
 

 COMPLEX NUMBERS 
Class XI 

 

Q.1) Convert the given complex number into polar form 𝑧 =
1+7𝑖

(2−𝑖)2      

Sol.1) 
𝑧 =

1 + 7𝑖

(2 − 𝑖)2
 

First, we have to convert in to standard form  

𝑧 =
1 + 7𝑖

4 + 𝑖2 − 4𝑖
 

𝑧 =
1+7𝑖

4−1−4𝑖
 ………… {𝑖2 = −1} 

𝑧 =
1−7𝑖

3−4𝑖
 then rationalize 

𝑧 =
1 + 7𝑖

3 − 4𝑖
×

3 + 4𝑖

3 + 4𝑖
 

𝑧 =
3 + 4𝑖 + 21𝑖 − 28

9 + 16
 

𝑧 =
−25 + 25𝑖

25
 

𝑧 = −1 + 𝑖 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑓𝑜𝑟𝑚) 
Here, 𝑎 = −1 and 𝑏 = 1 

Now, 𝑟|𝑧| = √a2 + b2 

𝑟 = √1 + 1 = √2 

tan 𝛼 = |
𝑏

𝑎
| = |

1

−1
| = |−1| = 1 

⇒ tan 𝛼 = 1 

⇒ 𝛼 =
π

4
 

Now, 𝑧 is in 2nd quadrant 
∴ 𝜃 = 𝜋 − 𝛼 

𝜃 = 𝜋 −
𝜋

4
=

3𝜋

4
 

Polar form: 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) 

𝑧 = √2 (cos
3𝜋

4
+ 𝑖 sin

3𝜋

4
) ans. 

 

Q.2) Convert the given complex number in to polar form 𝑧 =
−16

1+𝑖√3
  

Sol.2) We have, 𝑧 =
−16

1+𝑖√3
 

Rationalize 𝑧 =
−16

1+𝑖√3
×

(1−𝑖√3)

(1−𝑖√3)
 

𝑧 =
−16 + 𝑖16√3

1 − 3𝑖2
 

𝑧 =
−16 + 𝑖16√3

4
 

𝑧 = −4 +  𝑖4√3 

Here, 𝑎 = −4 and 𝑏 = 4√3 

Now, 𝑟 = √a2 + b2 = √16 + 48 = √64 = 8 
∴ 𝑟 = 8 

tan 𝛼 = |
𝑏

𝑎
| = |

4√3

−4
| = |−√3| = √3 

 



 

⇒ tan 𝛼 = √3 

⇒ 𝛼 =
π

3
 

Now, 𝑧 is in 2nd quadrant 
∴ 𝜃 = 𝜋 − 𝛼 

𝜃 = 𝜋 −
𝜋

3
=

2𝜋

3
 

Polar form: 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) 

𝑧 = 8 (cos
2𝜋

3
+ 𝑖 sin

2𝜋

3
) ans. 

Q.3) Convert the given complex number in to polar form 𝑧 =
𝑖−1

cos
𝜋

3
+𝑖 sin

𝜋

3

  

Sol.3) We have, 𝑧 =
𝑖−1

cos
𝜋

3
+𝑖 sin

𝜋

3

 

⇒ 𝑧 =
−1+𝑖

1

2
+

𝑖√3

2

 

⇒ 𝑧 =
−2+2𝑖

1+𝑖√3
 

Rationalize 𝑧 =
(2+2𝑖)

(1+𝑖√3)
×

(1−𝑖√3)

(1−𝑖√3)
 

𝑧 =
−2 + 2√3𝑖 + 2𝑖 − 2√3𝑖2

1 − 3𝑖2
 

𝑧 =
−2 + 2√3𝑖 + 2𝑖 − 2√3

1 + 3
 

𝑧 =
(2√3 − 2)

4
+

𝑖(2√3 + 2)

4
 

𝑧 = (
√3 + 1

1
) + 𝑖 (

√3 + 1

2
) 

Here, 𝑎 =
√3−1

2
 and 𝑏 =

√3+1

2
 

Now, 𝑟 = √a2 + b2 

= √(
√3 − 1

2
)

2

+ (
√3 + 1

2
)

2

 

⇒ 𝑟 = √3+1−2√3

4
+

3+1+2√3

4
 

⇒ 𝑟 = √
4+4

4
= √

8

4
= √2 

⇒ 𝑟 = √2 

tan 𝛼 = |
𝑏

𝑎
| = |

√3 + 1
2

√3 − 1
2

| 

⇒ tan 𝛼 =
√3+1

√3−1
 

Divide by √3 

⇒ tan 𝛼 =
1+

1

√3

1−
1

√3

 

⇒ tan 𝛼 =
tan(

𝜋

4
)+tan(

𝜋

6
)

1−tan(
𝜋

4
)+tan(

𝜋

6
)
………………. {= tan(𝐴 + 𝐵)} 
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⇒ tan 𝛼 = tan (
𝜋

4
+

𝜋

6
) 

⇒ tan 𝛼 = tan (
5𝜋

12
) 

⇒ 𝛼 =
5𝜋

12
 

since, 𝑧 is in 1st quadrant 
∴ 𝜃 = 𝛼 

𝜃 =
5𝜋

12
 

Polar form: 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) 

𝑧 = √2 (cos
5𝜋

12
+ 𝑖 sin

5𝜋

12
) ans. 

 Finding the value of a POYNOMIAL:-  

Q.4) If 𝑥 = −5 + 2√−4. Find the value of 𝑥4 + 9𝑥3 + 35𝑥2 − 𝑥 + 4  

Sol.4) We have, 𝑥 = −5 + 2√−4 

⇒ 𝑥 = −5 + 4𝑖 ………….. {√−4 = 2𝑖} 

⇒ 𝑥 + 5 = 4𝑖 
Squaring 
⇒ 𝑥2 + 25 + 10𝑥 = 16𝑖2 
⇒ 𝑥2 + 25 + 10𝑥 = 16 
⇒ 𝑥2 + 10𝑥 + 41 = 0 
 
𝑥2 + 10𝑥 + 41 𝑥4 + 9𝑥3 + 35𝑥2 − 𝑥 + 4 
 -(𝑥4 + 10𝑥3 + 41𝑥2) 

 −𝑥3 − 6𝑥2 − 𝑥 + 4 
  −(−𝑥3 − 10𝑥2 − 41𝑥) 
   4𝑥2 + 40𝑥 + 4 
       −(4𝑥2 + 40𝑥 + 164) 
  −160 
Now 𝑥4 + 9𝑥3 + 35𝑥2 − 𝑥 + 4 = (𝑥2 + 10𝑥 + 41)(𝑥2 − 𝑥 + 4) − 16 …….{𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 =
(𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛)(𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡) + 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟} 
⇒ 𝑥4 + 9𝑥3 + 35𝑥2 − 𝑥 + 4 = 0(𝑥2 − 𝑥 + 4) − 160 ……….. from eq.(i) 
  = −160 ans. 

 

Q.5) Find the value of 𝑥3 + 7𝑥2 − 𝑥 + 16 when 𝑥 = 1 + 2𝑖  

Sol.5) We have, 𝑥 = 1 + 2𝑖 
⇒ 𝑥 − 1 = 2𝑖 
Squaring 
⇒ 𝑥2 + 1 − 2𝑥 = 4𝑖2 
⇒ 𝑥2 + 1 − 2𝑥 = −4 
⇒ 𝑥2 − 2𝑥 + 5 = 0 ………… eq.(i) 
Now,  𝑥 + 9 
   𝑥2 − 2𝑥 + 5    𝑥3 + 7𝑥2 − 𝑥 + 16 
 -(𝑥3 + 2𝑥2 + 5𝑥) 
 

     9𝑥2 − 6𝑥 + 16 

  − (−9𝑥2 − 18𝑥 + 35) 

   12𝑥 − 29  
{𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 = (𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛)(𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡) + 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟} 
∴ 𝑥3 + 7𝑥2 − 𝑥 + 16 = ( 𝑥2 − 2𝑥 + 5)(𝑥 + 9) + 12𝑥 − 29    
  = 0(𝑥 + 9) + 12𝑥 − 29   …………∵  𝑥2 − 2𝑥 + 5 = 0 𝑓𝑟𝑜𝑚 𝑒𝑞. (𝑖) 
  = 12𝑥 − 29 
  = 12(1 + 2𝑖) − 29 

 



 

  = 12 + 24𝑖 − 29 
  =  −17 + 24𝑖 ans. 

 Square Root Of A Complex Numbers:-  

Q.6) Find √−15 − 8𝑖  

Sol.6) Let 𝑥 + 𝑖𝑦 = √−15 − 8𝑖 
Squaring  
𝑥2 + 𝑖2𝑦2 + 2𝑖𝑥𝑦 = 15 − 8𝑖 
⇒ (𝑥2 + 𝑦2) + 2𝑖𝑥𝑦 = −15 − 8𝑖 
Equating real & imaginary parts 
⇒ 𝑥2 − 𝑦2 = −15 ……….. (i) 
And 2𝑥𝑦 = −8 
Now (𝑥2 + 𝑦2)2 = (𝑥2 + 𝑦2)2 + (2𝑥𝑦)2 …………… (𝑡𝑜 𝑏𝑒 𝑟𝑒𝑚𝑒𝑚𝑏𝑒𝑟𝑒𝑑) 
(𝑥2 + 𝑦2)2 = (−15)2 + (−8)2 
(𝑥2 + 𝑦2)2 = 289 
⇒ 𝑥2 + 𝑦2 = 17 ……….. (ii) 
Adding eq. (i) & (ii) 
⇒ (𝑥2 − 𝑦2) + (𝑥2 + 𝑦2) = −15 + 17 
⇒ 2𝑥2 = 2 
⇒ 𝑥2 = 1 
⇒ 𝑥 = ±1 
Put 𝑥2 = 1 in eq. (ii) 
⇒ 1 + 𝑦2 = 17 
⇒ 𝑦2 = 16 
⇒ 𝑦 = ±𝑦 

Now, √−15 − 8𝑖 = ±(1 − 4𝑖) ans.  

 

Q.7) Find the value of square of 1 − 𝑖  

Sol.7) Let 𝑥 + 𝑖𝑦 = √1 − 𝑖 
Squaring  
𝑥2 + 𝑖2𝑦2 + 2𝑖𝑥𝑦 = 1 − 𝑖 
⇒ (𝑥2 + 𝑦2) + 2𝑖𝑥𝑦 = 1 − 𝑖 
Equating real & imaginary parts 
⇒ 𝑥2 − 𝑦2 = 1 ……….. (i) 
And 2𝑥𝑦 = −1 
Now (𝑥2 + 𝑦2)2 = (𝑥2 + 𝑦2)2 + (2𝑥𝑦)2 …………… (𝑡𝑜 𝑏𝑒 𝑟𝑒𝑚𝑒𝑚𝑏𝑒𝑟𝑒𝑑) 
⇒ (𝑥2 + 𝑦2)2 = 1 + 1 
⇒ (𝑥2 + 𝑦2)2 = 2 

⇒ 𝑥2 + 𝑦2 = √2 ……….. (ii) 
Adding eq. (i) & (ii) 

⇒ (𝑥2 − 𝑦2) + (𝑥2 + 𝑦2) = √2 + 1 

⇒ 2𝑥2 = √2 + 1 

⇒ 𝑥2 =
√2+1

2
 

⇒ 𝑥 = ±√√2+1

2
 

Put 𝑥2 =
√2+1

2
 in eq. (ii) 

⇒ 
√2+1

2
+ 𝑦2 = √2 

 



 

⇒ 𝑦2 = √2 − (
√2+1

2
) 

⇒ 𝑦2 =
2√2−√2−1

2
 

⇒ 𝑦 = √√2−1

2
 

Now, 1 − 𝑖 = ± (√√2+1

2
− √√2−1

2
𝑖) ans. 

 On Equality:-  

Q.8) Find real value of 𝑥 + 𝑦 for which the complex numbers −3 + 𝑖𝑥2𝑦 and 𝑥2 + 𝑦 + 4𝑖 and are 
conjugate of each other. 

 

Sol.8) −3 + 𝑖𝑥2𝑦 and 𝑥2 + 𝑦 + 4𝑖 are conjugate of each other 

⇒ −3 + 𝑖𝑥2𝑦 = (𝑥2 + 𝑦) + 4𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
⇒ −3 + 𝑖𝑥2𝑦 = (𝑥2 + 𝑦) − 4𝑖 
Equating real & imaginary parts 
⇒ 𝑥2 + 𝑦 = −3 And 𝑥2𝑦 = −4 
∴ (−3 − 𝑦)𝑦 = −4 
⇒ −3 + 𝑦2 = −4 
⇒ 𝑦2 + 3𝑦 − 4 = 0 
⇒ (𝑦 + 4)(𝑦 − 1) = 0 
⇒ 𝑦 = −4 and 𝑦 = 1 
Put 𝑥2𝑦 = −4 

when, 𝑦 = −4 
𝑥2(−4) = −4 
𝑥2 = 1 
𝑥 = ±1 

when 𝑦 = 1 
𝑥2(1) = −4 
𝑥2 = −4 
𝑥 = ±2𝑖 

∴ 𝑥 = ±1 𝑎𝑛𝑑 𝑦 = −4 ans. 

 

Q.9) If (𝑥 + 𝑖𝑦)
1

3 = 𝑎 + 𝑖𝑏, show that 
𝑥

𝑎
+

𝑦

𝑏
= 4(𝑎2 − 𝑏2)  

Sol.9) We have, (𝑥 + 𝑖𝑦)
1

3 = 𝑎 + 𝑖𝑏 
cubing both sides 
𝑥 + 𝑖𝑦 = (𝑎 + 𝑖𝑏)3 
⇒ 𝑥 + 𝑖𝑦 = 𝑎3 + 𝑖3𝑏3 + 3𝑎2(𝑖𝑏) + 3𝑎(𝑖2𝑏2) 
⇒ 𝑥 + 𝑖𝑦 = 𝑎3 − 𝑖3𝑏3 + 3𝑎2𝑏 − 3𝑎𝑏2 
⇒ 𝑥 + 𝑖𝑦 = (𝑎3 − 3𝑎𝑏2) + 𝑖(−𝑏3 + 3𝑎2𝑏) 
Equating real & imaginary parts 
𝑥 = 𝑎3 − 3𝑎𝑏2 and 𝑦 = −𝑏3 + 3𝑎2𝑏 

Taking L.H.S.  
𝑥

𝑎
+

𝑦

𝑏
 

Putting the values of 𝑥 and 𝑦 

=
(𝑎3 − 3𝑎𝑏2)

𝑎
+

(−𝑏3 + 3𝑎2𝑏)

𝑏
 

=  
𝑎(𝑎2 − 3𝑏2)

𝑎
+

𝑏(−𝑏3 + 3𝑎2)

𝑏
 

=  𝑎2 − 3𝑏2 − 𝑏3 + 3𝑎2 
=  4𝑎2 − 3𝑏2 
= 4(𝑎2 − 𝑏2) RHS (proved) 

 

Q.10) If 𝑎 + 𝑖𝑏 =
𝑐+𝑖

𝑐−𝑖
 show that 

𝑏

𝑎
=

2𝑐

𝑐2−1
 and hence show 𝑎2 + 𝑏2 = 1  



 

Sol.10) We have, 𝑎 + 𝑖𝑏 =
𝑐+𝑖

𝑐−𝑖
 

𝑎 + 𝑖𝑏 =
𝑐 + 𝑖

𝑐 − 𝑖
×

𝑐 + 𝑖

𝑐 + 𝑖
 

⇒ 𝑎 + 𝑖𝑏 =
(𝑐+𝑖)2

𝑐2−𝑖2  

⇒ 𝑎 + 𝑖𝑏 =
𝑐2+𝑖2+2𝑖𝑐

𝑐2+1
 

⇒ 𝑎 + 𝑖𝑏 =
(𝑐2−1)

𝑐2+1
+

2𝑖𝑐

𝑐2+1
 

Equating real & imaginary parts 

𝑎 =
𝑐2−1

𝑐2+1
 and 𝑏 =

2𝑐

𝑐2+1
 

Now 
𝑏

𝑎
=

2𝑐

𝑐2−1
𝑐2−1

𝑐2+1

 

⇒ 
𝑏

𝑎
=

2𝑐

𝑐2−1
 (proved) 

Now 𝑎2 + 𝑏2 = (
𝑐2−1

𝑐2+1
)

2

+ (
2𝑐

𝑐2+1
)

2
 

  =  
𝑐4+1−2𝑐2

(𝑐2+1)2 +
4𝑐2

(𝑐2+1)2 

  =  
𝑐4+2𝑐2+1

(𝑐2+1)2  

  =  
(𝑐2+1)

2

(𝑐2+1)2 

𝑎2 + 𝑏2 = 1 (proved) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


