CHAPTER

Multiple Integrals

OVERVIEW The problems we can solve by integrating functions of two and three
variables are similar to the problems solved by single-variable integration, but more
general. As in the previous chapter, we can perform the necessary calculations by
drawing on our experience with functions of a single variable.

Double Integrals

We now show how to integrate a continuous function f(x,y) over a bounded
region in the xy-plane. There are many similarities between the “double” integrals
we define here and the “single” integrals we defined in Chapter 4 for functions
of a single variable. Every double integral can be evaluated in stages, using the
single-integration methods already at our command.

Double Integrals over Rectangles
Suppose that f(x, y) is defined on a rectangular region R given by

R: a<x<b, c<y<d.

We imagine R to be covered by a network of lines parallel to the x- and y-axes
(Fig. 13.1). These lines divide R into small pieces of area AA = AxAy. We number

these in some order AA;, AA,, ..., AA,, choose a point (x;, y) in each piece AA,
and form the sum
y n
s So =Y f( yi) AAs. €
k=1
R AA; If f is continuous throughout R, then, as we refine the mesh width to make both

X R Ax and Ay go to zero, the sums in (1) approach a limit called the double integral
: Ax L of f over R. The notation for it is
k

L //f(x,y)dA or //f(x,y)dxdy.
R R

! Ly

o a b Thus,

13.1 Rectangular grid partitioning the T <

region R into small rectangles of area fx,y)dA = lim Z J (X, Yo AA. )
AAy = AxAyy. R k=1
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R,

[[rxyan = [[ fxyaa + [[ fenaa
Rl R2

RIUR2

13.2 Double integrals have the same
kind of domain additivity property that
single integrals have.

13.3 Approximating solids with
rectangular prisms leads us to define the
volumes of more general prisms as
double integrals. The volume of the prism
shown here is the double integral of

f(x, y) over the base region R.

As with functions of a single variable, the sums approach this limit no matter how
the intervals [a, b] and [c, d] that determine R are partitioned, as long as the norms
of the partitions both go to zero. The limit in (2) is also independent of the order
in which the areas AA; are numbered and independent of the choice of the point
(xx, yx) within each AA,. The values of the individual approximating sums S,
depend on these choices, but the sums approach the same limit in the end. The
proof of the existence and uniqueness of this limit for a continuous function f is
given in more advanced texts. The continuity of f is a sufficient condition for the
existence of the double integral, but not a necessary one. The limit in question
exists for many discontinuous functions as well.

Properties of Double Integrals

Like single integrals, double integrals of continuous functions have algebraic prop-
erties that are useful in computations and applications.

1. //kf(x,y)a’A =k // f(x,y)dA (any number k)
R R

2. /f(f(x.wig(x,y))dA :f/ f(x,y)dAi/ g(r,y)dA
R

R R

3. //f(x,y)dAzO if f(x,y)>0o0nR
R

4. //f(x,y)dAzf/g(x,y)dA if f(x,y)>g(x,y)onR
R R

These are like the single-integral properties in Section 4.5. There is also an additivity
property:

5. /R/ fx,y)dA :// f(x,y)dA+/l;:/ fx,y)dA.

R

It holds when R is the union of two nonoverlapping rectangles R, and R,
(Fig. 13.2). Again, we omit the proof.

Double Integrals as Volumes

When f(x, y) is positive, we may interpret the double integral of f over a rect-
angular region R as the volume of the solid prism bounded below by R and
above by the surface z = f(x, y) (Fig. 13.3). Each term f(x;, yx) AA, in the sum
Sy =Y f(xi, y) AA; is the volume of a vertical rectangular prism that approx-
imates the volume of the portion of the solid that stands directly above the base
AA;. The sum S, thus approximates what we want to call the total volume of the
solid. We define this volume to be

Volume = lim §, = /f f(x,y)dA. (3)
R

As you might expect, this more general method of calculating volume agrees
with the methods in Chapter 5, but we will not prove this here.



y=1
x A= @-x-ya

13.4 To obtain the cross-section area
A(x), we hold x fixed and integrate with
respect to y.

x=2
x AQ =[x = ydx

13.5 To obtain the cross-section area
A(y), we hold y fixed and integrate with
respect to x.
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Fubini's Theorem for Calculating Double Integrals

Suppose we wish to calculate the volume under the plane z = 4 — x — y over the
rectangular region R: 0 < x <2, 0 < y < 1 in the xy-plane. If we apply the method
of slicing from Section 5.2, with slices perpendicular to the x-axis (Fig. 13.4), then
the volume is

x=2
/ A(x) dx, (4)
x=0

where A(x) is the cross-section area at x. For each value of x we may calculate
A(x) as the integral

y=I1
A(x) =/ 4—-x-y)dy, (5)
y=0

which is the area under the curve z = 4 — x — y in the plane of the cross section at
x. In calculating A(x), x is held fixed and the integration takes place with respect
to y. Combining (4) and (5), we see that the volume of the entire solid is

x=2 x=2 y=1
Volume = / A(x)dx = / </ (4-x— y)dy> dx
x=0 x=0 y=0 ©
x=2 2 y=1 x=2 /7 7 272
= 4y—xy—— dx = ——x)dx=|-x-— =5.
x=0 2 y=0 x=0 2 2 2 0

If we had just wanted to write instructions for calculating the volume, without
carrying out any of the integrations, we could write

2 pl
Volume :/ f(4—x—y)dydx.
0o Jo

The expression on the right, called an iterated or repeated integral, says that the
volume is obtained by integrating 4 — x — y with respectto y fromy =0to y = 1,
holding x fixed, and then integrating the resulting expression in x with respect to
x fromx =0tox =2.

What would have happened if we had calculated the volume by slicing with
planes perpendicular to the y-axis (Fig. 13.5)? As a function of y, the typical
cross-section area is

x=2 xz x=2
A(y)=/ (4—x—y)dx=[4x—7—xy} =6—2y. 7

=0 x=0
The volume of the entire solid is therefore
1

y=1 y=1
Volume = f A(y)dy = f (6 —2y)dy = [6y - yﬂ =5,
y=0 y=0 0
in agreement with our earlier calculation.
Again, we may give instructions for calculating the volume as an iterated
integral by writing

1 p2
Volume = / f 4—x—y)dxdy.
o Jo

The expression on the right says we can find the volume by integrating 4 —x — y
with respect to x from x = 0 to x = 2 (as in Eq. 7) and integrating the result with
respect to y from y = 0 to y = 1. In this iterated integral the order of integration
is first x and then y, the reverse of the order in Eq. (6).
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What do these two volume calculations with iterated integrals have to do with
the double integral

/ @4—-—x—y)dA

R

over the rectangle R : 0 < x <2, 0 <y < 1? The answer is that they both give the
value of the double integral. A theorem published in 1907 by Guido Fubini (1879-
1943) says that the double integral of any continuous function over a rectangle can
be calculated as an iterated integral in either order of integration. (Fubini proved
his theorem in greater generality, but this is how it translates into what we’re doing
now.)

Theorem 1
Fubini’s Theorem (First Form)

If f(x,y) is continuous on the rectangular region R:a <x <b, c <y <
d, then

d b b d
fff(x,y>dA=f/ f(x,y>dxdy=/f Fx, y)dyds.

R

Fubini’s theorem says that double integrals over rectangles can be calculated
as iterated integrals. This means we can evaluate a double integral by integrating
with respect to one variable at a time.

Fubini’s theorem also says that we may calculate the double integral by in-
tegrating in either order, a genuine convenience, as we will see in Example 3.
In particular, when we calculate a volume by slicing, we may use either planes
perpendicular to the x-axis or planes perpendicular to the y-axis.

EXAMPLE 1 Calculate [ fR f(x,y) dA for
fx,y)=1—-6x>y and R: 0<x<2, —-1<y<l.

Solution By Fubini’s theorem,
x=2

12 1
//f(x,y)dA:f / (1—6x2y)dxdy=/ |:x—2x3y] dy
-1Jo -1 x=0
R | |
=/ (2 - 16y)dy = [2y—8y2] =4.
-1 -

Reversing the order of integration gives the same answer:

2 pl 2 y=I
f/ (1—6x2y)dydx:/ |:y—3x2y2j| dx
0J-1 0 y=-1
2 2
=/ [(1—3x2)—(—1—3x2)]dx=/ 2dx =4.
0 0

a
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13.6 A rectangular grid partitioning a
bounded nonrectangular region into cells.

R=R, R,

fff(x, y) dA =fff(x, y) dA +f flx,y)dA

R R R

o]

1 2

13.7 The additivity property for
rectangular regions holds for regions
bounded by continuous curves.

z=f(x,y)
Height = f(x;, )

(X M) A,

Volume = lim 2 f(x,, y,) AA, = ﬂ flx,y)dA
YR

13.8 We define the volumes of solids
with curved bases the same way we
define the volumes of solids with
rectangular bases.
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wm Technology Multiple Integration Most Computer Algebra Systems can

o

. calcuate both multiple and iterated integrals. The typical procedure is to apply
the CAS integrate command in nested iterations according to the order of in-

tegration you specify:

SLh e e

Integral Typical CAS Formulation

// x?ydxdy

/4 1
/ / x cos ydxdy int(int(x* cos(y), x =0 .. 1),y = —Pi/3 . . Pi/4);
-r/3J0

int(int(x ~ 2 *y, x), y);

¢ If a CAS cannot produce an exact value for a definite integral, it can usually
% find an approximate value numerically.

Double Integrals over Bounded
Nonrectangular Regions

To define the double integral of a function f(x, y) over a bounded nonrectangular
region, like the one shown in Fig. 13.6, we again imagine R to be covered by a
rectangular grid, but we include in the partial sum only the small pieces of area
AA = AxAy that lie entirely within the region (shaded in the figure). We number
the pieces in some order, choose an arbitrary point (x;, yx) in each AAy, and form
the sum

Sn = Zf(xk’)’k) AAy.
k=1

The only difference between this sum and the one in Eq. (1) for rectangular regions
is that now the areas AA; may not cover all of R. But as the mesh becomes
increasingly fine and the number of terms in S, increases, more and more of R
is included. If f is continuous and the boundary of R is made from the graphs
of a finite number of continuous functions of x and/or continuous functions of y
joined end to end, then the sums S, will have a limit as the norms of the partitions
that define the rectangular grid independently approach zero. We call the limit the
double integral of f over R:

fff(x,y)dA = Al/iaTto(xk’yk)AA"'

R

This limit may also exist under less restrictive circumstances.

Double integrals of continuous functions over nonrectangular regions have
the same algebraic properties as integrals over rectangular regions. The domain
additivity property corresponding to property 5 says that if R is decomposed into
nonoverlapping regions R, and R, with boundaries that are again made of a finite
number of line segments or smooth curves (see Fig. 13.7 for an example), then

//f(x,y)dA =/R]/f(X,y)dA+/Rz/f(x,y)dA.

R

If f(x,y) is positive and continuous over R (Fig. 13.8), we define the volume
of the solid region between R and the surface z = f(x, y) to be [ [, f(x,y)dA.,
as before.
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y =8,

13.9 The area of the vertical slice shown
here is

g2(x)

A() = / £(x, y) dy.
g1(x)

To calculate the volume of the solid, we

integrate this area from x =a tox = b.

hz()’)
A(y) = Sf(x, y)dx

z=f(x,y) ()

x = hz(y)

13.10 The volume of the solid shown
here is

d d pha(y)
/ Aly)dy = / / £(x, y) dx dy.
C c hl(}’)

If R is a region like the one shown in the xy-plane in Fig. 13.9, bounded
“above” and “below” by the curves y = g,(x) and y = g,(x) and on the sides
by the lines x = a, x = b, we may again calculate the volume by the method of
slicing. We first calculate the cross-section area

y=8,(x)
a = [ senay
y=g,(x)

and then integrate A(x) from x =a to x = b to get the volume as an iterated

integral:
b b pg,x)
1% =/ A(x)dx:f f f(x,y)dydx. (8)
a a g

,(x)

Similarly, if R is a region like the one shown in Fig. 13.10, bounded by the
curves x = h,(y) and x = h,(y) and the lines y = ¢ and y = d, then the volume
calculated by slicing is given by the iterated integral

d  pha(y)
Volume = / / f(x,y)dxdy. 9)
c h

1(y)

The fact that the iterated integrals in Egs. (8) and (9) both give the volume that
we defined to be the double integral of f over R is a consequence of the following
stronger form of Fubini’s theorem.

Theorem 2
Fubini’s Theorem (Stronger Form)
Let f(x,y) be continuous on a region R.

1. If Risdefinedbya <x <b, g(x) <y < g(x), with g; and g, con-
tinuous on [a, b], then

b pga(x)
f/f(x,y)dA=// fyayds
a Jgi(x
R

2. IfRisdefinedbyc <y <d, hi(y) <x < hy(y), with k; and k, con-
tinuous on [c, d], then

d pha(y)
f / Fr, y)dA = / / £, y)dxdy.
c Jh(y)

R

EXAMPLE 2 Find the volume of the prism whose base is the triangle in the
xy-plane bounded by the x-axis and the lines y = x and x = 1 and whose top lies
in the plane

z=f(x,y)=3-x—-y.

Solution See Fig. 13.11. For any x between 0 and 1, y may vary from y =0 to
y = x (Fig. 13.11b). Hence,

1 px 1 Y27
V://(3—x—y)dydx=f [3y—xy——] dx
o Jo 0 P
1 2 2 3qx=l
:/(3x—§f—>dx= 3i—x— =1.
0 2 2 2 |



(3,0,0)

/Z:f(x’y)
=3-x-y

(@)
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(b) ©

13.11 (a) Prism with a triangular base in the xy-plane. The volume of this prism is
defined as a double integral over R. To evaluate it as an iterated integral, we may
integrate first with respect to y and then with respect to x, or the other way
around (Example 2). (b) Integration limits of

x=1 y=x
/ / £(x, y) dy dx.
x=0 Jy=0

If we integrate first with respect to y, we integrate along a vertical line through R
and then integrate from left to right to include all the vertical lines in R.

(c) Integration limits of
y=1 px=1
f / £(x, y) dx dy.
y=0 Jx=y

If we integrate first with respect to x, we integrate along a horizontal line through
R and then integrate from bottom to top to include all the horizontal lines in R.

When the order of integration is reversed (Fig. 13.11c), the integral for the vol-

ume is
1 1 1 xz x=1
V://(3—x—y)dxdy=/ [3x———xy] dy
0 Jy 0 2 x=y
1 1 y2
= 3—=—-y-3 = ) d
/0 ( > y—3y+ ) +y ) y
1 5 3 5 y3 y=1
= ——4y+—y2>dy=[—y—2y2+—] =1
_/(; <2 2 2 2 {00
The two integrals are equal, as they should be. d

While Fubini’s theorem assures us that a double integral may be calculated as
an iterated integral in either order of integration, the value of one integral may be
easier to find than the value of the other. The next example shows how this can
happen.

EXAMPLE 3 Calculate

// smdi’
x
R

where R is the triangle in the xy-plane bounded by the x-axis, the line y = x, and
the line x = 1.
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0 1

13.12 The region of integration in
Example 3.

Solution The region of integration is shown in Fig. 13.12. If we integrate first
with respect to y and then with respect to x,we find

1 X o3 1 : y=x 1
/ (/ smxdy) dx=/ (ysmx] )dxzf sin x dx
0 o X 0 X dy=o 0

= —cos (1) + 1~ 0.46.

If we reverse the order of integration and attempt to calculate

el
/‘ / sin x dx dy,
0 Jy X

we are stopped by the fact that [((sin x)/x)dx cannot be expressed in terms of
elementary functions.

There is no general rule for predicting which order of integration will be the
good one in circumstances like these, so don’t worry about how to start your
integrations. Just forge ahead and if the order you first choose doesn’t work, try
the other. 4

Finding the Limits of Integration

The hardest part of evaluating a double integral can be finding the limits of inte-
gration. Fortunately, there is a good procedure to follow.

Procedure for Finding Limits of Integration

A. To evaluate [/ z f(x,y)dA over a region R, integrating first with respect to y and then with respect to x, take the

following steps:

1. A sketch. Sketch the re-
gion of integration and
label the bounding curves.

y y
1 Leaves at 1 Leaves at
1 /)’=V1—x2 1 /y=V1—x2
R Enters at R Enters at
y=1-x y=1-x
L L
X
0 x 1 x 0 x 1
/ /
Smallest x Largest x
isx=0 isx=1

The y-limits of integra-
tion. Imagine a vertical
line L cutting through R
in the direction of increas-
ing y. Mark the y-values

where L enters and leaves.

These are the y-limits of
integration.

The x-limits of integra-
tion. Choose x-limits that
include all the vertical lines
through R. The integral

1S
/ff(x,y)dA =
R

x=1 y=m
/ / f(x,y)dydx.
x=0 y=Il-x
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B. To evaluate the same double integral as an iterated Largest y E’:eff‘y
integral with the order of integration reversed, use isy=1 T~
horizontal lines instead of vertical lines. The integral is R
1 12 y
/f fx,y)dA = f / f(x,y)dxdy. \ Leaves al
0 Ji-y Smallest y x="1 —y?
R isy=0 >~ x

EXAMPLE 4 Sketch the region of integration for the integral

2 2x
/ 4x + 2)dydx
0 Jx?

and write an equivalent integral with the order of integration reversed.

Solution The region of integration is given by the inequalities x> < y < 2x and
0 < x < 2. It is therefore the region bounded by the curves y = x? and y = 2x
between x = 0 and x = 2 (Fig. 13.13a).

To find limits for integrating in the reverse order, we imagine a horizontal line
passing from left to right through the region. It enters at x = y/2 and leaves at
x = ,/y. To include all such lines, we let y run from y = 0 to y = 4 (Fig. 13.13b).

The integral is
NG
/ / 4x 4+ 2)dxdy.
0 y/2

The common value of these integrals is 8.

2,4

| x | x
0 2 0 2

(a) (b)

13.13 Figure for Example 4. a
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Exercises 13.1

Finding Regions of Integration and
Double Integrals

In Exercises 1-10, sketch the region of integration and evaluate the

integral.
3 50
2./ / (x%y —2xy)dydx
0 J-2

3 p2
1. / / 4 —yHdydx
0o Jo

0 pi
3. / / (x+y+dxdy
—1J-1

2r bid
4, f [ (sin x 4+ cos y)dxdy
n 0

S. / / x sin ydydx
o Jo
In8 Iny 2 \2

7./ / e Ydxdy 8. ff dxdy
1 0 1 v
1oy 4 pVx g

9. // 3y3e'”dxdy 10. // —e"/‘/;dydx
0o Jo i Joo 2

In Exercises 11-16, integrate f over the given region.

6// ydydx
o Jo

11. f(x,y) = x/y over the region in the first quadrant bounded by
the lines y =x,y=2x,x=1,x =2

12. f(x,y)=1/(xy) overthe square | <x <2, 1<y <2

13. f(x,y) = x?> 4+ y? over the triangular region with vertices (0, 0),
(1, 0), and (0, 1)

14. f(x,y) =y cos xy over the rectangle 0 <x < 7,0 <y <1

15. f(u,v) = v — /u over the triangular region cut from the first
quadrant of the uv-plane by the line u + v =1

16. f(s,t) =¢€'Int over the region in the first quadrant of the
st-plane that lies above the curve s =Int fromt =1tot =2

Each of Exercises 17-20 gives an integral over a region in a Cartesian
coordinate plane. Sketch the region and evaluate the integral.

0 —-v
17. / f 2dpdv (the pv-plane)
-2 Jv
1 V1-s?
18. // 8tdtds (the st-plane)
0o Jo

/3 sec t
19. / [ 3 cos tdudt (the tu-plane)
-n/3J0

3 4—2u 4 _ 2
20. / / > udv du (the uv-plane)
0 J-2 v

Reversing the Order of Integration

In Exercises 21-30, sketch the region of integration and write an
equivalent double integral with the order of integration reversed.

2 0
22. [ / dxdy
0 y-2
1 1-x?
24, [ / dydx
0 I—x
n2 p2
26. / / dxdy
0 e
2 4-y?
28. / / ydxdy
0o Jo

2 pJa—x?
30. / / 6xdydx
0 J-va—x?

1 4-2x
21. f [ dydx
0 J2
LIANG]
23. / / dxdy
0 v
1 e*
2s. / / dydx
o Ji
32 p9-4x?
27. / f 16xdydx
0o Jo
1 A 1-)2
29. / / 3ydxdy
0o J-1imv
Evaluating Double Integrals

In Exercises 31-40, sketch the region of integration, determine the
order of integration, and evaluate the integral.

n T 2 2
31. / / any dydx 32. / / 2y? sin xydydx
0 x y 0 Jx
1 pl 2 pd4—x? xe¥
33. / / x2e® dx dy 34. / / dydx
0 Jy o Jo 44—y
2V/n3 VN3 3 pl ,
3s. f / e dxdy 36. / / e’ dydx
0 /2 o Jx3

1/16 1/2 8 2 dvd
3. / / cos (167x%)dxdy 38. / / e
o Jon o Jyz ¥l

39. //(y—sz)dA where R is the region inside the square
R

x|+ Iyl =1

40. /f xydA where R is the region bounded by the lines y = x,
R
y=2x,andx+y =2

Volume Beneath a Surface z = f(x, y)

41. Find the volume of the region that lies under the paraboloid
z = x? + y? and above the triangle enclosed by the lines y = x,
x =0, and x + y = 2 in the xy-plane.

42. Find the volume of the solid that is bounded above by the cylinder
z = x? and below by the region enclosed by the parabola y =
2 — x? and the line y = x in the xy-plane.

43. Find the volume of the solid whose base is the region in the
xy-plane that is bounded by the parabola y =4 — x* and the
line y = 3x, while the top of the solid is bounded by the plane
z=x+4.

44. Find the volume of the solid in the first octant bounded by the
coordinate planes, the cylinder x?> 4+ y?> = 4, and the plane z +
y=3.



45. Find the volume of the solid in the first octant bounded by the
coordinate planes, the plane x = 3, and the parabolic cylinder
z=4—y%

46. Find the volume of the solid cut from the first octant by the
surface z =4 — x2 — y.

47. Find the volume of the wedge cut from the first octant by the
cylinder z = 12 — 3y? and the plane x +y = 2.

48. Find the volume of the solid cut from the square column |x| +
|y| <1 by the planes z =0 and 3x +z = 3.

49. Find the volume of the solid that is bounded on the front and
back by the planes x = 2 and x = 1, on the sides by the cylinders
y = £ 1/x, and above and below by the planes z = x + 1 and
z=0.

50. Find the volume of the solid that is bounded on the front and
back by the planes x = £ /3, on the sides by the cylinders
y = = sec x, above by the cylinder z = 1 + y2, and below by
the xy-plane.

Integrals over Unbounded Regions

Evaluate the improper integrals in Exercises 51-54 as iterated inte-

grals.

o 1 1 plV1=22

51./ / Tdydx 52.[/ Qy+ l)dydx
1 Jer X7y —1 -T2

[o¢] [o0] 1
53. —— dxd
/_m/_w o2+ Y

o0 o0}
54. f / xe” ) dx dy
o Jo

Approximating Double Integrals

In Exercises 55 and 56, approximate the double integral of f(x, y)
over the region R partitioned by the given vertical lines x = a and
horizontal lines y = c. In each subrectangle use (xi, y) as indicated
for your approximation.

[[ sxnraam Y s an
R k=1

55. f(x,y) =x + y over the region R bounded above by the semi-
circle y = +/1 — x? and below by the x-axis, using the partition
x=-1,-1/2,0,1/4,1/2,1 and y = 0, 1/2, 1 with (x, yx) the
lower left corner in the kth subrectangle (provided the subrect-
angle lies within R)

56. f(x,y) = x + 2y over the region R inside the circle (x — 2) +
(y —3)? =1 using the partition x = 1,3/2,2,5/2,3 and y =
2,5/2,3,7/2, 4 with (x;, y,) the center (centroid) in the kth sub-
rectangle (provided it lies within R)

Theory and Examples
57. Integrate f(x, y) = /4 — x2 over the smaller sector cut from the
disk x> + y* <4 by the rays § = /6 and § = /2.

58. Integrate f(x,y) = 1/[(x* — x)(y — 1)*] over the infinite rect-
angle 2 <x <oo, 0<y<2.

Exercises 13.1 1011

59. A solid right (noncircular) cylinder has its base R in the xy-
plane and is bounded above by the paraboloid z = x* + y2. The
cylinder’s volume is

1 y 2 p2-y
V= f f (x2+y2)dxdy+[ f &2+ yH dx dy.
o Jo 1 Jo

Sketch the base region R and express the cylinder’s volume as
a single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

60. Evaluate the integral

2
/ (tan~! wx —tan~! x) dx.
0

(Hint: Write the integrand as an integral.)
61. What region R in the xy-plane maximizes the value of
/ 4 —x?—2y% dA?
R
Give reasons for your answer.

62. What region R in the xy-plane minimizes the value of

/ (x2+y*—9) dA?

R
Give reasons for your answer.

63. Is it all right to evaluate the integral of a continuous function
f(x, y) over a rectangular region in the x y-plane and get different
answers depending on the order of integration? Give reasons for
your answer.

64. How would you evaluate the double integral of a continuous
function f(x, y) over the region R in the xy-plane enclosed by
the triangle with vertices (0, 1), (2, 0), and (1, 2)? Give reasons
for your answer.

oo =} y b b ,
65. Prove that f / e Vdxdy = lim / f e " Vdxdy
—00 J —00 booo J_p Jobp

= 4(/0 e—*’dx)z.

x2

1 3
66. Evaluate the improper integral / /
0o Jo

& Numerical Evaluation

Use a double-integral evaluator to estimate the values of the integrals
in Exercises 67-70.

3 x 1 1 -
67. / —dydx 68. / f e dydx
1 J1 Xy o Jo

1 1
69. / / tan~' xydydx
o Jo

1 pd/T22
70.// 3y 1 —x2— y*dydx
-1Jo
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13.14 The first step in defining the area
of a region is to partition the interior of
the region into cells.

0 1

13.15 The area of the region between
the parabola and the line in Example 1 is

1 X
/ / dy dx.
0 Jx?

Areas, Moments, and Centers of Mass

In this section we show how to use double integrals to define and calculate the areas
of bounded regions in the plane and the masses, moments, centers of mass, and
radii of gyration of thin plates covering these regions. The calculations are similar
to the ones in Chapter 5, but now we can handle a greater variety of shapes.

Areas of Bounded Regions in the Plane

If we take f(x,y) =1 in the definition of the double integral over a region R in
the preceding section, the partial sums reduce to

S, = ;f(xk,yk)AAk = ; AA,. (1)

This approximates what we would like to call the area of R. As Ax and Ay approach
zero, the coverage of R by the AA;’s (Fig. 13.14) becomes increasingly complete,
and we define the area of R to be the limit

Area = lim ZAAk =/[dA. )
k=1

R

Definition
The area of a closed, bounded plane region R is

A://dA. 3)

R

As with the other definitions in this chapter, the definition here applies to a greater
variety of regions than does the earlier single-variable definition of area, but it
agrees with the earlier definition on regions to which they both apply.

To evaluate the integral in (3), we integrate the constant function f(x,y) =1
over R.

EXAMPLE 1 Find the area of the region R bounded by y = x and y = x? in
the first quadrant.

Solution We sketch the region (Fig. 13.15) and calculate the area as

1 x 1 X 1 x2 x3 1 1
A=/ / dydx=/ [y] dx:f(x—xz)dxz[———] = -,
0 Jx? 0 x2 0 2 3 0 6 D

EXAMPLE 2 Find the area of the region R enclosed by the parabola y = x2
and the line y = x + 2.

Solution If we divide R into the regions R, and R, shown in Fig. 13.16(a), we may
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13.16 Calculating this area takes (a) two
double integrals if the first integration is
with respect to x, but (b) only one if the
first integration is with respect to y
(Example 2).

Global warming

The “global warming” controversy deals with
whether the average air temperature over the
surface of the earth is increasing.
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calculate the area as

1 dF 4 o5
A=ffdA+f/dA=// dxdy+// dx dy.
R R, 0 Iy boJr=2

On the other hand, reversing the order of integration (Fig. 13.16b) gives

2 x+2
A= / f dydx.
-1 x?

This result is simpler and is the only one we would bother to write down in practice.
The area is

2 x+2 2 2 3 2

X X 9

A=[ M dx=/(x+2—x2>dx:[—+zx__] _2
-1 X2 -1 2 34, 2 Q

Average Value

The average value of an integrable function of a single variable on a closed interval
is the integral of the function over the interval divided by the length of the interval.
For an integrable function of two variables defined on a closed and bounded region
that has a measurable area, the average value is the integral over the region divided
by the area of the region. If f is the function and R the region, then

1
Average value of f over R = ——— f / fdA. (4)
area of R
R

If f is the area density of a thin plate covering R, then the double integral of f
over R divided by the area of R is the plate’s average density in units of mass per
unit area. If f(x, y) is the distance from the point (x, y) to a fixed point P, then
the average value of f over R is the average distance of points in R from P.

EXAMPLE 3 Find the average value of f(x, y) = x cos xy over the rectangle
R:0<x<m, O0<y<I.

Solution The value of the integral of f over R is

T pl n v=I
/ / x cos xydydx = / [sin xy] dx
o Jo 0 ¥=0

—_—/ (sin x —0)dx = —cosx] =14+1=2.
0 0

The area of R is m. The average value of f over R is 2/m. d

First and Second Moments and Centers of Mass

To find the moments and centers of mass of thin sheets and plates, we use formulas
similar to those in Chapter 5. The main difference is that now, with double integrals,
we can accommodate a greater variety of shapes and density functions. The formulas
are given in Table 13.1, on the following page. The examples that follow show how
the formulas are used.

The mathematical difference between the first moments M, and M, and the
moments of inertia, or second moments, /, and /, is that the second moments
use the squares of the “lever-arm” distances x and y.
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Table 13.1 Mass and moment formulas for thin plates covering regions in the xy-plane

M://S(x,y)dA First moments: M, =//y8 (x,y)dA, M, =//x8(x,y)dA
y

Density: 5(x,y)
Mass:

M M,
Center of mass: X=—, y=—

M’ M

Radii of gyration:

Moments of inertia (second moments):

About the x-axis: [, = /f y2 8 (x, y)dA About the origin Iy = / 4+ Yy, y)dA=1.+1,

About the y-axis: I, = /f x28(x,y)dA

About a line L: I, = // r2(x, )8 (x, y)dA, where r(x, y) = distance from (x, y) to L

About the origin:

About the x-axis: R, =./I,/M
About the y-axis: R, =./I,/M

Ry = 1o/M

(polar moment):

The moment I, is also called the polar moment of inertia about the origin. It is
calculated by integrating the density 8(x, y) (mass per unit area) times r> = x2 + y?,
the square of the distance from a representative point (x, y) to the origin. Notice
that Iy = I, + I; once we find two, we get the third automatically. (The moment
Iy is sometimes called I,, for moment of inertia about the z-axis. The identity
I, = I, + I, is then called the Perpendicular Axis Theorem.)

The radius of gyration R, is defined by the equation

I, = MR

It tells how far from the x-axis the entire mass of the plate might be concentrated
to give the same I,. The radius of gyration gives a convenient way to express the
moment of inertia in terms of a mass and a length. The radii R, and R, are defined
in a similar way, with

I,=MR?* and Iy = MR,

We take square roots to get the formulas in Table 13.1.

Why the interest in moments of inertia? A body’s first moments tell us about
balance and about the torque the body exerts about different axes in a gravitational
field. But if the body is a rotating shaft, we are more likely to be interested in
how much energy is stored in the shaft or about how much energy it will take
to accelerate the shaft to a particular angular velocity. This is where the second
moment or moment of inertia comes in.

Think of partitioning the shaft into small blocks of mass Am;, and let r, denote
the distance from the kth block’s center of mass to the axis of rotation (Fig. 13.17).
If the shaft rotates at an angular velocity of w = df/dt radians per second, the
block’s center of mass will trace its orbit at a linear speed of

d

do
Uy = E(r,ﬁ):rkZ:rkw. (5)



13.17 To find an integral for the amount
of energy stored in a rotating shaft, we
first imagine the shaft to be partitioned
into small blocks. Each block has its own
kinetic energy. We add the contributions
of the individual blocks to find the
kinetic energy of the shaft.

Beam A

Axis

Beam B

Axis

13.18 The greater the polar moment of
inertia of the cross section of a beam
about the beam’s longitudinal axis, the
stiffer the beam. Beams A and B have the
same cross-section area, but A is stiffer.
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- Amk
\ e r o
¢ k

The block’s kinetic energy will be approximately

1 1 1
EAmkvkz = EAmk(rk w)2 =5 ®*re? Amy. (6)

The kinetic energy of the shaft will be approximately
1
Z 2 a)zrszmk. 7)

The integral approached by these sums as the shaft is partitioned into smaller and
smaller blocks gives the shaft’s kinetic energy:

| |
KEgpan = / —2—w2r2dm = —Z—wZ/r2 dm. (8)

The factor
I = f r’dm 9

is the moment of inertia of the shaft about its axis of rotation, and we see from Eq.
(8) that the shaft’s kinetic energy is

KEqar = %Iwz. (10

To start a shaft of inertial moment / rotating at an angular velocity w, we need
to provide a kinetic energy of KE = (1/2)Iw?. To stop the shaft, we have to take
this amount of energy back out. To start a locomotive with mass m moving at a
linear velocity v, we need to provide a kinetic energy of KE = (1/2) mv?. To stop
the locomotive, we have to remove this amount of energy. The shaft’s moment of
inertia is analogous to the locomotive’s mass. What makes the locomotive hard to
start or stop is its mass. What makes the shaft hard to start or stop is its moment
of inertia. The moment of inertia takes into account not only the mass but also its
distribution.

The moment of inertia also plays a role in determining how much a horizontal
metal beam will bend under a load. The stiffness of the beam is a constant times
I, the polar moment of inertia of a typical cross section of the beam perpendicular
to the beam’s longitudinal axis. The greater the value of /, the stiffer the beam and
the less it will bend under a given load. That is why we use I beams instead of
beams whose cross sections are square. The flanges at the top and bottom of the
beam hold most of the beam’s mass away from the longitudinal axis to maximize
the value of I (Fig. 13.18).

If you want to see the moment of inertia at work, try the following experiment.
Tape two coins to the ends of a pencil and twiddle the pencil about the center of
mass. The moment of inertia accounts for the resistance you feel each time you
change the direction of motion. Now move the coins an equal distance toward the
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First moments are “balancing” moments.
Second moments are “turning” moments.

(1,2)

0 1

13.19 The triangular region covered by
the plate in Example 4.

center of mass and twiddle the pencil again. The system has the same mass and
the same center of mass but now offers less resistance to the changes in motion.
The moment of inertia has been reduced. The moment of inertia is what gives a
baseball bat, golf club, or tennis racket its “feel.” Tennis rackets that weigh the
same, look the same, and have identical centers of mass will feel different and
behave differently if their masses are not distributed the same way.

EXAMPLE 4 A thin plate covers the triangular region bounded by the x-axis
and the lines x = 1 and y = 2x in the first quadrant. The plate’s density at the
point (x, y) is 8(x, y) = 6x + 6y + 6. Find the plate’s mass, first moments, center
of mass, moments of inertia, and radii of gyration about the coordinate axes.

Solution We sketch the plate and put in enough detail to determine the limits of
integration for the integrals we have to evaluate (Fig. 13.19).
The plate’s mass is

1 2x 1 2x
M:f / 8(x,y)dydx=/ (6x +6y +6)dydx
o Jo o Jo
1

y=2x
= / {6xy+3y2+6yi| dx
0 v=0

1

1
= / (24x* + 12x)dx = [8x3 + 6x2] = 14.
0 0

The first moment about the x-axis is

1 2x 1 2x
M, = f / y8(x,y)dydx = / f (6xy + 6y* + 6y) dy dx
0 0 0 0

1 y=2x 1
= / [3xy2 +2y* + 3y2] dx = / (28x% + 12x%) dx
0 0

y=0
1

= [:7x4+4x3] =11.
0

A similar calculation gives
1 2x
M, = / / x8 (x,y)dydx = 10.
0o Jo

The coordinates of the center of mass are therefore
_ M, 10 5§ _ M, 11
X =——=—= -, y:—:—
M 14 7 M 14

The moment of inertia about the x-axis is

1 2x 1 2x
I, = / f y28 (x, y)dydx = / / (6xy* + 6y° +6y*)dydx
0o Jo o Jo

1 3 y=2x 1
= / |:2xy3 + =yt +2y3] dx = f (40x* + 16x3) dx
0 2 0 0

y=
1

= l:8x5 +4x4i| =12.
0
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13.20 Example 5 finds the centroid of
the region shown here.
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Similarly, the moment of inertia about the y-axis is

| 2x 39
I, = / / x28(x, y)dydx = —.
o Jo 5

Since we know I, and I,, we do not need to evaluate an integral to find Io;
we can use the equation /o = I, + I, instead:
39 60+ 39 _ 99

=124+ — = .
0 *t3 5 5

The three radii of gyration are

R, =/I,/M = /12/14 = J6/7
R, = /I,/M = (35—9) /14 = /39/70

Ry = /Io/M = (95—9) /14 = /99/70. q

Centroids of Geometric Figures

When the density of an object is constant, it cancels out of the numerator and
denominator of the formulas for X and y. As far as X and y are concerned, § might
as well be 1. Thus, when § is constant, the location of the center of mass becomes
a feature of the object’s shape and not of the material of which it is made. In such
cases, engineers may call the center of mass the centroid of the shape. To find a
centroid, we set § equal to 1 and proceed to find X and y as before, by dividing
first moments by masses.

EXAMPLE 5 Find the centroid of the region in the first quadrant that is bounded
above by the line y = x and below by the parabola y = x2.

Solution We sketch the region and include enough detail to determine the limits
of integration (Fig. 13.20). We then set § equal to 1 and evaluate the appropriate
formulas from Table 13.1:

1 px ol y=x 1 R 2 x37 1
M=//1dydx:/ y dx:[(x—x)dx: — | ==
0 Jx2 0 y=x2 0 2 3 0 6
| X 1 y2 y=x
M, =/ / ydydx-——/ [—] dx
0 Jx? 0 2 y=x2
| X2 x4 x3 x5 | 1
[ E-5)e-[3-3l 5
o \ 2 2 6 104, 15
1 X 1 y=x 1 , , x3 )C4
Myszxdydx=/ Xy dx:/(x —x)dx =|— - —
0 x? 0 y=x2 0 3 4

From these values of M, M,, and M,, we find
M, 1/12 1

2
X = —= = — d V= —= = —.
TwM T T2 "™ YT T. s

1 2
Th troid is the point { =, = } .
e centroid is the poin (2,5) 0
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Exercises 13.2

Area by Double Integration

In Exercises 1-8, sketch the region bounded by the given lines and
curves. Then express the region’s area as an iterated double integral
and evaluate the integral.

1. The coordinate axes and the line x +y =2
. The lines x =0,y =2x, and y =4
. The parabola x = —y? and the line y = x +2

2

3

4. The parabola x = y — y? and the line y = —x

5. The curve y = ¢* and the lines y =0,x =0, and x =1In 2
6

. The curves y =1In x and y =2 In x and the line x = e, in the
first quadrant

7. The parabolas x = y? and x =2y — y?
8. The parabolas x = y2 — 1 and x =2y> —2

The integrals and sums of integrals in Exercises 9-14 give the areas
of regions in the xy-plane. Sketch each region, label each bounding
curve with its equation, and give the coordinates of the points where
the curves intersect. Then find the area of the region.

6 2y 3 ¥(2—-x)
9// dxdy 10. /f dydx
0 Jy3 0 J-x
/4 cos x 2 y+2
11./ dydx 12.[ f dxdy
0 sin x —1Jy2
0 pl-x 2 pl-x
13./ / dydx+f / dydx
—1J-2x 0 J-x2
2 p0 4 pJx
14. / / dydx—i—f / dydx
0 Jxi-a o Jo

Average Values
15. Find the average value of f(x, y) = sin(x + y) over

a) the rectangle 0 < x < 7,
b) the rectangle 0 < x < m,

0<y=m,
0<y=<m/2

16. Which do you think will be larger, the average value of f(x, y) =
xy over the square 0 < x <1, 0 <y <1, or the average value
of f over the quarter circle x2 + y?> < 1 in the first quadrant?
Calculate them to find out.

17. Find the average height of the paraboloid z = x? + y? over the
square 0 <x <2, 0<y <2

18. Find the average value of f(x,y) = 1/(xy) over the square
In2<x<2In2 In2<y<2In2.

Constant Density

19. Find the center of mass of a thin plate of density § = 3 bounded
by the lines x =0, y = x, and the parabola y =2 — x? in the
first quadrant.

20. Find the moments of inertia and radii of gyration about the co-
ordinate axes of a thin rectangular plate of constant density &
bounded by the lines x = 3 and y = 3 in the first quadrant.

21. Find the centroid of the region in the first quadrant bounded by
the x-axis, the parabola y*> = 2x, and the line x + y = 4.

22. Find the centroid of the triangular region cut from the first quad-
rant by the line x + y = 3.

23. Find the centroid of the semicircular region bounded by the x-axis

and the curve y = +/1 — x2.

24. The area of the region in the first quadrant bounded by the
parabola y = 6x — x? and the line y = x is 125/6 square units.
Find the centroid.

25. Find the centroid of the region cut from the first quadrant by the

circle x* + y? = a’.

26. Find the moment of inertia about the x-axis of a thin plate of
density § = 1 bounded by the circle x> + y? = 4. Then use your
result to find /, and /, for the plate.

27. Find the centroid of the region between the x-axis and the arch
y=sinx, 0<x<m.

28. Find the moment of inertia with respect to the y-axis of a thin
sheet of constant density § =1 bounded by the curve y =
(sin? x)/x? and the interval 7= < x < 27 of the x-axis.

29. The centroid of an infinite region. Find the centroid of the
infinite region in the second quadrant enclosed by the coordinate
axes and the curve y = e*. (Use improper integrals in the mass-
moment formulas.)

30. The first moment of an infinite plate. Find the first moment
about the y-axis of a thin plate of density & (x, y) = | covering
the infinite region under the curve y = ¢~*/2 in the first quadrant.

Variable Density

31. Find the moment of inertia and radius of gyration about the x-
axis of a thin plate bounded by the parabola x = y — y? and the
linex+y=0ifé(x,y)=x+y.

32. Find the mass of a thin plate occupying the smaller region cut
from the ellipse x> +4y? =12 by the parabola x = 4y? if
§(x,y) =5x.

33. Find the center of mass of a thin triangular plate bounded by the
y-axis and the lines y =x and y =2 —x if &(x,y)=6x +
3y+3.

34. Find the center of mass and moment of inertia about the x-axis
of a thin plate bounded by the curves x = y? and x = 2y — y?
if the density at the point (x,y) is § (x,y) =y + 1.

35. Find the center of mass and the moment of inertia and radius
of gyration about the y-axis of a thin rectangular plate cut from
the first quadrant by the lines x =6 and y =1 if § (x,y) =
x+y+1



36. Find the center of mass and the moment of inertia and radius
of gyration about the y-axis of a thin plate bounded by the line
y = 1 and the parabola y = x? if the density is § (x, y) = y + 1.

37. Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin plate bounded by the x-axis,
the lines x = %1, and the parabola y = x? if § (x, y) = 7y + 1.

38. Find the center of mass and the moment of inertia and radius
of gyration about the x-axis of a thin rectangular plate bounded
by the linesx =0, x =20, y=—1,andy=1ifé(x,y) =1+
(x/20).

39. Find the center of mass, the moments of inertia and radii of
gyration about the coordinate axes, and the polar moment of
inertia and radius of gyration of a thin triangular plate bounded
by the lines y=x,y=—x,and y=1if §(x,y) =y + 1.

40. Repeat Exercise 39 for 6 (x, y) = 3x? + 1.

Theory and Examples

41. If f(x,y) = (10,000€”)/(1 + |x|/2) represents the “population
density” of a certain bacteria on the xy-plane, where x and y
are measured in centimeters, find the total population of bacteria
within the rectangle —5 <x <5and -2 <y <0.

42, If f(x,y) =100 (y + 1) represents the population density of a
planar region on Earth, where x and y are measured in miles,
find the number of people in the region bounded by the curves
x =7y*and x =2y — y2.

43. Appliance design. When we design an appliance, one of the
concerns is how hard the appliance will be to tip over. When
tipped, it will right itself as long as its center of mass lies on
the correct side of the fulcrum, the point on which the appliance
is riding as it tips. Suppose the profile of an appliance of ap-
proximately constant density is parabolic, like an old-fashioned
radio. It fills the region 0 < y < a(l —x?),—1 <x <1, in the
xy-plane (Fig. 13.21). What values of a will guarantee that the
appliance will have to be tipped more than 45° to fall over?

y=a(l — x?)

e ————-"

-~
-~
~—o

1
! Fulcrum

’/

X

13.21 The profile of the appliance in Exercise 43.

44. Minimizing a moment of inertia. A rectangular plate of con-
stant density 8 (x, y) =1 occupies the region bounded by the
lines x =4 and y = 2 in the first quadrant. The moment of in-
ertia I, of the rectangle about the line y =a is given by the

Exercises 13.2 1019

4 p2
1, :/ / (y—a)zdydx.
0o Jo

Find the value of a that minimizes /,.

integral

45. Find the centroid of the infinite region in the xy-plane bounded
by the curves y = 1/4/1 —x2,y = —1/4/1 — x2, and the lines

x=0,x=1.

46. Find the radius of gyration of a slender rod of constant linear
density § gm/cm and length L cm with respect to an axis

a) through the rod’s center of mass perpendicular to the rod’s
axis;
b) perpendicular to the rod’s axis at one end of the rod.
47. A thin plate of constant density § occupies the region R in the
xy-plane bounded by the curves x = y* and x = 2y — y? (see
Exercise 34).

a) Find 6 such that the plate has the same mass as the plate in
Exercise 34.

b) Compare the value of § found in part (a) with the average
value of § (x, y) =y + 1 over R.

48. According to the Texas Almanac, Texas has 254 counties and a
National Weather Service station in each county. Assume that
at time 79 each of the 254 weather stations recorded the local
temperature. Find a formula that would give a reasonable ap-
proximation to the average temperature in Texas at time fy. Your
answer should involve information that is readily available in the
Texas Almanac.

The Parallel Axis Theorem

Let L., be aline in the xy-plane that runs through the center of mass
of a thin plate of mass m covering a region in the plane. Let L be a
line in the plane parallel to and 4 units away from L., . The Parallel
Axis Theorem says that under these conditions the moments of inertia
I, and I, of the plate about L and L., satisfy the equation

I = 1c4m.+mh2. (1)

This equation gives a quick way to calculate one moment when
the other moment and the mass are known.

49. Proof of the Parallel Axis Theorem

a) Show that the first moment of a thin flat plate about any line
in the plane of the plate through the plate’s center of mass is
zero. (Hint: Place the center of mass at the origin with the
line along the y-axis. What does the formula X = M, /M
then tell you?)

b) Use the result in (a) to derive the Parallel Axis Theorem.
Assume that the plane is coordinatized in a way that makes
L. the y-axis and L the line x = h. Then expand the
integrand of the integral for /; to rewrite the integral as the
sum of integrals whose values you recognize.

Use the Parallel Axis Theorem and the results of Example 4
to find the moments of inertia of the plate in Example 4
about the vertical and horizontal lines through the plate’s
center of mass.

50. a)
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b) Use the results in (a) to find the plate’s moments of inertia
about the lines x = 1 and y = 2.

Pappus’s Formula

In addition to stating the centroid theorems in Section 5.10, Pappus
knew that the centroid of the union of two nonoverlapping plane
regions lies on the line segment joining their individual centroids.
More specifically, suppose that m; and m, are the masses of thin
plates P, and P, that cover nonoverlapping regions in the xy-plane.
Let ¢; and ¢, be the vectors from the origin to the respective centers
of mass of P; and P,. Then the center of mass of the union P, U P,
of the two plates is determined by the vector
c= MIC]+MQCZ. (2)
my +m;

Equation (2) is known as Pappus’s formula. For more than two
nonoverlapping plates, as long as their number is finite, the formula
generalizes to

mi¢y +myc; + - - - +muc,

my+my+---+m,

This formula is especially useful for finding the centroid of a plate of
irregular shape that is made up of pieces of constant density whose
centroids we know from geometry. We find the centroid of each piece
and apply Eq. (3) to find the centroid of the plate.

51. Derive Pappus’s formula (Eq. 2). (Hint: Sketch the plates as
regions in the first quadrant and label their centers of mass as
(x1,y;) and (X2,y,). What are the moments of P; U P, about
the coordinate axes?)

52. Use Eq. (2) and mathematical induction to show that Eq. (3)
holds for any positive integer n > 2.

53.

54.
55.

56.

Let A, B, and C be the shapes indicated in Fig. 13.22(a). Use
Pappus’s formula to find the centroid of

a) AUB b) AuUC c)
d AUBUC

BUC

y
S
4
3 B
2+ > (1,2)
1 Z C
| ; [
0 2 4 7
(@ (b)
13.22 The figures for Exercises 53 and 54.

Locate the center of mass of the carpenter’s square in Fig. 13.22(b).

An isosceles triangle T has base 2a and altitude /. The base lies
along the diameter of a semicircular disk D of radius a so that
the two together make a shape resembling an ice cream cone.
What relation must hold between a and & to place the centroid
of T U D on the common boundary of T and D? inside T?

An isosceles triangle T of altitude /4 has as its base one side of a
square Q whose edges have length s. (The square and triangle do
not overlap.) What relation must hold between A and s to place
the centroid of 7 U Q on the base of the triangle? Compare your
answer with the answer to Exercise 55.

Double Integrals in Polar Form

Integrals are sometimes easier to evaluate if we change to polar coordinates. This
section shows how to accomplish the change and how to evaluate integrals over
regions whose boundaries are given by polar equations.

Integrals in Polar Coordinates

When we defined the double integral of a function over a region R in the xy-plane,
we began by cutting R into rectangles whose sides were parallel to the coordinate
axes. These were the natural shapes to use because their sides have either constant
x-values or constant y-values. In polar coordinates, the natural shape is a “polar
rectangle” whose sides have constant r- and 6-values.

Suppose that a function f(r, 0) is defined over a region R that is bounded by
the rays & = o and 6 = B and by the continuous curves r = g;(0) and r = g,(0).
Suppose also that 0 < g,(0) < g2(0) < a for every value of 6 between « and B.
Then R lies in a fan-shaped region Q defined by the inequalities 0 < r < a and
a <6 < B. See Fig. 13.23.



13.23 The region R: g1(9) < r < g.(),
a <6 < B is contained in the fan-
shaped region Q: 0 <r<a, a <9 <8B.
The partition of Q by circular arcs and
rays induces a partition of R.

Small sector

Large sector

o
13.24 The observation that
DA, = areaof | area of
large sector small sector
leads to the formula AA, = riArAb. The
text explains why.
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We cover Q by a grid of circular arcs and rays. The arcs are cut from circles

centered at the origin, with radii Ar, 2Ar, ..., mAr, where Ar = a/m. The rays
are given by
0=ca, 6=a+ A0, O=a+2A6, ..., O=a+m'Ab =8,

where AO = (B —a)/m’. The arcs and rays partition Q into small patches called
“polar rectangles.”

We number the polar rectangles that lie inside R (the order does not matter),
calling their areas AA|, AA,, ..., AA,.

We let (ry, 6;) be the center of the polar rectangle whose area is AA;. By
“center” we mean the point that lies halfway between the circular arcs on the ray
that bisects the arcs. We then form the sum

Su =Y f(r. O DAL Q)

k=1

If f is continuous throughout R, this sum will approach a limit as we refine the
grid to make Ar and A6 go to zero. The limit is called the double integral of f
over R. In symbols,

lim S, =/ f(r,0)dA.

R

To evaluate this limit, we first have to write the sum S, in a way that expresses
AA; in terms of Ar and A8. The radius of the inner arc bounding AA; is ry —
(Ar/2) (Fig. 13.24). The radius of the outer arc is r, + (Ar/2). The areas of the
circular sectors subtended by these arcs at the origin are

1 Ar\? 1 Ar\?
Inngr M rk———i AD Out.er ! rk+_’ A6, @)
radius: 2 2 radius: 2 2
Therefore,

A A, = Area of large sector — Area of small sector

_Af +Ar2 Arz_AezA)_AM
= rk > rk > _2(rkr_rkr .

Combining this result with Eq. (1) gives

Su =Y f(r. B ArA6. 3)
k=1
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A version of Fubini’s theorem now says that the limit approached by these sums
can be evaluated by repeated single integrations with respect to r and 6 as

0= pr=g.()
[/f(r,@)dA =/ f(r,0)rdrdo. (4)
6=a r=,

I 81(0)

Limits of Integration
The procedure for finding limits of integration in rectangular coordinates also works
for polar coordinates.

How to Integrate in Polar Coordinates

To evaluate [[ z J(r,0) dA over a region R in polar coordinates, integrating first with respect to r and then with respect to

6, take the following steps.

1. A sketch. Sketch the region and

label the bounding curves.

y
2 x2+y2=4
\/"lR V2, \2
2 y=\/§ (v2,V2)
5 x

The integral is

0=n/2 pr=2
//f(r,@)dA:/
6=n/4 Jr=+2csch

2. The r-limits of integration. Imag- 3. The 0-limits of integration. Find
ine a ray L from the origin cutting the smallest and largest 6-values
through R in the direction of in- that bound R. These are the 6-
creasing . Mark the r-values where limits of integration.

L enters and leaves R. These are y
the r-limits of integration. They ' Largest 6is 7.
usually depend on the angle 6 that L
L makes with the positive x-axis. 2 R Sy=x
y 2 >
Leavesatr =2 //
L e LT
Smallest is ~.
2 P [ < 4
rsinf=y= 2 0 *
or
r=v2csc Enters at r = V2 csc 6
0
X
0

f(@r,0)rdrdo.

EXAMPLE 1 Find the limits of integration for integrating f(r,6) over the
region R that lies inside the cardioid r = 1 4 cos 6 and outside the circle r = 1.

Solution

Step 1: A sketch. We sketch the region and label the bounding curves (Fig. 13.25).
Step 2: The r-limits of integration. A typical ray from the origin enters R where
r =1 and leaves where r = 1 4 cos 6.

Step 3: The 0-limits of integration. The rays from the origin that intersect R run from



y
-
0= 2
r=1+cos@
1 2
x
0
/|
g=-T Enters Leaves at
2 at r=1+cosé
r=1

13.25 The sketch for Example 1.

y Leaves at

r =4 cos 260

/

INTS)

X

/

r2=4cos 26
Enters at

r=0

INF)

13.26 To integrate over the shaded
region, we run r from 0 to /4 cos 26 and
6 from 0 to n/4 (Example 2).

13.3 Double Integrals in Polar Form 1023

6 = —m /2 to 8 = /2. The integral is

/2 I+cos 6
(r,0) r drdé.
~/;n/2[ f D

If f(r, 0) is the constant function whose value is 1, then the integral of f over
R is the area of R.

Area in Polar Coordinates

The area of a closed and bounded region R in the polar coordinate plane is

A= /frdrd@. (5)
R

As you might expect, this formula for area is consistent with all earlier formulas,
although we will not prove the fact.

EXAMPLE 2 Find the area enclosed by the lemniscate r?> = 4 cos 26.

Solution We graph the lemniscate to determine the limits of integration (Fig.
13.26) and see that the total area is 4 times the first-quadrant portion.

/4 /4 cos 20 T/AT 2 r=+4cos26
A=4/ / rdrd9=4/ l:-—:' de
0 0 0 2 r=0
/4 /4
=4/ 200526d6=4sin26] =4.
0 0 D

Changing Cartesian Integrals into Polar Integrals

The procedure for changing a Cartesian integral ffRf(x, y)dxdy into a polar
integral has two steps.

Step 1: Substitute x = r cos 6 and y = r sin 6, and replace dx dy by rdrd6 in
the Cartesian integral.

Step 2: Supply polar limits of integration for the boundary of R.

The Cartesian integral then becomes

//f(x,y)dxdy://f(rcos@,r sin 6) r dr dé, (6)
R G

where G denotes the region of integration in polar coordinates. This is like the
substitution method in Chapter 4 except that there are now two variables to substitute
for instead of one. Notice that dx dy is not replaced by dr df but by r dr d6. We
will see why in Section 13.7.

EXAMPLE 3 Find the polar moment of inertia about the origin of a thin plate of
density & (x, y) = 1 bounded by the quarter circle x> + y?> = 1 in the first quadrant.
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y Solution We sketch the plate to determine the limits of integration (Fig. 13.27).
P In Cartesian coordinates, the polar moment is the value of the integral
T2
1 X2+y2=1, r= 1 pVT=27 , R
/ / / (x* 4+ y9)dydx.
o Jo
Integration with respect to y gives
0=0 (1- x2 3/2
0 " X /( 2V1—x2 4 ) )dx,
0
13.27 In polar coordinates, this region is an integral difficult to evaluate without tables.
described by simple inequalities: Things go better if we change the original integral to polar coordinates. Sub-
O0<r<1 and 0<6<n/2 stituting x = r cos 6, y = r sin 6, and replacing dx dy by rdr d6, we get

(Example 3). /2
/ / (x +y)dydx—/ /(r)rdrd@
4qr=1 7/2
Z/ [i] d@:/ “ae=".
0 4], 0o 4 8

Why is the polar coordinate transformation so effective? One reason is that x* + y?

simplifies to 2. Another is that the limits of integration become constants. 4

Y EXAMPLE 4 Evaluate

1 y=v1—x? // e dydx,
;! i

where R is the semicircular region bounded by the x-axis and the curve

y = +/1 — x? (Fig. 13.28).

0 =7 0 = o - . . . . . .

| 5 1 x Solution In Cartesian coordinates, the integral in question is a nonelementary
B integral and there is no direct way to integrate e* ™" with respect to either x or y.

Yet this integral and others like it are important in mathematics—in statistics, for
example—and we must find a way to evaluate it. Polar coordinates save the day.
Substituting x = r cos6, y =r sin 6, and replacing dy dx by r dr df enables us
to evaluate the integral as

1

// oy dya’x—/ f e rdrde_/ Be] do
0

=f —(e — l)dé)-—(e— 1).

0

13.28 The semicircular region in
Example 4 is the region

0<r<1 0<6<m.

The r in the r dr d6 was just what we needed to integrate ¢’". Without it we would
have been stuck, as we were at the beginning. d

Exercises 13.3

Evaluating Polar Integrals

1 1-a° 1 ="
In Exercises 1-16, change the Cartesian integral into an equivalent L /] A dydx 2. / /\/_ dydx
polar integral. Then evaluate the polar integral. - T



(* + y*) dx dy

YA
“Jo Jo
1 pa/1-y?
/;lv/—\/l—y2
a «/az—xz
// dydx
2 pafa—y?
f/ (x* + y*)dx dy
o Jo
6 ry
/ f xdxdy
o Jo
-
Ve T+ /x2 4 y?
2
10. // MWty dxdy
J_I+x2+y
In2 pa/(n2)2-y? -
11. / / eVE Y dx dy
0 0
1 pa/1-2?
12, / /
Si—a-?
13, / /
14.[/ xy*dxdy
0 J-/1-0-1)
1 paf1-)?
15.// In(x* 4+ y*> 4+ 1)dxdy
—1J-4/1-y?
2

1
16. e
/4 [m (1 4 x2 4 y2)2

w

gl

x* + y? dxdy

>

B

Q

2 x
8. f / ydydx
0o Jo

dydx

»

(2442
e (x-H)dde

dydx

Finding Area in Polar Coordinates

17. Find the area of the region cut from the first quadrant by the
curve r = 2(2 — sin 20)'/2,

18. Find the area of the region that lies inside the cardioid r = 1 +
cos 6 and outside the circle r = 1.

19. Find the area enclosed by one leaf of the rose r = 12 cos 36.

20. Find the area of the region enclosed by the positive x-axis and
spiral r =46/3,0 < 6 < 2n. The region looks like a snail shell.

21. Find the area of the region cut from the first quadrant by the
cardioid r = 1 + sin 6.

22. Find the area of the region common to the interiors of the car-
dioids r =1 +cos @ and r =1 —cos 6.

Masses and Moments

23. Find the first moment about the x-axis of a thin plate of constant

Exercises 13.3 1025

density § (x, y) = 3, bounded below by the x-axis and above by
the cardioid r = 1 — cos 6.

24. Find the moment of inertia about the x-axis and the polar moment
of inertia about the origin of a thin disk bounded by the circle
x2 + y? = a? if the disk’s density at the point (x, y) is § (x, y) =
k(x? 4 y?), k a constant.

25. Find the mass of a thin plate covering the region outside the
circle r = 3 and inside the circle » = 6 sin 6 if the plate’s density
function is § (x,y) = 1/r.

26. Find the polar moment of inertia about the origin of a thin plate
covering the region that lies inside the cardioid r = 1 — cos 6
and outside the circle r = 1 if the plate’s density function is
§(x,y)=1/r%

27. Find the centroid of the region enclosed by the cardioid r =
I +cos 6.

28. Find the polar moment of inertia about the origin of a thin plate
enclosed by the cardioid » = 1 4 cos 6 if the plate’s density func-
tion is § (x,y) = 1.

Average Values

29. Find the average height of the hemisphere z = \/a? — x2 — y?
above the disk x% + y?> < a? in the xy-plane.

30. Find the average height of the (single) cone z = \/x? + y? above
the disk x? + y? < a” in the xy-plane.

31. Find the average distance from a point P(x, y) in the disk x? +
y? < a? to the origin.

32. Find the average value of the square of the distance from the point
P(x, y) in the disk x* + y? < I to the boundary point A(l,0).

Theory and Examples

33. Integrate f(x,y) = [In(x? + y*)]/\/x% + y? over the region 1
4yl <e

34. Integrate f(x,y) = [In (x? + y?)]/(x% + y?) over the region 1
x>+ y? <eé’

IA

IA

35. The region that lies inside the cardioid r = 1 + cos 6 and outside
the circle r =1 is the base of a solid right cylinder. The top of
the cylinder lies in the plane z = x. Find the cylinder’s volume.

36. The region enclosed by the lemniscate r?> = 2 cos 26 is the base
of a solid right cylinder whose top is bounded by the sphere
z = /2 — r?. Find the cylinder’s volume.

37. a) The usual way to evaluate the improper integral / =

J5° e dx is first to calculate its square:

o0 o0 o0 o0
I’ = (/ e~ dx) <f e dy> = / / et dx dy.
0 0 o Jo

Evaluate the last integral using polar coordinates and solve
the resulting equation for I.
b) (Continuation of Section 7.6, Exercise 92.) Evaluate

lim erf(x) = lim f "2
m e X)= 11 R .
x—00 x—00 Jo o N/TT



1026 Chapter 13: Multiple Integrals

38. Evaluate the integral b) Use one of Pappus’s theorems together with the centroid
00 poo 1 information in Exercise 26 of Section 5.10 to find the volume
/(; /0 (412 + y2)2 dxdy. of the solid generated by revolving the region about the x-
axis.
39. Integrate the function f(x,y) = 1/(1 —x* — y?) over the disk

40.

x? 4 y? < 3/4. Does the integral of f(x, y) over the disk x? +
y2 < 1 exist? Give reasons for your answer.

Use the double integral in polar coordinates to derive the formula

f1
A=/a Ersz

& CAS Explorations and Projects

In Exercises 43—46, use a CAS to change the Cartesian integrals into
an equivalent polar integral and evaluate the polar integral. Perform
the following steps in each exercise.

. . a) Plot the Cartesian region of integration in the xy-plane.
for the area of the fan-shaped region between the origin and polar b) Change each boundary curve of the Cartesian region in (a) to
curve r = f(6), @ <6 < B. its polar representation by solving its Cartesian equation for r
41. Let Py be a point inside a circle of radius a and let & denote and 6.
the distance from Py to the center of the circle. Let d denote the ¢) Using the results in (b), plot the polar region of integration in
distance from an arbitrary point P to Py. Find the average value the r6-plane.
of d? over the region enclosed by the circle. (Hi.t: Simplify your d) Change the integrand from Cartesian to polar coordinates. Deter-

work by placing the center of the circle at the origin and P, on
the x-axis.)

mine the limits of integration from your plot in (c) and evaluate
the polar integral using the CAS integration utility.

42. Suppose that the area of a region in the polar coordinate plane is

3n/4 2sin 6
A= / rdrdb.
/4 c

sc 6

1 pl y 1 px/2 X
43. —~ _dydx 44. —~ _dyd
./O/Xx“ryz Y /0/0 2ty 7Y

1 py/3 1 p2-y
y )
45, / ————dxdy 46. / / Jx+ydxdy
0 Joys /x4 y? o Jy

a) Sketch the region and find its area.

Triple Integrals in Rectangular Coordinates

We use triple integrals to find the volumes of three-dimensional shapes, the masses
and moments of solids, and the average values of functions of three variables. In
Chapter 14, we will also see how these integrals arise in the studies of vector fields
and fluid flow.

Triple Integrals

If F(x,y,z) is a function defined on a closed bounded region D in space—the
region occupied by a solid ball, for example, or a lump of clay—then the integral of
F over D may be defined in the following way. We partition a rectangular region
containing D into rectangular cells by planes parallel to the coordinate planes
(Fig. 13.29). We number the cells that lie inside D from 1 to n in some order, a
typical cell having dimensions Ax; by Ay, by Az, and volume AV,. We choose
a point (xg, Y, zx) in each cell and form the sum

S =Y F(Xk, Yo 20) A Vi (1)
k=1

If F is continuous and the bounding surface of D is made of smooth surfaces joined
along continuous curves, then as Ax;, Ay,, and Az, approach zero independently
the sums S, approach a limit

lim §, =/// F(x,y, z)dV. (2)
D

13.29 Partitioning a solid with
rectangular cells of volume AV,.
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We call this limit the triple integral of F over D. The limit also exists for some
discontinuous functions.

Properties of Triple Integrals

Triple integrals have the same algebraic properties as double and single integrals.
If F=F(x,y,z) and G = G(x, y, z) are continuous, then

1. f//deV:k/f/FdV (any number k)
D D

2. // (F:l:G)dV:f/deV:t///GdV
D D D

3. ///FdeO if F>0onD
D

a. ///Fde/fdeV if F>G onD.
D D

Triple integrals also have an additivity property, used in physics and engineering
as well as in mathematics. If the domain D of a continuous function F is partitioned

by smooth surfaces into a finite number of nonoverlapping cells Dy, D,, ..., D,,
then
s. [[[rav=[[[ravs[[[Fravse..s[[[Fav.

D D, D; D,

Volume of a Region in Space

If F is the constant function whose value is 1, then the sums in Eq. (1) reduce to
Si= ) Flu yez)AVi=) 1+ AVi=) AV (3)

As Ax, Ay, and Az approach zero, the cells AV, become smaller and more
numerous and fill up more and more of D. We therefore define the volume of D

to be the triple integral
lim Y AV, =///dv.
n—oc = D

Definition
The volume of a closed, bounded region D in space is

V=/[/dv. @

As we will see in a moment, this integral enables us to calculate the volumes of
solids enclosed by curved surfaces.
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Evaluation

We seldom evaluate a triple integral from its definition as a limit. Instead, we apply
a three-dimensional version of Fubini’s theorem to evaluate it by repeated single
integrations. As with double integrals, there is a geometric procedure for finding
the limits of integration.

How to Find Limits of Integration in Triple Integrals

[[[ Fsaav
D

over a region D, integrating first with respect to z, then with respect to y, finally with x, take the following steps.

To evaluate

1. A sketch. Sketch the region D 2. The z-limits of integration. Draw 3. The y-limits of integration. Draw
along with its “shadow” R (ver- a line M passing through a typ- a line L through (x, y) parallel
tical projection) in the xy-plane. ical point (x, y) in R parallel to to the y-axis. As y increases, L
Label the upper and lower bound- the z-axis. As z increases, M en- enters R at y = g;(x) and leaves
ing surfaces of D and the upper ters D at z = f(x, y) and leaves at y = g,(x). These are the y-
and lower bounding curves of R. at z = f>(x, y). These are the z- limits of integration.

limits of integration.
Z Z
| |
z=f,(xy) Leaves at

z2=Lx)

Enters at

z2=fi(xy)

Enters at
y=8W

———————— =2

Leaves at
y= gz(x)

4. The x-limits of integration. Choose x-limits that include all lines through R parallel to the y-axis (x =a and x = b in
the preceding figure). These are the x-limits of integration. The integral is

x=b py=g(x) piz=fi(x,y)
/ f F(x,y,z)dzdydx.
x=a Jy=g(x) Jz=fi(x,y)

Follow similar procedures if you change the order of integration. The “shadow” of region D lies in the plane of the
last two variables with respect to which the iterated integration takes place.



13.30 The volume of the region enclosed
by these two paraboloids is calculated in
Example 1.
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M

Leaves at
z=8—x?—y?

) The curve of intersection
: / isx2+2y2=4

(-2,0,4)

— 42 2
2,0,4) z=x"+3

Enters at

7= x% + 3y?
Enters at _—
y=-V@d-x212

(2,0,0)

x2+2y?=4

R

Leaves at /
y=V@4-xd12 L Y

EXAMPLE 1 Find the volume of the region D enclosed by the surfaces z =
x?2+3y*and z =8 — x* — y%.

1% =///dzdydx,
D

the integral of F(x, y, z) = 1 over D. To find the limits of integration for evaluating
the integral, we take these steps.

Solution The volume is

Step 1: A sketch. The surfaces (Fig. 13.30) intersect on the elliptical cylinder x? +
3y? = 8 — x> — y? or x? 4+ 2y* = 4. The boundary of the region R, the projection
of D onto the xy-plane, is an ellipse with the same equation: x*> + 2y*> = 4. The
“upper” boundary of R is the curve y = /(4 — x2)/2. The lower boundary is the

curve y = —/(4 — x?)/2.

Step 2: The z-limits of integration. The line M passing through a typical point (x, y)
in R parallel to the z-axis enters D at z = x> + 3y? and leaves at z = 8 — x* — y2.

Step 3: The y-limits of integration. The line L through (x, y) parallel to the y-axis
enters R at y = —/(4 — x2)/2 and leaves at y = /(4 — x2)/2.

Step 4: The x-limits of integration. As L sweeps across R, the value of x varies
from x = —2 at (—2,0,0) to x = 2 at (2,0, 0). The volume of D is

szl/dzdydx

2 pa/@=x2)/2  p8-x?-y?
= / / f dzdydx
-2 J -4 /(@-x2)/2 Jx2+3y?
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Line
x+z=1

x 27

y=

Enters at

13.31 The tetrahedron in Example 2.

13.32 Example 3 gives six different
iterated triple integrals for the volume of
this prism.

— 4y dydx

“4- x2)/2
/ / (8 — 2x?
4— x2)/2
2 4 =4/ (4- x2)/2
= f [(8 -2y — —y3] dx
3 -/ (d=x?)/2

) 3/2
— 2(4 )dx
2 _ 2\ 32 3/2
:f [8<42x) _g( 2 ) ] 4f/(4 Xy dx
-2

= 871\/5. After integration with the substitution v = 2sinu d

In the next example, we project D onto the xz-plane instead of the xy-plane.

EXAMPLE 2 Set up the limits of integration for evaluating the triple integral
of a function F(x, y, z) over the tetrahedron D with vertices (0, 0, 0), (1, 1, 0),
(0, 1, 0), and (0, 1, 1).

Solution

Step 1: A sketch. We sketch D along with its “shadow” R in the xz-plane
(Fig. 13.31). The upper (right-hand) bounding surface of D lies in the plane y = 1.
The lower (left-hand) bounding surface lies in the plane y = x + z. The upper
boundary of R is the line z = 1 — x. The lower boundary is the line z = 0.

Step 2: The y-limits of integration. The line through a typical point (x, z) in R
parallel to the y-axis enters D at y = x + z and leaves at y = 1.

Step 3: The z-limits of integration. The line L through (x, z) parallel to the z-axis
enters R at z =0 and leaves at z =1 — x.

Step 4: The x-limits of integration. As L sweeps across R, the value of x varies
from x =0 to x = 1. The integral is

1 l—x 1
F(x,y,z)dydzdx.
A /0 /J\j+z D

As we know, there are sometimes (but not always) two different orders in which
the single integrations for evaluating a double integral may be worked. For triple
integrals, there could be as many as six.

EXAMPLE 3 Each of the following integrals gives the volume of the solid

shown in Fig. 13.32.
1 -y 2
b) // /dxdzdy
o Jo 0

1 1-2z 2
a) // /dxdydz
o Jo 0
2 1 -z
d) /// dy dz dx
0o Jo Jo

1 2 1-z
f/f dy dx dz
o Jo Jo
1 p2 pl-y 2 el opl-y
e) /// dzdxdy f) /// dzdydx
o Jo Jo o Jo Jo d
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13.33 The region of integration in
Example 4.
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Average Value of a Function in Space

The average value of a function F over a region D in space is defined by the
formula

1
Average value of F over D = ————— ff/ FdVv. (5)
volume of D
D

For example, if F(x, y, z) =+/x2+ y?+ z2, then the average value of F over D
is the average distance of points in D from the origin. If F(x, y, z) is the density
of a solid that occupies a region D in space, then the average value of F over D
is the average density of the solid in units of mass per unit volume.

EXAMPLE 4 Find the average value of F(x, y, z) = xyz over the cube bounded
by the coordinate planes and the planes x = 2, y = 2, and z = 2 in the first octant.

Solution We sketch the cube with enough detail to show the limits of integration
(Fig. 13.33). We then use Eq. (5) to calculate the average value of F over the cube.

The volume of the cube is (2)(2)(2) = 8. The value of the integral of F over
the cube is

[[ [oessrce [ [ [ e [ [P

[ e -
0 y=0 0 0
With these values, Eq. (5) gives

Average value of

1 1
xyz over the cube - volume /./f *yzdV = (g) ®=1

cube

In evaluating the integral, we chose the order dx, dy, dz, but any of the other five
possible orders would have done as well. J

Exercises 13.4

Evaluating Triple Integrals in Different Iterations

1. Find the common value of the integrals in Example 3.

5. Let D be the region bounded by the paraboloids z = 8 — x2 — y?
and z = x? + y%. Write six different triple iterated integrals for
the volume of D. Evaluate one of the integrals.

2. Write six different iterated triple integrals for the volume of the ) ) .
rectangular solid in the first octant bounded by the coordinate 6. Let D be the region bounded by the paraboloid z = x*+y

planes and the planes x = 1, y = 2, and z = 3. Evaluate one of

the integrals.

3. Write six different iterated triple integrals for the volume of the
tetrahedron cut from the first octant by the plane 6x + 3y + 2z =

6. Evaluate one of the integrals.

and the plane z = 2y. Write triple iterated integrals in the order
dzdx dy and dz dy dx that give the volume of D. Do not evaluate
either integral.

Evaluating Triple Iterated Integrals

Evaluate the integrals in Exercises 7-20.

4. Write six different iterated triple integrals for the volume of the

region in the first octant enclosed by the cylinder x? + 72 = 4
and the plane y = 3. Evaluate one of the integrals.

1 plopl
7. / f / (x2+y2+z2)dzdydx
o Jo Jo
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

—dxdydz
xyz

3y p8—xl-y?
/ / [ dzdxdy
x2+3v2
3-3x 3-3x—y
// / dzdydx
0o Jo 0
| n n
/f [ ysinzdxdydz
o Jo Jo
1 plopl
///(x+y+z)dydxdz
// f dzdydx
0
2x+y
// / dzdxdy
\/4\
2—x 2—x—y
// / dzdydx
0o Jo 0
1 pl=x? pd—xi-y
/f / xdzdydx
o Jo 3

///cos(u+v+w)dudvdw (uvw-space)
o Jo Jo

f f / Inrinsintdtdrds (rst-space)
(B AR

/4 Insecv 2t
/ / / e*dxdtdv (tvx-space)

[rre

Js)

(pgr-space)

Volumes Using Triple Integrals

21.

22.

Here is the region of <
integration of the integral

1 1 I—»
/ / [ dzavas.
-1Jx* Jo

Side:
y=x

X (1,1,0)

Rewrite the integral as an equivalent iterated integral in the order

a) dydzdx b) dydxd:z
¢) dxdydz d) dxdzdy
e) dzdxdy

Here is the region of
integration of the integral

1 0 §?
[ [ ] azavan
0 J-1Jo

(1,-1,0)

Rewrite the integral as an equivalent iterated integral in the order

a) dydzdx b) dydxdz
¢) dxdydz d) dxdzdy
e) dzdxdy

Find the volumes of the regions in Exercises 23-36.

23.

24.

25.

26.

27.

The region between the
cylinder z = y? and the
xy-plane that is bounded
by the planes x =0, x =1,
y=-1ly=1

The region in the first octant
bounded by the coordinate
planes and the planes
x+z=1y+2z=2

A
e

X

Z

~N\—
y
X
Z

¥ y
X

The region in the first octant
bounded by the coordinate

planes, the plane y +z = 2,
and the cylinder x = 4 — y?

~

The wedge cut from the cylinder
x2 4 y? =1 by the planes
z=-yandz=0

The tetrahedron in the first octant
bounded by the coordinate
planes and the plane
x+y/2+2z/3=1



28. The region in the first octant z
bounded by the coordinate
planes, the plane y =1 —x,
and the surface z = cos (7 x/2),
0<x<1

29. The region common to the interiors of the cylinders x? + y? = 1
and x2 + z2 = 1 (Fig. 13.34)

13.34 One-eighth of the region common to the
cylinders x2 + y?> = 1 and x2 + 22 = 1 in Exercise 29.

30. The region in the first octant Z
bounded by the coordinate planes

and the surface z =4 —x%? — y

31. The region in the first 2
octant bounded by the
coordinate planes, the
plane x + y =4, and the
cylinder y? 4+ 4z% = 16

Exercises 13.4 1033

32. The region cut from the 2
cylinder x2 4+ y? = 4 by
the plane z = 0 and the
plane x +z=3

33. The region between the planes x + y + 2z =2 and 2x + 2y +
z = 4 in the first octant

34. The finite region bounded by the planes z=x,x+z=38§,
z=y,y=28,and z =0.

35. The region cut from the solid elliptical cylinder x? + 4y? < 4 by
the xy-plane and the plane z = x + 2

36. The region bounded in back by the plane x =0, on the front
and sides by the parabolic cylinder x = 1 — y?, on the top by
the paraboloid z = x? 4 y?, and on the bottom by the xy-plane

Average Values

In Exercises 3740, find the average value of F(x, y, z) over the given

region.

37. F(x,y,z) = x*>+9 over the cube in the first octant bounded by
the coordinate planes and the planes x =2,y =2, and 7z =2

38. F(x,y,z) =x+y — z over the rectangular solid in the first oc-
tant bounded by the coordinate planes and the planes x =1,y =
1, and z =2

39. F(x,y,2) =x*+y?>+ 2> over the cube in the first octant
bounded by the coordinate planes and the planes x =1,y =1,
and z =1

40. F(x,y,z) = xyz over the cube in the first octant bounded by the
coordinate planes and the planes x =2,y =2, and z =2
Changing the Order of Integration

Evaluate the integrals in Exercises 41-44 by changing the order of
integration in an appropriate way.

4 01 2y 2
a1. / / f 2SO v dy dz
o Jo Joy 2Vz
el .
42. [ f / 12xze” dydxdz
o Jo Jx?
I opl pin3 2 2
43. / f / €Y ixdyd:
o J3¥zJo y

2 p4—x? X o
2
44 // / M2y dzdx
o Jo 0o 41z
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Theory and Examples
45. Solve for a:

& CAS Explorations and Projects

In Exercises 49-52, use a CAS integration utility to evaluate the triple
integral of the given function over the specified solid region.

1 4—aq—? 4—2—y
4
L /(; [ dzdydx = 15 49. F(x,y,z) = x2y%z over the solid cylinder bounded by x? + y2 =

46. For what value of ¢ is the volume of the ellipsoid x2 + (y/2)? +

(z/c)? = 1 equal to 87?

47. What domain D in space minimizes the value of the integral

1 and the planes z =0 and z = 1.
50. F(x,y,z) = |xyz|over the solid bounded below by the paraboloid
z = x? + y? and above by the plane z = 1.
z

51. F(x,y,z) = ————— over the solid bounded below b
///(4x2+4y2+22 —4)dVv? Y (x2 + y2 +22)%2 Y
D the cone z = \/x% + y? and above by the plane z = 1.

Give reasons for your answer.

52. F(x,y,z) =x*+ y? + 7% over the solid sphere x> + y2 4 z2 < 1.

48. What domain D in space maximizes the value of the integral

///(1—x2—y2—z2)dv7
D

Give reasons for your answer.

Masses and Moments in Three Dimensions

T

Amy = 8(xp, v, ) AV,

Zk)

13.35 To define an object’s mass and
moment of inertia about a line, we first
imagine it to be partitioned into a finite
number of mass elements Amy.

This section shows how to calculate the masses and moments of three-dimensional
objects in Cartesian coordinates. The formulas are similar to those for two-
dimensional objects. For calculations in spherical and cylindrical coordinates, see
Section 13.6.

Masses and Moments

If §(x,y, z) is the density of an object occupying a region D in space (mass per
unit volume), the integral of § over D gives the mass of the object. To see why,
imagine partitioning the object into n mass elements like the one in Fig. 13.35. The
object’s mass is the limit

M = Tim > Am = lim Y 8(x. yi. ) AV =/// 8(x,y,2)dV. (1)
n—oo =1 n—oo k=1
D

If r(x, y, z) is the distance from the point (x, y, z) in D to a line L, then the
moment of inertia of the mass Amy; = §(xx, yx, 2x) AV; about the line L (shown in
Fig. 13.35) is approximately Al = r?(x;, y«, zx) Amy. The moment of inertia of
the entire object about L is

n

I, = lim ; Al = lim Z r2 (e, i 26) 8 (e, Yo k) AV = /ff r28dv.
- D

k=1

If L is the x-axis, then r? = y? 4 z? (Fig. 13.36) and

I =f/ (> +275)8dV.
D
Similarly,

’,\-=// x?>4+2)8dV  and 1:=// (x*+y*H8dVv.
D D



13.36 Distances from dV to the
coordinate planes and axes.

Z

\y

a

X

13.37 Example 1 calculates Iy, 1, and I,
for the block shown here. The origin lies
at the center of the block.

13.5 Masses and Moments in Three Dimensions 1035

These and other useful formulas are summarized in Table 13.2.

Table 13.2 Mass and moment formulas for objects in space

Mass: M = ///(MV (6 = density)
D

First moments about the coordinate planes:
o= [[[rsave wa= [[[ssav. = [[[ sav
D D D

Center of mass:

M

yz i=

M’ M

sz 7= Mxy

X =

Moments of inertia (second moments):
I, =fff(y2+zz)8d\/
I = [[f (x* +2%)8dV
L= [f[(x*+y)8dV

Moment of inertia about a line L:

I = [[[r*8dV
Radius of gyration about a line L:

R, =I,/M

(r(x,y, z) = distance from points (x, y, z) to line L)

EXAMPLE 1 Find I, I, I, for the rectangular solid of constant density § shown
in Fig. 13.37.
Solution The preceding formula for /, gives
c/2 b/2 a/2
I, =/ / (y*+ 7% 8dxdydz. )
—c2d=bi2d-ap2

We can avoid some of the work of integration by observing that (y? + z2) § is an
even function of x, y, and z and therefore

c/2 b/2 a/2 c/2 b/2
1X=8f / / (y2+z2)8dxdydz=4a8/ / Y+ 7% dydz
0 0 0 0 0
c/2 3

y=b/2
= 4as / ST y] dz
0

be b\ abes M
= 4as (—C n C—) =W+ = SO+,

M M
I, = —(a*+¢c% and I, = E(a2 +b7).
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13.38 Example 2 finds the center of mass
of this solid.

EXAMPLE 2 Find the center of mass of a solid of constant density § bounded
below by the disk R: x?> + y? < 4 in the plane z = 0 and above by the paraboloid
7 =4 —x? - y? (Fig. 13.38).

Solution By symmetry, x =y = 0. To find Z, we first calculate

7=4—x2-y? 214x—

f// z8dzdydx—//[ ] ddydx
z=0

R

8
= —/ 4 —x*—y))?dydx

2n
/ / 4 -r>*rdrde Polar coordinates

8 r=2 168 " 3278
_/ [__(4 r)] 4o = — [ do =222
2 Jo o 3 /o 3

M,,

I

A similar calculation gives

4oxoy?
M=/// ddzdydx = 8w é.
0
R

Therefore 7 = (M,,/M) = 4/3, and the center of mass is (x,y,z) = (0,0, 4/3).
Q
When the density of a solid object is constant (as in Examples 1 and 2), the center

of mass is called the centroid of the object (as was the case for two-dimensional
shapes in Section 13.2).

Exercises 13.5

Constant Density

The solids in Exercises 1-12 all have constant density § = 1.

1. Evaluate the integral for I, in Eq. (2) directly to show that the
shortcut in Example 1 gives the same answer. Use the results in
Example 1 to find the radius of gyration of the rectangular solid

about each coordinate axis.

Centroid
at (0,0, 0)

c
2. The coordinate axes in the figure to the right run through the \
y

centroid of a solid wedge parallel to the labeled edges. Find

I, Iy, and I, ifa=b=6and c =4.

3. Find the moments of inertia of
the rectangular solid shown here
with respect to its edges by cal-
culating I, I,, and I,.

Figure for Exercise 2

4. a) Find the centroid and the moments of inertia /., /,, and I,
b of the tetrahedron whose vertices are the points (0, 0, 0),
y (1,0, 0), (0, 1, 0), and (0, O, 1).
b) Find the radius of gyration of the tetrahedron about the
x-axis. Compare it with the distance from the centroid to
the x-axis.



5.

10.

11.

A solid “trough” of constant density is bounded below by the
surface z = 4y2, above by the plane z = 4, and on the ends by
the planes x = | and x = —1. Find the center of mass and the
moments of inertia with respect to the three axes.

. A solid of constant density is bounded below by the plane z = 0,

on the sides by the elliptic cylinder x> + 4y> = 4, and above by
the plane z = 2 — x (see the figure).

a) Find X and y.
b) Evaluate the integral

2 pUl/2)af4=xr p2—x
M\,=/ / zdzdydx,
* -2 J-(1/24/4-x* Jo

using integral tables to carry out the final integration with
respect to x. Then divide M,, by M to verify thatz = 5/4.

z=2—-x

x2+4yr=4

/2

a) Find the center of mass of a solid of constant density bounded
below by the paraboloid z = x? + y? and above by the plane
z=4.

b) Find the plane z = ¢ that divides the solid into two parts of
equal volume. This plane does not pass through the center
of mass.

. A solid cube, 2 units on a side, is bounded by the planes x =

+1,z =41,y =3, and y = 5. Find the center of mass and the
moments of inertia and radii of gyration about the coordinate
axes.

. A wedge like the one in Exercise 2 hasa =4,b =6, and ¢ = 3.

Make a quick sketch to check for yourself that the square of
the distance from a typical point (x, y, z) of the wedge to the
line L: 7 =0,y =6 is r* = (y — 6)> + z%. Then calculate the
moment of inertia and radius of gyration of the wedge about L.

A wedge like the one in Exercise 2 hasa =4,b =6, and ¢ = 3.
Make a quick sketch to check for yourself that the square of
the distance from a typical point (x, y, z) of the wedge to the
line L: x =4,y =0 is r? = (x —4)> + y®. Then calculate the
moment of inertia and radius of gyration of the wedge about L.

A solid like the one in Exercise 3 hasa =4.b =2, and c = 1.
Make a quick sketch to check for yourself that the square of the
distance between a typical point (x, y. z) of the solid and the line
L:y=2,z=0is r’ = (y — 2)?> + z°. Then find the moment of
inertia and radius of gyration of the solid about L.

12.

Exercises 13.5 1037

A solid like the one in Exercise 3 hasa =4,b =2, and ¢ = 1.
Make a quick sketch to check for yourself that the square of the
distance between a typical point (x, y, z) of the solid and the line
L:x =4,y =0is r> = (x — 4)> + y. Then find the moment of
inertia and radius of gyration of the solid about L.

Variable Density

In Exercises 13 and 14, find (a) the mass of the solid and (b) the
center of mass.

13.

14.

A solid region in the first octant is bounded by the coordinate
planes and the plane x + y + z = 2. The density of the solid is
§(x,y,2) =2x.

A solid in the first octant is
bounded by the planes y = 0 and
z =0 and by the surfaces z =
4 — x? and x = y? (see the fig-
ure). Its density function is
8(x,y,2) =kxy.

'
—> N

2

z=4—x

In Exercises 15 and 16, find

a) the mass of the solid

b) the center of mass

¢) the moments of inertia about the coordinate axes

d) the radii of gyration about the coordinate axes.

15. A solid cube in the first octant is bounded by the coordinate
planes and by the planes x = 1,y = 1, and z = 1. The density
of the cube is §(x,y,z) =x+y+z+1.

16. A wedge like the one in Exercise 2 has dimensions a = 2,b = 6,
and ¢ = 3. The density is 8§(x, y, z) = x + 1. Notice that if the
density is constant, the center of mass will be (0, 0, 0).

17. Find the mass of the solid bounded by the planes x +z =1,
x —z=—1,y =0 and the surface y = \/z. The density of the
solid is 8(x, y,z) =2y +5.

18. Find the mass of the solid region bounded by the parabolic sur-
faces z = 16 — 2x? — 2y? and z = 2x2 + 2y? if the density of
the solid is 8(x, y, z) = /x% + y2.

Work

In Exercises 19 and 20, calculate the following.

a) The amount of work done by (constant) gravity g in moving

the liquid filled in the container to the xy-plane (Hint: Partition
the liquid in the container into small volume elements AV, and
find the work done (approximately) by gravity on each element.



1038 Chapter 13: Multiple Integrals

Summation and passage to the limit gives a triple integral to
evaluate.)

b) The work done by gravity in moving the center of mass down
to the xy-plane

19. The container is a cubical box in the first octant bounded by the
coordinate planes and the planes x =1,y =1, and z = 1. The
density of the liquid filling the box is §(x, y,z) =x+y+z+1
(refer to Exercise 15).

20. The container is in the shape of the region bounded by y = 0,z =
0,z =4 —x2, and x = y2. The density of the liquid filling the
region is &(x, y, z) = kxy (see Exercise 14).

The Parallel Axis Theorem

The Parallel Axis Theorem (Exercises 13.2) holds in three dimensions
as well as in two. Let L., be a line through the center of mass of a
body of mass m and let L be a parallel line 4 units away from L., .
The Parallel Axis Theorem says that the moments of inertia /.,
and 7, of the body about L., and L satisfy the equation

I = ]cAm_+mh2v (1)

As in the two-dimensional case, the theorem gives a quick way to cal-
culate one moment when the other moment and the mass are known.

21. Proof of the Parallel Axis Theorem

a) Show that the first moment of a body in space about any
plane through the body’s center of mass is zero. (Hint: Place
the body’s center of mass at the origin and let the plane be
the yz-plane. What does the formula x = M,./M then tell
you?)

-
<

L

(h,0,0)

e

X

b) To prove the Parallel Axis Theorem, place the body with
its center of mass at the origin, with the line L., along the
z-axis and the line L perpendicular to the xy-plane at the
point (4, 0,0). Let D be the region of space occupied by
the body. Then, in the notation of the figure,

I, = /// |v — hil*dm. ()

Expand the integrand in this integral and complete the proof.

22. The moment of inertia about a diameter of a solid sphere of
constant density and radius a is (2/5)ma®, where m is the mass

of the sphere. Find the moment of inertia about a line tangent to
the sphere.

23. The moment of inertia of the solid in Exercise 3 about the z-axis

is I, = abc(a® + b?)/3.

a) Use Eq. (1) to find the moment of inertia and radius of
gyration of the solid about the line parallel to the z-axis
through the solid’s center of mass.

b) Use Eq. (1) and the result in (a) to find the moment of
inertia and radius of gyration of the solid about the line
x=0,y=2b.

24. If a = b = 6 and ¢ = 4, the moment of inertia of the solid wedge
in Exercise 2 about the x-axis is /, = 208. Find the moment of
inertia of the wedge about the line y = 4, z = —4/3 (the edge of
the wedge’s narrow end).

Pappus’s Formula

Pappus’s formula (Exercises 13.2) holds in three dimensions as well
as in two. Suppose that bodies By and B, of mass m, and m,, respec-
tively, occupy nonoverlapping regions in space and that ¢; and ¢, are
the vectors from the origin to the bodies’ respective centers of mass.
Then the center of mass of the union B; U B, of the two bodies is
determined by the vector

¢ = m;C; +m2c2. (3)

m, + my
As before, this formula is called Pappus’s formula. As in the two-
dimensional case, the formula generalizes to
mi€y +myCy + -+ + mu¢,

c= 4)
my+my+---+my,

for n bodies.

25. Derive Pappus’s formula (Eq. 3). (Hint: Sketch B, and B, as
nonoverlapping regions in the first octant and label their centers
of mass (x,y,,z;) and (X,,Y,,2;). Express the moments of
B, U B, about the coordinate planes in terms of the masses m;
and m, and the coordinates of these centers.)

26. The figure below shows a solid made from three rectangular
solids of constant density § = 1. Use Pappus’s formula to find
the center of mass of

a) AUB b) AUC
¢ BUC d AUBUC.
Z
©,3,2)
2 2 161
3 1
(2,0,2)
2/A 8/ 4 >

C
(3,6,-2)
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27. a) Suppose that a solid right circular cone C of base radius tion about a triangle and a semicircle (Section 13.2, Exercise
a and altitude % is constructed on the circular base of a 55). The answers are not the same.
solid h(?misphere S of rfadius a so that the union .Of the 28. A solid pyramid P with height 4 and four congruent sides is built
twc? solids r.esembles an ice cream cone. The centroid of a with its base as one face of a solid cube C whose edges have
solid cone lies onc-fou.rth of the way from the ba§e toward length s. The centroid of a solid pyramid lies one-fourth of the
the vertex. The centroid of a solid hemisphere lies three- way from the base toward the vertex. What relation must hold
eighths of the way from the base to the top. What relation between A and s to place the centroid of P U C in the base of
must hold between / and a to place the centroid of C U S the pyramid? Compare your answer with the answer to Exercise

in the common base of the two solids?

27. Also compare it to the answer to Exercise 56 in Section 13.2.

b) If you have not already done so, answer the analogous ques-

(r, 6,2)

o T

13.39 Cylindrical coordinates and typical
surfaces of constant coordinate value.

13.40 The volume element in cylindrical
coordinates is dV = dzrdrdf.

Triple Integrals in Cylindrical and
Spherical Coordinates

When a calculation in physics, engineering, or geometry involves a cylinder, cone, or
sphere, we can often simplify our work by using cylindrical or spherical coordinates.

Cylindrical Coordinates

Cylindrical coordinates (Fig. 13.39) are good for describing cylinders whose axes
run along the z-axis and planes that either contain the z-axis or lie perpendicular
to the z-axis. As we saw in Section 10.7, surfaces like these have equations of
constant coordinate value:

r=4 Cylinder. radius 4. axis the z-axis
n .
0 = 5 Planc containing the z-axis

z=2 Planc perpendicular to the z-axis

The volume element for subdividing a region in space with cylindrical coordi-

nates is
dV =dzrdrdb (1)

(Fig. 13.40). Triple integrals in cylindrical coordinates are then evaluated as iterated
integrals, as in the following example.

EXAMPLE 1 Find the limits of integration in cylindrical coordinates for inte-

grating a function f(r, 6, z) over the region D bounded below by the plane z = 0,

laterally by the circular cylinder x> + (y — 1) = 1, and above by the paraboloid
— 2 2

Z=x"+y".

Solution

Step 1: A sketch (Fig. 13.41). The base of D is also the region’s projection R on the
xy-plane. The boundary of R is the circle x> + (y — 1)> = 1. Its polar coordinate
equation is

Xy -1)i=1
x4y -2y+1=1
r’—2rsinf =0

r = 2sin 6.
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Top
Cartesian: z = x% + y?
Cylindrical: z = r

2

(r, 0)
Cartesian: x% + (y - H2=1
X Polar: r=2sin 6

13.41 The figure for Example 1.

/x2+y2=4
r=

L

13.42 Example 2 shows how to find the
centroid of this solid.

Step 2: The z-limits of integration. A line M through a typical point (r,6) in R
parallel to the z-axis enters D at z = 0 and leaves at z = x2 + y? = r2.

Step 3: The r-limits of integration. A ray L through (r, 6) from the origin enters
R at r = 0 and leaves at r = 2 sin 6.

Step 4: The O-limits of integration. As L sweeps across R, the angle 6 it makes
with the positive x-axis runs from 6 = 0 to 8 = m. The integral is

n 2sinf  pr?
// f(r,0,z)dV=/ f / f(r,8,z)dzrdrdé. _
A o Jo 0 l

Example 1 illustrates a good procedure for finding limits of integration in
cylindrical coordinates. The procedure is summarized in the box on the following

page.

EXAMPLE 2 Find the centroid (§ = 1) of the solid enclosed by the cylinder
x? + y* = 4, bounded above by the paraboloid z = x + y? and below by the xy-
plane.

Solution We sketch the solid, bounded above by the paraboloid z = r* and below
by the plane z = 0 (Fig. 13.42). Its base R is the disk |r| <2 in the xy-plane.
The solid’s centroid (X, ¥, 7) lies on its axis of symmetry, here the z-axis. This
makes x =y = 0. To find Z, we divide the first moment M,, by the mass M.
To find the limits of integration for the mass and moment integrals, we continue
with the four basic steps. We completed step 1 with our initial sketch. The remaining
steps give the limits of integration.

Step 2: The z-limits. A line M through a typical point (r,8) in the base parallel
to the z-axis enters the solid at z = 0 and leaves at z = r2.

Step 3: The r-limits. A ray L through (r, 8) from the origin enters R at r = 0 and
leaves at r = 2.

Step 4: The 6-limits. As L sweeps over the base like a clock hand, the angle 6 it
makes with the positive x-axis runs from § = 0 to 6 = 2. The value of M,, is

2 p2 pr? 2 p2r 2 r
M,, =/ f / zdzrdrd@:f / [—] rdrd6
’ 0 o Jo 0 o L2 ]

2t p2 5 27 1,672 2
16 32
=/ r—drdO:/ [r—] dO:/ —a6="".
0o Jo 2 o L12], o 3 3

The value of M is

2 2 pr? 2 2 r
M=/ / / dzrdrd6=/ / I:Z:| rdrdf
o Jo Jo 0o Jo 0
w2 472 m
=/ / r3drd9=/ [—] dG:/ 4d6 =8n.
o Jo o L4l 0

M, 3271
M~ 3 8t

Therefore,

7=

)

4
3

and the centroid is (0, 0, 4/3). Notice that the centroid lies outside the solid.
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How to Integrate in Cylindrical Coordinates

// f(r,0,2) dV
D

over a region D in space in cylindrical coordinates, integrating first with respect to z, then with respect to r, and finally
with respect to 8, take the following steps.

To evaluate

1. A sketch. Sketch the region D along 2. The z-limits of integration. Draw 3. The r-limits of integration. Draw a

with its projection R on the xy- a line M through a typical point ray L through (r, 6) from the ori-
plane. Label the surfaces and curves (r, 8) of R parallel to the z-axis. gin. The ray enters R atr = h,(6)
that bound D and R. As z increases, M enters D at 7 = and leaves at r = h,(0). These are

gi1(r, 0) and leaves at z = g,(r, 0). the r-limits of integration.

These are the z-limits of integra-

tion.

4. The O-limits of integration. As L sweeps across R, the angle 6 it makes with the positive x-axis runs from 6 = « to
6 = B. These are the 0-limits of integration. The integral is

=8 r=h,(8) z=g,(r,0)
f//f(r,o,z)dv=/ f(r,g,z)dzrdrdG. (2)
O=a r=
D

hi(0) Jz=g(r,0)

Spherical Coordinates

Spherical coordinates (Fig. 13.43, on the following page) are good for describing
spheres centered at the origin, half-planes hinged along the z-axis, and single-
napped cones whose vertices lie at the origin and whose axes lie along the z-axis.
Surfaces like these have equations of constant coordinate value:

p=4 Sphere. radius 4. center at origin
¢ = z Cone opening up from the origin, making

3 an angle of /3 radians with the positive z-axis
6 = z Halt-plane. hinged along the z-axis. making

3 an angle of /3 radians with the positive 1-axis



1042 Chapter 13: Multiple Integrals

e

X

13.43 Spherical coordinates are
measured with a distance and two angles.

How to Integrate in Spherical Coordinates

To evaluate

/l fp, &,

over a region D in space in spherical coordinates, integrating first with
respect to p, then with respect to ¢, and finally with respect to 6, take the

following steps.

1. A sketch. Sketch the region D along with its projection R on the
xy-plane. Label the surfaces that bound D.

2. The p-limits of integration. Draw a ray M from the origin making an
angle ¢ with the positive z-axis. Also draw the projection of M on the

xy-plane (call the projection L). The

positive x-axis. As p increases, M enters D at p = g;(¢, 8) and leaves
at p = g,(¢, 0). These are the p-limits of integration.

3. The ¢-limits of integration. For any given 0, the angle ¢ that M makes
with the z-axis runs from ¢ = @yin t0 @ = Pnax. These are the @-limits

of integration.

4. The 0-limits of integration. The ray L sweeps over R as 6 runs from «
to B. These are the #-limits of integration. The integral is
=g2(¢,0)

0= Pd=Pmx PP
ff f(p,as,e)dv:f f /
b f=a S=Gmn p=,

81(9.6)

The volume element in spherical coordinates is the volume of a spherical wedge
defined by the differentials dp, d¢, and dO (Fig. 13.44). The wedge is approximately
a rectangular box with one side a circular arc of length pd¢, another side a
circular arc of length p sin ¢ df, and thickness dp. Therefore the volume element
in spherical coordinates is

dV = p? sin pdpdedo, (3)

and triple integrals take the form

/// F(p,$,0)dV = /// F(p.$.0) 0" sin pdpdgdo.  (4)

To evaluate these integrals, we usually integrate first with respect to p. The procedure
for finding the limits of integration is shown in the following box. We restrict our
attention to integrating over domains that are solids of revolution about the z-axis
(or portions thereof) and for which the limits for 6 and ¢ are constant.

Z

0) dV

ray L makes an angle 6 with the

f(p,9.0) p* sin pdpdedb. (5)




pdd
psin ¢ db

X
13.44 The volume element in spherical
coordinates is
dV =dp . pdo - psingdb
= p?singdpdg db.

13.45 The solid in Example 3.
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EXAMPLE 3 Find the volume of the upper region D cut from the solid sphere
p <1 by the cone ¢ = /3.

Solution The volume is V = /// P’ sin pdpde db, the integral of f(p, ¢,0)
=1 over D. D

To find the limits of integration for evaluating the integral, we take the following
steps.
Step 1: A sketch. We sketch D and its projection R on the xy-plane (Fig. 13.45).

Step 2: The p-limits of integration. We draw a ray M from the origin making
an angle ¢ with the positive z-axis. We also draw L, the projection of M on the
xy-plane, along with the angle 6 that L makes with the positive x-axis. Ray M
enters D at p = 0 and leaves at p = 1.

Step 3: The ¢-limits of integration. The cone ¢ = /3 makes an angle of 7 /3 with
the positive z-axis. For any given 6, the angle ¢ can run from ¢ = 0 to ¢ = /3.

Step 4: The O0-limits of integration. The ray L sweeps over R as 6 runs from 0 to
2m. The volume is

2 /3 1
V=///,o2 sin¢dpd¢d9=/ f f p? sin ¢dpdepdo
0 0 0
D

2r  pn/3 ,03 1 2r  pm/3 1
=/ / I:—} sin ¢d¢d0=/ / — sin ¢ d¢p db
o Jo 3 1 o Jo 3
o /3 3 T 1 T
= S do = ——+=-)d8 =-2n) = —.
/0 [ 3cos ¢}O /0 ( 6+3) 6( ) 3 0

EXAMPLE 4 A solid of constant density § = 1 occupies the region D in Ex-
ample 3. Find the solid’s moment of inertia about the z-axis.

Solution In rectangular coordinates, the moment is

Iz=f//<x2+y2>dv.

In spherical coordinates, x>+ y? = (p sin ¢ cos 8)> + (p sin ¢ sin ) =
p?sin® ¢. Hence,

I, = ///(p2 sin® ¢) p* sin pdpdp dd = ///p4 sin’ ¢dpdgdb.

For the region in Example 3, this becomes

21 /3 1 27 /3 ,05 1
I, = / f f p*sin® ¢dpdg do =/ / [—] sin® ¢ d¢p dO
o Jo Jo o Jo 5 o

1 2 n/3 1 2n COS3 ¢
=—/ / (1 — cos? ¢) sin¢d¢d6=—/ —cos ¢ + do
5 0 0 5 0 3

1/2” 1+1+1 1 " 1/2”5d9 1(2) 7
= — —_— _— = = = — —_— = — ) = —.
5/ 2 24 3 5J, 24 24 12 Q
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Coordinate Conversion Formulas (from Section 10.8)

Cylindrical to
Rectangular

x =r cos 6
y=rsin6
=1z

Spherical to Spherical to

Rectangular Cylindrical
x = p sin ¢ cos 6 r=psing¢
y = p sin ¢ sin 6 = p cos ¢
Z=p cos ¢ 0=20

Corresponding volume elements

dV =dxdydz
=dzrdrdf

= p?sin ¢pdpd¢ do

Exercises 13.6

Cylindrical Coordinates

Evaluate the cylindrical coordinate integrals in Exercises 1-6.

2 1 A 2-r?
L[ f | araras
0 0 Jr

2t p3 pa/18-r
2. / / / dzrdrdf
0 0o Jr/3

2 6/2m 3+24r2

3. / / / dzrdr d
0 0 0
7 pb/n p3a/4-r?

4. / / / zdzrdrdf
o Jo —a-r?
2 1 1/a/2-r?

S. / / / 3dzrdrdf
0 0 r

2t pl o pl)2
6. / / f (r® sin® 0 + %) dzrdrd6
0 0o J-12

The integrals we have seen so far suggest that there are preferred
orders of integration for cylindrical coordinates, but other orders usu-
ally work well and are occasionally easier to evaluate. Evaluate the
integrals in Exercises 7-10.

2 3 pz/3
7. / / / r3drdzdb
0 0 0
1 2 1+cos 6
8. / / / 4rdrdfdz
-1J0 0

1 pJz p2m
9. / / (r* cos? 0 + z2) rdo drdz
o Jo Jo

2 a-r? 2
10. / / (rsin@+ 1)rdédzdr
0 r=2 0

11.

12.

13.

14.

Let D be the region bounded below by the plane z = 0, above
by the sphere x% + y? + z2 = 4, and on the sides by the cylinder
x? 4 y? = 1. Set up the triple integrals in cylindrical coordinates
that give the volume of D using the following orders of integra-
tion.

a) dzdrdb
b) drdzdb
¢) dOdzdr
Let D be the region bounded below by the cone z = \/x? + y?

and above by the paraboloid z =2 — x? — y2. Set up the triple
integrals in cylindrical coordinates that give the volume of D
using the following orders of integration.

a) dzdrdb
b) drdzdf
¢) dOdzdr

Give the limits of integration for evaluating the integral

// f(r,6,z) dzrdrdé

as an iterated integral over the region that is bounded below by
the plane z = 0, on the side by the cylinder r = cos 6, and on
top by the paraboloid z = 3r?.

Convert the integral

1 1=y x
f ] / (x? + y?) dzdx dy
-1Jo 0

to an equivalent integral in cylindrical coordinates and evaluate
the result.

In Exercises 15-20, set up the iterated integral for evaluating
fffD f(r.8,z)dzrdrd6 over the given region D.
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15. D is the right circular cylinder z 20. D is the prism whose base is the z
whose base is the circle 1=4—y triangle in the xy-plane bounded z=2-x
r =2 sin 0 in the xy-plane and ’\/ by the y-axis and the lines 2 __/A

N

whose top lies in the plane y=ux and y = 1 and whose top
z=4—y. lies in the plane z = 2 — x.
y
\ .

16. D is the right circular cylinder z
whose base is the circle
r =3 cos 8 and whose top lies /Z =5-x

in the plane z = 5 — x. : .
i Hhe plane z * Spherical Coordinates

Evaluate the spherical coordinate integrals in Exercises 21-26.

- —> Y
b4 b4 2sn ¢ .
N = 3cos 8 21. /0 /; /0 p°sinpdpdepdo
X 2 /4 2
22, / / / (p cos @) p* sin pdpdg do
17. D is the solid right cylinder z o Jo 0
whose base is the region in the 2t pr p(l-cos ¢)/2
xy-plane that lies inside the 4} 23. / / / p’ sin pdpde do
cardioid r = 1 + cos 6 and 01 /20 0 |
outside the circle r = 1 and T 33
whose top lies in the plane 2. A _/(: /0 Sp” sin” g dpdg do
z=4. Y o /3 g2
25. / / / 3p% sinpdpdgdo
r=1 0 0 sec ¢
\ 2 /4 sec ¢
* r=1+cos 6 26. / / / (o cos ¢) p? sin pdpdep dé
o Jo 0
18. D is the SOh,d right C)./lmder A The previous integrals suggest there are preferred orders of integration
whose base is the region 2=3 for spherical coordinates, but other orders are possible and occasion-

between the circles r = cos 6
and r = 2 cos 8, and whose top
lies in the plane z =3 — y.

ally easier to evaluate. Evaluate the integrals in Exercises 27-30.

2 0 /2
27. / / / o sin 20 dpdédp
0 -n Jn/4

—y /3 2csc ¢ 2

28. / p?singpdbdpde

/6 cse ¢ 0
\ | pr pr/d
x \r:cos@ 29. / / / 12p sm‘q)dq)d@dp
o Jo Jo
r=2cos 8 72 prj2 p2
30. f / 5p%sin® 9dpdode
z /6 —n/2 Jese @

19. D is the prism whose base is the
triangle in the xy-plane bounded 31. Let D be the region in Exercise 11. Set up the triple integrals
by the x-axis and the lines in spherical coordinates that give the volume of D using the
y =x and x = | and whose top following orders of integration.

lies in the plane z =2 — y. a) dpdpdo b) dedpdo

32. Let D be the region bounded below by the cone z = \/x? + y?
and above by the plane z = 1. Set up the triple integrals in spher-
ical coordinates that give the volume of D using the following
orders of integration.

x y=x a) dpdpdo b) d¢dpdo
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In Exercises 33-38, (a) find the spherical coordinate limits for the
integral that calculates the volume of the given solid, and (b) then
evaluate the integral.

33. The solid between the sphere
p = cos ¢ and the hemisphere
p=2,2>0

34. The solid bounded below by the
hemisphere p = 1,z > 0, and
above by the cardioid of
revolution p = 1 4 cos ¢

35. The solid enclosed by the cardioid of revolution p = 1 — cos ¢

36. The upper portion cut from the solid in Exercise 35 by the xy-
plane

37. The solid bounded below by the
sphere p = 2 cos ¢ and above

by the cone z = {/x? + y?

= )c2+y2

N

~
p=2cos ¢

38. The solid bounded below by the
xy-plane, on the sides by the
sphere p = 2, and above by the
cone ¢ =m/3

Rectangular, Cylindrical, and
Spherical Coordinates

39. Set up triple integrals for the volume of the sphere p =2 in
(a) spherical, (b) cylindrical, and (c) rectangular coordinates.

40. Let D be the region in the first octant that is bounded below by
the cone ¢ = m /4 and above by the sphere p = 3. Express the
volume of D as an iterated triple integral in (a) cylindrical and
(b) spherical coordinates. Then (c) find V.

41. Let D be the smaller cap cut from a solid ball of radius 2 units by
a plane 1 unit from the center of the sphere. Express the volume
of D as an iterated triple integral in (a) spherical, (b) cylindrical,
and (c) rectangular coordinates. Then (d) find the volume by
evaluating one of the three triple integrals.

42. Express the moment of inertia I, of the solid hemisphere x2 +

y2 422 <1,z >0, as an iterated integral in (a) cylindrical and
(b) spherical coordinates. Then (c) find /..

Volumes
Find the volumes of the solids in Exercises 43-48.
43.

r=cos 6

49. Find the volume of the portion of the solid sphere p < a that lies
between the cones ¢ = 7 /3 and ¢ = 27 /3.

50. Find the volume of the region cut from the solid sphere p < a
by the half-planes 6 = 0 and 6 = 7 /6 in the first octant.

51. Find the volume of the smaller region cut from the solid sphere
p <2 by the plane z = 1.

52. Find the volume of the solid enclosed by the cone z = /x2 + y?
between the planes z = | and z = 2.

53. Find the volume of the region bounded below by the plane z = 0,
laterally by the cylinder x? + y? = 1, and above by the paraboloid
z=x2+y%



54.

55.

56.

57.

58.

59.

60.

61.

62.

Find the volume of the region bounded below by the paraboloid
z = x% + y?, laterally by the cylinder x> + y? = 1, and above by
the paraboloid z = x2 + y2 + 1.

Find the volume of the solid cut from the thick-walled cylinder
1 < x%+ y? <2 by the cones z = % /x2 + y2.

Find the volume of the region that lies inside the sphere x2 +
y% + z2 = 2 and outside the cylinder x? + y? = 1.

Find the volume of the region enclosed by the cylinder x? 4+ y? =
4 and the planes z =0 and y + z = 4.

Find the volume of the region enclosed by the cylinder x2 + y? =
4 and the planes z =0and x + y +z =4.

Find the volume of the region bounded above by the paraboloid
z=15—x%—y? and below by the paraboloid z = 4x2 + 4y2.
Find the volume of the region bounded above by the paraboloid
7 =9—x%—y2, below by the xy-plane, and lying outside the
cylinder x? + y? = 1.

Find the volume of the region cut from the solid cylinder x? +
y? < 1 by the sphere x% + y? + 72 = 4.

Find the volume of the region bounded above by the sphere
x2 + y? + z? = 2 and below by the paraboloid z = x2 + y2.

Average Values

63.

64.

6S.

66.

Find the average value of the function f(r,8,z) =r over the
region bounded by the cylinder r = 1 between the planes z = —1
and z = 1.

Find the average value of the function f(r,,z) =r over the
solid ball bounded by the sphere r? 4+ z?> = 1. (This is the sphere
2+y’+2=1.)

Find the average value of the function f(p, ¢,60) = p over the
solid ball p < 1.

Find the average value of the function f(p, ¢,0) = p cos ¢ over
the solid upper ball p <1, 0 < ¢ <7 /2.

Masses, Moments, and Centroids

67.

68.

69.
70.

71.

72.

A solid of constant density is bounded below by the plane z = 0,
above by the cone z = r, r > 0, and on the sides by the cylinder
r = 1. Find the center of mass.

Find the centroid of the region in the first octant that is bounded
above by the cone z = \/x? + y2, below by the plane z = 0, and
on the sides by the cylinder x2 + y? = 4 and the planes x =0
and y =0.

Find the centroid of the solid in Exercise 38.

Find the centroid of the solid bounded above by the sphere p = a
and below by the cone ¢ = 7 /4.

Find the centroid of the region that is bounded above by the
surface z = /r, on the sides by the cylinder r = 4, and below
by the xy-plane.

Find the centroid of the region cut from the solid ball r> + z2 < 1
by the half-planes 6 = —7/3,r >0, and 6 =7 /3,r > 0.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

8s.
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Find the moment of inertia and radius of gyration about the z-axis
of a thick-walled right circular cylinder bounded on the inside by
the cylinder r = 1, on the outside by the cylinder » = 2, and on
the top and bottom by the planes z =4 and z = 0. (Take § = 1.)

Find the moment of inertia of a solid circular cylinder of radius
1 and height 2 (a) about the axis of the cylinder, (b) about a line
through the centroid perpendicular to the axis of the cylinder.
(Take 8§ = 1.)

Find the moment of inertia of a right circular cone of base radius
1 and height 1 about an axis through the vertex parallel to the
base. (Take § = 1.)

Find the moment of inertia of a solid sphere of radius a about a
diameter. (Take § = 1.)

Find the moment of inertia of a right circular cone of base radius
a and height A about its axis. (Hint: Place the cone with its vertex
at the origin and its axis along the z-axis.)

A solid is bounded on the top by the paraboloid z = r2, on the
bottom by the plane z = 0, and on the sides by the cylinder r = 1.
Find the center of mass and the moment of inertia and radius
of gyration about the z-axis if the density is (a) § (r,0,2) = z;
(b)d(r,0,z) =r.

A solid is bounded below by the cone z = \/x% + y? and above
by the plane z = 1. Find the center of mass and the moment of
inertia and radius of gyration about the z-axis if the density is
@ 38(r.0,2) =z (b)8(r.0,2) =22

A solid ball is bounded by the sphere p =a. Find the
moment of inertia and radius of gyration about the z-axis if the
density is

a) 3(p,9.0)=p% b) 8(p.¢.0)=r=psin¢.
Show that the centroid of the solid semi-ellipsoid of revolution
(r?/a%) + (z*/h*) < 1,z > 0, lies on the z-axis three-eighths of
the way from the base to the top. The special case h = a gives
a solid hemisphere. Thus the centroid of a solid hemisphere lies
on the axis of symmetry three-eighths of the way from the base
to the top.

Show that the centroid of a solid right circular cone is one-fourth
of the way from the base to the vertex. (In general, the centroid
of a solid cone or pyramid is one-fourth of the way from the
centroid of the base to the vertex.)

A solid right circular cylinder is bounded by the cylinder r = a
and the planes z = 0 and z = h, h > 0. Find the center of mass
and the moment of inertia and radius of gyration about the z-axis
if the density is § (r,0,2) =z + 1.

A spherical planet of radius R has an atmosphere whose density
is u = poe ", where h is the altitude above the surface of the
planet, w, is the density at sea level, and c is a positive constant.
Find the mass of the planet’s atmosphere.

A planet is in the shape of a sphere of radius R and total mass
M with spherically symmetric density distribution that increases
linearly as one approaches its center. What is the density at the
center of this planet if the density at its edge (surface) is taken
to be zero?
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0

Cartesian uv-plane

x = g(u,v)
y = h(u, v)

y
G2

Cartesian xy-plane

13.46 The equations x = g(u, v) and

y = h(u, v) allow us to change an integral
over a region R in the xy-plane into an
integral over a region G in the uv-plane.

Notice the “Reversed” Order

The transforming equations x = g(u, v)
and y = h(u, v) go from G to R, but we
use them to change an integral over R
into an integral over G.

Substitutions in Multiple Integrals

This section shows how to evaluate multiple integrals by substitution. As in single
integration, the goal of substitution is to replace complicated integrals by ones that
are easier to evaluate. Substitutions accomplish this by simplifying the integrand,
the limits of integration, or both.

Substitutions in Double Integrals

The polar coordinate substitution of Section 13.3 is a special case of a more general
substitution method for double integrals, a method that pictures changes in variables
as transformations of regions.

Suppose that a region G in the uv-plane is transformed one-to-one into the
region R in the xy-plane by equations of the form

x =g, v), y=h(u,v),

as suggested in Fig. 13.46. We call R the image of G under the transformation,
and G the preimage of R. Any function f(x, y) defined on R can be thought of as
a function f(g(u, v), h(u, v)) defined on G as well. How is the integral of f(x, y)
over R related to the integral of f(g(u, v), h(u, v)) over G?

The answer is: If g, h, and f have continuous partial derivatives and J (u, v)
(to be discussed in a moment) is zero only at isolated points, if at all, then

/f fx,y)dxdy = // f(g(u, v), h(u,v))|J(u, v)|dudv. (1)
G

R

The factor J(u, v), whose absolute value appears in Eq. (1), is the Jacobian
of the coordinate transformation, named after the mathematician Carl Jacobi.

Definition
The Jacobian determinant or Jacobian of the coordinate transformation
x=g(u,v),y =nh(u,v) is

ax 0dx
qu dv| dxdy dyd
J(u,v) = du dv _xXoy _oyox )
dy dy duodv dudv
du dv
The Jacobian is also denoted by
a(x,
J(u,v) = (x_y)
a(u, v)

to help remember how the determinant in Eq. (2) is constructed from the partial
derivatives of x and y. The derivation of Eq. (1) is intricate and properly belongs
to a course in advanced calculus. We will not give the derivation here.

For polar coordinates, we have r and 6 in place of u and v. With x = r cos 6



YR

Cartesian r6-plane

x =rcos 0
y=rsin @

Cartesian xy-plane

13.47 The equations x =rcosf,y =rsin6
transform G into R.

13.48 The equations x = u + v and

y = 2v transform G into R. Reversing the
transformation by the equations

u = (2x — y)/2 and v = y/2 transforms R
into G. See Example 1.

13.7 Substitutions in Multiple Integrals 1049

and y = r sin 6, the Jacobian is

ox OJx 0 o
— = cos @ —r sin
J(r,0) = or 99 _ = r(cos®  +sin* ) =r.
8_y 8_y sinf® rcoséf
ar 06

Hence, Eq. (1) becomes

//f(x,y)dxdy::/ f(r cos 0, r sin 0) |r|dr dé
R G

= / f(r cos 8, rsin 6)rdrdb, Itr>0 (3)

which is Eq. (6) in Section 13.3.

Figure 13.47 shows how the equations x =r cos 6, y =r sin 6 transform
the rectangle G: 0 <r <1, 0 <6 < /2 into the quarter circle R bounded by
x2 + y*> = 1 in the first quadrant of the xy-plane.

Notice that the integral on the right-hand side of Eq. (3) is not the integral of
f(r cos 0, r sin ) over a region in the polar coordinate plane. It is the integral of
the product of f(r cos @, r sin ) and r over a region G in the Cartesian r6-plane.

Here is an example of another substitution.

EXAMPLE 1 Evaluate

x= (y/2)+12
/ f * ydxdy
=y/2

by applying the transformation

2x —y y
= , =z 4
2 'T3 @

and integrating over an appropriate region in the uv-plane.

Solution We sketch the region R of integration in the xy-plane and identify its
boundaries (Fig. 13.48).

To apply Eq. (1), we need to find the corresponding uv-region G and the
Jacobian of the transformation. To find them, we first solve Egs. (4) for x and y in
terms of 4 and v. Routine algebra gives

xX=u+v, y = 2v. (5)
v y
X=u+7v

= y=2v

) v=2
u=0 u=1
G
u

of v=0 1
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We then find the boundaries of G by substituting these expressions into the equations
for the boundaries of R (Fig. 13.48).

xy-equations for Corresponding uv-equations Simplified
the boundary of R for the boundary of G uv-equations
x=y/2 u+v=2/2=v u=0
x=(y/2)+1 u+v=Qu/2)+1=v+1 u=1
y= 0 2v=0 v=20
y=4 2v=4 v=2

The Jacobian of the transformation (again from Egs. 5) is

Ol 10 iy L] 1
— e —w+v) — v
T, v) = du Ov|_|du v _ -2
’ dy dy| | d b - ’
2 =z - — 0 2
ou 0Jv au( v) Bv(v)

We now have everything we need to apply Eq. (1):

x=(y/2)+1 2x — v=2 pu=l
/ / dxdy =/ / ulJ(u, v)|dudv
=y/2 v=0 u=0
2 pl 2 1 2
=/ / (u)(2)dudv=/ |:u2:| dv=/ dv=2.
o Jo 0 0 0

3

EXAMPLE 2 Evaluate
1 I-x
/ / VEFy(y — 2x)?dydx.
o Jo

Solution We sketch the region R of integration in the xy-plane and identify its
boundaries (Fig. 13.49). The integrand suggests the transformation u = x + y and
v = y — 2x. Routine algebra produces x and y as functions of u and v:

u v 2u v

= = — = = — -. 6
x=3-3 y 3+3 (6)

From Egs. (6) we can find the boundaries of the uv-region G (Fig. 13.49).

xy-equations for Corresponding uv-equations Simplified
the boundary of R for the boundary of G uv-equations
0 \ o x+y=1 (5-2)+ LR u=1
y=0 r= 373 3 73)7 =
13.49 The equations x = (u/3) — (v/3) and x=0 “_r 0 v=u
y = (2u/3) + (v/3) transform G into R. 3 3
Reversing the transformation by the _ 2u v _
equations u=x+y and v=y — 2x y=0 3 t3=0 v=—2u
transforms R into G. See Example 2.




—

u Cartesian uvw-space

x=g(u,v,w)
y = h(u,v,w)
z = k(u, v, w)

Z

—"

x Cartesian xyz-space

Y

13.50 The equations x = g(u, v, w),
y = h(u,v,w), and z = k(u, v, w)
allow us to change an integral over
a region D in Cartesian xyz-space
into an integral over a region G in
Cartesian uvw-space.
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The Jacobian of the transformation in Eq. (6) is

dx ox 1 1
IR 3 3 1

T, v) = du dv _ 3 3 _1
dy dy 2 1 3
ou dv 3 3

Applying Eq. (1), we evaluate the integral:

1 1—x u=1 v=u
/ / «/x+y(y—2x)2dydx=/ / u'?v? | J (u, v)| dvdu
0 Jo u=0 v=—2u
1

1 u 1 1 1 v=u
/ / u'y? <—) dvdu = —/ u'’? (—v3) du
0 J-u 3 3Jo 3 e

1 1 1
= 1/ u'/z(u3+8u3)du=/ u7/2du:zu9/2 _3
9 Jo 0 9

o 9 Q

Substitutions in Triple Integrals

The cylindrical and spherical coordinate substitutions are special cases of a substitu-
tion method that pictures changes of variables in triple integrals as transformations
of three-dimensional regions. The method is like the method for double integrals
except that now we work in three dimensions instead of two.

Suppose that a region G in uvw-space is transformed one-to-one into the region
D in xyz-space by differentiable equations of the form

x = g(u,v,w), y=nh(u,v,w), 2=k (u,v,w),

as suggested in Fig. 13.50. Then any function F (x, y, z) defined on D can be
thought of as a function

F(g(u,v,w), h(u,v,w), k(u,v,w)) = H(u,v, w)

defined on G. If g, h, and k have continuous first partial derivatives, then the integral
of F (x, y, z) over D is related to the integral of H (u, v, w) over G by the equation

f//F(x,y,z)dxdydz =///H(u,v, w) |J (u, v, w)|dudvdw. (7)
D G

The factor J (u, v, w), whose absolute value appears in this equation, is the Jaco-
bian determinant

ox dx Ox
ou v Jw
J(u,v,w) = 9y dy 38y =M' @
du dv dw a(u, v, w)
dz 9z 0z
u v w

As in the two-dimensional case, the derivation of the change-of-variable formula
in Eq. (7) is complicated and we will not go into it here.

For cylindrical coordinates, r, 6, and z take the place of u, v, and w. The
transformation from Cartesian rz-space to Cartesian xyz-space is given by the
equations

X =r cos 6, y=rsin#, =2
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Cube with sides
parallel to the
Z coordinate axes

No

r Cartesian rfz-space
x=rcosf
y =rsin 0
=12

A\ 4

Z = constant

A

\ r = constant
6 = constant Y

x Cartesian xyz-space

13.51 The equations x = rcos¥,
y =rsind, and z = z transform G into D.

13.52 The equations x = psin¢ cosé,
y = psingsing, and z = p cos ¢ transform
G into D.

(Fig. 13.51). The Jacobian of the transformation is

dx Jdx Ox
0 20 0
4 ¢ cos® —rsinf O
dy 9dy dy )

J@r6,2)=|— — —|=|sin@ rcosfh O
dz 0z 0z
ar 060 0z

=rcos’@+rsin®0=r.

The corresponding version of Eq. (7) is

///F(x,y,z)a'xdydz = // H(r, 0, 2)|r|drdbdz. (9)
D G

We can drop the absolute value signs whenever r > 0.
For spherical coordinates, p, ¢, and 6 take the place of u, v, and w. The
transformation from Cartesian p@@-space to Cartesian xyz-space is given by

X = p sin ¢ cos 6, y = p sin ¢ sin 6, Z=pCcos ¢
(Fig. 13.52). The Jacobian of the transformation is
dx 0dx O0x
dp 0J¢ 036
dy dy dy )
Jp,9,0)=|— — —|= 10
(0, ¢, 6) 3, 99 36 p” sin ¢ (10)
dz 9z 0z
dp d¢ 00

(Exercise 17). The corresponding version of Eq. (7) is

///F(x,y,z)dxdydz = ///H(p, @, 0)|p sin ¢ |dpdpdb. (1)
D G

We can drop the absolute value signs because sin ¢ is never negative.
Here is an example of another substitution.

p = constant

Cube with sides
parallel to the
9 coordinate axes

6 = constant

x = psin ¢cos 6
y = psin ¢sin 6
z=pcos¢d

¢ = constant
_

\

y

p Cartesian p¢@-space x Cartesian xyz-space



X=u+v
y=2v
z=3w
z
I Rear plane:
31 x:y ory=2x

2’

Front plane:

x= §+l,0ry=2x—2

13.53 The equations x =u+ v,y = 2v,
and z = 3w transform G into D. Reversing
the transformation by the equations
u=(2x—-y)2,v=y/2, and w = z/3
transforms D into G. See Example 3.

Carl Gustav Jacob Jacobi

Jacobi (1804-1851), one of nineteenth-
century Germany’s most accomplished
scientists, developed the theory of deter-
minants and transformations into a powerful
tool for evaluating multiple integrals and
solving differential equations. He also
applied transformation methods to study
nonelementary integrals like the ones that
arise in the calculation of arc length. Like
Euler, Jacobi was a prolific writer and an
even more prolific calculator and worked in a
variety of mathematical and applied fields.
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EXAMPLE 3 Evaluate

FEE B

by applying the transformation
u=2x-y)/2, v=y/2,

and integrating over an appropriate region in uvw-space.

Z
+ §) dx dydz

w=2/3 (12)

Solution We sketch the region D of integration in xyz-space and identify its
boundaries (Fig. 13.53). In this case, the bounding surfaces are planes.

To apply Eq. (7), we need to find the corresponding uvw-region G and the
Jacobian of the transformation. To find them, we first solve Egs. (12) for x, y, and
z in terms of u, v, and w. Routine algebra gives

X =u-+v, y = 2uv, z = 3w. (13)

We then find the boundaries of G by substituting these expressions into the equations
for the boundaries of D:

Simplified
uvw-equations

Corresponding uvw-equations
for the boundary of G

xyz-equations for
the boundary of D

x=y/2 u+v=2w/2=v u=0
x=(/2)+1 u+v=_Ru/2)+1=v+1 u=

y=0 2v=0 v=20
y=4 2v=4 v=2
z=0 3w=0 w=0
z=3 3w=3 w=1

The Jacobian of the transformation, again from Egs. (13), is

dx ox Ox

u dv ow 1 10
J(u,v,w) = B_y 8_y a_y =(0 2 0|=6.

du Jv oJw

dz dz 0z 003

u v ow

We now have everything we need to apply Eq. (7):

x=(v/2)+1 2x_
/ / w/,\'\/2 (
:/ / /(u+w)l](u,v,w)]dudvdw
///(u+w)(6)dudvdw—6//|: +uw] dvdw

~of [ (G 2

F4
5) dxdydz

)dvdw:é/ |:B+vw:| dw:6/ (1 + 2w) dw
0 2 0 0

=6|:w+wi| =6(2) = 12.
0 a
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Exercises 13.7

Transformations of Coordinates

1. a)

b)

b)

b)

b)

Solve the system

v=2x+y

for x and y in terms of u and v. Then find the value of the
Jacobian d(x, y)/d(u, v).

Find the image under the transformation u = x — y,v =
2x + y of the triangular region with vertices (0, 0), (1, 1),
and (1, —2) in the xy-plane. Sketch the transformed region
in the uv-plane.

u=x-y,

Solve the system

u=x+2y, v=x-—y

for x and y in terms of u and v. Then find the value of the
Jacobian d(x, y)/9(u, v).

Find the image under the transformation u = x + 2y, v =
x — y of the triangular region in the xy-plane bounded by
the lines y =0, y = x, and x + 2y = 2. Sketch the trans-
formed region in the uv-plane.

Solve the system

u =3x+2y, v=ux+4y

for x and y in terms of 4 and v. Then find the value of the
Jacobian 9 (x, y)/d (u, v).

Find the image under the transformation u = 3x + 2y, v =
x + 4y of the triangular region in the xy-plane bounded by
the x-axis, the y-axis, and the line x + y = 1. Sketch the
transformed region in the uv-plane.

Solve the system

u=2x—3y, v=—x+4Yy

for x and y in terms of u and v. Then find the value of the
Jacobian 9 (x, y)/d (u, v).

Find the image under the transformation u = 2x — 3y, v =
—x + y of the parallelogram R in the xy-plane with bound-
aries x = -3, x =0, y=ux, and y = x + 1. Sketch the
transformed region in the uv-plane.

5. Find the Jacobian d(x, y)/d(u, v) for the transformation

a)
b)

X =u cos v,
X = u sin v,

y=usinv
y = u cos v.

6. Find the Jacobian 9 (x, y, 2)/0 (u, v, w) of the transformation

a)

b)

X=ucosv, y=usinv, z=w

x=2u—1, y=3v-4, ,:_(w 4).

Double Integrals

7. Evaluate the integral

v=(v/2)+1 2 — v
/ / ———d\'d\*
v=1/2

10.

11.

12.

13.

14.

from Example 1 directly by integration with respect to x and y
to confirm that its value is 2.

. Use the transformation in Exercise 1 to evaluate the integral

//(2):2 — xy —y»)dxdy
R

for the region R in the first quadrant bounded by the lines y =
—2x+4,y=-2x+7,y=x—-2,and y=x+1.

. Use the transformation in Exercise 3 to evaluate the integral

/ (3x? + l4xy + 8y*) dxdy

for the region R in the first quadrant bounded by the lines y =

3 | 3 3 1 d 1 1
_Z - _Z ,y=—-x, and y = —— .
2x+ % 2x+ y 4x y 4x+

Use the transformation and parallelogram R in Exercise 4 to
evaluate the integral

// 2(x — y)dxdy.
R

Let R be the region in the first quadrant of the xy-plane bounded
by the hyperbolas xy =1, xy = 9 and the lines y = x, y = 4x.
Use the transformation x = u/v, y = uv with u >0 and v > 0

/f([+f)dxdy

as an integral over an appropriate region G in the uv-plane. Then
evaluate the uv-integral over G.

a) Find the Jacobian of the transformation x = u, y = uv, and
sketchtheregion G: 1 <u < 2,1 < uv < 2inthe uv-plane.
b) Then use Eq. (1) to transform the integral

2 p2
/ / Xdydx
1 J1 X

into an integral over G, and evaluate both integrals.

A thin plate of constant density covers the region bounded by the
ellipse x2/a® + y*/b*> =1,a > 0,b > 0, in the xy-plane. Find
the first moment of the plate about the origin. (Hint: Use the
transformation x = ar cos 6, y = br sin 6.)

The area mab of the ellipse x2/a? + y*/b* = 1 can be found by
integrating the function f (x, y) = 1 over the region bounded by
the ellipse in the xy-plane. Evaluating the integral directly re-
quires a trigonometric substitution. An easier way to evaluate the
integral is to use the transformation x = au, y = bv and evalu-
ate the transformed integral over the disk G: u? + v> < 1 in the
uv-plane. Find the area this way.



15.

16.

Use the transformation in Exercise 2 to evaluate the integral
23 p2-2y
./ / (x +2y)e" ™ dx dy
0 y

by first writing it as an integral over a region G in the uv-plane.

Use the transformation x = u + (1/2)v, y = v to evaluate the

integral
2 (v+4)/2
/ / y(@2x —
0 ¥/2

by first writing it as an integral over a region G in the uv-plane.

y)e(z"_")zdx dy

Triple Integrals

21.

22.

Questions to Guide Your Review 1055

over the solid ellipsoid

2 2 2
x y z
S +5+=5=<1
a? b 2
(Hint: Let x = au, y = bv, and z = cw. Then integrate over an
appropriate region in uvw-space.)

Let D be the region in xyz-space defined by the inequalities

1 <x<2, 0<xy<2, 0<z<l

Evaluate

// (x%y 4+ 3xyz)dxdydz
D

by applying the transformation

u=x, v=uxy, w =3z

and integrating over an appropriate region G in uvw-space.

Assuming the result that the center of mass of a solid hemi-
sphere lies on the axis of symmetry three-eighths of the way
from the base toward the top, show, by transforming the appro-
priate integrals, that the center of mass of a solid semi-ellipsoid
(x2/a®) + (y2/b*) + (22/c?) < 1,z > 0, lies on the z-axis three-
eighths of the way from the base toward the top. (You can do
this without evaluating any of the integrals.)

Single Integrals

23.

Substitutions in single integrals. How can substitutions in sin-
gle definite integrals be viewed as transformations of regions?
What is the Jacobian in such a case? Illustrate with an example.

QUESTIONS TO GUIDE YOUR REVIEW

17. Evaluate the determinant in Eq. (10) to show that the Jacobian
of the transformation from Cartesian p ¢ 0-space to Cartesian
xyz-space is p° sin ¢.

18. Evaluate the integral in Example 3 by integrating with respect to
x,y, and z.

19. Find the volume of the ellipsoid

X2y 2

e} + 5 + 2 =1.
(Hint: Let x = au,y = bv, and z = cw. Then find the volume
of an appropriate region in uvw-space.)

20. Evaluate

/[ lxyz|dxdydz

CHAPTER  [NE]

1. Define the double integral of a function of two variables over a
bounded region in the coordinate plane.
2. How are double integrals evaluated as iterated integrals? Does

the order of integration matter? How are the limits of integration
determined? Give examples.

. How are double integrals used to calculate areas, average values,

masses, moments, centers of mass, and radii of gyration? Give
examples.

. How can you change a double integral in rectangular coordinates

into a double integral in polar coordinates? Why might it be
worthwhile to do so? Give an example.

. Define the triple integral of a function f (x, y, z) over a bounded

region in space.

. How are triple integrals in rectangular coordinates evaluated?

How are the limits of integration determined? Give an example.

7.

10.

11.

How are triple integrals in rectangular coordinates used to calcu-
late volumes, average values, masses, moments, centers of mass,
and radii of gyration? Give examples.

. How are triple integrals defined in cylindrical and spherical coor-

dinates? Why might one prefer working in one of these coordinate
systems to working in rectangular coordinates?

How are triple integrals in cylindrical and spherical coordinates
evaluated? How are the limits of integration found? Give exam-
ples.

How are substitutions in double integrals pictured as transforma-
tions of two-dimensional regions? Give a sample calculation.

How are substitutions in triple integrals pictured as transforma-
tions of three-dimensional regions? Give a sample calculation.
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CHAPTER [BER PRACTICE EXERCISES

Planar Regions of Integration

In Exercises 14, sketch the region of integration and evaluate the

double integral.
1 pxt
2// e'“dydx
o Jo

10 pl/y
1./ / ye¥dx dy
0
32 pafo-ar 1 p2-Jy
3/ 4// xydxdy
9- 0o Jyy

Reversing the Order of Integration

In Exercises 5-8, sketch the region of integration and write an equiv-
alent integral with the order of integration reversed. Then evaluate

both integrals.
4 (y—4)/2 1 X
5. / / dxdy 6. / / Vxdydx
0 J—/4-y 0 Jx?
2 pd4—x?
8. / / 2xdydx
0o Jo

3/2 pa/9-4)°
7. / / ydxdy
0 -/9-4y?
Evaluating Double Integrals

Evaluate the integrals in Exercises 9-12.

12 2 pl
9. / / 4 cos (x%)dx dy 10. / / e dxdy
0 2y 0 v/2

8 2 1 1 : 2
dyd 2
11,// dydx 12.// msinax? o
o JIz y+1 o Jy x?

Areas and Volumes

13. Find the area of the region enclosed by the line y = 2x + 4 and
the parabola y = 4 — x? in the xy-plane.

ar’
tdsdt
-4/ 457

14. Find the area of the “triangular” region in the xy-plane that is
bounded on the right by the parabola y = x2, on the left by the
line x + y = 2, and above by the line y = 4.

15. Find the volume under the paraboloid z = x% + y? above the
triangle enclosed by the lines y =x,x =0, and x + y =2 in
the xy-plane.

16. Find the volume under the parabolic cylinder z = x? above the
region enclosed by the parabola y = 6 — x? and the line y = x
in the xy-plane.

Average Values

Find the average value of f (x, y) = xy over the regions in Exercises
17 and 18.

17. The square bounded by the lines x = 1, y = 1 in the first quadrant

18. The quarter circle x2 + y? < 1 in the first quadrant

Masses and Moments

19. Find the centroid of the “triangular” region bounded by the lines
x =2,y =2 and the hyperbola xy = 2 in the xy-plane.

20. Find the centroid of the region between the parabola x + y? —
2y =0 and the line x + 2y = 0 in the xy-plane.

21. Find the polar moment of inertia about the origin of a thin tri-
angular plate of constant density § = 3, bounded by the y-axis
and the lines y = 2x and y = 4 in the xy-plane.

22. Find the polar moment of inertia about the center of a thin rect-
angular sheet of constant density § = 1 bounded by the lines
a) x==2,
b) x=x=a,
(Hint: Find I,. Then use the formula for /, to find /. and add
the two to find /;,.)

y = =% 1 in the xy-plane
y = % b in the xy-plane.

23. Find the moment of inertia and radius of gyration about the x-
axis of a thin plate of constant density § covering the triangle
with vertices (0, 0), (3, 0), and (3, 2) in the xy-plane.

24. Find the center of mass and the moments of inertia and radii of
gyration about the coordinate axes of a thin plate bounded by the
line y = x and the parabola y = x? in the xy-plane if the density
iséd(x,y)=x+1.

25. Find the mass and first moments about the coordinate axes of a
thin square plate bounded by the lines x = £ 1,y = £ 1 in the
xy-plane if the density is 8(x, y) = x> + y*> 4+ 1/3.

26. Find the moment of inertia and radius of gyration about the x-
axis of a thin triangular plate of constant density § whose base
lies along the interval [0, ] on the x-axis and whose vertex lies
on the line y = h above the x-axis. As you will see, it does not
matter where on the line this vertex lies. All such triangles have
the same moment of inertia and radius of gyration.

Polar Coordinates

Evaluate the integrals in Exercises 27 and 28 by changing to polar
coordinates

27/'/ 2dydx
\/1 - (1+x2+y2)2

28//

29. Find the centroid of the region in the polar coordinate plane
defined by the inequalities 0 <r <3 and -7 /3 <6 < /3.

ln(x +y? + l)dxdy



30.

31. a)

Y]

32.

B )

33.

34.

Find the centroid of the region in the first quadrant bounded by
the rays 8 = 0 and 6 = 7 /2 and the circles »r =1 and r = 3.

Find the centroid of the region in the polar coordinate plane
that lies inside the cardioid r = 1 + cos 6 and outside the
circle r = 1.

CALCULATOR Sketch the region and show the centroid
in your sketch.

a) Find the centroid of the plane region defined by the polar co-
ordinate inequalities0 <r <a, —¢ <0 <a (0 <a < 7).
How does the centroid move as « — 7~ ?
CALCULATOR Sketch the region for « = 57 /6 and show
the centroid in your sketch.

Integrate the function f (x,y) = 1/(1 + x>+ y?)? over the re-
gion enclosed by one loop of the lemniscate (x2 + y?)? —
(x* —yH) =0.

Integrate f (x,y) = 1/(1 + x>+ y*)? over

a) the triangle with vertices (0, 0), (1, 0), (1, /3);

b) the first quadrant of the xy-plane.

Triple Integrals in Cartesian Coordinates
Evaluate the integrals in Exercises 35-38.

3s.

36.

37

38

39

X=-C0SYy

I
NIy

/ / / cos(x +y+2z)dxdydz
o Jo Jo

In7 pin2 plns
/ / / e(x+y+z)dz dydx
Iné6 0 In 4

1 x? x+y
/ / / (2x —y—2z)dzdydx
o Jo Jo

e X Z 2y
[[ [ Zaracar

1 J1 Jo 2

Find the volume of the wedge-shaped region enclosed on the
side by the cylinder x = —cos y, —7 /2 <y < /2, on the top
by the plane z = —2x, and below by the xy-plane.

Z Z
7=-2x

/!

=
Iy
<

40. Find the volume of the solid that is bounded above by the cylinder

41.

z =4 — x?, on the sides by the cylinder x?> + y? = 4, and below
by the xy-plane.
Find the average value of f (x,y,z) =30xz\/x2+y over the

rectangular solid in the first octant bounded by the coordinate
planes and the planes x =1,y =3,z = 1.

42.

Practice Exercises 1057

Find the average value of p over the solid sphere p < a (spherical
coordinates).

Cylindrical and Spherical Coordinates

43.

45,

46.

47.

48.

49.

50.

51.

Convert

2r V2 \/4—r2
/ / / 3dzrdrdf, r >0
0 0 r

to (a) rectangular coordinates with the order of integration
dzdx dy, and (b) spherical coordinates. Then (c) evaluate one
of the integrals.

. (a) Convert to cylindrical coordinates. Then (b) evaluate the new

integral.

1 4/ 1-x2 (x2+yz) 5
21xy“dzdydx
-/(; /;»\/ 1-x? /:(x2+yz)

(a) Convert to spherical coordinates. Then (b) evaluate the new

integral.
1 pa/1-x? pl
/ / / dzdy dx
-1 —\/I—xz «/)rz+_vz

Write an iterated triple integral for the integral of f (x,y,z) =
6 + 4y over the region in the first octant bounded by the cone z =
V/x2 4 y2, the cylinder x?> + y? = 1, and the coordinate planes in
(a) rectangular coordinates, (b) cylindrical coordinates, (c) spher-
ical coordinates. Then (d) find the integral of f by evaluating
one of the triple integrals.

Set up an integral in rectangular coordinates equivalent to the
integral

72 p3 pAfa-r?
/ / f r? sin 0 cos 6 z>dzdr dé.
0 1 1

Arrange the order of integration to be z first, then y, then x.
The volume of a solid is
2 A 2x=x? «/4—12—)'2

a) Describe the solid by giving equations for the surfaces that
form its boundary.

b) Convert the integral to cylindrical coordinates but do not
evaluate the integral.

dzdydx.

Let D be the smaller spherical cap cut from a solid ball of
radius 2 by a plane 1 unit from the center of the sphere. Express
the volume of D as an iterated triple integral in (a) rectangular,
(b) cylindrical, and (c) spherical coordinates. Do not evaluate the
integrals.

Express the moment of inertia /, of the solid hemisphere bounded
below by the plane z = 0 and above by the sphere x? + y2 + 72 =
1 as an iterated integral in (a) rectangular, (b) cylindrical, and
(c) spherical coordinates. Do not evaluate the integrals.

Spherical vs. cylindrical coordinates. Triple integrals involving
spherical shapes do not always require spherical coordinates for
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52.

53.

54.

convenient evaluation. Some calculations may be accomplished
more easily with cylindrical coordinates. As a case in point, find
the volume of the region bounded above by the sphere x? + y* +
72 = 8 and below by the plane z =2 by using (a) cylindrical
coordinates, (b) spherical coordinates.

Find the moment of inertia about the z-axis of a solid of constant
density § = 1 that is bounded above by the sphere p =2 and
below by the cone ¢ = /3 (spherical coordinates).

Find the moment of inertia of a solid of constant density &
bounded by two concentric spheres of radii a and b (a < b) about
a diameter.

<

Find the moment of inertia
about the z-axis of a solid of
density § = 1 enclosed by
the spherical coordinate
surface p = 1 —cos ¢.

Substitutions
55. Show that if u = x — y and v = y, then

/ /e‘”f(x—y,y)dydx:/ / e~ £ (u, v) du dv.
o Jo o Jo

56. What relationship must hold between the constants a, b, and ¢

to make
o poo , ,
f / e—(ax +2bxy+cy )dx d_)’ =19
—00 J -0

(Hint: Let s = ax + By and t = yx + 8y, where (a8 — By)> =
ac — b*. Then ax? + 2bxy + cy? = s? + %)

CHAPTER [RER ADDITIONAL EXERCISES—THEORY, EXAMPLES, APPLICATIONS

Volumes

1.

The base of a sand pile covers the region in the xy-plane that is
bounded by the parabola x>+ y = 6 and the line y = x. The
height of the sand above the point (x,y) is x2. Express the
volume of sand as (a) a double integral, (b) a triple integral. Then
(c) find the volume.

. A hemispherical bowl of radius 5 cm is filled with water to within

3 cm of the top. Find the volume of water in the bowl.

. Find the volume of the portion of the solid cylinder x> + y? < 1

that lies between the planes z =0 and x +y+z = 2.

. Find the volume of the region bounded above by the sphere

x2 + y? 4 7% =2 and below by the paraboloid z = x2 + y2.

. Find the volume of the region bounded above by the paraboloid

z =3 —x%— y? and below by the paraboloid z = 2x? + 2y2.

. Find the volume of the region enclosed by the spherical coordi-

nate surface p = 2 sin ¢ (Fig. 13.54).

. A circular cylindrical hole is bored through a solid sphere, the

axis of the hole being a diameter of the sphere. The volume of
the remaining solid is

2r pV3 pAfa-2
V= 2/ / / rdrdzdf.
o Jo 1

13.54 The surface in Exercise 6.

a) Find the radius of the hole and the radius of the sphere.
b) Evaluate the integral.

8. Find the volume of material cut from the solid sphere r? + 7> <9
by the cylinder r = 3 sin 6.

9. Find the volume of the region enclosed by the surfaces z = x* +
y*and z = (x2 + y2 + 1)/2.

10. Find the volume of the region in the first octant that lies between
the cylinders r = 1 and r = 2 and that is bounded below by the
xy-plane and above by the surface z = xy.



Changing the Order of Integration

In Exercises 11 and 12, sketch the region of integration and write an
equivalent iterated integral with the order of integration reversed.

I px Y NG
11. / / f(x,y)dydx 12. / f(x,y)dxdy
0 Jx? 0

13. Evaluate the integral

(Hint: Use the relation
e~ _ e—bx b !
—_ = / e “dy
X a

to form a double integral and evaluate the integral by changing
the order of integration.)

14. a) Show, by changing to polar coordinates, that

a sin B ,/az—y2 1
/ / In(x> +y*)dxdy = a*B <lna——>,
0 ycot B 2

where a > 0and 0 < 8 < /2.
b) Rewrite the Cartesian integral with the order of integration
reversed.

15. By changing the order of integration, show that the following
double integral can be reduced to a single integral:

/ / e"D f(t)drdu = / (x — 1)e™™ " f(1) dt.
o Jo 0
Similarly, it can be shown that

x v u x )2
/ / / e F(ydt dudv = / (—x—t)e'""‘_”f(t) dt.
0o Jo Jo 0 2

16. Sometimes a multiple integral with variable limits can be changed
into one with constant limits. By changing the order of integra-
tion, show that

1 X
/ fx) </ glx — y)f(y)dy> dx
0 0
1 1
/ f) (/ glx —y)f(x)dx> dy
0 y

1 1 1
5/ / gllx =y f(x) f(y)dxdy.
0 0

Masses and Moments

17. A thin plate of constant density is to occupy the triangular re-
gion in the first quadrant of the xy-plane having vertices (0, 0),
(a, 0), and (a, l/a). What value of a will minimize the plate’s
polar moment of inertia about the origin?

18. Find the polar moment of inertia about the origin of a thin trian-
gular plate of constant density § = 3 bounded by the y-axis and
the lines y = 2x and y = 4 in the xy-plane.

19. Find the centroid of the region in the polar coordinate plane

Additional Exercises-Theory, Examples, Applications

20.

21

22.

23.

24.

25.

26.
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that lies inside the cardioid r = 1 + cos 6 and outside the circle
r=1.

Find the centroid of the boomerang-shaped region between the
parabolas y?> = —4(x — 1) and y?> = —2(x — 2) in the xy-plane.

The counterweight of a flywheel of constant density 1 has the
form of the smaller segment cut from a circle of radius a by
a chord at a distance b from the center (b < a). Find the mass
of the counterweight and its polar moment of inertia about the
center of the wheel.

Find the radii of gyration about the x- and y-axes of a thin
plate of density § = 1 enclosed by one loop of the lemniscate
r? = 2a? cos 26.

A solid is bounded on the top by the paraboloid z = r2, on the
bottom by the plane z = 0, and on the sides by the cylinder r = 1.
Find the center of mass and the moment of inertia and radius of
gyration about the z-axis if the density is (a) §(r, 0, z) = z;
(b)é(r, 0, 2)=r.

A solid is bounded below by the cone z = /x? + y? and above
by the plane z = 1. Find the center of mass and the moment of
inertia and radius of gyration about the z-axis if the density is
(@) 8(r, 0, 2) =z (b) 8(r, 6, 2) = 2°.

Use spherical coordinates to find the centroid of a solid hemi-
sphere of radius a.

Find the moment of inertia and radius of gyration of a solid
sphere of radius a and density § = | about a diameter of the
sphere.

Theory and Applications

27.

28.

29.

Evaluate

a b 2.2 2.2
/ / emax(b-x-.a*,\'") dy dX,
0 Jo

where a and b are positive numbers and
b*x* if b*x? > a%y?

max(bx?, a’y?) = {azyz 2

if b%x? < a?y?.

Show that

9%F (x,
//Ly)dxdy
ax dy

over the rectangle xo < x < xj,y0 <y <y, is
F (x1, y1) — F (x0, y1) = F (x1, yo) + F (x0, Y0)-

Suppose that f (x, y) can be written as a product f (x,y) =
F (x)G (y) of a function of x and a function of y. Then the
integral of f over the rectangle R: a < x <b,c <y <d can be
evaluated as a product as well, by the formula

_//f(x,y)dA = ([JF(X)dX> ([dG(y)dy>- (1
R
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30.

31.

The argument is that

d b
/ f(x,y)dA=/ </ F(x)G(y)dx> dy (i)
k d b
-/ (Gm [ F(x)dx> dy G
d b
=/ </ F(X)dx>G(y)dy
b d
=(/ F(x)dx)/ G (y)dy.

a) Give reasons for steps (i)—(iv).

(iii)
(iv)

When it applies, Eq. (1) can be a time saver. Use it to evaluate
the following integrals.

2 2
b) / / e* cos ydydx

o Jo

2 1

c)/I

Let D, f denote the derivative of f(x,y) = (x> + y?)/2 in the
direction of the unit vector u = u; i + u, j.

X
— dxdy
-1y

a) Find the average value of D, f over the triangular region
cut from the first quadrant by the line x + y = 1.

b) Show in general that the average value of D, f over a region
in the xy-plane is the value of D, f at the centroid of the
region.

The value of I'(1/2). As we saw in Additional Exercises 49 and

50 in Chapter 7, the gamma function,

[o o)
Fx) = f e dt,
0
extends the factorial function from the nonnegative integers to
other real values. Of particular interest in the theory of differential
equations is the number

1 o0 Ooe—!
r{=)= t“/z)_le_'dtzf —dr. )
(2)=] [

a) If you have not yet done Exercise 37 in Section 13.3, do it
now to show that

I :/ e"yzdy=ﬁ.
o 2

32.

33.

34.

3s.

36.

37.

b) Substitute y = +/f in Eq. (2) to show that I'(1/2) =21
=J7.
The electrical charge distribution on a circular plate of radius

R meters is o (r, 6) = kr(1 — sin 0) coulomb/m? (k a constant).
Integrate o over the plate to find the total charge Q.

A parabolic rain gauge. A bowl is in the shape of the graph
of z=x2+y? from z =0 to z = 10 in. You plan to calibrate
the bowl to make it into a rain gauge. What height in the bowl
would correspond to 1 in. of rain? 3 in. of rain?

Water in a satellite dish. A parabolic satellite dish is 2 m wide
and 1/2 m deep. Its axis of symmetry is tilted 30 degrees from
the vertical.

a) Set up, but do not evaluate, a triple integral in rectangular
coordinates that gives the amount of water the satellite dish
will hold. (Hint: Put your coordinate system so that the
satellite dish is in “standard position” and the plane of the
water level is slanted.) (Caution: The limits of integration
are not “nice.”

b) What would be the smallest tilt of the satellite dish so that
it holds no water?

Cylindrical shells. In Section 5.4, we learned how to find the
volume of a solid of revolution using the shell method, namely
if the region between the curve y = f(x) and the x-axis from a
to b (0 < a < b) is revolved about the y-axis the volume of the
resulting solid is f: 2mx f(x)dx. Prove that finding volumes by
using triple integrals gives the same result. (Hint: Use cylindrical
coordinates with the roles of y and z changed.)

An infinite half-cylinder. Let D be the interior of the infinite
right circular half-cylinder of radius 1 with its single-end face
suspended 1 unit above the origin and its axis the ray from
(0, 0, 1) to co. Use cylindrical coordinates to evaluate

///z(r2 + )2 4qv.
D

Hypervolume. We have learned that [ ®1dx is the length of
the interval [a, b] on the number line (one-dimensional space),
Jf r 1dAis the area of region R in the xy-plane (two-dimensional
space), and [ff, 1dV is the volume of the region D in three-
dimensional space (xyz-space). We could continue: If Q is a
region in 4-space (xyzw-space), then [fff, 1dV is the “hy-
pervolume” of Q. Use your generalizing abilities and a Cartesian
coordinate system of 4-space to find the hypervolume inside the
unit 4-sphere x2 + y? + 22 + w? = 1.



