CHAPTER

Integrationin
Vector Fields

OVERVIEW This chapter treats integration in vector fields. The mathematics in
this chapter is the mathematics that is used to describe the properties of electro-
magnetism, explain the flow of heat in stars, and calculate the work it takes to put
a satellite in orbit.
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Line Integrals

When a curve r(t) = g(t)i+ h(t) j+ k(t)k,a <t < b, passes through the domain
of a function f(x, y, z) in space, the values of f along the curve are given by the
composite function f(g(t), h(t), k(t)). If we integrate this composite with respect
to arc length from ¢t = a to t = b, we calculate the so-called line integral of f
along the curve. Despite the three-dimensional geometry, the line integral is an
ordinary integral of a real-valued function over an interval of real numbers.

The importance of line integrals lies in their application. These are the integrals
with which we calculate the work done by variable forces along paths in space and
the rates at which fluids flow along curves and across boundaries.

Definitions and Notation

Suppose that f(x,y,z) is a function whose domain contains the curve r(t) =
g)i+h(t)j+k(t)Kk, a <t < b. We partition the curve into a finite number of
subarcs (Fig. 14.1). The typical subarc has length As;. In each subarc we choose
a point (xg, v, zx) and form the sum

So= Y fxi v 2)Asi. 1
k=1

If f is continuous and the functions g, #, and k have continuous first derivatives,
then the sums in (1) approach a limit as » increases, and the lengths As, approach
zero. We call this limit the integral of f over the curve from a to b. If the curve

(ks Yo 20)

14.1 The curve r = g(t)i + h(D)j + k(D) k, is denoted by a single letter, C for example, the notation for the integral is
partitioned into small arcs from t = a to

t = b. The length of a typical subarc is f f(x,y,2)ds “The integral of f over C” )
Asy. C
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p(1, 1,1
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y

14.2 The integration path in Example 1.

Evaluation for Smooth Curves

If r(z) is smooth for a <t < b (v =dr/dt is continuous and never ), we can use
the equation

'
s(1) = / [v(7)| dt Eq. (4) of Scction 11.3,
a

with 1y =«

to express ds in Eq. (2) as ds = |v(#)| dt. A theorem from advanced calculus says
that we can then evaluate the integral of f over C as

b
/f(x,y,Z)dS =f f(g(0), h(1), k(@)|v(2)|dt.
C a

This formula will evaluate the integral correctly no matter what parametrization we
use, as long as the parametrization is smooth.

How to Evaluate a Line Integral
To integrate a continuous function f(x, y, z) over a curve C:
1. Find a smooth parametrization of C,

rit) =g@®)i+h@®)j+ k@ k, a<t<h.

2. Evaluate the integral as

b
/f(x,y,z)d5=f F(g@), h(2), k() [v(r)| dt. 3)
C a

Notice that if f has the constant value 1, then the integral of f over C gives
the length of C.

EXAMPLE 1 Integrate f(x, y, z) = x — 3y? + z over the line segment C join-
ing the origin and the point (1, 1, 1) (Fig. 14.2).
Solution We choose the simplest parametrization we can think of:

r(¢) =ti+tj+1rk, 0<r<l.

The components have continuous first derivatives and |[v(t)| = V12 + 12+ 12 = /3
is never 0, so the parametrization is smooth. The integral of f over C is

1
/f(x,y,z)ds=/ f(t,t,1) (ﬁ) dt Eq. (3)
C 0

1
=/ (t —3t> +1)/3dt
0

1 1
= «/5/ (2t — 3t} dt = ﬁ[rz —z3] =0.
0 0 Q
Additivity
Line integrals have the useful property that if a curve C is made by joining a finite
number of curves Cy, C,, ..., C, end to end, then the integral of a function over
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C is the sum of the integrals over the curves that make it up:

fcfds=/leds+/czfds+~--+fcnfds. @)

EXAMPLE 2 Figure 14.3 shows another path from the origin to (1, 1, 1), the
union of line segments C, and C,. Integrate f(x, y,z) = x — 3y? + zover C; U C,.

Solution We choose the simplest parametrizations for C; and C, we can think of,
checking the lengths of the velocity vectors as we go along:

Cp: r(t)=ti+tj, 0<t<1; |v=VI2+12=42
Cy r@)=i+j+tk, 0<r<1; |v/|=v024+02+4+12=1.

With these parametrizations we find that

/ f(x,y,z)ds:/ f(x,y,z)ds+/ f(x,y,2)ds
UG a G

Eq. 4)

1 1
=/ f(t,z,O)JEdz+f f(,1,0(1)dt  Ea®
0 0

1 1
=/ (z—3z2+0)ﬁdz+f (1=3+1)(1)dt
0 0

2 1 2 1
=5 -r] +[5 - 2] _ 23

2 0 2 0 2 2 Q
Notice three things about the integrations in Examples 1 and 2. First, as soon as
the components of the appropriate curve were substituted into the formula for f,
the integration became a standard integration with respect to #. Second, the integral
of f over C; U C, was obtained by integrating f over each section of the path
and adding the results. Third, the integrals of f over C and C; U C, had different
values. For most functions, the value of the integral along a path joining two points
changes if you change the path between them. For some functions, however, the
value remains the same, as we will see in Section 14.3.

Mass and Moment Calculations

We treat coil springs and wires like masses distributed along smooth curves in space.
The distribution is described by a continuous density function §(x, y, z) (mass per
unit length). The spring’s or wire’s mass, center-of-mass, and moments are then
calculated with the formulas in Table 14.1, on the following page. The formulas
also apply to thin rods.

EXAMPLE 3 A coil spring lies along the helix

r(t) = (cos 4t)i+ (sin 4t) j+t k, 0<t<2m.

The spring’s density is a constant, § = 1. Find the spring’s mass and center of mass,
and its moment of inertia and radius of gyration about the z-axis.

Solution We sketch the spring (Fig. 14.4). Because of the symmetries involved,
the center of mass lies at the point (0, 0, 7r) on the z-axis.
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Table 14.1 Mass and moment formulas for coil springs, thin rods, and wires
lying along a smooth curve C in space

Mass: M =/ 8(x,y,2)ds
c
First moments about the coordinate planes:

Myz=f xdds, M,z=/ ydds, Mxy=/ z8ds
c c c

Coordinates of the center of mass:
X=M,/M, y=M./M, z=M,/M

Moments of inertia:
Ix=/(y2+zz)8ds, Iyz/(x2+z2)8ds
c c
IZ=/(x2+y2)8ds, 1L=/ r’8ds
c c

r(x, y, z) = distance from point (x, y, z) to line L

Radius of gyration about a line L: R, =I /M

For the remaining calculations, we first find |v(z)] :

_ dx \ dy\ dz\
ol= / (@) + (@) (@)

= /(=4 sin 41)2 + (4 cos 41)2 + 1 = +/17.

We then evaluate the formulas from Table 14.1 using Eq. (3):

21
M = f (Sds:f () V17dt =22 V17

0

Helix
2
I, = / (x*+yHsds = (cos? 4t + sin® 41)(1)/17 dt
0
Helix

2
= V17dt =27 /17

0

R, =JI,/M = \/271 V17/Qr V17) = 1.

Z Notice that the radius of gyration about the z-axis is the radius of the cylinder
1 around which the helix winds. Q

EXAMPLE 4 A slender metal arch, denser at the bottom than top, lies along
-1 the semicircle y? +z2 =1,z > 0, in the yz-plane (Fig. 14.5). Find the center of
the arch’s mass if the density at the point (x, y, z) on the archis §(x, y,z) =2 — z.

1>y
Ty +2=1,220 Solution We know that X =0 and y = 0 because the arch lies in the yz-plane
with its mass distributed symmetrically about the z-axis. To find Z, we parametrize
14.5 Example 4 shows how to find the the circle as

center of mass of a circular arch of
variable density. r(t) = (cos t)j+ (sin 1) Kk, 0<t=<m.
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dx

dt
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dy
dt

dz
dt

2
) =02+ (-5

)+

The formulas in Table 14.1 then give
M =f8ds=[(2—z)ds=/ 2—sint)dt =2 —2
c c 0

in 1)2 4+ (cos t)2 = 1.

Mxy=/z8ds=/z(2—z)ds=f (sin t)(2 — sin t) dt
fo c 0

M,,

z

With 7 to the nearest hundredth, the center of mass is (0, 0, 0.57).

/ (2 sin t —sin’t)dt =
0

i

8§ —m

8§ —m 1 _8—71
2 2r—2 4n—4

~ 0.57.

Exercises 14.1

Graphs of Vector Equations

(e)

Match the vector equations in Exercises 1-8 with the graphs in

Fig. 14.6.

(b)

(@)

(©)

y
X
r¢)=ti+(1—-1j 0<t<l1
r@)=i+j+tk, —-1<r<l

r¢)) =Qcos )i+ (2sint)j, 0<t<2m

Eol o

r)=ti, —-1<t<l

® X &A@

)]

X

(h)

14.6 The graphs for Exercises 1-8.

r(¢)y=ti+tj+tk, 0<r<2
rt)=tj+2-20)k, 0<r<l1
r(t) =(@>—-1)j+2tk,
r(t)=R2cost)i+ 2sint)k, 0<

-l1=<t<

Z

i

1

t<m
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Evaluating Line Integrals over Space Curves

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Evaluate fc(x + y)ds where C is the straight-line segment
x=t,y=(1—-1),z=0, from (0, 1, 0) to (1, 0, 0).

Evaluate fc(x — y 4z —2)ds where C is the straight-line seg-
mentx =t¢,y=(l—1),z=1, from (0, 1, 1) to (1, 0, 1).

Evaluate [.(xy + y + z)ds along the curve r (1) =2ri+1j+
2-2nk,0<r<1.

Evaluate [../x?+ y2ds along the curve r(r) = (4 cos t)i+
(4sint)j+3tk, =27 <t <2m.

Find the line integral of f(x, y, z) = x + y + z over the straight-
line segment from (1, 2, 3) to (0, —1, 1).

Find the line integral of f(x, y,z) = ~/3/(x? + y? + z%) over the
curver(t) =ti+tj+tk, 1 <t <oo.

Integrate f(x,y,z) =x + ./y — 2 over the path from (0, 0, 0)
to (1, 1, 1) (Fig. 14.7a) given by

Ci: r(t)y=ti+1j, 0<r<l1

Cy r)=i+j+tk, 0<r<li

Integrate f(x,y,2) =x+ /y — 2% over the path from (0, 0, 0)
to (1, 1, 1) (Fig. 14.7b) given by

C: rt)=tk, 0<tr<l1

Cy: rt)=tj+k, 0<r<li

Cy: r)y=ti+j+k 0<r=<l

4

0,0, 1)

0,0,0
( \) a1 ¢
(0,0,0)
o ]

(1,1,0)

(b)

14.7 The paths of integration for Exercises 15 and 16.
Integrate f(x,y,z) = (x +y + 2)/(x* + y* + z%) over the path
r@)=ti+tj+tk,0<a <t <bh.
Integrate f(x, y,z) = —+/x? + z% over the circle

r(t) = (acost)j+ (asint)k,0 <t <2m.

Line Integrals over Plane Curves

In Exercises 19-22, integrate f over the given curve.

19.
20.

21.

f,y)=xy, C: y=x*/2, 0<x<2

O, y) =+ y)/V1+x2 C: y=x%/2 from (1, 1/2) to
(0, 0)

f,yy=x+y, C:
(2, 0) to (0, 2)

x?+ y> =4 in the first quadrant from

22.

fx,y) = x%— y, C: x4+ y2 =4 in the first quadrant from

(0,2) to (v/2,+/2)

Mass and Moments

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

Find the mass of a wire that lies along the curve r(s) =
(2= 1)j+2tk,0 <t < 1, if the density is § = (3/2).

A wire of density §(x,y,z) =15/y + 2 lies along the curve
r(t) =@*—-1)j+2tk, —1 <t < 1. Find its center of mass.
Then sketch the curve and center of mass together.

Find the mass of a thin wire lying along the curve r(r) = +/2ri +
VZ2tj+ @ -1k, 0<t <1, if the density is (a) & =31,
(b)s=1.

Find the center of mass of a thin wire lying along the curve r(z) =
ti+2tj+ (2/3)t¥%k, 0 <t <2, if the density is § = 3+/5 + 1.
A circular wire hoop of constant density § lies along the circle

x2 + y? = a? in the xy-plane. Find the hoop’s moment of inertia
and radius of gyration about the z-axis.

A slender rod of constant density lies along the line segment

r(t) =tj+ (2 —-21)k,0 <r <1, in the yz-plane. Find the mo-

ments of inertia and radii of gyration of the rod about the three

coordinate axes.

A spring of constant density § lies along the helix

r(t) = (cos t)i+ (sint)j+rk,0<r <2m.

a) Find I, and R,.

b) Suppose you have another spring of constant density § that
is twice as long as the spring in (a) and lies along the helix
for 0 <t <4m. Do you expect I, and R, for the longer
spring to be the same as those for the shorter one, or should
they be different? Check your predictions by calculating I,
and R, for the longer spring.

A wire of constant density § = 1 lies along the curve

r(t) = (t cos 1) i+ (¢sin 1) j+ 2+/2/3) ¥k, 0<t<]1.
Find Z, I, and R..

Find /, and R, for the arch in Example 4.

Find the center of mass, and the moments of inertia and radii of
gyration about the coordinate axes of a thin wire lying along the
curve

232

t2
r(t):ti+Tt3/2j+Ek, 0<r<2,

if the density is § = 1/(t + 1).

& CAS Explorations and Projects

In Exercises 33-36, use a CAS to perform the following steps to
evaluate the line integrals:

a)
b)

c)

Find ds = |v(t)| dt for the path r(z) = g(1)i+ h(t)j+ k() k.
Express the integrand f(g(z), h(t), k(t)) |v(z)| as a function of
the parameter 7.

Evaluate fc fds using Eq. (3) in the text.
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33, f(x,y,2) =/1430x2+10y; r(t) =ti+12j+ 3%k, 35. f(x,y,2) =x/y—3z% r(t) =cos 2ti+sin 2t j+ 5tk,
0<r=<2 0<t<2m
1 1/4
3. f(x,y,2) =1+ x3+5y% r(t)=t1+§t2_|+«/t_k, 36. f(x,y,2) = 1+2z'/3> ; r(t) =cos2ti+sin2tj+ 132k,
0<r<2 4
0<t<2nm

14.8 The velocity vectors v(t) of a
projectile’s motion make a vector field
along the trajectory.

foyz)=c’

14.9 The field of gradient vectors Vf on
a surface f(x,y,2) =c.

Vector Fields, Work, Circulation, and Flux

When we study physical phenomena that are represented by vectors, we replace
integrals over closed intervals by integrals over paths through vector fields. We use
such integrals to find the work done in moving an object along a path against a
variable force (a vehicle sent into space against Earth’s gravitational field) or to
find the work done by a vector field in moving an object along a path through the
field (the work done by an accelerator in raising the energy of a particle). We also
use line integrals to find the rates at which fluids flow along and across curves.

Vector Fields

A vector field on a domain in the plane or in space is a function that assigns a
vector to each point in the domain. A field of three-dimensional vectors might have
a formula like

F(x,y,2) = M(x,y,2)i+N(x,y,2)j+ P(x,y,2) k.

The field is continuous if the component functions M, N, and P are contin-
uous, differentiable if M, N, and P are differentiable, and so on. A field of
two-dimensional vectors might have a formula like

F(x,y) = M(x,y)i+ N(x, y)j.

If we attach a projectile’s velocity vector to each point of the projectile’s trajectory
in the plane of motion, we have a two-dimensional field defined along the trajectory.
If we attach the gradient vector of a scalar function to each point of a level surface
of the function, we have a three-dimensional field on the surface. If we attach
the velocity vector to each point of a flowing fluid, we have a three-dimensional
field defined on a region in space. These and other fields are illustrated in Figs.
14.8-14.16. Some of the illustrations give formulas for the fields as well.

To sketch the fields that had formulas, we picked a representative selection of
domain points and sketched the vectors attached to them. Notice the convention
that the arrows representing the vectors are drawn with their tails, not their heads,
at the points where the vector functions are evaluated. This is different from the
way we drew the position vectors of the planets and projectiles in Chapter 11, with
their tails at the origin and their heads at the planet’s and projectile’s locations.

14.10 The flow of fluid in a long cylin-

drical pipe. The vectors v = (a?> — r?) k inside the
cylinder that have their bases in the xy-plane have
their tips on the paraboloid z = a?> — r2.
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14.11 Velocity vectors of a flow around
an airfoil in a wind tunnel. The stream-
lines were made visible by kerosene
smoke. (Adapted from NCFMF Book of
Film Notes, 1974, MIT Press with
Education Development Center, Inc.,
Newton, Massachusetts.)

%
VRN

14.14 The radial field F = xi+yj of
position vectors of points in the plane.
Notice the convention that an arrow is
drawn with its tail, not its head, at the
point where F is evaluated.
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14.15 The circumferential or "spin” field
of unit vectors

F=(-yi+xjl(?+y>)"

in the plane. The field is not defined at
the origin.
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P(x, y,2)

Bt
?\\
\\

N\

increase in length. (Adapted from NCFMF x
Book of Film Notes, 1974, MIT Press with
Education Development Center, Inc.,
Newton, Massachusetts.)
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14.12 Streamlines in a contracting ' (% \\\
channel. The water speeds up as the 5) ﬁ y
channel narrows and the velocity vectors /
I
|
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(XZ + y2 + 22)3/2
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14.16 NASA's Seasat used radar during a 3-day period in September 1978 to take
350,000 wind measurements over the world’s oceans. The arrows show wind
direction; their length and the color contouring indicate speed. Notice the heavy
storm south of Greenland.

14.13 Vectors in the gravitational field




14.17 The work done by a continuous
field F over a smooth path r = g(t)i +
h(t)j + k(t) k from A to B is the integral of
F . T over the path fromt=ato t = b.

|
1
I Levi b

/ t=Ck

F.(g(t), h(r), k(1))
B 18 )k ) k()
14.18 Each partition of a parameter

interval a < t < b induces a partition of
the curve r = g(t)i + h(t)j + k(t) k.
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Gradient Fields

Definition
The gradient field of a differentiable function f(x,y,z) is the field of
gradient vectors

af ., of . of
vF=24 %
F=atats

EXAMPLE 1 Find the gradient field of f(x, y, z) = xyz.

Solution The gradient field of f is the field F =V f = yzi+xzj+xyk.

As we will see in Section 14.3, gradient fields are of special importance in
engineering, mathematics, and physics.

The Work Done by a Force over a Curve in Space

Suppose that the vector field F = M(x, y,2)i+ N(x,y,2)j+ P(x, y, z) k repre-
sents a force throughout a region in space (it might be the force of gravity or an
electromagnetic force of some kind) and that

r(t) = g(t)i+h(t)j+k@)k,

is a smooth curve in the region. Then the integral of F . T, the scalar component
of F in the direction of the curve’s unit tangent vector, over the curve is called the
work done by F over the curve from a to b (Fig. 14.17).

a<t<b,

Definition

The work done by a force F= M(x,y,2)i+ N(x,y,2)j+ P(x,y,2)k

over a smooth curve r(t) = g(t)i+h(t)j+k@)kfromt =atot =bis
1=b

1=a

We motivate Eq. (1) with the same kind of reasoning we used in Section 5.8
to derive the formula W = f: F(x)dx for the work done by a continuous force
of magnitude F(x) directed along an interval of the x-axis. We divide the curve
into short segments, apply the constant-force-times-distance formula for work to
approximate the work over each curved segment, add the results to approximate the
work over the entire curve, and calculate the work as the limit of the approximating
sums as the segments become shorter and more numerous. To find exactly what
the limiting integral should be, we partition the parameter interval / = [a, b] in the
usual way and choose a point ¢, in each subinterval [#, #;4,]. The partition of /
determines (“induces,” we say) a partition of the curve, with the point P, being
the tip of the position vector r at t = #, and As; being the length of the curve
segment Py Py, (Fig. 14.18). If F; denotes the value of F at the point on the curve
corresponding to t = ¢4, and T, denotes the curve’s tangent vector at this point,
then F, - T, is the scalar component of F in the direction of T at t =¢;
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(Fig. 14.19). The work done by F along the curve segment P, P, will be approx-
imately

( force component in ) 5 ( distance

direction of motion applied > = Fi- TelAsic

The work done by F along the curve from ¢ = a to t = b will be approximately

XH:F;( . TkASk.

k=1

14.19 An enlarged view of the curve
segment PyPy,1 in Fig. 14.18, showing the As the norm of the partition of [a, b] approaches zero, the norm of the induced

force vector and unit tangent vector at partition of the curve approaches zero and these sums approach the line integral
the point on the curve where t = ¢. b

/ F.Tds.
t=a

The sign of the number we calculate with this integral depends on the direction in
which the curve is traversed as ¢ increases. If we reverse the direction of motion,
we reverse the direction of T and change the sign of F - T and its integral.

Notation and Evaluation

Table 14.2 shows six ways to write the work integral in Eq. (1).

Table 14.2 Different ways to write the work integral

t=b
W= F.Tds The definition

t=a

t=b
= / F .dr Compact differential form
t

=a

b d Expanded to include dr;
r .
= [ F. 7 dt emphasizes the parameter ¢ and
a ! velocity vector dr/dt

b
dk
= / (M_t +N— + P—) dt Emphasizes the component functions

b d d d
= / M el +N £ + P ar Abbreviates the components of r
p dt dt dt

b
= / Mdx + Ndy + Pdz dt’s canceled; the most common form

Despite their variety, the formulas in Table 14.2 are all evaluated the same way.

How to Evaluate a Work Integral
To evaluate the work integral, take these steps:

1. Evaluate F on the curve as a function of the parameter ¢.
2. Find dr/dt.

3. Dot F with dr/dt.

4. Integrate fromt =a tot =b.
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(0,0,0)

14.20 The curve in Example 2.

EXAMPLE 2

14.2 Vector Fields, Work, Circulation, and Flux 1071

Find the work done by F = (y —x?)i+ (z — y)j+ (x — )k

over the curve r(¢) =ti+t2j+ 1k, 0 <t < 1, from (0, 0, 0) to (1, 1, 1) (Fig.

14.20).

Solution

Step 1: Evaluate F on the curve.

F=0p-x)i+G-y)j+x-Dk
=@ -)i+ @ -Hj+ -5k

——
0

Step 2: Find dr/d:t.

d d
d_: - E(ti+t2j+t3k)=i—i-2tj+3t2k

Step 3: Dot F with dr/dt.

d: =[—tHj+ @ —1OKk] - (i+2j+3°k)

=@ =)+ — 9@ =26* —26° + 33 — 38

Step 4: Integrate fromt =0tot = 1.

1
Work = / Qt* —26% + 363 = 38y dr
0

1
= gts—zt6+§t4—§t9 _ 2
576 4 "9 ], " 60 0

Flow Integrals and Circulation

Instead of being a force field, suppose that F = M i+ N j+ Pk represents the
velocity field of a fluid flowing through a region in space (a tidal basin or the turbine
chamber of a hydroelectric generator, for example). Under these circumstances, the
integral of F . T along a curve in the region gives the fluid’s flow along the curve.

Definitions

Ifr(t) = g@®)i+h(t)j+k()k,a <t < b, is a smooth curve in the domain
of a continuous velocity field F = M (x, y,2)i+ N(x,y,2)j+ P(x,y,2)k,
the flow along the curve from r = a to t = b is the integral of F - T over
the curve from a to b:

b
Flow = / F . Tds. (2)

The integral in this case is called a flow integral. If the curve is a closed
loop, the flow is called the circulation around the curve.

We evaluate flow integrals the same way we evaluate work integrals.

EXAMPLE 3

A fluid’s velocity field is F = xi + zj + y k. Find the flow along

the helix r(#) = (cos t)i+ (sint)j+tk, 0 <t <m/2.
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Solution
Step 1: Evaluate F on the curve.
F=xi+zj+yk=(cost)i+tj+ (sinr)k

Step 2: Find dr/d:t. dr
— = (—sint)i+(cost)j+k

dt
Step 3: Find F - (dr/dt).
. -3; = (cos t)(—sin t) + (t)(cos t) + (sin t)(1)

= —sintcost+tcost+sint

Step 4: Integrate fromt =a tot = b.

t=b dr /2
Flow=/ F-Edt=/ (—sint cost+t cost+sin t)dt
t 0

=a

cos? t N P 1 7 1
=[ ) +tSlnt]0 =<0+5>——(5+0>=E—§ D

EXAMPLE 4 Find the circulation of the field F = (x — y)i+ xj around the
circle r(z) = (cos t)i+ (sin#)j, 0 <t < 2m.

Solution

1. On the circle, F = (x — y)i+ xj = (cos t —sin t)i+ (cos ?) j.

2 dr (—sint)i+ (cos t)j
« — = (—SI1
dt ]
d
3. F. ;i; = —sin ¢ cos ¢ + sin® 7 + cos® ¢
— e
1
2 dl' 2
4. Circulation =/ F.—dt = (1 —sin t cos t) dt
0 dt 0
.2 2
sin” ¢
=|t- = 2.
=l .

Flux Across a Plane Curve

To find the rate at which a fluid is entering or leaving a region enclosed by a
smooth curve C in the xy-plane, we calculate the line integral over C of F - n,
the scalar component of the fluid’s velocity field in the direction of the curve’s
outward-pointing normal vector. The value of this integral is called the flux of F
across C. Flux is Latin for flow, but many flux calculations involve no motion at
all. If F were an electric field or a magnetic field, for instance, the integral of
F - n would still be called the flux of the field across C.

Definition
If C is a smooth closed curve in the domain of a continuous vector field
F = M(x,y)i+ N(x, y)jin the plane, and if n is the outward-pointing unit



For clockwise motion,
k X T points outward.

For counterclockwise
motion, T X Kk points
outward.

14.21 To find an outward unit normal
vector for a smooth curve C in the
xy-plane that is traversed counter-
clockwise as t increases, we take
n=Txk.
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normal vector on C, the flux of F across C is given by the following line
integral:

Flux of F across C = ] F - nds. 3)
c

Notice the difference between flux and circulation. The flux of F across C is
the line integral with respect to arc length of F . n, the scalar component of F in the
direction of the outward normal. The circulation of F around C is the line integral
with respect to arc length of F - T, the scalar component of F in the direction of the
unit tangent vector. Flux is the integial of the normal component of F; circulation
is the integral of the tangential component of F.

To evaluate the integral in (3), we begin with a parametrization

x = g(1), y = h(t), a<t<b,

that traces the curve C exactly once as ¢ increases from a to b. We can find the
outward unit normal vector n by crossing the curve’s unit tangent vector T with
the vector k. But which order do we choose, T x k or k x T? Which one points
outward? It depends on which way C is traversed as the parameter ¢ increases. If the
motion is clockwise, then k x T points outward; if the motion is counterclockwise,
then T x k points outward (Fig. 14.21). The usual choice is n = T x k, the choice
that assumes counterclockwise motion. Thus, while the value of the arc length
integral in the definition of flux in Eq. (3) does not depend on which way C is
traversed, the formulas we are about to derive for evaluating the integral in Eq. (3)
will assume counterclockwise motion.
In terms of components,

IfF=M(x,y)i+ N(x,y)]j, then
Fon= M@y - N D
en= M(x,y)— — N(x, y)—.
yds yds

Hence, dy dx
/F-nds:f M— — N— ds:% Mdy — Ndx.
C C ds dS C

We put a directed circle © on the last integral as a reminder that the integration
around the closed curve C is to be in the counterclockwise direction. To evaluate
this integral, we express M, dy, N, and dx in terms of ¢ and integrate from t = a
to t = b. We do not need to know either n or ds to find the flux.

The Formula for Calculating Flux Across a Smooth
Closed Plane Curve

(FluxofF:Mi-{-NjacrossC):?g Mdy — Ndx (4)
c

The integral can be evaluated from any smooth parametrization x = g(¢),
= h(t),a <t < b, that traces C counterclockwise exactly once.
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EXAMPLE 5
in the xy-plane.

Find the flux of F = (x — y) i + x j across the circle x> + y*> = 1

Solution The parametrization r(z) = (cos t)i+ (sin ¢) j, 0 <t < 2m, traces the
circle counterclockwise exactly once. We can therefore use this parametrization in

Eq. (4). With

M = x — y =cost — sint,

N = x = cost,

we find

Flux:/Mdy—Ndx:
c

2 2 . 2
1 2t t 2t
=/ cosztdt=/ —I_Ciosdt: —+Sm
0 0 2 2 4 0

dy = d(sin t) = cost dt

dx = d(cost) = —sint dt,

2
(cos’t —sin ¢ cos t + cos ¢ sin 1) dt Eq. (h

0

=T.

The flux of F across the circle is 7. Since the answer is positive, the net flow across
the curve is outward. A net inward flow would have given a negative flux. d

Exercises 14.2

Vector and Gradient Fields
Find the gradient fields of the functions in Exercises 1-4.
L fx,y, 0= +y +)7"7
2 fey.)=In/x2+y?+2?
3. gy, ) =¢ —In(x* 4 %)
4. gx,y,0) =xy+yz+axz
5

. Give a formula F = M(x, y)i+ N(x, y)j for the vector field in
the plane that has the property that F points toward the origin with
magnitude inversely proportional to the square of the distance
from (x, y) to the origin. (The field is not defined at (0, 0).)

6. Give a formula F = M (x, y)i+ N(x, y)j for the vector field in
the plane that has the properties that F = 0 at (0, 0) and that at any
other point (a, b), F is tangent to the circle x> + y? = a® + b* and
points in the clockwise direction with magnitude |F| = va? + b2.

Work

In Exercises 7-12, find the work done by force F from (0, 0, 0) to
(1, 1, 1) over each of the following paths (Fig. 14.22):

a) The straight-line path C;: r(t) =ti+tj+tk, 0<:t <1

b) The curved path C;: r(r) =ti+2j+1*k, 0<t<1

¢) The path C; U Cy4 consisting of the line segment from (0, 0, 0)
to (1, 1, 0) followed by the segment from (1, 1, 0) to (1, 1, 1)

7. F=3yi+2xj+4zk 8. F=[1/(x*+ D]j

9. F= /zZi—2xj+ /yk 10. F=xyi+ yzj+xzk
1. F=(3x2 = 3x)i+3zj+k

12. F=(y+i++x0)j+x+ynk

r(l,l,l)

1, 1,0

14.22 The paths from (0, 0, 0) to (1, 1, 1).

In Exercises 13-16, find the work done by F over the curve in the
direction of increasing ¢.
13. F=xyi+yj—yzk

r()=ti+%j+tk, 0<tr<l1
14. F=2yi+3xj+ (x+ )k

r(t) =(cos )i+ (sint)j+ (1/6)k, 0<1<2m
15. F=zi+xj+ yk

r(t) = (sin t)i+ (cos 1) j+t kK,
16. F=6zi+ y*j+ 12xk

r(t) = (sinr)i+ (cos t)j+ (t/6)k, 0<r<2m

0<rtr<2m

Line Integrals and Vector Fields in the Plane

17. Evaluate fc xydx + (x + y)dy along the curve y = x? from
(—=1,1) to (2, 4).



18. Evaluate fc (x — y)dx + (x + y) dy counterclockwise around the
triangle with vertices (0, 0), (1, 0), and (0, 1).

19. Evaluate [.F - Tds for the vector field F = x?i — y j along the
curve x = y2 from (4, 2) to (1, —1).

20. Evaluate fc F - dr for the vector field F = y i — x j counterclock-
wise along the unit circle x*> 4+ y*> =1 from (1, 0) to (0, 1).

21. Find the work done by the force F = xyi+ (y — x) j over the
straight line from (1, 1) to (2, 3).

22. Find the work done by the gradient of f(x, y) = (x + y)? coun-
terclockwise around the circle x? + y*> = 4 from (2, 0) to itself.

23. Find the circulation and flux of the fields
F,=xi+yj and F,=—-yi+xj
around and across each of the following curves.

a) The circle r(t) = (cos t)i+ (sint)j, 0<t <2nw
b) The ellipse r(¢t) = (cos t)i+ (4sint)j, 0<t<2nm
24. Find the flux of the fields
F,=2xi—3yj and F,=2xi+ (x—y)j
across the circle
r(¢t)y =(acost)i+(asint)j, 0<t<2m.

In Exercises 25-28, find the circulation and flux of the field F around
and across the closed semicircular path that consists of the semicircu-
lar arch r;(r) = (a cos 1)i+ (asint) j, 0 <t <, followed by the
line segment ry(t) =ti, —a <t <a.

26. F=x2i+y?j

28. F = —y2i+ x2j

25. F=xi+yj
27. F=—yi+xj
29. Evaluate the flow integral of the velocity field F = (x + y)i—

(x2 + y?)j along each of the following paths from (I, 0) to
(=1, 0) in the xy-plane.

a) The upper half of the circle x> + y? =1

b) The line segment from (1, 0) to (—1,0)

¢) The line segment from (1, 0) to (0, —1) followed by the
line segment from (0, —1) to (—1,0)

30. Find the flux of the field F in Exercise 29 outward across the
triangle with vertices (1, 0), (0, 1), (=1, 0).

Sketching and Finding Fields in the Plane
31. Draw the spin field
Y . X .
= - 1+ J
VY Yy
(see Fig. 14.15) along with its horizontal and vertical components
at a representative assortment of points on the circle x> + y? = 4.

32. Draw the radial field

F=xi+yj

(see Fig. 14.14) along with its horizontal and vertical components
at a representative assortment of points on the circle x2 + y2 = 1.
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33. a) Finda field G = P(x, y)i+ Q(x, y)j in the xy-plane with
the property that at any point (a, b) # (0, 0), G is a vector of
magnitude /a2 + b? tangent to the circle x? + y? = a? + b*
and pointing in the counterclockwise direction. (The field
is undefined at (0, 0).)

b) How is G related to the spin field F in Fig. 14.15?

34. a) Findafield G = P(x, y)i+ Q(x, y)j in the xy-plane with
the property that at any point (a, b) # (0,0), G is a unit
vector tangent to the circle x? + y? = a® + b? and pointing
in the clockwise direction.

b) How is G related to the spin field F in Fig. 14.15?

35. Find a field F = M(x, y)i+ N(x, y)j in the xy-plane with the
property that at each point (x, y) # (0,0), F is a unit vector
pointing toward the origin. (The field is undefined at (0, 0).)

36. Find a field F = M(x, y)i+ N(x, y)j in the xy-plane with the
property that at each point (x, y) # (0,0), F points toward the
origin and |F| is (a) the distance from (x, y) to the origin, (b)
inversely proportional to the distance from (x, y) to the origin.
(The field is undefined at (0, 0).)

Flow Integrals in Space
In Exercises 37-40, F is the velocity field of a fluid flowing through
a region in space. Find the flow along the given curve in the direction
of increasing .
37. F = —4xyi+8yj+2k
r(t)=ti+2j+k, 0<r<2
38. F=x%i+yzj+ y*k
r(t) =3rj+4tk, 0<tr<l1
39. F=(x—2)i+xk
r(¢)=(cos t)i+ (sinn)k, 0<r<mnm
40. F=—-yi+xj+2k
r(t) =(—2cos )i+ 2sinn)j+2tk, 0<:t<2n
41. Find the circulation of F = 2xi+ 2zj+ 2y k around the closed

path consisting of the following three curves traversed in the
direction of increasing ¢:

Ci: r(t)=(cost)i+(sint)j+tk, 0<t<m/2
C: rt)=j+@/2)A -0k, 0<r=<lI

0<r<1

Z m
0.03)

Cy: r(t) =ti+(1—1)j,

42. Let C be the ellipse in which the plane 2x + 3y — z = 0 meets
the cylinder x> 4+ y*> = 12. Show, without evaluating either line
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integral directly, that the circulation of the field F=xi+
yj+ zk around C in either direction is zero.

The field F = xyi+ yj— yzk is the velocity field of a flow in
space. Find the flow from (0, O, 0) to (1, 1, 1) along the curve of
intersection of the cylinder y = x? and the plane z = x. (Hint:
Use t = x as the parameter.)

43.

Z

Nl
QY
y=x

44. Find the flow of the field F = V(xy?z%)

X

a) once around the curve C in Exercise 42, clockwise as viewed
from above.
b) along the line segment from (1, 1, 1) to (2, 1, —1).

Theory and Examples

45. Suppose f(¢) is differentiable and positive fora <t < b. Let C
be the path r(¢t) =ti+ f(t)j,a <t <b, and F = yi. Is there
any relation between the value of the work integral

/F-dr
C

46.

and the area of the region bounded by the z-axis, the graph of f,
and the lines ¢t = a and ¢ = b? Give reasons for your answer.

A particle moves along the smooth curve y = f(x) from (a, f(a))
to (b, f(b)). The force moving the particle has constant magni-
tude k and always points away from the origin. Show that the
work done by the force is

f F.Tds = k[(6> + (f &))" = @ + (F@P)'].
C

& CAS Explorations and Projects

In Exercises 47-52, use a CAS to perform the following steps for
finding the work done by force F over the given path:

a)
b)

c)

47.
48.
49.

50.
51.

52.

Path Independence, Potential Functions, and

Find dr for the path r(z) = g(t)i+ h(t)j+ k() k.
Evaluate the force F along the path.

Evaluate / F .- dr.
C

F=xyi+3x(xy’ +2)j;r(t) =2cos ti+sintj0<r<2m
_3 2
T 1+ x2 l+y2']’
F = (y+ yz cos xyz)i + (x*> + xz cos xyz)j + (z -

xy cos xyz)k; r(t) =2costi+3sintj+k, 0<t<2m
F=2xyi—yj+ze'k; r(t) = —ti+/1j+3tk, 1<r<4
F = (2y 4+ sin x)i+ (z> + (1/3) cos y)j + x*k;

r(t) =sinti4cos tj+sin2tk, —nm/2<t<m/2

F + r(¢) =costi+sintj, 0<t<mnm

1
F=(x2y)i+§x3j+xyk; r(t) =cos ti+sintj+
@ sin’(t) — 1)k, 0<t<2m

Conservative Fields

In gravitational and electric fields, the amount of work it takes to move a mass or
a charge from one point to another depends only on the object’s initial and final
positions and not on the path taken in between. This section discusses the notion
of path independence of work integrals and describes the remarkable properties of
fields in which work integrals are path independent.

Path Independence

If A and B are two points in an open region D in space, the work [ F - dr done
in moving a particle from A to B by a field F defined on D usually depends on
the path taken. For some special fields, however, the integral’s value is the same
for all paths from A to B. If this is true for all points A and B in D, we say that
the integral [ F . dr is path independent in D and that F is conservative on D.



The word conservative comes from physics,
where it refers to fields in which the
principle of conservation of energy holds (it
does, in conservative fields).
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Definitions

Let F be a field defined on an open region D in space, and suppose that for
any two points A and B in D the work |, AB F . dr done in moving from A
to B is the same over all paths from A to B. Then the integral [ F - dr is
path independent in D and the field F is conservative on D.

Under conditions normally met in practice, a field F is conservative if and only
if it is the gradient field of a scalar function f; that is, if and only if F = V f for
some f. The function f is then called a potential function for F.

Definition
If F is a field defined on D and F = V f for some scalar function f on D,
then f is called a potential function for F.

An electric potential is a scalar function whose gradient field is an electric field.
A gravitational potential is a scalar function whose gradient field is a gravitational
field, and so on. As we will see, once we have found a potential function f for a
field F, we can evaluate all the work integrals in the domain of F by

B B
/F-dr:/ Vf .dr= f(B)— f(A). (1)
A A

If you think of V f for functions of several variables as being something like
the derivative f’ for functions of a single variable, then you see that Eq. (1) is the
vector calculus analogue of the Fundamental Theorem of Calculus formula

b
/ f'(x)dx = f(b) — f(a).

Conservative fields have other remarkable properties we will study as we go
along. For example, saying that F is conservative on D is equivalent to saying
that the integral of F around every closed path in D is zero. Naturally, we need
to impose conditions on the curves, fields, and domains to make Eq. (1) and its
implications hold.

We assume that all curves are piecewise smooth, i.e., made up of finitely
many smooth pieces connected end to end, as discussed in Section 11.1. We also
assume that the components of F have continuous first partial derivatives. When
F = V f, this continuity requirement guarantees that the mixed second derivatives
of the potential function f are equal, a result we will find revealing in studying
conservative fields F.

We assume D to be an open region in space. This means that every point in D
is the center of a ball that lies entirely in D. We also assume D to be connected,
which in an open region means that every point can be connected to every other
point by a smooth curve that lies in the region.

Line Integrals in Conservative Fields

The following result provides a convenient way to evaluate a line integral in a
conservative field. The result establishes that the value of the integral depends only
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on the endpoints and not on the specific path joining them.

Theorem 1
The Fundamental Theorem of Line Integrals
1. LetF=Mi+ Nj+ Pk be a vector field whose components are con-
tinuous throughout an open connected region D in space. Then there
exists a differentiable function f such that
F=Vf= % i+ %J + y
ady 9z
if and only if for all points A and B in D the value of fAB F.dris
independent of the path joining A to B in D.
2. If the integral is independent of the path from A to B, its value is

B
/ F.-dr = f(B) - f(A).
A

Proof That F = Vf Implies Path Independence of the Integral  Suppose that A
and B are two points in D and that C:  r(¢t) = g(t)i+h(@)j+k(@)k, a <t <b,
is a smooth curve in D joining A and B. Along the curve, f is a differentiable
function of ¢ and

df dfdx afdy ofdz

Chain Rule
dt ~ axdt ay dr " 9z dr
dx dy . dr Because
=Vf. <— +— ) .E;' Fovy @
dr d
Therefore, / F.dr= / — / —f dt Eq. (2)
dt . dt

= f(g@), h(), k(t))} = f(B) — f(A).

a

Thus, the value of the work integral depends only on the values of f at A and B and
not on the path in between. This proves Part 2 as well as the forward implication
in Part 1. We omit the more technical proof of the reverse implication. a

EXAMPLE 1 Find the work done by the conservative field
F=yzit+xzj+xyk=V(xyz)
along any smooth curve C joining the point (—1, 3,9) to (1, 6, —4).

Solution With f(x,y,z) = xyz, we have

B B
/ F-dr:/ Vf.dr F=Vf
A A

= f(B) — f(A) Fundamental Theorem, Part 2
= xyz’“'(,'ﬂ,) - xyzi(_]‘w)
= (1)(6)(—=4) — (=1)(3)(9)
= —-24427=23. a



14.23 If we have two paths from A to B,
one of them can be reversed to make a
loop.

A A

14.24 If A and B lie on a loop, we can
reverse part of the loop to make two
paths from A to B.
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Theorem 2
The following statements are equivalent:

1. [F .dr =0 around every closed loop in D.
2. The field F is conservative on D.

Proof That (1) = (2) We want to show that for any two points A and B in D
the integral of F . dr has the same value over any two paths C; and C, from A to
B. We reverse the direction on C, to make a path —C, from B to A (Fig. 14.23).
Together, C, and —C, make a closed loop C, and

fF-dr—fF-dr:/F-dr—i—/ F-dr=/F-dr=0.
ol o C -G c

Thus the integrals over C, and C, give the same value.

Proof That (2) = (1) We want to show that the integral of F . dr is zero over
any closed loop C. We pick two points A and B on C and use them to break C
into two pieces: C, from A and B followed by C, from B back to A (Fig. 14.24).
Then

B B
%Fodr=/F-dr+/F.dr=‘/‘ F-dr—/ F.dr=0.
c ol G A A Q

The following diagram summarizes the results of Theorems 1 and 2.

Theorem 1 Theorem 2

F=VfonD & F conservative & 56 F.dr=0
c

on D
over any closed

path in D

Now that we see how convenient it is to evaluate line integrals in conservative
fields, two questions remain:

1. How do we know when a given field F is conservative?
2. If F is in fact conservative, how do we find a potential function f (so that
F=Vf)?

Finding Potentials for Conservative Fields

The test for being conservative is this:

The Component Test for Conservative Fields

LetF=M(x,y,z)i+ N(x,y,2)j+ P(x,y,z) k be a field whose compo-
nent functions have continuous first partial derivatives. Then, F is conser-
vative if and only if

aP 9N oM 9P

N oM
dy 09z’ dz  ox’

sy Y
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Proof We show that Eqs. (3) must hold if F is conservative. There is a potential
function f such that

F—M1+NJ+P|(——f- —f fk.
0x y 9z
P
Hence — =
ay ( ) 6yaz

Continuity impu=s that the
= mixed partial derivatives are

32 8y cqual.

9 {:)f)_aN
T ez \dy/) oz’

The other two equations in (3) are proved similarly.
The second half of the proof, that Eqs. (3) imply that F is conservative, is a
consequence of Stokes’s theorem, taken up in Section 14.7. Q

When we know that F is conservative, we usually want to find a potential
function for F. This requires solving the equation Vf = F or

0
o, +—fj+—fk—Ml+NJ+Pk
ax ay 0z
for f. We accomplish this by integrating the three equations
a a 0
_f = M, —f = [\/7 —f- = P.
ax ay 9z

EXAMPLE 2 Show that F = (e* cosy + yz)i+ (xz —e* siny)j+ (xy +2)k
is conservative and find a potential function for it.

Solution We apply the test in Egs. (3) to
M = ¢* cos y + yz, N =xz —¢" sin y, P=xy+z

and calculate
aP N oM apP oN *sin y +
—_— == —, —_— = = —, — = —€ SIn i=-———.
dy 0z 9z Y= ox ox Y dy
Together, these equalities tell us that there is a function f with Vf =F.
We find f by integrating the equations

d d a
—f=e"cosy—|—yz, —f:xz—exsiny, —f=xy+z. (4)
ox ay 0z

We integrate the first equation with respect to x, holding y and z fixed, to get
f(x,y,2) =€ cos y+xyz+g(y,2).

We write the constant of integration as a function of y and z because its value may
change if y and z change. We then calculate df/dy from this equation and match
it with the expression for df/dy in Eq. (4). This gives

a
—e* siny+xz+5—f7 =xz—¢€" siny,

so dg/dy = 0. Therefore, g is a function of z alone, and

f(x,y,2) =€ cosy+xyz+ h(z).
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We now calculate df/dz from this equation and match it to the formula for df/dz
in Eq. (4). This gives

N dh + dh
X — =X s or — =2z,
y dz yT+z a7 z
2
s0 h@) = 5 +C.
Z2
Hence, fx,y,2) =€ cosy+xyz+—2—+C.

We have found infinitely many potential functions for F, one for each value of C.

3

EXAMPLE 3 Show that F = (2x — 3)i — zj + (cos z) k is not conservative.

Solution We apply the component test in Egs. (3) and find right away that
oP d ( =0 aN (—2)
— = — (COS =V, _— = —(— = —
dy dy ¢ dz 0z ¢

The two are unequal, so F is not conservative. No further testing is required. U

Exact Differential Forms

As we will see in the next section and again later on, it is often convenient to
express work and circulation integrals in the “differential” form

B
/ Mdx + Ndy+ Pdz
A

mentioned in Section 14.2. Such integrals are relatively easy to evaluate if M dx +
N dy + P dz is the differential of a function f For then

f de+Ndy+sz_/ 2L ax U S
dy 9z
B
=/ Vf.dr
A
= f(B) - f(A) Theorem |
B
Thus [ ar =5 - s,
A

just as with differentiable functions of a single variable.

Definitions
The form M(x,y,z)dx + N(x,y,z)dy + P(x, y, z)dz is called a differ-
ential form. A differential form is exact on a domain D in space if

a
de+Ndy+sz—a—fd +a—fd +a—fd =df

for some (scalar) function f throughout D.
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Notice that if Mdx + Ndy + Pdz =df on D, then F=Mi+ Nj+ PK is the
gradient field of f on D. Conversely, if F = V f, then the form M dx + Ndy +
P dz is exact. The test for the form’s being exact is therefore the same as the test
for F’s being conservative.

The Test for Exactness of Mdx + Ndy + Pdz
The differential form M dx + N dy + P dz is exact if and only if

oP 9N oM 9P oN oM
—_— =, _— =, an — = —. (5
ay 9z 9z ax dax ay
This is equivalent to saying that the field F=Mi+ Nj+ Pk is
conservative.

EXAMPLE 4 Show that ydx + x dy 4+ 4dz is exact, and evaluate the integral

23,-1)
/ ydx + xdy +4dz
a.1n

over the line segment from (1, 1, 1) to (2, 3, —1).

Solution We let M = y, N = x, P = 4 and apply the test of Eq. (5):
aP_O_aN 8M_0_6P 8N_1_8M
ay 8z’ dz  ax  dax  dy

These equalities tell us that ydx + x dy + 4dz is exact, so

ydx +xdy+4dz =df

for some function f, and the integral’s value is f (2,3, —1) — f(1, 1, 1).
We find f up to a constant by integrating the equations

o _ . Y

ax ay 9z 4 (©)

From the first equation we get

fx.y,2) =xy+g(y, 2).
The second equation tells us that

%:x-kg—i:x, or g—i:O.
Hence, g is a function of z alone, and
fx,y,2) =xy+h(2).
The third of Egs. (6) tells us that
%=O+%=4, or h(z) =4z+C.

Therefore, f,y,2) =xy+4z+C.

The value of the integral is

fQ3,-)=f1,1,)=2+C-(5+C)=-3. Q
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Exercises 14.3

Testing for Conservative Fields

Which fields in Exercises 1-6 are conservative, and which are not?
F=yzi+xzj+xyk

F = (y sin )i+ (x sin 2) j+ (xy cos 2) k
F=yi+(x+2j—yk

F=—-yi+xj

F=0+yi+zj+(y+xk

F = (e* cos y)i— (e* sin y)j+ zk

AN S o

Finding Potential Functions

In Exercises 7-12, find a potential function f for the field F.
7. F=2xi+3yj+4zk
8. F=(+i+x+2j+x+yk
9. F=e"*%(i+xj+2xk)

10. F = (y sin z)i+ (x sin ) j+ (xy cos 2) Kk

11. F=(In x +sec’(x + y))i+

sec?(x + ) + ——> >'+  _k
( x+) y2+z2J y2 422

12.F= —2 i+ |2 4 %L j+
. _1+x2y2 l+x2y2 ﬁl—yzzz']

) 1
_}—_,__ k
N LI

Evaluating Line Integrals

In Exercises 13-22, show that the differential forms in the integrals
are exact. Then evaluate the integrals.

(2.3.-6)
13. / 2xdx +2ydy +2zdz

(0.0.0)
(3.5.0)

14. yzdx +xzdy +xydz
(1,1.2)
(1.2.3)

15. 2xydx + (x> — 2% dy — 2yzdz
(0.0.0)

. (330 , 4

. 2 —ydy— ——

6 /(00.0) rdx—ytdy 1+ 22 dz
©.1.1)

17. / sin y cos xdx +cos y sin xdy +dz
(1.0.0)

(1.7/2.2) 1 1
18. / 2 cos ydx+(——2x sin y> dy + -dz
0.2.1) y Z
(1.2.3) 22
19. / 3xdx + > dy+2z In ydz
(.11

2

Q1.0
20. / 2xIny—yz)dx + (x_ —xz) dy —xydz
(1.2.1 y

(2.2.2) 1 1 N
21./ —dx+(——i2>d'—%dz
iy ¥ z Yy Z

» /(2'2'2) 2xdx +2ydy +2zdz
(=l=1.—1)

x2 4 yr 422
23. Evaluate the integral

2.3.-1)
/ ydx +xdy +4dz
(

111

from Example 4 by finding parametric equations for the line seg-
ment from (1, 1, 1) to (2, 3, —1) and evaluating the line integral
of F = yi+ x j + 4k along the segment. Since F is conservative,
the integral is independent of the path.

24. Evaluate / xrdx + yzdy + (y*/2)dz
.

along the line segment C joining (0, 0, 0) to (0, 3, 4).

Theory, Applications, and Examples

Show that the values of the integrals in Exercises 25 and 26 do not
depend on the path taken from A to B.

B
25./ 22dx +2ydy +2xzdz
A

B xdx + ydy+zdz
A X2+y2+22

26.
In Exercises 27 and 28, express F in the form V f.

2 - x?
27.F=—xi+< x)j
5

y 2

X

28. F=(e' Iny)i+ (f— + sin z) j+ (ycos )k
y

29. Find the work done by F = (x2+ y)i+ (y2 + x) j + z¢" k over
the following paths from (1, 0, 0) to (1, O, 1).

a) The line segment x =1,y =0,0<z <1

b) Thehelixr(t) = (cos t)i+ (sint)j+ (t/2m)k,0 <1 <27

¢) The x-axis from (1, 0, 0) to (0, 0, 0) followed by the parabola
z=x%,y =0 from (0, 0, 0) to (1, 0, 1)

30. Find the work done by F =¢* i+ (xze'™ +z cos y)j+
(xye'* +sin y)k over the following paths from (1, 0, 1) to
(1,m/2,0).

a) The line segmentx = I, y=mt/2,z=1—-10<1<1

b) The line segment from (1, 0, 1) to the origin followed by
the line segment from the origin to (1, 7 /2,0)

¢) The line segment from (1, 0, 1) to (1, 0, 0), followed by the
x-axis from (1, 0, 0) to the origin, followed by the parabola
y=mx?/2,2=0
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31.

32.

F=-GmM

34.

Let F = V(x3y?) and let C be the path in the xy-plane from
(=1, 1) to (1, 1) that consists of the line segment from (—1, 1)
to (0, 0) followed by the line segment from (0, 0) to (1, 1).
Evaluate f.F - dr in two ways:

a) Find parametrizations for the segments that make up C and
evaluate the integral;

b) Use the fact that f(x,y) = x*y? is a potential function for
F.

Evaluate fc 2x cos ydx — x? sin ydy along the following paths
C in the xy-plane.

a) The parabola y = (x — 1)? from (1, 0) to (0, 1)

b) The line segment from (—1, ) to (1, 0)

¢) The x-axis from (—1,0) to (1, 0)

d) The astroid r(r) = (cos® 1)i + (sin® 1) j, 0 <t < 27, coun-
terclockwise from (1, 0) back to (1, 0)

. Find a potential function for the gravitational field

xi+yj+:zk
(.X2 + yZ + 22)3/2
(Continuation of Exercise 33.) Let P, and P, be points at dis-
tances s, and s, from the origin. Show that the work done by the
gravitational field in Exercise 33 in moving a particle from P; to
P, is the quantity

(G,m,and M are constants).

3s.

36.

37.

38.

a) How are the constants a, b, and c related if the following
differential form is exact?

(ay? + 2czx)dx + y(bx + cz)dy + (ay* + cx?) dz
b) For what values of b and ¢ will
F = (y*+2czx)i+ ybx +c2)j+ * +cxD)k
be a gradient field?

Suppose that F = V f is a conservative vector field and

(x,y.2)

sy = [ Fed
0.0.0)

Show that Vg = F.

You have been asked to find the path along which a force field
F will perform the least work in moving a particle between two
locations. A quick calculation on your part shows F to be conser-
vative. How should you respond? Give reasons for your answer.

By experiment, you find that a force field F performs only half
as much work in moving an object along path C; from A to B as
it does in moving the object along path C, from A to B. What
can you conclude about F? Give reasons for your answer.

Green’s Theorem in the Plane

We now come to a theorem that can be used to describe the relationship between
the way an incompressible fluid flows along or across the boundary of a plane
region and the way it moves inside the region. The connection between the fluid’s
boundary behavior and its internal behavior is made possible by the notions of
divergence and curl. The divergence of a fluid’s velocity field measures the rate at
which fluid is being piped into or out of the region at any given point. The curl
measures the fluid’s rate of rotation at each point.

Green’s theorem states that, under conditions usually met in practice, the out-
ward flux of a vector field across the boundary of a plane region equals the double
integral of the divergence of the field over the interior of the region. In another
form, it states that the counterclockwise circulation of a field around the boundary
of a region equals the double integral of the curl of the field over the region.

Green’s theorem is one of the great theorems of calculus. It is deep and surpris-
ing and has far-reaching consequences. In pure mathematics, it ranks in importance
with the Fundamental Theorem of Calculus. In applied mathematics, the generaliza-
tions of Green’s theorem to three dimensions provide the foundation for theorems
about electricity, magnetism, and fluid flow.

We talk in terms of velocity fields of fluid flows because fluid flows are easy
to picture. We would like you to be aware, however, that Green’s theorem applies
to any vector field satisfying certain mathematical conditions. It does not depend
for its validity on the field’s having a particular physical interpretation.



(x,y + Ay) Ax (x + Ax,y + Ay)
Ay Ay
A
x,y) Ax (x + Ax,y)

14.25 The rectangle for defining the flux
density (divergence) of a vector field at a
point (x, y).
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Flux Density at a Point: Divergence

We need two new ideas for Green’s theorem. The first is the idea of the flux density
of a vector field at a point, which in mathematics is called the divergence of the
vector field. We obtain it in the following way.

Suppose that F(x, y) = M(x, y)i+ N(x, y)j is the velocity field of a fluid
flow in the plane and that the first partial derivatives of M and N are continuous at
each point of a region R. Let (x, y) be a point in R and let A be a small rectangle
with one corner at (x, y) that, along with its interior, lies entirely in R (Fig. 14.25).
The sides of the rectangle, parallel to the coordinate axes, have lengths of Ax
and Ay. The rate at which fluid leaves the rectangle across the bottom edge is
approximately

F(x,y) - (=)Ax = =N(x, y)Ax. (1

This is the scalar component of the velocity at (x, y) in the direction of the outward
normal times the length of the segment. If the velocity is in meters per second, for
example, the exit rate will be in meters per second times meters or square meters per
second. The rates at which the fluid crosses the other three sides in the directions
of their outward normals can be estimated in a similar way. All told, we have

Top: F(x,y+ Ay)-jAx =N(x,y+ Ay)Ax

Bottom: F(x,y) - (—j) Ax = —=N(x, y)Ax 2)
Right: F(x 4+ Ax,y) -iAy = M(x + Ax, y) Ay

Left: F(x,y) - (i) Ay = —M(x, y) Ay.

Combining opposite pairs gives

oN
Top and bottom: (N(x,y+ Ay) — N(x,y)) Ax = (B—Ay> Ax (3)
y

oM
Right and left: Mx+ Ax,y) — M(x, y)) Ay = (—8—Ax) Ay. (8)
x
Adding (3) and (4) gives
oM 9N
Flux across rectangle boundary = (8_ + 3_) Ax Ay.
X y

We now divide by Ax Ay to estimate the total flux per unit area or flux density for
the rectangle:

Flux across rectangle boundary _ (0M N oN
ax  dy )’

Rectangle area

Finally, we let Ax and Ay approach zero to define what we call the flux density
of F at the point (x, y).

In mathematics, we call the flux density the divergence of F. The symbol for
it is div F, pronounced “divergence of F” or “div F.”

Definition
The flux density or divergence of a vector field F = M i+ N j at the point
(x,y)is

oM 9N

divF = — +

0x E )



1086 Chapter 14: Integration in Vector Fields

Source:

Fluid arrives through div F (x,, y) >0

a small hole (xo. Yo)-

N,
/ﬂ\

Sink:

Fluid leaves through div F (x5, y,) <0

a small hole (xo, yo).

N
Zai)

14.26 In the flow of an incompressible
fluid across a plane region, the diver-
gence is positive at a “source,” a point
where fluid enters the system, and
negative at a "sink,” a point where the
fluid leaves the system.

(x,y + Ay) Ax (x + Ax,y + Ay)
Ayy A Ay
A
(x,y) Ax (x + Ax, y)

14.27 The rectangle for defining the
circulation density (curl) of a vector field
at a point (x, ).

Intuitively, if water were flowing into a region through a small hole at the point
(xo0, yo0), the lines of flow would diverge there (hence the name) and, since water
would be flowing out of a small rectangle about (x, yo), the divergence of F at
(x0, yo) would be positive. If the water were draining out instead of flowing in, the
divergence would be negative. See Fig. 14.26.

EXAMPLE 1 Find the divergence of F(x, y) = (x2 — y)i+ (xy — y?)j.
Solution We use the formula in Eq. (5):
oM ON ] a
divF=—+—=—@(x*— —(xy—y°
W= ety TR TNy
=2x+x —2y =3x —2y. d

Circulation Density at a Point: The Curl

The second of the two new ideas we need for Green’s theorem is the idea of
circulation density of a vector field F at a point, which in mathematics is called
the curl of F. To obtain it, we return to the velocity field

F(x,y) =M(x,y)i+ N(x,y)j

and the rectangle A. The rectangle is redrawn here as Fig. 14.27.
The counterclockwise circulation of F around the boundary of A is the sum of
flow rates along the sides. For the bottom edge, the flow rate is approximately

F(x,y) -iAx = M(x, y) Ax. (6)

This is the scalar component of the velocity F(x, y) in the direction of the tangent
vector i times the length of the segment. The rates of flow along the other sides in
the counterclockwise direction are expressed in a similar way. In all, we have

Top: F(x,y+Ay) - (—i) Ax = —M(x,y + Ay) Ax

Bottom: F(x,y) -iAx = M(x, y) Ax @)
Right: F(x + Ax,y) - jAy = N(x + Ax, y) Ay
Left: F(x,y) - (=)) Ay = =N(x, y) Ay.

We add opposite pairs to get

Top and bottom:

M
—Mx,y + Ay) —M(x,y)) Ax = — (aB_yAy) Ax )]

Right and left:
ON
(N(x 4+ Ax,y) — N(x,y)) Ay = (a Ax) Ay. 9)

Adding (8) and (9) and dividing by AxAy gives an estimate of the circulation
density for the rectangle:

Circulation around rectangle = dN  dM

Tax oy

Rectangle area

Finally, we let Ax and Ay approach zero to define what we call the circulation
density of F at the point (x, y).



Vertical axis

Curl F (x,, y,) > 0
Counterclockwise circulation

Vertical axis

Curl F (xgs o) < 0
Clockwise circulation

14.28 In the flow of an incompressible
fluid over a plane region, the curl
measures the rate of the fluid’s rotation
at a point. The curl is positive at points
where the rotation is counterclockwise
and negative where the rotation is

clockwise.
: Simple
Simple
Not simple

14.29 In proving Green's theorem, we
distinguish between two kinds of closed
curves, simple and not simple. Simple
curves do not cross themselves. A circle is
simple but a figure 8 is not.

14.4 Green's Theorem in the Plane 1087

Definition
The circulation density or curl of a vector field F = M i+ N j at the point
(x,y) is

cul F = — — —. (10)

If water is moving about a region in the xy-plane in a thin layer, then the
circulation, or curl, at a point (xo, yo) gives a way to measure how fast and in what
direction a small paddle wheel will spin if it is put into the water at (xo, yp) with
its axis perpendicular to the plane (Fig. 14.28).

EXAMPLE 2 Find the curl of the vector field
F(x,y) = (x> — y)i+ (xy — y))j.
Solution We use the formula in Eq. (10):
N oM d
| F= — — — = — vy 2y = 1.
cur ox 9y " ox (xy =) 3y x"=y)=y+ 0

Green’s Theorem in the Plane

In one form, Green'’s theorem says that under suitable conditions the outward flux
of a vector field across a simple closed curve in the plane (Fig. 14.29) equals the
double integral of the divergence of the field over the region enclosed by the curve.
Recall the formulas for flux in Egs. (3) and (4) in Section 14.2.

Theorem 3
Green’s Theorem (Flux-Divergence or Normal Form)

The outward flux of a field F = M i+ N j across a simple closed curve C
equals the double integral of div F over the region R enclosed by C.

fﬁF nds—ngdy Ndx—f/<3M

divergence integral

)dxa’y 11)

outward flux

In another form, Green’s theorem says that the counterclockwise circulation of
a vector field around a simple closed curve is the double integral of the curl of the
field over the region enclosed by the curve.

Theorem 4
Green's Theorem (Circulation-Curl or Tangential Form)

The counterclockwise circulation of a field F = Mi 4+ N j around a simple
closed curve C in the plane equals the double integral of curl F over the

(continued)
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For a two-dimensional field F = Mi+ N j,
the integral in Eq. (2), Section 14.2, for
circulation takes the equivalent form

%F-Tds=¢de+Ndy.
C C

region R enclosed by C.

oN oM
%F-Tds:%de+Ndy=/‘/ — — — | dxdy (12)
dax dy
c R

C

counterclockwise curl integral
circulation

The two forms of Green’s theorem are equivalent. Applying Eq. (11) to the field
G, = Ni— Mj gives Eq. (12), and applying Eq. (12) to G, = —Ni+ M j gives
Eq. (11).

We need two kinds of assumptions for Green’s theorem to hold. First, we
need conditions on M and N to ensure the existence of the integrals. The usual
assumptions are that M, N, and their first partial derivatives are continuous at
every point of some open region containing C and R. Second, we need geometric
conditions on the curve C. It must be simple, closed, and made up of pieces along
which we can integrate M and N. The usual assumptions are that C is piecewise
smooth. The proof we give for Green’s theorem, however, assumes things about the
shape of R as well. You can find proofs that are less restrictive in more advanced
texts. First let’s look at some examples.

EXAMPLE 3 Verify both forms of Green’s theorem for the field
Fx,y) =G —-yi+xj
and the region R bounded by the unit circle
C: r(t) = (cos t)i+ (sinz)j, 0<t <2m.

Solution We first express all functions, derivatives, and differentials in terms
of t:

M =cost—sint, dx =d(cos t) = —sin t dt,

N =cos t, dy =d(sin t) = cos t dt,
oM i oM oN IN

° o, Eoy o
ox dy dax dy

The two sides of Eq. (11):

=0

1=2r
56 Mdy — Ndx = / (cos t — sin t)(cos tdt) — (cos t)(—sin t dt)
c t
2
= / cos’tdt =m
0

f/ (%-i—%)dxdy =//(1 +0)dxdy
ax dy
R

R

= // dx dy = area of unit circle = 7.

R



The Green of Green’s
Theorem

The Green of Green’s theorem was George
Green (1793-1841), a self-taught scientist in
Nottingham, England. Green’s work on the
mathematical foundations of gravitation,
electricity, and magnetism was published
privately in 1828 in a short book entitled An
Essay on the Application of Mathematical
Analysis to Electricity and Magnetism. The
book sold all of fifty-two copies (fewer than
one hundred were printed), the copies going
mostly to Green’s patrons and personal
friends. A few weeks before Green’s death in
1841, William Thomson noticed a reference
to Green’s book and in 1845 was finally able
to locate a copy. Excited by what he read,
Thomson shared Green’s ideas with other
scientists and had the book republished in a
series of journal articles. Green’s
mathematics provided the foundation on
which Thomson, Stokes, Rayleigh, and
Maxwell built the present-day theory of
electromagnetism.
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The two sides of Eq. (12):

=0

t=2r
¢ Mdx + Ndy = / (cos t — sin t)(—sin t dt) + (cos t)(cos t dt)
t
c

2
= (—sintcost+ 1)dt =2
0

oN oM
f/ (___) dxdy=//(1—(—1))dxdy=2// dxdy =27
0x ay
R

R R Jd

Using Green’s Theorem to Evaluate Line Integrals

If we construct a closed curve C by piecing a number of different curves end to
end, the process of evaluating a line integral over C can be lengthy because there
are so many different integrals to evaluate. However, if C bounds a region R to
which Green’s theorem applies, we can use Green’s theorem to change the line
integral around C into one double integral over R.

EXAMPLE 4 Evaluate the integral

§£ xydy — y*dx,
c

where C is the square cut from the first quadrant by the lines x =1 and y = 1.

Solution We can use either form of Green’s theorem to change the line integral
into a double integral over the square.

1. With Eq. (11): Taking M = xy, N = y?, and C and R as the square’s boundary
and interior gives

1 pl
fﬁxydy—yzdx =//(y+2y)dxdy=// 3ydxdy
A F 0Jo

x=1

fl[3 ] d /l3d 32]l 3
= Xy y = ydy ==y =5.
0 =0 0 27l 2

2. With Eq. (12): Taking M = —y? and N = xy gives the same result:

3
%—yzdx+xydy=//(y—(—2)’))dXdy=5-
Cc R d

EXAMPLE 5 Calculate the outward flux of the field F(x, y) = x i 4+ y?j across
the square bounded by the lines x = £1 and y = *1.

Solution Calculating the flux with a line integral would take four integrations, one
for each side of the square. With Green’s theorem, we can change the line integral
to one double integral. With M = x, N = y2, C the square, and R the square’s
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Py(x, f,(x))

Cz: y= fg(x)

|
|
|
?
P (x,
Oy T )
|

|
I
!
x b

[

o

14.30 The boundary curve C is made up
of C;, the graph of y = f1(x), and C;, the
graph of y = £5(x).

0

14.31 The boundary curve C is made up
of Cy/, the graph of x = gi(y), and C//,
the graph of x = ga2(y).

interior, we have

Flux=?§F-nds:?§Mdy—Ndx

// (— -+ —) dx dy Green's theorem
1 x=1
:/ / (l+2y)dxdy=/ [x+2xy] dy
-1 J-1 -1 x=—1

1 1
=/ (2+4y)dy=[2y+2y2:| =4,
-1 - |

A Proof of Green’s Theorem (Special Regions)

Let C be a smooth simple closed curve in the xy-plane with the property that lines
parallel to the axes cut it in no more than two points. Let R be the region enclosed
by C and suppose that M, N, and their first partial derivatives are continuous
at every point of some open region containing C and R. We want to prove the
circulation-curl form of Green’s theorem,

%de—}-Ndy—// (8—N——)dxdy. (13)

Figure 14.30 shows C made up of two directed parts:
CI: y=fl(x)a aSXSb, Cz: y=f2(X), beza_

For any x between a and b, we can integrate M /dy with respect to y from
y = fi(x) to y = f>(x) and obtain

f2(6) oM =f2(x)
f S=dy = MGp)| = MG f0) - MG i) (14)
fi(x) y '=fi(x)

We can then integrate this with respect to x from a to b:

b /(x) b
// —dydx=/ [M(x, f2(x)) — M(x, fi(x))]dx

(x)
b

_/ Mx, () dx — | M(x. fi(x)) dx
b

a

I
I
=~
X
o
|
S
X
o

I
|
- ¢
<
3

Therefore

Sﬁde_ff( )dxdy (15)

Equation (15) is half the result we need for Eq. (13). We derive the other half by
integrating d N /dx first with respect to x and then with respect to y, as suggested
by Fig. 14.31. This shows the curve C of Fig. 14.30 decomposed into the two



Cyy=d

Y

Ciy=c

Q|l-———

0

14.32 To prove Green's theorem for a
rectangle, we divide the boundary into
four directed line segments.

>

> |-———

(a)

14.33 Other regions to which Green’s

theorem applies.

-b Cc,a

14.34 A region R that combines regions

Ry and R,.

o

14.4 Green's Theorem in the Plane 1091

directed parts Cj: x = g;(y), d>y>cand C;: x = g(y), ¢ <y<d.The
result of this double integration is

oN

¢Ndy=/ —dxdy. (16)
dx

c R

Combining Egs. (15) and (16) gives Eq. (13). This concludes the proof. a

Extending the Proof to Other Regions

The argument we just gave does not apply directly to the rectangular region in Fig.
14.32 because the lines x = a,x = b, y = ¢, and y = d meet the region’s boundary
in more than two points. However, if we divide the boundary C into four directed
line segments,

Cy: y=cq, a<x<b, Cy: x=b, C<y<dY
G y=d, b>x2>a, Cy x=a, d>y>c,

we can modify the argument in the following way.
Proceeding as in the proof of Eq. (16), we have

41" 9N ¢

d c
=/ N(b,y)dy+/ N(a, y)dy 17)
d

c

=/ Ndy+/ Ndy.
G C

Because y is constant along C, and C3, [ Ndy = [ Ndy =0, so we can add
Je, Ndy + [, N dy to the right-hand side of Eq. (17) without changing the equal-

ity. Doing so, we have
d pb
aN
// —dxdy:%Ndy. (18)
c Ja dx
c

Similarly, we can show that

f/ —dydx— ¢de. (19)
c

Subtracting Eq. (19) from Eq. (18), we again arrive at

Sﬁde+Ndy _/[ (ﬂ——) dx dy.

Regions like those in Fig. 14.33 can be handled with no greater difficulty.
Equation (13) still applies. It also applies to the horseshoe-shaped region R shown
in Fig. 14.34, as we see by putting together the regions R; and R, and their
boundaries. Green’s theorem applies to C,, R, and to C,, R,, yielding

aN
de+Ndy—// (———)dxa’y
C, R, 8)(
aN
de+Ndy—// (———)dxdy.
G
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(a)

Boundary

ZENY
>

(b)

14.35 The annular region R combines
four smaller regions. In polar coordinates,
r = a for the inner circle, r = b for the
outer circle, and a < r < b for the region
itself.

o
>

14.36 Green's theorem may be applied to
the annular region R by integrating along
the boundaries as shown (Example 6).

When we add these two equations, the line integral along the y-axis from b to a
for C, cancels the integral over the same segment but in the opposite direction for

C,. Hence
%de%—Ndy —// (———) dxdy,

where C consists of the two segments of the x-axis from —b to —a and from a to
b and of the two semicircles, and where R is the region inside C.

The device of adding line integrals over separate boundaries to build up an
integral over a single boundary can be extended to any finite number of subregions.
In Fig. 14.35(a), let C, be the boundary, oriented counterclockwise, of the region
R, in the first quadrant. Similarly for the other three quadrants: C; is the boundary
of the region R;,i = 1, 2, 3, 4. By Green’s theorem,

56de+1de—// (%——) dx dy. (20)

We add Eqgs. (20) for i =1, 2, 3,4, and get (Fig. 14.35b):

%(de+Ndy)+¢(de+Ndy) f/ <B—N——>dxdy. (21)

a<r<b

Equation (21) says that the double integral of (d N /dx) — (d M /dy) over the annular
ring R equals the line integral of M dx + N dy over the complete boundary of R
in the direction that keeps R on our left as we progress (Fig. 14.35b).

EXAMPLE 6 Verify the circulation form of Green’s theorem (Eq. 12) on the
annular ring R: h? < x> +y2 < 1,0 < h < 1 (Fig. 14.36), if

—y N X
x2+y2’ _x2—+—y2'

Solution The boundary of R consists of the circle
Ci: x=cost, y=sint, 0<t<2m,
traversed counterclockwise as ¢ increases, and the circle
Cp: x =hcosf, y=—-hsinf, 0<6<2nm,

traversed clockwise as 6 increases. The functions M and N and their partial deriva-
tives are continuous throughout R. Moreover,

IM (x> +y)(=1) + y(2y)
By (x*+y?)?
y? —x? aN
S wy

N oM
/f <8____> dxdy:// Odxdy =0.
ax ay

R R

SO



14.37 The region bounded by the circle
C, and the curve K.
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The integral of M dx + N dy over the boundary of R is

dy —yd dy —yd
/de+Ndy=§£x y—y x+§l§x y—Jex
C

x2 + y2 x2 + y2
C, Cy

2n

2 hZ 2 0 Si 2 0
= (cos® t +sin’® 1) dr — / (cos h2+ sin” 6) deo
0 0

=2r —2n =0. a

The functions M and N in Example 6 are discontinuous at (0, 0), so we cannot
apply Green’s theorem to the circle C; and the region inside it. We must exclude
the origin. We do so by excluding the points inside C.

We could replace the circle C, in Example 6 by an ellipse or any other simple
closed curve K surrounding C, (Fig. 14.37). The result would still be

IaN oM
?g(de+Ndy)+¢(de+Ndy)=‘/‘/ (8—_8—) dydx =0,
X y
[3 G R

which leads to the surprising conclusion that

%(de + Ndy) =2n
K
for any such curve K. We can explain this result by changing to polar coordinates.
With
x =rcosf y =rsin @

dx = —r sin 0 d6 + cos 0 dr, dy =r cos 6dO + sin 6 dr,

we have
xdy —ydx _ r?(cos’ 6 +sin’ 6) d6 _
x2 + yz - r2 -

do,

and 6 increases by 2w as we traverse K once counterclockwise.

Exercises 14.4

Verifying Green’s Theorem

In Exercises 1-4, verify Green’s theorem by evaluating both sides

6. F=(x2+4y)i+ (x +y)j
C: The square bounded by x =0, x =1,y =0,y =1

of Eqgs. (11) and (12) for the field F = M i+ N j. Take the domains 7. F=0=x)i+ (2 +y)j

of integration in each case to be the disk R: x?>+ y? < a? and its C: The triangle bounded by y =0,x =3, and y = x
bounding circle C: r = (a cos t)i+ (a sint)j, 0 <t < 2m. 8. F=(x+y)i—(x2+y)j

1. F=—yi+xj 2. F=yi C: The triangle bounded by y =0,x =1, and y = x
3. F=2xi—3yj 4. F=—x2yi+xy?j 9. F=(x+e"sin y)i+ (x+e' cos y)j

Counterclockwise Circulation and Outward Flux

In Exercises 5-10, use Green’s theorem to find the counterclockwise

C: The right-hand loop of the lemniscate r> = cos 26

10. F = (tan" 1) i+In(x2+)?)j
X

circulation and outward flux for the field F and curve C. C: The boundary of the region defined by the polar coordinate

S.F=x—-yi+(y—x)j

inequalities 1 <r <2,0<6 <nm

C: The square bounded by x =0, x =1,y =0,y =1 11. Find the counterclockwise circulation and outward flux of the
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field F = xyi+ y?j around and over the boundary of the region
enclosed by the curves y = x2 and y = x in the first quadrant.

12. Find the counterclockwise circulation and the outward flux of the
field F = (—sin y)i+ (x cos y)j around and over the square cut
from the first quadrant by the lines x = 7/2 and y = /2.

13. Find the outward flux of the field

F= <3xy— )i+(e‘+tan“y)j

x
1+ y?
across the cardioid r = a(1 4+ cos 6),a > 0.

14. Find the counterclockwise circulation of F = (y +¢€* In y)i+
(e*/y) J around the boundary of the region that is bounded above
by the curve y = 3 — x2 and below by the curve y = x* + 1.

Work

In Exercises 15 and 16, find the work done by F in moving a particle
once counterclockwise around the given curve.

15. F = 2xy®i + 4x%y?%j
C: The boundary of the “triangular” region in the first quadrant
enclosed by the x-axis, the line x = 1, and the curve y = x3

16. F = (4x —2y)i+ (2x —4y)j
C: Thecircle (x —=2)2+ (y —2)>=4

Evaluating Line Integrals in the Plane

Apply Green’s theorem to evaluate the integrals in Exercises 17-20.
17. ¢ (y*dx + x%dy)

c

C: The triangle bounded by x =0, x +y=1,y =0

18. %(3ydx+2xdy)

c

C: The boundary of 0 < x <m,0 <y <sinx
19. %(6y+x)dx+(y+2x)dy

c

C: Thecircle (x —2)2+ (y—3)?=4

20. 56(2)( + y¥)dx + Qxy +3y)dy
C

C: Any simple closed curve in the plane for which Green’s
theorem holds

Calculating Area with Green’s Theorem

If a simple closed curve C in the plane and the region R it encloses
satisfy the hypotheses of Green’s theorem, the area of R is given by:

Green’s Theorem Area Formula

1
AreaofR=§¢xdy—ydx (22)

C

The reason is that by Eq. (11), run backward,

AreaofR://dydx:// (%-l—%)dydx
R R
=¢lxdy—lydx.
2 2

C

Use the Green’s theorem area formula (Eq. 22) to find the areas of
the regions enclosed by the curves in Exercises 21-24.

21. Thecircler(t) =(acost)i+ (asint)j, 0<t<2m
22. The ellipse r(¢) = (a cos t)i+ (b sin t) j,
23. The astroid (Fig. 9.42) r(t) = (cos® )i+ (sin® 1)j, 0<t<2n

24. The curve (Fig. 9.75) r(t) = t2i + ((3/3) — 1) j,
-V3<t1<3

0<t<2m

Theory and Examples

25. Let C be the boundary of a region on which Green’s theorem
holds. Use Green’s theorem to calculate

a) 56 fx)dx +g(y)dy,
Cc

b) % kydx + hxdy (k and h constants).
c
26. Show that the value of

%xyzdx + (x%y +2x)dy
c

around any square depends only on the area of the square and
not on its location in the plane.

27. What is special about the integral

¢4x3ydx + x*dy?
c

Give reasons for your answer.

28. What is special about the integral

%—y‘]dx + x3dy?
c

Give reasons for your answer.

29. Show that if R is a region in the plane bounded by a piecewise
smooth simple closed curve C, then

Area of R :%xdy: —¢ ydx.

C C

30. Suppose that a nonnegative function y = f(x) has a continuous
first derivative on [a, b]. Let C be the boundary of the region in
the xy-plane that is bounded below by the x-axis, above by the
graph of f, and on the sides by the lines x = a and x = b. Show



31.

32.

33.

34.

35.

that

b
/ fx)dx = —% ydx.

C

Let A be the area and X the x-coordinate of the centroid of a
region R that is bounded by a piecewise smooth simple closed
curve C in the xy-plane. Show that

1 ) 1 2 -
3 x“dy = — xydx=§ x“dy —xydx = Ax.
c [o c

Let I, be the moment of inertia about the y-axis of the region in
Exercise 31. Show that

1 1
3 §6x3dy = —%xzydx =1 ?§x3dy—x2ydx=1y.
c c c

Green'’s theorem and Laplace’s equation. Assuming that all
the necessary derivatives exist and are continuous, show that if
f(x,y) satisfies the Laplace equation

Of LB,
ax2 8y
then
af of
Sﬁaydx s-dy =0
(o}

for all closed curves C to which Green’s theorem applies. (The
converse is also true: If the line integral is always zero, then f
satisfies the Laplace equation.)

Among all smooth simple closed curves in the plane, oriented
counterclockwise, find the one along which the work done by

F 12+13'+'
= | - - 1
R xj

is greatest. (Hint: Where is curl F positive?)

Green’s theorem holds for a region R with any finite number of
holes as long as the bounding curves are smooth, simple, and
closed and we integrate over each component of the boundary in
the direction that keeps R on our immediate left as we go along
(Fig. 14.38).

a) Let f(x,y) =In(x?+ y?) and let C be the circle x? + y?> =
a?®. Evaluate the flux integral
¢ Vf +nds.
c
b) Let K be an arbitrary smooth simple closed curve in the

plane that does not pass through (0, 0). Use Green’s theorem

to show that
¢ Vf -+nds

K

has two possible values, depending on whether (0, 0) lies
inside K or outside K.

36.

37.

38.

39.

40.

Exercises 14.4 1095

14.38 Green's theorem
holds for regions with
more than one hole
(Exercise 35).

Bendixson’s criterion. The streamlines of a planar fluid flow
are the smooth curves traced by the fluid’s individual particles.
The vectors F = M (x, y)i+ N(x, y)j of the flow’s velocity field
are the tangent vectors of the streamlines. Show that if the flow
takes place over a simply connected region R (no holes or missing
points) and that if M, 4+ N, # 0 throughout R, then none of the
streamlines in R is closed. In other words, no particle of fluid
ever has a closed trajectory in R. The criterion M, + N, #0
is called Bendixson’s criterion for the nonexistence of closed
trajectories.

Establish Eq. (16) to finish the proof of the special case of Green’s
theorem.

Establish Eq. (19) to complete the argument for the extension of
Green’s theorem.

Can anything be said about the curl of a conservative two-
dimensional vector field? Give reasons for your answer.

Does Green’s theorem give any information about the circulation
of a conservative field? Does this agree with anything else you
know? Give reasons for your answer.

& CAS Explorations and Projects

In Exercises 41-44, use a CAS and Green’s theorem to find the
counterclockwise circulation of the field F around the simple closed
curve C. Perform the following CAS steps:

a)
b)

c)

41.

42,

43.

44.

Plot C in the xy-plane.

oM

Determine the integrand — — —— for the curl form of Green’s
ox ay

theorem.

Determine the (double integral) limits of integration from your

plot in (a) and evaluate the curl integral for the circulation.

F=(Qx—y)i+ (x+3y)j, C: The ellipse x> +4y> =4
2 2
F=@2x*—y)i+ &> +yY)j, C: The ellipse % +

EAR
9
F=x"'ei+ (¢’ Inx + 2x)j,

C: The boundary of the region defined by y = 1 + x* (below)

and y = 2 (above)
F=1xe’i+4x?Inyj, C: The triangle with vertices (0, 0),

(2, 0), and (0, 4)
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Surface f(x, y, 2) = ¢

The vertical projection
or “shadow” of Son a
coordinate plane

14.39 As we will soon see, the integral
of a function g(x, y, z) over a surface S in
space can be calculated by evaluating a
related double integral over the vertical
projection or "shadow” of S on a
coordinate plane.

f,y,2)=c

14.40 A surface S and its vertical pro-
jection onto a plane beneath it. You can
think of R as the shadow of S on the
plane. The tangent plate AP, approx-
imates the surface patch Aoy above AA,.

B R R e R P e e e

Surface Area and Surface Integrals

We know how to integrate a function over a flat region in a plane, but what if the
function is defined over a curved surface? How do we calculate its integral then?
The trick to evaluating one of these so-called surface integrals is to rewrite it as a
double integral over a region in a coordinate plane beneath the surface (Fig. 14.39).
In Sections 14.7 and 14.8 we will see how surface integrals provide just what we
need to generalize the two forms of Green’s theorem to three dimensions.

The Definition of Surface Area

Figure 14.40 shows a surface S lying above its “shadow” region R in a plane
beneath it. The surface is defined by the equation f(x, y, z) = c. If the surface is
smooth (Vf is continuous and never vanishes on §), we can define and calculate
its area as a double integral over R.

The first step in defining the area of S is to partition the region R into small
rectangles A A, of the kind we would use if we were defining an integral over R.
Directly above each A A, lies a patch of surface Ao, that we may approximate with
a portion A P, of the tangent plane. To be specific, we suppose that A P, is a portion
of the plane that is tangent to the surface at the point T, (x;, yx, zx) directly above
the back corner C; of AA,. If the tangent plane is parallel to R, then A P, will be
congruent to AA,. Otherwise, it will be a parallelogram whose area is somewhat
larger than the area of AA;.

Figure 14.41 gives a magnified view of Ao, and A P,, showing the gradient
vector V f (xx, yx, zx) at T; and a unit vector p that is normal to R. The figure also
shows the angle y, between V f and p. The other vectors in the picture, u; and vy,
lie along the edges of the patch AP, in the tangent plane. Thus, both u; x v, and
V f are normal to the tangent plane.

We now need the fact from advanced vector geometry that |(u; x vi) - p| is
the area of the projection of the parallelogram determined by u; and v, onto any
plane whose normal is p. In our case, this translates into the statement

[(ue X Vi) - pl = AA;. (1
Now, |u; x vi| itself is the area A P, (standard fact about cross products) so Eq.
(1) becomes

lwe x vi| |pl
N e N’

|cos (angle between u; x v, and p)| = AA; 2)

AP, 1
same as | cos yx| because
V f and u; x v, are both
normal to the tangent plane
or APy cos yi| = AA;
AA;
or AP, = ———,
| cos il

provided cos y; # 0. We will have cos y; # 0 as long as V f is not parallel to the
ground plane and Vf - p # 0.
Since the patches A P, approximate the surface patches Aoy that fit together

to make S, the sum
AA
AP, = _ 3
2AR= ) ©)



14.41 Magnified view from the pre-
ceding figure. The vector ux x v, (not
shown) is parallel to the vector Vf
because both vectors are normal to the
plane of AP,.

x2+y2=

X

14.42 The area of this parabolic surface
is calculated in Example 1.
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looks like an approximation of what we might like to call the surface area of S. It
also looks as if the approximation would improve if we refined the partition of R.
In fact, the sums on the right-hand side of Eq. (3) are approximating sums for the

double integral
1
/ / dA. (4)
| cos y|
R

We therefore define the area of S to be the value of this integral whenever it exists.

A Practical Formula

For any surface f (x,y, z) = c, we have |Vf - p| = |Vf]||p||cos y], so
1Y
lcos y| |Vf-p

This combines with Eq. (4) to give a practical formula for area.

The Formula for Surface Area

The area of the surface f (x,y,z) =c over a closed and bounded plane

region R is
VS |
Surface area = A, (5)
IVf -

where p is a unit vector normal to R and Vf . p # 0.

Thus, the area is the double integral over R of the magnitude of Vf divided by the
magnitude of the scalar component of Vf normal to R.

We reached Eq. (5) under the assumption that Vf . p # 0 throughout R and
that Vf is continuous. Whenever the integral exists, however, we define its value
to be the area of the portion of the surface f (x, y, z) = c that lies over R.

EXAMPLE 1 Find the area of the surface cut from the bottom of the paraboloid
x2+ y?> — z = 0 by the plane z = 4.

Solution We sketch the surface S and the region R below it in the xy-plane (Fig.
14.42). The surface S is part of the level surface f (x,y,z) =x>+y?—z=0,
and R is the disk x*> + y> < 4 in the xy-plane. To get a unit vector normal to the
plane of R, we can take p = k.

At any point (x, y, z) on the surface, we have

fy,2)=x"+y" -z
Vf=2xi+2yj—-k
IVf| = V@x)? + 2y + (1)
- T

V7Bl = V7K =] 1] = 1.
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14.43 The cap cut from the hemisphere
by the cylinder projects vertically onto
the disk R: x2 + y? < 1 (Example 2).

In the region R,dA = dx dy. Therefore,

\Y
Surface area = //l I fl Eq. (5)

/ Vax2+4y? + 1dxdy

x2+y?<4

2 2
= / / Var? +1rdrdf Polar coordinates
0 0

27 1 2
= —4r* + 1)3/2] de
[ [,

2 1
:/ — A7 - 1)de =L 17V - 1).
o 12 6

d

EXAMPLE 2  Find the area of the cap cut from the hemisphere x> + y? + 7> =
2,7 > 0, by the cylinder x> + y*> = 1 (Fig. 14.43).

Solution The cap S is part of the level surface f(x,y,z) =x*+y*+2z2=2.Tt
projects one-to-one onto the disk R: x> + y* < 1 in the xy-plane. The vector p = k
is normal to the plane of R.

At any point on the surface,

f,y,2) =x>+y*+ 7
Vf =2xi+2yj+2zk
IV = 2Vx2+ y? + 22 =22

IVf-pl =1IVf -kl =2z = 2z.

Because v7 40 40 =2
at points of S

Therefore,

Surface area = //l |Vf| //

dA =2 f f (6)
What do we do about the z?

Since z is the z-coordinate of a point on the sphere, we can express it in terms
of x and y as

z=+2—x*—y%.

We continue the work of Eq. (6) with this substitution:

Sudacearea—f//dA—\/_//m

x2+y2<1
/2" / rdrdo
V2=r2
2 r=l
= ﬁ/o [—(2—r2)'/2] do
r=0

2r
=v2 | (V2-1)do =272 -2).
0

Polar coordmates



f,y,2)=c

14.44 If we know how an electrical
charge is distributed over a surface, we
can find the total charge with a suitably
modified surface integral.

14.5 Surface Area and Surface Integrals 1099

Surface Integrals

We now show how to integrate a function over a surface, using the ideas just
developed for calculating surface area.

Suppose, for example, that we have an electrical charge distributed over a
surface f (x, y,z) = c¢ like the one shown in Fig. 14.44 and that the function
g (x,y, z) gives the charge per unit area (charge density) at each point on S. Then
we may calculate the total charge on S as an integral in the following way.

We partition the shadow region R on the ground plane beneath the surface into
small rectangles of the kind we would use if we were defining the surface area of
S. Then directly above each AA; lies a patch of surface Aoy that we approximate
with a parallelogram-shaped portion of tangent plane, A P;.

Up to this point the construction proceeds as in the definition of surface area, but
now we take one additional step: We evaluate g at (x4, yx, zx) and then approximate
the total charge on the surface patch Ao, by the product g (xi, yi, zx) APy. The
rationale is that when the partition of R is sufficiently fine, the value of g throughout
Aoy is nearly constant and A Py is nearly the same as Aoy. The total charge over
S is then approximated by the sum

AA
Total charge ~ Zg Xk Yir %) AP = Zg (Xk» Yk zk)ICOS ; i (7)
k

If f, the function defining the surface S, and its first partial derivatives are
continuous, and if g is continuous over S, then the sums on the right-hand side of

Eq. (7) approach the limit
vf l
// (Xyz)wf @®

//g(xyz)

as the partition of R is refined in the usual way. This limit is called the integral of
g over the surface S and is calculated as a double integral over R. The value of
the integral is the total charge on the surface S.

As you might expect, the formula in Eq. (8) defines the integral of any function
g over the surface S as long as the integral exists.

Definitions

If R is the shadow region of a surface S defined by the equation f(x, y, z) =
¢, and g is a continuous function defined at the points of S, then the integral
of g over S is the integral

// (x,y,2) |V|ff| A, 9)

where p is a unit vector normal to R and Vf . p # 0. The integral itself is
called a surface integral.

The integral in (9) takes on different meanings in different applications. If g has
the constant value 1, the integral gives the area of S. If g gives the mass density
of a thin shell of material modeled by S, the integral gives the mass of the shell.

Algebraic Properties: The Surface Area Differential
We can abbreviate the integral in (9) by writing do for (|Vf|/|Vf - p|) dA.



1100 Chapter 14: Integration in Vector Fields

Z

Side B

14.45 To integrate a function over the
surface of a cube, we integrate over each
face and add the results (Example 3).

The Surface Area Differential and the Differential Form
for Surface Integrals

o= IV/] dA /fgdo (10)
IVf - pl

N

differential formula
for surface integrals

surface area
differential

Surface integrals behave like other double integrals, the integral of the sum of
two functions being the sum of their integrals and so on. The domain additivity
property takes the form

/s/gda=/S/gdo+/szfgdg+...+f/gd0_

Sa

The idea is that if S is partitioned by smooth curves into a finite number of nonover-
lapping smooth patches (i.e., if S is piecewise smooth), then the integral over S
is the sum of the integrals over the patches. Thus, the integral of a function over
the surface of a cube is the sum of the integrals over the faces of the cube. We
integrate over a turtle shell of welded plates by integrating one plate at a time and
adding the results.

EXAMPLE 3 Integrate g(x, y, z) = xyz over the surface of the cube cut from
the first octant by the planes x = 1,y = 1, and z = 1 (Fig. 14.45).

Solution We integrate xyz over each of the six sides and add the results. Since
xyz = 0 on the sides that lie in the coordinate planes, the integral over the surface
of the cube reduces to

[[xzdo = [[xvzdo [[xyzdos [ [z a0

cube side A side B side C
surface

Side A is the surface f (x,y,z) =z =1 over the square region R,,: 0 <x <1,
0 <y <1, in the xy-plane. For this surface and region,

p=k Vf=k |Vfil=1, [Vf-pl=lk-ki=1,

_ VSl
IVf - pl

1
dA = dedy =dxdy,

xyz =xy(l) = xy,

1l 1

1

]/xyzda:f/xydxdy:/fxydxdy:/ Xdy:—.
0 Jo 0o 2 4

side A R,

and



Positive
direction

14.46 Smooth closed surfaces in space
are orientable. The outward unit normal
vector defines the positive direction at
each point.

Start

LN Y
Finish T

14.47 To make a Moébius band, take a
rectangular strip of paper abcd, give the
end bc a single twist, and paste the ends
of the strip together to match a with ¢
and b with d. The Mdbius band is a
nonorientable or one-sided surface.

14.5 Surface Area and Surface Integrals 1101

Symmetry tells us that the integrals of xyz over sides B and C are also 1/4. Hence,

// do ol 1,13
X C=-4+-4-=-.
yz 274747,

cube --
surface _l

Orientation

We call a smooth surface S orientable or two-sided if it is possible to define
a field n of unit normal vectors on S that varies continuously with position. Any
patch or subportion of an orientable surface is orientable. Spheres and other smooth
closed surfaces in space (smooth surfaces that enclose solids) are orientable. By
convention, we choose n on a closed surface to point outward.

Once n has been chosen, we say that we have oriented the surface, and we
call the surface together with its normal field an oriented surface. The vector n at
any point is called the positive direction at that point (Fig. 14.46).

The Mobius band in Fig. 14.47 is not orientable. No matter where you start to
construct a continuous unit normal field (shown as the shaft of a thumbtack in the
figure), moving the vector continuously around the surface in the manner shown
will return it to the starting point with a direction opposite to the one it had when
it started out. The vector at that point cannot point both ways and yet it must if the
field is to be continuous. We conclude that no such field exists.

The Surface Integral for Flux

Suppose that F is a continuous vector field defined over an oriented surface S and
that n is the chosen unit normal field on the surface. We call the integral of F - n
over S the flux across S in the positive direction. Thus, the flux is the integral over
S of the scalar component of F in the direction of n.

Definition
The flux of a three-dimensional vector field F across an oriented surface S
in the direction of n is given by the formula

Flux = //F-nda. (11)

N

The definition is analogous to the flux of a two-dimensional field F across a
plane curve C. In the plane (Section 14.2), the flux is

/ F - nds,
c

the integral of the scalar component of F normal to the curve.
If F is the velocity field of a three-dimensional fluid flow, the flux of F across
S is the net rate at which fluid is crossing S in the chosen positive direction. We
will discuss such flows in more detail in Section 14.7.
If S is part of a level surface g (x, y, z) = ¢, then n may be taken to be one
of the two fields
Ve

—° 12
Vgl (12

n==
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X

14.48 Example 4 calculates the flux of a
vector field outward through this surface.
The area of the shadow region R,, is 2.

14.49 The center of mass of a thin
hemispherical shell of constant density
lies on the axis of symmetry halfway from
the base to the top (Example 5).

depending on which one gives the preferred direction. The corresponding flux is

Flux = /fF -ndo Eq. (11)
N
= f/ (F- iV_g) _|V_§|_dA Egs. (12) and (10)
Vgl /) Vg - pl

// Ve A (13)
Vg - pl

EXAMPLE 4 Find the flux of F = yzj+ z2k outward through the surface S
cut from the cylinder y?> +z? = 1,z > 0, by the planes x =0 and x = 1.

Solution The outward normal field on S (Fig. 14.48) may be calculated from the
gradient of g (x, y, z) = y*> + 2% to be

\% 2yj+2zk 2 +22k
n= 4 8 _ <) yi j+zke

Vel T Jayraz | 21

With p = k, we also have

Vgl
= A= —dA_ —dA
Vg - K| 12z Z

We can drop the absolute value bars because z > 0 on S.
The value of F - n on the surface is given by the formula

F-n= (yzj+2°k) - 3j+zk)
=y +2=20"+72%
= Z. y2+z2=1onS

Therefore, the flux of F outward through S is

//F-nda :/ (z)(ldA)://dA:area(ny)zl
s s ¢ Ryy

Moments and Masses of Thin Shells

Thin shells of material like bowls, metal drums, and domes are modeled with sur-
faces. Their moments and masses are calculated with the formulas in Table 14.3.

EXAMPLE 5 Find the center of mass of a thin hemispherical shell of radius a
and constant density 4.

Solution We model the shell with the hemisphere
fO,y,2) =x*+y + 72 =d°, z>0

(Fig. 14.49). The symmetry of the surface about the z-axis tells us that x =y = 0.
It remains only to find 7 from the formula 7 = M,,/M.
The mass of the shell is

M= f/ada =8//da = (8)(area of §) = 2wa*s
N N
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Table 14.3 Mass and moment formulas for very thin shells

1103

Mass: M = f/ 8(x,y,2)do (6(x, y, z) = density at (x, y, z),
mass per unit area)

First moments about the coordinate planes:

M,, ://x«Sda, M,, :// yédo, M, =//18d0
s s s

Coordinates of center of mass:
x=M,/M, y=M, /M, z=My/M
Moments of inertia:

1x=f (y* + 2% édo, 1y=/ (x* +2%) 8do,
N N

Iz=f (x + y)) 8 do, 1L=/f 2 8do,
N S

r(x, y, z) = distance from point (x, y, z) to line L

Radius of gyration about a line L: R, =1, /M

To evaluate the integral for M,,, we take p = k and calculate

|Vf] =
IVf -p
do

Then

2xi+2yj+2:kl=2/x>+y? +22=2a
IVf - Kl =2z] = 22
IVfI

a
IVf - pl Z

M,, =// zado:(s//zfdA=sa//dA=5a(na2)=3na3
<

s R R
_ M, 7mds a
T M 2ma?s 2
The shell’s center of mass is the point (0, 0, a/2). |

Exercises 14.5

Surface Area
1. Find the area of the surface cut from the paraboloid x2 + y>—
z = 0 by the plane z = 2.

2. Find the area of the band cut from the paraboloid x> + y2 — z = 0
by the planes z =2 and z = 6.

3. Find the area of the region cut from the plane x + 2y +2z =5
by the cylinder whose walls are x = y? and x =2 — y?.

4. Find the area of the portion of the surface x> — 2z = 0 that lies
above the triangle bounded by the lines x = V3,y=0and y =
x in the xy-plane.
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5. Find the area of the surface x? — 2y — 2z = 0 that lies above the
triangle bounded by the lines x =2,y =0, and y = 3x in the
xy-plane.

6. Find the area of the cap cut from the sphere x? + y? + 72 =2
by the cone z = {/x2 + y2.

7. Find the area of the ellipse cut from the plane z = cx by the
cylinder x2 + y2 = 1.

8. Find the area of the upper portion of the cylinder x2 + z2 = 1
that lies between the planes x = +£1/2 and y = £1/2.

9. Find the area of the portion of the paraboloid x =4 — y? — 72
that lies above the ring 1 < y? + z? < 4 in the yz-plane.

10. Find the area of the surface cut from the paraboloid x* + y +
72 = 2 by the plane y = 0.

11. Find the area of the surface x> — 2In x 4+ +/15y — z = 0 above
the square R: 1 < x <2,0 <y <, in the xy-plane.

12. Find the area of the surface 2x¥2 + 2y¥? — 3z = 0 above the
square R: 0 <x < 1,0 <y <1, in the xy-plane.

Surface Integrals

13. Integrate g(x, y, z) = x + y + z over the surface of the cube cut
from the first octant by the planes x =a,y =a,z =a.

14. Integrate g(x,y,z) =y + z over the surface of the wedge in
the first octant bounded by the coordinate planes and the planes
x=2and y+z=1.

15. Integrate g(x,y,z) = xyz over the surface of the rectangular
solid cut from the first octant by the planes x =a,y = b, and
z=c.

16. Integrate g(x,y, z) = xyz over the surface of the rectangular
solid bounded by the planes x = +a,y =+b, and z = £ c.

17. Integrate g(x,y,z) =x + y + z over the portion of the plane
2x + 2y + z = 2 that lies in the first octant.

18. Integrate g(x,y,z) = x/y? + 4 over the surface cut from the
parabolic cylinder y? + 4z = 16 by the planes x =0, x = 1, and
z=0.

Flux Across a Surface
In Exercises 19 and 20, find the flux of the field F across the portion
of the given surface in the specified direction.
19. F(x,y,z) =—-i+2j+3k
S . rectangular surface z =0, 0 <x <2, 0 <y <3, direc-
tion k
20. F(x,y,z) = yx?i—2j+xzk
S : rectangular surface y =0, —1 <x <2, 2 <z <7, direc-
tion —j
In Exercises 21-26, find the flux of the field F across the portion of
the sphere x? + y? + z2 = a? in the first octant in the direction away
from the origin.

21. F(x,y,z2) =zk

22. F(x,y,2) =—yi+x]

23. F(x,y,2)=yi—xj+k

24. F(x,y,2) =zxi+zyj+2°k

25. F(x,y,z) =xi+yj+zk

xi+yj+zk

27. Find the flux of the field F(x, y, z) = z2i 4+ x j — 3zk upward

through the surface cut from the parabolic cylinder z = 4 — y?
by the planes x =0,x =1, and z = 0.

28. Find the flux of the field F(x, y, z) = 4xi+ 4y j + 2k outward
(away from the z-axis) through the surface cut from the bottom
of the paraboloid z = x% + y? by the plane z = 1.

26. F(x,y,2) =

29. Let S be the portion of the cylinder y = e* in the first octant
that projects parallel to the x-axis onto the rectangle Ry, : 1 <
y <2,0<z<1inthe yz-plane (Fig. 14.50). Let n be the unit
vector normal to S that points away from the yz-plane. Find the
flux of the field F(x, y,z) = —2i+2yj+ zk across S in the
direction of n.

14.50 The surface and region in Exercise 29.

30. Let S be the portion of the cylinder y = In x in the first octant
whose projection parallel to the y-axis onto the xz-plane is the
rectangle R,;: 1 <x <e,0<z < 1. Let n be the unit vector
normal to S that points away from the xz-plane. Find the flux of
F =2yj + zk through S in the direction of n.

31. Find the outward flux of the field F = 2xyi+ 2yzj+ 2xzk
across the surface of the cube cut from the first octant by the
planes x =a,y =a,z =a.

32. Find the outward flux of the field F = xzi + yzj + k across the
surface of the upper cap cut from the solid sphere x2 + y? + z?
< 25 by the plane z = 3.

Moments and Masses

33. Find the centroid of the portion of the sphere x2 + y? + 272 =a
that lies in the first octant.

2

34. Find the centroid of the surface cut from the cylinder y? + z2 =9,
z > 0, by the planes x = 0 and x = 3 (resembles the surface in
Example 4).



35. Find the center of mass and the moment of inertia and radius of
gyration about the z-axis of a thin shell of constant density § cut
from the cone x? + y? — z2 = 0 by the planes z = 1 and z = 2.

36. Find the moment of inertia about the z-axis of a thin shell of
constant density & cut from the cone 4x% +4y? — 22 =0,z > 0,
by the circular cylinder x2 + y? = 2x (Fig. 14.51).

| x2+y?=2x
x or
r=2cos

14.51 The surface in Exercise 36.

37. a) Find the moment of inertia about a diameter of a thin spher-

ical shell of radius a and constant density §. (Work with a

hemispherical shell and double the result.)

b) Use the Parallel Axis Theorem (Exercises 13.5) and the
result in (a) to find the moment of inertia about a line tangent

to the shell.

Find the centroid of the lateral surface of a solid cone of
base radius a and height & (cone surface minus the base).
b) Use Pappus’s formula (Exercises 13.5) and the result in (a)
to find the centroid of the complete surface of a solid cone
(side plus base).
¢) A cone of radius a and height A is joined to a hemisphere
of radius a to make a surface S that resembles an ice cream
cone. Use Pappus’s formula and the results in (a) and Ex-
ample 5 to find the centroid of S. How high does the cone
have to be to place the centroid in the plane shared by the
bases of the hemisphere and cone?

38. a)

Special Formulas for Surface Area

If S is the surface defined by a function z = f(x, y) that has contin-
uous first partial derivatives throughout a region R,, in the xy-plane
(Fig. 14.52), then S is also the level surface F(x,y,z) =0 of the
function F(x, y,z) = f(x, y) — z. Taking the unit normal to R,, to
be p = k then gives

IVF| = fii+ fii—kl= 2+ 2+,

IVF -pl = |(fri+ fi-k -k=]|-1=1,

Exercises 14.5 1105

Surface z = f(x, y)

14.52 For a surface z = f(x, y), the surface
area formula in Eq. (5) takes the form

- // Jf2+ 2+ 1dxdy.
Ry

and
// |V|1VPFIp| =£[ \/mdxdy. (14)

Similarly, the area of a smooth surface x = f(y, z) over a region R,,

in the yz-plane is
=f/,/fy2+ﬁ2+1dydz, (15)
Ry,

and the area of a smooth y = f (x, z) over aregion R,, in the xz-plane
is

=/ VIZT 2+ 1dx dz. (16)
Rxl

Use Egs. (14)—(16) to find the areas of the surfaces in Exercises
39-44.

39. The surface cut from the bottom of the paraboloid z = x2 + y?
by the plane z =3

40. The surface cut from the “nose” of the paraboloid x = 1—
y? — 72 by the yz-plane

41. The portion of the cone z = /x% + y? that lies over the region
between the circle x? + y> = 1 and the ellipse 9x2 + 4y? = 36
in the xy-plane. (Hint: Use formulas from geometry to find the
area of the region.)

42. The triangle cut from the plane 2x + 6y + 3z = 6 by the bound-
ing planes of the first octant. Calculate the area three ways, once
with each area formula

43. The surface in the first octant cut from the cylinder y = (2/3)z%/?
by the planes x = 1 and y = 16/3

44. The portion of the plane y + z = 4 that lies above the region cut
from the first quadrant of the xz-plane by the parabola x = 4 — 72’
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v u = constant

v = constant

1 Parametrization

Curve v = constant

N
\ Curve u = constant

r(u,v) = f(u, v)i + g(u, v)j + h(u, vk,
Position vector to surface point

y

14.53 A parametrized surface.

Cone:
= Vx? + y2

=r

x,y2 =
(rcos 6, rsin 6, r)

N

14.54 The cone in Example 1.

r(r, 8) = (rcos 0)i
+ (rsin 0)j + rk

Parametrized Surfaces

We have defined curves in the plane in three different ways:
y=f)
F(x,y)=0

r() = f(O)i+g@)j,
We have analogous definitions of surfaces in space:

z= f(x,y)
F(x,y,2) =0.

Explicit form:
Implicit form:

Parametric vector form: a<t<hb.

Explicit form:

Implicit form:

There is also a parametric form that gives the position of a point on the surface as
a vector function of two variables. The present section extends the investigation of
surface area and surface integrals to surfaces described parametrically.

Parametrizations of Surfaces
Let

r(u,v) = fu,v)i+gw,v)j+h @, vk (1)

be a continuous vector function that is defined on a region R in the uv-plane and
one-to-one on the interior of R (Fig. 14.53). We call the range of r the surface
S defined or traced by r, and Eq. (1) together with the domain R constitute a
parametrization of the surface. The variables u and v are the parameters, and R is
the parameter domain. To simplify our discussion, we will take R to be a rectangle
defined by inequalities of the form a < u < b, ¢ < v < d. The requirement that r
be one-to-one on the interior of R ensures that S does not cross itself. Notice that
Eq. (1) is the vector equivalent of three parametric equations:

X = f(ll, U), y= g(uv 'U), = l’l(M, U).

EXAMPLE 1 Find a parametrization of the cone

z=x1 4y

Solution Here, cylindrical coordinates provide everything we need. A typical
point (x, y, z) on the cone (Fig. 14.54) has x =r cos 6§, y =r sin 6, and z =
Vx2+yr=r withO<r<1and 0 <6 <2r. Taking u =r and v =6 in Eq.
(1) gives the parametrization

0<z=< L

r(r,0) = (r cos 0)i+ (r sin 0) j + rk, 0<r<l, 0<6<2x. 4

2

EXAMPLE 2 Find a parametrization of the sphere x> + y*> + z> = a’.

Solution Spherical coordinates provide what we need. A typical point (x, y, z)
on the sphere (Fig. 14.55) has x =asin ¢ cos §, y=asin ¢ sin 6, and
z=acos ¢, 0<¢p <m, 0<6 <2x. Taking u = ¢ and v =6 in Eq. (1) gives
the parametrization

r (¢, 8) = (asin ¢ cos 8) i+ (a sin ¢ sin 0) j+ (a cos @)k,

O0<¢p<m, 0<6<2m. a



Z

(x, ¥, 2) = (asin ¢ cos 6, asin ¢ sin 6, a cos ¢P)

14.55 The sphere in Example 2.

Cylinder:

x2 + (y— 3H2=9
or

r==6sin 0

\(x »'2) =

I L Yeiz) =
x \ i (3 sin 26, 6 sin%6, 2)
\\ =

r=6sin 0 Y

14.56 The cylinder in Example 3.

14.6 Parametrized Surfaces 1107

EXAMPLE 3 Find a parametrization of the cylinder

x4+ (-3?%=9, 0<z<S5

Solution In cylindrical coordinates, a point (x, y, z) hasx =r cos 6, y =r sin 6,
and z = z. For points on the cylinder x> 4+ (y — 3)? = 9 (Fig. 14.56), r = 6 sin 6,
0 < 6 < m (Section 10.7, Example 5). A typical point on the cylinder therefore has

x =r cos 0 =6sin 6 cos 6§ =3 sin 26
y=rsinf =6sin’ 0
=2z

Taking u = 6 and v = z in Eq. (1) gives the parametrization

r¥, z) = 3sin20)i+ (6sin’ 0)j+zk, 0<6<m, 0<z<5 O

Surface Area

Our goal is to find a double integral for calculating the area of a curved surface S
based on the parametrization

r(u,v) = f(u,v)i+ g(u,v)j+ h(u,v)k, a<u<b, c<v<d.

We need to assume that S is smooth enough for the construction we are about to
carry out. The definition of smoothness involves the partial derivatives of r with
respect to u and v:

or of ag ah

o _of, 98, on,

du  Ju ' du I+ du

ar df, Odg. oh K

w30 T T

r, =

r, =

Definition

A parametrized surface r(u,v) = f(u,v)i+gw,v)j+h(u,v)k is
smooth if r, and r, are continuous and r, x r, is never zero on the
parameter domain.

Now consider a small rectangle AA,, in R with sides on the lines u = ug, u =
uo + Au, v = vy, and v = vy + Av (Fig. 14.57, on the following page). Each side
of AA,, maps to a curve on the surface S, and together these four curves bound
a “curved area element” Ao,,. In the notation of the figure, the side v = vy maps
to curve Cy, the side u = uy maps to C,, and their common vertex (ug, vy) maps
to Py. Figure 14.58 (on the following page) shows an enlarged view of Aog,,. The
vector r, (1o, Vo) is tangent to C, at P,. Likewise, r,(uo, vy) is tangent to C, at P.
The cross product r, x r, is normal to the surface at Py. (Here is where we begin
to use the assumption that S is smooth. We want to be sure that r, x r, # 0.)

We next approximate the surface element Ao,, by the parallelogram on the
tangent plane whose sides are determined by the vectors Aur, and Avr, (Fig.
14.59, on the following page). The area of this parallelogram is

|Aur, x Avr,| = |r, X ry|Au Av. (2)
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14.57 A rectangular area element AA,,
in the uv-plane maps onto a curved area
element Aoy, On S.

14.58 A magnified view of a surface area
element Aoy, .

14.59 The parallelogram determined by
the vectors Aur, and Avr, approximates
the surface area element Aoy, .

Parametrization

v ﬁ

dl-

U0+AU—
AAI‘U
vy
R /
C-——
X
| | /l L5y
0f a Uy u0+Au

A partition of the region R in the uv-plane by rectangular regions AA,, generates
a partition of the surface S into surface area elements Ao,,. We approximate the
area of each surface element Aoy, by the parallelogram area in Eq. (2) and sum
these areas together to obtain an approximation of the area of S:

D xrlAunv. 3)

As Au and Av approach zero independently, the continuity of r, and r, guarantees
that the sum in Eq. (3) approaches the double integral fc ¢ fa b [r, x ry|dudv. This
double integral gives the area of the surface S.

Parametric Formula for the Area of a Smooth Surface
The area of the smooth surface

r(u,v) = fw,v)i+gw,v)j+hw,v)k, a<u<b, c<v<d

d pb
A:/ / Ir, x ry|dudv. (4)

As in Section 14.5, we can abbreviate the integral in (4) by writing do for
Ir, X r,|dudv.

is

Surface Area Differential and the Differential Formula
for Surface Area

do = |r, X ry|dudv //da (5)
s

surface area differential formula
differential for surface area
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EXAMPLE 4 Find the surface area of the cone in Example 1 (Fig. 14.54).

Solution In Example 1 we found the parametrization
r(r, 0) = (r cos )i+ (r sin 6)j+rk, 0<r<l, 0<6 <2m.
To apply Eq. (4) we first find r, x ry:
i J k
‘ cos 6 sin 6 1
—r sin 6 rcos6 0O

r, Xy =

= —(r cos 0)i— (r sin 0) j+ (r cos® O + r sin’ ) k.

r

Thus, |r, X ry| = \/r2 cos2 6 4+ r2 sin® 6 + r2 = v/2r2 = /2 r. The area of the
cone is

27 1
A:/ / ’l'er'9|drd9 Eq. 4) withu =r,v=26
0 0

= /2ﬂ/| Virdrao = [ Y2 ag = £(2n) =nv2.
o Jo o 2 2 Q
EXAMPLE 5 Find the surface area of a sphere of radius a.
Solution We use the parametrization from Example 2:
r(¢, 6) = (a sin ¢ cos 0)i+ (a sin ¢ sin 6) j + (a cos )k,
O0<¢p=<m 0<6<2m.

For ry x rg we get

i j k
rp XIg =| acos¢cosf acose¢sinh —asing
—a sin ¢ sin @ a sin ¢ cos 6 0
= (a? sin® ¢ cos 6)i+ (a® sin® ¢ sin 6) j + (a® sin ¢ cos @) k.
Thus,

Iry X 1g| = \/a“ sin* ¢ cos? 6 + a* sin* ¢ sin® 6 + a* sin® ¢ cos? ¢

= \/a* sin* ¢ + a* sin®> ¢ cos? ¢ = \/a* sin* ¢ (sin® ¢ + cos? ¢)

= az\/sin2 ¢ = a* sin ¢,

since sin ¢ > 0 for 0 < ¢ < m. Therefore the area of the sphere is

2 T

A=/ /azsin¢d¢d6
0 0
2

n 2n
= / |:—a2 cos ¢] do = / 2a>d6 = 4na’.
0 . 0 0 a

Surface Integrals

Having found the formula for calculating the area of a parametrized surface, we
can now integrate a function over the surface using the parametrized form.
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(1,047

14.60 The parabolic surface in Example 7.

Definition

If S is a smooth surface defined parametrically as r (¥, v) = f (u, v)i+
g, vV)j+h@,v)k, a<u<b, c<v<d, and G (x,y, ) is a continu-
ous function defined on S, then the integral of G over S is

d pb
ffG(x,y,z)da =// G (f (@, v), g (, ), h (4, ) |rw 1) dut dv.
Fora ¢ Ja

EXAMPLE 6 Integrate G (x,y,z) = x> over the cone z=,/x2+ )2,
0<z=<1l

Solution Continuing the work in Examples 1 and 4, we have |r, x ry| = V2r

and
2 1
f/xzda =f f (r? cos® 0)(v2r)drd®  x=rcosd
0 0

S
2 1
=~/§f / r3 cos® O drdé
0 0

2 2n 2 1 2m
=‘/——/ 00529d9=£ 9 + 1 ginog =”_“/§.
4 Jo 4 12 4 0 4 Q

EXAMPLE 7 Find the flux of F = yzi + x j — z? k outward through the para-
bolic cylinder y = x2, 0 <x <1, 0 <z < 4 (Fig. 14.60).

Solution On the surface we have x = x,y = x%, and z = z, so we automatically
have the parametrization r(x,z) =xi+x?j+zKk, 0<x <1, 0<z<4. The
cross product of tangent vectors is

i j k
r,xXr,=|1 2x 0|=2xi—j.
0 0 1

The unit normal pointing outward from the surface is
Iy XI, 2xi—j

n=— = .

'rxxrzl \/4x2+1

On the surface, y = x2, so the vector field is

F=yzitxj—22k=x*zi+xj— 2’k
Thus,

1
F.-n= W((xzz)(bc) + @D+ (—ZZ)(O))

_ 233z —x

S Va1



z
2
“ z=Vx2 +)?

x y

14.61 The cone frustum in Example 8.
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The flux of F outward through the surface is

2x37 —
//F ndo——/ / xz a |rxxrz|dxdz
2x3 z—-x\/i
= 4x2 4+ 1dxdz
/0 / ax? +
4 1 4 1 1 x=1
=f /(2x3z-x)dxdz=/ I:—x“z——xz] dz
o Jo o L2 P2

41 1 .1
=/0 E(Z—l)dzzz(z—l)]o

1 1
=;0-;0=2 0

EXAMPLE 8 Find the center of mass of a thin shell of constant density § cut
from the cone z = \/x2? + y? by the planes z = 1 and z = 2 (Fig. 14.61).

Solution The symmetry of the surface about the z-axis tells us that x =y = 0.
We find 7 = M,,/M. Working as in Examples 1 and 4 we have

r(r,8) =rcosf@i+rsinfj+rk, l<r<2 0<6<2m,
and

Ir, X rg| = V2r.

M=//ada=f0“/lza«/§rdrde
=3~/§f02”[§]?d9=a\/§/02” (2-%> de

= af[39] =375v2

2
M, //azda_/ /arﬁrdrde
2 p2 2m[,3 2
=a¢§/ fﬁdﬁ@:&ﬁf [—] de
o Ji o L31

27r7 1
_sff —do=—n8J2

Therefore,

M, 1478v2 14
M " 33r8v2) 9
The shell’s center of mass is the point (0, 0, 14/9). |

7=



1112 Chapter 14: Integration in Vector Fields

Exercises 14.6

Finding Parametrizations for Surfaces

In Exercises 1-16, find a parametrization of the surface. (There are
many correct ways to do these, so your answers may not be the same
as those in the back of the book.)
1. The paraboloid z = x> + %, z<4
2. The paraboloid z =9 —x2 — y?, z>0
3. The first-octant portion of the cone z = \/x% + y2/2 between the
planes z=0and z =3
4. The portion of the cone z = 2,/x2 + y? between the planes z = 2
and z =4
5. The cap cut from the sphere x? + y*> + z2> = 9 by the cone z =
/x2 + y2
6. The portion of the sphere x2 + y*> +z2 =4 in the first octant
between the xy-plane and the cone z = /x2 + y?2
7. The portion of the sphere x? + y? + z2 = 3 between the planes
z=+/3/2 and z = —/3/2
8. The upper portion cut from the sphere x? 4 y* + z2 = 8 by the
plane z = -2
9. The surface cut from the parabolic cylinder z = 4 — y? by the
planes x =0,x =2, and z =0
10. The surface cut from the parabolic cylinder y = x? by the planes
=0,z=3,and y =2
11. The portion of the cylinder y* 4 z? = 9 between the planes x = 0
and x =3
12. The portion of the cylinder x*> + z> = 4 above the xy-plane be-
tween the planes y = —2 and y = 2
13. The portion of the plane x + y +z =1
a) inside the cylinder x*> + y> =9
b) inside the cylinder y*> + 72 =9
14. The portion of the plane x — y +2z =2
a) inside the cylinder x? + 7> =3
b) inside the cylinder y* + z° =2
15. The portion of the cylinder (x — 2)? 4 z2 = 4 between the planes
y=0and y=3

16. The portion of the cylinder y? + (z — 5)* = 25 between the planes
x=0and x =10

Areas of Parametrized Surfaces

In Exercises 17-26, use a parametrization to express the area of the
surface as a double integral. Then evaluate the integral. (There are
many correct ways to set up the integrals, so your integrals may not
be the same as those in the back of the book. They should have the
same values, however.)

17. The portion of the plane y+ 2z =2 inside the cylinder
x2 + y2 =1
18. The portion of the plane z = —x inside the cylinder x* + y> = 4

19. The portion of the cone z = 2,/x? + y? between the planes z = 2
and z =6

20. The portion of the cone z = /x% + y?/3 between the planes
z=1and z =4/3

21. The portion of the cylinder x> + y? = 1 between the planes z = 1
and z =4

22. The portion of the cylinder x> + z2 = 10 between the planes
y=—-land y=1

23. The cap cut from the paraboloid z = 2 — x? — y? by the cone
7= /x2 + y2

24. The portion of the paraboloid z = x? + y? between the planes
z=1land z=4

25. The lower portion cut from the sphere x? + y? + z°> = 2 by the
cone 7 = /x2 + y?

26. The portion of the sphere x? + y% + z2 = 4 between the planes
z=—landz=+3

Parametrized Surface Integrals
In Exercises 2734, integrate the given function over the given surface.

27. G (x,y,z) = x, over the parabolic cylinder y = x2,0 < x <2,
0<z<3

28. G (x,y, z) =z, over the cylindrical surface y*> + 72 =4,z > 0,
l<x<4

29. G (x,y,z) = x2, over the unit sphere x> + y> +z%> =1

30. G (x,y,z) = z?, over the hemisphere x> + y> + 72 =a%,z >0

31. F(x,y,z) =z, over the portion of the plane x + y + z = 4 that
lies above the square 0 < x < 1,0 <y < 1, in the xy-plane

32. F(x,y,z) =z—x, overthe cone z = \/x2+y2,0<z<1

33. H(x,y,z) =x?J/5—4z, over the parabolic dome z=1—
x2=y2>0

34. H(x,y,z) = yz, over the part of the sphere x>+ y*> + 7> =4
that lies above the cone z = \/x2 + y2

Flux Across Parametrized Surfaces
In Exercises 35-44, use a parametrization to find the flux [/ F « ndo
across the surface in the given direction.

35. F=z*i+xj—3zk outward (normal away from the x-axis)
through the surface cut from the parabolic cylinder z = 4 — y?
by the planes x =0,x =1, and z =0



36. F=x2j—xzk outward (normal away from the yz-plane)
through the surface cut from the parabolic cylinder y = x2,
—1 <x <1, by the planes z=0and z =2

37. F = zk across the portion of the sphere x2 + y? + z? = a? in the
first octant in the direction away from the origin

38. F=xi+ yj+zk across the sphere x*> + y* +z2 =a? in the
direction away from the origin

39. F =2xyi+ 2yzj+ 2xzk upward across the portion of the plane
X + y + z = 2a that lies above the square 0 <x <a,0<y <aq,
in the xy-plane

40. F = xi+ yj+ zk outward through the portion of the cylinder
x2 4 y?> =1 cut by the planes z =0and z = a

41. F = xyi— zk outward (normal away from the z-axis) through

the cone z = /x2+y2,0<z<1

42. F=y%*i+xzj—k outward (normal away from the z-axis)
through the cone z =2,/x2+y2,0<z<2

43. F= —xi— yj+ 72k outward (normal away from the z-axis)
through the portion of the cone z = /x? + y? between the planes
z=landz=2

44. F =4xi+4yj+ 2k outward (normal away from the z-axis)
through the surface cut from the bottom of the paraboloid
z = x* + y? by the plane z = 1

Moments and Masses

45. Find the centroid of the portion of the sphere x*> + y2 +z> = a
that lies in the first octant.

2

46. Find the center of mass and the moment of inertia and radius of
gyration about the z-axis of a thin shell of constant density § cut
from the cone x2 + y? — z> = 0 by the planes z = 1 and z = 2.

47. Find the moment of inertia about the z-axis of a thin spherical
shell x2 4+ y? + z2 = a? of constant density §.

48. Find the moment of inertia about the z-axis of a thin conical shell
z=,/x2+y2,0 <z <1, of constant density 3.

Tangent Planes to Parametrized Surfaces
The tangent plane at a point Py (f (ug, vo), g (uo, Vo), h (1o, Vo)) on
a parametrized surface r (u, v) = f (u,v)i+ g W, v)j+hw,v)kis
the plane through P, normal to the vector r, (1o, vo) X T, (o, Vo),
which is the cross product of the tangent vectors r, (ug, v9) and
r, (1o, v9) at Py. In Exercises 49-52, find an equation for the plane
that is tangent to the surface at the given point Py. Then find a Carte-
sian equation for the surface and sketch the surface and tangent plane
together.
49. The cone r(r,0) =(rcos )i+ (rsinf)j+rk, r>0,0<
6 < 2m at the point Py (\/5 V2, 2) corresponding to (r, 6) =
2, /4
50. The hemisphere surface
r(¢, 0) = (4 sing cos 0)i+ (4 sin ¢sin 0) j+ (4 cos @)k,
0<¢<n/2,0<6 <2, atthe point Py (ﬁ, V2, zﬁ) cor-
responding to (¢, ) = (1 /6, w /4)

Exercises 14.6 1113

51. The circular cylinder r (9, z) = (3 sin 20)i + (6 sin® ) j + zk,
33 9

——, =, 0] corresponding to (6, z)

0 <6 < m, at the point P )

= (7 /3,0) (See Example 3.)
52. The parabolic cylinder surface r (x, y) = xi+ yj— x*k, — 00 <

X < 00,—00 <y < 00, at the point P, (1,2, —1) corresponding
to (x,y)=(1,2)

Further Examples of Parametrizations

53. a) A torus of revolution (doughnut) is the surface obtained by
rotating a circle C in the xz-plane about the z-axis in space.
If the radius of C is r > 0 and the center is (R, 0, 0), show

that a parametrization of the torus is
r(u,v) = ((R+r cos u) cos v)i
+ ((R+r cos u) sin v) j + (r sin u) K,

where 0 < u <2m and 0 < v < 27 are the angles in Fig.
14.62.
b) Show that the surface area of the torus is A = 47 2Rr.

14.62 The torus surface in Exercise 53.

54. Parametrization of a surface of revolution. Suppose the
parametrized curve C: (f (u), g (u)) is revolved about the x-axis,
where g (u) > 0 fora <u < b.

a) Show that
r(u,v) = f (u)i+ (g (u) cos v)j+ (g (u)sin v) k
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is a parametrization of the resulting surface of revolution,
where 0 < v <27 is the angle from the xy-plane to the
point r (u, v) on the surface. (See the accompanying fig-
ure.) Notice that f (u) measures distance along the axis
of revolution and g (u) measures distance from the axis of
revolution.

55.

a)

Recall the parametrization x =a cos 6, y =b sin 0,
0 < 0 < 27 for the ellipse (x%/a?) + (y*/b*) = 1 (Section
9.4, Example 5). Using the angles 6 and ¢ as defined in
spherical coordinates, show that

r, ¢) = (a cos 6 cos ¢)i

+ (b sin 8 cos ¢) j+ (c sin ¢) k
is a parametrization of the ellipsoid (x2/a?) + (y?/b?) +
(/) =1
b) Write an integral for the surface area of the ellipsoid, but
do not evaluate the integral.

(f(w), g(u), 0)

56. a) Find a parametrization for the hyperboloid of one sheet
x2 4+ y> —z2 =1 in terms of the angle § associated with
the circle x? + y? = r? and the hyperbolic parameter u as-
sociated with the hyperbolic function r? — z2 = 1. (See Sec-
tion 6.10. Exercise 86.)
b) Generalize the result in (a) to the hyperboloid (x%/a?) +
(/b — (/) = 1.
57. (Continuation of Exercise 56.) Find a Cartesian equation for the
plane tangent to the hyperboloid x2 + y? — z2 = 25 at the point
(xo, Yo, 0), where xp% + yo? = 25.

b) Find a parametrization for the surface obtained by revolving 58.
the curve x = y2, y > 0, about the x-axis.

Find a parametrization of the hyperboloid of two sheets
@/c?) = (@*/a®) — (*/b%) = 1.

Stokes’s Theorem

As we saw in Section 14.4, the circulation density or curl of a two-dimensional
field F = Mi+ N j at a point (x, y) is described by the scalar quantity (3N /dx —
dM/dy). In three dimensions, the circulation around a point P in a plane is described
with a vector. This vector is normal to the plane of the circulation (Fig. 14.63) and
points in the direction that gives it a right-hand relation to the circulation line. The
length of the vector gives the rate of the fluid’s rotation, which usually varies as the
circulation plane is tilted about P. It turns out that the vector of greatest circulation
in a flow with velocity field F = Mi+ Nj+ Pk is

oP 9N\ , oM dP\ , oN oM
carldF=—-—}i+|{—-—)j+|—-— | k (1)
dy 9z 9z dx dox ay

We get this information from Stokes’s theorem, the generalization of the circulation-
curl form of Green’s theorem to space.

Del Notation
The formula for curl F in Eq. (1) is usually written using the symbolic operator
a

a a
V=i—+j—+k—. 2
'ax+"3y+ P ()

14.63 The circulation vector at a point P
in a plane in a three-dimensional fluid
flow. Notice its right-hand relation to the
circulation line.



George Gabriel Stokes

Sir George Gabriel Stokes (1819-1903), one
of the most influential scientific figures of his
century, was Lucasian Professor of
Mathematics at Cambridge University from
1849 until his death in 1903. His theoretical
and experimental investigations covered
hydrodynamics, elasticity, light, gravity,
sound, heat, meteorology, and solar physics.
He left electricity and magnetism to his friend
William Thomson, Baron Kelvin of Largs. It
is another one of those delightful quirks of
history that the theorem we call Stokes’s
theorem isn’t his theorem at all. He learned
of it from Thomson in 1850 and a few years
later included it among the questions on an
examination he wrote for the Smith Prize. It
has been known as Stokes’s theorem ever
since. As usual, things have balanced out.
Stokes was the original discoverer of the
principles of spectrum analysis that we now
credit to Bunsen and Kirchhoff.

C

14.64 The orientation of the bounding
curve C gives it a right-handed relation to
the normal field n.

14.7 Stokes's Theorem 1115

(The symbol V is pronounced “del.”) The curl of F is V x F:

i j k
VxF = a o9 0
= ox Jy 0z
M N P
oP ON\ . oM 9P\ . oN oM
=|l—--——)i+|———)i+|——-———)k (3)
ay 9z 9z ax ax ay
= curl F.
cul F=V xF (4)
EXAMPLE 1 Find the curl of F = (x? — y)i+4zj+ x’k.
Solution
curl F=V x F Fq. (h
i j Kk
_ a 0
T ax dy 0z
x2—y 4z x?

(L - Lan)i- (Len- Loy
_<3y(x) 31(4z))n (ax(x) az(x )’)>J
9 3,
+(5;(4z)— 5()6 —y)) k
=0-4i—Q2x-0j+ 0+ Dk

= —4i-2xj+k 2

As we will see, the operator V has a number of other applications. For instance,
when applied to a scalar function f(x, y, z), it gives the gradient of f:
aof . of . af

Vf = — —j+ —k.
=TT

This may now be read as “del f” as well as “grad f.”

Stokes’s Theorem

Stokes’s theorem says that, under conditions normally met in practice, the circulation
of a vector field around the boundary of an oriented surface in space in the direction
counterclockwise with respect to the surface’s unit normal vector field n (Fig. 14.64)
equals the integral of the normal component of the curl of the field over the surface.
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Circulation

Stokes:

e N

14.65 Green's theorem vs. Stokes's
theorem.

Theorem 5

Stokes’s Theorem

The circulation of F = Mi+ N j+ Pk around the boundary C of an ori-
ented surface § in the direction counterclockwise with respect to the surface’s
unit normal vector n equals the integral of V x F - n over S.

%F-dr://VxF-ndo (5)

C N
counterclockwise curl integral
circulation

Notice from Eq. (5) that if two different oriented surfaces S; and S, have the
same boundary C, then their curl integrals are equal:

/foF-n,da://VxF-nzda,
) A

Both curl integrals equal the counterclockwise circulation integral on the left side
of Eq. (5) as long as the unit normal vectors n; and n, correctly orient the surfaces.
Naturally, we need some mathematical restrictions on F, C, and S to ensure
the existence of the integrals in Stokes’s equation. The usual restrictions are that
all the functions and derivatives involved be continuous.
If C is a curve in the xy-plane, oriented counterclockwise, and R is the region

in the xy-plane bounded by C, then do = dxdy and
aN 8M)

(VxF)-n:(VxF)-k:(____._

ax ady (©)

Under these conditions, Stokes’s equation becomes

oN oM
%F-dr:// — — — ) dxdy,
ax ay
R

C

which is the circulation-curl form of the equation in Green’s theorem. Conversely,
by reversing these steps we can rewrite the circulation-curl form of Green’s theorem
for two-dimensional fields in del notation as

%F-dr://VxF-de. 7)

See Fig. 14.65. ¢ R

EXAMPLE 2 Evaluate Eq. (5) for the hemisphere S: x2 4+ y? +2z2 =9, >0,
its bounding circle C: x?+y?> =9, z =0, and the field F = yi—xj.

Solution We calculate the counterclockwise circulation around C (as viewed from
above) using the parametrization r(6) = (3 cos )i+ (3sin 6)j, 0 <6 < 2m:

dr = (—3sin0df)i+ (3 cos 6dO)j
F=yi—xj=@3sinf)i— (3 cosh)j
F-dr=—-9sin’> 6d6 — 9 cos’ 6d6 = —9d6

2n
%F-dr:/ —9d6 = —18m.
0

C



S:r=(rcos 6)i + (rsin0)j+rk
X y

14.66 The curve C and cone S in
Example 3.

14.7 Stokes's Theorem 1117

For the curl integral of F, we have

aP ON) . oM 9P\ , oN oM
VxF=\—-—]i+|—-—)ji+|——-——— ]k
ay 0z 9z ax dax ay

=0-0i+0-0j+(-1-Dk=-2k
_xit+yj+zk  xi+yj+zk

IRV e 3

Outer unit normal

3 Section 14.5, Example 5,
dU:;dA with a =3
2
VxF.ndo =22 da— _24A
3z2
and
f/VxF-ndo: /f —2dA = —18rm.
S x24y2<9

The circulation around the circle equals the integral of the curl over the hemisphere,
as it should. (.

EXAMPLE 3  Find the circulation of the field F = (x? — y)i+4zj+ x’k
around the curve C in which the plane z = 2 meets the cone z = /x2 + y2, coun-
terclockwise as viewed from above (Fig. 14.66).

Solution Stokes’s theorem enables us to find the circulation by integrating over
the surface of the cone. Traversing C in the counterclockwise direction viewed from
above corresponds to taking the inner normal n to the cone (which has a positive
z-component).

We parametrize the cone as

r(r, 8) = (r cos 8)i+ (r sin 0) j+rk, 0<r<2 0<0<2m.

We then have

n=—= Tr X To = —(r cos Q)i— (r sin 9)-1 +rk Section 14.6,
’l‘, X l'g’ r\/f Example 4
1 (—(cos B)i — (sin 0) j + k)
= —(—(co —
V2
do = r\/idr do Section 14.6,
B Example 4
VxF=-4i-2xj+k Example 1
= —4i—2r cos 8j+ k. x=rcosf

Accordingly,
1
VxF.n= —2(40039+2r cos 8 sin 8 + 1)

f
1

= —@4cosf+rsin20+1)
V2
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14.67 The paddie wheel interpretation
of curl F.

7

~ /

\\\\\\ N = (=yi + xj)
~~ 0!/ -y )

A~
e ~~o
s r _____/\——_"
/ P'(x, y,0) s,

14.68 A steady rotational flow parallel to
the xy-plane, with constant angular veloc-
ity w in the positive (counterclockwise)
direction.

and the circulation is

%F .dr = /f V xF -ndo Stokes's theorem

C N

2n 2 1
= —(4 cos 6 + r sin 20 + 1)(rv/2dr d6) = 4r.
/0 /0 «/5( cos r sin )(r rdf) = 4n a

An Interpretation of V x F

Suppose that v(x, y, z) is the velocity of a moving fluid whose density at (x, y, z)
is 8(x, y, z), and let F = §v. Then

¢F-dr

Cc

is the circulation of the fluid around the closed curve C. By Stokes’s theorem, the
circulation is equal to the flux of V x F through a surface S spanning C:

%F-dr://VxF-nda.
c s

Suppose we fix a point Q in the domain of F and a direction u at Q. Let C be a circle
of radius p, with center at Q, whose plane is normal to u. If V x F is continuous
at Q, then the average value of the u-component of V x F over the circular disk
S bounded by C approaches the u-component of V x F at Q as p — 0:

1
(VxF-u)p=lim —2//VXF-udU. (8
p—0 TP
s
If we replace the double integral in Eq. (8) by the circulation, we get
1
VxF. =lim — QF -dr. 9
(VxF-up hm 7 r )
C

The left-hand side of Eq. (9) has its maximum value when u is the direction of
V x F. When p is small, the limit on the right-hand side of Eq. (9) is approximately
1

;{;2- F-dl',

which is the circulation around C divided by the area of the disk (circulation
density). Suppose that a small paddle wheel of radius p is introduced into the fluid
at Q, with its axle directed along u. The circulation of the fluid around C will
affect the rate of spin of the paddle wheel. The wheel will spin fastest when the
circulation integral is maximized; therefore it will spin fastest when the axle of the
paddle wheel points in the direction of V x F (Fig. 14.67).

EXAMPLE 4 A fluid of constant density § rotates around the z-axis with velocity
v =w(—yi+ xj), where w is a positive constant called the angular velocity of the
rotation (Fig. 14.68). If F = v, find V x F and relate it to the circulation density.
Solution With F = §v = —dwyi+ dwx j,

P 0N , oM 9P , oN oM
VxF=|\—-—i+|———)j+|——-—— )k
ay 0z 9z ax ax ay

=0-0i+0-0)j+ (bw— (—dw))k =2wk.



0,0,2)

o\

14.69 The planar surface in Example 5.
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By Stokes’s theorem, the circulation of F around a circle C of radius p bounding
a disk S in a plane normal to V x F, say the xy-plane, is

?gF-drz//VxF-nda=//28a)k-kdxdy=(28w)(7rp2).

C N N

1
Thus, (VxF)-k=28a)=—2¢F-dl‘,
o
c

in agreement with Eq. (9) with u = k. 4

EXAMPLE 5 Use Stokes’s theorem to evaluate fc F.dr,if F=xzi+xyj+
3xzk and C is the boundary of the portion of the plane 2x + y + z = 2 in the first
octant, traversed counterclockwise as viewed from above (Fig. 14.69).

Solution The plane is the level surface f(x, y, z) = 2 of the function f(x, y, z) =
2x 4+ y + z. The unit normal vector
\Y 2i+j+k |
ne o _ Gl 1 ik
IVFI 12i+j+kl V6

is consistent with the counterclockwise motion around C. To apply Stokes’s theorem,
we find

i
cul F=V xF = _8_ i
ox 0dy 0z

xz xy 3xz

K
9

=x-32)j+yk.

On the plane, z equals 2 — 2x — y, so
VxF=x-32-2x-y)j+yk=(Ox+3y-6)j+yk

and

_ (7x +3y — 6+ )—___1 (Tx +4y — 6)
VxF.n 1x 1x .
NG 3y y NG y

The surface area element is

V£l V6

7=V K p

The circulation is §£F .dr= // V x F -ndo Stokes’s theorem

C N

1 2-2x 1
= —(Tx + 4y — 6) V6dydx
Ll %

1 p2-2x
=f / (7x +4y —6)dydx = —1.
o Jo

Proof of Stokes’s Theorem for Polyhedral Surfaces

Let S be a polyhedral surface consisting of a finite number of plane regions. (Think
of one of Buckminster Fuller’s geodesic domes.) We apply Green’s theorem to each
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B C

14.70 Part of a polyhedral surface.

N

14.71 Stokes's theorem also holds for
oriented surfaces with holes.

separate panel of S. There are two types of panels:

1. those that are surrounded on all sides by other panels and
2. those that have one or more edges that are not adjacent to other panels.

The boundary A of S consists of those edges of the type 2 panels that are not
adjacent to other panels. In Fig. 14.70, the triangles FAB, BCE, and CDE represent
a part of S, with ABCD part of the boundary A. Applying Green’s theorem to the
three triangles in turn and adding the results, we get

(éABJrSécﬁféDE)F'd’: {A[+[C[+[l V xF-ndo. (10)

The three line integrals on the left-hand side of Eq. (10) combine into a single line
integral taken around the periphery ABCDE because the integrals along interior
segments cancel in pairs. For example, the integral along segment BE in triangle
ABE is opposite in sign to the integral along the same segment in triangle EBC.
Similarly for segment CE. Hence (10) reduces to

% F-dr://VxF-nda.
ABCDE

ABCDE

When we apply Green’s theorem to all the panels and add the results, we get

%F-dl‘:f‘/‘VxF-ndU. 11)
A s

This is Stokes’s theorem for a polyhedral surface S. You can find proofs for more
general surfaces in advanced calculus texts. a

Stokes’s Theorem for Surfaces with Holes

Stokes’s theorem can be extended to an oriented surface S that has one or more
holes (Fig. 14.71), in a way analogous to the extension of Green’s theorem: The
surface integral over S of the normal component of V x F equals the sum of the
line integrals around all the boundary curves of the tangential component of F,
where the curves are to be traced in the direction induced by the orientation of S.

An Important Identity

The following identity arises frequently in mathematics and the physical sciences.

curl grad f =0 or VxVf=0 (12)

This identity holds for any function f(x, y, z) whose second partial derivatives are
continuous. The proof goes like this:

i j Kk
0 0 )

VxVf=|0x 3y 8z |=(for— fi)i—(fux = fidi+ (fux — fe) k.
of df of

ox dy 0z



Connected and simply connected.

Connected but not simply connected.

Connected and simply connected.

Simply connected but not connected.
No path from A to B lies entirely in the region.

14.72 Connectivity and simple con-
nectivity are not the same. Neither
implies the other, as these pictures of
plane regions illustrate. To make
three-dimensional regions with these
properties, thicken the plane regions into
cylinders.

14.73 In a simply connected open region
in space, differentiable curves that cross
themselves can be divided into loops to
which Stokes’s theorem applies.
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If the second partial derivatives are continuous, the mixed second derivatives in
parentheses are equal (Euler’s theorem, Section 12.3) and the vector is zero.

Conservative Fields and Stokes's Theorem

In Section 14.3, we found that saying that a field F is conservative in an open
region D in space is equivalent to saying that the integral of F around every closed
loop in D is zero. This, in turn, is equivalent in simply connected open regions to
saying that V x F = 0. A region D is simply connected if every closed path in D
can be contracted to a point in D without ever leaving D. If D consisted of space
with a line removed, for example, D would not be simply connected. There would
be no way to contract a loop around the line to a point without leaving D. On the
other hand, space itself is simply connected (Fig. 14.72).

Theorem 6
If V x F = 0 at every point of a simply connected open region D in space,
then on any piecewise smooth closed path C in D,

%F-dr:O.
c

Sketch of a Proof Theorem 6 is usually proved in two steps. The first step is for
simple closed curves. A theorem from topology, a branch of advanced mathematics,
states that every differentiable simple closed curve C in a simply connected open
region D is the boundary of a smooth two-sided surface S that also lies in D.
Hence, by Stokes’s theorem,

%F-dr:ffoF-ndo:O.

C N

The second step is for curves that cross themselves, like the one in Fig. 14.73.
The idea is to break these into simple loops spanned by orientable surfaces, apply
Stokes’s theorem one loop at a time, and add the results.

The following diagram summarizes the results for conservative fields defined
on connected, simply connected open regions.

Theorem 1,
Section 14.3
F conservative G F=VfonD
onD
Vector identity (Eq. 12)
ghef’re";f-3 (continuous second
ection 14. partial derivatives)

Theorem 6
F-dr=0 <: V x F = 0 throughout D

c
over any closed Domain’s simple
pathin D connectivity +

Stokes’s theorem
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Exercises 14.7

Using Stokes’s Theorem to Calculate Circulation
In Exercises 1-6, use the surface integral in Stokes’s theorem to
calculate the circulation of the field F around the curve C in the
indicated direction.
1. F=x2i+2xj+ 7’k
C: The ellipse 4x* + y? = 4 in the xy-plane, counterclockwise
when viewed from above
2. F=2yi+3xj—2°k
C: The circle x> + y> =9 in the xy-plane, counterclockwise
when viewed from above
3. F=yi+xzj+x’k
C: The boundary of the triangle cut from the plane x + y + z =
1 by the first octant, counterclockwise when viewed from
above
4 F=0+D)i+ & +2)j+ @ +yHk
C: The boundary of the triangle cut from the plane x + y + z =
1 by the first octant, counterclockwise when viewed from
above
5. F=024+2)i+ 2 +y)j+ 2 +y)k
C: The square bounded by the lines x = =1 and y = %1 in the
xy-plane, counterclockwise when viewed from above
6. F=x2y*i+j+zk
C: The intersection of the cylinder x> + y*> = 4 and the hemi-
sphere x?> + y? + 72 =16,z >0

Flux of the Curl

7. Let n be the outer unit normal of the elliptical shell
S: 4x2 49y +367° =136, 7>0,
and let

F = yi+x2j+(x2+y4)3/zsin eV k.

//VxF-ndU.

N

Find the value of

(Hint: One parametrization of the ellipse at the base of the shell
isx=3cost, y=2sint, 0<t<2m.)

8. Let n be the outer unit normal (normal away from the origin) of

the parabolic shell
St 4x’4+v+P=4 y>0

and let

| |
F=|-z+-—)i+(tan'y)j k
( .+2+x>l+(an ))J+<x+4+z>

Find the value of
f/V x F+ndo.

N

9. Let S be the cylinder x> + y?> =a?, 0 < z < h, together with
its top, x> +y><a’ z=h. Let F=—yi+xj+x>k. Use
Stokes’s theorem to calculate the flux of V x F outward through S.

//V x (yi) - ndo,
s

where S is the hemisphere x> + y2 +z2 =1, z > 0.

11. Show that
//V x F+ndo

S

10. Evaluate

has the same value for all oriented surfaces S that span C and
that induce the same positive direction on C.

12. Let F be a differentiable vector field defined on a region con-
taining a smooth closed oriented surface S and its interior. Let n
be the unit normal vector field on S. Suppose that S is the union
of two surfaces S, and S, joined along a smooth simple closed
curve C. Can anything be said about

//VxF-ndU?

S

Give reasons for your answer.

Stokes’s Theorem for Parametrized Surfaces

In Exercises 1318, use the surface integral in Stokes’s theorem to
calculate the flux of the curl of the field F across the surface S in the
direction of the outward unit normal n.

13. F=2zi+3xj+5yk
S: r(r,0) =(rcosB)i+ (rsinf)j+ @ —-rHk,0<r <2,
0<6<2n

4. F=(y—-2i+G@—x)j+x+2k
S: r(r,0)=(rcos )i+ (rsinf)j+9—-r>)k0<r <3,
0<6 <27

15. F=x2yi+2y’zj+3zk
S: r(r,0) =(rcosB)i+ (rsinf)j+rk,0<r <1,
0<6<2n

16. F=(x—y)i+(v—-2j+(z—-x)k
S: r(r,0)=(rcosf)i+ (rsinf)j+ (5 -r)k,0<r <5,
0<0 <27

17. F=3yi+ (5 -2x)j+ (> -2)k
S: r(¢,9):(«/§sin¢cos@)i+(ﬁsin¢sin 0)j+
(V3cos )k, 0<¢p <m/2,0<6 <2r
18. F=y2i+ 22 j+xk
S: r(¢,0) = (2sin ¢ cosf)i+ (2 sin ¢ sinh) j+ (2 cos @)K,
0<¢p<m/2,0<6 <2



Theory and Examples

19. Use the identity V x Vf = 0 (Eq. 12 in the text) and Stokes’s the-

20.

21.

14.8 The Divergence Theorem and a Unified Theory 1123

depends only on the area of the region enclosed by C and not
on the position or shape of C.

orem to show that the circulations of the following fields around 22. Show that if F=xi+ yj+ zk, then V. x F = 0.
the boundary of any smooth orientable surface in space are zero. 23, Find a vector field with twice-differentiable components whose

a) F=2xi+2yj+2zk
b) F = V(xy?z?)

¢) F=Vxxi+yj+zk)
d F=Vf

Let f(x,y,2) = (x> + y? + z?)~"/2. Show that the clockwise cir-
culation of the field F = Vf around the circle x? 4+ y?> = a? in

the xy-plane is zero

curl is xi+ yj+ zk or prove that no such field exists.

24. Does Stokes’s theorem say anything special about circulation in
a field whose curl is zero? Give reasons for your answer.

25. Let R be a region in the xy-plane that is bounded by a piecewise
smooth simple closed curve C, and suppose that the moments of
inertia of R about the x- and y-axes are known to be /, and /,.
Evaluate the integral

2

a) by takingr=(acost)i+ (asint)j 0 <t <2m, and in-
tegrating F - d r over the circle, and %V('A) nds
b) by applying Stokes’s theorem. fe
Let C be a simple closed smooth curve in the plane 2x + 2y + where = /x2 + y2, in terms of /, and .
z = 2, oriented as shown here. Show that
26. Show that the curl of
¢2ydx+3zdy—xdz F— -y it X j+zk
XZ + y2 xZ + y2

Cc

SRR

is zero but that

F-.dr
2x+2y+z=2

C

is not zero if C is the circle x? 4+ y?> = 1 in the xy-plane. (Theo-
rem 6 does not apply here because the domain of F is not simply
connected. The field F is not defined along the z-axis so there is
no way to contract C to a point without leaving the domain of F.)

R B P PR S I
The Dlvergence Theorem and a Unified Theory

The divergence form of Green’s theorem in the plane states that the net outward
flux of a vector field across a simple closed curve can be calculated by integrating
the divergence of the field over the region enclosed by the curve. The corresponding
theorem in three dimensions, called the Divergence Theorem, states that the net
outward flux of a vector field across a closed surface in space can be calculated
by integrating the divergence of the field over the region enclosed by the surface.
In this section, we prove the Divergence Theorem and show how it simplifies the
calculation of flux. We also derive Gauss’s law for flux in an electric field and
the continuity equation of hydrodynamics. Finally, we unify the chapter’s vector
integral theorems into a single fundamental theorem.

e s SR R

Divergence in Three Dimensions

The divergence of a vector field F= M (x, y,2)i+ N (x,y,2)j+ P (x,y,2)k is
the scaler function

oM oN P
divF=v.F= "2 20 20 1
iv 8x+8y+8z (1)
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The Divergence Theorem

Mikhail Vassilievich Ostrogradsky
(1801-1862) was the first mathematician to
publish a proof of the Divergence Theorem.
Upon being denied his degree at Kharkhov
University by the minister for religious
affairs and national education (for atheism),
Ostrogradsky left Russia for Paris in 1822,
attracted by the presence of Laplace,
Legendre, Fourier, Poisson, and Cauchy.
While working on the theory of heat in the
mid-1820s, he formulated the Divergence
Theorem as a tool for converting volume
integrals to surface integrals.

Carl Friedrich Gauss (1777-1855) had
already proved the theorem while working on
the theory of gravitation, but his notebooks
were not to be published until many years
later. (The theorem is sometimes called
Gauss’s theorem.) The list of Gauss’s
accomplishments in science and mathematics
is truly astonishing, ranging from the
invention of the electric telegraph (with
Wilhelm Weber in 1833) to the development
of a wonderfully accurate theory of planetary
orbits and to work in non-Euclidean
geometry that later became fundamental to
Einstein’s general theory of relativity.

The symbol “div F” is read as “divergence of F” or “div F.” The notation V . F is
read “del dot F.”

Div F has the same physical interpretation in three dimensions that it does in
two. If F is the velocity field of a fluid flow, the value of div F at a point (x, y, z) is
the rate at which fluid is being piped in or drained away at (x, y, z). The divergence
is the flux per unit volume or flux density at the point.

EXAMPLE 1 Find the divergence of F = 2xzi —xyj — zk.

Solution The divergence of F is

0 a a
V. F=—2x))+ —(—x)+ —-(-9)=2z—-x—- 1L
ox ay 0z

The Divergence Theorem

The Divergence Theorem says that under suitable conditions the outward flux of a
vector field across a closed surface (oriented outward) equals the triple integral of
the divergence of the field over the region enclosed by the surface.

Theorem 7
The Divergence Theorem

The flux of a vector field F = Mi+ N j+ Pk across a closed oriented
surface S in the direction of the surface’s outward unit normal field n equals
the integral of V - F over the region D enclosed by the surface:

/JF-ndo:/[/V-FdV. @

outward divergence
flux integral

EXAMPLE 2 Evaluate both sides of Eq. (2) for the field F=xi+ yj+zk
over the sphere x? + y? 4+ 72 = a°.

Solution The outer unit normal to S, calculated from the gradient of f (x, y, z) =
2y —adis
0o 20xi+yj+zk)  xi+yj+zk

VAR +y2 +2%) a

Hence
2 2 2 2
Fondo= > Y% 4o =% 4o —ado
a a

because x% 4+ y? + z2 = a? on the surface. Therefore

/fF-ndor=//ador=a//do:a(47ra2)=4na3.
s s s



14.74 We first prove the Divergence
Theorem for the kind of three-
dimensional region shown here. We then
extend the theorem to other regions.

(ny, ny, n3)

14.75 The scalar components of a unit
normal vector n are the cosines of the
angles @, 8, and y that it makes with i, j,
and k.
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The divergence of F is

VoF= L L)+ @) =3
TR TV T WS
SO ///V-FdV:///3dV=3(ina3>=47ra3.
3
D D Q

EXAMPLE 3 Find the flux of F = xyi+ yzj + xzk outward through the sur-
face of the cube cut from the first octant by the planes x =1,y =1, and z = 1.

Solution Instead of calculating the flux as a sum of six separate integrals, one for
each face of the cube, we can calculate the flux by integrating the divergence

9 9 9
V:F=—N+ -0+ —-—@G@g)=y+z+x
ox ay 0z

over the cube’s interior:

Flux = //F ndo = ///V -FdV The Divergence
Theorem

cube cube
surface interior
1 1 1 3
= / / / (x+y+2)dxdydz==. Routine integration
0 Jo JO 2

Q

Proof of the Divergence Theorem (Special Regions)

To prove the Divergence Theorem, we assume that the components of F have
continuous first partial derivatives. We also assume that D is a convex region with
no holes or bubbles, such as a solid sphere, cube, or ellipsoid, and that S is a
piecewise smooth surface. In addition, we assume that any line perpendicular to the
xy-plane at an interior point of the region R,, that is the projection of D on the
xy-plane intersects the surface S in exactly two points, producing surfaces

Sl: szl(x7y)a (x,)’) in ny
Sz: = fz(x’ )7), ('x’ y) in ny,

with f; < f,. We make similar assumptions about the projection of D onto the
other coordinate planes. See Fig. 14.74.

The components of the unit normal vector n = n, i + n, j + n3 k are the cosines
of the angles @, 8, and y that n makes with i, j, and k (Fig. 14.75). This is true
because all the vectors involved are unit vectors. We have

ny =n-.i=|n|li| cos @ =cos o

ny =m-j=n|lj| cos B =cos B

n3 =n -k =|n||k| cos y =cos y.
Thus,

n = (cos a)i—+ (cos B)j+ (cos y)k
and

F.-n=Mcosa+ N cos B+ P cos y.
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dA = dx dy

14.76 The three-dimensional region D
enclosed by the surfaces S, and S, shown
here projects vertically onto a two-
dimensional region R,, in the xy-plane.

—— Here yis acute, so
i do = dx dylcos y

—— Here vy is obtuse,
sodo = —dxdylcos y

<

dy

14.77 An enlarged view of the area
patches in Fig. 14.76. The relations
do = +dxdy/ cos y are derived in
Section 14.5.

In component form, the Divergence Theorem states that

oM 9N 0P
ff(Mcosa+Ncos}3+Pcosy)do—fff< ——+—é——> dxdydz.
z

We prove the theorem by proving the three following equalities:

//Mcos ado —ff —dxdydz 3)
/[Ncos Bdo = f/ —dxdydz (4)

fchos ydo =//~ —é—dxdydz (5)
2z
s D

We prove Eq. (5) by converting the surface integral on the left to a double
integral over the projection R,, of D on the xy-plane (Fig. 14.76). The surface
S consists of an upper part S, whose equation is z = f>(x, y) and a lower part
S, whose equation is z = f;(x, y). On S,, the outer normal n has a positive k-
component and
dA  dxdy

|cos ¥|  cosy’

cos ydo = dxdy because do =

See Fig. 14.77. On S, the outer normal n has a negative k-component and
cos ydo = —dxdy.

Therefore,

/chosyda://Pcosydc+/chosydo
N S S

- f / P (x,y. fo(x, ) dxdy — / / P (5, y, fi(x, y)) dx dy

/ [P(x,y, fa(x,y)) = P(x,y, fi(x,y)] dxdy

fa(x,y) 9P oP
// |:/- —a'z] dxdy:/] —dzdxdy.
1 (x,y) 9z D 9z

This proves Eq. (5).
The proofs for Eqgs. (3) and (4) follow the same pattern; or just permute
x,y,2; M, N, P; a, B, y, in order, and get those results from Eq. (5).

The Divergence Theorem for Other Regions

The Divergence Theorem can be extended to regions that can be partitioned into
a finite number of simple regions of the type just discussed and to regions that
can be defined as limits of simpler regions in certain ways. For example, suppose
that D is the region between two concentric spheres and that F has continuously
differentiable components throughout D and on the bounding surfaces. Split D by
an equatorial plane and apply the Divergence Theorem to each half separately. The



X

14.78 The lower half of the solid region
between two concentric spheres.

A

14.79 The upper half of the solid region
between two concentric spheres.
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bottom half, Dy, is shown in Fig. 14.78. The surface that bounds D, consists of
an outer hemisphere, a plane washer-shaped base, and an inner hemisphere. The
Divergence Theorem says that

//F'n1d0|=/ffV-FdV1. (6)
M

D,

The unit normal n; that points outward from D; points away from the origin
along the outer surface, equals k along the flat base, and points toward the
origin along the inner surface. Next apply the Divergence Theorem to D,, as

shown in Fig. 14.79:
f/F-n2d02=///V-FdV2. (7)
A D,

As we follow n, over S, pointing outward from D,, we see that n, equals —k
along the washer-shaped base in the xy-plane, points away from the origin on the
outer sphere, and points toward the origin on the inner sphere. When we add Egs.
(6) and (7), the integrals over the flat base cancel because of the opposite signs of
n; and n,. We thus arrive at the result

/!Fonm7=j[fV-Fd%

with D the region between the spheres, S the boundary of D consisting of two
spheres, and n the unit normal to S directed outward from D.

EXAMPLE 4 Find the net outward flux of the field

i j+zk
F=x|+y.l b4 ’ o= r———————x2+y2+zz

PE
across the boundary of the region D: 0 < a® < x> + y* + 7% < b%.

Solution The flux can be calculated by integrating V - F over D. We have

d 1
op - _ (xz +y2 +zz)_l/2(2x) _ x
ox 2 o
oM 9 ap 1 3x?
d M _ 9 pympioaxpe o L3
an ax ox xp)=p P ox p>  p?
. AN 1 3y? aP 1 37
Similarly, Gy =T M TS
3 3 3 3p?
Hence, divF=—3——5(x2+y2+zz)=_3___p5_=0
P p P> P

and ///V-FdV:O.
D

So the integral of V . F over D is zero and the net outward flux across the
boundary of D is zero. But there is more to learn from this example. The flux
leaving D across the inner sphere S, is the negative of the flux leaving D across
the outer sphere S, (because the sum of these fluxes is zero). This means that the
flux of F across S, in the direction away from the origin equals the flux of F
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across S, in the direction away from the origin. Thus, the flux of F across a sphere
centered at the origin is independent of the radius of the sphere. What is this flux?

To find it, we evaluate the flux integral directly. The outward unit normal on
the sphere of radius a is

xi+yj+zk xi+yj+zk
V24 yr+ 22 a '

Hence, on the sphere,
xi+yj+zk xi+yj+zk x*+y*4+27 a1

F.-n= - = —
a’ a a* a*  a?
1 1 )
and F.ndo = — d0=—2(47ra)=47r.
a a
Sa Sa
The outward flux of F across any sphere centered at the origin is 4 7. a

Gauss’s Law—One of the Four Great Laws

of Electromagnetic Theory

There is more to be learned from Example 4. In electromagnetic theory, the electric

field created by a point charge g located at the origin is the inverse square field
q r\ ¢ r g xit+yj+zk

47T€0W(m)_4ﬂ€o|l‘?_471’60 o3

where € is a physical constant, r is the position vector of the point (x, y, z), and p =

Ir] = /x2 + y? + z2. In the notation of Example 4,
__4
4 €0

E(x,y,2) =

The calculations in Example 4 show that the outward flux of E across any
sphere centered at the origin is g/€;. But this result is not confined to spheres.
The outward flux of E across any closed surface S that encloses the origin (and to
which the Divergence Theorem applies) is also g /€. To see why, we have only to
imagine a large sphere S, centered at the origin and enclosing the surface S. Since
9 p__4

V.E=V. =
47 € 47 e

V.:F=0

when p > 0, the integral of V . E over the region D between S and S, is zero.
Hence, by the Divergence Theorem,

ffE-nda:O,

boundary
of D

and the flux of E across S in the direction away from the origin must be the same as the
flux of E across S, in the direction away from the origin, which is g /€. This statement,
called Gauss’s law, also applies to charge distributions that are more general than the
one assumed here, as you will see in nearly any physics text.

Gauss’s Law: //E .ndo = q
€0

N



T

h=(vAf)-n

14.80 The fluid that flows upward
through the patch Ao in a short time At
fills a “cylinder” whose volume is
approximately base x height
=v-.nAcAt.
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The Continuity Equation of Hydrodynamics

Let D be a region in space bounded by a closed oriented surface S. If v (x, y, 2)
is the velocity field of a fluid flowing smoothly through D, § = § (¢, x, y, z) is the
fluid’s density at (x, y, z) at time ¢, and F = §v, then the continuity equation of
hydrodynamics states that

a6

V. F+ —=0.
+8t

If the functions involved have continuous first partial derivatives, the equation
evolves naturally from the Divergence Theorem, as we will now see.

First, the integral
//F -ndo

N

is the rate at which mass leaves D across S (leaves because n is the outer normal).
To see why, consider a patch of area Ao on the surface (Fig. 14.80). In a short time
interval At, the volume AV of fluid that flows across the patch is approximately
equal to the volume of a cylinder with base area Ao and height (v At) - n, where
v is a velocity vector rooted at a point of the patch:

AV = v.nAc At.
The mass of this volume of fluid is about
Am =~ §v - n Ao At,

so the rate at which mass is flowing out of D across the patch is about

— & §Vv-.-nAo.
At

This leads to the approximation

X Am
A7 ~Z$v-nAa

as an estimate of the average rate at which mass flows across S. Finally, let-
ting Ao — 0 and At — 0 gives the instantaneous rate at which mass leaves D

across S as
d
am = //Sv ndo,
dt
s

which for our particular flow is
dm ffF nd
—_— = . o,
dt
s

Now let B be a solid sphere centered at a point Q in the flow. The average
value of V . F over B is

1
——ff/V-FdV.
volume of B

B

It is a consequence of the continuity of the divergence that V . F actually takes on
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this value at some point P in B. Thus,

(V'F)P=;f‘/‘/v-FdV:M

volume of B volume of B
B

rate at which mass leaves B across its surface S @)
- volume of B ’

The fraction on the right describes decrease in mass per unit volume.

Now let the radius of B approach zero while the center Q stays fixed. The
left-hand side of Eq. (8) converges to (V - F),, the right side to (—35/9¢)¢. The
equality of these two limits is the continuity equation

V.F=—-——
ar’
The continuity equation “explains” V - F: The divergence of F at a point is

the rate at which the density of the fluid is decreasing there.
The Divergence Theorem

/S/F.nd(;:/[/v.pdv

now says that the net decrease in density of the fluid in region D is accounted for
by the mass transported across the surface S. In a way, the theorem is a statement
about conservation of mass.

Unifying the Integral Theorems

If we think of a two-dimensional field F = M (x, y)i+ N (x, y) j as a three-dimen-
sional field whose k-component is zero, then V - F = (M /dx) + (I N /dy) and the
normal form of Green’s theorem can be written as

5{51«* nds-//(—+———)dxdy=f/V-FdA.

R

Similarly, Vx F .k = (dN/0x) — (dM/dy), so the tangential form of Green’s
theorem can be written as

§I§F dr—ff(———)dxdy:/k/VxF-de.

With the equations of Green’s theorem now in del notation, we can see their
relationships to the equations in Stokes’s theorem and the Divergence Theorem.

Green’s Theorem and Its Generalization to Three Dimensions

Normal form of

Green’s theorem: ?gF -nds = // V.FdA
R

Cc

Divergence Theorem: //F -ndo = //fv -FdVv
s D




14.81 The outward unit normals at the
boundary of [a, b] in one-dimensional
space.
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SﬁF-dr://VxF-de
c R
C

Tangential form of
Green’s theorem:

Stokes’s theorem:

Notice how Stokes’s theorem generalizes the tangential (curl) form of Green’s
theorem from a flat surface in the plane to a surface in three-dimensional space. In
each case, the integral of the normal component of curl F over the interior of the
surface equals the circulation of F around the boundary.

Likewise, the Divergence Theorem generalizes the normal (flux) form of Green’s
theorem from a two-dimensional region in the plane to a three-dimensional region
in space. In each case, the integral of V . F over the interior of the region equals
the total flux of the field across the boundary.

There is still more to be learned here. All of these results can be thought of as
forms of a single fundamental theorem. Think back to the Fundamental Theorem
of Calculus in Section 4.7. It says that if f (x) is differentiable on [a, b] then

I7d d
/ U gy = 1) - fl@.
« dx

If we let F = f(x)i throughout [a, b], then (df/dx) = V - F. If we define the unit
vector n normal to the boundary of [a, b] to be i at b and —i at a (Fig. 14.81) then

fb) = f(a) = f(b)i- @)+ fla)i- (—i)
=F(®) -n+F()-n
= total outward flux of F across the boundary of [a, b].

The Fundamental Theorem now says that

/ V . Fdx = total outward flux of F across the boundary.

[a.b]

The Fundamental Theorem of Calculus, the flux form of Green’s theorem, and the
Divergence Theorem all say that the integral of the differential operator
V. operating on a field F over a region equals the sum of the normal field com-
ponents over the boundary of the region.

Stokes’s theorem and the circulation form of Green’s theorem say that, when
things are properly oriented, the integral of the normal component of the curl
operating on a field equals the sum of the tangential field components on the
boundary of the surface.

The beauty of these interpretations is the observance of a marvelous underlying
principle, which we might state as follows.

The integral of a differential operator acting on a field over a region equals
the sum of the field components appropriate to the operator over the boundary
of the region. :
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Exercises 14.8

Calculating Divergence

In
1
2
3
4

Exercises 14, find the divergence of the field.
. The spin field in Fig. 14.15.

. The radial field in Fig. 14.14.

. The gravitational field in Fig. 14.13.

. The velocity field in Fig. 14.10.

Using the Divergence Theorem to Calculate

0

In
flu

5.

10.

11.

12.

13.

14

15

utward Flux
Exercises 5-16, use the Divergence Theorem to find the outward
x of F across the boundary of the region D.
F=@p-0i+Gz-yj+-xk
D: The cube bounded by the planes x = £+1,y = %1, and
z==*l1
. F=x2i+y%j+ 22k
a) D: The cube cut from the first octant by the planes
x=1,y=1, and z=1
b) D: The cube bounded by the planes x = £1, y = £1, and
z==lI
¢) D: The region cut from the solid cylinder x + y? < 4 by
the planes z =0 and z = 1
.F=yi+xyj—zk

D: The region inside the solid cylinder x? + y? < 4 between
the plane z = 0 and the paraboloid z = x2 + y?
. F=x%i+xzj+3zk
D: the solid sphere x2 + y? +z2 < 4
. F=x%i—2xyj+3xzk
D: The region cut from the first octant by the sphere
x2+y?+22=4
F = (6x*+2xy)i+ 2y + x%2)j+ 4x*y’k
D: The region cut from the first octant by the cylinder
x2 + y? = 4 and the plane z = 3
F=2xzi—xyj—z%k
D: The wedge cut from the first octant by the plane
y + z = 4 and the elliptical cylinder 4x2 + y? = 16
F=x}i+yj+2°k
D: The solid sphere x? + y? + z2 < a®
F=x24+y?+22(xi+yj+zk)
D: Theregion I <x?24y? 472 <2
- F=@it+yj+zk)/V/x?+y2 + 2
D: Theregion 1 <x2+y?+7z2<4
. F =503+ 12xy?)i+ (> +e¥ sin 2)j+ (52° + € cos ) k
D: The solid region between the spheres x2 + y2 + z2 = 1 and
x2+y2+72=2

16.

2
F=In(x?+y)i- (_z tan~! X)j +z/x2 4+ y?k
X X

D: The thick-walled cylinder 1 < x2+y? <2, —1<z<2

Properties of Curl and Divergence

17.

18.

19.

20.

div (curl G) =0

a) Show that if the necessary partial derivatives of the com-
ponents of the field G = Mi+ N j+ Pk are continuous,
then V-V x G =0.

b) What, if anything, can you conclude about the flux of the
field V x G across a closed surface? Give reasons for your
answer.

Let F, and F, be differentiable vector fields, and let a and b be
arbitrary real constants. Verify the following identities.

a) V.(@F +bF;)=aV-:-F+bV-F,
b) Vx@F,+bF;))=aVxF, +bV xF,
c) V’(F]XF2)=F2‘VXF|—F]'VXF2

Let F be a differentiable vector field and let g (x,y,z) be a
differentiable scalar function. Verify the following identities.

a) V.-(gF)=¢gV:-F+Vg.F
b) VxgF)=gVxF+VgxF

If F=Mi+ N j+ PKkis a differentiable vector field, we define
the notation F - V to mean
mE vl ipl
ox dy az
For differentiable vector fields F, and F, verify the following
identities.

a) VxF xF)=F - -V)F - (F -V)F
+(V-F)F, - (V-F)F;

b) V(F,-F)=(F, - V)F, +(F, - V)F,
+F; x (VxF)+F, x (VxF)

Theory and Examples

21.

22.

Let F be a field whose components have continuous first partial
derivatives throughout a portion of space containing a region D
bounded by a smooth closed surface S. If |F| < 1, can any bound
be placed on the size of

/[/V-FdV?

Give reasons for your answer.

The base of the closed cubelike surface shown here is the
unit square in the xy-plane. The four sides lie in the planes
x=0,x=1,y=0,and y = 1. The top is an arbitrary smooth
surface whose identity is unknown. Let F=xi—-2yj+
(z+3)k, and suppose the outward flux of F through side A
is 1 and through side B is —3. Can you conclude anything about
the outward flux through the top? Give reasons for your answer.



23.

24.

25.

26.

27.

28.

field

the flux of
F=xi+ yj+ zk outward through a smooth closed sur-
face § is three times the volume of the region enclosed by
the surface.

b) Let n be the outward unit normal vector field on S. Show
that it is not possible for F to be orthogonal to n at every
point of S.

a) Show that the position vector

Among all rectangular solids defined by the inequalities
0<x=<a,0<y=<b,0=<z<1I, find the one for which the to-
tal flux of F = (—x? —4xy)i— 6yzj+ 12zk outward through
the six sides is greatest. What is the greatest flux?

Let F = xi+ yj+ zk and suppose that the surface S and region
D satisfy the hypotheses of the Divergence Theorem. Show that
the volume of D is given by the formula

1
Volume of D = 3//F-ndo.
s

Show that the outward flux of a constant vector field F = C across
any closed surface to which the Divergence Theorem applies is
zero.

Harmonic functions. A function f (x,y,z) is said to be har-
monic in a region D in space if it satisfies the Laplace equation

82
V2f=V-Vf=T+—+—f=0

throughout D.

a) Suppose that f is harmonic throughout a bounded region
D enclosed by a smooth surface S and that n is the chosen
unit normal vector on S. Show that the integral over S of
V f - n, the derivative of f in the direction of n, is zero.

b) Show that if f is harmonic on D, then

fJfo-nda:/{/Wﬂde.

Let S be the surface of the portion of the solid sphere x2 +
y? + z* < a@? that lies in the first octant and let f (x,y,z) =

In /x2 4+ y? + z2. Calculate

/-S/Vf-nda.

29.

30.

31.

32.

Exercises 14.8 1133

(V f « nis the derivative of f in the direction of n.)

Green’s first formula. Suppose that f and g are scalar func-
tions with continuous first- and second-order partial derivatives
throughout a closed region D that is bounded by a piecewise
smooth surface S. Show that

/Jng'ndU:[_[/(fvzg‘FVf-Vg)dV. 9)

Equation (9) is Green’s first formula. (Hint: Apply the Diver-
gence Theorem to the field F = fVg.)

Green’s second formula. (Continuation of Exercise 29). Inter-
change f and g in Eq. (9) to obtain a similar formula. Then
subtract this formula from Eq. (9) to show that

f (fVg—gVf)-ndo

N

:f/ (f Vg —gV2if)dv. (10)
D

This equation is Green’s second formula.

Conservation of mass. Letv (¢, x, y, z) be a continuously differ-
entiable vector field over the region D in space and let p (¢, x, y, 2)
be a continuously differentiable scalar function. The variable ¢
represents the time domain. The Law of Conservation of Mass
asserts that

d
E///p(t,x,y,z)dv=—f/pv-nda,
D s

where S is the surface enclosing D.

a) Give a physical interpretation of the conservation of mass
law if v is a velocity flow field and p represents the density
of the fluid at point (x, y, z) at time ¢.

b) Use the Divergence Theorem and Leibniz’s rule,

d _[ff
< [ rosons~ [[[ 2o
D D

to show that the Law of Conservation of Mass is equivalent
to the continuity equation,

ap
ar
(In the first term V « pv the variable ¢ is held fixed and in

the second term dp/at it is assumed that the point (x, y, z)
in D is held fixed.)

General diffusion equation. Let T (¢t,x,y,z) be a function
with continuous second derivatives giving the temperature at time
t at the point (x, y, z) of a solid occupying a region D in space.
If the solid’s specific heat and mass density are denoted by the
constants ¢ and p respectively, the quantity c p T is called the
solid’s heat energy per unit volume.

Vepv+ =0.

a) Explain why —VT points in the direction of heat flow.
b) Let —kVT denote the energy flux vector. (Here the con-
stant k is called the conductivity.) Assuming the Law of



that if T (¢, x) represents the temperature at time ¢ at posi-
tion x in a uniform conducting rod with perfectly insulated
sides, then V2T = 32T /dx? and the diffusion equation re-
duces to the one-dimensional heat equation in the Chapter
12 Additional Exercises.)

QUESTIONS TO GUIDE YOUR REVIEW
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Conservation of Mass with —kVT =v and cpT = p in
Exercise 31, derive the diffusion (heat) equation
aT )
— = KVT,
at
where K = k/(cp) > 0 is the diffusivity constant. (Notice
CHAPTER
1. What are line integrals? How are they evaluated? Give examples.

. How can you use line integrals to find the centers of mass of

springs? Explain.

3. What is a vector field? a gradient field? Give examples.

=

®© N2 w;

10.

11.
12.

CHAPTER

. How do you calculate the work done by a force in moving a

particle along a curve? Give an example.
What are flow, circulation, and flux?

What is special about path independent fields?

. How can you tell when a field is conservative?

. What is a potential function? Show by example how to find a

potential function for a conservative field.

. What is a differential form? What does it mean for such a form

to be exact? How do you test for exactness? Give examples.
What is the divergence of a vector field? How can you interpret
it?

What is the curl of a vector field? How can you interpret it?

What is Green’s theorem? How can you interpret it?

PRACTICE EXERCISES

13.

14.

15.

16.

17.

18.
19.
20.
21.
. How does Stokes’s theorem generalize Green’s theorem?
23.

How do you calculate the area of a curved surface in space? Give
an example.

What is an oriented surface? How do you calculate the flux of a
three-dimensional vector field across an oriented surface? Give
an example.

What are surface integrals? What can you calculate with them?
Give an example.

What is a parametrized surface? How do you find the area of
such a surface? Give examples.

How do you integrate a function over a parametrized surface?
Give an example.

What is Stokes’s theorem? How can you interpret it?
Summarize the chapter’s results on conservative fields.
What is the Divergence Theorem? How can you interpret it?

How does the Divergence Theorem generalize Green’s theorem?

How can Green'’s theorem, Stokes’s theorem, and the Divergence
Theorem be thought of as forms of a single fundamental theorem?

Evaluating Line Integrals

1.

Figure 14.82 shows two polygonal paths in space joining the
origin to the point (1, 1, 1). Integrate f (x,y,z) =2x — 3y* —
2z + 3 over each path.

. Figure 14.83 shows three polygonal paths joining the origin to

the point (1, 1, 1). Integrate f (x, y,z) = x>+ y — z over each
path.

3. Integrate f (x.y,z) = +/x2+ z? over the circle

r(¢)) =(acost)j+ (asint)k,0 <1t <2m.

14.82

Path 2

The paths in Exercise 1.



0,0,0) (11,1

CC3\’Y
4

x (1,1,0)

14.83 The paths in Exercise 2.

4. Integrate f(x, y,z) = +/x2 + y2 over the involute curve
r(t) = (cost +tsint)i+ (sint —t cost)j, 0 <t <~/3.
(See Fig. 11.20.)

Evaluate the integrals in Exercises 5 and 6.
s /“‘"3'0’ dx +dy +dz
7 JxFy+Fz

(10.3,3)
6./ dx—\/zdy—\/gdz
(11,1 y 4

7. Integrate F = —(y sin z)i+ (x sin z) j+ (xy cos z) k around
the circle cut from the sphere x? + y? 4+2z2 =5 by the plane
z = —1, clockwise as viewed from above.

—1L1L1)

8. Integrate F = 3x%yi+ (x3 4 1) j+ 9z°k around the circle cut B

from the sphere x? + y% + z2 = 9 by the plane x = 2.

Evaluate the line integrals in Exercises 9 and 10.
9. / 8x sin ydx — 8y cos x dy
c

C is the square cut from the first quadrant by the lines x = /2
and y = /2.

10. / yrdx + x*dy
c

C is the circle x2 + y?> = 4.

Evaluating Surface Integrals

11. Find the area of the elliptical region cut from the plane x + y +
z =1 by the cylinder x? + y? = 1.

12. Find the area of the cap cut from the paraboloid y? + z? = 3x
by the plane x = 1.

13. Find the area of the cap cut from the top of the sphere x2 + y2 +
z2 = 1 by the plane z = v/2/2.

Practice Exercises 1135

14. a) Find the area of the surface cut from the hemisphere

x24+y2 472 =4,z > 0, by the cylinder x*> + y? = 2x.

b) Find the area of the portion of the cylinder that lies inside the
hemisphere. (Hint: Project onto the xz-plane. Or evaluate
the integral [ hds, where h is the altitude of the cylinder
and ds is the element of arc length on the circle x? + y* =

2x in the xy-plane.)

Hemisphere
z=V4 -2

Cylinder r = 2 cos 6 y

15. Find the area of the triangle in which the plane (x/a) + (y/b) +
(z/c) = 1 (a, b, c > 0) intersects the first octant. Check your an-
swer with an appropriate vector calculation.

16. Integrate
¥z z

(x,y,20) = ——— b) gx,y,20) = ——
857 Vayr+1 815y Vayr+1

over the surface cut from the parabolic cylinder y?> —z = 1 by
the planes x = 0,x =3, and z = 0.

a)

17. Integrate g (x, y, z) = x*y(y? + z?) over the portion of the cylin-
der y? + z? = 25 that lies in the first octant between the planes
x =0 and x = 1 and above the plane z = 3.

18. CALCULATOR The state of Wyoming is bounded by the meridi-
ans 111° 3" and 104° 3’ west longitude and by the circles 41° and
45° north latitude. Assuming that the earth is a sphere of radius
R = 3959 mi, find the area of Wyoming.

Parametrized Surfaces

Find the parametrizations for the surfaces in Exercises 19-24. (There
are many ways to do these, so your answers may not be the same as
those in the back of the book.)

19. The portion of the sphere x% + y? + z? = 36 between the planes
z=-3and z =33

20. The portion of the paraboloid z = —(x2 + y?)/2 above the plane
z=-2

21. Thecone z=1+/x2+y2,z<3

22. The portion of the plane 4x + 2y + 4z = 12 that lies above the
square 0 < x < 2,0 < y <2 in the first quadrant

23. The portion of the paraboloid y = 2(x% 4+ z%), y < 2, that lies
above the xy-plane
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24. The portion of the hemisphere x2 + y? +z?> = 10, y > 0, in the
first octant

25. Find the area of the surface

rw,v) =w+v)i+w—-v)j+vk, 0<uc<l, 0<v<l.
26. Integrate f (x, y,z) = xy — z° over the surface in Exercise 25.
27. Find the surface area of the helicoid
r(r,0)=rcos@i+rsinfj+0k, 0<60<2mrandO0<r=<l,

in the accompanying figure.

28. Evaluate the integral [f /x> + y? + 1do, where S is the heli-
coid in Exercise 27.

Conservative Fields

Which of the fields in Exercises 29-32 are conservative, and which
are not?

29. F=xi+yj+zk

30. F=(xi+yj+zk)/(x2+y? +22)¥2

31. F=xe'i+yerj+ze'k

2. F=(@{+zj+yk)/(x+y2)

Find potential functions for the fields in Exercises 33 and 34.
3B.F=2i+Q2y+2j+(y+ Dk

34. F=(zcos xz)i+e"j+ (x cos xz)k

Work and Circulation
In Exercises 35 and 36, find the work done by each field along the
paths from (0,0, 0) to (1,1, 1) in Fig. 14.82.
35. F=2xyi+j+x°k 36. F=2xyi+x*j+k
37. Find the work done by
o oxi+yj
- (x2+y2)3/2
over the plane curve r(z) = (e’ cos t)i+ (¢’ sint)j from the
point (1, 0) to the point (€*7, 0) in two ways:

a) by using the parametrization of the curve to evaluate the
work integral.
b) by evaluating a potential function for F.

38. Find the flow of the field F = V (x? z¢¥)

a) once around the ellipse C in which the plane x + y +z =1
intersects the cylinder x2 + z2 = 25, clockwise as viewed
from the positive y-axis.

b) along the curved boundary of the helicoid in Exercise 27
from (1,0, 0) to (1,0, 27).

39. Suppose F (x, y) = (x + y)i— (x2 + y?) j is the velocity field of
a fluid flowing across the xy-plane. Find the flow along each of
the following paths from (1, 0) to (—1, 0).

a) The upper half of the circle x? + y? = 1

b) The line segment from (1, 0) to (—1,0)

¢) The line segment from (1,0) to (0, —1) followed by the
line segment from (0, —1) to (—1,0)

40. Find the circulation of F = 2xi+ 2zj+ 2y k along the closed
path consisting of the helix r,(t) = (cos t)i+ (sin?)j+tKk,
0<t<m/2, followed by the line segments r,(¢) =j+
/21 -nk,0<tr<l,andr;(t) =ti+ (1 —-1)j0=<r<1.

In Exercises 41 and 42, use the surface integral in Stokes’s theorem to
find the circulation of the field F around the curve C in the indicated
direction.
41. F=y%i—yj+ 322k
C: The ellipse in which the plane 2x + 6y — 3z = 6 meets
the cylinder x> 4+ y? = 1, counterclockwise as viewed from

above
42. F= (2 +y)i+x+yj+@? -2k
C: The circle in which the plane z = —y meets the sphere

x2 + y? + 72 = 4, counterclockwise as viewed from above

Mass and Moments

43. Find the mass of a thin wire lying along the curve r(t) =
V2ti+/2tj+ @ -1k, 0<t <1, if the density at ¢ is
(@)8 =3, (b)s=1.

44. Find the center of mass of a thin wire lying along the curve
r(r) =ti+ 2tj + (2/3)t3%k, 0 <t <2, if the density at ¢ is
8§=35+1.

45. Find the center of mass and the moments of inertia and radii of
gyration about the coordinate axes of a thin wire lying along the
curve

242 12
r(t):ti+Tft3/2j+§k, 0<t<2,

if the density att is § = 1/(t + 1).

46. A slender metal arch lies along the semicircle y = va? — x?
in the xy-plane. The density at the point (x, y) on the arch is

8(x, y) = 2a — y. Find the center of mass.
47. A wire of constant density § = 1 lies along the curve r(t) =
(¢" cost)i+ (¢'sint)j+e' k,0 <t <In2 Findz, I, and R,.
48. Find the mass and center of mass of a wire of constant den-
sity § that lies along the helix r(z) = (2 sin#)i+ (2 cos #)j+
3tk,0 <t <2m.



49. Find I, R,, and the center of mass of a thin shell of density
8(x,y,z) =z cut from the upper portion of the sphere x? +
y% + z2 = 25 by the plane z = 3.

50. Find the moment of inertia about the z-axis of the surface of the
cube cut from the first octant by the planes x =1,y =1, and
z =1 if the density is § = 1.

Flux Across a Plane Curve or Surface
Use Green’s theorem to find the counterclockwise circulation and
outward flux for the fields and curves in Exercises 51 and 52.
5. F= 2xy+x)i+ (xy—y)j

C: The square bounded by x =0, x =1,y =0,y =1
52. F=(y — 6x2)i+ (x + y)j

C: The triangle made by the lines y =0,y = x, and x =1
53. Show that

cos
%lnx sin ydy — ° ydx=0
x
c
for any closed curve C to which Green’s theorem applies.

54. a) Show that the outward flux of the position vector field

F = xi+ yj across any closed curve to which Green’s the-

orem applies is twice the area of the region enclosed by the

curve.

b) Let n be the outward unit normal vector to a closed curve to
which Green’s theorem applies. Show that it is not possible

for F = xi+ yj to be orthogonal to n at every point of C.

CHAPTER R}
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In Exercises 55-58, find the outward flux of F across the boundary
of D.

55. F=2xyi+2yzj+2xzk
D: The cube cut from the first octant by the planes x =1,
y=1lLz=1
56. F=xzi+yzj+ k
D: The entire surface of the upper cap cut from the solid sphere
x2 + y? 4+ z% < 25 by the plane z = 3
57. F=-2xi—3yj+zk
D: The upper region cut from the solid sphere x2 + y?+
72 < 2 by the paraboloid z = x? + y?
58. F=(6x+y)i— (x+2)j+4yzk
D: The region in the first octant bounded by the cone z =
Vx2+y?, the cylinder x2 + y> =1, and the coordinate
planes

59. Let S be the surface that is bounded on the left by the hemisphere
x2+y*+z2=a%y <0, in the middle by the cylinder x%+
72 =a%0<y <a, and on the right by the plane y = a. Find
the flux of the field F = yi+ zj + x k outward across S.

60. Find the outward flux of the field F = 3xz%i + yj — z° k across
the surface of the solid in the first octant that is bounded by the
cylinder x? + 4y? = 16 and the planes y = 2z, x =0, and z = 0.

61. Use the Divergence Theorem to find the flux of F = xyZi+
x2yj+ yk outward through the region enclosed by the cylinder
x2+y? =1 and the planes z =1 and z = —1.

62. Find the flux of F = (3z + 1) k upward across the hemisphere
x>+ y?+72=a%7>0 (a) with the Divergence Theorem,
(b) by evaluating the flux integral directly.

ADDITIONAL EXERCISES—THEORY, EXAMPLES, APPLICATIONS

Finding Areas with Green’s Theorem

Use the Green'’s theorem area formula, Eq. (22) in Exercises 14.4, to
find the areas of the regions enclosed by the curves in Exercises 1-4.

1. The limagon x =2 cos t —cos 2¢t, y = 2 sin t — sin 2¢,
0<t<2m

y y

e

o
N

2. The deltoid x =2 cos t +cos2t, y = 2 sin t — sin 2¢,
0<t<2m

3. Theeightcurve x = (1/2) sin 2¢t, y = sin t,0 < ¢t < & (one loop)
y y

1

/b
X
x 0 2a
0

-1

4. The teardrop x =2a cost —asin2t,y=bsint,0 <t <27
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Theory and Applications

5.

10.

11.

12.

a) Give an example of a vector field F (x, y, z) that has value 0
at only one point and such that curl F is nonzero everywhere.
Be sure to identify the point and compute the curl.

b) Give an example of a vector field F (x, y, z) that has value
0 on precisely one line and such that curl F is nonzero
everywhere. Be sure to identify the line and compute the
curl.

¢) Give an example of a vector field F (x, y, z) that has value
0 on a surface and such that curl F is nonzero everywhere.
Be sure to identify the surface and compute the curl.

. Find all points (a, b, ¢) on the sphere x? 4 y? + z> = R? where

the vector field F = yz?i+ xz?j + 2xyzk is normal to the sur-
face and F (a, b, c) # 0.

. Find the mass of a spherical shell of radius R such that at each

point (x, y, z) on the surface the mass density §(x, y, z) is its
distance to some fixed point (a, b, ¢) on the surface.

. Find the mass of a helicoid

r(r, 0) = (r cos )i+ (r sin 0) j + 6k,

0<r=<1, 0<6 <2, if the density function is § (x, y,z) =
2,/x? + y2. See Practice Exercise 27 for a figure.

. Among all rectangular regions 0 < x <a, 0 <y < b, find the

one for which the total outward flux of F = (x? 4+ 4xy)i — 6y j
across the four sides is least. What is the least flux?

Find an equation for the plane through the origin such that the
circulation of the flow field F = zi+ x j + y k around the circle
of intersection of the plane with the sphere x? + y2 4+ z°> =4 is
a maximum.

A string lies along the circle xr 4+ y? = 4 from (2, 0) to (0, 2) in

the first quadrant. The density of the string is p (x, y) = xy.

a) Partition the string into a finite number of subarcs to show
that the work done by gravity to move the string straight
down to the x-axis is given by

Work = lim ngk YA = / gxy*ds,

n—oo =1 C
where g is the gravitational constant.

b) Find the total work done by evaluating the line integral in
part (a).

¢) Show that the total work done equals the work required to
move the string’s center of mass (X,y) straight down to
the x-axis.

A thin sheet lies along the portion of the plane x + y +z =1 in
the first octant. The density of the sheet is § (x, y, z) = xy.

a) Partition the sheet into a finite number of subpieces to show
that the work done by gravity to move the sheet straight
down to the xy-plane is given by

Work = lim E g X Y 2 Aoy =//gxyzda,
n—nc
k=1
s

where g is the gravitational constant.

13.

14.

15.

b) Find the total work done by evaluating the surface integral
in part (a).

¢) Show that the total work done equals the work required to
move the sheet’s center of mass (X,y,Zz) straight down to
the xy-plane.

Archimedes’ principle. If an object such as a ball is placed in
a liquid, it will either sink to the bottom, float, or sink a certain
distance and remain suspended in the liquid. Suppose a fluid has
constant weight density w and that the fluid’s surface coincides
with the plane z = 4. A spherical ball remains suspended in the
fluid and occupies the region x? + y*> + (z — 2)? < 1.

a) Show that the surface integral giving the magnitude of the

total force on the ball due to the fluid’s pressure is

Force = lim E w(4—zk)Aok=//w(4—z)da.
n—oc =1
s

b) Since the ball is not moving, it is being held up by the
buoyant force of the liquid. Show that the magnitude of the
buoyant force on the sphere is

Buoyant force = // w(z—4)k - ndo,
s

where n is the outer unit normal at (x, y, z). This illustrates
Archimedes’ principle that the magnitude of the buoyant
force on a submerged solid equals the weight of the dis-
placed fluid.

¢) Use the Divergence Theorem to find the magnitude of the
buoyant force in part (b).

Fluid force on a curved surface. A cone in the shape of the
surface z = /x2 + y2,0 < z < 2, is filled with a liquid of con-
stant weight density w. Assuming the xy-plane is “ground level,”
show that the total force on the portion of the cone from z = 1
to z = 2 due to liquid pressure is the surface integral

F=//w(2—z)du.
S

Evaluate the integral.

Faraday’s law. If E(t,x,y,z) and B (¢, x, y, z) represent the
electric and magnetic fields at point (x, y, z) at time ¢, a basic
principle of electromagnetic theory says that V x E = —9B/d:.
In this expression V x E is computed with ¢ held fixed and 9B /d¢
is calculated with (x, y, z) fixed. Use Stokes’s theorem to derive
Faraday’s law

¢ E-dr:—i//B~nda,
. ot
s

where C represents a wire loop through which current flows
counterclockwise with respect to the surface’s unit normal n,
giving rise to the voltage

% E.dr
c

around C. The surface integral on the right side of the equation



16.

17.

18.

is called the magnetic flux, and S is any oriented surface with
boundary C.
Let
GmM
r
Ir?

be the gravitational force field defined for r # 0. Use Gauss’s law
in Section 14.8 to show that there is no continuously differentiable
vector field H satisfying F = V x H.

If f (x,y,2) and g (x, y, z) are continuously differentiable scalar
functions defined over the oriented surface S with boundary curve
C, prove that

//(foVg)-nda:%Cng-dr.

N

Suppose that V. F, =V :F, and VxF, =V xF, over a
region D enclosed by the oriented surface S with outward unit

Additional Exercises-Theory, Examples, Applications

19.
20.

21.
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normal n and that F, cn=F, - n on S. Prove that F, =F,
throughout D.
Prove or disprove that if V- F=0and V x F =0, then F = 0.
Let S be an oriented surface parametrized by r(u, v). Define the
notation do =r, du x r, dv so that do is a vector normal to
the surface. Also, the magnitude do = |do| is the element of
surface area (by Eq. 5 in Section 14.6). Derive the identity

do = (EG — F)'?dudv
where
and G =|r,|%.

E= Irulzs F =T, I,

Show that the volume V of a region D in space enclosed by the
oriented surface S with outward normal n satisfies the identity

1
V:gffr-nda,

N

where r is the position vector of the point (x, y, z) in D.






