	SEQUENCE AND SERIES			
Q.1)	Class XI The sum of n terms of two A.P.'S are in the ratio $(3n + 8)$: $(7n + 15)$. Find the ratio of			
0.14	their 12 th terms.			
Sol.1)		Lord 4 5		
	1 1st A.P.	2 nd A.P.		
	First term: a	First term: a^1		
	Difference: d	Difference: d ¹		
	12 th term: a_{12}	12^{th} term: a_{12}^1		
	Sum: S_n	Sum: S_n^1		
	To find: $\frac{a_{12}}{a_{1_{12}}}$ i.e., $\frac{a+11d}{a^1+11d^1}$			
	$a_{12} = a_{1} + 11a_{1}$ $S_{n} = 3n + 18$			
	Given: $\frac{S_n}{S_n^1} = \frac{3n+18}{7n+15}$			
	$\Rightarrow \frac{\frac{n}{2}[2a+(n-1)d]}{\frac{n}{2}[2a^{1}+(n-1)d^{1}]} = \frac{3n+8}{7n+15}$			
	$\Rightarrow \frac{[2a+(n-1)d]}{[2a^1+(n-1)d^1]} = \frac{3n+8}{7n+15}$			
	$[2a^{1}+(n-1)d^{1}]$ 7n+15 Put $n=23$ both the sides			
	$\Rightarrow \frac{2a + 22d}{2a^1 + 22d^1} = \frac{69 + 8}{161 + 15}$			
	$\Rightarrow \frac{2(a+11d)}{2(a^1+11d^1)} = \frac{77}{176}$			
	$\Rightarrow \frac{a_{12}}{a_{12}^1} = \frac{7}{16}$			
	Hence, the required ratio is 7: 16 ans.			
Q.2)		of an A.P.'S is m^2 : n^2 show that the ratio of the m^{th}		
	term and n^{th} terms is $(2m-1)$: $(2n-1)$.			
Sol.2)	To prove: $\frac{a_m}{a_n} = \frac{2m-1}{2n-1}$			
	Given: $\frac{S_m}{S_n} = \frac{m^2}{n^2}$			
	$\Rightarrow \frac{\frac{m}{2}[2a + (m-1)d]}{\frac{n}{2}[2a^{1} + (n-1)d^{1}]} = \frac{m^{2}}{n^{2}}$			
	$\frac{1}{2} \frac{n}{2} [2a^1 + (n-1)d^1] - \frac{n^2}{n^2}$			
	$\Rightarrow \frac{2a + (m-1)d}{2a + (n-1)d} = \frac{m}{n}$			
	$\Rightarrow 2an + (nm - n)d = 2am + (nm - m) \cdot d = 0$			
	$\Rightarrow 2a(n-m) + d(nm - n - nm + m) = 0$ \Rightarrow 2a(n-m) - d(n-m) = 0			
	$\Rightarrow 2a(n-m) - a(n-m) = 0$ $\Rightarrow (n-m)[2a-d] = 0$			
	$\Rightarrow (n - m)[2a - a] = 0$ $\Rightarrow (2a - d) = 0$			
	$\Rightarrow d = 2a$			
	** = **			
	Now, $\frac{a_m}{a_n} = \frac{a + (m-1)(2a)}{a + (n-1)(2a)}$			
	$= \frac{a + (1 + 2m - 2)}{a + (1 + 2n - 2)}$			
	$\Rightarrow \frac{a_m}{a_n} = \frac{2m-1}{2n-1} \text{ (proved)}$			
Q.3)	If the sum of n terms of an A.P. is pn	$+qn^2$. Find the common difference.		
Sol.3)	We have, $S_n = pn + qn^2$.			
	Put $n = 1$, $S_1 = p + q$			
	$\Rightarrow a_1 = p + q \dots \{ : S_1 = a_1 = a_2 \}$	$\{a_1\}$		
	Put $n = 2$, $S_2 = 2p + 4q$			

	$\rightarrow a + a - 2m + 4a$ (u. $C - a + a$)		
	$\Rightarrow a_1 + a_2 = 2p + 4q \dots \{ : S_1 = a_1 + a_2 \}$ $\Rightarrow p + q + a_2 = 2p + 4q$		
	$\Rightarrow p + q + u_2 - 2p + 4q$ $\Rightarrow a_2 = p + 3q$		
	Now, $d = a_2 - a_1$		
	= (p+3q)-(p+q)		
	d = 2q ans.		
Q.4)	The interior angles of a polygon are in A.P. The smallest angle is 120° & he common		
	difference is 5° . Find the number of sides of the polygon.		
Sol.4)	Let $n \to no$. of sides in the polygon		
	Interior angles form an A.P. with $a=120^{\circ}$, $d=5^{\circ}$, no. of term $=n$		
	Then, $S_n = \frac{n}{2} [240 + (n-1)5]$		
	$= \frac{n}{2}[240 + 5n - 5]$		
	$S_n = \frac{n}{2} [5n + 235]$ (i)		
	Also, sum of all interior angles in any polygon with n-sides $=(n-2)\times 180^{\circ}$ (ii)		
	Equation (i) & (ii)		
	$\Rightarrow \frac{n}{2}[5n+235] = (n-2) \times 180^{\circ}$		
	$\Rightarrow 5n^2 + 235n = (n-2) \times 180^\circ$		
	$\Rightarrow 5n^2 + 235n = 360n - 720$		
	$\Rightarrow 5n^2 + 125n + 720 = 0$		
	$\Rightarrow n^2 - 25n + 144 = 0$		
	$\Rightarrow (n-16)(n-9) = 0$		
	$\Rightarrow n = 16 \text{ or } n = 9$ When $n = 16$		
	When $n = 16$, Then, $a_{16} = a + 15d$		
	= 120 + 15(5)		
	$= 120 13(3)$ $= 195 > 180^{\circ} \text{ (not possible } \because \text{ interior angle cannot } > 180^{\circ} \text{)}$		
	When $n = 9$,		
	Then, $a_9 = a + 8d$		
	= 120 + 8(5)		
	$= 160 < 180^{\circ} \text{ (possible)}$		
	\therefore no. of sides in the polygon= 9 ans.		
Q.5)	The sum of the first term p, q, r terms of an A.P. are a, b, c respectively. Show that		
	$\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) = 0$		
Sol.5)	Let $A \rightarrow 1$ st term of A.P.		
,	$D \rightarrow \text{common difference}$		
	Then $a_p = a = \frac{p}{2}[2A + (p-1)D]$		
	$(or) \frac{a}{2} = \frac{1}{2} [2A + (p-1)D]$		
	$\Rightarrow a_q = b = \frac{q}{2} [2A + (q - 1)D]$		
	$(or) \frac{1}{2} = \frac{1}{2} [2A + (q - 1)D]$		
	And $a_r = c = \frac{r}{2}[2A + (r - 1)D]$		
	$(\text{or)} \frac{c}{2} = \frac{1}{2} [2A + (r - 1)D]$		
	Now, taking L.H.S., $\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q)$		
	Putting value of $\frac{a}{p}$, $\frac{b}{q}$, $\frac{c}{r}$ from the above equations:		
	· ·		

		_	
	$ = \frac{1}{2} [2A + (p-1)D](q-r) + \frac{1}{2} [2A + (q-1)D](r-p) + \frac{1}{2} [2A + (r-1)D](p-q) $		
	$ = \frac{1}{2} \{ 2A(q-r) + (p-1)D(q-r) + 2A(r-p) + (q-1)D(r-p) + 2A(p-q) $		
	$+(r-1)D(p-q)\}$		
	$= \frac{1}{2} \{ 2A(q-r) + (p-1)D(q-r) + 2A(r-p) + (q-1)D(r-p) + 2A(p-q) \}$		
	+(r-1)D(p-q)		
	$ = \frac{1}{2} \{ 2A[q-r+r-p+p-q] + D[pq-r-q+r+rq-pq-r+p+rp-rq-p] $		
	$\begin{bmatrix} -2(2n)q & r & p & p & q \end{bmatrix} + 2[pq & r & q & r & r & p & q & r & p & r & p \\ + q \end{bmatrix}$		
	$= \frac{1}{2}[2A(0) + D(0)]$		
	$=\frac{\overline{1}}{2}(0)$		
0.6	= 0 R.H.S. ans.		
Q.6)	Insert 3 A.M.'S between 3 and 19.		
Sol.6)	Here, $a = 3$, $b = 19 \& n = 3$		
	Lt A.M.'S are $A_1, A_2, \& A_3$		
	Now, $d = \frac{b-a}{b-1} = \frac{19-3}{3+1} = \frac{16}{4} = 4$		
	$A_1 = a + d = 3 + 4 = 7$		
	$A_2 = a + 2d = 3 + 8 = 11$		
	$A_3 = a + 3d = 3 + 12 = 15$		
	∴ required no.s are 7,11,15 ans.		
Q.7)	For what value of n , $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ is the A.M. between & b .		
Sol.7)	M. I.V.		
	$a^{n+1}+b^{n+1}$ $a+b$		
	$\Rightarrow \frac{a^{n+1} + b^{n+1}}{a^n + b^n} = \frac{a + b}{2}$		
	$\Rightarrow 2a^{n+1} + 2b^{n+1} = (a+b)(a^n + b^n)$		
	$\Rightarrow 2a^{n+1} + 2b^{n+1} = a^{n+1} + ab^n + ba^n + b^{n+1}$		
	$\Rightarrow 2a^{n+1} - a^{n+1} + 2b^{n+1} - b^{n+1} = ab^n + ba^n$		
	$\Rightarrow a^{n+1} - b^{n+1} = ab^n + ba^n$		
	$\Rightarrow a^{n+1} - ba^n = ab^n - b^{n+1}$		
	$\Rightarrow a^n(a-b) = b^n(a-b)$		
	$\Rightarrow a^n = b^n$		
	$\Rightarrow \frac{a^n}{b^n} = 1$		
	$\Rightarrow \left(\frac{a}{b}\right)^n = 1$		
	$\Rightarrow \left(\frac{a}{b}\right)^n = \left(\frac{a}{b}\right)^0$		
	$\Rightarrow (b) - (b)$ $\Rightarrow n = 0$ ans.		
Q.8)	Between 1 and 31, m numbers are inserted so that resulting sequence is an A.P. if the		
	ratio of the 7 th & $(m-1)^{th}$ number is 5: 9. Find the value of m .		
Sol.8)	We have, $a = 1, b = 31 \& n = m$		
	Now $d = \frac{b-a}{b-1}$		
	Now $d = \frac{b-a}{n+1}$ $\Rightarrow d = \frac{31-1}{m+1} = \frac{30}{m+1}$		
	$ \begin{array}{ccc} & m+1 & m+1 \\ & Given & A_7 & 5 \end{array} $		
	Given, $\frac{A_7}{A_{m-1}} = \frac{5}{9}$		

```
\Rightarrow \frac{a+7d}{a+(m-1)d} = \frac{5}{9}
                       a+(m-1)d 	 9
\Rightarrow \frac{1+7(\frac{30}{m+1})}{a+(m-1)(\frac{30}{m+1})} = \frac{5}{9}
\Rightarrow \frac{m+1+210}{m+1+30m-30} = \frac{5}{9}
\Rightarrow \frac{m+211}{31m-19} = \frac{5}{9}
\Rightarrow 9m + 1899 = 155m - 145
                        \Rightarrow 146m = 2044
                        \Rightarrow m = \frac{2044}{146} = 14
                       If a\left(\frac{1}{b} + \frac{1}{c}\right), b\left(\frac{1}{c} + \frac{1}{a}\right), c\left(\frac{1}{a} + \frac{1}{b}\right) are in A.P. show that a, b, c are also in A.P. We have, a\left(\frac{1}{b} + \frac{1}{c}\right), b\left(\frac{1}{c} + \frac{1}{a}\right), c\left(\frac{1}{a} + \frac{1}{b}\right) are in A.P.
Q.9)
Sol.9)
                       Adding 1 in each term
                       \Rightarrow a\left(\frac{1}{b} + \frac{1}{c}\right) + 1, b\left(\frac{1}{c} + \frac{1}{a}\right) + 1, c\left(\frac{1}{a} + \frac{1}{b}\right) + 1 \text{ are also in A.P.}
                      \Rightarrow a \begin{bmatrix} \frac{1}{b} + \frac{1}{c} + \frac{1}{a} \end{bmatrix}, b \begin{bmatrix} \frac{1}{c} + \frac{1}{a} + \frac{1}{b} \end{bmatrix}, c \begin{bmatrix} \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \end{bmatrix} \text{ are in A.P.}
\Rightarrow 2b \begin{bmatrix} \frac{1}{c} + \frac{1}{a} + \frac{1}{b} \end{bmatrix} = a \begin{bmatrix} \frac{1}{b} + \frac{1}{c} + \frac{1}{a} \end{bmatrix} + c \begin{bmatrix} \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \end{bmatrix}
\Rightarrow 2b \begin{bmatrix} \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \end{bmatrix} = \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) (a + c)
                        \Rightarrow 2b = a + c
                        a, b, c are in A.P. (proved)
                        Of the sum of three numbers in A.P. is 24 & their product is 440. Find the numbers.
Q.10)
Sol.10)
                       Let the numbers are a - d, a, a + d
                        Sum = 24
                        \therefore a - d + a + a + a + d = 24
                        \Rightarrow 3a = 24
                        \Rightarrow a = 8
                        \Rightarrow Product = 440
                        \Rightarrow (a-d)(a)(a+d) = 440
                        Put a = 8
                        \Rightarrow (8 – d)(8)(8 + d) = 440
                       \Rightarrow (8-d)(8+d) = \frac{440}{8} = 55
                        \Rightarrow 64 - d^2 = 55
                        \Rightarrow d^2 = 9
                        \Rightarrow d = 3 \& d = -3
                        For a = 8 \& d = 3
                        No.s are 11,8,5
                        ∴ required no.s are 5,8,11 (or) 11,8,5
```