		XI Maths Worksheet		
	Time: 60 min	Chapter#4 : Principle of Mathematical Induction	Full Marks:	
0.1	Lat D (n) ha th	a statement $p(n + 1)$ is an even number then find $D(6) = (1 - 1)^{1/2}$		
Q.1 Q.2		is an even number then find P(6). (1 mark)		
Q.Z		wing by using the principle of mathematical induction for all $n \in N$ $3^3 + + n \cdot 3^n = \frac{(2n-1)3^{n+1} + 3}{4}$	(5 marks)	
Q.3		wing by using the principle of mathematical induction for all $n \in N$ $\frac{1}{(1+2+3)} + \dots + \frac{1}{(1+2+3+\dots n)} = \frac{2n}{(n+1)}$	(5 marks)	
Q.4	Prove by using marks)	Prove by using the principle of mathematical induction $3^{2n} - 1$ is divisible by 8 for $n \in N$. (3 marks)		
Q.5		wing by using the principle of mathematical induction for all $n \in N$ - $3^{n-1} = \frac{(3^n - 1)}{2}$	(3 marks)	
Q.6	-	g the principle of mathematical induction for all n∈N. + + $(2n - 1)(2n + 1) = \frac{n(4n^2 + 6n - 1)}{2}$		
Q.7		g the principle of mathematical induction for all nεN:		
Q	•	$\dots + 3^{n-1} = \frac{3^n - 1}{2}$		
Q.8	Prove that the (3 marks)	product of two consecutive natural numbers is an even number.		
Q.9	Prove the follo	wing by using the principle of mathematical induction for all $n \in N$	(3 marks)	
	(2n +7) < (n +	3) ²		
Q.10	•	ple of mathematical induction to prove that +(4n-3) = n(2n-1), n∈N		
Q.11	Prove that : 2.7 ⁿ + 3.5 ⁿ - 5	is divisible by 24 for all $n \in \mathbb{N}$.		
Q.12	Prove the follo	wing by using the principle of mathematical induction for all $n \in N$	(3 marks)	
	$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)$	$\left(1+\frac{7}{9}\right)\left(1+\frac{(2n+1)}{n^2}\right) = (n+1)^2$		
Q.13	Prove by using	g the principle of mathematical induction $3^n < 4^n$ for all $n \in \mathbb{N}$. (3)	marks)	
Q.14	For every pos	tive integer n, prove that 7^n - 3^n is divisible by 4.		
Q.15	prove by using (2n+7) < (n+3	the principle of mathematical induction for $n \in \mathbb{N}$:		

Q.16 Prove the following by using the principle of mathematical induction for all $n \in N$: (3 marks)

 $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$

- Q.17 Suppose P(n): n(n+1)(n+2) is divisible by 6. Show that P(1), P(2) and P(3) are true. (1 mark)
- Q.18 Let P(n) be the statement $n^2 > 25$, prove that whenever P(k) is true, P(k + 1) is also true. (2 marks)
- Q.19 Let P(n) be the statement " $n^2 n + 41$ is prime". Show that P(1), P(2), P(3) are true whereas P(41) is not true. (2 marks)
- Q.20 Explain the principle of mathematical induction. (1 mark)