COMPLEX NUMBERS
Class X1

1+7i
(2-i)?

Q.1) Convert the given complex number into polar form z =

Sol.1) | _ 1+7i
ICEDE
First, we have to convert in to standard form
1+7i

P4
z=22 (i2=-1)

7i . .
z = ——then rationalize
3—4i

1+7i 3+4i
X
3—4i 3+4i
3+4i+21i—28
9+16
—25+ 251

25
z = —1+i (standard form)

Here,a=—1andb =1
Now, r|z| = Va2 + b?
r=VIti=v2

b 1
tana = |—‘ = |—| =|-1]=1
a -1

=>tana =1
TC
>a=-
4

Now, z is in 2"¢ quadrant
“0=nm—«
p m  3m
=7 ——=—
4 4

Polar form: z = r(cos 8 + i sin 8)
zZ = \/f(cos%n+ isin%n) ans.

. . -16
Q.2) Convert the given complex number in to polar form z = i3

Sol.2 — _~16

) We have, z i3
~16_ o (1-iv3)
1+iV3 7 (1-iV3)
_ —16+i16v3
2= T D3
_ —16+i16v3
Z= 4
z=—4+ 43
Here,a = —4 and b = 4/3
Now, r = Va2 + b2 =16 + 48 =64 =8
~1T =8

Rationalize z =

— |-V3| = V3

tana = |—
a

b‘_ 443
-4




= tana =3
Sq=-=
3
Now, z is in 2"¢ quadrant
s0=nm—a
p T 2n
= 7-[ —— T —
3 3
Polar form: z = r(cos 0 + i sin 8)

21 . . 2T
zZ = 8(cos?+15m?) ans.

. . i-1
Q3) Convert the given complex number in to polar form z = ———=
COS§+lSln§
i-1
SO|3) We have, Z =7 =
CcOoS—+1Sin—-
3 3
o, = Tt
271w
2 2
o= —242i
T 1+4iV3

@+20) (1-iv3)
(1+iv3) ~ (1-iv3)
—2 4 2+/3i 4 2i — 2+/3i2

Rationalize z =

Z= 1-3:2
_ —2+42V3i+2i-2V3
Z= 1+3

Z:(Z\/§—2)+i(2\/§+2)

4 4
_(V3+1\ (V3B +1
= (5)+(5)

_ V3+1
2

V3-1
Now, r = Va? + b2

-

\/3+1—2\/§ n 3+1+2V3

>r =

4 4
_ e
=>r—/4—\ﬁ—\/§
N

Sr =

o

b +
tana = |—‘ = 2
a

P

2
V3+1
V3-1
Divide by\/§
1

1+
= tana = —2

V3

tan(%)+tan(%)

W ...................

=tana =

Stana = {=tan(4 + B)}




19

)

= tan o = tan (—T[

51
S>a=—
12
since, z is in 1% quadrant
0 =«
p 5t
12

Polar form: z = r(cos 0 + i sin §)

51 . . b5m
Z = \/E(COSE-F lSll‘lE) ans.

=>tana =tan(

S

=

Finding the value of a POYNOMIAL:-

Q.4) If x = —5 + 2v/—4. Find the value of x* + 9x3 + 35x% — x + 4

Sol.4) | We have, x = =5+ 2v/—4

=X =544 e (V=4 =2i}
=>x+5=4i
Squaring

= x% + 25+ 10x = 16i?
=x%+25+10x = 16
=>x2+10x+41=0

X%+ 10x+41 ) x* + 9x3 +35x2 —x + 4
-(x* + 10x3 + 41x3)
—x3 —6x° —x +4
—(—x3 — 10x% — 41x)
4x7 + 40x + 4
—(4x% + 40x + 164)
—160
Now x* +9x3 +35x2 —x + 4 = (x?> + 10x + 41)(x?> —x + 4) — 16 .....{dividend =
(division)(quotient) + remainder}
S>x*+9x3+35x2 —x+4=0x%—x+4)—160 ......... from eq.(i)

= —160 ans.

Q.5) Find the value of x3 + 7x? — x + 16 whenx = 1 + 2i

Sol.5) | Wehave, x =1+ 2i
=>x—1=2i

Squaring

= x% +1—2x = 4i?
=>x2+1-2x=—4
5x2—2x+5=0 ... eq.(i)

Now, x+9
x2—2x+5 Y23 +7x2 —x+16
-(x® + 2x% 4+ 5x)

9x2 — 6x + 16
—(-9x" — 18x + 35)
12x — 29

{dividend = (division)(quotient) + remainder}
ax3+7x%2 —x+16=(x2-2x+5)(x+9)+12x — 29

=0(x+9)+12x —29 .........w x2=2x+5=0 fromeq. (i)

=12x—29

=12(1+ 2i) — 29
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=12+ 24i — 29
= —17 + 24i ans.

Square Root Of A Complex Numbers:-

Q.6)

Find v—15 — 8i

Sol.6)

Letx + iy =V—-15—8(

Squaring

x% +i%y? + 2ixy = 15 — 8i

= (x® +y?) + 2ixy = =15 — 8i
Equating real & imaginary parts
:>x2_y2 =—15.......... (i)

And 2xy = —8

Now (x2 + y2)% = (x2 + y2)% + (2xy)?
(2 +y?)? = (-15)% + (-8)?
(x? + y2)? = 289

:xz + y2 =17 weeerenn (11)
Adding eq. (i) & (ii)

= (2 —y2) 4+ (x2 + y2) = —15+ 17
= 2x?% =

>x2=1

=>x==*1

Put x% = 1in eq. (ii)
=>1+y?=17

=>y2=16

>y=zy

Now, V—15 — 8i = +(1 — 4i) ans.

(to be remembered)

Q.7)

Find the value of square of 1 — i

Sol.7)

Letx +iy=v1—1i

Squaring

x2+i%y? +2ixy=1—1i

= +y) +2ixy=1-1i
Equating real & imaginary parts
5x2—y2 =1 (i)

And 2xy = —1

Now (x2 + y2)? = (x2 + y2)? + (2xy)?
=>x*+y)P=1+1

> (2 +y?)? =2

= x2 + y2 = \/i ........... (ll)

Adding eq. (i) & (ii)

= (2 =y + (x® +y) =V2 +1
=>2x2=2+1

V2+1
= x? = -

Sx =+ /\/5;1

Put x2 = @ in eq. (ii)

:>\/72+1+y2:\/§

(to be remembered)




=2 =2 (\/5+1)

2

2V2-V2-1
=>y? = —

V2-1
=>y= / >
Now,1—i = i( fﬁ;l— f%l) ans.

On Equality:-

Q.8)

Find real value of x + y for which the complex numbers —3 + ix?y and x2 + y + 4i and are
conjugate of each other.

Sol.8)

—3 + ix%y and x2 + y + 4i are conjugate of each other

=>-3+ix2y=(x2+y)+4

=>-3+ix2y=(x%+y)—4i

Equating real & imaginary parts

=>x?+y=-3Andx%y = —4

“(=3-y)y=—4

=>-3+y2=-4

=>y2+3y—4=0

>@G+Hy-1D=0

>y=—4andy=1

Put x%y = —4
when, y = —4 wheny =1
x?(—4) = —4 x?(1) = —4
x2=1 x2=—4
x==*1 x = +2i

~x=12landy = —4ans.

Q.9)

1
If (x + iy)3 = a + ib, show that g + % = 4(a? — b?)

Sol.9)

We have, (x + iy)§ =a+ib
cubing both sides
x +iy = (a +ib)3
= x + iy = a3 +i3b3 + 3a?(ib) + 3a(i?*b?)
=>x+iy=a3—i3bh3+ 3a?b — 3ab?
= x +iy = (a® — 3ab?) + i(—b3 + 3a?h)
Equating real & imaginary parts
x =a®—3ab?andy = —b3 + 3a?b
Taking L.H.S. g + %
Putting the values of x and y
(a® — 3ab?) N (=b3 + 3a?b)

a b
a(a? — 3b?) N b(—b3 + 3a?)

= 4(a? — b?) RHS (proved)

Q.10)

2c
c2-1

Ifa +ib = z—: show thats = and hence show a? + b? =1




S0l.10) | we have, a + ib = E—:
c+i cH+i
- X ;
c—1 2c +1
>a+ib= (C;l,)z
ce—l
c2+i2+42ic
( 2c2+)1
c“—-1 2ic
c?+1 + c?+1
Equating real & imaginary parts
c%2-1 2¢

and b =
c2+1 ) c2+1
c

a+ib=

>a+ib=

>a+ib=

a =

c2-1
c2-1
cZ+1

2
" szl (proved)

2_4\2 2
Now a? + b? = (CZ 1) +( ZZC )
c2+1 c2+1
_c*+1-2¢? 4c?
(c?2+1)? (c?2+1)?
_c*+2c%41
T (c2+1)2
_ (@)’
T (c2+41)2
a? + b? = 1 (proved)

b
Now — =
a

b




