

The definitions of limit and continuity for functions of two variables and the con-
clusions about limits and continuity for sums, products, quotients, powers, and
composites all extend to functions of three or more variables. Functions like

ysin z

In(x+y+2) and
x —1

are continuous throughout their domains, and limits like
erte el—l 1
lim = ==,
P—(1.0.-1) 22 +cos /Xy (—1)’+cos0 2

where P denotes the point (x, y, z), may be found by direct substitution.

Exercises 12.2

Evaluating Limits 6 lim y+4
Find the limits in Exercises 1-12. B2 V)—’(Z -4 x?y —xy +4x? —4x
s s yE—4 x#x?
1 I 3x7—y*"+5 2 x 5 5
. im ——— A — - _
)~ 00 x2+ y2+2 (x. yw(o 49 /Yy 17. im Xy +2Vx vy
(x> (0.0) NEENS
i
3. lim iy o1 4. ( ) ‘
(x,y)—=>34 (x, ))—»(2 -3) . x+y—4 . 2x —y—2
18. lim ——— 19. lim —8——
x24 3 GenN—=22 Jx+y— x)—>20 2x —y—4
S. ( lir(g P sec x tan y 6. ( lirrzo0 cos P x+y#4 2x-y#4
X)) (0.7/4) xy)—>00 X
y ) . 20 VxXoVyHl
7. lim e 8 lim In|l+x " ) ., _
)= (0,10 2) )= (L) ! Yl ;;;Ll“‘"” x—y-1
e’ sin x ‘
9. lim 10. lim cos /lxy| — 1
(x.y)—(0.0) X (x,y)—=>(1,1) I yl
1 X sin y 12 cos y+1
e 0.0 22+ 1 " s 1/20) y —sin x Limits with Three Variables
.. . Find the limits in Exercises 21-26.
Limits of Quotients i L1 » 2y + yz
Find the limits in Exercises 13-20 by rewriting the fractions first. : p_,an o\x + ; + z . P_,(,l‘r_n,“” X2 + 22
13. 1 X —2xy+y? 14.  lim x2—y? 23, hm (sm x + cos? y + sec? 7)
()= (1.1 x—y @y x —y P=G.
2y x#Y 24. lim tan~! xyz 25. lim ze % cos 2x
Xy —y—2x+2 P (=1/4.7/2,2) P—(7.0.3)
15. lim —F———
3= (1D x—1 26 lim In/x2+y?+22

x#1

P—(0.-2.0)
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Continuity in the Plane

At what points (x, y) in the plane are the functions in Exercises 27-30
continuous?

27.a) f(x,y)=sin(x+y) b) f(x,y) =In(x*+y?)
_x+y Y
28. a) f(x,y)= Ty b) flx,y)= 241
29. a) g(x,y) =sin L b) g(x,y) = Xty
Xy 2+ cos x
)c2+y2
30. a) g(x,y)—m b) glx,y) = ¥2_

Continuity in Space

At what points (x, y, z) in space are the functions in Exercises 31-34
continuous?

31. a)  f(x,y,2) =x2+y? — 272

b) f(x,y,2)=x2+y2—1

32. a) f(x,y,2)=Inxyz b) f(x,y,z) =" cos z
1 1
33.a) h(x,y,2)=xy Sinz b) h(x,y,2) = Trao1
1
3M4.a) hix,y,0)=—" b) h(x,y,2) = ———
TN R

No Limit at a Point

By considering different paths of approach, show that the functions
in Exercises 35-42 have no limit as (x, y) — (0, 0).

X
35. f(x,y)=— 36. f(x,y)=x4—

x2 4+ y? + y?

4

y

(Generated by Mathematica) (Generated by Mathematica)

xt—y? Xy

37. ) = /= 38. Jy) = —
flx,y) PR flx,y) Y

X — X+
39. g(x,y) = =) 40. g(x,y) = rry
x+y x—=y

x? +y x?

41. h(x,y) = 42. h(x,y) = 3

X2 —

Theory and Examples

43. Iflim(, y)— (o0 F (X, ¥) = L, must f be defined at (xo, yo)? Give
reasons fOl' your answer.

4. If f(xo, yo) = 3, what can you say about
lim  f(x,y)

(x.y)—>(x0.y0)

if f is continuous at (xo, yo)? if f is not continuous at (xq, yo)?
Give reasons for your answer.

The Sandwich Theorem for functions of two variables states that if

glx,y) < f(x,y) <h(x,y) for all (x,y) # (xo, yo) in a disk cen-
tered at (xo, yo) and if g and ~ have the same finite limit L as

(x,y) - (xo,)’()), then
lim =~ fG.y) =L

(x,y)— (x0.y0

Use this result to support your answers to the questions in Exercises
45-48.

45. Does knowing that

tell you anything about

lim ———=7
(x,y)—(0,0) Xy
Give reasons for your answer.
46. Does knowing that
x2y?
2xy| — o <4 —4 cos /|xy| <2|xy|

tell you anything about
4 — 4 cos 4/
im _—lxyl ?
(x,5)—(0,0) [xy|
Give reasons for your answer.
47. Does knowing that |sin (1/x)| < 1 tell you anything about
1
lim sin —?
(x,y)—(0.0) Y X
Give reasons for your answer.
48. Does knowing that | cos (1/y)| < 1 tell you anything about
1
lim x cos—?
(x.y)—(0.0) y
Give reasons for your answer.
49. (Continuation of Example 3.)
a) Reread Example 3. Then substitute m = tan 6 into the for-

mula

2m
T =1
y=mx
and simplify the result to show how the value of f varies
with the line’s angle of inclination.
b) Use the formula you obtained in (a) to show that the limit
of f as (x, y) = (0, 0) along the line y = mx varies from
—1 to 1 depending on the angle of approach.
50. Define f(0,0) in a way that extends
x2—y?
flx,y) =xy 1yt

to be continuous at the origin.



Changing to Polar Coordinates

If you cannot make any headway with lim y)_, .0 f(x, y) in rect-
angular coordinates, try changing to polar coordinates. Substitute
x =rcosf,y=rsinf, and investigate the limit of the resulting
expression as r — 0. In other words, try to decide whether there
exists a number L satisfying the following criterion:

Given € > 0, there exists a § > 0 such that for all  and 6,

rl<é = |f(r,0)—L|<e. (4)

If such an L exists, then

lim f(x,y) =lim f(r.6)=L.

(x,y)—(0,0)

For instance,
3 3 andd
. : . r’cos’ 6 .
lim ——— =lim ——— =1lim rcos’ 6 =0.
(x,y)—(0,0) x2 + y2 r—0 r2 r—0
To verify the last of these equalities, we need to show that (4) is
satisfied with f(r, ) =r cos®  and L = 0. That is, we need to show

that given any € > O there exists a § > 0 such that for all r and 6,

Irl<8 = |rcos’d—0]<e.

Since
|r cos® 6] = |r||cos® O] < |r| - 1 =|r],

the implication holds for all r and 6 if we take § = €.
In contrast,
2 2 a2
x _ I”cos 9:00520
xZ + y2 r2
takes on all values from O to 1 regardless of how small |r| is, so that
lim, ,)— 0.0 X2/(x* + y?) does not exist.

In each of these instances, the existence or nonexistence of the
limit as » — 0 is fairly clear. Shifting to polar coordinates does not
always help, however, and may even tempt us to false conclusions.
For example, the limit may exist along every straight line (or ray) 6 =
constant and yet fail to exist in the broader sense. Example 4 illustrates
this point. In polar coordinates, f(x, y) = (2x2y)/(x* + y?) becomes

r cos 0 sin 260
rcosf,rsinf)= ——
# ) r? cos* 6 + sin® 6

for r # 0. If we hold 8 constant and let r — 0, the limit is 0. On the
path y = x?, however, we have r sin § = r? cos® 6 and

r cos 0 sin 260
r2 cos* 6 + (r cos? 9)?

f(r cos 6, r sin §) =

2r cos? 0 sin 6 r sin @

2r2 cos* 6 r2cos2 @

In Exercises 51-56, find the limit of f as (x, y) — (0,0) or show
that the limit does not exist.

X3 = xy2 X3 — y3
5L f(x,y) = 1y 52. f(x,y) =608(m)
2
y 2x
53. , V) = —— 54. V)= ———
fx,y) e fx,y) e

Exercises 12.2 923

x| + |yl 2=y
—_— 56. ,y) =
x2+y2 f(Xy) x2+y2

55. f(x,y) =tan™' (

In Exercises 57 and 58, define f(0,0) in a way that extends f
to be continuous at the origin.

3x2 — x2y? 4 3y?
57. Y )=I|{——F——
fGy) n( ey

2xy?
) s rwn= 25
Using the §-¢ Definitions

59. Show that the §-¢ requirement in the definition of limit expressed
in Eq. (1) is equivalent to the requirement expressed in Eq. (2).

60. Using the formal §-¢ definition of limit of a function f(x, y)
as (x,y) = (xo, yo) as a guide, state a formal definition for the
limit of a function g(x, y, z) as (x,y,z) = (X0, Yo, 20)- What
would be the analogous definition for a function h(x, y, z, t) of
four independent variables?

Each of Exercises 61-64 gives a function f(x,y) and a positive
number €. In each exercise, either show that there exists a § > 0 such
that for all (x, y),

VY <8 = 1f@y) - fO.00 <€
or show that there exists a § > 0 such that for all (x, y),
If(x,y) = f(0,0)] <e.

Do either one or the other, whichever seems more convenient. There
is no need to do both.

6l. f(x,y) =x>+y% €=001

62. f(x,y)=y/(x>+1), €=0.05

63. f(x,y)=(x+y)/x2+1), €=0.01
64. f(x,y)=(x+y)/2+cosx), €=0.02

Each of Exercises 65-68 gives a function f(x, y,z) and a positive
number €. In each exercise, either show that there exists a § > 0 such
that for all (x, y, z),

Vx2+y?+722 <8 = |f(x,y,2)— f(0,0,0)] <€

or show that there exists a § > 0 such that for all (x, y, z),

|[x] <8 and |y|<dé =

|x| <48, |yl <é, and
If(x,y,2) = £(0,0,0)] <e.

Do either one or the other, whichever seems more convenient. There
is no need to do both.

lz] <6 =

65. f(x,y,z) =x*+y*+2z%, €=0.0I15
66. f(x,y,z) =xyz, €=0.008
x+y+z
67. V)= ——— = €=00I5
flx,y.2) PEN S €

68. f(x,y,z) =tan’x +tan’y +tan’z, € =0.03
69. Show that f(x,y,z) =x + y —z is continuous at every point
(%0, Y0 20)-

70. Show that f(x,y,z) = x> + y? + 72 is continuous at the origin.



924 Chapter 12: Multivariable Functions and Partial Derivatives

12.13 The intersection of the plane

y = yo with the surface z = f(x, y), viewed
from a point above the first quadrant of

the xy-plane.

Partial Derivatives

When we hold all but one of the independent variables of a function constant and
differentiate with respect to that one variable, we get a “partial” derivative. This
section shows how partial derivatives arise and how to calculate partial derivatives
by applying the rules for differentiating functions of a single variable.

Definitions and Notation

If (xo, yo) is a point in the domain of a function f(x, y), the vertical plane y = yy
will cut the surface z = f(x, y) in the curve z = f(x, yo) (Fig. 12.13). This curve is
the graph of the function z = f(x, yo) in the plane y = y,. The horizontal coordinate
in this plane is x; the vertical coordinate is z.

We define the partial derivative of f with respect to x at the point (xo, yo) as
the ordinary derivative of f(x, yp) with respect to x at the point x = xo.

Definition

The partial derivative of f(x, y) with respect to x at the point (xo, yo) is
af _d . f(xo+h, yo) = f(x0, yo)
sl = ofew)|  =lim - Lo

X=Xp

(x0.Y0)

provided the limit exists. (Think of 9 as a kind of d.)

The slope of the curve z = f(x, yo) at the point P(xo, Yo, f (x0, ¥o)) in the
plane y = y, is the value of the partial derivative of f with respect to x at (xo, yo).
The tangent line to the curve at P is the line in the plane y = y, that passes through
P with this slope. The partial derivative df/dx at (xo, yo) gives the rate of change
of f with respect to x when y is held fixed at the value yy. This is the rate of
change of f in the direction of i at (xg, yp)-

Z

Vertical axis in
the plane y = y,

2= f(x,y)
The curve z = f(x, y,)
in the plane y = y,

Tangent line

Horizontal axis in the plane y = y,



Vertical axis
in the plane
x =X

Tangent line

P(Xo, _Vosf(x()s )’0))

z=f(x,y)

(xp0 ¥o)

(X Yo+ 0 \
The curve z = f(x, y)
in the plane Horizontal axis
X=X, in the plane x = x,

12.14 The intersection of the plane

X = Xo with the surface z = f(x, y), viewed
from above the first quadrant of the
xy-plane.

12.3 Partial Derivatives 925

The notation for a partial derivative depends on what we want to emphasize:

“Partial derivative of f with respect to
x at (xo, yo)” or “f sub x at (xo, yo).”
Convenient for stressing the point
(x0, Yo)-

9z “Partial derivative of z with respect to
9x o) x at (xg, yo).” Common in science and
’ engineering when you are dealing with
variables and do not mention the func-

tion explicitly.

of
a—(xo, Yo) or fr(xo, yo)
x

a 0
f < “Partial derivative of f (or z) with re-

spect to x.” Convenient when you re-
gard the partial derivative as a function
in its own right.

The definition of the partial derivative of f(x, y) with respect to y at a point
(%0, Yo) is similar to the definition of the partial derivative of f with respect to x.
We hold x fixed at the value x( and take the ordinary derivative of f(xq, y) with
respect to y at yo.

Definition
The partial derivative of f(x, y) with respect to y at the point (xo, yo) is
of d
3 = d—f (x0, ¥)
Y (x0,¥0) y Y=Yo (2)
_ l f(xo, yO + h) - f(x05 )’0)
= lim )
h—0 h

provided the limit exists.

The slope of the curve z = f(xo, y) at the point P(xq, yo, f (X0, ¥o)) in the
vertical plane x = x; (Fig. 12.14) is the partial derivative of f with respect to y
at (xg, o). The tangent line to the curve at P is the line in the plane x = x, that
passes through P with this slope. The partial derivative gives the rate of change of
f with respect to y at (xop, yo) when x is held fixed at the value x,. This is the rate
of change of f in the direction of j at (x¢, yo)-

The partial derivative with respect to y is denoted the same way as the partial
derivative with respect to x:

S (x0, ¥0), gi Sy
y

Notice that we now have two tangent lines associated with the surface z =
f(x, y) at the point P (xq, Yo, f(x0, ¥o)) (Fig. 12.15, on the following page). Is the
plane they determine tangent to the surface at P? It would be nice if it were, but
we have to learn more about partial derivatives before we can find out.

0
l (x0, Y0),
dy
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12.15 Figures 12.13 and 12.14 combined.
The tangent lines at the point

(X0, Yo, T(x0, yo)) determine a plane that, in
this picture at least, appears to be
tangent to the surface.

(]

has slope f,(xg, o)

&)’m f(x0:¥0))

The curve z =f(xg, y)
in the plane x = x

This tangent line '

This tangent line
has slope f, (xq, ¥o)

The curve z = f(x, yg)

\/ in the plane y =y,

z=f(x,y)

Calculations
As Eq. (1) shows, we calculate df/dx by differentiating f with respect to x in the

usual way while treating y as a constant. As Eq. (2) shows, we can calculate df/dy
by differentiating f with respect to y in the usual way while holding x constant.

EXAMPLE 1 Find the values of df/dx and df/dy at the point (4, —5) if

f(x,y)=x2+3xy+y—1.

Solution To find df/dx, we regard y as a constant and differentiate with respect
to x:

a 0
o _ — (P4 3xy+y—1)=2x+3-1-y4+0—0=2x+3y.
ox dax
The value of df/dx at (4, —=5) is 2(4) + 3(=5) = 7.
To find df/dy, we regard x as a constant and differentiate with respect to y:

a 0
—f:—(x2+3xy+y—1)=0+3-x-l+1—0:3x+1.
dy  dy
The value of df/dy at (4, —5) is 3(4) + 1 = 13. _l
EXAMPLE 2 Find af/dy if f(x,y) =y sin xy.

Solution We treat x as a constant and f as a product of y and sin xy:

af 0 . 0 . . 0
— = —(ysin xy) = y— sin xy + (sin xy) —(y)
dy  dy dy dy

0 .
= (ycos xy) — (xy) +sin xy = xycos xy + sin xy.
dy 4

= = Technology Partial Differentiation A simple grapher can support your

calculations even in multiple dimensions. If you specify the values of all but one
independent variable, the grapher can calculate partial derivatives and can plot



Plane
x=1
Tangent
line
\ = Surface
z=x%+)?
~—~

12.16 The tangent to the curve of
intersection of the plane x = 1 and
surface z = x? 4+ y? at the point (1, 2, 5)
(Example 4).

12.3 Partial Derivatives 927

traces with respect to that remaining variable. Typically a Computer Algebra
System can compute partial derivatives symbolically and numerically as easily
as it can compute simple derivatives. Most systems use the same command to
differentiate a function, regardless of the number of variables. (Simply specify
the variable with which differentiation is to take place.)

2y

EXAMPLE 3 Find f, if f(x,y) = ———.
y +cos x

Solution We treat f as a quotient. With y held constant, we get

a d
P ( 2y ) (y +cos X)a(z)’)—z)’a—x()’+°05 Xx)

fx:a y + cos x - (y + cos x)?
_ (y+cos x)(0) — 2y (—sin x) _ 2y sin x
B (y + cos x)? "~ (y+cos x)?° 4

EXAMPLE 4  The plane x =1 intersects the paraboloid z = x>+ y? in a
parabola. Find the slope of the tangent to the parabola at (1, 2, 5) (Fig. 12.16).

Solution The slope is the value of the partial derivative dz/dy at (1, 2):
0z 0

= ==+

dy

=212) =4.
1,2 ay

(1,2

=2y

1,2

As a check, we can treat the parabola as the graph of the single-variable function
z=(1)>+y* =1+ y? in the plane x =1 and ask for the slope at y = 2. The
slope, calculated now as an ordinary derivative, is

dz _d

hatd 1 2
dy dy( +y)

y=2

y=2 Q

Implicit differentiation works for partial derivatives the way it works for ordi-
nary derivatives.

y=2

EXAMPLE 5 Find dz/dx if the equation
yz—=Inz=x+y

defines z as a function of the two independent variables x and y and the partial
derivative exists.

Solution We differentiate both sides of the equation with respect to x, holding y
constant and treating z as a differentiable function of x:

d (v2) d 1 dax n dy
PR — — In e p— _
0x 2 0x ¢ dx  0x
a7 1 9z With v constant.
y————:1+0 f) - 7‘?"'
dx zox Iy = vt
1\ oz
— 2 )= =1
<y Z> ax
0z Z

ax  yz—1’ d
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12.17 Resistors arranged this way are
said to be connected in parallel (Example
7). Each resistor lets a portion of the
current through. Their combined
resistance R is calculated with the formula

1 1 1 1

Functions of More Than Two Variables

The definitions of the partial derivatives of functions of more than two independent
variables are like the definitions for functions of two variables. They are ordinary
derivatives with respect to one variable, taken while the other independent variables
are held constant.

EXAMPLE 6 If x, y, and z are independent variables and

fx,y,2) = xsin(y + 32),

k) 9 9
then —f = — [xsin(y 4+ 32)] = x—ssin(y + 32)
0z 0z 0z

b
= xcos(y+3z) — (y +3z) =3xcos (y + 32). —
0z d

EXAMPLE 7 Electrical resistors in parallel

If resistors of R, R,, and R; ohms are connected in parallel to make an R-ohm

resistor, the value of R can be found from the equation
1 1 1 1

R R R K
(Fig. 12.17). Find the value of 9R /9 R, when R, = 30, R, = 45, and R; = 90 ohms.

Q3)

Solution To find dR/3R,, we treat R, and R as constants and differentiate both
sides of Eq. (3) with respect to R;:

9 (1) _ @ 1+1+1
R, \R)  9R, \R, R, R,

R _R* (RY
dR, R2 \R/)
When R, = 30, R, =45, and Ry = 90,
1 ] 1 I 34241 6 1

R-30 35790~ 9 90 15

IR _(15 2_(1 '

OR, ZE) B 5) "9 a
The Relationship Between Continuity and the
Existence of Partial Derivatives

A function f(x,y) can have partial derivatives with respect to both x and y at a
point without being continuous there. This is different from functions of a single
variable, where the existence of a derivative implies continuity. However, if the
partial derivatives of f(x, y) exist and are continuous throughout a disk centered
at (xo, yo), then f is continuous at (xq, yp), as we will see in the next section.

so R =15 and



12.18 The graph of

fx,y) = {

consists of the lines L; and L, and the
four open quadrants of the xy-plane. The
function has partial derivatives at the
origin but is not continuous there.

0, xy#0
1, xy=0
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The function

flx,y) = (1)’

EXAMPLE 8

xy #0
xy=0

(Fig. 12.18) is not continuous at (0, 0). The limit of f as (x, y) approaches (0, 0)
along the line y =x is 0, but f(0,0) = 1. The partial derivatives f, and f,,
being the slopes of the horizontal lines L, and L, in Fig. 12.18, both exist at
(0, 0). 4

Second Order Partial Derivatives

When we differentiate a function f(x, y) twice, we produce its second order deriva-
tives. These derivatives are usually denoted by

82
a—{ “d squared f d x squared” or Sfrx “f sub x x”
X
azf ”» ““ "
Tz “d squared f d y squared Sy fsubyy
y
azf 9 ”
“d squared fdxdy Sox “f sub yx
0xdy
a2f 9 13 "
“d squared fdydx’ Sy ‘f subxy
dyodx ’

The defining equations are
82f_ d <8f 3 f 9 (of
ax2 ~ 9x \ox/) odxdy oax \dy/)’

and so on. Notice the order in which the derivatives are taken:

32
3 ({ Differentiate first with respect to y, then with respect to x.
XxXoy
Fox = (Hi)s Means the same thing.
EXAMPLE 9 If f(x,y)=xcosy+ ye*, then
0
—f = cos y + ye*
dax
0% f a [(of . B
=—|—=—)=—-siny+e
dydx  dy \ox
3 f a [of .
— =— =) = ye'.
9x2  0x \dx Y
Also,
a
o = —xsiny+e
dy
0% f a [(of ) B
=—\|\—)=-—-smy+e
dxdy  dx \dy
02 f d

= of\ _ X oS
dy?  dy \dy/) Y Jd
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Euler’s Theorem
You may have noticed that the “mixed” second order partial derivatives
a2 02
f and f
dy 0x dx dy

in Example 9 were equal. This was not a coincidence. They must be equal whenever
fs fo, fys fry, and f,, are continuous.

Theorem 2
Euler’s Theorem (The Mixed Derivative Theorem)

If f(x, y) and its partial derivatives f;, f,, fxy, and f,, are defined through-
out an open region containing a point (a, b) and are all continuous at (a, b),
then

fxy(a’ b) = fyx(a, b). (4)

You can find a proof of Theorem 2 in Appendix 9.
Theorem 2 says that to calculate a mixed second order derivative we may
differentiate in either order. This can work to our advantage.

EXAMPLE 10 Find 82w /dx dy if
ey
V41

w=xy+

Solution The symbol 9%w/dx dy tells us to differentiate first with respect to y
and then with respect to x. However, if we postpone the differentiation with respect
to y and differentiate first with respect to x, we get the answer more quickly. In
two steps,

Jw 3w
— =) and =1
ox dy dx

We are in for more work if we differentiate first with respect to y. (Just try it.)

4

Partial Derivatives of Still Higher Order

Although we will deal mostly with first and second order partial derivatives, because
these appear the most frequently in applications, there is no theoretical limit to how
many times we can differentiate a function as long as the derivatives involved exist.
Thus we get third and fourth order derivatives denoted by symbols like

Ff f
axgyr
a*f
Bxiay I

and so on. As with second order derivatives, the order of differentiation is immaterial
as long as the derivatives through the order in question are continuous.
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Exercises 12.3

Calculating First Order Partial Derivatives

In Exercises 1-22, find df/dx and df/0dy.

1. f(x,y)=2x2-3y—4 2. f(x, y)=x2—xy+y*
3 f, )= =Dy+2)

4, f(x,y)=5xy—=Tx*—y>+3x—6y+2

5. flx, y)=(xy—1) 6. f(x,y)=(2x —3y)’

7. flx, y) = Vx2 +y? 8. flx, y) =+ (y/2)*
9

s y) =1/(x+y) 10. f(x, y) =x/(x*+ ")
1. f(x, y) = +y)/(xy—=1)
12. f(x, y) =tan"'(y/x) 13. f(x, y) = e®+t¥+D
14. f(x, y)=e*sin(x +y) 15. f(x, y)=In(x+y)
16. f(x, y)=eVIny 17. f(x, y) =sin’(x — 3y)

18. f(x, y) =cos’(3x — y?) 19. f(x,y)=x’
20. f(x, y)=log, x

21. f(x, y) = / " g(t)dt (g continuous for all 7)

22, f(x, )= ()" (kyl < 1)
n=0

In Exercises 23-34, find f,, f,, and f;.
23, f(x,y,2)=14+xy? =222 24 f(x,y,2) =xy+yz+xz

25. f(x,y,0)=x—y*+22

26. f(x,y,2)=&>+y +2)7""?

27. f(x, y, z) = sin"'(xyz) 28. f(x, y, z) =sec”'(x + yz)

29. f(x,y,2)=In(x+2y+32)

30. f(x,y, 2)=yzIn(xy)

32. f(x,y,2)=e""

33. f(x, y, z) =tanh(x + 2y + 32)

34. f(x,y, z) =sinh (xy — z°)

In Exercises 3540, find the partial derivative of the function with

respect to each variable.

35. f(t,a) =cos(2nt — )

37. h(p, ¢,0) = psingcos 6

38. g(r,0,z) =r(l —cos 0) — z

39. Work done by the heart. (Section 3.7, Exercise 56)
Vév?

3L f(x, y, ) = e @R

36. g(u,v) = v?e®™

WP, V.8, v, g) =PV +

40. Wilson lot size formula. (Section 3.6, Exercise 57)

k h
Ate, h, k, m, q):—m+cm+7q
q

Calculating Second Order Partial Derivatives

Find all the second order partial derivatives of the functions in Exer-
cises 41-46.

41 f(x, y) =x+y+xy
43. g(x, y) = x2y +cos y + ysin x

4. h(x, y) =xe* +y+1 45. r(x, y)=In(x +y)
46. s(x, y) = tan~!(y/x)

42, f(x, y) =sin xy

Mixed Partial Derivatives
In Exercises 47-50, verify that w,, = w,,.
47. w =1n(2x + 3y)

49. w = xy* +x2y* + xy?

48. w=¢e"+xlny+vinx

50. w =xsin y+ ysin x +xy

51. Which order of differentiation will calculate f,, faster: x first,
or y first? Try to answer without writing anything down.

a) f(x,y)=xsiny+e"
b) flx, y)=1/x
¢ flx,y)=y+x/y)
d) fy)=y+xly+4y  —In(y?+1)
e) f(x,y)=x?+5xy+sinx +7e
f) f(x,y)=xlnxy

52. The fifth order partial derivative 8°f/3x%dy’ is zero for each
of the following functions. To show this as quickly as possible,
which variable would you differentiate with respect to first: x.
or y? Try to answer without writing anything down.

a)  f(x, y)=yxte +2

b) f(x,y) =y>+ y(sinx —x*)

¢)  f(x,y) =x*45xy+sin x + 7e*
d  fx,y)=xe?

Using the Partial Derivative Definition

In Exercises 53 and 54, use the limit definition of partial derivative to
compute the partial derivatives of the functions at the specified points.
af af

— and — at (1, 2
8Xan 3ya( )

) )
o and o at (—2,1)
ox ay

53. f(x,y)=1—x+y—3xy,
54. f(x, y) =4+42x — 3y —xy?,

55. Letw = f(x, y, z) be a function of three independent variables,
and write the formal definition of the partial derivative df/dz at
(X0, Yo, zo0). Use this definition to find df/dz at (1, 2, 3) for
fx, y, ) =x*y

56. Let w = f(x,y, z) be a function of three independent variables
and write the formal definition of the partial derivative df/dy
at (xo, Yo, 20)- Use this definition to find df/dy at (—1,0, 3) for
fx,y,2) = =2xy> + yz2.
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Differentiating Implicitly
57. Find the value of dz/dx at the point (1, 1, 1) if the equation
xy+2%x —2yz=0
defines z as a function of the two independent variables x and y
and the partial derivative exists.
58. Find the value of dx/dz at the point (1, —1, —3) if the equation
xz+ylnx—x4+4=0

defines x as a function of the two independent variables y and z
and the partial derivative exists.

Exercises 59 and 60 are about the triangle shown here.
B

A
C b

59. Express A implicitly as a function of a, b, and ¢ and calculate
dA/da and 9A/db.

60. Express a implicitly as a function of A, b, and B and calculate
da/dA and da/dB.

61. Express v, in terms of u and v if the equations x = vln uand y =
u In v define u and v as functions of the independent variables x
and y, and if v, exists. (Hint: Differentiate both equations with
respect to x and solve for v, with Cramer’s rule.)

62. Find 90x/du and dy/du if the equations u = x> — y? and v =
x? — y define x and y as functions of the independent variables
u and v, and the partial derivatives exist. (See the hint in Exercise
61.) Then let s = x* + y? and find 3s/du.

Laplace Equations
The three-dimensional Laplace equation
02 0’ 0’
LB T o
ax2  dy? 9z

is satisfied by steady-state temperature distributions T = f(x, y, 2)
in space, by gravitational potentials, and by electrostatic potentials.
The two-dimensional Laplace equation

Xf 9%
Pyl 557 , (6)

obtained by dropping the 32f/3z* term from Eq. (5), describes poten-
tials and steady-state temperature distributions in a plane (Fig. 12.19).

Show that each function in Exercises 63-68 satisfies a Laplace
equation.

63. f(x,y, z)=x*+y?—-27

64. f(x,y, z) =27 —3(x2+y))z
65. f(x, y) =e % cos 2x

66. f(x, y)=1In /x?+ y?

67. f(x,y, ) =@ +y +25)7"/
68. f(x,y,z)=e>*"* cos 57

oY 92
S,
ax? E)y2

(@)

ax2  9y?  9z°

(b)

Boundary temperatures controlled

12.19 Steady-state temperature distributions in planes
and solids satisfy Laplace equations. The plane (a) may
be treated as a thin slice of the solid (b) perpendicular
to the z-axis.

The Wave Equation

If we stand on an ocean shore and take a snapshot of the waves,
the picture shows a regular pattern of peaks and valleys in an instant
of time. We see periodic vertical motion in space, with respect to
distance. If we stand in the water, we can feel the rise and fall of the
water as the waves go by. We see periodic vertical motion in time. In
physics, this beautiful symmetry is expressed by the one-dimensional
wave equation
2 2

B_w = CZB_w, 7

ar? dx?
where w is the wave height, x is the distance variable, ¢ is the time
variable, and c is the velocity with which the waves are propagated.

w

/N%

In our example, x is the distance across the ocean’s surface, but
in other applications x might be the distance along a vibrating string,
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distance through air (sound waves), or distance through space (light 72. w =1In(2x 4 2ct)
waves). The number ¢ varies with the medium and type of wave. 73. w = tan (2x — 2¢1)
Show that the functions in Exercises 69-75 are all solutions of

the wave equation.

74. w = 5cos 3x + 3ct) + et

69. w = sin (x + cr) 70. w = cos (2x + 2ct) 75. w = f(u), where f is a differentiable function of u and u =

71. w =sin (x + ct) + cos (2x + 2ct)

PR AR

a(x + ct), where a is a constant.

R A R R S R R R R S B B e

Differentiability, Linearization,
and Differentials

In this section, we define differentiability and proceed from there to linearizations
and differentials. The mathematical results of the section stem from the Increment
Theorem. As we will see in the next section, this theorem also underlies the Chain
Rule for multivariable functions.

Differentiability

Surprising as it may seem, the starting point for differentiability is not Fermat’s
difference quotient but rather the idea of increment. You may recall from our work
with functions of a single variable that if y = f(x) is differentiable at x = x;, then
the change in the value of f that results from changing x from x, to xy + Ax is
given by an equation of the form

Ay = f'(x0)Ax + € Ax (1)

in which ¢ — 0 as Ax — 0. For functions of two variables, the analogous property
becomes the definition of differentiability. The Increment Theorem (from advanced
calculus) tells us when to expect the property to hold.

Theorem 3
The Increment Theorem for Functions of Two Variables

Suppose that the first partial derivatives of f (x, y) are defined throughout
an open region R containing the point (xo, yo) and that f, and f, are
continuous at (xp, Yo). Then the change

Az = f(xo+ Ax, yo+ Ay) — f (x0, yo)

in the value of f that results from moving from (x, yo) to another point
(xo + Ax, yo + Ay) in R satisfies an equation of the form

Az = fi(x0, Yo)Ax + fy(x0, Yo)Ay + €1 Ax + €AYy, (2

in which €;,€6; — 0 as Ax, Ay — 0.

You will see where the epsilons come from if you read the proof in Appendix
10. You will also see that similar results hold for functions of more than two
independent variables.
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A point
near (x,, yo)

—e(x,y)
Ay=y-y,

A point where
fis differentiable

(Xgp» V) @
o0 Ax=x-1x,

12.20 If f is differentiable at (xo, yo), then
the value of f at any point (x, y) nearby is
approximately f(xo, o) + fx(Xo, Yo)Ax +

f, (X0, yo)Ay.

As we can see from Theorems 3 and 4, a
function f(x, y) must be continuous at a
point (xo, o) if f, and f, are continuous
throughout an open region containing
(xo0, ¥o)- But remember that it is still
possible for a function of two variables to
be discontinuous at a point where its first
partial derivatives exist, as we saw in
Section 12.3, Example 8. Existence alone
is not enough.

Definition

A function f(x, y) is differentiable at (xo, yo) if f(xo, o) and f;(xo, Yo)
exist and Eq. (2) holds for f at (xo, yp). We call f differentiable if it is
differentiable at every point in its domain.

In light of this definition, we have the immediate corollary of Theorem 3 that
a function is differentiable if its first partial derivatives are continuous.

Corollary of Theorem 3

If the partial derivatives f, and f, of a function f(x,y) are continuous
throughout an open region R, then f is differentiable at every point of R.

If we replace the Az in Eq. (2) by the expression f(x,y) — f(xo, yo) and
rewrite the equation as

fx,y) = f(xo, yo) + fi(x0, o) Ax + fi(xo, yo)Ay + €, Ax + Ay, (3)

we see that the right-hand side of the new equation approaches f(xo, yo) as Ax
and Ay approach 0. This tells us that a function f(x, y) is continuous at every
point where it is differentiable.

Theorem 4
If a function f(x,y) is differentiable at (xq, yo), then f is continuous at
(x0, Yo)-

How to Linearize a Function of Two Variables

Functions of two variables can be complicated, and we sometimes need to replace
them with simpler ones that give the accuracy required for specific applications
without being so hard to work with. We do this in a way that is similar to the way
we find linear replacements for functions of a single variable (Section 3.7).

Suppose the function we wish to replace is z = f(x, y) and that we want the
replacement to be effective near a point (xo, yp) at which we know the values of
f, fx, and f, and at which f is differentiable. Since f is differentiable, Eq. (3)
holds for f at (xg, yo). Therefore, if we move from (xy, yo) to any point (x, y)
by increments Ax = x — xp and Ay =y — yo (Fig. 12.20), the new value of f
will be

fx,y) = f(xo, yo) + fx(x0, Yo)(x — Xxo)
+fy(x0, Yo)(y — yo) + €1Ax + €2AYy,

where €,,€;, — 0 as Ax, Ay — 0. If the increments Ax and Ay are small, the
products €, Ax and €;Ay will eventually be smaller still and we will have

flx,y) = f(xo, yo) + fi(x0, Yo)(x — x0) + fy(x0, Yo) (¥ — Yo).

L(x.y)

Eq. (3). with
Av =1 =\
and Av =1\ —
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In other words, as long as Ax and Ay are small, f will have approximately the
same value as the linear function L. If f is hard to use, and our work can tolerate
the error involved, we may safely replace f by L.

Definitions

The linearization of a function f(x,y) at a point (xg, yo) Where f is
differentiable is the function

L(x,y) = f(xo0, yo) + fx(x0, yo)(x — Xx0) + fy(x0, Yo)(y — yo). (4)

The approximation

f(x,y) = L(x,y)

is the standard linear approximation of f at (xg, yo).

In Section 12.8 we will see that the plane z = L(x, y) is tangent to the surface z =
f(x, y) at the point (xg, yo). Thus, the linearization of a function of two variables is
a tangent-plane approximation in the same way that the linearization of a function
of a single variable is a tangent-/ine approximation.

EXAMPLE 1 Find the linearization of
1
fx,y) :xz—xy+§y2+3

at the point (3, 2).

Solution We evaluate Eq. (4) with

1
f(x0, yo) = (x2 —xy+y"+ 3) =38,
2 (3.2)
9 2 1,
felxo, y0) = — [ x"—xy+5y°+3 =Q2x—ylgy =4
0x 2 3.2)
d 2 1,
filxo,y0) = — | x"—xy+ =y +3 =(—x+y)ay=—1,
ay 2 3.2)
getting
L(x,y) = f(x0,y0) + fc(x0, Yo)(x — x0) + fy(x0, Yo)(¥y — Y0)  Eq.(h
=8+WDHx-3HN+(-D(y—-2)=4x—-y—-2.
The linearization of f at (3,2)is L(x,y) =4x —y — 2. a

How Accurate Is the Standard Linear Approximation?

To find the error in the approximation f(x, y) & L(x, y), we use the second order
partial derivatives of f. Suppose that the first and second order partial derivatives
of f are continuous throughout an open set containing a closed rectangular region
R centered at (xq, yo) and given by the inequalities

|x — xol < h, ly —yol <k
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0

12.21 The rectangular region R :

|x — Xo| € h, |y — yo| < k in the xy-plane.
On this kind of region, we can find useful
error bounds for our approximations.

(Fig. 12.21). Since R is closed and bounded, the second partial derivatives all take
on absolute maximum values on R. If B is the largest of these values, then, as
explained in Section 12.10, the error E(x, y) = f(x, y) — L(x, y) in the standard
linear approximation satisfies the inequality

1
[ECe, I < 3B (1x = %ol +1y = yol)?

throughout R.

When we use this inequality to estimate £, we usually cannot find the values
of fix, fyy, and f, that determine B and we have to settle for an upper bound or
“worst-case” value instead. If M is any common upper bound for | f,,|, | fyy|, and
] fx,,] on R, then B will be less than or equal to M and we will know that

1
[ECe, )l < M (1x = xol + Iy = yol)? .

This is the inequality normally used in estimating E. When we need to make
|E(x,y)| small for a given M, we just make |x — x| and |y — yo| small.

The Error in the Standard Linear Approximation

If f has continuous first and second partial derivatives throughout an open
set containing a rectangle R centered at (xo, yo) and if M is any upper
bound for the values of | fi.|, | fiy|, and | f;,| on R, then the error E(x, y)
incurred in replacing f(x, y) on R by its linearization

L(x,y) = f(xo0, y0) + fx(x0, y0)(x — x0) + £, (X0, Yo)(¥ — Yo)

satisfies the inequality

1
|E(x, y)| < 5M(|x—xo|+|y—yo|>2. (5)

EXAMPLE 2 In Example 1, we found the linearization of

1
fO,y)=x"=xy+5y"+3
at (3, 2) to be
L(x,y)=4x—y—2.

Find an upper bound for the error in the approximation f(x, y) & L(x, y) over the
rectangle

R: |x—3]<0.1, |y—2|<0.l.

Express the upper bound as a percentage of f(3,2), the value of f at the center
of the rectangle.

Solution We use the inequality

1
[ECe, ) < M (1x = xol + Iy = yol)2. kg5

To find a suitable value for M, we calculate f,,, fi,, and f,,, finding, after a
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routine differentiation, that all three derivatives are constant, with values

lfal =121=2,  |fol=1-1U=1 |fy|=llI=1L
The largest of these is 2, so we may safely take M to be 2. With (xq, yo) = (3, 2),
we then know that, throughout R,

1
|E@4ﬂ5§auu—m+w—mf=ax—ﬂ+w—2w.

Finally, since |[x — 3| < 0.1 and |y — 2| < 0.1 on R, we have
|E(x, y)| < (0.1 +0.1)? = 0.04.

As a percentage of f(3,2) =8, the error is no greater than

0.04

As long as (x, y) stays in R, the approximation f(x, y) = L(x, y) will be in error
by no more than 0.04, which is 1/2% of the value of f at the center of R. |

Predicting Change with Differentials

Suppose we know the values of a differentiable function f(x, y) and its first partial
derivatives at a point (xg, yp) and we want to predict how much the value of f will
change if we move to a point (xo + Ax, yo + Ay) nearby. If Ax and Ay are small,
f and its linearization at (xg, yp) will change by nearly the same amount, so the
change in L will give a practical estimate of the change in f.

The change in f is

Af = f(xo+ Ax, yo + Ay) — f(xo, Yo)-

A straightforward calculation with Eq. (4), using the notation x — xy = Ax and
y — Yo = Ay, shows that the corresponding change in L is

AL = L(xy + Ax, yo + Ay) — L(xo, yo)
= fX(x()v )’O)AX + fy(XOs )’O)Ay

The formula for Af is usually as hard to work with as the formula for f. The
change in L, however, is just a known constant times Ax plus a known constant
times Ay.

The change AL is usually described in the more suggestive notation

df = fi(x0, yo)dx + f,(x0, yo) dy,

in which df denotes the change in the linearization that results from the changes
dx and dy in x and y. As usual, we call dx and dy differentials of x and y, and
call df the corresponding differential of f.

Definition
If we move from (xy, yo) to a point (xo + dx, yo + dy) nearby, the resulting
differential in f is

df = fi(xo, yo)dx + fy(x0, yo) dy. (6)

This change in the linearization of f is called the total differential of f.
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(a) (®)

12.22 The volume of cylinder (a) is more
sensitive to a small change in r than it is
to an equally small change in h. The
volume of cylinder (b) is more sensitive to
small changes in h than it is to small
changes in r.

Absolute change vs.
relative change

If you measure a 20-volt potential with an
error of 10 volts, your reading is probably
too crude to be useful. You are off by 50%.
But if you measure a 200,000-volt potential
with an error of 10 volts, your reading is
within 0.005% of the true value. An absolute
error of 10 volts is significant in the first case
but of no consequence in the second because
the relative error is so small.

In other cases, a small relative error—say,
traveling a few meters too far in a journey of
hundreds of thousands of meters—can have
spectacular consequences.

EXAMPLE 3  Sensitivity to change

Your company manufactures right circular cylindrical molasses storage tanks that
are 25 ft high with a radius of 5 ft. How sensitive are the tanks’ volumes to small
variations in height and radius?

Solution As a function of radius r and height 4, the typical tank’s volume is
V =narih.

The change in volume caused by small changes dr and dh in radius and height is
approximately

dV = V,(5,25)dr + V,(5,25)dh
= (2nrh)sas dr + (7r?) 5,25 dh
= 250ndr + 25ndh.

Eq. (6) with f =V
and (xg. vg) = (5.25)

Thus, a 1-unit change in » will change V by about 2507 units. A 1-unit change in
h will change V by about 257 units. The tank’s volume is 10 times more sensitive
to a small change in  than it is to a small change of equal size in h. As a quality
control engineer concerned with being sure the tanks have the correct volume, you
would want to pay special attention to their radii.

In contrast, if the values of r and & are reversed to make r =25 and h =5,
then the total differential in V becomes

dV = 2rrh)gss, dr + (wr?)as.s) dh = 250w dr + 625ndh.

Now the volume is more sensitive to changes in 4 than to changes in r (Fig. 12.22).
The general rule to be learned from this example is that functions are most
sensitive to small changes in the variables that generate the largest partial derivatives.

4

Absolute, Relative, and Percentage Change

When we move from (xg, yo) to a point nearby, we can describe the corresponding
change in the value of a function f(x, y) in three different ways.

True Estimate
Absolute change: Af df
A d
Relative change: 7]( —f
f (xo, y0) S (xo, yo)
A d
Percentage change: —f x 100 —f x 100
S (x0, Yo) S (x0, y0)

EXAMPLE 4 Suppose that the variables r and 4 change from the initial values of
(ro, ho) = (1, 5) by the amounts dr = 0.03 and dh = —0.1. Estimate the resulting
absolute, relative, and percentage changes in the values of the function V = 7r2h.

Solution To estimate the absolute change in V, we evaluate
dV = V,.(ro, ho) dr + Vi (ro, ho) dh
dV = 2mrohodr + mre* dh = 27 (1)(5)(0.03) + 7 (1)*(—0.1)
=037 —-0.l7r =0.2m.

to get
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We divide this by V (ry, ho) to estimate the relative change:

dVv _ 027 _ 027w
V(ro,ho)  mrothy  m(1)2(5)

= 0.04.

We multiply this by 100 to estimate the percentage change:

dv
—— x 100 = 0.04 x 100 = 4%. _
V(ro, ho) 0 —l

EXAMPLE 5 The volume V = mrr?h of a right circular cylinder is to be calcu-
lated from measured values of r and 4. Suppose that r is measured with an error of
no more than 2% and A with an error of no more than 0.5%. Estimate the resulting
possible percentage error in the calculation of V.

Solution We are told that

d dh
2 w100<2  and ‘— x 100| < 0.5.
r h
Since
dv _ 2nrhdr + wridh _ 2dr + dh
v ar2h Ty h’
we have
dv dh
— x 100} = 2d—r>< 100 + — x 100
\% r h
d dh
<2|L « 100‘ n ’7 x 100| < 2(2) + 0.5 = 4.5.
r
We estimate the error in the volume calculation to be at most 4.5%. 1

How accurately do we have to measure r and 4 to have a reasonable chance
of calculating V = mr2h with an error, say, of less than 2%? Questions like this
are hard to answer because there is usually no single right answer. Since

dav dr dh

v Tr + h’
we see that dV/V is controlled by a combination of dr/r and dh/h. If we can
measure A with great accuracy, we might come out all right even if we are sloppy
about measuring . On the other hand, our measurement of 4 might have so large a
dh that the resulting dV /V would be too crude an estimate of AV /V to be useful
even if dr were zero.

What we do in such cases is look for a reasonable square about the measured
values (rg, ho) in which V will not vary by more than the allowed amount from
Vo = 71"'()2]10.

EXAMPLE 6 Find a reasonable square about the point (ry, ho) = (5, 12) in
which the value of V = wr?h will not vary by more than 4 0.1.

Solution We approximate the variation AV by the differential

dV = 2nrohodr + wry*dh = 27 (5)(12) dr + 7 (5)°dh = 120mdr + 257 dh.
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dh
dr

5, 12)

l r

0 5

12.23 A small square about the point
(5, 12) in the rh-plane (Example 6).

Since the region to which we are restricting our attention is a square (Fig. 12.23),
we may set dh = dr to get

dV = 120mdr + 25ndr = 1457 dr.

We then ask, How small must we take dr to be sure that |d V| is no larger than
0.1? To answer, we start with the inequality

[dV] < 0.1,
express dV in terms of dr,
1457 dr| < 0.1,
and find a corresponding upper bound for dr:
1 Rounding down to make
ldr| < — ~21x107% sure dr won't accidentally
145m be oo big

With dh = dr, then, the square we want is described by the inequalities
r—5<21x10™, |h—12| <2.1x 107

As long as (r, h) stays in this square, we may expect |d V| to be less than or equal
to 0.1 and we may expect |AV| to be approximately the same size. d

Functions of More Than Two Variables

Analogous results hold for differentiable functions of more than two variables.
1. The linearization of f(x, y, z) at a point Py(xo, Yo, Zo) 1S
L(x,y,2) = f(Po) + fi(Po)(x — x0) + f,(Po)(y — yo) + f2(Po)(z — 2z0). (7)

2. Suppose that R is a closed rectangular solid centered at P, and lying in an open
region on which the second partial derivatives of f are continuous. Suppose
also that | fecl, | fyyl 1 f2zls | foyls | ezl and | fy,| are all less than or equal to
M throughout R. Then the error E(x,y,z) = f(x,y,z) — L(x, y,z) in the
approximation of f by L is bounded throughout R by the inequality

1
|El = SM (1x = xol + |y = yol + |z = 20])”. @®)
3. If the second partial derivatives of f are continuous and if x, y, and z change
from xg, yo, and zo by small amounts dx, dy, and dz, the total differential
df = fi(Po)dx + fy(Po)dy + f.(Py)dz

gives a good approximation of the resulting change in f.

EXAMPLE 7 Find the linearization L(x, y, z) of
flx,y,2) = x? —xy+3sinz

at the point (xo, Yo, 20) = (2, 1, 0). Find an upper bound for the error incurred in
replacing f by L on the rectangle

R: |x—2/ <001, |y—1]<0.02 [z]<0.0l.

Solution A routine evaluation gives

f2,1,00 =2, f(2,1,0) =3, 2, 1,0) = =2, f2,1,0)=3.



12.24 A beam supported at its two ends
before and after loading. Example 8
shows how the sag S is related to the
weight of the load and the dimensions of
the beam.

12.25 The dimensions of the beam in
Example 8.
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With these values, Eq. (7) becomes
Lx,y,2) =243x—-2)4+(-2)(y—1)+3(z—0)=3x -2y +3z - 2.

Equation (8) gives an upper bound for the error incurred by replacing f by L
on R. Since

f\x = 2’ f\'_\' = 0» ﬁ'? = _3 SinZ,
fx\ = —1, fxz =0, f\'z =0,

we may safely take M to be max | — 3 sin z| = 3. Hence

1
IEl < 5(3)(0.01 +0.02+ 0.01)2 = 0.0024.

The error will be no greater than 0.0024. J

EXAMPLE 8 Controlling sag in uniformly loaded beams

A horizontal rectangular beam, supported at both ends, will sag when subjected to
a uniform load (constant weight per linear foot). The amount S of sag (Fig. 12.24)
is calculated with the formula
px*
S=C—.
wh?

In this equation,

p = the load (newtons per meter of beam length),

x = the length between supports (m),

w = the width of the beam (m),

h = the height of the beam (m),

C = a constant that depends on the units of measurement and on the material

from which the beam is made.

Find 4§ for a beam 4 m long, 10 cm wide, and 20 cm high that is subjected to
a load of 100 N/m (Fig. 12.25). What conclusions can be drawn about the beam
from the expression for dS?

Solution Since S is a function of the four independent variables p, x, w, and A,
its total differential dS is given by the equation

dS =S,dp+ S,dx+ S, dw+ S, dh.

When we write this out for a particular set of values py, xo, wy, and hy and
simplify the result, we find that

dp 4dx dw 3dh
dS = S| — + — ,
Po X0 Wo ho
where Sy = S(po, X0, Wy, ho) = Cpoxo*/(woho?).
If po = 100 N/m, xp =4 m, wy = 0.1 m, and hy = 0.2 m, then

d
ds = S, (ﬁ)% +dx — 10dw — 15dh> . )

Here is what we can learn from Eq. (9). Since dp and dx appear with positive
coefficients, increases in p and x will increase the sag. But dw and dh appear with
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negative coefficients, so increases in w and /4 will decrease the sag (make the beam
stiffer). The sag is not very sensitive to changes in load because the coefficient of
dp is 1/100. The magnitude of the coefficient of dh is greater than the magnitude
of the coefficient of dw. Making the beam 1 cm higher will therefore decrease the
sag more than making the beam 1 cm wider. o

Exercises 12.4

Finding Linearizations

In Exercises 1-6, find the linearization L(x, y) of the function at each
point.

1. f(x,y)=x24+y*+1lat (a)(0,0), (b)(l, 1)
2. fr,y)=(x+y+2)?at (a)(0,0), (b)(l1,2)
3. f(x,y)=3x—4y+5at (a)(0,0), (b)(l,1)
4. flx,y)y=x'y at (a) (1, 1), (b)(0,0)

5. f(x,y)=-e"'cos yat (a) (0, 0), (b) (0, m/2)

6. f(x,y)=e>""at (a)(0,0), (b)(l,2)

Upper Bounds for Errors in Linear
Approximations

In Exercises 7-12, find the linearization L(x, y) of the function
f(x,y) at Py. Then use inequality (5) to find an upper bound for the
magnitude |E| of the error in the approximation f(x,y) = L(x,y)
over the rectangle R.

7. f(x,y) =x2—=3xy+5at Py(2,1),
R Jx—2/<0.1, |y—1]<0.1

8. f(x,y)=(1/2)x>+xy+ (1/4)y* +3x — 3y + 4 at Py(2,2),
R: |x—2/<0.1, |y—2/<0.l

9. f(x.y)=14+y+xcosyat Py0,0),
R: |x] <02, |y|<02
(Use |cos y| < 1 and |siny| < I in estimating E.)

10. f(x.y) =xy2 4y cos(x — 1) at Py(l,2),
R: lx—1/<0.1, |y—2/<0.1

11. f(x.y) = e cos y at Py(0,0),
R: |x] <0.1, |y|<0.
(Use e' < 1.11 and |cos y| < I in estimating E.)

12. f(x,y)=Inx+1Inyat Py(l1,1),
R: |x—11<02, |y—1/<02

Sensitivity to Change. Estimates

13. You plan to calculate the area of a long, thin rectangle from
measurements of its length and width. Which dimension should
you measure more carefully? Give reasons for your answer.

14. a) Around the point (1, 0), is f(x,y) = x2(y + 1) more sen-
sitive to changes in x, or to changes in y? Give reasons for

your answer.

b) What ratio of dx to dy will make df equal zero at (1, 0)?

15. Suppose T is to be found from the formula 7 = x(e¥ + ™)
where x and y are found to be 2 and In 2 with maximum possible
errors of |dx| =0.1 and |dy| = 0.02. Estimate the maximum
possible error in the computed value of T.

16. About how accurately may V = mr?h be calculated from mea-
surements of r and A that are in error by 1%?

17. If r =5.0 cm and A = 12.0 cm to the nearest millimeter, what
should we expect the maximum percentage error in calculating
V =nar?h to be?

18. To estimate the volume of a cylinder of radius about 2 m and
height about 3 m, about how accurately should the radius and
height be measured so that the error in the volume estimate will
not exceed 0.1 m*? Assume that the possible error dr in mea-
suring r is equal to the possible error dh in measuring A.

19. Give a reasonable square centered at (1, 1) over which the value
of f(x,y) =x*y* will not vary by more than 0.1.

20. Variation in electrical resistance. The resistance R produced
by wiring resistors of R, and R, ohms in parallel (Fig. 12.26)
can be calculated from the formula

1 1 1

R-®” TR

(o

12.26 The circuit in Exercises 20 and 21.
a) Show that

R\’ R\’
R=1{— R — R;.
d (R]>d|+<R2>d2

b)  You have designed a two-resistor circuit like the one in Fig.
12.26 to have resistances of R, = 100 ohms and R, = 400




ohms, but there is always some variation in manufacturing
and the resistors received by your firm will probably not
have these exact values. Will the value of R be more sensi-
tive to variation in R;, or to variation in R,? Give reasons
for your answer.

21. (Continuation of Exercise 20.) In another circuit like the one in
Fig. 12.26, you plan to change R, from 20 to 20.1 ohms and
R, from 25 to 24.9 ohms. By about what percentage will this
change R?

22. Error carry-over in coordinate changes

a) Ifx =3+£0.01 and y =4 % 0.01, as shown here, with ap-
proximately what accuracy can you calculate the polar co-
ordinates r and € of the point P(x, y) from the formulas
r? =x? 4 y? and @ = tan~'(y/x)? Express your estimates
as percentage changes of the values that r and 6 have at the
point (xo, yo) = (3,4).

b) At the point (xo, yo) = (3,4), are the values of r and 6
more sensitive to changes in x, or to changes in y? Give
reasons for your answer.

P3 = 0.01,4=0.01)

Functions of Three Variables

Find the linearizations L(x, y, z) of the functions in Exercises 23-28
at the given points.

23. f(x,y,0)=xy+yz+xzat

a) (I 1,1) b) (1,0,0) ¢ (0,0,0)
24, f(x,y,2) =x*+y*+7%at

a) (I,1,1) b) (0, 1,0) c) (1,0,0)
25. f(x,y,2) =/x2+y?+2%at

a) (1,0,0) b) (1,1,0) c) (1,2,2)
26. f(x,y,z) = (sin xy)/z at

a) (w/2,1,1) b) (2,0, 1)
27. f(x,y,z2) =e" +cos(y+2z) at

b4 T 7T

a) (0,0,0) b (o 5,0) o (o. T Z)
28. f(x,y,z) =tan"'(xyz) at

a) (1,0,0) b) (1,1,0) c) (L, L,1)

In Exercises 29-32, find the linearization L(x, y, z) of the function
f(x,y,z)at Py. Then use inequality (8) to find an upper bound for the
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magnitude of the error E in the approximation f(x, y, z) = L(x,y,2)
over the region R.

29. f(x,y.z) =xz—3yz+2 at Py(l,1,2)
R: |x—1/<001l, |y—1]<00l, |z—2]|<0.02
30. f(x,y,2) =x2+xy+yz+(1/4)7% at Py(1,1,2)
R: |x—1]<0.01, |y—1<0.01, [z—2]<0.08
31. f(x,y,2) =xy+2yz—3xz at Py(l,1,0)
R: |x—1 <001, |y—1]<0.01, |z]<0.01
32. f(x,y,z)=ﬁcosxsin(y+z) at Py(0,0,7/4)
R: |x| <0.01, |y|<0.0l, |z—m=n/4] <0.01

Theory and Examples

33. The beam of Example 8 is tipped on its side so that # = 0.1 m
and w = 0.2 m.

a) What is the value of dS now?

b) Compare the sensitivity of the newly positioned beam to
a small change in height with its sensitivity to an equally
small change in width.

34. A standard 12-fl oz can of soda is essentially a cylinder of radius
r =1 in. and height & = 5 in.

a) At these dimensions, how sensitive is the can’s volume to
a small change in the radius versus a small change in the
height?

b) Could you design a soda can that appears to hold more
soda but in fact holds the same 12 fl 0z? What might its
dimensions be? (There is more than one correct answer.)

35. If |a| is much greater than |b], |c|, and |d|, to which of a, b, c,
and d is the value of the determinant

a b

f(a,b,c,d) = c d‘

most sensitive? Give reasons for your answer.

36. Estimate how strongly simultaneous errors of 2% in a, b, and ¢
might affect the calculation of the product

p(a,b,c) = abc.

37. Estimate how much wood it takes to make a hollow rectangular
box whose inside measurements are 5 ft long by 3 ft wide by 2
ft deep if the box is made of lumber 1/2-in. thick and the box
has no top.

38. The area of a triangle is (1/2)ab sin C, where a and b are the
lengths of two sides of the triangle and C is the measure of the
included angle. In surveying a triangular plot, you have measured
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39.

40.

a, b, and C to be 150 ft, 200 ft, and 60, respectively. By about
how much could your area calculation be in error if your values
of a and b are oft by half a foot each and your measurement of
C is off by 2°? See the figure. Remember to use radians.

Suppose that u = xe' + y sin z and that x,y, and z can be
measured with maximum possible errors of 0.2, £0.6, and
+m/180, respectively. Estimate the maximum possible error in
calculating u from the measured valuesx =2,y =1In 3,z = 7 /2.

The Wilson lot size formula. The Wilson lot size formula in
economics says that the most economical quantity Q of goods
(radios, shoes, brooms, whatever) for a store to order is given

by the formula Q = /2KM/h, where K is the cost of placing

12.5

41.

42.

the order, M is the number of items sold per week, and 4 is
the weekly holding cost for each item (cost of space, utilities,
security, and so on). To which of the variables K, M, and h is Q
most sensitive near the point (K, My, hy) = (2, 20, 0.05)? Give
reasons for your answer.

Does a function f(x, y) with continuous first partial derivatives
throughout an open region R have to be continuous on R? Give
reasons for your answer.

If a function f(x,y) has continuous second partial derivatives
throughout an open region R, must the first order partial deriva-
tives of f be continuous on R? Give reasons for your answer.

The Chain Rule

When we are interested in the temperature w = f(x, y, z) at points along a curve
x =g(t), y=~h(t), z=k(t) in space, or in the pressure or density along a path
through a gas or fluid, we may think of f as a function of the single variable
t. For each value of ¢, the temperature at the point (g(t), h(z), k(t)) is the value
of the composite function f(g(¢), h(t), k(z)). If we then wish to know the rate at
which f changes with respect to ¢ along the path, we have only to differentiate this
composite with respect to ¢, provided, of course, the derivative exists.

Sometimes we can find the derivative by substituting the formulas for g, 4, and
k into the formula for f and differentiating directly with respect to ¢. But we often
have to work with functions whose formulas are too complicated for convenient
substitution or for which formulas are not readily available. To find a function’s
derivatives under circumstances like these, we use the Chain Rule. The form the
Chain Rule takes depends on how many variables are involved but, except for the
presence of additional variables, it works just like the Chain Rule in Section 2.5.

The Chain Rule for Functions of Two Variables

In Section 2.5, we used the Chain Rule when w = f(x) was a differentiable function
of x and x = g(r) was a differentiable function of . This made w a differentiable
function of ¢ and the Chain Rule said that dw/dt could be calculated with the

formula

dw _ dwdx
dt ~ dx dt’

The analogous formula for a function w = f(x, y) is given in Theorem 5.

Theorem 5

Chain Rule for Functions of Two Independent Variables

If w= f(x, y) is differentiable and x and y are differentiable functions of
t, then w is a differentiable function of ¢ and

dw df dx

of dy
dt ~ 9x dt

551{ )



The way to remember the Chain Rule is to
picture the diagram below. To find dw/d!t,
start at w and read down each route to ¢,
multiplying derivatives along the way. Then
add the products.

Chain Rule

Dependent
variable

w = flx, y)

Intermediate
variables

Independent
' variable

dw _ dwdx n awdy

dt ~ dxdr ' dyd:

12.5 The Chain Rule 945

Proof The proof consists of showing that if x and y are differentiable at r = 1,
then w is differentiable at #, and

dw Jw dx Jw dy
7Yy - (ZZ =) 4+ (= -, (2)
dar ), ax Jp \dt ], ay Jp \dt/,

where Py = (x(to), y(t)).
Let Ax, Ay, and Aw be the increments that result from changing ¢ from ¢, to
to + At. Since f is differentiable (remember the definition in Section 12.4),

ow Jw
Aw = — Ax + | — Ay + € Ax + 6, Ay, 3)
dx Py 3y Py

where €),¢e; —> 0 as Ax, Ay — 0. To find dw/dt, we divide Eq. (3) through by
At and let At approach zero. The division gives

Aw Jw Ax Jw Ay Ax Ay
— =) —+|=) =Fta—+a_.
At ox ) p At ay ) p, At At At
and letting At approach zero gives
(a’w . Aw
— ) = lim —
dt P At

] d a d d d
(5), (). (), () oo (5),»o- (5).
ox Jp \dt ]/, ay Jp \dt ], dat ), dar ),

This establishes Eq. (2) and completes the proof. Q

The tree diagram in the margin provides a convenient way to remember the Chain
Rule. From the diagram you see that when ¢ = 1, the derivatives dx/dt and dy/dt
are evaluated at fo. The value of f, then determines the value x, for the differentiable
function x and the value y, for the differentiable function y. The partial derivatives
dw/dx and dw/dy (which are themselves functions of x and y) are evaluated at the
point Py(xg, yo) corresponding to ty. The “true” independent variable is ¢, while x
and y are intermediate variables (controlled by ¢) and w is the dependent variable.

A more precise notation for the Chain Rule shows how the various derivatives
in Eq. (1) are evaluated:

d ) d 0 d
d—'f(m) - %(Xo, Yo) - d—f(m) + %(Xo, Yo) - d—f(zw.

EXAMPLE 1 Use the Chain Rule to find the derivative of
w=xy

with respect to ¢ along the path x = cost#, y = sint. What is the derivative’s value
att = /27

Solution We evaluate the right-hand side of Eq. (1) with w = xy, x = cost, and
y =sint:

ow . ow dx . dy

— = y =sint, — = Xx = Cost, — = —sint, — =cost

ox ay dt dt

dw owdx oJdwdy . . Eq. (1) with
=———tT- = (Smt)(_ sin t) + (COS t)(COSt) \;Ilucs I‘l\‘:wlm above

dt ~ dx dt | 3y dt

= —sin’t + cos®t = cos 2t.
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Here we have three routes from w to ¢

instead of two. But finding dw/dt is still the

same. Read down each route, multiplying
derivatives along the way; then add.

Chain Rule

Dependent
variable

w = flx,y,2)

Intermediate

variables
Independent
variable
dw _ gwdx  awdy | dwdz
dt — dxdt ' dydt = dzdt
The helix

r = (cos #)i + (sinnj + rk

12.27 Example 2 shows how the values

of w = xy + z vary with t along this helix.

Notice in our calculatior that we have substituted the functional expressions
x =cost and y = sint in the partial derivatives dw/dx and dw/dy. The resulting
derivative dw/dt is then expressed in terms of the independent variable ¢ (so the
intermediate variables x and y do not appear).

In this example we can check the result with a more direct calculation. As a
function of ¢,

. 1.
w = xy =costsint = 581[12[’

SO dw d (1 sin 2t ! 2cos2t = cos 2t
—_— = — — Sin = — . == .
i di \2 2 "o o8
In either case,
dw b4
- =cos(2-—)=cosn=—1.
dt t=m/2 2 D

The Chain Rule for Functions of Three Variables

To get the Chain Rule for functions of three variables, we add a term to Eq. (1).

Chain Rule for Functions of Three Independent Variables

If w = f(x,y, z) is differentiable and x, y, and z are differentiable functions
of ¢, then w is a differentiable function of ¢ and

dw _3fdx ofdy 3fdz

—_— == - _——. 4
dt ox dt  dydt 09z dt @

The derivation is identical with the derivation of Eq. (1) except that there are now
three intermediate variables instead of two. The diagram we use for remembering
the new equation is similar as well.

EXAMPLE 2  Changes in a function’s values along a helix

Find dw/dt if

w=xy+z, X = CoSt, y = sint, z=t

(Fig. 12.27). What is the derivative’s value at t = 0?

Solution
dw _ dwdx  dwdy dwdz by, )
dt ox dt  dy dt = 09z dt
= (y)(—sint) + (x)(cost) + (1)(1)
= (sint)(—sint) 4 (cost)(cost) + 1 Substtute for
the intermediate
= —sin’t 4+ cos’r+ 1 =1+ cos2t variables.

(d_w) = 14 cos(0) = 2.
t=0



bl [+]
f
Intermediate e !
variables : |z‘ :
8\ h| k
Independent

variables
w=f(g(r,s), h(r,s), k(r,s))

(a)

w = f(x, y,2)

aw
a9z

a9z
ar

r

aw _ dwdx + dwdy + dwdz

ar  dxar dydr  dzar
(b)

dw_ owax | wdy | wdz
ds ~ dxds  dyds = Jzds
(c)

12.28 Composite function and tree
diagrams for Egs. (5) and (6).
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The Chain Rule for Functions Defined on Surfaces

If we are interested in the temperature w = f(x, y, z) at points (x, y, z) on a globe
in space, we might prefer to think of x, y, and z as functions of the variables r
and s that give the points’ longitudes and latitudes. If x = g(r, s), y = h(r, s), and
z =k(r,s), we could then express the temperature as a function of r and s with
the composite function

w = f(g(r,s), h(r,s), k(r,s)).

Under the right conditions, w would have partial derivatives with respect to both r
and s that could be calculated in the following way.

Chain Rule for Two Independent Variables and
Three Intermediate Variables

Suppose that w = f(x, y,z),x = g(r,s), y = h(r,s), and z = k(r, s). If all
four functions are differentiable, then w has partial derivatives with respect
to r and s, given by the formulas

ow owox Jwdy Jdwaz

— =7+t +——,

ar dx dr  dy or  dz Or
ow owox oJwdy Jw oz
— ==+t —=+—=
as dx ds dy ds 9z ds

(5)

(6)

Equation (5) can be derived from Eq. (4) by holding s fixed and setting r equal to
t. Similarly, Eq. (6) can be derived by holding r fixed and setting s equal to z. The
tree diagrams for Egs. (5) and (6) are shown in Fig. 12.28.

EXAMPLE 3 Express dw/dr and dw/ds in terms of r and s if

2 r 2
w=x+4+2y+72z, xX=-, y=r"+Ins, z=2r.
s
Solution ow Jwdx Jwdy OJdwaz -
_——= 4 — = 4 — — Eq. (5)
ar ox dr dy dr 9z Or
1
= (1) (;) +(2)(2r) + (22)(2)
1 1 Substitute tor
=—44r+@lr)2) = -+ 12r intermediate
N s variable -

dw _dwor  dwdy  dwz

as dx ds + 5 as dz 0s
r 1 2 r
=u%—;)+a%§)+@oww=;—; .

If f is a function of two variables instead of three, Egs. (5) and (6) become
one term shorter, because the intermediate variable z doesn’t appear.
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Chain Rule

dw_dwax , away
dr ~ dx dr Ay or

12.29 Tree diagram for the first of
Egs. (7).

Chain Rule

ow _ dwx
dr  dx dr
dw _ dwdx
as dx ds

12.30 Tree diagram for Egs. (8).

y = h(x)

=h'(x)

12.31 Tree diagram for Eq. (9).

If w= f(x,y),x =g(r,s), and y = h(r, s), then

ow owodx Jdwdy ow dwadx Jdwdy
— — and —_— = —— 4 — .
as dx os dy ds

= — 7
ar 8x8r+8y8r @

Figure 12.29 shows the tree diagram for the first of Egs. (7). The diagram for the
second equation is similar—just replace r with s.

EXAMPLE 4 Express dw/dr and dw/ds in terms of r and s if
w=x2+y2, X =r—s, y=r+s.

Solution We use Egs. (7):

3w_8w8x+8w8y 8w_8w3x+8w8y
ar  dx dr Ay dr ds  0x ds dy ds
= 2x)(1) + 2y)(1) = (20)(=1) + 2y)(1) i
Substitute
=2(r —s)+2(r +5) = =2(r—s)+2(r +s) for the
intermediate
= 4r = 4s variables.
4
If f is a function of x alone, Egs. (5) and (6) simplify still further.
If w= f(x) and x = g(r, s), then
ow  dwdx ow dw dx
—_— = —— an —_— = (8)
or dx or as dx 9s

Here dw/dx is the ordinary (single-variable) derivative (Fig. 12.30).

Implicit Differentiation (Continued from Chapter 2)

Believe it or not, the two-variable Chain Rule in Eq. (1) leads to a formula that
takes most of the work out of implicit differentiation. Suppose:

1. The function F(x, y) is differentiable and
2. The equation F(x,y) =0 defines y implicitly as a differentiable function of
x, say y = h(x).

Since w = F(x, y) = 0, the derivative dw/dx must be zero. Computing the deriva-
tive from the Chain Rule (tree diagram in Fig. 12.31), we find

dw dx dy Eq. (1) with7 =
0=d—X:FXE+FyE and [ =1
dy
:F"1+F-V'E’ 9
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If Fy, =0w/dy # 0, we can solve Eq. (9) for dy/dx to get
dy Fy

dx  F,’

Suppose that F(x, y) is differentiable and that the equation F(x,y) =0
defines y as a differentiable function of x. Then, at any point where F, # 0,
dy F,

= ——. 10
TE (10)

EXAMPLE 5 Find dy/dx if x> +siny — 2y = 0.

Solution Take F(x,y) = x* +siny — 2y. Then
dy  Fo 2x

= = - Eq. (10)

dx F, cosy —?2
This calculation is significantly shorter than the single-variable calculation with
which we found dy/dx in Section 2.6, Example 3. d

Remembering the Different Forms of the Chain Rule

How are we to remember all the different forms of the Chain Rule? The answer
is that there is no need to remember them all. The best thing to do is to draw the
appropriate tree diagram by placing the dependent variable on top, the intermediate
variables in the middle, and the selected independent variable at the bottom. To find
the derivative of the dependent variable with respect to the selected independent
variable, start at the dependent variable and read down each branch of the tree to the
independent variable, calculating and multiplying the derivatives along the branch.
Then add the products you found for the different branches. Let us summarize.

The Chain Rule for Functions of Many Variables

Suppose w = f(x, y, ..., v) is a differentiable function of the variables x, y, ..., v
(a finite set) and the x, y, ..., v are differentiable functions of p, ¢, ..., t (another
finite set). Then w is a differentiable function of the variables p through ¢ and the
partial derivatives of w with respect to these variables are given by equations of
the form

Jw dwdx Jdw dy ow Jv
— = — 4 — L 4 — (11)
ap dx ap  dy dp dv dp

The other equations are obtained by replacing p by ¢, ..., t, one at a time.

One way to remember Eq. (11) is to think of the right-hand side as the dot
product of two vectors with components

Jw Jw Jw dx dy adv

— T, — and — .., )
dx 0dy av ap dp ap
Derivatives of w with Derivatives of the intermediate
respect to the variables with respect to the

intermediate variables selected independent variable
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Exercises 12.5

Chain Rule: One Independent Variable

In Exercises 1-6, (a) express dw/dt as a function of ¢, both by using
the Chain Rule and by expressing w in terms of ¢ and differentiating
directly with respect to ¢. Then (b) evaluate dw/dt at the given value
of .

1. w=x*+y* x=cost, y=sint; t=m
2. w=x>+y?, x=cost+sint, y=cost—sint; t=0
x .
3.w=—+X, x=cos’t, y=sin’r, z=1/1; 1=3
0z
4, w=Inx>+y>+7%), x=cost, y=sint,
z=41; 1=3
5. w=2ye" —Inz, x=In(@2+1), y=tan"'t,
z=¢€; =1

6. w=z—sinxy, x=t, y=lInt,

Chain Rule: Two and Three Independent Variables

In Exercises 7 and 8, (a) express dz/dr and dz/d0 as functions of r
and 6 both by using the Chain Rule and by expressing z directly in
terms of r and @ before differentiating. Then (b) evaluate dz/dr and
dz/d6 at the given point (r, 6).

7. z=4e*Iny, x=In(rcosf), y=rsinb;
(r,0)=Q2,7/4)
8. z=tan"'(x/y), x=rcosd, y=rsinb;

(r,0) = (1.3, 1/6)

In Exercises 9 and 10, (a) express dw/du and dw/dv as functions of
u and v both by using the Chain Rule and by expressing w directly
in terms of u and v before differentiating. Then (b) evaluate dw/du
and dw/dv at the given point (u, v).

9. w=xy+yz+xz, x=u+v,

(u,v) =(1/2,1)
10. w=Inx>4+y>+27%), x =ue’sinu,
z=ue’; (u,v)=(-2,0)

y=u-—v, Z=Uv;

y = ue’cosu,

In Exercises 11 and 12, (a) express du/dx, du/dy, and du/dz as
functions of x, y, and z both by using the Chain Rule and by ex-
pressing u directly in terms of x, y, and z before differentiating. Then
(b) evaluate du/dx, du/dy, and du/dz at the given point (x, y, z).

P—q
11.u=q—:7, p=x+ty+tz g=x—-y+z
r=x+y-z (xy.2) =321
12. u=e"sin"'p, p=sinx, g=7z22Iny, r=1/z

(x,y,2)=(/4,1/2,-1/2)

Using a Tree Diagram

In Exercises 13-24, draw a tree diagram and write a Chain Rule
formula for each derivative.

d
13. & for z = f(x,y),

T y =h()

x =g(1),

dz
14. E for z = f(u,v, w),

) a0
ww and aw for w = h(x,y, 2),
ou av

z=k(u,v)
Jw ow

. and -8; for w = f(r,s,1),

r=k(x,y)

Jw Jw
17. — and — for w = g(x, y),
ou av

] R]
18. w and il for w = g(u, v),
ax ay

0 0
19. il and il forz = f(x,y), x=g(,s), y=~h(,s)
at as

u=g(t), v=~h(), w=k(1)

15. x = f(u,v), y=g(u,v),

16. r=g(x,y), s=hx,y)),

x=h,v), y=k(u,v)

u=nh(x,y), v=k(x,y)

20. ?X for y = f(u),

ar u=g(rs)
d ]

21. w and o for w = g(u), u=h(s,1)
as at

ow
22 W forw= f(x,y,z,v), x=g(p.q), y=~h(p.q).

z=j(p.q), v=k(p,q)
d a

23. o and it forw = f(x,y), x=g(r), y=h(s)
ar as

d
24. a_w forw =g(x,y), x=h(r,s,t), y=k(rs,t)
s

Implicit Differentiation

Assuming that the equations in Exercises 25-28 define y as a differ-
entiable function of x, use Eq. (10) to find the value of dy/dx at the
given point.

25. x* =2y +xy=0, (1,1)
26. xy+y>=3x—-3=0, (=1,1)
(1,2)
28. xe¥ +sinxy+y—In2 =0,

27. X2 +xy+y*—-7=0,
0,In2)

Equation (10) can be generalized to functions of three variables and
even more. The three-variable version goes like this:

If the equation F(x,y,z) =0 determines z as a differentiable
function of x and y, then, at points where F. # 0,

3 F. 0z Fy
KX and oDy (12)
ax F. ay F.
Use these equations to find the values of dz/dx and dz/dy at the
points in Exercises 29-32.

29. 22 —xy4+yz+y?—2=0, (1,1,1)



1 1 1
30. —-+-+--1=0, (2,3,6)
Xy z
31. sin(x + y)+sin(y+2z)+sin(x +z) =0,

32, xe? +ye* +2Inx —2—-3In2=0, (1,In2,In3)

(m, m, m)

Finding Specified Partial Derivatives

33. Find dw/dr whenr =1, s=—1ifw=(x+y+2)>?,

y=cos(r+s), z=sin(r+s).

34. Find ow/0v whenu =—1, v=2ifw=xy+Inz,
x=v2/u, y=u+v, z=cosu.

35. Find dw/dv when u =0, v=0if w =x2 + (y/x),
x=u—-2v+1, y=2u+v-2.

36. Find dz/du when u =0,
x=u*+v y=uv.

37. Find dz/du and dz/dv when u =1In2,
and x =¢" +Inv.

38. Find 9z/du and 9z/dv whenu =1 and v = -2 if z = Inq and
qg=+v+3tan"u.

Theory and Examples
39. Changing voltage in a circuit. The voltage V in a circuit that
satisfies the law V = IR is slowly dropping as the battery wears
out. At the same time, the resistance R is increasing as the resistor
heats up. Use the equation
dv  avdl 93V dR
dr ~ 9l di T 9R di
to find how the current is changing at the instant when
R =600 ohms, I =0.04 amp, dR/dt =0.5 ohm/sec, and
dV/dt = —0.01 volt/sec.

xX=r-—s,

v=1if z=sinxy + xsiny,

v=1if z=5tan"" x

40. Changing dimensions in a box. The lengths a, b, and c of the
edges of a rectangular box are changing with time. At the instant
in question,a=1m, b=2m, c =3 m, da/dt =db/dt =1
m/sec, and dc/dt = —3 m/sec. At what rates are the box’s volume
V and surface area S changing at that instant? Are the box’s
interior diagonals increasing in length, or decreasing?

41. If f(u,v,w) is differentiable and u =x —y,v =y —z, and
w = z — x, show that
af [ of  af
ax + ay + dz

0.
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42. a) Show that if we substitute polar coordinates x = r cos 6 and
y =rsin@ in a differentiable function w = f(x, y), then

a
W fxcosO + f,sin6
ar :
and
19
;% = —fysin@ + f,cosf.

b) Solve the equations in (a) to express f; and f, in terms of
dw/dr and dw/d6.
¢) Show that

. 2 (dw) 1(93)
<f,>+(fv)_(ar)+r2 wy).

43. Show that if w = f(u, v) satisfies the Laplace equation f,, +
foo =0, and if u = (x> — y?)/2 and v = xy, then w satisfies
the Laplace equation w,, + w,, = 0.

44, Let w= f(u) + g(v), where u =x +iy and v =x — iy and
i = +/—1. Show that w satisfies the Laplace equation w,, +
w,, = 0 if all the necessary functions are differentiable.

Changes in Functions along Curves

45. Suppose that the partial derivatives of a function f(x,y,z) at
points on the helix x = cost, y =sinz, z =t are

fo=t2+1-2.

At what points on the curve, if any, can f take on extreme values?

fy =cost, f, =sint,

46. Let w = x%e* cos3z. Find the value of dw/dt at the point
(1,In2,0) on the curve x =cost,y =In(t+2),z=1.

47. Let T = f(x, y) be the temperature at the point (x, y) on the
circle x =cost, y =sint,0 < < 27, and suppose that

aT aT
p =8x —4y, 3y = 8y — 4x.

a) Find where the maximum and minimum temperatures on
the circle occur by examining the derivatives dT /dt and
d’T/dr?.

b) Suppose T = 4x2 — 4xy + 4y?. Find the maximum and min-
imum values of T on the circle.

48. Let T = g(x, y) be the temperature at the point (x, y) on the
ellipse

x = 2+/2cost, y= V2sint, 0<rt<2nm,

and suppose that

T

oT
ax

ay

a) Locate the maximum and minimum temperatures on the
ellipse by examining dT/dt and d>T /dt?.

b) Suppose that T = xy — 2. Find the maximum and minimum
values of T on the ellipse.

X.
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Differentiating Integrals

by letting

Under mild continuity restrictions, it is true that if “
Y G(u, x) =/ g(t,x) dt,

b
F(x):/ g(t, x)dt,

a

b

then F'(x) = 8« (2, x)dr. Using this fact and the Chain Rule, we

a
can find the derivative of

f(x)
Fx) = / g(t, x)dt

a

*Partial

a

where u = f(x). Find the derivatives of the functions in Exercises
49 and 50.

49. F(x):/ Vit + x3dr
0

1
50. F(x):/ Vi +x2de

5

Derivatives with Constrained Variables

In finding partial derivatives of functions like w = f(x, y), we have assumed x and
y to be independent. But in many applications this is not the case. For example,
the internal energy U of a gas may be expressed as a function U = f(P,V,T) of
pressure P, volume V, and temperature 7. If the individual molecules of the gas
do not interact, however, P, V, and T obey the ideal gas law

PV = nRT (n and R constant)

and so fail to be independent. Finding partial derivatives in situations like these can
be complicated. But it is better to face the complication now than to meet it for the
first time while you are also trying to learn economics, engineering, or physics.

Decide Which Variables Are Dependent and Which
Are Independent

If the variables in a function w = f(x, y, z) are constrained by a relation like the
one imposed on x, y, and z by the equation z = x? 4 y?, the geometric meanings
and the numerical values of the partial derivatives of f will depend on which
variables are chosen to be dependent and which are chosen to be independent. To
see how this choice can affect the outcome, we consider the calculation of dw/dx
when w = x> + y*> + 72 and z = x? + y2.

EXAMPLE 1 Find dw/dx if w = x2+ y?> + 7% and 7z = x* + y2.

Solution We are given two equations in the four unknowns x, y, z, and w. Like
many such systems, this one can be solved for two of the unknowns (the dependent
variables) in terms of the others (the independent variables). In being asked for
dw/dx, we are told that w is to be a dependent variable and x an independent
variable. The possible choices for the other variables come down to

Dependent Independent
w, 2 X,y
w,y X,z

In either case, we can express w explicitly in terms of the selected independent

*This section is based on notes written for MIT by Arthur P. Mattuck.



Z=x2+y2

] Circle x> + y* =1
in the plane z = 1

12.32 If P is constrained to lie on the
paraboloid z = x? + y?, the value of the
partial derivative of w = x2 + y? + 22 with
respect to x at P depends on the
direction of motion (Example 1). (a) As x
changes, with y = 0, P moves up or down
the surface on the parabola z = x? in the
xz-plane with dw/ax = 2x + 4x3. (b) As x
changes, with z = 1, P moves on the circle
x2+y?=1,z=1, and ow/ox = 0.
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variables. We do this by using the second equation to eliminate the remaining
dependent variable in the first equation.

In the first case, the remaining dependent variable is z. We eliminate it from
the first equation by replacing it by x? + y2. The resulting expression for w is

w=x2+y2+22=x2+y2+(x2+y2)2
=x2+y2+x4+2x2y2+y4
and
dw 3 2
— = 2x +4x7 +4xy*. (1)
0x
This is the formula for dw/dx when x and y are the independent variables.
In the second case, where the independent variables are x and z and the remain-

ing dependent variable is y, we eliminate the dependent variable y in the expression
for w by replacing y? by z — x2. This gives
w=x+y + =+ -+ =2+7
and
ow
ay 0. (2)
This is the formula for dw/dx when x and z are the independent variables.

The formulas for dw/dx in Eqgs. (1) and (2) are genuinely different. We cannot
change either formula into the other by using the relation z = x? + y2. There is
not just one dw/dx, there are two, and we see that the original instruction to find
dw/dx was incomplete. Which dw/dx? we ask.

The geometric interpretations of Eqgs. (1) and (2) help to explain why the
equations differ. The function w = x? 4 y? + z? measures the square of the distance
from the point (x, y, z) to the origin. The condition z = x2 4 y? says that the point
(x, y,z) lies on the paraboloid of revolution shown in Fig. 12.32. What does it
mean to calculate dw/dx at a point P(x, y, z) that can move only on this surface?
What is the value of dw/dx when the coordinates of P are, say, (1,0, 1)?

If we take x and y to be independent, then we find dw/dx by holding y fixed
(at y = 0 in this case) and letting x vary. This means that P moves along the
parabola z = x? in the xz-plane. As P moves on this parabola, w, which is the
square of the distance from P to the origin, changes. We calculate dw/dx in this
case (our first solution above) to be

ow 3 2
— = 2x +4x” +4xy".
ax
At the point P (1,0, 1), the value of this derivative is
ow

— =244+0=6.
0x

If we take x and z to be independent, then we find dw/dx by holding z fixed
while x varies. Since the z-coordinate of P is 1, varying x moves P along a circle in
the plane z = 1. As P moves along this circle, its distance from the origin remains
constant, and w, being the square of this distance, does not change. That is,

ow

— =0,
0x

as we found in our second solution. J
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How to Find 6w/6x When the Variables in w = f(x,y,z) Are
Constrained by Another Equation

As we saw in Example 1, a typical routine for finding dw/dx when the
variables in the function w = f(x, y, z) are related by another equation has
three steps. These steps apply to finding dw/dy and dw/dz as well.

Step 1 Decide which variables are to be dependent and which are to be
independent. (In practice, the decision is based on the physical or theoretical
context of our work. In the exercises at the end of this section, we say which
variables are which.)

Step 2 Eliminate the other dependent variable(s) in the expression for w.

Step 3 Differentiate as usual.

If we cannot carry out step 2 after deciding which variables are dependent, we
differentiate the equations as they are and try to solve for dw/0x afterward. The
next example shows how this is done.

EXAMPLE 2 Find dw/dx at the point (x, y,z) = (2, —1, 1) if
w=x"+y"+7%,  Z-xy+yz+y =1,

and x and y are the independent variables.

Solution 1t is not convenient to eliminate z in the expression for w. We there-

fore differentiate both equations implicitly with respect to x, treating x and y as
independent variables and w and z as dependent variables. This gives

ow 0z
— =2 27— 3
o x + . (3)
and
9z 0z
372 = —y+y—+0=0. (4)
0x 0x

These equations may now be combined to express dw/0x in terms of x, y, and z.
We solve Eq. (4) for 9z/dx to get

9z y

ox  y+3z2
and substitute into Eq. (3) to get
ow 5 2yz

0x * y +3z%

The value of this derivative at (x, y,z) = (2, —1,1) is

ow 2(=1)(1) -2
_— =2+ ——— =44 — =3.
<8x>(2 . ( )+—1+3(1)2 + 2 Q

To show what variables are assumed to be independent in calculating a deriva-
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tive, we can use the following notation:

d
(3_w> dw/dx with x and y independent
X ¥y

a
(a—f> af/dy with y, x, and ¢ independent.
Y/ xu

9
EXAMPLE 3  Find (a—“’> ifw=x2+y—z+sinrand x +y=1.
X y.z

Solution
With x, y, z independent, we have

t=x+y, w=x'4y—z+sin(x+y)

a 0
(_w) =2x+0—-04cos(x+y)— (x+y)
ax V.2 0x

= 2x 4 cos (x + y). a

Arrow Diagrams

In solving problems like the one in Example 3, it often helps to start with an arrow
diagram that shows how the variables and functions are related. If

w=x>4+y—z+sint and x+y=t

and we are asked to find dw/dx when x, y, and z are independent, the appropriate
diagram is one like this:

X
X
y
y — z - w (5)
Z
t
independent intermediate dependent
variables variables and variable
relations
X =x
y=Yy
z2=12
t=x+y

The diagram shows the independent variables on the left, the intermediate variables
and their relation to the independent variables in the middle, and the dependent
variable on the right.
To find dw/dx, we first apply the four-variable form of the Chain Rule to w,
getting
Jw owodx OJwdy OJdwdz OJw Ot

— = — — — —_—— 6
ax dx 0x  Jy ox dz dx at dx (6)

We then use the formula for w = x> + y — z + sin to evaluate the partial deriva-
tives of w that appear on the right-hand side of Eq. (6). This gives

ow ox dy 0z ot

— =2x—+ )=+ (=1)— +cost—

dax ax 0x 0x ox @)
0 0 0
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To calculate the remaining partial derivatives, we apply what we know about the
dependence and independence of the variables involved. As shown in the diagram
(5), the variables x, y, and z are independent and ¢t = x + y. Hence,

0x
ax

=1,

d d at 0
Do, oo Lol ry=a+0=1.
ax ax ox

0x

We substitute these values into Eq. (7) to find dw/dx:

(8_w> =2x(1) +0— 0+ (cost)(1)
0x V.2

= 2x 4+ cost

In terms of the independent
variables

= 2x + cos (x + y).

Exercises 12.6

Finding Partial Derivatives with
Constrained Variables

In Exercises 1-3, begin by drawing a diagram that shows the relations
among the variables.

1.

If w=x2+y>+2? and z = x> + y?, find

Jw Jw Jw
 (3) v () © (7)y

Ifw=x*+y—z+sintand x + y =1, find

ow ow Jw
a) (E),\.: b) (a>z.t C) (8_Z>X‘

Jw Jw Jw
o (), 0 ). 0 (F).

. Let U = f(P, V,T) be the internal energy of a gas that obeys

the ideal gas law PV = nRT (n and R constant). Find

U oU
) (ﬁ)v b (ﬁ)v

. Find

Jw Jw
2 (ﬂ, b (ﬂ.

at the point (x, y,z) = (0, 1, ) if
w=x2+y"+z> and ysinz+zsinx =0.
Find
d d
a) (—w) b) <—w>
3y /. dy /.
at the point (w, x, y,2) = (4,2, 1, 1) if
w=x*y+yz—72" and x> +y*+72=6.

d
. Find (a_u_> at the point (u,v) = (+/2,1) if x = u? + v? and
Y/«

y = uv.

7. Suppose that x> + y?> = r? and x = rcos#, as in polar coordi-

nates. Find
(3X) < ar )
ar 0 ax y '

w=x>—y’+4z+t and x+2z7+41=25.

8. Suppose that

Show that the equations
a d
ZZoox—1 and S=2r-2
ox ax

each give dw/dx, depending on which variables are chosen to
be dependent and which variables are chosen to be independent.
Identify the independent variables in each case.

Partial Derivatives without Specific Formulas
9. Establish the fact, widely used in hydrodynamics, that if f(x, y, z)

=0, then
dx ay daz\ )
ay) \oz) Nox ),

(Hint: Express all the derivatives in terms of the formal partial
derivatives df/dx, df/dy, and df/dz.)
10. If z = x + f(u), where u = xy, show that
az 9z
X— — _— =
dx Y ay
11. Suppose that the equation g(x, y, z) = 0 determines z as a dif-
ferentiable function of the independent variables x and y and that

g: # 0. Show that
(%) __0g/dy
dy ), dg/az’

12. Suppose that f(x, y,z, w) =0 and g(x, y, z, w) = 0 determine
z and w as differentiable functions of the independent variables




x and y, and suppose that

Show that

af dg
0z dw

(). -

af ag
=224,

ow 0z 7

of g of dg

dx dw  dw Jdx

af dg  9f ag

dz ow  Jdw 9z
12.7

Line x = x, + su,, v = ¥, + su,

u=uji+u,j

Ry(xg» o)

Direction of
increasing s

R

<

/

12.33 The rate of change of f in the
direction of u at a point P, is the rate at
which f changes along this line at P,.
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and
af 9g  of dg
(i) - o o
ay ).~ af ag  af ag
9z 0w dw oz

Directional Derivatives, Gradient Vectors, and

Tangent Planes

We know from Section 12.5 that if f(x, y) is differentiable, then the rate at which
f changes with respect to ¢ along a differentiable curve x = g(z), y = h(t) is

df _9dfdx  9dfdy

dr — dxdt ' dydt

At any point Py(xg, yo) = Po(g(ty), h(ty)), this equation gives the rate of change
of f with respect to increasing ¢ and therefore depends, among other things, on
the direction of motion along the curve. This observation is particularly important
when the curve is a straight line and ¢ is the arc length parameter along the line
measured from P, in the direction of a given unit vector u. For then df/dt is the
rate of change of f with respect to distance in its domain in the direction of u.
By varying u, we find the rates at which f changes with respect to distance as we
move through Py in different directions. These “directional derivatives” have useful
interpretations in science and engineering as well as in mathematics. This section
develops a formula for calculating them and proceeds from there to find equations
for tangent planes and normal lines on surfaces in space.

Directional Derivatives in the Plane
Suppose that the function f(x, y) is defined throughout a region R in the xy-plane,

that Py(xg, yo) is a point in R, and that u = u; i+ u, j is a unit vector. Then the

equations
X = Xxo+ suy, Yy =Yyo+suz

parametrize the line through P, parallel to u. The parameter s measures arc length
from P, in the direction of u. We find the rate of change of f at P, in the direction
of u by calculating df/ds at P, (Fig. 12.33):

Definition
The derivative of f at Py(x¢,yo) in the direction of the unit vector u =
uyi+ u,j is the number

af
<E>u, P()

provided the limit exists.

— lim f(xo+ suy, yo+ suz) — f(xo, yo)
s—0 N ’

(M
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(xO + sup, y + suz)

PO(XO’ yo) u= uli + u2j

12.34 The slope of curve C at P is
‘IyanP slope(PQ)

—lim f(Xo + sus, Yo + suz) — f(xo, yo)
s—0 S

- (%)
“\ds/p

The directional derivative is also denoted by

(Duf)po. “The derivative of / at £, in the direction of u™

EXAMPLE 1 Find the derivative of

f@x,y) = x> +xy
at Py(1,2) in the direction of the unit vector u = (1/«/5) i+ (1/«/5) -

Solution
(df> o S (xo+ suy, yo + suz) — f(xo, yo) _
—_— = l1m Eq. (1)
ds u, Py s—0 K
f<1+ Loy 1) £01.2)
5 —, s — |- ,
= lim V2 V2
s—0 S
s\’ s s
1+ +(1+=)(2+=)-1%+1-.2
. (1+55) +(1+55) (24 ) - 12
= lim
s—0 N
2s 52 s s?
l+ —=+=)+(2+—=+=)-3
i ( V2 2) ( V2 2)
= lim
s—0 S
5
-—~s~+s2

.2 . 5 5 5
- -t () - (G+0) -5
1/ﬁ)i
+(1/ﬁ)jis 5//3. 0

~

The rate of change of f(x, y) = x> + xy at Py(1, 2) in the direction u =

Geometric Interpretation of the Directional Derivative

The equation z = f(x, y) represents a surface S in space. If zo = f(xo, yo), then
the point P(xy, yo, 20) lies on S. The vertical plane that passes through P and
Po(xp, yo) parallel to u intersects S in a curve C (Fig. 12.34). The rate of change
of f in the direction of u is the slope of the tangent to C at P.

Notice that when u =i the directional derivative at P, is df/dx evaluated at
(x0, Y0)- When u = j the directional derivative at Py is df/dy evaluated at (xq, yp).
The directional derivative generalizes the two partial derivatives. We can now ask
for the rate of change of f in any direction u, not just the directions i and j.

Calculation

As you know, it is rarely convenient to calculate a derivative directly from its
definition as a limit, and the directional derivative is no exception. We can develop
a more efficient formula in the following way. We begin with the line

X = xo+ suy, Y = Yo + sua, (2

through Py(xp, yo), parametrized with the arc length parameter s increasing in the
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direction of the unit vector u = u; i + u; j. Then

<df) (8f> dx <8f> dy
-7 - | == — 4+ = — Cham Rule
ds )y p, ax ) p ds dy ) p, ds
P 9 From Fgs o
— <_f) U + <—f) c Uy dy oy I/f and
0x P ay Py dvds I
a a
— |:<_f> i+<—f) J] . I:u1i+u2j:|. (3
0x Py ay Py

gradient of f at Py direction u

The notation Vf is read “grad f” as well as Definition
“gradient of f” and “del f.” The symbol V
by itself is read “del.” Another notation for
the gradient is grad f, read the way it is
written.

The gradient vector (gradient) of f(x, y) at a point Py(xp, Yo) is the
vector

af .
By',

obtained by evaluating the partial derivatives of f at Py.

Vf: g—’ii-l—

Equation (3) says that the derivative of f in the direction of u at Py is the dot
product of u with the gradient of f at P,.

Theorem 6
If the partial derivatives of f(x, y) are defined at Py(xo, o), then
d
(—f) = (Vf)p, - u, (4)
ds u, P,

the scalar product of the gradient f at P, and u.

EXAMPLE 2 Find the derivative of f(x, y) = xe® 4+ cos(xy) at the point
(2, 0) in the direction of A = 3i — 4.

Solution The direction of A is obtained by dividing A by its length:

A_A_3. 4
1t=——=—=-1—-1.
A5 5 59

The partial derivatives of f at (2, 0) are
£:2,0) = (¢ — ysin (xy).p =€ —0=1
£(2,0) = (xe” — xsin(xy)) o =2"—2.0=2.
The gradient of f at (2, 0) is
Vfl(z,m = fi2,00i+ £,2,0)j=i+2]
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Vf=i+2j

(Generated by Mathematica)

12.35 It is customary to picture Vf as a
vector in the domain of f. In the case of
f(x,y) = xe¥ + cos (xy), the domain is the
entire plane. The rate at which f changes
in the direction u = (3/5)i — (4/5)j is

Vf. u= -1 (Example 2).

(Fig. 12.35). The derivative of f at (2, 0) in the direction of A is therefore
(DuD)poy = Vflpo +8  Eah

I N A B B
-0 J'(S' §J>_5 5- J

Properties of Directional Derivatives

Evaluating the dot product in the formula
Dyf = Vf -u=|Vf]lu|cos@ = |Vf|cosb

reveals the following properties.

Properties of the Directional Derivative D, f = Vf - u = |Vf]| cos 8

1. The function f increases most rapidly when cos 8 = 1, or when u is the
direction of Vf. That is, at each point P in its domain, f increases most
rapidly in the direction of the gradient vector V f at P. The derivative
in this direction is

Dy f = |Vf]|cos(0) = |Vf].

2. Similarly, f decreases most rapidly in the direction of —Vf. The deriva-
tive in this direction is D, f = |Vf|cos(r) = —|Vf].

3. Any direction u orthogonal to the gradient is a direction of zero change
in f because 6 then equals /2 and

Duf = |Vf|cos(m/2) = |Vf| - 0=0.

As we will discuss later, these properties hold in three dimensions as well as two.

EXAMPLE 3  Find the directions in which f(x, y) = (x?/2) + (¥*/2) (a) in-
creases most rapidly and (b) decreases most rapidly at the point (1, 1). (c) What
are the directions of zero change in f at (I, 1)?

Solution

a) The function increases most rapidly in the direction of Vf at (1, 1). The
gradient is
(VhHan = i+ ypon =i+
Its direction is
i+j i+j 1, 1,
U= _-—>= =—=1+—]
li+jl Jm2+m2 V2 V2

b) The function decreases most rapidly in the direction of —Vf at (1, 1), which is

1 1
a -t



decrease in f / |
x s
Most rapid Vf=i+]

increase in f

12.36 The direction in which

f(x,y) = (x3/2) + (y?/2) increases most
rapidly at (1, 1) is the direction of
Vfln,1) =i+ j. It corresponds to the
direction of steepest ascent on the
surface at (1, 1, 1).

The curve f(x, y) = f(xy, ¥,

(x09 )'o)

Vf (xo ¥o)

12.37 The gradient of a differentiable
function of two variables at a point is
always normal to the function’s level
curve through that point.

Vican=-i+2j

12.38 We can find the tangent to the
ellipse (x2/4) + y? = 2 by treating the
ellipse as a level curve of the function
f(x,y) = (x2/4) + y? (Example 4).
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¢) The directions of zero change at (1, 1) are the directions orthogonal to Vf:
1 1

1 ]

it —j - i —ij.
NN NN

See Fig. 12.36. J

n= and —-n

Gradients and Tangents to Level Curves

If a differentiable function f(x, y) has a constant value ¢ along a smooth curve
r=g(t)i+ h(t)j (making the curve a level curve of f), then f(g(¢), h(t)) =c.
Differentiating both sides of this equation with respect to ¢ leads to the equations

d d
= h S
dtf(g(t), (1)) o ()
gd_g %ﬁ = Chain Rule
dx dt  dy dt
of . of . dg . dh.
i+ —=j) - (=i+—j)=0. 5
(ax'+ay’> (dthLdt" ©)
vf dr
dt

Equation (5) says that Vf is normal to the tangent vector dr/dt, so it is normal to
the curve.

Atevery point (xo, yo) in the domain of f(x, y), the gradient of f is normal
to the level curve through (xo, yo) (Fig. 12.37).

This observation enables us to find equations for tangent lines to level curves. They
are the lines normal to the gradients. The line through a point Py(x(, yo) normal
to a vector N = Ai+ B j has the equation

A(x —x0) + B(y —y0) =0

(Exercise 59). If N is the gradient (Vf), vy = fc(x0, yo) i+ fy(xo0, yo)Jj, the equa-
tion becomes

S (xo, yo)(x — xo) + fy(x0, yo)(y — yo) = 0. (6
EXAMPLE 4 Find an equation for the tangent to the ellipse
2
X 2
il -2
7 Y

(Fig. 12.38) at the point (=2, 1).

Solution The ellipse is a level curve of the function
x? )
fGy) =+~

The gradient of f at (=2, 1) is

X, . . .
Vlay = (Gi+ i), =-it+2i
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The tangent is the line
EHx+2)+@(y-1D =0 Eq. (6)
x—2y = —4. d

Functions of Three Variables

We obtain three-variable formulas by adding the z-terms to the two-variable formu-
las. For a differentiable function f(x, y, z) and a unit vectoru = u;i+ upj+ us k
in space, we have

af . of . of
\Y — - —k
f= Ty
and
0
Duf=Vf-u=a—fu|+5§u2+a—fu3

The directional derivative can once again be written in the form
Dyf =Vf -u=|Vf||lulcosb = |Vf|cosH,

so the properties listed earlier for functions of two variables continue to hold. At
any given point, f increases most rapidly in the direction of Vf and decreases most
rapidly in the direction of —Vf. In any direction orthogonal to Vf, the derivative
is zero.

EXAMPLE 5

a) Find the derivative of f(x, y, z) = x> — xy? — z at Py(1, 1, 0) in the direction
of A=2i—-3j+6k.

b) In what directions does f change most rapidly at Py, and what are the rates
of change in these directions?

Solution
a) The direction of A is obtained by dividing A by its length:

Al = V(22 + (=3)2 + (62 =49 =7
A 2. 3 6

-2 i ik
U= 7 Tty

The partial derivatives of f at P, are
— 2,2 2 —
fe=3x"—y i(1.1.0) =2,
fi= —2xy|(1‘1.0) =-2 fo= _1|(|,1,0) =-1
The gradient of f at P, is
Vf|(]_]_0) =2i-2j—-k

The derivative of f at P, in the direction of A is therefore

c 2, 3.6
(D“f)|(14140) = Vf|(1_|_0) cu=Q2i-2j-k)- 71— 7]4-7](



12.39 Vf is orthogonal to the velocity
vector of every smooth curve in the
surface through P,. The velocity vectors
at P, therefore lie in a common plane,
which we call the tangent plane at P,.

The surface
+y2+z-9=0
Py(1,2,4)

Normal line

Tangent plane

12.40 The tangent plane and normal line
to the surface X2 +y* +z—-9=0 at
Py(1,2,4) (Example 6).
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b) The function increases most rapidly in the direction of Vf = 2i — 2 j — k, and
decreases most rapidly in the direction of —Vf. The rates of change in the
directions are, respectively,

Vi = V(@224 (=22 +(-1)2=+/9=3  and —|Vfl=-3. 1

Equations for Tangent Planes and Normal Lines

If r=g(t)i+ h(t)j+ k(t) k is a smooth curve on the level surface f(x,y,z) =c¢
of a differentiable function f, then f(g(t), h(t), k(z)) = c. Differentiating both
sides of this equation with respect to ¢ leads to

d d
Ef(g(t),h(t),k(t)) = ()
of dg  af dh _of dk

el afdh  ofdk _ N c
ox dt dy dt + 9z di Cham Rul
af . of . 8f> (dg. dh . dk
—_ —_ _k . “s an _k =0. 7
<8xl+3y']+3z TR R -
vf dr/d1

At every point along the curve, Vf is orthogonal to the curve’s velocity vector.

Now let us restrict our attention to the curves that pass through P, (Fig. 12.39).
All the velocity vectors at P, are orthogonal to Vf at P,, so the curves’ tangent
lines all lie in the plane through P, normal to Vf. We call this plane the tangent
plane of the surface at P,. The line through P, perpendicular to the plane is the
surface’s normal line at P,.

Definitions

The tangent plane at the point Py(xo, yo, 2o) on the level surface f(x, y, z) =
¢ is the plane through P, normal to V|, .

The normal line of the surface at P is the line through P, parallel to Vf ‘ P

Thus, from Section 10.5, the tangent plane and normal line, respectively, have the
following equations:

S (Po)(x — xo) + fr(Po)(y — yo) + f-(Po)(z — 20) =0 (8)
x=xo+ fi(P)t, y=yo+ filP)t, z=2z0+ f-(Py)t. (9)

EXAMPLE 6 Find the tangent plane and normal line of the surface
f(x~ Y, ) = x? + y2 +2z—-9=0 A cncular parabolod
at the point Py(1, 2, 4).

Solution The surface is shown in Fig. 12.40.
The tangent plane is the plane through P, perpendicular to the gradient of f
at Py. The gradient is

Vfl, = @xi+2yj+Ka2s =2i+4j+k
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The plane
x+z-4=0
2re=®

8(x, y,2)

- The ellipse E
(1,1,3)

Vf X Vg

\

The cylinder
2+yt-2=0
N A

fx, . 2)
12.41 The cylinder f(x,y,2) = x> + y? — 2

=0and the plane g(x,y,z) =x+z-4=0
intersect in an ellipse E (Example 7).

The plane is therefore the plane
20D +4(y-2)+(z—-4 =0, or

The line normal to the surface at Py is

2x +4y +z =14

x =142, y=2+4, z=4+1. 4
EXAMPLE 7 The surfaces
f(x,y,2) =x2+y2—2=0 A cyvhnder
and
gx,y,2)=x+2z—-4=0 A plane

meet in an ellipse £ (Fig. 12.41). Find parametric equations for the line tangent to
E at the point Py(1, 1, 3).

Solution The tangent line is orthogonal to both Vf and Vg at Py, and therefore
parallel to v = Vf x Vg. The components of v and the coordinates of P, give us
equations for the line. We have

Vs = Cxi+2yj)ais =2i+2]j
Vg =0+K)g13=i+k

i j k
v=QRi+2j)x{i+k)y=]2 2 0|=2i—2j-2k.
1 0 1
The line is
x =142, y=1-2t z=3-2t. a

Planes Tangent to a Surface z = f(x, y)

To find an equation for the plane tangent to a surface z = f(x,y) at a point
Py(x0, Yo, 20) Where zo = f(xo, Yo), we first observe that the equation z = f(x, y)
is equivalent to f(x, y) — z = 0. The surface z = f(x, y) is therefore the zero level
surface of the function F(x, y, z) = f(x,y) — z. The partial derivatives of F are

0
Fx=8—(f(x,y)—z)=fx—0=fx

x

0
Fx‘za_(f(xvy)_z):fv_0=f\’

y

Fz=i(f(xvy)—z)=0—l=—1.
9z

The formula
F (Po)(x — x0) + Fy(Po)(y — yo) + F:(Po)(z — 20) = 0

for the plane tangent to the level surface at P therefore reduces to

Eq. (8) restated
tor /(v.v. o)

S (x0, yo)(x — x0) + fy(x0, yo)(y — y0) — (2 — 20) = 0.
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The plane tangent to the surface z = f(x, y) at the point Py(xq, Yo, 20) =
(x0, Yo, f(x0, Y0)) is

S (x0, yo) (x — x0) + £ (X0, Y0)(y — yo) — (z — 20) = 0. (10)

EXAMPLE 8 Find the plane tangent to the surface z = x cos y — ye* at (0, 0, 0).

Solution We calculate the partial derivatives of f(x, y) = xcosy — ye* and use
Eq. (10):

f:(0,0) = (cosy —ye )y =1—-0-1=1
f+(0,0) = (=xsiny —e") 09 =0—-1=—1.
The tangent plane is therefore
l-x=-0-1-(y—0—-(z—-0)=0, I, (10)
or

x—y—2z=0. d

Increments and Distance

The directional derivative plays the role of an ordinary derivative when we want
to estimate how much a function f changes if we move a small distance ds from
a point Py to another point nearby. If f were a function of a single variable, we
would have

df = fl(P()) ds. Ordmary dermvative x icrement
For a function of two or more variables, we use the formula
df = (vf|,,“ -u)ds, Directional dernatne x merement

where u is the direction of the motion away from F;.

Estimating the Change in f in a Direction u

To estimate the change in the value of a function f when we move a small
distance ds from a point P, in a particular direction u, use the formula

df = (Vflpnou) - ds
e e —— N——
directional distance
derivative increment

EXAMPLE 9 Estimate how much the value of
f(x,y,2) =xe" + yz

will change if the point P(x, y, z) moves 0.1 unit from P,(2, 0, 0) straight toward
P4, 1,-2).
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Solution We first find the derivative of f at P, in the direction of the vector
PP =2i+j—2k.

The direction of this vector is

PP PP 2, 1, 2
n= o= =tttk
|PoPi| 333

The gradient of f at Py is

Vflaoo = @i+ @xe" +0j+yK)|,,, =i+2].

Therefore,
Vf|, su=(i+2j) 2i+l‘ 2k —%+%—ﬂ
ptUT Ve\3'"3373%)=3737 3

The change df in f that results from moving ds = 0.1 unit away from P, in the
direction of u is approximately

4
df = (Vf|, -wds) = (§> (0.1) ~ 0.13. 9

Algebra Rules for Gradients

If we know the gradients of two functions f and g, we automatically know the
gradients of their constant multiples, sum, difference, product, and quotient.

These rules. have the same .f"”T‘ as the Algebra Rules for Gradients
corresponding rules for derivatives, as they
should (Exercise 65). 1. Constant Multiple Rule: V(kf) =kVf (any number k)
2. Sum Rule: V(f+g) =Vf+Vg
3. Difference Rule: V(f—g) =Vf—Vg
4. Product Rule: V(fg) = fVg+gVf
Vf - fV
5. Quotient Rule: \Y (£> = Q—#
8 8

EXAMPLE 10 We illustrate the rules with

foy.)=x—-y gx.y.2)=z
Vf=i—j Vg = k.

We have:

1. VQ2f)=V(Q2x—-2y)=2i-2j=2Vf

Vif+8)=Vix—y+2)=i—j+k=Vf+ Vg

Vif-g)=Vlx—-y-g)=i-j-k=Vf-Vg

V(fg)=Vxz—yz)=zi—zj+(x —y)k=gVf+ fVg

B oo
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xX—y a (x—y\. 8(x—y>, 8<x—y>
=— i+ — + — k
z ) 3x< F4 ) dy z ! 9z z

1 2:0—(x—y)-1

=-i—-j+ k
Z Z

ZZ

gi—zj-(x—-yk gVf-fVg

z? g? u

Exercises 12.7

Calculating Gradients at Points

In Exercises 14, find the gradient of the function at the given point.
Then sketch the gradient together with the level curve that passes
through the point.

L f(x,y)=y-x, (2,1

2. fr,y)=Inx%2+y»), A, 1)

3. g(x,y)=y—x2, (=1,0)
2y

a. =X Y a2

gy === V2,1

In Exercises 5-8, find Vf at the given point.
5 f,y,2)=x2+y* =22 +zInx, (1,1,1)
6. f(x,y.2) =22 -3(x2+yHHz+tantxz, (1,1,1)
7. f,y, ) =@+ Yy +2)7 2 +In(xyz), (-1,2,-2)
8. f(x,y,2) =e™cosz+ (y+ )sin"'x, (0,0, 7/6)

Finding Directional Derivatives in the xy-Plane

In Exercises 9-16, find the derivative of the function at Py in the
direction of A.

9. f(x,y)=2xy -3y’ Py5.5),
10' f(x»)’)=2x2+y2~ P()(—l,l),

11. g(x,y) = x — (y*/x) + v/3sec™' (2xy),
A=12i+5]

12. h(x,y) =tan"'(y/x) + +/3sin"' (xy/2),
A=3i-2j

13. f(x,y,2) =xy + yz + zx,
A=3i+6j-2k

14. f(x,y,z):xz+2y2—3z2, Py(1,1,1), A=i+j+k
Py(0,0,0), A=2i+j—2k
Py(1,0,1/2),

A =4i+3j
A=3i-4j
Po(1, 1),

Po(1, 1),

Py(1,—1,2),

15. g(x,y,z) = 3e* cos yz,

16. h(x,y,z) =cos xy + €' +In zx,
A=i+2j+2k

Directions of Most Rapid Increase and Decrease

In Exercises 17-22, find the directions in which the functions increase
and decrease most rapidly at Py. Then find the derivatives of the
functions in these directions.

17. f(x,y) =x>+xy+y2, Py(—1,1)
18. f(x,y)=x2y+e“siny, Py(l,0)
19. f(x.y.2)=(x/y)—yz. PR 1.1)
20. g(x,y,z) =xe* +72, Po(1,In2,1/2)

Py(1, 1, 1)
Py(1,1,0)

2. f(x,y,29)=Inxy+Inyz+1nxz,
22. h(x,y,z):]n(x2+y2_ ) +y+ 62,

Estimating Change
23. By about how much will
fay. ) =IhnJ/x2+y’ +2

change if the point P(x, y, z) moves from P,(3, 4, 12) a distance
of ds = 0.1 units in the direction of 3i + 6j — 2k?

24. By about how much will
flx,y,2) =e"cos yz

change as the point P(x, y, z) moves from the origin a distance
of ds = 0.1 units in the direction of 2i +2j — 2k?

25. By about how much will
g(x,y,2) =x+xcosz—ysinz+y

change if the point P(x, y, z) moves from Py(2, —1, 0) a distance
of ds = 0.2 units toward the point P, (0, 1, 2)?

26. By about how much will
h(x,y,z) = cos (mxy) + xz°

change if the point P(x,y, z) moves from Py(—1,—1,—1) a
distance of ds = 0.1 units toward the origin?

Tangent Planes and Normal Lines to Surfaces

In Exercises 27-34, find equations for the (a) tangent plane and (b)
normal line at the point P on the given surface.

27. X2+ y2+22=3, Py, 1,1)
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28. X242 -2 =18, Py(3,5.-4)
29. 27 —x*=0, Py2.0,2)
30. x> +2xy —y*+22=7, Py(l,-1,3)
3. cosmx —x2y +e " +yz=4, Py0,1,2)
32 xP—xy—y'—z=0, Pyl,1,-1)
3. x+y+z=1, Py0,1,0)

34, P4y -2y —x+3y—z=-4, Py2,-3,18)

In Exercises 35-38, find an equation for the plane that is tangent to
the given surface at the given point.

35. z=In(x2+y?), (1,0,0)0 36. z =) (0,0,1)
37. z=/v—x, (1,2, 1) 38. z=4x2+y2, (1,1,5)

Tangent Lines to Curves

In Exercises 39-42, sketch the curve f(x,y) = ¢ together with Vf
and the tangent line at the given point. Then write an equation for
the tangent line.

39. 24y =4, (V2.V2)

40. x2—y=1, (V2.1

41. xy =4, (2,-2)

42. x> —xy+y>=7, (—1,2) (This is the curve in Section 2.6,
Example 4.)

In Exercises 4348, find parametric equations for the line tangent to
the curve of intersection of the surfaces at the given point.

43. Surfaces: x+y>+2z=4, x=1
Point: (1,1, 1)

44. Surfaces: xyz=1, x>+2y?+32=6
Point: (1, 1, 1)

45. Surfaces: x*>+2y+2z=4, y=1
Point: (1,1,1/2)

46. Surfaces: x+y*+z=2, y=1
Point: (1/2,1,1/2)

47. Surfaces: x? +3x2y? + 3y  +4xy — 22 =0,

Ay =11

Point: (1,1,3)
48. Surfaces: x2+y*=4, x*4+y2—z=0
Point: (ﬁ V2, 4)

Theory and Examples

49. In what directions is the derivative of f(x,y) =xy+ y* at
P (3, 2) equal to zero?

50. In what two directions is the derivative of f(x,y)=
(x2 — y¥)/(x®> + ¥?) at P(1, 1) equal to zero?

51. Is there a direction A in which the rate of change of f(x,y) =
x? = 3xy +4y? at P(1,2) equals 14? Give reasons for your
answer.

52. Is there a direction A in which the rate of change of the tem-
perature function 7 (x, y, z) = 2xy — yz (temperature in degrees
Celsius, distance in feet) at P(1, —1, 1) is —3°C/ft? Give reasons
for your answer.

53. The derivative of f(x, y) at Py(1,2) in the direction of i+ j is
24/2 and in the direction of —2j is —3. What is the derivative
of f in the direction of —i — 2 j? Give reasons for your answer.

54. The derivative of f(x, y, z) ata point P is greatest in the direction
of A =i+ j— k. In this direction the value of the derivative is

2./3.

k) What is Vf at P? Give reasons for your answer.
1)  What is the derivative of f at P in the direction of i + j?

55. Temperature change along a circle. Suppose that the Celsius
temperature at the point (x,y) in the xy-plane is T(x,y) =
xsin 2y and that distance in the xy-plane is measured in me-
ters. A particle is moving clockwise around the circle of radius
1 m centered at the origin at the constant rate of 2 m/sec.

a) How fast is the temperature experienced by the particle
changing in °C/m at the point P(1/2,/3/2)?
b) How fast is the temperature experienced by the particle
changing in °C/ sec at P?
56. Change along the involute of a circle. Find the derivative of
f(x,y) = x*>+ y?* in the direction of the unit tangent vector of

the curve
r(t) = (cost+tsint)i+ (sintr —tcost)j, t>0
(Fig. 12.42).
T
P(x, y)
y
o
0 r
XA
X

12.42 The involute of the unit circle from Section 11.3,
Example 5. If you move out along the involute, covering
distance along the curve at a constant rate, your distance
from the origin will increase at a constant rate as well.
(This is how to interpret the result of your calculation in
Exercise 56.)



57.

58.

59.

61.

62.

Change along a helix. Find the derivative of f(x, y,z) = x*> +
y% + z2 in the direction of the unit tangent vector of the helix

r(¢) = (cos )i+ (sint)j+tk

at the points where t = —m /4,0, and /4. The function f gives
the square of the distance from a point P(x, y, z) on the helix
to the origin. The derivatives calculated here give the rates at
which the square of the distance is changing with respect to ¢ as
P moves through the points where t = —n /4,0, and 7 /4.

The Celsius temperature in a region in space is given by T (x, y, z)
= 2x? — xyz. A particle is moving in this region and its position
at time ¢ is given by x = 2%,y = 3t,z = —t?, where time is
measured in seconds and distance in meters.

a) How fast is the temperature experienced by the part-
icle changing in °C/m when the particle is at the point
P(8,6,—-4)?

b) How fast is the temperature experienced by the particle
changing in °C/sec at P?

Show that A(x — xy) + B(y — yo) = 0 is an equation for the line
in the xy-plane through the point (x¢, yo) normal to the vector
N = Ai+ Bj.

. Normal curves and tangent curves. A curve is normal to a

surface f(x,y,z) =c at a point of intersection if the curve’s
velocity vector is a scalar multiple of Vf at the point. The curve
is tangent to the surface at a point of intersection if its velocity
vector is orthogonal to Vf there.

a) Show that the curve
1
r(t) = Vii+1j— Z(t+3)k

is normal to the surface x2 + y> —z =3 whent = I.
b) Show that the curve

r(t) = Vii+Vij+ Q2 — Dk

is tangent to the surface x> + y> —z = 1 when t = 1.

Another way to see why gradients are normal to level curves.
Suppose that a differentiable function f(x, y) has a constant value
¢ along the differentiable curve x = g(t), y = h(t) for all values
of . Differentiate both sides of the equation f(g(¢),h(t)) =c
with respect to ¢ to show that Vf is normal to the curve’s tangent
vector at every point.

The linearization of f(x, y) is a tangent-plane approxima-
tion. Show that the tangent plane at the point Py(xg, yo, f (xo, Y0))
on the surface z = f(x, y) defined by a differentiable function
f is the plane

Sx(xo, yo)(x — x0) + £y (x0, Yo)(y — »0) — (z — f(x0, y0)) =0

or
z = f(xo, yo) + fx(x0, Y0)(x — x0) + fi(x0, Yo)(¥ — Yo)-

Thus the tangent plane at P, is the graph of the linearization of
f at Py (Fig. 12.43).

Exercises 12.7

—~z=f(x,)

o~

z=L(x,y)

y

(g o)

X

12.43 The graph of a function z = f(x, y) and its
linearization at a point (xo, yo). The plane defined by L is
tangent to the surface at the point above the point

(xo, o). This furnishes a geometric explanation of why the
values of L lie close to those of f in the immediate
neighborhood of (xo, yo) (Exercise 62).

969

63.

64.

65.

Directional derivatives and scalar components. How is the
derivative of a differentiable function f(x, y, z) at a point P, in
the direction of a unit vector u related to the scalar component
of (Vf)p, in the direction of u? Give reasons for your answer.

Directional derivatives and partial derivatives. Assuming that
the necessary derivatives of f(x, y, z) are defined, how are D; f,
D;f, and Dy f related to f;, f,, and f.? Give reasons for your
answer.

The algebra rules for gradients. Given a constant k and the
gradients

aof . of . of
vi=Z i Y549k
s 8xl+6y‘l+az
and
d d a
Vg =SitSj+ 2k

ax dy 9z

use the scalar equations

a af 0 af  dg
—*kf)=k—, —(f+g)=—=+x—,
Z)x( H dx dx (f£e) dx  Jx
af ag
gax fax

O rey— r08 A 3 (F)_
E(fg)_faﬁgax’ 8x<g>—

and so on, to establish the following rules:

a) V(kf)=kVf

b) V(f+g=Vf+Vg
) V(f-g=Vf-Vg
d) V(fg)=fVe+gVf

0 v(L)-rrorn
8 8
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12.44 The function
z = (cos x)(cos y)e V¥V

has a maximum value of 1 and a
minimum value of about —0.067 on the
square region |x| < 37/2, |y| < 37 /2.

O
/'/? A 2
U B ey
0000005 2t
R BRSO
e 9 SR
S SR
X % \\\\\\‘ \“

5 Q

(Generated by Mathematica)

12.45 The "roof surface”
1
z= E(IIXI—I}’II —IxI=1yD

viewed from the point (10, 15, 20).
The defining function has a
maximum value of 0 and a
minimum value of —a on the
square region |x| < a, ly| < a.

12.46 A local maximum is a mountain

peak and a local minimum is a valley low.

e

: Sy ot R S T

Extreme Values and Saddle Points

Continuous functions defined on closed bounded regions in the xy-plane take on
absolute maximum and minimum values on these domains (Figs. 12.44 and 12.45).
It is important to be able to find these values and to know where they occur. We
can often accomplish this by examining partial derivatives.

The Derivative Tests

To find the local extreme values of a function of a single variable, we look for
points where the graph has a horizontal tangent line. At such points we then look
for local maxima, local minima, and points of inflection. For a function f(x, y) of
two variables, we look for points where the surface z = f(x, y) has a horizontal
tangent plane. At such points we then look for local maxima, local minima, and
saddle points (more about saddle points in a moment).

Definitions
Let f(x, y) be defined on a region R containing the point (a, b). Then

1. f(a,b) is a local maximum value of f if f(a,b) > f(x,y) for all
domain points (x, y) in an open disk centered at (a, b).

2. f(a,b) is a local minimum value of f if f(a,b) < f(x,y) for all
domain points (x, y) in an open disk centered at (a, b).

Local maxima correspond to mountain peaks on the surface z = f(x, y) and local
minima correspond to valley bottoms (Fig. 12.46). At such points the tangent planes,
when they exist, are horizontal. Local extrema are also called relative extrema.

As with functions of a single variable, the key to identifying the local extrema
is a first derivative test.

Theorem 7
First Derivative Test for Local Extreme Values

If f(x, y) has a local maximum or minimum value at an interior point (a, b)
of its domain, and if the first partial derivatives exist there, then f,(a, b) =0
and fy(a,b) =0.

ﬂ—‘ Local maxima

£ \ (no greater value of fnearby)
! /
! 3 m ya ,'\\\

;/ \\M,;:'” '

—kr Surface z = f(x, y)

Local minimum
(no smaller value
of fnearby)
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12.47 The maximum of f occurs at
x=a,y=>b.
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12.48 Saddle points at the origin.
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Proof Suppose that f has a local maximum value at an interior point (a, b) of its
domain. Then

1. x =a is an interior point of the domain of the curve z = f(x, b) in which the
plane y = b cuts the surface z = f(x, y) (Fig. 12.47).

2. The function z = f(x, b) is a differentiable function of x at x = a (the deriva-
tive is f,(a, b)).

3. The function z = f(x, b) has a local maximum value at x = a.

4. The value of the derivative of z = f(x, b) at x = a is therefore zero (Theorem
2, Section 3.1). Since this derivative is f,(a, b), we conclude that f,(a, b) = 0.

A similar argument with the function z = f(a, y) shows that f,(a,b) = 0.
This proves the theorem for local maximum values. The proof for local mini-
mum values is left as Exercise 48. a

If we substitute the values f,(a,b) =0 and f,(a, b) = 0 into the equation
fila,b)(x —a) + fi(a,b)(y —b) — (z — f(a, b)) =0
for the tangent plane to the surface z = f(x, y) at (a, b), the equation reduces to
0O-x—a)+0-(y—b)—2z+ f(a,b) =0
or z = f(a,b).

Thus, Theorem 7 says that the surface does indeed have a horizontal tangent plane
at a local extremum, provided there is a tangent plane there.

As in the single-variable case, Theorem 7 says that the only places a function
f(x,y) can ever have an extreme value are

1. Interior points where f, = f, =0,
2. Interior points where one or both of f, and f, do not exist,
3. Boundary points of the function’s domain.

Definition
An interior point of the domain of a function f(x, y) where both f, and f,
are zero or where one or both of f, and f, do not exist is a critical point

of f.

Thus, the only points where a function f(x, y) can assume extreme values are
critical points and boundary points. As with differentiable functions of a single
variable, not every critical point gives rise to a local extremum. A differentiable
function of a single variable might have a point of inflection. A differentiable
function of two variables might have a saddle point.

Definition

A differentiable function f(x, y) has a saddle point at a critical point (a, b)
if in every open disk centered at (a, b) there are domain points (x, y) where
f(x,y) > f(a, b) and domain points (x, y) where f(x,y) < f(a,b). The
corresponding point (a, b, f(a, b)) on the surface z = f(x, y) is called a
saddle point of the surface (Fig. 12.48).
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12.49 The graph of the function f(x,y) =
x2 + y? is the paraboloid z = x? + y2. The
function has only one critical point, the
origin, which gives rise to a local
minimum value of 0 (Example 1).

12.50 The origin is a saddle point of the
function f(x, y) = y* — x2. There are no
local extreme values (Example 2).

EXAMPLE 1 Find the local extreme values of f(x,y) = x% + y?.

Solution The domain of f is the entire plane (so there are no boundary points)
and the partial derivatives f, = 2x and f, = 2y exist everywhere. Therefore, local
extreme values can occur only where

fi=2x=0 and f,=2y=0.

The only possibility is the origin, where the value of f is zero. Since f is never
negative, we see that the origin gives a local minimum (Fig. 12.49). a

EXAMPLE 2  Find the local extreme values (if any) of f(x, y) = y* — x2.

Solution The domain of f is the entire plane (so there are no boundary points) and
the partial derivatives f, = —2x and f, = 2y exist everywhere. Therefore, local
extrema can occur only at the origin (0, 0). However, along the positive x-axis
f has the value f(x,0) = —x? < 0; along the positive y-axis f has the value
f(0,y) = y? > 0. Therefore every open disk in the xy-plane centered at (0, 0)
contains points where the function is positive and points where it is negative. The
function has a saddle point at the origin (Fig. 12.50) instead of a local extreme
value. We conclude that the function has no local extreme values. a

The fact that f, = f, =0 at an interior point (a,b) of R does not tell us
enough to be sure f has a local extreme value there. However, if f and its first
and second partial derivatives are continuous on R, we may be able to learn the
rest from the following theorem, proved in Section 12.10.

Theorem 8
Second Derivative Test for Local Extreme Values

Suppose f(x, y) and its first and second partial derivatives are continuous
throughout a disk centered at (a, b) and that f,(a, b) = f,(a, b) = 0. Then

i) f has alocal maximum at (a, b) if f,, <0and fo fyy — fiy 2 > 0 at
(a, b);
ii) f has a local minimum at (@, b) if f,, > 0 and fo, fyy — foy 2 > 0 at
(a, b);
iii) f has a saddle point at (a, b) if fi, fyy — fiy 2 < 0 at (a, b).
iv) The test is inconclusive at (a, b) if f,, f,y — fiy 2 = 0 at (a, b). In this
case, we must find some other way to determine the behavior of f at
(a,b).

The expression f,, f,, — fxy ° is called the discriminant of f. It is sometimes easier
to remember the determinant form,

fxxfw - fx\,2 = fXX fxy

%

Theorem 8 says that if the discriminant is positive at the point (a, b), then the
surface curves the same way in all directions: downwards if f,, < 0, giving rise to
a local maximum, and upwards if f,, > 0, giving a local minimum. On the other
hand, if the discriminant is negative at (a, b), then the surface curves up in some
directions and down in others, so we have a saddle point.
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12.51 The surface z = xy has a saddle
point at the origin (Example 4).
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EXAMPLE 3 Find the local extreme values of the function
fx,y) =xy—x>—y>—2x -2y +4.

Solution The function is defined and differentiable for all x and y and its domain
has no boundary points. The function therefore has extreme values only at the points
where f, and f, are simultaneously zero. This leads to

fi=y—2x-2=0, f_\.:x—2y—2=O,
or
x=y=-2.

Therefore, the point (—2, —2) is the only point where f may take on an extreme
value. To see if it does so, we calculate

fo=-2,  fu=-2, foo=1
The discriminant of f at (a, b) = (-2, =2) is
fofo = [P =EDE) - ()P =41 =3,
The combination
fiu<0 and  fifin— fu’>0

tells us that f has a local maximum at (—2, —2). The value of f at this point is
f(=2,-2)=38.

EXAMPLE 4 Find the local extreme values of f(x,y) = xy.

Solution Since f is differentiable everywhere (Fig. 12.51), it can assume extreme
values only where

fi=y=0 and fi=x=0.

Thus, the origin is the only point where f might have an extreme value. To see
what happens there, we calculate

f\‘.r =0, f\'_\’ = O, f.x.\‘ =1.

The discriminant,

fn'f\'\‘ - f\'\‘ ‘= -1,
is negative. Therefore the function has a saddle point at (0, 0). We conclude that
f(x,y) = xy has no local extreme values. -

Absolute Maxima and Minima on Closed

Bounded Regions

We organize the search for the absolute extrema of a continuous function f(x, y)
on a closed and bounded region R into three steps.

Step 1: List the interior points of R where f may have local maxima and minima
and evaluate f at these points. These are the points where f, = f, = 0 or where
one or both of f, and f, fail to exist (the critical points of f).

Step 2: List the boundary points of R where f has local maxima and minima and
evaluate f at these points. We will show how to do this shortly.
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ol y=0 A(9,0)

12.52 This triangular plate is the domain
of the function in Example 5.

Step 3: Look through the lists for the maximum and minimum values of f. These
will be the absolute maximum and minimum values of f on R. Since absolute
maxima and minima are also local maxima and minima, the absolute maximum
and minimum values of f already appear somewhere in the lists made in steps 1
and 2. We have only to glance at the lists to see what they are.

EXAMPLE 5 Find the absolute maximum and minimum values of

f,y) =2+42x42y—x*—y*
on the triangular plate in the first quadrant bounded by the lines x =0,y =0,
y=9—x.

Solution Since f is differentiable, the only places where f can assume these
values are points inside the triangle (Fig. 12.52) where f, = f, = 0 and points on
the boundary.

Interior points. For these we have
fi=2-2x=0, fr=2-2y=0,
yielding the single point (x, y) = (1, 1). The value of f there is
f,1) =4
Boundary points. We take the triangle one side at a time:
1. On the segment OA, y = 0. The function
fx,y) = f(x,0) =2+ 2x — x?

may now be regarded as a function of x defined on the closed interval 0 < x <
9. Its extreme values (we know from Chapter 3) may occur at the endpoints

x=0 where f(0,0) =2
x=9 where f(9,0) =2+ 18 — 81 = —61

and at the interior points where f'(x,0) = 2 — 2x = 0. The only interior point
where f'(x,0) =01is x = 1, where

fx,0) = f(1,0) = 3.
2. On the segment OB, x = 0 and
fG.y) = fO0.y)=2+2y -y

We know from the symmetry of f in x and y and from the analysis we just
carried out that the candidates on this segment are

f@0,0) =2, f(0,9) = —61, f@,1) =3.
3. We have already accounted for the values of f at the endpoints of AB, so we
need only look at the interior points of AB. With y =9 — x, we have
f,y) =24+2x+209—x)—x> = (9 —x)> = —61 + 18x — 2x°.
Setting f'(x,9 —x) = 18 —4x = 0 gives
=7 =

9
X —.
2
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At this value of x,

9 9 99 41
= 9 _——_-——= = = -, - = ——
y 5=5 and  f(x,y) f(2,2> 5
Summary. We list all the candidates: 4, 2, —61, 3, —(41/2). The maximum is 4, which
f assumes at (1, 1). The minimum is —61, which f assumes at (0, 9) and (9, 0).

a

Conclusion

Despite the power of Theorem 7, we urge you to remember its limitations. It does
not apply to boundary points of a function’s domain, where it is possible for a
function to have extreme values along with nonzero derivatives. And it does not
apply to points where either f, or f, fails to exist.

Summary of Max-Min Tests

The extreme values of f(x, y) can occur only at
(i) boundary points of the domain of f,
(ii) critical points (interior points where f, = f, = 0 or points where f;
or f, fail to exist).
If the first and second order partial derivatives of f are continuous throughout
a disk centered at a point (a, b), and f,(a, b) = fy(a, b) =0, you may be
able to classify f(a, b) with the second derivative test:
(i) fox <Oand fi,foy — fiy?>0at (a,b) = local maximum,
(i) fox >0and fi.fyy — fy’> > 0at (@a,b) = local minimum,
(iii) fofyy — foo> <0at(a,b) = saddle point,
(V) fufyy — fy?=0at (a,b) = test is inconclusive.

Exercises 12.8

Finding Local Extrema 10. f(x,y) =3x2+6xy + 7y —2x + 4y

Find all the local maxima, local minima, and saddle points of the 11. f(x,y) =2x2+3xy + 4y —5x 42y
functions in Exercises 1-30.

L fe,y)=x’+xy+y +3x—3y+4
FO,y) =x*+3xy+3y?—6x+3y—6
fx,y) =2xy —5x* =2y’ +4x+4y —4
flx,y) =2xy—5x>—2y2+4x -4
f,y)=x*+xy+3x+2y+5

f,y) =y +xy—2x—2y+2

f(x,y) =5xy —Tx* +3x — 6y +2
flx,y) =2xy —x? —2y> +3x + 4
f,y)=x?—dxy+y> +6y+2

12. f(x,y) =4x? —6xy +5y* — 20x + 26y
13, fx,y)=x*—y>—2x+4y+6

4. f(x,y)=x2—2xy+2y> —2x +2y +1
15. f(x,y) = x>+ 2xy

16. f(x,y) =3+ 2x 42y —2x? — 2xy — y?
17. f,y)=x>—y>—2xy+6

18. f(x,y)=x>+3xy+y’

19. f(x,y) =6x? —2x> +3y2 4+ 6xy

20. f(x,y) =3y* -2y’ —3x?+6xy

P N, R wN
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21.
22,
23.
24.
25.
26.

27.

29.

[, y) =92+ y*/3 — 4xy

flx,y) =8x>+y* +6xy

O, y)=x>+y +3x2 —3y? -8
Fx,y) =2x3+2y3 —9x2 +3y? — 12y
fl,y) =dxy —xt =y

fly) = x4y +4xy

1 1
f(x-)’)= 28. f(x,y)=—+xy+_
x y

1
x24+y2—1

f(x,y)=ysinx 30. f(x,y)=e* cosy

Finding Absolute Extrema

In Exercises 31-38, find the absolute maxima and minima of the
functions on the given domains.

31.

32.

33.

34,

35.

36.

37.

38.

39.

f(x,y) =2x? —4x + y> — 4y + 1 on the closed triangular plate
bounded by the lines x =0, y =2, y = 2x in the first quadrant

D(x,y) = x> — xy + y> + 1 on the closed triangular plate in the
first quadrant bounded by the lines x =0,y =4,y = x

f(x,y) = x?> 4+ y? on the closed triangular plate bounded by the
lines x =0,y =0, y + 2x = 2 in the first quadrant

T(x,y) = x?>+ xy + y? — 6x on the rectangular plate 0 < x <
5,-3<y<3

T(x,y) = x?+xy+ y*> — 6x + 2 on the rectangular plate 0 <
x<5-3<y=0

f(x,y) = 48xy — 32x? — 24y? on the rectangular plate 0 < x <
,L0<y<l1

f(x,y) = (4x — x?) cos y on the rectangular plate 1 < x < 3,
—n/4 <y <m/4 (Fig. 12.53)

z = (4x — x%) cos y Z

(Generated by Mathematica)

A

~

12.53 The function and domain in Exercise 37.

f(x,y) =4x —8xy + 2y + | on the triangular plate bounded by
the lines x =0,y =0, x + y = 1 in the first quadrant

Find two numbers a and b with a < b such that
b
/ 6 —x — xHdx

has its largest value.

40.

41.

42.

Find two numbers a and b with a < b such that
b

24 — 2x — x»)'3dx

a
has its largest value.

Temperatures. The flat circular plate in Fig. 12.54 has the shape
of the region x?> + y? < 1. The plate, including the boundary
where x? 4 y? = 1, is heated so that the temperature at the point
(x,y) is

T(x,y) = x*+2y* —x.

Find the temperatures at the hottest and coldest points on the
plate.

(=)

(Generated by Mathematica)

12.54 Curves of constant temperature are called
isotherms. The figure shows isotherms of the
temperature function T(x, y) = x> + 2y? — x on the disk
x? 4+ y? < 1in the xy-plane. Exercise 41 asks you to locate
the extreme temperatures.

Find the critical point of
flx,y) = xy+2x —1Inx%y

in the open first quadrant (x > 0, y > 0) and show that f takes
on a minimum there (Fig. 12.55).
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12.55 The function f(x,y) = xy + 2x — In x?y (selected
level curves shown here) takes on a minimum value
somewhere in the open first quadrant x>0,y >0
(Exercise 42).



Theory and Examples

43. Find the maxima, minima, and saddle points of f(x, y), if any,
given that
a) fi=2x—4y and f, =2y —4x
b) fi=2x—-2 and f,=2y—-4
© fi=9*-9 and f,=2y+4
Describe your reasoning in each case.

44. The discriminant f, f,, — fx, * is zero at the origin for each of
the following functions, so the second derivative test fails there.
Determine whether the function has a maximum, a minimum, or
neither at the origin by imagining what the surface z = f(x, y)
looks like. Describe your reasoning in each case.

a)  fx,y) =x%y b)  f(x,y)=1—x%y>
¢ flx,y)=xy* d)  f(x,y)=x"y?
e flx,y)=x f)  fly)=x'*

45. Show that (0, 0) is a critical point of f(x,y) = x?+ kxy + y?
no matter what value the constant k has. (Hint: Consider two
cases: k =0 and k # 0.)

46. For what values of the constant k does the second derivative test
guarantee that f(x, y) = x* + kxy + y? will have a saddle point
at (0, 0)? a local minimum at (0, 0)? For what values of & is
the second derivative test inconclusive? Give reasons for your
answers.

47. a) If fi(a,b) = fy(a,b) =0, must f have a local maximum
or minimum value at (a, b)? Give reasons for your answer.
b) Can you conclude anything about f(a, b) if f and its first
and second partial derivatives are continuous throughout a
disk centered at (a, b) and f(a, b) and f,,(a, b) differ in

sign? Give reasons for your answer.

48. Using the proof of Theorem 7 given in the text for the case in
which f has a local maximum at (a, b), prove the theorem for
the case in which f has a local minimum at (a, b).

49. Among all the points on the graph of z = 10 — x? — y? that lie
above the plane x + 2y + 3z =0, find the point farthest from
the plane.

50. Find the point on the graph of z = x + y? + 10 nearest the plane
x+2y—2z=0.

51. The function f(x, y) = x + y fails to have an absolute maximum
value in the closed first quadrant x > 0 and y > 0. Does this
contradict the discussion on finding absolute extrema given in
the text? Give reasons for your answer.

52. Consider the function f(x,y) = x>+ y?> 4+ 2xy —x — y + l over
the square 0 <x <land 0 <y < 1.

a) Show that f has an absolute minimum along the line seg-
ment 2x + 2y = 1 in this square. What is the absolute min-
imum value?

b) Find the absolute maximum value of f over the square.

Extreme Values on Parametrized Curves

To find the extreme values of a function f(x,y) on a curve x =
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x(t),y = y(t), we treat f as a function of the single variable ¢+ and
use the Chain Rule to find where df/dt is zero. As in any other
single-variable case, the extreme values of f are then found among
the values at the

a) critical points (points where df/dt is zero or fails to exist), and
b) endpoints of the parameter domain.

Find the absolute maximum and minimum values of the following
functions on the given curves.

53. Functions:

a) f(x,y)=x+y b) g(x,y)=xy
©) h(x,y) =2x2+y?
Curves:

i) The semicircle x2 +y> =4, y>0
ii) The quarter circle x> +y> =4, x>0, y>0

Use the parametric equations x =2 cos ¢,y = 2 sin ¢.
54. Functions:

a) f(x,y)=2x+3y
c)  h(x,y) =x2+3y?

Curves:

b) g(x,y)=xy

i) The semi-ellipse (x2/9) + (y?/4) =1, y >0
ii) The quarter ellipse (x2/9) + (»?/4) =1, x>0, y=>0
Use the parametric equations x = 3 cos ¢, y = 2 sin ¢.
55. Function: f(x,y) =xy
Curves:
i) Thelinex=2r, y=1t+1
ii) The line segment x =2¢, y=t+1, —-1<t<0
ili) The line segment x =2¢, y=t+1, 0<t<I
56. Functions:
a)  f(x,y)=x*+y b) g(x,y)=1/(x*+y%

Curves:

i) The line x =1¢,
ii) The line segment x =1,

y=2-2t
y=2-2t, 0<tr<l1

Least Squares and Regression Lines

When we try to fit a line y = mx + b to a set of numerical data points
(x1, ¥1), (x2, ¥2), .. ., (xn, yn) (Fig. 12.56, on the following page), we
usually choose the line that minimizes the sum of the squares of the
vertical distances from the points to the line. In theory, this means
finding the values of m and b that minimize the value of the function

w = (mx; +b—y) +-+ (mx, +b—y,)" (1)

The values of m and b that do this are found with the first and second
derivative tests to be

o (Zxk) (Z )’k) —-hn Zxk)’k ’ 2

(Xx) —n Y x
b:%(Zyk—mZxk), (3)
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Pn(xn’ yll)

y=mx+b

Py(x3, y2)

o

12.56 To fit a line to noncollinear points, we choose the
line that minimizes the sum of the squares of the
deviations.

with all sums running from k = 1 to k = n. Many scientific calculators
have these formulas built in, enabling you to find m and b with only
a few key presses after you have entered the data.

The line y = mx + b determined by these values of m and b is
called the least squares line, regression line, or trend line for the
data under study. Finding a least squares line lets you

1. summarize data with a simple expression,
2. predict values of y for other, experimentally untried values of x,
3. handle data analytically.

EXAMPLE Find the least squares line for the points (0, 1),
(1,3),(2,2), 3,4, 4,5).

Solution We organize the calculations in a table:

12.57 The least squares line for the data in the example.

B 61. Write a linear equation for the effect of irrigation on the yield
of alfalfa by fitting a least squares line to the data in Table 12.1
(from the University of California Experimental Station, Bulletin
No. 450, p. 8). Plot the data and draw the line.

Table 12.1 Growth of alfalfa

x y
(total seasonal depth (average alfalfa
of water applied, in.) yield, tons/acre)

12 5.27
18 5.68
24 6.25
30 7.21
36 8.20
42 8.71

k X Vi x} Xk
1 0 | 0 0
2 | 3 1 3
3 2 2 4 4
4 3 4 9 12
5 4 5 16 20
z 10 15 30 39
Then we find
_ (10)(15) — 5(39) Eq. (2) with n =5 and

data tfrom the table

(10)2 — 5(30)
and use the value of m to find

1
b=—
5

The least squares line is y = 0.9x + 1.2 (Fig. 12.57).

(15 — (0.9)(10)) = 1.2.

Eq. (3) withn =5.m =09

a

In Exercises 57-60, use Eqgs. (2) and (3) to find the least squares line
for each set of data points. Then use the linear equation you obtain
to predict the value of y that would correspond to x = 4.

57. (-1,2), (0, 1), (3,—4) 58. (=2,0), (0,2),
59. (0,0), (1,2), (2,3) 60. (0, ), (2,2),

(2.3)
(3.2

H 6.

Craters of Mars. One theory of crater formation suggests that
the frequency of large craters should fall off as the square of
the diameter (Marcus, Science, June 21, 1968, p. 1334). Pictures
from Mariner IV show the frequencies listed in Table 12.2. Fit a
line of the form F = m(1/D?) + b to the data. Plot the data and
draw the line.

Table 12.2 Crater sizes on Mars

1/D? (for

Diameter in left value of

km, D class interval) Frequency, F
32-45 0.001 51
45-64 0.0005 22
64-90 0.00024 14
90-128 0.000123 4
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Table 12.3 Compositions by Mozart Table 12.4 Sinkings of German submarines by U.S.
during 16 consecutive months of WWII
Kochel number, Year composed,
K y Guesses by U.S.
(reported sinkings) Actual number
1 1761 Month X y C
75 1771
155 1772 1 3 3
219 1775 2 2 2
271 1777 3 4 6
351 1780 4 2 3
425 1783 5 5 4
503 1786 6 5 3
575 1789 7 9 11
626 1791 8 12 9
9 8 10
10 13 16
11 14 13
@ 63. Kochel numbers. In 1862, the German musicologist Ludwig von 12 3 >
Kochel made a chronological list of the musical works of Wolf- 3 4 6
A .. 14 13 19
gang Amadeus Mozart. This list is the source of the Kochel num- 15 10 15
bers, or “K numbers,” that now accompany the titles of Mozart’s 16 16 15
pieces (Sinfonia Concertante in E-flat major, K.364, for exam-
ple). Table 12.3 gives the Kdchel numbers and composition dates 123 140
(y) of ten of Mozart’s works.

a) Plot y vs. K to show that y is close to being a linear function

of K.
b)  Find a least squares line y = mK + b for the data and add d) Calculate the function’s second partial derivatives and find the
the line to your plot in (a). discriminant fiy fix — fu 2.

c¢) K.364 was composed in 1779. What date is predicted by

ol line? e) Using the max-min tests, classify the critical points found in (c).
the least squares line?

Are your findings consistent with your discussion in (c)?

@ 64. Subm‘?r/ne' sinkings. The data in Table. 12.4 show the results 65. f(x,y)=x>+y’—3xy, —=5<x<5, -5<y<S5
of a historical study of German submarines sunk by the U.S. s 5 5
Navy during 16 consecutive months of World War II. The data 66. flx,y)=x"=3xy"+y’, -2=x=<2 -2<y=s2
given for each month are the number of reported sinkings and 67. fix,y)=x*+y?—8x?—6y+16, -3 <x <3,

the number of actual sinkings. The number of submarines sunk —-6<y<6
was slightly greater than the Navy’s reports implied. Find a least 68. fx,y)=2x*+)y*—2x2—2y? 43, —3/2<x<3/2
squares line for estimating the number of actual sinkings from ) ;3/’2 <y<3/2 ' - ’

the number of reported sinkings.
69. f(x,y)=5x%+18x> — 30x* + 30xy?> — 120x%, —4 <x <3,

-2<y=<2

S Inx2+y%), (xy) #(0,0)

70. f(x.y) = 0. (x,y) =1(0,0)"

& CAS Explorations and Projects
In Exercises 65-70, you will explore functions to identify their local -2<x<2 -2<y<2
extrema. Use a CAS to perform the following steps:

a) Plot the function over the given rectangle.

b) Plot some level curves in the rectangle.

¢) Calculate the function’s first partial derivatives and use the CAS
equation solver to find the critical points. How do the critical
points relate to the level curves plotted in (b)? Which critical
points, if any, appear to give a saddle point? Give reasons for
your answer.
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Z
W Free maximum
49 — x2 — y2

Constrained
maximum

x+3y—-10=0
constraint on
x and y

X

12.58 The function f(x,y) = 49 — x? — y?,
subject to the constraint g(x, y) =
x+3y—-10=0.

soE Se a
Lagrange Multipliers

As we saw in Section 12.8, we sometimes need to find the extreme values of
a function whose domain is constrained to lie within some particular subset of
the plane—a disk, for example, or a closed triangular region. But, as Fig. 12.58
suggests, a function may be subject to other kinds of constraints as well.

In this section, we explore a powerful method for finding extreme values of
constrained functions: the method of Lagrange multipliers. Lagrange developed
the method in 1755 to solve max-min problems in geometry. Today the method is
important in economics, in engineering (where it is used in designing multistage
rockets, for example), and in mathematics.

Constrained Maxima and Minima

EXAMPLE 1
y—2z—-5=0.

Find the point P(x, y, z) closest to the origin on the plane 2x +

Solution The problem asks us to find the minimum value of the function
|0P| = V(x = 0)2 + (y = 02 + (z = 0)?
= Vxr+y? + 22

subject to the constraint that

2x+y—2z-5=0.
Since |OP| has a minimum value wherever the function
f,y,2)=x"+y*+72°

has a minimum value, we may solve the problem by finding the minimum value
of f(x,y, z) subject to the constraint 2x +y — z — 5 = 0. If we regard x and y as
the independent variables in this equation and write z as

z=2x+y-5,
our problem reduces to one of finding the points (x, y) at which the function
h(x,y) = f(x,9,2x+y—5) =x>+y* + (2x + y — 5)?

has its minimum value or values. Since the domain of 4 is the entire xy-plane, the
first derivative test of Section 12.8 tells us that any minima that # might have must
occur at points where

hy =2x+22x+y—-5)(2) =0,

This leads to

hy=2y+22x+y—5)=0.

10x + 4y = 20, 4x +4y =10,
and the solution
5 5
x ==, = .
37 776

We may apply a geometric argument together with the second derivative test to
show that these values minimize 4. The z-coordinate of the corresponding point on



12.59 The hyperbolic cylinder
x2 —22—1=0in Example 2.

The hyperbolic cylinder x? — z2 = 1

On this part, On this part,

x=V2+1. § x=-VZ+1.

12.60 The region in the xy-plane from
which the first two coordinates of the
points (x, ¥, z) on the hyperbolic cylinder
x? — 22 = 1 are selected excludes the band
—1<x<1in the xy-plane.

12.9 Lagrange Multipliers 981

the plane z =2x 4+ y — S is

Therefore, the point we seek is
55 5
Closest point: P{=-,-,—].
36 6
The distance from P to the origin is 5/+/6 &~ 2.04. 3

Attempts to solve a constrained maximum or minimum problem by substitution,
as we might call the method of Example 1, do not always go smoothly. This is one
of the reasons for learning the new method of this section.

EXAMPLE 2 Find the points closest to the origin on the hyperbolic cylinder
x>=-722—-1=0.

Solution 1 The cylinder is shown in Fig. 12.59. We seek the points on the cylinder
closest to the origin. These are the points whose coordinates minimize the value of
the function

fO,y,2) =x2+y*+722 Square of the distance

subject to the constraint that x> — z2 — 1 = 0. If we regard x and y as independent
variables in the constraint equation, then

P =x"—1
and the values of f(x, y,z) = x> + y? + z° on the cylinder are given by the function
h(x,y) = x>+ y>+ x> —1) =2x>+y* — 1.

To find the points on the cylinder whose coordinates minimize f, we look for the
points in the xy-plane whose coordinates minimize 4. The only extreme value of
h occurs where

h, =4x =0 and h,=2y=0,

that is, at the point (0, 0). But now we’re in trouble—there are no points on the
cylinder where both x and y are zero. What went wrong?

What happened was that the first derivative test found (as it should have) the
point in the domain of h where h has a minimum value. We, on the other hand, want
the points on the cylinder where h has a minimum value. While the domain of 4 is
the entire xy-plane, the domain from which we can select the first two coordinates
of the points (x, y, z) on the cylinder is restricted to the “shadow” of the cylinder
on the xy-plane; it does not include the band between the lines x = —1 and x = 1
(Fig. 12.60).

We can avoid this problem if we treat y and z as independent variables (instead
of x and y) and express x in terms of y and z as

xP=7241.
With this substitution, f(x,y,z) = x>+ y* + z> becomes
k(v,2) =@+ D+y +22=1+y*+27

and we look for the points where k takes on its smallest value. The domain of
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2=-z22-1=0 z

12.61 A sphere expanding like a soap
bubble centered at the origin until it just
touches the hyperbolic cylinder

xXX-22-1=0.

See Solution 2 of Example 2.

k in the yz-plane now matches the domain from which we select the y- and
z-coordinates of the points (x, y, z) on the cylinder. Hence, the points that minimize
k in the plane will have corresponding points on the cylinder. The smallest values
of k occur where

ky,=2y=0 and k,=4z=0,
or where y = z = 0. This leads to
=7 4+1=1 x==1

The corresponding points on the cylinder are (£1,0,0). We can see from the
inequality

k(y,2) = 1+ y*+22> 1

that the points (£ 1,0, 0) give a minimum value for k. We can also see that the
minimum distance from the origin to a point on the cylinder is 1 unit.

Solution 2  Another way to find the points on the cylinder closest to the origin is
to imagine a small sphere centered at the origin expanding like a soap bubble until
it just touches the cylinder (Fig. 12.61). At each point of contact, the cylinder and
sphere have the same tangent plane and normal line. Therefore, if the sphere and
cylinder are represented as the level surfaces obtained by setting

f,y,0) =x*+y*+7z2—a*> and  g(x,y,2)=x"—2"—1

equal to O, then the gradients Vf and Vg will be parallel where the surfaces touch.
At any point of contact we should therefore be able to find a scalar A (“lambda”)
such that

Vf = AVg,
or
2xi+2yj+2zk = A(2xi—2zKk).

Thus, the coordinates x, y, and z of any point of tangency will have to satisfy the
three scalar equations

2x = 2\x, 2y =0, 2z = —2Az. (1)

For what values of A will a point (x, y, z) whose coordinates satisfy the equa-
tions in (1) also lie on the surface x> — z> — 1 = 0? To answer this question, we
use the fact that no point on the surface has a zero x-coordinate to conclude that
x # 0 in the first equation in (1). This means that 2x = 2Ax only if

2 =24, or A=1.

For A =1, the equation 2z = —2Az becomes 2z = —2z. If this equation is to be
satisfied as well, z must be zero. Since y = 0 also (from the equation 2y = 0), we
conclude that the points we seek all have coordinates of the form

(x,0,0).

What points on the surface x2 — z2 = 1 have coordinates of this form? The points
(x, 0, 0) for which

x2— (02 =1, x2=1, or x==1.

The points on the cylinder closest to the origin are the points (£ 1, 0, 0). d
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The Method of Lagrange Multipliers

In Solution 2 of Example 2, we solved the problem by the method of Lagrange
multipliers. In general terms, the method says that the extreme values of a function
f(x, y, z) whose variables are subject to a constraint g(x, y, z) = 0 are to be found
on the surface g = 0 at the points where

Vf = Vg

for some scalar A (called a Lagrange multiplier).
To explore the method further and see why it works, we first make the following
observation, which we state as a theorem.

Theorem 9
The Orthogonal Gradient Theorem

Suppose that f(x, y, z) is differentiable in a region whose interior contains
a smooth curve

C: r=g@®)i+h@®j+k@k

If P, is a point on C where f has a local maximum or minimum relative
to its values on C, then Vf is orthogonal to C at P,.

Proof We show that Vf is orthogonal to the curve’s velocity vector at Py. The
values of f on C are given by the composite f(g(t), h(t), k(t)), whose derivative
with respect to ¢ is

df dfdg dfdh ofdk _

= =Vf.w
dt ox dt dydt 0z dt

At any point Py where f has a local maximum or minimum relative to its values
on the curve, df/dt =0, so
Vf.v=0. a
By dropping the z-terms in Theorem 9, we obtain a similar result for functions
of two variables.

Corollary of Theorem 9

At the points on a smooth curve r = g(¢) i + h(?) j where a differentiable
function f(x, y) takes on its local maxima and minima relative to its values
on the curve, Vf - v =0.

Theorem 9 is the key to the method of Lagrange multipliers. Suppose that
f(x,y,2) and g(x, y, z) are differentiable and that P, is a point on the surface
g(x,y,z) =0 where f has a local maximum or minimum value relative to its
other values on the surface. Then f takes on a local maximum or minimum at
P, relative to its values on every differentiable curve through P, on the surface
g(x,y,z) =0. Therefore, Vf is orthogonal to the velocity vector of every such
differentiable curve through P,. But so is Vg (because Vg is orthogonal to the level
surface g = 0, as we saw in Section 12.7). Therefore, at Py, Vf is some scalar
multiple A of Vg.
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y

T

12.62 Example 3 shows how to find the
largest and smallest values of the product

xy on this ellipse.

xy=2"

\xy =-2

12.63 When subjected to the constraint
g(x, y) = x*/8 + y?/2 — 1 = 0, the function
f(x, y) = xy takes on extreme values at
the four points (2, £1). These are the
points on the ellipse when V£ (red) is a
scalar multiple of Vg (blue) (Example 3).

The Method of Lagrange Multipliers

Suppose that f(x, y, z) and g(x, y, z) are differentiable. To find the local
maximum and minimum values of f subject to the constraint g(x, y, z) = 0,
find the values of x, y, z, and A that simultaneously satisfy the equations

Vf = AVg and gx,y,2) =0.
For functions of two independent variables, the appropriate equations are

Vf = AVg and g(x,y)=0.

EXAMPLE 3 Find the greatest and smallest values that the function

f(xv }’) =xy
takes on the ellipse (Fig. 12.62)

X2y

—+==1

§ 72

Solution We want the extreme values of f(x, y) = xy subject to the constraint

2 2
+X _1=o.

(x,y) = =
gx.y—g 2

To do so, we first find the values of x, y, and A for which
Vf = AVg and gx,y)=0.

The gradient equation gives

A
vi+xj=-xi+Ayj,

4
from which we find
A N d A()\ | A2
= —X, = N a = — = —Yy,
y 4x X y n y 2 y n y

so that y =0 or A = +2. We now consider these two cases.

Case 1: If y =0, then x = y = 0. But (0, 0) is not on the ellipse. Hence, y # 0.
Case 2: If y #0, then A = £2 and x = +2y. Substituting this in the equation
g(x,y) =0 gives
+2 2 2
&E2)° ¥y 1,
8 2

4y +4y? = 8, and y==1.

The function f(x, y) = xy therefore takes on its extreme values on the ellipse at
the four points (£ 2, 1), (2, —1). The extreme values are xy =2 and xy = —2.

The Geometry of the Solution  The level curves of the function f(x,y) = xy
are the hyperbolas xy = ¢ (Fig. 12.63). The farther the hyperbolas lie from the
origin, the larger the absolute value of f. We want to find the extreme values of
f(x,y), given that the point (x, y) also lies on the ellipse x> + 4y? = 8. Which
hyperbolas intersecting the ellipse lie farthest from the origin? The hyperbolas that



Vf=3i+4j=3Vg

S,

N

3x+4y=-5

12.64 The function f(x, y) = 3x + 4y takes
on its largest value on the unit circle
g(x, y) = x>+ y?> — 1 = 0 at the point

(3/5, 4/5) and its smallest value at the
point (-3/5, —4/5) (Example 4). At each of
these points, Vf is a scalar multiple of
Vg. The figure shows the gradients at the
first point but not the second.
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just graze the ellipse, the ones that are tangent to it. At these points, any vector
normal to the hyperbola is normal to the ellipse, so Vf = yi+ xj is a multiple
(A= =x2) of Vg = (x/4)i+ y]j. At the point (2, 1), for example,

1
Vfi=i+2j,  Vg=gitj and  Vf=2V

At the point (-2, 1),

1
Vf=i-2j, Vg=—=i+]j, and Vf = -2Vg.

2 -

EXAMPLE 4 Find the maximum and minimum values of the function f(x, y) =
3x 4+ 4y on the circle x* + y? = 1.

Solution We model this as a Lagrange multiplier problem with
fy) =3x+4y, g,y =x"+y" -1
and look for the values of x, y, and A that satisfy the equations
Vf =AiVg: 3i+4j=2xri+2yArj,
g, y)=0: x*+y*—1=0.

The gradient equation implies that A 7 0 and gives
3 2
X =—, = —.
YT
These equations tell us, among other things, that x and y have the same sign. With
these values for x and y, the equation g(x, y) = 0 gives

) () rme

9 4 ) ) 5
SO m-i-)\—z:l, 9+16=4)\, 4 =25, and A.Iiz
Thus,
3 3 2 4
x:—:i—, y:—::l':—,
2x 5 A 5

and f(x, y) = 3x + 4y has extreme values at (x, y) = £ (3/5, 4/5).
By calculating the value of 3x + 4y at the points & (3/5, 4/5), we see that its
maximum and minimum values on the circle x2 4+ y? =1 are

3 4 25 3 4 25

The Geometry of the Solution (Fig. 12.64) The level curves of f(x,y) =
3x + 4y are the lines 3x + 4y = c. The farther the lines lie from the origin, the
larger the absolute value of f. We want to find the extreme values of f(x, y) given
that the point (x, y) also lies on the circle x> + y* = 1. Which lines intersecting
the circle lie farthest from the origin? The lines tangent to the circle. At the points
of tangency, any vector normal to the line is normal to the circle, so the gradient
Vf =3i+4jis a multiple (A = £5/2) of the gradient Vg = 2xi+ 2y j. At the
point (3/5,4/5), for example,

6. 8 5
Vf=3i+4), Vg=zitzi ad  Vf=3% .
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12.65 The vectors Vg, and Vg, lie in a
plane perpendicular to the curve C
because Vg, is normal to the surface

g, =0 and Vg, is normal to the surface

g2=0.

7
<

Cylinder x2 + y2 =

12.66 On the ellipse where the plane

and cylinder meet, what are the points
closest to and farthest from the origin
(Example 5)?

Lagrange Multipliers with Two Constraints

Many problems require us to find the extreme values of a differentiable function
f(x,y, z) whose variables are subject to two constraints. If the constraints are

gl(x,y’z)zo and g2(x’yvz)=0

and g, and g, are differentiable, with Vg, not parallel to Vg,, we find the constrained
local maxima and minima of f by introducing two Lagrange multipliers A and u
(mu, pronounced “mew”). That is, we locate the points P(x, y, z) where f takes
on its constrained extreme values by finding the values of x, y, z, A, and u that
simultaneously satisfy the equations

Vf = AVg + uVg,, gi(x,y,2)=0, g (x,y,2)=0. (2)

The equations in (2) have a nice geometric interpretation. The surfaces g; = 0
and g, = 0 (usually) intersect in a smooth curve, say C (Fig. 12.65), and along
this curve we seek the points where f has local maximum and minimum values
relative to its other values on the curve. These are the points where Vf is normal
to C, as we saw in Theorem 9. But Vg, and Vg, are also normal to C at these
points because C lies in the surfaces g = 0 and g, = 0. Therefore Vf lies in the
plane determined by Vg, and Vg,, which means that Vf = AVg, + Vg, for some
A and u. Since the points we seek also lie in both surfaces, their coordinates must
satisfy the equations g,(x, y, z) = 0 and g,(x, y, z) = 0, which are the remaining
requirements in Egs. (2).

EXAMPLE 5  The plane x +y+z =1 cuts the cylinder x>+ y> =1 in an
ellipse (Fig. 12.66). Find the points on the ellipse that lie closest to and farthest
from the origin.

Solution We find the extreme values of
fx,y,2) =x" +y* 4+ 7
(the square of the distance from (x, y, z) to the origin) subject to the constraints
gilx.y,0)=x>+y"—1=0 3)
g&x,y,20)=x+y+z—-1=0. @
The gradient equation in (2) then gives
Vf = AVg, + uVg Eq. (2)
2xi+2yj+ 2tk =AQ2xi+2y)) +ui+j+k)
2xi+2yj+2tk = Qix+p)i+ Cry +w)j+uk
or
2x = 20x 4+, 2y =21y + i, 2z = . (5)
The scalar equations in (5) yield
2x = 2Ax + 22 = (1=AMx =gz,
2y =20y + 2z = (1-2y=z ©

Equations (6) are satisfied simultaneously if either A =1 and z =0 or A # | and
x=y=z/(1 =X).
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If z = 0, then solving Egs. (3) and (4) simultaneously to find the corresponding
points on the ellipse gives the two points (1, 0, 0) and (0, 1, 0). This makes sense
when you look at Fig. 12.66.

If x =y, then Eqgs. (3) and (4) give

24+x*=-1=0

2X2=1 =

x+x+z—-1=0

1 —2x
2
i%— 1 F2.

The corresponding points on the ellipse are

2

P—(\/—E,ﬁ,l—«/ﬁ) and P2=<—\/7§,—?,1+\/§).

But here we need to be careful. While P, and P, both give local maxima of f on
the ellipse, P, is farther from the origin than P,.

The points on the ellipse closest to the origin are (1, 0, 0) and (0, 1, 0). The
point on the ellipse farthest from the origin is P;. d

Exercises 12.9

Two Independent Variables with One Constraint

1.

Find the points on the ellipse x? + 2y? = 1 where f(x,y) = xv
has its extreme values.

. Find the extreme values of f(x, y) = xy subject to the constraint

gx,y)=x*+y?-10=0.

. Find the maximum value of f(x, y) =49 — x> — y? on the line

X + 3y = 10 (Fig. 12.58).

. Find the local extreme values of f(x,y)=x2y on the line

x+y=3.

5. Find the points on the curve xy? = 54 nearest the origin.

6. Find the points on the curve x2y = 2 nearest the origin.

10.

. Use the method of Lagrange multipliers to find

a) the minimum value of x + y, subject to the constraints
xy=16,x >0,y > 0;

b) the maximum value of xy, subject to the constraint
x+y=16.

Comment on the geometry of each solution.

. Find the points on the curve x?> + xy + y2 = 1 in the xy-plane

that are nearest to and farthest from the origin.

. Find the dimensions of the closed right circular cylindrical can

of smallest surface area whose volume is 167 cm?®.

Find the radius and height of the open right circular cylinder of
largest surface area that can be inscribed in a sphere of radius a.
What is the largest surface area?

11.

12.

13.

14.

15.

16.

Use the method of Lagrange multipliers to find the dimensions of
the rectangle of greatest area that can be inscribed in the ellipse
x2/16 + y?/9 = 1 with sides parallel to the coordinate axes.

Find the dimensions of the rectangle of largest perimeter that can
be inscribed in the ellipse x2/a’> + y?/b* = 1 with sides parallel
to the coordinate axes. What is the largest perimeter?

Find the maximum and minimum values of x> + y? subject to
the constraint x> — 2x + y> — 4y = 0.

Find the maximum and minimum values of 3x — y + 6 subject
to the constraint x? + y? = 4.

The temperature at a point (x, y) on a metal plate is T(x, y) =
4x% —4xy + y2. An ant on the plate walks around the circle of
radius 5 centered at the origin. What are the highest and lowest
temperatures encountered by the ant?

Your firm has been asked to design a storage tank for liquid
petroleum gas. The customer’s specifications call for a cylindrical
tank with hemispherical ends, and the tank is to hold 8000 m*
of gas. The customer also wants to use the smallest amount of
material possible in building the tank. What radius and height do
you recommend for the cylindrical portion of the tank?

Three Independent Variables with One Constraint

17.

18.

Find the point on the plane x + 2y 4+ 3z = 13 closest to the point
(1, 1, ).

Find the point on the sphere x> + y + z2 = 4 which is farthest
from the point (1, —1, 1).
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19.

20.
21.
22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

Find the minimum distance from the surface x2 4 y2 —z2 =1
to the origin.

Find the point on the surface z = xy + 1 nearest the origin.
Find the points on the surface z2 = xy + 4 closest to the origin.
Find the point(s) on the surface xyz = | closest to the origin.

Find the maximum and minimum values of
fx,y,2) =x—-2y+5z
on the sphere x? + y2 + z% = 30.

Find the points on the sphere x? + y? + z2 = 25 where f(x, y, z)
= x + 2y + 3z has its maximum and minimum values.

Find three real numbers whose sum is 9 and the sum of whose
squares is as small as possible.

Find the largest product the positive numbers x, y, and z can
have if x + y 4+ z2 = 16.

Find the dimensions of the closed rectangular box with maximum
volume that can be inscribed in the unit sphere.

Find the volume of the largest closed rectangular box in the first
octant having three faces in the coordinate planes and a vertex on
the plane x/a + y/b + z/c = 1, wherea > 0,b > 0, and ¢ > 0.

A space probe in the shape of the ellipsoid
4x’ + y* +4z2 =16

enters the earth’s atmosphere and its surface begins to heat. After
one hour, the temperature at the point (x, y, z) on the probe’s
surface is

T(x,y,2) = 8x" + 4yz — 16z + 600.
Find the hottest point on the probe’s surface.

Suppose that the Celsius temperature at the point (x, y, z) on the
sphere x? 4+ y? 4+ z2 = 1 is T = 400xyz>. Locate the highest and
lowest temperatures on the sphere.

An example from economics. In economics, the usefulness or
utility of amounts x and y of two capital goods G, and G, is
sometimes measured by a function U (x, y). For example, G, and
G, might be two chemicals a pharmaceutical company needs to
have on hand and U (x, y) the gain from manufacturing a prod-
uct whose synthesis requires different amounts of the chemicals
depending on the process used. If G, costs a dollars per kilo-
gram, G, costs b dollars per kilogram, and the total amount
allocated for the purchase of G, and G, together is ¢ dollars,
then the company’s managers want to maximize U (x, y) given
that ax + by = c. Thus, they need to solve a typical Lagrange
multiplier problem.
Suppose that

Ux,y) =xy+2x
and that the equation ax + by = ¢ simplifies to
2x +y = 30.

Find the maximum value of U and the corresponding values of
x and y subject to this latter constraint.

32.

You are in charge of erecting a radio telescope on a newly dis-
covered planet. To minimize interference, you want to place it
where the magnetic field of the planet is weakest. The planet is
spherical, with a radius of 6 units. Based on a coordinate sys-
tem whose origin is at the center of the planet, the strength of
the magnetic field is given by M(x, y, z) = 6x — y> + xz + 60.
Where should you locate the radio telescope?

Lagrange Multipliers with Two Constraints

33.

34.

35.

36.

37.

38.

39.

40.

Maximize the function f(x,y,z) = x4 2y — z2 subject to the
constraints 2x —y =0and y +z = 0.

Minimize the function f(x,y,z) = x> + y? + z? subject to the
constraints x +2y +3z =6 and x + 3y + 9z = 9.

Find the point closest to the origin on the line of intersection of
the planes y + 2z =12 and x + y = 6.

Find the maximum value that f(x,y,z) =x2+ 2y —z* can
have on the line of intersection of the planes 2x — y =0 and
y+z=0.

Find the extreme values of f(x,y,z) =x*yz+ 1 on the inter-
section of the plane z = 1 with the sphere x> + y? 4 z2 = 10.

a) Find the maximum value of w = xyz on the line of intersec-
tion of the two planes x + y +z=40and x + y —z = 0.

b) Give a geometric argument to support your claim that you
have found a maximum, and not a minimum, value of w.

Find the extreme values of the function f(x,y,z) =xy + z% on
the circle in which the plane y —x =0 intersects the sphere
x2+y’+2=4.

Find the point closest to the origin on the curve of intersection
of the plane 2y + 4z = 5 and the cone z2 = 4x? + 4y2.

Theory and Examples

41.

42,

The condition V f = »V g is not sufficient. While Vf = AVg
is a necessary condition for the occurrence of an extreme value of
f(x, y) subject to the condition g(x, y) = 0, it does not in itself
guarantee that one exists. As a case in point, try using the method
of Lagrange multipliers to find a maximum value of f(x,y) =
x + y subject to the constraint that xy = 16. The method will
identify the two points (4, 4) and (—4, —4) as candidates for the
location of extreme values. Yet the sum (x 4+ y) has no maximum
value on the hyperbola xy = 16. The farther you go from the
origin on this hyperbola in the first quadrant, the larger the sum
f(x,y) =x + y becomes.

A least squares plane. The plane z = Ax + By + C is to be
“fitted” to the following points (xy, yk, zx):

0,0,0), @, 1,1, (@,1,1), (1,0,-1).
Find the values of A, B, and C that minimize the sum
4
Z(Axk + By +C — )%,
k=1

the sum of the squares of the deviations.
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43. a) Show that the maximum value of a®b’c? on a sphere of b) Determine all the first partial derivatives of 4, including the
radius r centered at the origin of a Cartesian abc-coordinate partials with respect to A, and A, and set them equal to 0.
system is (r2/3)3. ¢) Solve the system of equations found in (b) for all the unknowns,

b) Using part (a), show that for nonnegative numbers a, b, including A, and A,.
and c, d) Evaluate f at each of the solution points found in (c) and select
a+b+c the extreme value subject to the constraints asked for in the
(abe)'? < — exercise.
. . 45. Minimi D)= . . 2
That is, the geometric mean of three numbers is less than 5 21mmlze flx yzz) zxy +yz subject to the constraints x” +
. . y*—2=0and x*+z°—-2=0.

or equal to the arithmetic mean.
L B . . 2, 2

44. Let a),ay, ..., a, be n positive numbers. Find the maximum of 46. Minimize f(x,y, z) = xyz subject to the constraints x* + y

n . . n 2 l=0and x —z=0.
> i_i a;x; subject to the constraint ) ;_, x,? = 1.
47. Maximize f(x,y,z)=x%+ y*+ z> subject to the constraints
2y +4z—5=0and 4x> +4y> — 7> = 0.
48. Minimize f(x,y,z) = x*>+ y* + z? subject to the constraints
@ CAS Explorations and Projects x?—xy+y* =2 —1=0and x*+y* -1 =0.
In Exercises 45-50, use a CAS to perform the following steps imple- ~ 49. Minimize f(x, y, z, w) = x* + y* + z% + w? subject to the con-

menting the method of Lagrange multipliers for finding constrained

straints 2x —y+z—w—-1=0andx+y—z4+w—-1=0.

extrema:

a) Form the functionh = f — A,g; — A,g,, where f is the function
to optimize subject to the constraints g, = 0 and g, = 0.

50. Determine the distance from the line y = x + 1 to the parabola
y? = x. (Hint: Let (x, y) be a point on the line and (w, z) a point
on the parabola. You want to minimize (x — w)? + (y — 2)%.)

Taylor's Formula
y

Sta+ h,b+k)

Parametrized
segment
ink \ @+ th, b + tk),
a typical point
on the segment

Part of open region R

12.67 We begin the derivation of the
second derivative test at P(a, b) by
parametrizing a typical line segment
from P to a point S nearby.

This section uses Taylor’s formula (Section 8.10) to derive the second derivative
test for local extreme values (Section 12.8) and the error formula for linearizations
of functions of two independent variables (Section 12.4, Eq. 5). The use of Taylor’s
formula in these derivations leads to an extension of the formula that provides
polynomial approximations of all orders for functions of two independent variables.

The Derivation of the Second Derivative Test

Let f(x,y) have continuous partial derivatives in an open region R containing a
point P(a,b) where f, = f, =0 (Fig. 12.67). Let h and k be increments small
enough to put the point S(a + &, b + k) and the line segment joining it to P inside
R. We parametrize the segment PS as

X =a-+th, y =b+ tk, 0<r<l.

If F(t) = f(a+th, b+ tk), the Chain Rule gives
dx dy
F'(t) = fi— —— = hf, +kf,.
(t) fdt+f,»dl fx +kf,

Since f; and f, are differentiable (they have continuous partial derivatives),
F’ is a differentiable function of ¢ and

dF dx 9F'dy 8 9
=——+—"—"=— (hfi +kf,) -h+ — (hf. + kf,) -k
dx dt dy dt Bx(f+f') +8y(f+f')
h? fox + 2hkfoy + K £y

Since F and F’ are continuous on [0, 1] and F’ is differentiable on (0, 1), we can

F//

foo=1u
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apply Taylor’s formula with n = 2 and a = 0 to obtain

F(l) = F(0) + F'(0)(1 —0)+ F"(c)

(1-0)
2

1
F() = F(0)+F'(O)+§F”(c) (1)
for some ¢ between 0 and 1. Writing Eq. (1) in terms of f gives

fla+h,b+k)= f(a,b)+hfi(a,b)+kf,(a,b)

1
+ 5 (hzfxx + 2hkfX) + szyy) . (2)
(a+ch,b+ck)
Since f,(a, b) = f,(a, b) =0, this reduces to
|
f@+hb+k) = f@b) =3k fo+2hkfey + K fy,) @)
(a+ch,b+ck)

The presence of an extremum of f at (a,b) is determined by the sign of
fla+h,b+k)— f(a,b). By Eq. (3), this is the same as the sign of

Q(C) = (hzfxx + thfxy + szyy)l(a+ch,b+ck)~

Now, if Q(0) # 0, the sign of Q(c) will be the same as the sign of Q(0) for
sufficiently small values of 4 and k. We can predict the sign of

Q(0) = h’ fir(a, b) + 2hkfy(a, b) + k* f,,(a, b) @)

from the signs of fy, and f., fy, — f, 2 at (a, b). Multiply both sides of Eq. (3)
by f.» and rearrange the right-hand side to get

fxx Q(O) = (hfxx + kfxy)z + (fxxfyy - fxy 2)k2' (5)
From Eq. (5) we see that

1. If fir <Oand fix fyy — fiy 2> 0 at (a, b), then Q(0) < O for all sufficiently
small nonzero values of 4 and k, and f has a local maximum value at (a, b).

2. If fix > 0and fi, fyy — foy 2> 0 at (a, b), then Q(0) > 0 for all sufficiently
small nonzero values of 4 and k, and f has a local minimum value at (a, b).

3. If fixfoy — f,(y2 <0 at (a, b), there are combinations of arbitrarily small
nonzero values of A and k for which Q(0) > 0, and other values for which
Q(0) < 0. Arbitrarily close to the point Py(a, b, f(a, b)) on the surface z =
f(x, y) there are points above P, and points below Py, so f has a saddle point
at (a, b).

4. If firfyy — fry 2 =0, another test is needed. The possibility that Q(0) equals
zero prevents us from drawing conclusions about the sign of Q(c).

The Error Formula for Linear Approximations

We want to show that the difference E(x, y) between the values of a function
f(x,y) and its linearization L(x, y) at (xq, yo) satisfies the inequality

1 2

[E(x, y)| < EB(Ix — xol + |y — yol)".

The function f is assumed to have continuous second partial derivatives through-
out an open set containing a closed rectangular region R centered at (xo, yo)-
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The number B is the largest value that any of | fi.|, | fy,|, and | f;,| take on R.
The inequality we want comes from Eq. (2). We substitute xy and y, for a and
b, and x — xo and y — y, for & and k, respectively, and rearrange the result as

fx,y) = f(xo, yo) + fx(x0, yo)(x — x0) + f;(x0, Y0)(y — Yo)

linearization L(x, y)

1
t3 (O = x0) frr +2(x = X0)(y = Yo) fry + (¥ — yO)szy)|(Xn+c‘(x—X())J'U'FC(}'—,W))) :

error E(x,y)

This remarkable equation reveals that
|E| = % (Ix = xol?[ ferl +21x = xolly = yoll fis| + 1y = yol*I fin]) -
Hence, if B is an upper bound for the values of | fi.|, | fv,|, and | fy,| on R,
|E]

IA

1
7 (Ix = xol’B +2Ix — xolly — yo| B+ |y — yol*B)

IA

1
5B (% —xol +1y - yo)? .

Taylor's Formula for Functions of Two Variables

The formulas derived earlier for F' and F” can be obtained by applying to f(x, y)
the operators

) ) ) 3\? 92 92 92
h— + k— d h— +k— ) =h>— +2hk K—
( ax By) an ( ox ay) a2 T ey T e

These are the first two instances of a more general formula,

d" a a\"
FO) = — _<ha_ +k—) fx.y), (6)

which says that applying d"/dt" to F(t) gives the same result as applying the

operator
a n
ot ki)
dax ay

to f(x,y) after expanding it by the binomial theorem.

If partial derivatives of f through order n + 1 are continuous throughout a
rectangular region centered at (a, b), we may extend the Taylor formula for F(z)
to

// F(n) 0
F(t) = F(0)+ F'(0)t + —— ( ) 4. ~+¥t"+remainder,
n.
and take r = 1 to obtain
F"(0 F®™(0
F(1) = F(0)+ F'(0) + ( )+---+ '( )+remainder.

2!

When we replace the first n derivatives on the right of this last series by their
equivalent expressions from Eq. (6) evaluated at + = 0 and add the appropriate
remainder term, we arrive at the following formula.
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Taylor’s Formula for f(x, y) at the Point (a, b)

Suppose f(x, y) and its partial derivatives through order n 4 1 are continuous throughout an open rectangular region R
centered at a point (a, b). Then, throughout R,

1
f(a + h» b + k) = f(a« b) + (hfx + kf\')l(u.b) + §(h2fxx + 2hkfn + sz\'y)l(a.b)

1 1 "
+ ;(h3fxx.r + 3h2kfXX)' + 3hk2fr_\'_\' + k3f\'_\‘y)|(n.h) +---+ n_ (h—— + k—) f

!
1 9 9 n+1
h— 4+ k—
+(n+1)!( 3x+ 3y> f

@

(a+ch.b+ck)

The first n derivative terms are evaluated at (a, b). The last term is evaluated at
some point (a + ch, b + ck) on the line segment joining (a, b) and (a + h, b + k).
If (a, b) = (0, 0) and we treat 4 and k as independent variables (denoting them

now by x and y), then Eq. (7) assumes the following simpler form.

Taylor’s Formula for f(x, y) at the Origin
1
FOy) = FO,0) +xf+ 3fs + 57 fex + 260f0y + 57 fir)

| 1 "
+ :‘3_'(x3fxxx + 3-x2yfxxy + 3Xy2f\'\',\' + ny\'_vy) +---+ ;l_' (.X—— + y—> f

®

1 8 n+l
T (xa_x +y5) f

(cx.cy)

The first n derivative terms are evaluated at (0, 0). The last term is evaluated at a

point on the line segment joining the origin and (x, y).

Taylor’s formula provides polynomial approximations of two-variable func-
tions. The first n derivative terms give the polynomial; the last term gives the
approximation error. The first three terms of Taylor’s formula give the function’s

linearization. To improve on the linearization, we add higher power terms.

EXAMPLE 1 Find a quadratic f(x, y) = sin x sin y near the origin. How ac-

curate is the approximation if |x| < 0.1 and |y| < 0.1?

Solution We take n = 2 in Eq. (8):

|
fx,y) = f(0,0) + (xfi + yfi) + E(xzfn +2xyfor + Y2 frr)

1
+ 6(-x3fxxx + 3x2yfxxy' + 3-xy2fxv\'y + ny\~.\-y)(t'x<z'_v)

with
£(0.0) = sinx sin yloo) =0,  fix(0.0) = —sin x sin y|.0 = 0,
f<(0,0) = cos x sin y|g =0, f:r(0,0) = cos x cos ylw.o =1,
£(0,0) sin x cos yl«.0) = 0, £1,(0,0) = —sin x sin y|go =0,
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we have
1
sin x sin y * 04+0+0+ E(xZ(O) + 2xy(1) + y*(0)),
sin x sin y & xy.
The error in the approximation is

1
E(X, )’) = 6(x3fxxx + 3x2yfxxy + 3-Xy2fxyy + y3fyyy)|(cx,cy)-

The third derivatives never exceed 1 in absolute value because they are products of
sines and cosines. Also, |x| < 0.1 and |y| < 0.1. Hence

|E(x, y)| < é((0.1)3 +3(0.1)° +3(0.1)* + (0.1)®) < 2(0.1)3 < 0.00134

(rounded up). The error will not exceed 0.00134 if |x| < 0.1 and |y| <O0.1. d

Exercises 12.10

Finding Quadratic and Cubic Approximations 0. fix.y)= 1 10, Fix.y) = 1
In Exercises 1-10, use Taylor’s formula for f(x, y) at the origin to ' l-x—y ' | l—x—y+xy
find quadratic and cubic approximations of f near the origin. 11. Use Taylor’s formula to find a quadratic approximation of f(x, y)
1. f(x,y)=xe = cos x cos y at the origin. Estimate the error in the approxima-
3. f(x,y) =y sinx tion if |x| < 0.1 and |y| <0.1.
5. fx,y)=¢"In(1+y)
7. f(x,y) =sin(x? +y?)

2. f(x,y)=¢€"cosy

4. f(x,y) =sin x cos y

6. f(x,y)=In2x+y+1)
8. f(x,y) =cos(x?+y?

12. Use Taylor’s formula to find a quadratic approximation of e* sin y
at the origin. Estimate the error in the approximation if |x| < 0.1
and |y| <0.1.

CHAPTER QPR QUESTIONS TO GUIDE YOUR REVIEW

1. What is a real-valued function of two independent variables? 6. What can be said about algebraic combinations and composites

three independent variables? Give examples.

. What does it mean for sets in the plane or in space to be open?
closed? Give examples. Give examples of sets that are neither
open nor closed.

. How can you display the values of a function f(x,y) of two
independent variables graphically? How do you do the same for
a function f(x, y, z) of three independent variables?

. What does it mean for a function f(x, y) to have limit L as
(x,y) = (X0, Yo)? What are the basic properties of limits of func-
tions of two independent variables?

. When is a function of two (three) independent variables contin-
uous at a point in its domain? Give examples of functions that
are continuous at some points but not others.

of continuous functions?

7. Explain the two-path test for nonexistence of limits.

10.

11.

. How are the partial derivatives df/dx and df/dy of a function

f(x,y) defined? How are they interpreted and calculated?

. How does the relation between first partial derivatives and con-

tinuity of functions of two independent variables differ from the
relation between first derivatives and continuity for real-valued
functions of a single independent variable? Give an example.

What is Euler’s theorem for mixed second order partial deriva-
tives? How can it help in calculating partial derivatives of second
and higher orders? Give examples.

What does it mean for a function f(x, y) to be differentiable?
What does the Increment Theorem say about differentiability?
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12.

13.

14.

15.

16.

17.

CHAPTER

How can you sometimes decide from examining f, and f, that a
function f(x, y) is differentiable? What is the relation between
the differentiability of f and the continuity of f at a point?

How do you linearize a function f(x,y) of two independent
variables at a point (xg, yo)? Why might you want to do this?
How do you linearize a function of three independent variables?

What can you say about the accuracy of linear approximations
of functions of two (three) independent variables?

If (x, y) moves from (xy, yo) to a point (xy + dx, y, + dy) nearby,
how can you estimate the resulting change in the value of a dif-
ferentiable function f(x, y)? Give an example.

What is the Chain Rule? What form does it take for functions
of two independent variables? three independent variables? func-
tions defined on surfaces? How do you diagram these different
forms? Give examples. What pattern enables one to remember
all the different forms?

What is the derivative of a function f(x, y) at a point Py in the
direction of a unit vector u? What rate does it describe? What
geometric interpretation does it have? Give examples.

12

PRACTICE EXERCISES

18

19.

20.
21.

22,

23.

24.
25.

What is the gradient vector of a function f(x, y)? How is it re-
lated to the function’s directional derivatives? State the analogous
results for functions of three independent variables.

How do you find the tangent line at a point on a level curve
of a differentiable function f(x, y)? How do you find the tan-
gent plane and normal line at a point on a level surface of a
differentiable function f(x, y, z)? Give examples.

How can you use directional derivatives to estimate change?

How do you define local maxima, local minima, and saddle points
for a differentiable function f(x, y)? Give examples.

What derivative tests are available for determining the local ex-
treme values of a function f(x, y)? How do they enable you to
narrow your search for these values? Give examples.

How do you find the extrema of a continuous function f(x, y)
on a closed bounded region of the xy-plane? Give an example.

Describe the method of Lagrange multipliers and give examples.

How does Taylor’s formula for a function f(x, y) generate poly-
nomial approximations and error estimates?

Domain, Range, and Level Curves

In Exercises 1-4, find the domain and range of the given function

and

1.
3.

identify its level curves. Sketch a typical level curve.
flx,y) =9x2 +? 2. f(x,y)=e"

4. g(x.y)=yx*—y

gx,y)=1/xy

In Exercise 5-8, find the domain and range of the given function and
identify its level surfaces. Sketch a typical level surface.

5.
6.

7.

8.

fy, ) =x"+y —z
glx,y,2) = x> +4y> +97°
1
1

hix,y,z) =

k(x,y,z) =

Evaluating Limits

Find the limits in Exercises 9-14.

9.

11.

13.

. . 2+y
lim e cos x 10. 1 —_—
(vov)—(7.1n 2) (v.v)—(0.0) x + cos y
3.3
. xX—=y . x7y? —1
lim ——— 12. lim —
=) x2 —y2 o= xy — 1
(e
Iim  Injx 4+ y+z2|
)

P—(l.—1l.e

14.

lim

tan~'(x +y +2)
P—(l.-1.-1)

By considering different paths of approach, show that the limits in
Exercises 15 and 16 do not exist.

15.

17.

24,2
Y 16. . X“+y

lim
(x.v)—(0.0)
xy#0

im
=00 x2 —y
v#£x2

a) Let f(x,y) = (x> — y)/(x* + y?) for (x, y) # (0,0). Isit
possible to define f (0, 0) in a way that makes f continuous
at the origin? Why?

18. Let

b) Let
sin (x — y)
—— |xI+Iyl#0,
fx,y)y =1 IxI+1yl
0, (x,y) =(0,0).
Is f continuous at the origin? Why?
sin 6r
—, 0,
fro=1"6 "7

I, r=0,

where r and 6 are polar coordinates. Find

a) lim f(rn6) b) f(0.0) ¢ fo(r.6), r#0
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Partial Derivatives

In Exercises 19-24, find the partial derivative of the function with
respect to each variable.

19. g(r,0) =r cos 6 +r sin 0
1 ) 2 Y
20. f(x,y):z In(x“+ y°) +tan 1Y
x

| | |
21. f(Ri, Ry, Ry) = — + — + —

Ry R, R;
22, h(x,v,z) =sin(Rrx +y — 32)
nRT
23. P(n,R, T, V)= Vv (the Ideal Gas Law)
1 T
24, f(r,|.T,w)=—,| —
2rl ¥V mw

Second Order Partials

Find the second order partial derivatives of the functions in Exercises
25-28.

X
25. gx,y)=y+ .

26. g(x,y)=e€'+ ysinx
27. f(x,y)=x+xy—=5x +In(x>+1)
28. f(x,y)=y>—3xy+cosy+7e"

Linearizations

In Exercises 29 and 30, find the linearization L(x, y) of the function
f(x, y) at the point Py. Then find an upper bound for the magnitude of
the error E in the approximation f(x, y) & L(x, y) over the rectangle
R.

29. f(x,y) =sinxcosy, Py(r/4 7/4)

R: ‘x - %] <o.1, |y— %’ <0.1
30. f(x,y)=xy—=3y"+2, Pyl 1)
R: |x—1]<0.1, |y—11<02
Find the linearizations of the functions in Exercises 31 and 32 at the
given points.
31. f(x,y.z2) =xy+2yz—3xzat(l,0,0)and (1, 1, 0)

32. f(x.y,z)=+/2cos x sin(y+z) at (0,0, /4) and
(m/4,7/4,0)

Practice Exercises 995

Estimates and Sensitivity to Change

33. You plan to calculate the volume inside a stretch of pipeline
that is about 36 in. in diameter and 1 mi long. With which
measurement should you be more careful—the length, or the
diameter? Why?

34. Near the point (1, 2), is f(x,y) = x> — xy + y? — 3 more sen-
sitive to changes in x, or to changes in y? How do you know?

35. Suppose that the current / (amperes) in an electrical circuit is
related to the voltage V' (volts) and the resistance R (ohms) by
the equation / = V/R. If the voltage drops from 24 to 23 volts
and the resistance drops from 100 to 80 ohms, will / increase,
or decrease? By about how much? Express the changes in V
and R and the estimated change in / as percentages of their
original values.

36. If « =10 cm and b = 16 cm to the nearest millimeter, what
should you expect the maximum percentage error to be in the
calculated area A = mab of the ellipse x>/a® + y*/b* = 1?

37. Let y = uv and z = u + v, where u and v are positive indepen-
dent variables.

a) If u is measured with an error of 2% and v with an error
of 3%, about what is the percentage error in the calculated
value of y?

b) Show that the percentage error in the calculated value of
z is less than the percentage error in the value of y.

H 3s.

Cardiac index. To make different people comparable in studies
of cardiac output (Section 2.7, Exercise 25), researchers divide
the measured cardiac output by the body surface area to find
the cardiac index C:

cardiac output
" body surface area’

The body surface area B is calculated with the formula
B = 71.84w"425 40725

which gives B in square centimeters when w is measured in
kilograms and 4 in centimeters. You are about to calculate the
cardiac index of a person with the following measurements:

Cardiac output: 7 L/min
Weight: 70 kg
Height: 180 cm

Which will have a greater effect on the calculation, a 1-kg er-
ror in measuring the weight, or a 1-cm error in measuring the
height?

Chain Rule Calculations
39. Find dw/dt att =0 if w=sin(xy+m),x =¢', and y =
In(t 4+ 1).

40. Find dw/dt att = | if w = xe' + y sin z —cos z, x = 2/1,
y=t—1+Int, z=mt.
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41. Find dw/dr and dw/ds when r = and s =0 if w =
sin(2x — y),x =r+sins,y =rs.
42. Find dw/du and dw/dv whenu = v =0if w =In /1 +x2 —

tan~! x and x = 2¢“ cos v.

43. Find the value of the derivative of f(x,y,z) =xy+ yz+x2
with respect to ¢ on the curve x = cos ¢, y = sin ¢, 7 = cos 2t
attr = 1.

44. Show that if w = f(s) is any differentiable function of s and if
s =y + 5x, then

Jw ow

— =0.
ax ay
Implicit Differentiation

Assuming that the equations in Exercises 45 and 46 define y as a
differentiable function of x, find the value of dy/dx at point P.

45. 1—x —y*—sinxy=0, P(0,1)
46. 2xy + Y —=2=0, P(0, In?2)

Partial Derivatives with Constrained Variables
In Exercises 47 and 48, begin by drawing a diagram that shows the
relations among the variables.

47. If w = x%’% and z = x*> — y?, find

) (aw) (Bw) o <8w)
a - i =
ay /, az /, 3z ),

48. Let U = f(P, V,T) be the internal energy of a gas that obeys

the ideal gas law PV =nRT (n and R constant). Find

U U
v (57), v (&),

Directional Derivatives

In Exercises 49-52, find the directions in which f increases and
decreases most rapidly at Py and find the derivative of f in each
direction. Also, find the derivative of f at Py in the direction of the
vector A.

49. f(x,y)=cosxcosy, Po(r/4,m/4), A=3i+4j
50. f(x,y)=x%"%, Py(l,0), A=i+j
51. f(x,y,2)=InQ2x +3y+62), Po(—1,—1,1),

A=2i+3j+6k

52, f(x,y,2)=x>+3xy—22+2y+z+4,
Py(0,0,0), A=i+j+k

53. Find the derivative of f(x, y, z) = xyz in the direction of the
velocity vector of the helix

r(t) = (cos 3r)i+ (sin 3r) j+ 3tk
att =m/3.

54. What is the largest value that the directional derivative of
f(x,y,z) = xyz can have at the point (1, 1, 1)?

55. At the point (1, 2) the function f(x, y) has a derivative of 2 in
the direction toward (2, 2) and derivative of —2 in the direction
toward (1, 1).

a) Find f.(1,2) and f,(1,2).
b) Find the derivative of f at (1, 2) in the direction toward
the point (4, 6).

56. Which of the following statements are true if f(x, y) is differ-
entiable at (xq, yo)?

a) If u is a unit vector, the derivative of f at (xo, yo) in the
direction of u is (f;(xo, Yo) i+ fy(x0, Y0)J) * u.

b) The derivative of f at (xq, yo) in the direction of u is a
vector.

¢) The directional derivative of f at (xg, yo) has its greatest
value in the direction of Vf.

d) At (xo, yo), vector V f is normal to the curve f(x,y) =

S (xo0, yo)-

Gradients, Tangent Planes, and Normal Lines

In Exercises 57 and 58, sketch the surface f(x,y,z) = c together
with V f at the given points.

57. x2+y+22=0; (0,—1,%1),
58. y2+z2=4; (2,%£2,0),

(0,0,0)
(2,0,£2)
In Exercises 59 and 60, find an equation for the plane tangent to

the level surface f(x, Yy, z) = c at the point Py. Also, find parametric
equations for the line that is normal to the surface at Py.

59. x2—y—5z=0, Py2,—-1,1)
60. x>+ +z=4, Py(l,1,2)
In Exercises 61 and 62, find an equation for the plane tangent to the
surface z = f(x, y) at the given point
0,1,0)
1,1,1/2)

In Exercises 63 and 64, find equations for the lines that are tangent
and normal to the level curve f(x, y) = c at the point Py. Then sketch
the lines and level curve together with V f at P,.

61. z =In(x? + y?),
62. z=1/(x*>+y?),

63. y—sinx =1, Py(r,1)
2 2
y X 3

64, — — — =—, Py(,2
> ) 0(1,2)

Tangent Lines to Curves

In Exercises 65 and 66, find parametric equations for the line that is
tangent to the curve of intersection of the surfaces at the given point.

65. Surfaces: x2+4+2y+2z=4, y=1
Point: (1, 1, 172)

66. Surfaces: x+y’4+z=2, y=1
Point: (172, 1, 1/2)



Local Extrema

Test the functions in Exercises 67-72 for local maxima and minima
and saddle points. Find each function’s values at these points.

67.
68.
69.
70.
71.
72.

f.y)=x?—xy+y’ +2x+2y—4
fx,y) =5x2+4xy —2y? +4x — 4y
fx,y) =2x3 +3xy +2y°
fOo,y)y=x>+y*-3xy+15
fox,y)=x3 4y +3x% = 3y?
fx,y) =x*—8x% 4+ 3y* — 6y

Absolute Extrema

In Exercises 73-80, find the absolute maximum and minimum values
of f on the region R.

73.

74.

75.

76.

71.

78.

79.

80.

f,y)=x*+xy+y>—3x+3y
R : The triangular region cut from the first quadrant by the
linex+y=4

fo,y)=x*—y*—2x+4y+1
R : The rectangular region in the first quadrant bounded by
the coordinate axes and the lines x =4 and y =2

f,y)y=y"—xy—3y+2x

R : The square region enclosed by the lines x = +2 and
y==%2

flxr,y) =2x 42y —x? = y?

R : The square bounded by the coordinate axes and the lines
x =2,y =2 in the first quadrant

f,y) =x*—y>—2x +4y

R : The triangular region bounded below by the x-axis, above
by the line y = x 4+ 2, and on the right by the line x =2
flx,y)=4xy—x*—y*+16

R : The triangular region bounded below by the line y = —2,
above by the line y = x, and on the right by the line x =2
f,y)=x 4y +3x2 = 3)°

R : The square region enclosed by the lines x = £1 and
y==1

fo,)=x"+3xy+y +1

R : The square region enclosed by the lines x ==+1 and
y==1

Lagrange Multipliers

81.

82.

83.

84.

Find the extreme values of f(x, y) = x* + y? on the circle x? +
y2=1.

Find the extreme values of f(x,y) = xy on the circle x2+
y2=1.

Find the extreme values of f(x, y) = x2 + 3y? + 2y on the unit
disk x2 +y* < 1.

Find the extreme values of f(x, y) = x?> + y*> — 3x — xy on the
disk x% 4+ y* < 9.

85.

86.
87.

88.

89.

90.

997

Practice Exercises

Find the extreme values of f(x,y,z) =x — y + z on the unit
sphere x2 4+ y?> + 72 = 1.

Find the points on the surface z> — xy = 4 closest to the origin.

A closed rectangular box is to have volume V cm?®. The cost of
the material used in the box is a cents/cm? for top and bottom, b
cents/cm? for front and back, and ¢ cents/cm? for the remaining
sides. What dimensions minimize the total cost of materials?

Find the plane x/a + y/b + z/c =1 that passes through the
point (2, 1, 2) and cuts off the least volume from the first octant.

Find the extreme values of f(x, y,z) = x(y + z) on the curve
of intersection of the right circular cylinder x> + y*> = | and the
hyperbolic cylinder xz = 1.

Find the point closest to the origin on the curve of intersection
of the plane x + y + z = 1 and the cone z? = 2x? + 2y

Theory and Examples

91.

92.

93.

9.

9s.

96.

97.

98.

Let w= f(r,0),r=/x>+y2? and 6 =tan"!(y/x). Find
dw/dx and dw/dy and express your answers in terms of r
and 6.

Let z = f(u,v),u =ax + by, and v =ax — by. Express z,
and z, in terms of f,, f,, and the constants a and b.

If @ and b are constants, w = u® + tanh u + cos u, and u =

ax + by, show that
0 a
a ¥ _p2*
dy ox

Fw=Inx>+y>4+22), x=r+s, y=r—s,and z = 2rs,
find w, and w; by the Chain Rule. Then check your answer
another way.

The equations e“ cosv —x =0 and e“sin v — y = 0 define u
and v as differentiable functions of x and y. Show that the angle
between the vectors

is constant.

Introducing polar coordinates x =r cos § and y =r sin 6
changes f(x,y) to g(r,6). Find the value of 3>g/36? at the
point (r, 0) = (2, w/2), given that

of _of _ 0 _%f _,

ax 9y ox2 9yr
at that point.

Find the points on the surface
O+ +@c@-x)’=16
where the normal line is parallel to the yz-plane.
Find the points on the surface
xy+yz+zx—x—22=0

where the tangent plane is parallel to the xy-plane.
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99. Suppose that V f(x, y, z) is always parallel to the position vector
xi+ yj+ zk. Show that f(0,0,a) = f(0,0, —a) for any a.

100. Show that the directional derivative of
fx,y,2)=Vx2+y2+ 22

at the origin equals | in any direction but that f has no gradient
vector at the origin.

CHAPTER [PA

102. a)

101. Show that the line normal to the surface xy + z = 2 at the point

(1, 1, 1) passes through the origin.

Sketch the surface x2 — y? + 7% = 4.

b) Find a vector normal to the surface at (2, —3, 3). Add the
vector to your sketch.

¢) Find the equations for the tangent plane and normal line

at (2, -3, 3).

ADDITIONAL EXERCISES—THEORY, EXAMPLES, APPLICATIONS

Partial Derivatives

1. If you did Exercise 50 in Section 12.2, you know that the function
22
Xy ——, , 0,0
YTy 0200

0, (x,y)=1(0,0)

flx,y)=

(see the accompanying figure) is continuous at (0, 0). Find
f\'\ (01 0) and .f\\’(oi 0)’

(Generated by Mathematica)

2. Find a function w = f(x, y) whose first partial derivatives are
dw/dx =1+ e* cos y and dw/dy = 2y — e* sin y, and whose
value at the point (In 2, 0) is In 2.

3. A proof of Leibniz’s rule. Leibniz’s rule says that if f is con-
tinuous on [a, b] and if u(x) and v(x) are differentiable functions
of x whose values lie in [a, b], then

d W dv du
Ix o f@)yde = f(v(x))g; - f(M(x))g;

Prove the rule by setting
g(u,v) = / fyde, u=ux), v=uv(x)

and calculating dg/dx with the Chain Rule.
4. Suppose that f is a twice-differentiable function of r, that r =
Vx2+ y* + 22, and that

foe i+ fi: =0.

Show that for some constants a and b,

frn=2+b
;

5. Homogeneous functions. A function f(x,y) is homogeneous
of degree n (n a nonnegative integer) if f(tx,ty) =1t" f(x,y) for
all ¢, x, and y. For such a function (sufficiently differentiable),
prove that

a a
a) x—j: +y—£ =nf(x,y)
dx ay

% f 2 f % f
b 2 — 2 =)= -Df
b (axZ) * ”(axay> Y (ay2> nen= DI
6. Spherical coordinates. Let r = xi+ yj+ zk. Express x,y,
and z as functions of the spherical coordinates p, ¢, and 6 and

calculate dr/dp, dr/d¢, and dr/ad6. Then express these deriva-
tives in terms of the unit vectors

u, = (sin ¢ cos )i+ (sin ¢ sin 6) j + (cos ) k
u, = (cos ¢ cos 0)i+ (cos ¢ sinf) j — (sin p) k
uy = —(sin 0) i+ (cos 0) j.

Gradients and Tangents

7. Letr=xi+yj+zkand let r = [r|.
a) Show that Vr =r/r.
b) Show that V(r") = nr" ?r.
¢) Find a function whose gradient equals r.
d) Show thatr«dr=rdr.
e) Show that V(A - r) = A for any constant vector A.

8. Suppose that a differentiable function f(x, y) has the constant
value ¢ along the differentiable curve x = g(t), y = h(t); that is,

fg®),h(t)) =c

for all values of . Differentiate both sides of this equation with
respect to ¢ to show that V f is orthogonal to the curve’s tangent
vector at every point on the curve.

9. Show that the curve

r(¢) =(nni+@¢nrnj+rk



10.

11.

12.

is tangent to the surface
xz> — yz+cosxy =1
at (0, 0, 1).

Show that the curve

r L[4 .
r(t) = (Z—Z) l+(;—3>J+COS(t—2)k

is tangent to the surface

By 4P —xyz=0
at (0, —1, 1).
The gradient in cylindrical coordinates. Suppose cylindrical
coordinates r, 6, z are introduced into a function w = f(x, y, z)
to yield w = F(r, 6, z). Show that
_dw 1w Jw

vw = Ly, 4 - Ly, + 2k, 1
R O AP M

where
u, = (cos 0)i—+ (sin 0)j
uy = —(sin 0) i+ (cos 0) j.
(Hint: Express the right-hand side of Eq. (1) in terms of i, j, and

k and use the Chain Rule to express the components of i, j, and
k in rectangular coordinates.)

The gradient in spherical coordinates. Suppose spherical co-
ordinates p, ¢, 0 are introduced into a function w = f(x.y, z)
to yield a function w = F(p, ¢, 6). Show that

ow 1 dw 1 ow
_up + —

MW e+ — ., 2
0 T ™ Ssing a0 ™ @

Vw =

where
u, = (sin ¢ cos 0) i+ (sin ¢ sin ) j + (cos ¢) k
u, = (cos ¢ cos 8)i+ (cos ¢ sin 0) j — (sin p) k

ug = —(sin )i+ (cos 6) j.

(Hint: Express the right-hand side of Eq. (2) in terms of i, j, and
k and use the Chain Rule to express the components of i, j, and
Kk in rectangular coordinates.)

Extreme Values

13.

14.

15.

Show that the only possible maxima and minima of z on the sur-
face z = x> 4+ y* — 9xy + 27 occur at (0, 0) and (3, 3). Show that
neither a maximum nor a minimum occurs at (0, 0). Determine
whether z has a maximum or a minimum at (3, 3).

Find the maximum value of f(x, y) = 6xye~>**3") in the closed
first quadrant (includes the nonnegative axes).

Find the minimum volume for a region bounded by the planes
x =0,y =0,z=0 and a plane tangent to the ellipsoid

XZ y2 ZZ
a? b ?

at a point in the first octant.

Additional Exercises-Theory, Examples, Applications

16.

999

By minimizing the function f(x,y,u,v) = (x — u)> + (y — v)?
subject to the constraints y = x + 1 and u = v?, find the min-
imum distance in the xy-plane from the line y = x + | to the
parabola y? = x.

Theory and Examples

17.

18.

19.

20.

21.

22.

23.

24.

Prove the following theorem: If f(x,y) is defined in an open
region R of the xy-plane, and if f, and f, are bounded on R,
then f(x, y) is continuous on R. (The assumption of boundedness
is essential.)

Suppose r(t) = g(t1)i+ h(t) j+ k(1) Kk is a smooth curve in the
domain of a differentiable function f(x, y, z). Describe the rela-
tion between df/dt, V f, and v = dr/dt. What can be said about
V f and v at interior points of the curve where f has extreme
values relative to its other values on the curve? Give reasons for
your answer.

Suppose that f and g are functions of x and y such that

of  9g of  og
dy  ox ax 9y’
and suppose that
af
r =0, f(1,2)=g(1,2)=5, and f(0,0) =4

Find f(x,y) and g(x, y).

We know that if f(x, y) is a function of two variables and if u =
ai+ bjisaunitvector, then D, f(x,y) = fi(x,y)a+ f,(x, y)b
is the rate of change of f(x,y) at (x,y) in the direction of u.
Give a similar formula for the rate of change of the rate of change
of f(x,y) at (x,y) in the direction u.

Path of a heat-seeking particle. A heat-seeking particle has
the property that at any point (x, y) in the plane it moves in the
direction of maximum temperature increase. If the temperature
at (x,y)is T(x,y) = —e~2¥ cos x, find an equation y = f(x)
for the path of a heat-seeking particle at the point (7 /4, 0).

A particle traveling in a straight line with constant velocity i+
j — 5k passes through the point (0, 0, 30) and hits the surface
z = 2x% + 3y?. The particle ricochets off the surface, the angle
of reflection being equal to the angle of incidence. Assuming
no loss of speed, what is the velocity of the particle after the
ricochet? Simplify your answer.

Let S be the surface that is the graph of f(x,y)=10— x> —
y2. Suppose the temperature in space at each point (x, y, 7) is
T(x,y,2) =x>y+y*z2+4x+ 14y +z.

a) Among all of the possible directions tangential to the surface
S at the point (0, 0, 10), which direction will make the rate
of change of temperature at (0, 0, 10) a maximum?

b) Which direction tangential to S at the point (1, 1, 8) will
make the rate of change of temperature a maximum?

On a flat surface of land, geologists drilled a borehole straight
down and hit a mineral deposit at 1000 ft. They drilled a second
borehole 100 ft to the north of the first and hit the mineral deposit
at 950 ft. A third borehole 100 ft east of the first borehole struck
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the mineral deposit at 1025 ft. The geologists have reasons to
believe that the mineral deposit is in the shape of a dome and for
the sake of economy they would like to find where the deposit is
closest to the surface. Assuming the surface to be the xy-plane,
in what direction from the first borehole would you suggest the
geologists drill their fourth borehole?

The One-Dimensional Heat Equation

If w(x,t) represents the temperature at position x at time ¢ in a
uniform conducting rod with perfectly insulated sides (see the ac-
companying figure), then the partial derivatives w,, and w, satisfy a
differential equation of the form

x here at time ¢.

w(x, 1) is the temperature
1

|
|
|
|
|
|
|
I
|
I

i
|
X

This equation is called the one-dimensional heat equation. The value
of the positive constant ¢? is determined by the material from which

the rod is made. It has been determined experimentally for a broad
range of materials. For a given application one finds the appropriate
value in a table. For dry soil, for example, ¢ = 0.19 ft*/day.

In chemistry and biochemistry, the heat equation is known as the
diffusion equation. In this context, w(x, t) represents the concentra-
tion of a dissolved substance, a salt for instance, diffusing along a tube
filled with liquid. The value of w(x,t) is the concentration at point
x at time 7. In other applications, w(x, t) represents the diffusion of
a gas down a long, thin pipe.

In electrical engineering, the heat equation appears in the forms

vex = RCv, 4)
and
ixx = RCi!s (5)

which are known as the telegraph equations. These equations de-
scribe the voltage v and the flow of current i in a coaxial cable or in
any other cable in which leakage and inductance are negligible. The
functions and constants in these equations are

v(x,t) = voltage at point x at time ¢

R = resistance per unit length

C = capacitance to ground per unit of cable length
i(x,t) = current at point x at time .

25. Find all solutions of the one-dimensional heat equation of the
form w = e"" sin wx, where r is a constant.

26. Find all solutions of the one-dimensional heat equation that have
the form w = ¢’ sin kx and satisfy the conditions that w(0, 1) =
0 and w(L, t) = 0. What happens to these solutions as t — oco0?



