
Chapter 3 
APPLICATION OF DIFFERENTIAL 
CALCULUS TO INVESTIGATION 
OF FUNCTIONS 

§ 3.1. Basic Theorems on Differentiable Functions 

Fermat's Theorem. Let a function y = f (x) be defined on a cert­
ain interval and have a maximum or a minimum value at an in­
terior point x0 of the interval. 

If there exists a derivative f' (x0 ) at the point x0 , then f' (x0 ) = 0. 
Rolle's Theorem. If a function f (x) is continuous in the interval 

[a, b], has a finite derivative at all interior points of this interval, 
and f (a)= f (b), then inside [a, b] there exists a point s E (a, b) 
such that f' (s) = O. 

Lagrange's Theorem. If a function f (x) is continuous in the in­
terval [a, b] and has a finite derivative at all interior points of 
the interval, then there exists a point s E (a, b) such that 

f (b)-f (a)= (b-a) f' (s). 

Test for the Constancy of a Function. If at all points of a cer­
tain interval f' (x) = 0, then the function f (x) preserves a constant 
value within this interval. 

Cauchy's Theorem. Let cp (x) and 1jJ (x) be two functions continu­
ous in the interval [a, b] and have finite derivatives at all inte­
rior points of the interval. If these derivatives do not vanish si­
multaneously and cp (a) =I= cp (b), then there exists s E (a, b) such that 

"'(b)-'IJ (a) 'IJ' <6) 
<p (b)"- <p (a) = <p' (6) • 

3.1.1. Does the function f (x) = 3x2 - l satisfy the condition of 
the Fermat theorem in the interval [ 1, 2]? 

Solution. The given function does not satisfy the condition of the 
Fermat theorem, since it increases monotonically on the interval 
[l, 2], and, consequently, takes on the minimum value at x= l and 
the maximum one at x= 2, i. e. not at interior points of the in­
terval. Therefore, the Fermat theorem is not applicable; in other 
words, we cannot assert that f'(l)=f'(2)=0. Indeed, f'(l)=6, 
f' (2) = 12. 

S* 
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3.1.2. Do the following functions satisfy the conditions of the 
Rolle theorem? 

(a) f(x)=l-Vx2 in [-1, IJ; 
(b) f (x) = In sin x in [ n/6, 5n/6 J; 
(c) f(x)=l-lxl in [-1, lJ. 

If they do not, explain why. 
Solution. (a) The function is continuous in the interval [-1, IJ; 

furthermore, f (-1) = f (I)= 0. Thus, two conditions of the Rolle 
theorem are satisfied. The derivative f' (x) = -2/(3 Vx) exists at 
all points except x = 0. Since this point is an interior one, the third 
condition of the theorem is not satisfied. Therefore, the Rolle the­
orem is not applicable to the given function. Indeed, f' (x) =I= 0 in 
[-1, lJ. 

3.1.3. Prove that the equation 

3x• + 15x-8 = 0 

has only one real root. 
Solution. The existence of at least one real root follows from the 

fact that the polynomial f (x) = 3x• + 15x-8 is of an odd power. 
Let us prove the uniqueness of such a root by reductio ad absur­
dum. Suppose there exist two roots Xi < x2 • Then in the interval 
[x1 , x2 J the function f (x) = 3x5 + 15x-8 satisfies all conditions of 
the Rolle theorem: it is continuous, vanishes at the end-points and 
has a derivative .at all points. Consequently, at some point£, Xi < s < x2 , 

f' (s) = 0. But f' (x) = 15 (x4 + 1) > 0. This contradiction proves that 
the equation in question has only one real root. 

3.1.4. Does the function f(x)=3x2 -5 satisfy the conditions of 
the Lagrange theorem in the interval [-2, OJ? If it does, then 
find the point s which figures in the Lagrange formula f (b)-f (a)= 
= f' (s) (b-a). 

Solution. The function satisfies the conditions of the Lagrange 
theorem, since it is continuous in the interval [-2, OJ and has a 
finite derivative at all interior points of the interval. The point s 
is found from the Lagrange formula: 

f' (s) = 66 = , (0)- t c-2> = -s- 7 = _ 6 
0-(-2) 2 ' 

whence s=-1. 

3.1.5. Apply the Lagrange formula to the function f (x) =In x in 
the interval [ 1, eJ and find the corresponding value of £. 

3.1.6. Ascertain that the functions f (x) = x2 - 2x+ 3 and g (x) = 
= x3 - 7x2 + 20x-5 satisfy the conditions of the Cauchy theorem 
in the interval [l, 4J and find the corresponding value of £. 
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Solution. The given functions f (x) and g (x) are continuous eve­
rywhere, and hence, in the interval [I, 4] as well; their derivatives 
f'(x)=2x-2 and g'(x)=3x2 -14x+20 are finite everywhere; in 
addition, g' (x) does not vanish at any real value of x. 

Consequently, the Cauchy formula is applicable to the given 
functions: 

i.e. 

f(4)-f(I) f'(;) 
g(4)-g(I) = g' Cs)' 

11-2 26-2 
21-9=352 -145+20 (1 <s< 4). 

Solving the latter equation, we find two values of s: £1 = 2 and 
s2 =4. 

Of these two values only £1 = 2 is an interior point of the interval. 

3.1. 7. Do the functions f (x) =ex and g (x) = 1 ;2x~ satisfy the con­

ditions of the Cauchy theorem in the interval [-3, 3]? 

3.1.8. On the curve y = x3 find the point at which the tangent 
line is parallel to the chord through the points A (-1, -1) and 
B(2, 8). 

Solution. In the interval [-1, 2), whose end-points are the abs­
cissas of the points A and B, the function y = x3 is continuous and 
has a finite derivative; therefore the Lagrange theorem is applicable. 
According to this theorem there will be, on the arc AB, at least 
one point M, at which the tangent is parallel to the chord AB. 
Let us write the Lagrange formula for the given function: 

t (2)-f < -1) = t, (s) (2-(-1) 1, 
or 

whence 
s1 = - 1, £2 = I. 

The obtained values of s are the abscissas of the desired points 
(as we see, there exist two such points). Substituting £1 and £2 in 
the equation of the curve, we find the corresponding ordinates: 

Y1=s~= I; Y2=£~=-l. 

Thus, the required points are: M 1 (l, 1) and M 2 (-·l, -I), of which 
only the former is an interior point on the arc AB. 

Note. This problem can be solved without using the Lagrange the­
orem; write the equation of the chord as a straight line passing 
through two given points, and then find the point on the curve at 
which the tangent is parallel to the chord. 
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3.1.9. Taking advantage of the test for the constancy of a func­
tion, deduce the following formulas known from elementary math­
ematics: 

(a) arcsinx+arccosx=n/2; 
(b) sin2 x ~-= (l -cos2x)/2; 

1 x2 

(c) arccosl~xz=2arctanx at o:::;;;x<oo; 

(d) arc sin l-j~\2 = 2arctanx at -1 :::;;;x:::;;; l, { 
:rt-2arctanxatx;:>-l, 

-n-2arctanx at x:::;;;-l. 

Solution. (a) Let us consider the function 

f (x) =arc sin x +arc cos x, 

defined in the interval f-1, l]. The derivative of the indicated 
function inside this interval equals zero: 

I 
-;-r- _Q (-1 < x< I). 
r I -x2 

According to the test for the constancy of a function f (x) = const, 
i. e. a re sin x + a re cos x = C ( - 1 < x < 1). 

To determine the constant C let us put, for instance, X= O; then 
we have n/2 = C, whence 

arcsinx+arccosx=n/2 (-1<x<1). 

The validity of this equality at the points x = + l is verified 
directly. 

(b) Let us take the function 

f (x) = sin2 x+ { cos2x 

defined throughout the number scale: -oo < x < oo. The derivative 
of this function is everywhere equal to zero: 

f' (x) = 2 sin x cos x-sin 2x = 0. 

According to the test for the constancy of a function 

• 2 I 2 C sin x+ 2 cos x= . 

To determine C put, for instance, x=O; then we get l/2=C. 
Wherefrom 

• 2 +I 2 - I sm x 2 cos x- 2 , 
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• 2 I-cos 2x 
Sin X= 2 

(c) Let us introduce the function 
l-x2 

f (x) =arc cos 1 + x2 -2 arc tan x, 

determined along the entire number scale, since I : :; ;: 1~ I. 
The derivative of the function f (x) is zero for all x > 0: 

135 

-4x 2 4x 2 
f' (x) = -. / -(I -x2) 2 (l+x2)2-1+x2=2x(l +x2) - I +x2 - O. 

V I I+x2 

According to the test for the constancy of a function 
l -x2 

arc cos 1 +x2 -2 arc tanx= C at x > 0. 

To determine C let us put, say, x = I, which gives C =arc cos 0-
- 2 arc tan I = 0. 

The validity of the proved formula at x = 0 is verified directly. 
l-x2 

Note. At x = 0 the function arc cos 1 +x2 has no derivative. At 

x < 0 its derivative is 

( l-x2)' 2 
a re cos I + x2 = - I + x2 ' 

which enables us to derive the formula 
l-x2 

arccos 1 +x2 = -2 arc tan x (x < 0). 

The latter formula can be obtained on the strength of the fact 

that arc cos : +;: is an even function, and 2 arc tan x is an odd one. 

3.t.10. As is known, (ex)' =ex for all x. Are there any more 
functions that coincide with their deri\'atives everywhere? 

Solution. Let the function f (x) be such that f' (x) = f (x) every­
where. 

Let us introduce the function 

cp (x) = f e~) = f (x) e-x. 

The derivative of this function equals zero everywhere: 

cp' (x) = f' (x) e-x -e-x f (x) = 0. 

By the test for the constancy of a function f (x)/ex = C, whence 
f (x) = Cex. 
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And so, we have proved that the group of functions for which 
f' (x) = f (x) is covered by the formula f (x) ~ Cex. 

3.1.11. Prove the inequality 

arc tanx2 -arc tan x1 < x2 -x1 , 

where x 2 > x1 . 

Solution. To the function f(x)=arctanx on the interval [x1 , x2 ] 

apply the Lagrange formula: 

I 
arc tanx2 -arc tanx1 =-= l+~2 (x2 -x1 ), 

where x1 < s < x2 • 

Since 

then 
arc tan x2 - arc tan x 1 < x 2 - x1 • 

In particular, putting x 1 ~~ 0 and xt = x, we get 

arc tanx < x (x > 0). 

3.1.12. Show that the square roots of two successive natural 
numbers greater than N2 differ by less than l/(2N). 

Solution. To the function f(x)=Vxon the interval [n, n+l] 
apply the Lagrange formula: 

f (n + I )-f (n) = Jl n + 1-V·n = ~/"-, 
2 r 1; 

where n < s < n +I. 

If n > N2 , then s > N2 , hence 1/(2 ~1~) < l/(2N), whence 

V-n + 1-J/n < l/(2N). 

3.1.13. Using the Rolle theorem prove that the derivative f' (x) 
of the function 

f ( ) ( x sin ~ at x > 0, 
x = < x 

! 0 at x = 0 

vanishes on an infinite set of points of the interval lO, l). 
Solution. The function f (x) vanishes at points where 

sin (n/x) = 0, n/x =kn, x = l/k, 
k = l, 2, 3, ... 

Since the function f (x) has a derivative at any interior point 
of the interval [O, l], the Rolle theorem is applicable to anyone 
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of the intervals [l/2, l], [l/3, 1/2]. ... , [I!(k+l), l/k], 
Consequently, inside each of the intervals of the sequence, there is 
a point £k, l/(k + l) < £k < l 1k, at which the derivative f' (sk) = 0. 
And so we have shown 1.hat the derivative vanishes on an infinite 
set of points (see Fig. 38). 

3.1.14. The Legendre polynomial is Y 
a polynomial defined by the following t 
formula (Rodrigues' formula): 

I dn 
p n (x) = 2--,,-, . d----,, (x2 - l)n (n = 0, n. x 

l, 2, ... ). 

Using the Rolle theorem, prove 
that the Legendre polynomial P n (x) 
has n different real roots, all of them --=*liftt-t~~~--~-:r: 
found between - 1 and + l. 0 

Solution. Consider the function 
f(x)=(x2 -l)"=(x-l)n (x+l)". 

This function and its n- 1 successi · 
ve derivatives vanish at the points Fig. 38 
x = + 1 (use the Leibniz formula for 
higher derivatives of the product of two functions). 

It follows from f ( l) = f ( - 1) = 0 that inside the interval [.- 1, 1 J 
a point £1 can be found at which f' (£1 ) = 0, i.e. x = ~ 1 will be the 
root of the first derivative. Now apply the Rolle theorem once again 
to the function f' (x) on the intervals [-I, ; 1]. rn 1, 1). We find 
that besides + 1 and - 1 the function f" (x) has two more roots 
on the interval [ - 1, 1]. Reasoning as before, we will show that, 
apart from + 1 and -1, fhe (n- l)th derivativ·e has (n-1) more 
roots on the interval (-1, 1), i.e. the function rn-l) (x) has all in 
all n + 1 roots on the interval [ - 1, 1), which divide this interval 
into n parts. Applying the Rolle theorem once again, we ascertain 
that the function f(n> (x), and hence, the function P,, (x)= 2n~! f<"> (x), 
has n different roots on the interval (-1, 1). 

3.1.15. Check whether the Lagrange. formula is applicable to the 
following functions: 

(a) f (x) = x2 on [3, 4); 
(b) f(x)=lnx on (1, 3]; 
(c) f(x)=4X3 -5x2 +x-2 on [O, l); 

(d) f (x) = V X4 (x- l) on [- 1/2, 1/2]. 
If it is, find the values of £ appearing in this formula. 

3.1.16. Using the Lagrange theorem estimate the value ln(l-l-t:) 
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3.1.17. Using the Lagrange formula prove the inequality 

1 ~ x < In ( 1 + x) < x at x > 0. 

§ 3.2. £'Valuation of Indeterminate Forms. 
L'Hospital's Rule 

I. Indeterminate forms of the type ~ , ~. If the functions f (x) 

and g (x) are differentiable in a certain nt>ighbourhood of the point a, 
except, may be, at the point a itself, and g' (x) =F 0, and if 

then 

Jim f(x)= lim g(x)=O or lim f(x)= lim g(x)=oo, 
r- a r-a 

I. f (x) 1. f' (x) 
lill -= lill -,­

r - a g (x) x - a g (x) 

r - a 

provided the limit lim r: ((x)) exists ( L'Hospital's rule). The point a 
x - a g X 

may be either finite or improper + oo or - ou. 
II. Indeterminate forms of the type O·oo or 00-00 are reduced 

to forms of the type ~ or : by algebraic transformations. 
II I. Indeterminate forms of the type l"', 00° or 0° are reduced 

to forms of the type O· oo by taking logarithms or by the transfor­
mation [f(x)]cp<xl=&<x)lnfCxl. 

3.2.1. Applying the L'Hospital rule, find the limits of the follo­
wing functions: 

. eax -e-2ax 

(a) }~~ In (I +x) ; 

I. ex -e-x --2x 
(c) tm . ; 

x _ 0 x-sm x 

,. sin 3x2 
{e) 1111 • 

x _ 0 In cos (2x2 - x) ' 

b I. VT+2X+1 
( ) tm .r- ; 

x--1 r2+x+x 
(d) I. In (I +x2) 

trll cos3x-e-x; 
x - 0 

1/x2 

(f) !' e - I 
tm 2arctanx2 -n" 

x - "' 
Solution. (a) Here b0th functions f (x) = e0 x-e- 2ax and g(x)= 

=In (1 + x) are infinitesimals in the neighbourhood of zero, since 
lim f (x) = 1- 1 = O; lim g (x) = In 1 = 0. 
x _.,. 0 x -)> 0 

Furthermore f' (x) and g' (x) exist in any neighbourhood of the 
point x = 0 that does not contain the point x - - 1, and 

g' (x) = 1 ~ x =F 0 (x > - 1 ). 
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Finally, there exists a limit of the ratio of the derivatives: 

. f'(x) . aeax+2ae-2ax 
ltm ---,--( ) = ltm I/( 1 + ) = 3a. 
X->OgX X-+0 X 

Therefore the L'Hospital rule is applicable: 

. eax_e-2ax . aeax+2ae-2ax 
;1_1,110 In (I +x) = !1!.110 1/(1 +x) -= 3a. (*) 

Note. When the limit of the ratio is computed according to the 
L'Hospital rule the result is usually written directly as shown in(*). 
Whether the desired derivatives and limits exist is ascertained in 

the course of calculation. In case the ratio of the derivatives ~'. ~;~ 
again represents an indeterminate form, the L'Hospital rule should 
be applied for a second time, and so on until the indeterminacy is 
removed or until it becomes clear that the required limits do not 
exist. Therefore, henceforward we write only the necessary transfor­
mations, leaving to the reader the task of checking whether the 
conditions of their applicability are fulfilled. 

v1+2x+ I . 2/(3 Vo +2x)2 ) 4 
(b) lim _ = hm =-; 

x--1 Y2+x+x x--1 l/(2V2+x)+l 9 

( ) r sin 3x2 _ (" -6X COS 3x2 CQS (2x2 -x) _ 
e .i: 1.:11olncos(2x2 -x)-/~o (4x-l)sin(2x2 -x) -

6 1. cos 3x2 cos (2x 2 -x) 1. x 
=- 1m 1m . • 

x _ 0 4x - I x __, 0 sm (2x2 - x) 

The limit of the first factor is computed directly, the limit of the 

second one, which represents an indeterminate form of the type ~ is 

found with the aid of the L'Hospital rule: 

6 1. cos 3x2 cos (2x2 -x~ 1. x 
- 1m - Im ---=---

x _ 0 4x - I x _ 0 sin (2x2 - x) 

=-6·!.:_!_lim I =6·-1-=-6 
-Ix_ 0 (4x-l)cos(2x2 -x) -1·1 • 

3.2.2. It is known that, as x-+-+ oo, the functions xk (k > O); 
logax; ax (a> 1) are infinitely large quaFttities. Applying the L'Hos­
pital rule, compare these quantities. 

I 
-logae 

S l t . 1 r loga x r x 1 l' I 0 o u ton. . 1m -k-= tm k k-i = ogae Im -= ; 
x-+oo X x-+oo X x-+ookxk 

2. r xm r mxm -1 r m ! - 0 
Im ax = Im ------X----111 = · · · = Im ax (In a)m - • 

X-++OO X-++OOa a x-+oo 



140 Ch. 111. Differential Calculus: Investigation of Funcf's 

Hence, the power function xk (k > 0) increases more rapidly than 
the logarithmic function logax(a >I), and the exponential function 
ax with the base exceeding unity increases more rapidly than the 
power function xm. 

3.2.3. Find the limits: 

(a) lim (-1---1-); 
x- 1 lnx x-1 

(c) lim (I.- - 1--) • 
x-0 x eX-1 

(b) lim (cot x-I.); 
x - 0 x 

Solution. (a) We have an indeterminate form of the type 00-00. 

Let us reduce it to an indeterminate form of the type ~- and then 

apply the L 'Hospital rule: 

I. ( I I ) 1. x-1 - ln.x 1. I - l/x 1m ---- = 1m = tm ~---
" .... 1 In x x- I x .... 1 (x-1) In x x .... 1 In x+ I - l/x 

3.2.4. Find the limits: 

{a) Iim xn In x (n > O); 
x-o 

I. x-1 . 
= 1m I + 1 = !tm x .... I X n X X- x .... I 

{b) lim [In ( 1 + sin2 x) cot ln2 (I + x)]. 
x .... 0 

Solution. (a) We have an indeterminate form of the type 0. oo. 

Let us transform it to : , and then apply the L 'Hospital rule: 

I. I 1. In x 1. I/x I 1. O . 
tm xn nx=. tm x-n = tm -nx-n-i --fi tm xn= ,smcen>O. 

:1:-0 x- 0 x-0 x-0 

(b) We have an indeterminate form of the type O· oo: 

.1. [! (I+ . 2 ) ti 2 (l+ )] 1. In(l+sin2x) 1m n srn x co n x = tm 1 1 2 (I+ ) = 

.x .... 0 x .... 0 an n x 

I . 2 
. I+ sin·i x sin x 

=hm I 
x .... o 2 {I +tan2 [In2 (I +x)l} In (I +x)- 1 +x 

r sinx ,. cosx = 1m I 0 + ) = 1m - 1- = I. x .... on x x-o 
l+x 

3.2.5. Find the limits: 

(a) Jim (l/x)•in x; (b) lim xt/ln(e"-ll. 
x .... +o x-+-+ 0 



§ 3.2. fa.Ja/uation of Indeterminate Forms 141 

Solution. (a) We have an indeterminate form of the type 00°. 
Let y ~ (l/x)sin x; then 

In y =sin x In (l/x), 

lim lny= Jim sinxln(l/x) (indeterminate form of the type 0-oo). 
x-----10 x___,.+Q 

Let us transform it to 00 and apply the L'Hospital rule: 
00 

l. I 1. -In x 1. -1/x 1. sin2 x 
1111 ny = 1m - 1-.-= lm . . 2 = lm --=0. 

x~+o -'~+o Ls111x x~o -(cosx)/sm x x-oxcosx 

Hence, Jim y = e" = I. 
X - ·I 0 

3.2.6. Find the limits: 

(a) Jim (sinx)tanx; (b) Jim xx. 
x - ;r/2 x- 0 

3.2.7. Compute 
Jim (tan x) cot x. 

x - + rr/2-0 

Solution. Let us take advantage of the identity 

(tan X) cot x = ecot x In tan x, 

but 

Jim _Iny =0. Jim cot x In tan x = Jim 1 ~ tan x 
x-+rr/2-0 x-+rr/2-0 anx y=tanx-+oo Y 

Whence 
Jim (tan x) cot x = eo = l. 

x- +rr/2- o 

3.2.8. Ascertain the existence of the following limits: 

()I . x2 sin(l/x). a 1m . , 
x - 0 Sll1 X 

(b) Jim 2+2x+sin2x ; 
x - oo (2x+ sin 2x) e•rn x 

( ) I. tan x c llll -- . 
x _ n/ 2 sec x 

Can the L'Hospital rule be applied in computing them? 
Does its formal application lead to the cerrect answer? 

Solution. (a) The limit exists and equals zero. Indeed, 

1. x2 sin(l/x) 1. x 1. . I l O O 1m . = 1m -.- 1mxstn-= · = . 
x - O SI 11 X x _ O Slll X x - O X 

But the limit of the ratio of the derivatives does not exist. Indeed, 
I. 2x sin (l/x)-cos (l/x) O 1. I 
llll = - Im COS - , 

x ~ 0 cos x x - 0 x 
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but lim cos (l/x) does not exist, hence the L'Hospital rule is not 
x - 0 

applicable here. 
(b) The limit of the ratio of the functions does not exist: 

1. 2+2x-t-sin2x 1. (t , 2 \ -<inx 1m . = 1m -t- . / e 
x _ oc (2x + sin 2x) e 5111 x x _ en · 2x -1- s1 n 2x ; 

but li;n e-•in x does not exist, since the function e- ,jn • traverses the 
x _,. oc 

values from l/e to e infinitely many times. 
Now we will show that the limit of the ratio of derivatives exists: 

Ii m _____ 2_+_2_c_o_s_2_x ____ _ 

x - ;;; 12 + 2 cos 2x+ (2x-I- sin 2x) cos xi esi" ' 
_ 1. 4cos 2 x -•inx_ - 1m , . e --x- "'4 cosc x+ (2x-t- s111 :2x) cos x 

I. 4 cos x . 0 "= irn . e-<in x = 
,. _"' 2x+ 4 cos x+ Sill 2x ' 

4 cos .t 
since the function e- •in x is bounded, and 9 + 4 + . 2 -> 0. 

~X COS X , Sill X x -• oo 

Here cosx, which vanishes for a11 infinite ~et of values of x, has 
been cancelled out. It is the presence of this multiplier that makes 
the L'Hospital rule inapplicable in this case, sine<> it simultaneously 
nullifies the derivatives of the functions being compared. 

( ) l. tan x 1. sec2 x 1. sec x 1. tan x 
c 1m --= 1m = 1m --= un --= 

"_ 1112 sec x "_1112 sec x tan x x-rr./ 2 tan x x-:rr./ 2 sec x 

Here application of the L'Hospital rule gives no useful result, though 
there exists a limit: 

1. tanx 1. sinxcosx 1. · l 
1m --= Im = 1m StnX= . 

x-:rr./ 2 sec x x-:rr/ 2 cos x x _ :r/ 2 

3.2.9. Using the L 'Hospital rule find the limits of the following 
functions: 

. In (x2 -3) 
(a) hm 2+3--10; 

t- 2 x x 

• aln x_x 
(b) hm I ; 

x-1 nx 

(d) I. I -4 sin2 (:ru:/6) . 
Im I ., , 

I -x-"-
() 1. tanx-x c 1m . ; 

x _ 0 X-Slll X 

(f) lim (n-2arctanx)lnx; I. x-a (e) 1m arc sin -- cot (x-a); 
x-a a x- + 00 

I. (I )tJnx (g) 1m - ; 
x-+o x 

(h) lim (a 1/x_ l) x (a> O); 

(i) lim (cosmx) 11tx'; 
K-0 

(j) lim ( 2 _ _:_)tan (:rrx/( 2a)); 

x-.. a a 
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(k) Iirn (-1--2-); 
x -· 1 In x In x 

(I) lim xt/ln (e~-1); 

x - 0 

(m) Jim ( 1
2 -cot2 x); 

x - 0 x 
(n) }~~ [ x- x2 In ( l + ~) J ; 

(o) Jim x2 [-cosh !:-- Ij ; 
K-+Xl X 

(p) lim ( 5 )l/sinx; 
x-• o 2+ Y9+x 

(q) Jim (In cot x)tan x; 
x .. -rO 

. elfx' _ 1 
(r) ltm . 

x- 00 2 arc tan x2- :rt 

§ 3.3. Taylor's Formula. Application to Approximate 
Calculations 

If the function f (x) is continuous and has continuous derivatives 
through order n-1 on the interval [a, b], and has a finite derivative 
of the nth order at every interior point of the interval then at 
x E [a, b J the following formula holds true: 

f (x) = f (a)+ f' (a) (x- a)+ r (a) (x~-, a)2 + 

+ f'" (a) (x-31a)a + ... + fln-u (a) (x(-~~)~1 + f<n> (s) !x-,a)n' 
. n . n. 

where 
s=a+e(x-a) and 0<0< 1. 

It is called Taylor's formula of the function f (x). 
If in this formula we put a= 0, we obtain Maclaurin's formula: 

f (x) = f (0) + f' (0) X + f" (0) ~; + ... + f<n-u (0) (n ~~; ! + 
xn + f<n> (s) nl ' where s =ex, 0 < e < 1. 

The last term in the Taylor formula is called the remainder in 
Lagrange's form and is denoted Rn (x): 

R ( ) _f<m [a+8 (x-a)] ( _ )n· 
n x - nl x a ' 

accordingly, the remainder in the Maclaurin formula has the form 

R ( ) = f<n> (8x) n 
n X n! X. 

3.3.1. Expand the polynomial P(x)=x&-2x'+x3 -x2 +2x-l 
in powers of the binomial x-1 using the Taylor formula. 

Solution. To solve the problem it is necessary to find the value 
of the polynomial and its derivatives at the point x = 1. The 
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relevant calculations are given below. 

P (l) ~ 0, P' (I) =0, 
P"(l)=O, P"'(l)=l8, 
P( 41 (l)=-=72, P (i>) (I)= 120, 
pim (x) = 0 (n;;?: 6) 

at any x. 
Substituting the values thus found into the Taylor formula, we get 

P ( ) _ 18 ( l )3 72 ( l )4 120 ( I o. x - 3! x- + 4f x- + 5! x- ) ' 

P (x) =3 (x-1)3 + 3 (x-1)4 + (x-1)0 • 

3.3.2. Applying the Maclaurin formula, expand in powers of x 
(up to x9 , inclusive) the function 

f(x)=ln(l+x), 

defined on the interval [O, 1]. Estimate the error due to deleting 
the remainder. 

Solution. 
f (0) = In 1 = 0. 

The derivatives of any order of the given function (see § 2.3): 

f(n) (x) = (-l)n-1 (n-1)! 
(I+ x)n' 

fU'1 (0)=(-l)n- 1 (n-l)! (n=l, 2, 3, ... ). 

Substituting the derivatives into the Maclaurin formula, we get 
x~ x3 x9 

ln(l+x)=x-2+3- ... + 9+R10 (x), 

where the remainder R10 (x) in the Lagrange form will be written 
as follows: 

f\10) (~) 9! xlO 

Rio (x) = l(jl xio = - 10! (I+ ~)10 xio =- 10 (I+ £)1" (0 < ~ < x). 

Let us estimate t.he absolute value of the remainder R10 (x); ket'ping 
in mind tha·t 0 ~ x ~ I and s > 0, we have 

I Rio (x) I= I 10(~:~)10 I< I~· 
3.3.3. How many terms in the Maclaurin formula should be taken 

for the function f (x) =ex so as to get a polynomial representing 
this function on the interval [-1, l], accurate to three decimal 
place·? 

Solution. The function f (x) =ex has a derivative of any order 

rm (x) =ex. 
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Therefore, the Maclaurin formula is applicable to this function. Let 
us compute the values of the function ex and its first n-1 deriva­
tives at the point x = 0, and the value of the nth derivative at the 
point s=Ox(O < 8 < 1). We will have 

Whence 

where 

f (0) = f' (0) = f" (0) = ... = r"- 11 (0) =I; 
rll) (s) =e' =eBx. 

x" R"(x)=-, esx. 
n. 

Since, by hypothesis, \ x I~ I and 0 < 8 < I, then 

Ix I" I 3 
I R,,(x) l=-,-eex < -, e <-,. n. n. n. 

Hence, if the inequality 
3 
Iii~ 0.001 

is fulfilled, then the inequality 

IR,, (x) I~ 0.001 

will be fulfilled apriori. To this end it is sufficient to take n ~ 7 
(7! = 5040). Hence, 7 terms in the Maclaurin formula will suffice. 

3.3.4. At what values of x will the approximate formula 

x2 x4 
cos x ~ 1 -21+4f 

have an error less than 0.00005? 
Solution. The right member of the approximate equation repre­

sents the first six terms in the Maclaurin formula for the function 
cos x (the second, fourth and sixth terms are equal to zero; check iti). 
Let us estimate R6 (x). Since (cosx)( 6>=-cosx, then 

I R ( ) I = I - cos· ex 6 1 ~ ~ 
6 x 6! x ~ 6! . 

For the error to be less than 0.00005, choose the values of x that 
satisfy the inequality 

Ix 16 ---m- < 0.00005. 

Solving this inequality, we get Ix I< 0.575. 

3.3.5. Compute the approximate values of: 

(a) cos 5°; (b) sin 20°, 
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accurate to five decimal places. 
Solution. (a) Into the Maclaurin formula 

xz x4 x2n 
COSX= 1-21+41- ... + (-1)" (2n)! + R2n+2 

substitute x= n/36; since 
x2 :n;2 x4 I , x2 ) 2 

21= 2·362 =0.003808, 4T =5 l "T =2.4-10- 6 , 

we confine ourselves to the following terms: 
cos x ~ l-x2/2, 

the error being estimated at 

IR4(x)l=j co:,ex x41~ 1~!14 <2.s.10-a. 

And rn, within the required accuracy 

cos5°=COS~= 1-0.00381 =0.99619. 

3.3.6. Compute the approximate value of V83 accurate to six 
decimal places. 

3.3.7. Prove the inequalities: 

(a) x-x2/2 < ln(l +x) < x at x > O; 
(b) tanx > x+x3/3 at 0 < x < n/2; 

I x2 v-- I (c) 1+ 2 x-8 < l+x<l+ 2 x at O<x<oo. 

Solution. (a) According to the Maclaurin formula with the rema­
inder R2 (x) we have 

x:a 
In (1 +x) =x-2 n+;>2 , 

where O<s<x. 
According to the same formula with the remainder R3 (x) we have 

x2 xa 
In (I + x) = x-2 + 3 ( 1 + ;1) 3 , where 

·o < ~ 1 < x. 
x2 xa 

Since 2 (I +;)2 > 0 and 3 (I +;1) 3 > 0 at x > 0, it follows that 

x-x2/2 <In (1 +x) < x. 

3.3.8. Show that sin(a+h) differs from sina+hcosa by not 
more than h2/2. 

Solution. By Taylor's formula 

sin (a +h) =sin a +hcosa- h; sin 6; 
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whence 

§ 3.4. Application of Taylor's Formula to Evaluation 
of Limits 

The expression 

f(x)=f (a)+/'!(~) (x-a)+ f"_<,a) (x-a)2 + ... +f1n>,(a)(x-a)n+ 
. ~- n 

+ o(lx-al"l 
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is the Taylor formula with the remainder in Peano's form where 
qi(x)=o['ljl(x)]meansthat,as x-.a, the function qi(x) has a high-

er order of smallness than the function 'ljl (x), i. e. Jim ~ ((x)) = O. 
x - a 't' X 

In particular, at a=O we have 

f (x) = f (0) + 1'1\0) X + /"2(,0) X2 + ... + fCn~:O) xn + O (IX/"). 

Peano's form of the remainder for Taylor's formula shows that, 
when substituting the Taylor polynomial of degree n for f (x) in the 
neighbourhood of the point a, we introduce an error which is an 
infinitesimal of a higher order than (x-a)n as x--+ a. 

The following five expansions are of greatest importance m sol­
ving practical problems: 

sinx=x- ~; + ... +(-1)11 - 1 , 2: 2
:._-1

1)! +o(x2n); 

x2 x' x2n 
cosx= 1-21 + 41 + ... +(-l)n (2n)' +o(x2n+1); 

(l+ )a= l+ +a(a-1) 2 + +a(a-1) ... (a-n+I) "+ ( ")· x ax 21 x . . . n! x o x , 

In (1 +x) =X- ~2 + ~3 + ... + (-1)11 - 1 :n +o (x"). 

3.4.1. Expand the function f(x)=sin 2 x-xze-x in positive inte­
gral powers of x up to the terms of the fourth order of smallness 
with r.espect to x. 

Solution. We have 

f(x) = [x- ~3 +o(x')J2-x2 [ 1-x+ ~2 + o(x2)1 = 

x' x4 5 
=x2 - 3 +o (x&)-x2 +x3 - 2 + o (x') = x3 - 6 x'+o(x4 ). 
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3.4.2. Expand the following functions: 

(a) f(x)=xVI-x2 -cosxln(l +x); 
(b) f(x)=ln(I+sinx) 

in positive integral powers of x up to the terms of the fifth order 
of smallness with respect to x. 

3.4.3. Applying the Taylor formula with the remainder in Peano's 
.form, compute the limits: 

( ) 1. I - VT+'X2 cos x 
a Im t 4 ; 

x: ... 0 an x 

(b) Iim Vt+3x--; Vl+2X 
x ... 0 x 

-x:'/2 
( ) I. cosx-e 
C Im 4 ; 

x-> 0 x 
·(d) 1. ex sin x-x (I -t-x). Im .1 , 

x:-> o x· 
. ex+e-x-2 

(e) hm 2 • 

x -· 0 x 

Solution. (a) Retaining the terms up to the fourth order with 
respect to x in the denominator and the numerator, we get 

lim 
X-+0 

I- JfT+X2 cos x = Jim 1-(1 +x2)112 cos x = 
tan4 x x ... 0 x4 

I- [1 +_!_ x2+ 112 (-l/2) x4 +o (x4)1 [1- x2 +~+o (x5)] 
lim 2 2 2 24 

x4 
I( ... 0 

1 I I 
. 4 x4 + 8 x4 -24 x4 + o (x4) . [ 1 o (x4) J 1 

= hm 4 = hm 3+-4- =3· 
X:-+0 X X->0 X 

3.4.4. Expand the following functions in positive integral powers 
of the variable x up to the terms of the indicated order, inclusive: 

(a) f (x) = e2x-x2 up to the term containing x5 ; 

(b) In cos x up to the term containing x6 ; 

(c) ex x 1 up to the term containing x'. 

§ 3.5. Testing a Function for Menotoniclty 

Let a continuous function f (x) be defined on the interval [a, b) 
and have a finite 8.erivative inside this segment. Then: 

( l) For f (x) to be non-decreasing (non-increasing) on ['a, b] it is 
necessary and sufficient that f' (x):;;::::: 0 (f' (x) ~ 0) f~r all· x in (a, b). 
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(2) For f (x) to be increasing (decreasing) on [a, b] it is suf fi­
cient to fulfil the condition f' (x) > 0 (f' (x) < 0) for all x in (a, b). 

3.5. 1. Determine the intervals of monotonicity for the following 
functions: 

(a) f (x) = 2x2 -ln x; 
(b) f(x)=2x:1-9x2 -24x+7; 
(c) f (x) = x 2e-x; 
(d) f (x) =Jn Ix J; 
(e) f (x) = 4x"-2lx2 + 18x+ 20; 
(f) f (x) =ex+ 5x. 
Solution. The solution of this prob!Em is reduced to finding the 

intervals in which the derivative preserves its sign. If the function 
f (x) has a continuous derivative in the interval (a, b) and has in 
it a finite number of stationary points x1 , x2 , ••• , xn (a< x1 < 
< x2 < ... < xn < b), where f'(xk)=O (k= 1, 2, ... , n), then f'(x) 
preserves its sign in each of the intervals (a, x1), (x1 , x2), ••• , 

(xn-·1' Xn), (xn, b). 
(a) The function is defined at x > 0. 
Let us find the derivative 

f' (x) = 4x- l/x. 
The function increases if 4x-1/x > 0, i.e. x > 1/2. 
The function decreases if 4x-1/x < 0, i. e. x < 1/2. 

And so, the function decreases in the interval 0 < x < 1/2 and 
increases in the interval 1/2 < x < +oo. 

(b) Evaluate the derivative 

f' (x) = 6x2 - l8x-24 = 6 (x2 -3x-4). 

It vanishes at the points x = -1 and x = 4. Since f' (x) is a 
quadratic trinomial with a coefficient at its highest-power term 6 > 0, 
then f' (x) > 0 in the intervals 
(- oo, -1), (4, oo), and f' (x) < 0 
in the interval (-· l, 4). Con­
sequently, f (x) increases in the 
first two intervals, whereas in 
(-1, 4) it decreases. 

(c) h1 this case the derivative 
f' (x) = (2x-x2) e-x vanishes at 
the points X= 0 and x= 2. In 
the intervals (- oo, 0) and (2, oo) 
the derivative f' (x) < 0 and the 

!I 

Fig. 39 

function decreases; in (0, 2) the derivative f' (x) > 0 and the f unc­
tion increases (see Fig. 39). 

3.5.2. Find the intervals of decrease and increase for the follo­
wing functions: 
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(a) f(x)=cos(n/x); 
(b) f(x)=sinx+cosx on [O, 2n). 
Solution. (a) The function y= cos (n/x) is defined and differentiable 

throughout the number scale, except at the point x= O; 
, n . n 

Y =---,,Sin - . 
x~ x 

As is obvious, the sign of y' coincides with that of the multi­
plier sin (n/x). 

(l) sin (n/x) > 0 if 

2kn < n/x < (2k+ l)n (k=O, +l, +2, ... ); 

(2) sin ( n/x) < 0 if 

(2k+ l)n < n/x < 2 (k+ l)n. 

Hence, the function increases in the intervals 

(2k~ I' ~) 
and decreases in the intervals 

( 2k ~ 2 ' 2k ~ I ) ' 

3.5.3. Investigate the behaviour of the function f (x) = 2 sin x + 
+ tan x- 3x in the interval (-n/2, n/2). 

Solution. The derivative 

f' (x) = 2 cos X + _1_. __ 3 = (1-co_s x)(I +cos x-2 cos2 x) = 
cos2 x cos2 x 

4 sin 3 (x/2) sin (3x/2' 
= cos2 x 

is positive in the intervals (-n/2, 0) and (0, n/2) and vanishes 
only at X= 0. Hence, in (-n/2, n/2) the function f (x) increases. 

3.5.4. Prove that at 0 < x ~ 1 the inflqua Ii ties 

x-x3/3 <arc tan x < x-x3/6 
are fulfilled. 

Solution. We will prove only the right inequality (the left one 
is proved analogously). 

The derivative of the function 
x3 f (x) =arc tan x-x+ 6 

is equal to 
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The function f (x) is continuous throughout the entire number 
scale, in particular, it is continuous in the interval [O, l], and in­
side this segment f' (x) < 0. Therefore, f (x) decreases on the interval 
[O, I] and, consequently, for any point x, 0 < x::::;;; 1, the inequality 
f (x) / f (0) = 0 or 

xs 
arc tanx-x+ 6 < 0 

is fulfilled, whence 
xs 

arc tanx < x-6 . 

. 3.5.5. Prove the inequalities 

x-x3/6<sinx<x at x>O. 

3.5.6. Prove that for 0::::;;; p::::;;; l and for any positive a and b 
the inequality (a+b)P::::;;;aP-t-bP is valid. 

Solution. By dividing both sides of the inequality by bP we get 

(:+1y::::;;;(:y+1 
or 

(l+x)P::::;;; l+xP, (*) 
a 

where x=IJ· 

Let us show that the inequality (*) holds true at any positive x. 
Introduce the function 

f (x) = 1 + xP - ( l + x)P; x ~ 0. 

The derivative of this function 

f' (x) = pxP-1-p (l + x)P-1 = p [xi~p 1 J (l+x)l-p 

is positive everywhere, since, by hypothesis, 1-p ~ 0 and x > 0. 
Hence, the function increases in the half-open interval [O, oo), i.e. 
f (x) = l +xP-(l + x)P > f (0) = 0, whence I +xP > (1 +x)P, which 
completes the µrcof. If we put p = I/n, then we obtain 

Va+b::::;;; }:la+ V'b (n ~I). 

3.5.7. Prove that the functiony=x"+2x3 +x increases everywhere, 
and the function y = l -x3 decreases everywhere. 

3.5.8. Determine the intervals of increase and decrease for the 
followirag functions: 

(a) f (x) = X3 + 2x--5; 

(c) f (x)=cosx-x; 
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f 2x 
(e) (x) = -1 ; nx 

2x 
(f) f (x) = I + x~ . 

3.5.9. Prove the following inequalities: 
(a) tanx > x+x3 /3, if (0 < x < n/2); 
(b) ex;;;:: 1 +x for all values of x; 
(c) ex >ex at x > I. 
3.5.10. At what values of the coefficient a does the function 

f (x) = x 3 -ax increase along the entire number scale? 

:>.5.11. At what value of b does the function 

f (x) =sin x-bx +c 

decrease along the entire number scale? 

§ 3.6. Maxima and Minima of a Function 

If a function y= f (x) is defined on the interval X, then an in­
terior point x0 of this interval is called the point of maximum of 
the function f (x) [the point of minimum of the function f (x)] if 
there exists a neighbourhood U EX of the point x0 , such that the 
inequality f (x) ~ f (x0) [f (x);;;:: f (x0)] holds true within it. 

The generic terms for points of maximum and minimum of a fun­
ction are the points of extremum. 

A Necessary Condition fQr the Existence of an Extremum. At 
points of extremum the derivative f' (x) is equal to zero or does 
not exist. 

The points at which the derivative f' (x) = 0 or does not exist are 
called critical points. 

Sufficient Conditions for the Existence of an Extremum. 
I. Let the function f (x) be continuous in some neighbourhood of 

the point x0 • 

I. If f' (x) > 0 at x < x 0 and f' (x) < 0 at x > x0 (i.e. if in mo­
ving from left to right through the point x0 the derivative changes 
sign from plus to minus), then at the point x0 the function reaches 
a maximum. 

2. If f' (x) < 0 at x < x0 and f' (x) > 0 at x > x0 (i.e. if in mo­
ving through the point x0 from left to right the derivative changes 
sign from minus to plus), then at the point x0 the function reaches 
a minimum. 

3. If the derivative does not change sign in moving through the 
point x0 , then there is no extremum. 

11. Let the function f (x) be twice di1Terentiable (that is f' (x0 ) = 0) 
at a critical pGint x0 • If f" (x0 ) < 0, then at x0 the function has a 
maximum; if f" (x0) > 0, then at x0 the function has a minimum; 
but if f" (x0 ) = 0, then the question of the existence of an extremum 
at this point remains open. 
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I I I. Let f' (x0 ) = f" (x0 ) = ... = f<"- 1> (x0 ) = 0, but f 111> (x0 ) =I= 0. If 
n is even, then at f<" 1 (x0 ) < 0 there is a maximum at x0 , and at 
f<',, (x,,) > 0, a minimum. 

If n is odd, then there is no extremum at the point x0 • 

IV. Let a function y = f (x) be represented parametrically: 

x = <p (t), y = 1jJ (t), 

where the functions cp (t) and 1jJ (t) have derivatives both of the first 
and second orders within a certain interval of change of the argu­
ment t, and cp' (t) =I= 0. Further, let, at t = t0 

1jJ' (t) = 0. 
Then: 

(a) if 1jJ" (t 0 ) < 0, the function y = f (x) has a maximum at x = 
= Xo = <p (to); 

(b) if 1jJ" (t 0 ) > 0, the function y = f (x) has a minimum at x = 

= Xo = <p (to); 
(c) if 1jJ" (t 0 ) = 0, the question of the existence of an extremum 

remains open. 
The points at which cp' (t) vanishes require a special study. 

3.6. t. Using the first derivative, find the extrema of the follo­
wing functions: 

3 
(a) f (x) = 4 X4-x3 -9x2 + 7; 

(b) f (x) =X4 -8x3 +22x2 -24x+ 12; 
(c) f(x)=x(x+l) 3 (x-3)2 ; 

x2-3x+2 
(d) f(x)=x~+2x+l • 

Solution. (a) The function is defined and differentiable over the 
entire number scale. Therefore, only the real roots of the derivative 

f' (x) = 3x3 -3x2 -18x = 3x (x + 2) (x-3) 

are critical points. Equating this expression to zero, we find the 
critical points: x1 = -2, x2 = 0, X3 = 3 (they should always be ar­
ranged in an increasing order). Let us now investigate the sign of 
the derivative in the neighbourhood of each of these points. Since 
there are no critical points to the left of the point X= -2, the 
derivative at all the points x <-2 has one and the same sign: it 
is negative. Analogously, in the interval (-2, 0) the derivative is 
positive, in the interval (0, 3) it is negative, at x > 3 it is posi­
tive. Hence, at the points x1 = -2 and x3 = 3 we have minima 

f (-2) 0 = -9 and f (3) = -40+, and at the point X2 = 0, maxi­

mum f (0) = 7. 
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(c) Just as in item (a), the critical points are the roots of the 
derivative f' (x), since the function is defined and differentiable 
throughout the number scale. Find f' (x): 

f' (x) = (x + l)' (x- 3)2 + 3x (x + 1)2 (x-3)2 + 2x (x + 1)3 x 
x (x-3) = 3 (x + 1 )2 (x-3) (2x2 -3x- 1). 

Equating this expression to zero, we find the critical points: 

X 1 =-l, X2 =(3-VT7);4, X3 =(3+1/T7);4, X4 =3. 

Let us tabulate the sigm of the derivative in the intervals be­
tween the critical points: 

Intervals I x < x1 I x1 < x < x2 I X2 < x < X3 Ix,, < x < x4 / 

~~~~.,___~~-.,...-~~ 

x~ < x 

Sign of /' (x) I I I + I + 

As is seen from the table, there is no extremum at the point 
x1 = -1, there is a minimum at the point x2 , a maximum at the· 
point x3 , and a minimum at the point X4 • 

3.6.2. Using the first derivative, find the extrema of the follo-
wing functions: 

(a) f (x) = 3 VX2-x2; 

(b) f(x)=V(x-l)2 +V(x+l)2 • 

Solution. (a) The function is defined and continuous throughout 
the number sea le. 

Let us find the derivative: 

,, <x>= 2 (v;-x). 
From the equation f' (x) = 0 we find the roots of the derivative: 

X= + l. 
Furthermore, the derivative goes to infinity at the point x = 0. 

Thus, the critical points are x1 = - 1, x2 = 0, x3 = l. The results 
of in\'estigating the sign 
of the derivative in the 
neighbourhood of these 
points are given in Fig. 

)' x 

Fig. 40 40. The investigation 
shows that the function 

has two maxima: f(-1)=2; f(l)=2 and a minimum f(O)=O. 

3.6.3. Using the second derivative, find out the character of the 
extrema of the following functions: 
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(a) y=2sinx+cos2x; 
(b) f (x) = 2x3 - l5x2 -84x + 8. 
Solution. (a) Since the function is a periodic one we may confine 

ourselves to the interval [O, 2n). Find the first and second deri­
vatives: 

y' = 2 cosx-2 sin 2x=c= 2 cos x (l-2 sin x); 
y" = -2 sin x-4 cos 2x. 

From the equation 2 cos x (l-2 sin x) =~ 0 determine the critical 
points on the interval [O, 2n]: 

x1 = n/6, x2 = n/2, X 3 = 5:n:/6, X4 = 3n/2. 

Now find the sign of the second derivative at each critical point: 
y" (:rt/6) = - 3 < O; hence, we have a maximum y (n/6) = 3/2 at 

the point x1 = n/6; 
y" (n/2) =-= 2 > O; hence, we have a minimum y (n/2) =I at the 

point X2 = :rt/2; 
y" (5n/6) = - 3 < 0; hence, we have a maximum y (5n/6) = 3/2 

at the point x,1 = 5n/6; 
y" (3n/2) = 6 > O; hence, we have a minimum y (3n/2) = - 3 at 

the point x4 = 3n/2 (see Fig. 41). 

!J 

Fig. 41 

3.6.4. Investigate the following functions for extrema: 
_ f -2x (x < 0), 

(a) f (x) - I 3x + 5 (x;;;;: O); 

(b) f (x)= { 2x2 +3(x=i=O), 
4 (x = 0). 

Solution. (a) Though the derivative 

f' (x) = f - 2 (x < 0), 
I 3 (x > O) 

exists at all points, except the point x = 0, and changes sign from 
minus to plus when passing through the point x = 0, there is no 
minimum here: 

f (0) = 5 > f (x) at -1 < x < 0. 
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This is explained by the fact that the function is discontinuous 
at the point x = 0. 

(b) Here the derivative f' (x) = 4x (x =F 0) also exists at all points, 
except at x = 0, and it changes sign from minus to plus when pass­
ing through the point x = 0. Nevertheless, we have here a maximum 
but not a minimum, which can readily be checked. 

It is explained by the fact that the function is discontinuous at 
the point x = 0. 

3.6.5. Find the extrema of the following functions: 
50 

(a) f (x) =3x4 +sxs-1sx2+60; 

(b) f (x) = JI ex2 - I. 

Solution. (a) Here it is simpler to find the extrema of the func­
tion f1 (x) = 3x4 + 8x3 - l8x2 + 60. Since 

f; (x) = 12x3 + 24x2 -36x = 12x (x2 + 2x-3), 
f~ (x) = 12 (3x2 + 4x-3), 

the critical points are: 

X1 = - 3, X2 = 0, X 3 = J , 

and the character of the extrema is readily determined from the 
sign of the second derivative f; (-3) > O; hence, at the point x, = -3 
the function f 1 (x) has a minimum, and the given function f (x) 
obviously has a maximum f (-3) = - 2/3, f; (0) < O; hence, at 
the point x2 = 0 the function f 1 (x) has a maximum, and f (x) a 
minimum f(0)=5/6; f~(l)>O; hence, at the point X3 =l the 
function f i(x) has a minimum, and f (x) a maximum f ( 1) = 50/53. 

(b) In this case it is easier to find the points of extremum of 
the radicand 

f1(X)=ex2_l, 

which coincide with the points of extremum of the function f (x). 
Let us find the critical points of f 1 (x): 

t; (x) = 2xex2
; f; (x) = 0 at the point x = 0. Determine the sign of 

the second derivative at the point x = 0: 

f; (x) = 2ex' (1 + 2x2), f~ (0) = 2 > 0. 

Therefore the point x = 0 is a minimum of the function f1 (x); it 
will also be a minimum of the given function f (x): f (0) = 0. 

3.6.6. Investigate the character of the extremum of the function 
y=coshx+cosx at the point x=O. 

Solution. The function y is an even one and apparently has an 
extremum at the point x = 0. To determine the character of the 
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extremum Jet us evaluate the derivatives of this function at the 
point x=O: 

y' == sinh x-sin x, y' (0) = 0; 
y" =cosh x-cosx, y" (0) = O; 

y"' = sinh x +sin x, y"' (0) = O; 
y< 4> = cosh x +cos x; y"' (0) = 2 > 0. 

Since the first non-zero derivative at the point X=O is a derivative 
of an even order, which takes on a positive value, we have a mi­
nimum y (0) = 2 at this point. 

3.6.7. Investigate the following functions for an extremum at 
the point x = 0: 

(a) y=cosx-1+~;-~;; (b) y=cosx-1+~2 • 
x2 

Solution. (a) y'=-sinx+x- 2 ; y'(O)=O; 

y" =-cosx+ 1-x; y" (0) =0; 
y"' =sin x- I; y'" (0) = - 1 =I= 0. 

And so, the first non-zero derivative at the point x = 0 is a deri­
vative of the third order, i. e. of an odd order; this means that 
there is no extremum at the point x= 0. 

3.6.8. Investigate the following functions for extrema: 
(a) f (x)=x4e-x2 ; (b) f(x)=sin3x-3sinx. 
Solution. (a) The function f (x) = x4e-x2 is continuously differen­

tiable everywhere. Equating the derivative 

f' (x) = 4x3e-x2 -2x0e-x2 = x3e-x2 (4-2x2 ) 

to zero, find the critical points: 

X 1 =-V2; X2 =0; X3 = V2. 

Compute the values of the second derivative at the critical points~ 

f" (x) = 12x2e-x" -8x4e-x" - l0x4e-x" +4x6e-x" = 
= 2x2e-x2 (6-9x2 -r- 2x• ); 

f" (0) = O; f" (- V2) < 0; f" (V2) < 0. 

Consequently, at the points X1 =-V2 and X3= + v2· the function 

reaches a maximum f ( + V2) = 4e- 2 = e~ . As far as the critical 

point x2 = 0 is concerned, nothing definite can be said as yet, we 
have to find derivatives of f (x) of higher orders (up to the fourth 
order!). But this process is cumbersome, therefore \\'e will turn to 
the first sufficient condition of an extremum: let us find the sig11s 
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of the first derivative in the neighbourhood of the critical point 
X 2 =0: 

f' ( -1) < O; f' ( 1) > 0. 

Hence, at the point x = 0 the function has a minimum f (0) = 0. 

3.6.9. The function y = f (x) is rPpresented parametrically: 

I x= cp (t) = tj-sr1-2ot -1- 7, 
\ y=\jl(t)=4f 3 -3f 2 -18t+3 (-2<t <2). 

Find the extrema of this function. 
Solution. We have 

cp' (t) = 5t 4 - l 5t 2 -20. 

In the interval (-2, 2) cp' (t) =I= 0. 
Find \jl' (t) and equate it to zero: 

"'' (t) = 12t 2 -6t - 18 = 0. 

Whence t1 = - 1 and t2 = 3/2. 
These roots are interior points of the considered interval of va­

riation of the parameter t. 
Furthermore: 

\jl" (t) = 24t -6; \jl" (-1) = - 30 < 0, 'Ii" (3/2) ·= 30 > 0. 

Consequently, the function y = f (x) has a maximum y = 14 at 
i=-1 (i.e. at x=31) and a minimum y=-17.25 at t=3/2 
(i. e. at x= - 1033/32). 

3.6. lO. Find the maxima and minima of the following functions: 

(a) f(x)=x2e-x; f 4x 
(b) (x) = x2+4; 

(c) f (x) = - x2 V (x-2)2 ; 
14 

(d) f (x) = x4-8x2+2; 

(e) f (x)= V2x3 +3x2 -36x; 
(f) f (x) = x2 In x; (g) f (x) = x ln2 x. 

3.6.11. Investigate the following functions for an extremum at 
the point x = 0: 

(a) f(x)=sinx-x; (b) f(x)=sinx-x+x 3/3; 
. . x~ x4 

(c) t(x)=stnx-x+ 31 - 41 ; 

{ 
e11x if x=j=.O 

(d) f(x)= O, 'if x=o.' 
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§ 3.7. Finding the Greatest and the Least 
Values of a Function 

The greatest (least) value of a continuous function f (x) on an 
interval [a, b) is attained either at the critical points, or at the­
end-points of the interval. To find the greatest (least) value of the 
function we have to compute its values at all the critical points 
on the interval [a, b), the values f (a), f (b) of the function at the 
end-points of the interval and choose the greatest (least) one out 
of the numbers obtained. 

If a function is defined and continuous in some interval, and if 
this interval is not a closed one, then it can have neither the 
greatest nor the least value. 

3. 7 .1. Find the greatest and the least values of the following 
functions on the indicated intervals: 

(a) f(x)=2x 3 -3x2 - i2x+ I on [-2, 5/2); 
(b) f(x)=x2 lnx on[!, e); 
(c) f (x) = xe-x on fO, + oo ); 
(d) f(x)=V(l-x2 )(1-t-2x2 ) on [-1. l). 
Solution. (a) Find the derivative f' (x): 

/' (x) = 6x2 -6x-12. 

It vanishes at two points: x1 = - l and x2 = 2. They both lie in­

side the indicated interval [-2, }] ; consequently both of them 

must be taken into consideration. To find the extreme values of 
the function it is necessary to compute its values at the points 
x1 and x2 , and also at the end-points of the segment: 

f(-2)=-3, f(-1)=8; f(2)=-19, t(~)=-16 ~. 
Hence, the greatest value is f (-I)= 8 and the least f (2) = - 19_ 

(b) Find the critical points: f' (x) = x ( 1+2 ln x). The derivative 
f' (x) does not vanish inside the given interval [l, e]. ThNefore 
there are no critical points inside the indicated interval. It now 
remains to compute the values of the function at the end-points of 
the interval [I, e) 

f (1)=0; f (e)=e2 • 

Thus, f(l)=O is the least value of the function and f(e)=e2 the 
greatest. 

3.7 .2. Find the greatest and the !east values of the following 
fund ions on the indicated intervals: 

(a) y=sinxsin2x on (-oo, oo); 
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(b) y=arccosx2 on [-J/2;2, J/2;2]; 

(c) y=x+V-x.on [O, 4]. 
Solution. (a) Represent the function y =sin x sin 2x in the form 

cos x-cos 3x 
y= 2 

whence it is seen that the function is an even one and has a pe­
riod 2n. Hence, it is sufficient to seek the greatest and the least 
values among the extrema on the interval [O, n]. Find the deri­
vative y': 

y' = ~ (3 sin .3x-sin x). 

In [O, n] the derivative vanishes at the points 

x1 = 0, x2 =arc cos ;f, x3 = arc cos ( - y~:f) , x~ = n. 

Compute the values of the function at these points: 

y (0) = y (n) = 0, y [arc cos ( + ; 3 ) J = + 3 ~f. 
Hence, the least value of the function in the interval (- oo, oo) 
is equal to -4/(3 V3), and the greatest to 4/(3 V3). 

3.7.3. The function 

f (x) =ax+!!._ (a, b, x > 0) x 

consi~ts of two summands: one summand is proportional to the 
independent variable x, the other inversely proportional to it. 
Prove that this function takes on the least value at X= Vb/a. 

Solution. Find the roots of the derivative f' (x) in the interval 
(0, 00 ): 

f' (x) =a - :2 = 0 

at x = V-b/a (x > 0). Since f" (x) = 2b/x3 > 0 for any x > 0, the f unc­
tion f (x) reaches a minimum at this critical point. This is the 
only exiremum (minimum) in the interval (0, oo ). Hence, at 
x = J/ b/a the function f (x) attains the least value. 

3.7.4. As a result of n measurements of an unknown quantity 
x the numbers x10 x2 , ••• , x,. are obtained. 

It is required to find at what value of x the sum of the squares 
of the errors 

f (x) = (X-X1)2 + (X-X2)2 + ... + (x-x,.)2 

will be the least. 
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Solution. Compute the derivative 

f' (x) = 2 (x-x1H- 2 (x-x2 ) + ... + 2 (x-xn)· 

The only root of the derivative is 

X = X 1 + X2 + ... + Xn • 

n 

Then, for all x we have f" (x) = 2n > 0. Therefore, the function 
f (x) has its minimum at the point 

X = X1 + X2 + ... + X,, • 

n 

Being the only minimum, it coincides with the least \'alue of 
the function (cf. Problem 1.3.8). 

And so, the best (in the sense of "the principle of the minimum 
squares") approximate value of an unknown quantity x is the arith-
metic mean of the values x1 , x2 , ••• , xn-

3.7 .5. Find the largest term in the sequence 

0 n = n'1+ 200 . 

. x~ 
Solution. Consider the funct10n f(x)=x3 + 200 in the interval 

[l, oo). Since the derivative 
t X (400-X3 ) 

f (x) = (xa + 200)2 

is positi\e at 0 < x < V 400 and negative at x > V 400, the 

function f (x) increases at 0 < x < V 400 and decreases at x > V 400: 
From the inequality 7 < V 400 < 8 it follows that the largest term 
in the sequence can be either a1 or a8 • Since a1 = 49/543 > a8 = 8/89, 
the largest term in the given sequence is 

49 
01 = 543. 

3.7 .6. Find the greatest and the least values of the following 
functions on the indicated intervals: 

) f ( ) l 4 2 'l 3 2 2 [ 2 4] (a x = 4 x - 3 x· - 2 x + on - , ; 

(b) f (x) = V 4-x2 on [ -2, 2]; 

(c) f(x)=arctanx-f lnx on [ ; 3 , V3-]; 

(d)/(x)=2sinx+sin2x on [o, ~ n:j; 

6 -3148 
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{e) f(x)=x-2lnx on [I, e]; 

(f) f (x) = ~ 2x2

1
+ !2 for -2 ~ x < O; 0 < x ~ 2, 

I for x =0. 

§ 3.8. Sol'Ving Problems in Geometry and Physics 

3.8.1. The force of a circular electric current acting on a small 
magnet with the axis perpendicular to the plane of the circle and 
passing through its centre is expressed by the formula 

F= Cx 
(a2+x2i'!, ' 

where a= radius of the circle 
x =distance from the centre of the circle to the magnet 

(0 < x < oo) 
C =constant. 

At what x will the value of F be the greatest? 
Solution. The derivative 

F'(x)=C a2-2x2 
(a2+x2)'/1 

has a single positive root x=a/V2. This solves the problem. 
Note. It often happens that reasons of purely physical or geo­

inetric character make it unnecessary to resort to the differential 
methods in investigating a function for the greatest or the least 
value at the point under consideration. 

3.8.2. Determine the most economical dimensions of an open-air 
swimming pool of volume 32 m3 with a square bottom so that the 
facing of its walls and bottom require the least quantity of ma­
terial. 

Solution. Let us denote the side of the bottom by x and the 
height by y. Then the volume V of the pool will be 

V =x2y=32, 
and the surface S to be faced 

S=x2+4xy. 

Expressing y through x from the relation (*), we get 

S=x2+4x~ =x2+ 128. 
x~ x 

(*) 

Investigate the function thus obtained for a minimum in the 
interval (0, oo ): 

S' = 2x - ~8 ; 2x - 1;~ = O; x = 4. 
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The single point thus found will obviously yield the least value 
of the function S, since it has no greatest value (it increases un­
boundedly as x ~ 0 and x ~ oo ). 

And so, the required dimensions of the pool are: x = 4 m, y = 2 m. 

3.8.3. Inscribe into a given sphere a cylinder with the greatest 
lateral surface. 

3.8.4. 20 m of wire is available for fencing off a flower-bed 
which should have the form of a circular sector. What must the 
radius of the circle be if we wish to have 
a flower-bed of the greatest possible surface !J 
area? 

Solution. Let us denote the radius of the 
circle by x, and the length of the arc by y 
(see Fig. 42). Then 

20 = 2x+ y, O 
whence 

y = 2 (10-x). Fig. 42 

The area of the circular sector S= ~ xy=x(lO-x) (O~x~lO). 
The derivative S' (x) = 10-2x has a root x = 5. 
Since the least value S = 0 is reached at the end-points of the 

Fig. 43 

interval [O, 10], the obtained value 
x = 5 yields the greatest surface area S. 

3.8.5. It is required to construct 
an open cylindric<ll reservoir of capa­
city V0 • The thickness of the material 
is d. What dimensions (the base radius 
and height) should the reservoir have 
so as to ensure the least possible 
expenditure of the material? 

Solution. Figure 43 represents a lon­
gitudinal section of the reservoir, 
where the radius of the base of the 
inner cylinder is denoted by x and 
the height of the inner cylinder, 
by h. The volume of the bottom 

and the wall of the reservoir 

V = n (x+d)2 d+ n [(x+ d)2 -x2 ] h = nd (x+d)2 + nh (2xd +d2 ). (*) 

On the other hand, by hypothesis we must have 
V0 = nx2h 

whence 
h-= !i_ 

nx2 • 
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Substituting into (*), we get 

V-= nd (x + d)2 +:rev." (2xd + d2 ) = nd (x + d)2 + 2Vod + v".d2
• 

rrx 2 x x~ 

Now we have to investigate the obtained function V (x) for an 
extremum at x > 0. 

We have 
V' (x) = 2nd (x + d)- 2~0d _ 2V0d2 = 2d (x+d) (nx3 -V0 ) 

x2 xa xa 
.!/-­The only positive root of the derivative is the point x = v V0/n. 

This solves the problem: 

V-
~ o =X. 

3.8.6. A factory D is to be connected by a highway with a 
straight railway on which a town A is situated. The distance DB 

]) 
R 

' I / I 
/ I 

/ I 
,' ia 

/ I 
, I 

/ I 
/ I 

-~-o-~~~Gef~~~~~~ 
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Fig. 44 

from the factory to the railway is 
equal to a, the segment AB of the 
railway equals [. Freight charges on 
the highway are m times higher than 
on the railway (m > 1 ). 

How should the highway DP be 
connected with the railway so as to 
ensure the least freight charges from 
factory to town? 

Solution. First, let us make a draw­
ing (see Fig. 44). It is absolutely 
clear that the highway must also be 

straight (a straight line is shorter than any curve connecting two 
given points!). Furthermore, the point P cannot lie either to the 
left of the point A or to the right of the point B. If we denote 
the distance AP by x, it will mean that 0 ~ x ~ l. 

Let the freight charges on the railway (per ton-kilometre) be k, 
then the freight charges on the highway will be km. The total 
freight charge N for transporting loads from D to A amounts to 

N =kx+km Va2 +(L-x)2 • 

Hence, we have to find the least value of the function 

f (x) = x+m ~1a2 + (x-l)2 , O~x ~ l. 

Take the derivative 
m (x-1) 

f' (x) = 1 + y a2+ (x-/)2 • 



§ 3.8. Solving Problems in Geometry and Physics 

It vanishes only at one point: 

X=l- a 
Vm 2 -1 

If this point lies in the interval [O, l]. i.e. if 

l ;;;::: ~ or al ~ V m2 - I, 
m2-J 
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then it yields the least freight charge (which is easy to check). 
If the indicated inequality is not observed, then f (x) increases on 
[O, l) and therefore the least freight charge is obtained at x = 0. 

3.8.7. In constructing an a-c transformer it is important to insert 
into the coil a cross-shaped iron core of greatest possible surface 
area. Fig. 45 shows the cross-section 1 
of the core with appropriate dimen­
sions. Find the most suitable x and 
y if the radius of the coil is equal 
to a. 

3.8.8. If the source of current is an 
electric cell, then the effect P (watts) 
obtained by cutting a resistance R 
(ohms) in the circuit is expressed by 
the formula 

E2R 
P=!R+R;)2 • Fig. 45 

where E is electromotive force in volts and R; the internal resis­
tance in ohms. 

Find the greatest effect which can be obtained at given E and R;. 

3.8.9. A tin of a given volume V has the form of a cylinder. 
What must ~e the ratio of its height h to diameter 2R so as to 
use the least amount of material for its manufacture? 

3.8.10. In a given cone inscribe a cylinder having the greatest 
lateral surface so that the planes and centres of the base circles 
of the cylinder and cone coincide. 

3.8.11. Given a point (1, 2) in the orthographic coordinates. 
Through this point draw a straight line so that it forms, together 
with the positive semi-axes, a triangle of the least area. 

3.8.12. Given a point M on the axis of the parabola y2 = 2px 
at a distance a from its vertex. Find the abscissa of the point 
on the curve nearest to the given point. 
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3.8.13. The expenses sustained in one hour's sailing of a ship 
are expressed in roubles by an empirical formula of the form 
a+ bv3 , where a and b are constants for a given ship, and v is the 
ship's speed in knots (one knot is equal to 1.85 km/hr). In this 
formula the constant part of the expenses a refers to depreciation 
and crew's upkeep, and the second term (bv 3 ) to the fuel cost. 
At what speed will the ship cover any required distance at the 
lowest cost? 

3.8.14. A trough is built from three boards of equal width. At 
what slope should the lateral boards be placed to ensure the largest 
cross-sectional area of the trough? 

3.8.15. A tank with a vertical wall of height h is installed on 
a horizontal plane. Determine the position of an orifice, at which 
the range of a liquid jet will be the greatest if the velocity of 
flow (according to Torricelli's law) is equal to V2gx, where x is 
the depth of the orifice. 

3.8.16. Two aircraft are flying in a straight line and in the 
same plane at an angle of 120° to each other and with an equal 
speed of v km/hr. At a certain moment one aircraft reaches the 
point of intersection of their routes. while 1 he second is at a dis­
tance of a km from it. When will the distance between the 
aircraft be the least and what is that distance? 

§ 3.9. Convexity and Concavity of a Curve. Points of 
Inflection 

If f" (x) < 0 (> 0) on an interval (a, b), then the curve y = f (x) 
on this interval is convex (concave), i.e. it is situated below (above) 
any of its tangent lines. 

If f" (x11 ) = 0 or does not exist but f' (x0) does exist and the second 
derivative f" (x) changes sign when passing through the point x0 , 

then the point (x0 , f (x0)) is the point of inflection of the curve 
y-= f (x). 

3.9.1. Find the intervals in which the graphs of the following 
functions are concave or convex and locate the points of inflection: 

(a) y = x4 + x3 -· l8x2 + 24x-12; 
(b) y=-"3x4 -8x3 +6x2 + 12; 

x 
(c) y = I +x2; 
(d) y =x+x't,; 

(e) y=4V(x-1)"+20V(x-1)3 (x;;;=:11; 
ln2 x 

(f) y=-x- (x > O); 
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(g) y = x sin (In x) (x > O); 
(h) y=2-lx"-l I. 
Sotution. (a) Find the derivatives: 

y' = 4x3 + 3x2 -36x + 24, 

y"=l2x2 +6x-36= 12(x2 +~-3), 

whence y" = 0 at x1 = -2, x2 = 3/2. 
Hence, y" > 0 on the intervals (-oo, -2) and (3/2, oo); y" < 0 

on the interval (-2, 3/2). The sign of the second derivative deter­
mines the convexity or concavity of the curve in a given interval. 

This enables us to compile the following table: 

3 x I x <-2 /-2 < x < ~I x> 2 

Sign of y" I + I - I + 

Conclusion I Concavity I Convexity I Concavity 

Since the second derivative changes its sign when passing through 
the points x1 = -2 and x2 = 3/2, the points (-2, -124) and 

( ~ , -8 ~) are points of inflection. 
(d) Find the derivatives: 

Y' = 1 + 35 x'lo ' y" - 10 -9v x • 

The second derivative is non-zero everywhere and loses its meaning 
at the point x = 0. At x < 0 we have y" < 0 and the curve is con­
vex, at x > 0 we have y" > 0 and the curve is concave. 

At the point X= 0 the first derivative y' = 1, the second deriva­
tive changes sign when passing through the point x = 0. Therefore 
the point (0, 0) is a point of inflection. 

(g) Find the derivatives: 

y' =sin (In x) +cos (In x), 

y" =+[cos (In x)-sin (lnx)] =~~sin (~-In x). 
The second derivative vanishes at the points 

Xk=enf 4 +kn, k=O, + 1, +2, .... 

The function sin(n/4- lnx), and together with it y", changes sign 
when passing through each point xk. Consequently, the points xk 
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are the abscissas of the points of inflection. In the intervals 
(e2kn-an/4, e2kn+n/4) 

the curve is concave, and in the intervals 

(e2kn+n/4, e2kn+an/4) 

it is convex. 
(h) The given function can be written in the following way: 

Therefore 

{ 2 - (x0 - 1), 

y= 2+(x5 - l), 

I -5x4 , ' 
Y = \ 5x4 , 

x >I, 
x <I. 

x;:;:: 1, 

x <I. 

At the point x = 1 there is no derivative. Further, 

f - 20x3 , x > I , 
y" = l 20x3 , x < I; 

y"=O at the point x=O. Hence, we have to investigate three in­
tervals: (-oo, 0), (0, I), (l, oo). 

Compile a table of signs of y": 

x 
I 

x<O I 0 < x <I I x>I 

Sign of y" I -

I 
+ I 

-

Conclusion I Convexity I Concavity I Convexity 

The point (0, I) is a point of inflection, the point (I, 2) being 
a corner point. 

3.9.2. What conditions must the coefficients a, b, c satisfy for 
the curve y=ax4 +bx3 +cx2 +dx+e to have points of inflection? 

Solution. Find the second derivative: 

y" = l 2ax2 + 6bx + 2c. 

The curve has points of inflection if and only if the equation 

6ax2 + 3bx+c = 0 

has different real roots, i.e. when the discriminant 9b2 - 24ac > 0, or 

3b 2 -8ac > 0. 
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3.9.3. At what values of a will the curve 

y = x 4 + ax" +- ; x 2 + I 

be concave along the entire number scale? 
Solution. Find y": 

y" ~= 12x2 + 6ax + 3. 
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The curve will be concave along the entire number scale if y";:::: 0 
for all values of x, i.e. when 

4x2 + 2ax + 1 ;:::: 0 for all x. 

For this it is necessary and sufficient that the inequality 4a2 - 16 ~ 0 
be fulfilled; whence 

lal~2. 
x+I 

3.9.4. Show that the curve y c~ x2 + I has three points of inflec-

tion lying in a straight line. 
Solution. Find the derivatives: 

, --x2 -2x+ I 
y-~ (x2+1)2 • 

,, 2x"-i fix 2 -6x-2 
y c__ (x 2 -t-- I)" 

The second derivative becomes zero at three points, which are the 
roots of the equation 

x:i + 3x2 - 3x - I = 0, 
whence 

x,. == 1. 

Let us compile the table of signs of y": 

---co<x< -2-- J/:f < r< --2_[_ VT< 
x 

< -2-- v:i < -2 :- V3 <x< I l<x<oo 

Sign of !I " 

I 
--

I 
~~-· 

I 
-

I 
_[__ 

1 

I 

I I I I 
Concavity Conclusion Convexity Concavity Convexity I 

j 

Hence, (--2-~,r3, - ~-- 1 ), (-2+V3, '+[3 ),(1, I) 

are points of inflection. It is easy to ascertain that all of them 
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lie in a straight line. Indeed, the coordinates of these points satisfy 

th It . -2-¥3-1 (1-J/3)/4--1 
e re a ion ,r- = . 

-2+r 3-1 (1+¥3)/4+1 

3.9.5. Investigate the curves represented by the following equa­
tions for convexity (concavity) and locate the points of inflection: 

(a) y=x- i/(x-3)2 ; 

(b) y = e•in x (-n/2 ~ x~ n/2). 

3.9.6. Show that the points of inflection of the curve y = x sin x 
lie on the curve y2 ( 4 + x2 ) = 4x2 • 

§ 3.10. Asymptotes 

A straight line is called an asymptote to the curve y = f (x) if 
the distance from the variable point M of the curve to the straight 
line approaches zero as the point M recedes to infinity along some 
branch of the curve. 

We will distinguish three kinds of asymptotes: vertical, horizon­
tal and inclined. 

Vertical asymptotes. If at least one of the limits of the function 
f (x) (at the point a on the right or on the left) is equal to infi­
nity, then the straight line x =a is a vertical asymptote. 

Horizontal asymptotes. If lim f (x) =A, then the straight line 
x- ± 00 

y = A is a horizontal asymptote (the right one as X-+ + oo and 
the left one as x-... - oo ). 

Inclined asymptotes. If the limits 

lim f (x) = k1, Iim [f (x) - k1x] = b1 
x-+«> X X-++oo 

exist, then the straight line y = k1x + b1 is an inclined (right) 
asymptote. 

If the limits 

Jim f (x) = k2 and lim [f (x) - k2x] = b2 
X-+-CX> X X-+-rl:J 

exist, then the straight line y = k2x + b2 is an inclined (left) asymp­
tote. A horizontal asymptote may be considered as a particular 
case of an inclined asymptote at k = 0. 

3.10.1. Find the asymptotes of the following curves: 
5x 3x x 

(a) y=--3 ; (b) y=--1 +3x; (c) Y=-r-+1 ; x- x- x 

I ...!.... 3x r I ) 
(d) Y=-x+4x2 ; (e) y=xex; (f) y= 2 1n~e-3X ; 



§ 3.10. Asympto~es 171 

(g) y=Vl+x2 +2x; (h) y=JII +x2 sinJ.; 
x 

(i) y=2V-x2 +4. 
Solution. (a) The curve has a vertical asymptote x = 3, since 

I. 1. 5x 
1m y= 1m --=+oo 

x-3:i=O x-3:i=ox-3 

(the point x = 3 is a point of discontinuity of the second kind). 
Find the horizontal asymptote: 

I. 1· 5x 5 1m y= 1m --3= . 
X - ± CX> X-+ ± CD X-

And so, the curve has a vertical asymptote x= 3 and a horizon­
tal one y= 5. 

(b) The curve has a vertical asymptote x = I, since 

lim y = lim (x 3x 1+3x) = - oo; 
X-+1-0 x-1-0 

!I 

Jim y = Jim ( 3\ +3xJ' = + oo. 
x-1+0 X-+l+O X 

Find the inclined asymptotes: 

k = lim 1L = lim ( 3 
1+3)=3; 

x-±oo X X-+±"' X 

b = lim (y- kx) = 
X·-+ ±:::ii 

= Jim ( ~ 1 + 3x - 3x) = 3. 
x-±oo X 

'V' I 7 
I I 
i I 
I I 
i I ,, 
v 
~ 

/1 
I 
I 
I 
I 

Thus, the straight line y = 3x+3 is an 
inclined asymptote (see Fig. 46). hg. 46 

(e) The curve has a vertical asymptote x = 0, since 

Iim y = Jim xe 1tx = 
x-+O X-++0 

et 
Iim -= +oo 
1 t 

I=--+"' x 
(see Problem 3.2.2.). 

Find the inclined asymptotes: 

k= lim .JL= lim eifx=eo=l· 
x-±CI> X X-+±oo r 

b = lim (xe 11x - x) = lim 
X-+±IX> x:-.±oo 

elfx_ I 

l/x 
I. ez-1 I 
Im --= . 

l/x=z-+0 z 
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Thus, the straight line y = x+ I will be an inclined asymptote 
ol the curve (see Fig. 47). Note that 

Jim Y= Jim xe 11x=O. 
X->-0 X-+-0 

(f) The function I is defined and continuous at e- - > 0 
3x ' 

i.e. at 
I 

x < 0 and x > 3e . J\/ 
/ 

/ 
/ 

Since the function is continuous at 
every point of the domain of definition, 
vertical asymptotes can exist only on 
finite boundaries of the domain of defini­
tion. 

/ As x - - 0 we have ., / 

_1 // Jim y= Jim ~In (e- 3~) = 
__ .,....,,-t-_..__ ____ :J: X-> - 0 X-> - 0 

1 

Fig 47 

As x ---+ _.!.. + 0 we have 
3e 

=-_.!..Jim ln<e+z)=O (z=-_!_) 
2 z~ + 00 z 3x 

(see Problem 3.2.2.), i. e. the straight 
line x = 0 is not a vertical asymptote. 

I. 3 1. I ( I ) 1rn y=- 1m x n e-- = -oo, 
x~lf(3e)+0 2 x .... J/(3e)+0 3x 

i. e. the line x = l/(3e) is a vertical asymptote. 
Now let us find the inclined asymptotes: 

. y 3 J' I ( I ) 3 k= ltrn x-= 2 1rn n e- 3x =2; 
.r-+±oo x-,.±oo 

!b= Jim [y-kx] =% Jim x [in (e- 3~)-11 = 
X-+±00 X-+±00 

-~I' 1n(1-:de)_2 ( _ _!_) __ _!_ 
- 2 ltn I - 2 3 - 2e • 

x~±oo _ e 
x 

I. 3x I . . l' d t t me y = 2 - 2e 1s an me me asymp o e Hence, the straight 
(see Fig. 48). 

(g) The curve has no vertical asymptotes, since the function is 
continuous everywhere. Let us look for inclined asymptotes. The 
limits will be different as x __, + oo and x ____,. - oo, therefore we have 
to consider two cases separately. 
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Find the right asymptote (as x _ _..,. + oo ): 

.r-- -./ --1-+-I +2 
k '

. r l+x2 +2x 1. V xi 3 
1 = 1m = 1m = ; 

X-+ + oo X x- + oo 1 

b1 = lim (Vt+ x2 + 2x-3x) = 
x....,.. +oo 

Thus, as x - + oo the curve has an asymptote y = 3x. 

Fig. 48 Fig. 49 

Find the left asymptote (as x - - oo ): 

. V l + x2 + 2x . I x I V ;2 + I+ 2x 
k2 = hm = hm ~..:I, 

X-+ - 00 X X-+ - 00 X 

b1 = Jim IVt+x2 +2x-xl= lim ~ =0, 
x-+-«> .<-+-«> I +x -x 

since both summands (Vt+x2 and (-x)) in the denominator are 
positive at x < 0. 

And so, the curve has an asymptote y = x as x - - oo. 
(h) The curve has no vertical asymptotes, since it is continuous 

at x=FO, and in the neighbourhood of the point x=O the function 
is bounded. 

Let us find the inclined asymptotes. We have 

y lxl y1+ 12 sin_!_ 
k= Jim-;= lim x x =± 1-0=0. 

X-+±<D -<-+±<D X 

Then 

V--1 1 f 1 as x-+oo, 
b= lim (y-kx)= lim lxl 1+2sin-=1-1 as X-+-oo. 

l-+±<D .1:-+±<D x x \ 
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Thus, the curve has two horizontal asymptotes: y = + 1 and y = - 1 
(see Fig. 49). The same result can be obtained proceeding from 
symmetry about the origin and keeping in mind that the function 
y is odd. 

3.10.2. Find the inclined asymptote of the graph of the function 

y= l~x as X-+- oo and show that in the interval (100, oo) this 

function may be replaced by the linear function y = x- l with an 
error not exceeding 0.01. 

Solution. Find the inclined asymptote: 

• x2 
k = !~n; x (I + x) = 1; 

b = !~n; (I: x - x) = - 1. 

And so, the equation of the asymptote is y = x- l. 
Form the difference: 

x2 I 
~= I+x-(x-l)= l+x · 

Hence, assuming 
x2 

Y=i+x:::::::x-l, 

for all x > 100, we introduce an error of not more than 0.01. 

3.10.3. Find the asymptotes of the following curves: 
x2 -6x+3 

(a) y = x-3 ; (b) y = x arc tan x; 

(c) y=x+(sinx)/x; (d) y=ln(4-x2); 

I (e) y=2x-arccos-. x 

§ 3.11. Oeneral Plan for Investigating Functions and 
Sketching Oraphs 

The analysis and graphing of functions by elementary methods 
were considered in Chapter I (§§ 1.3 and 1.5). Using the methods 
of differential calculus, we can now carry out a more profound and 
comprehensive study of various properties of a function, and explain 
the shape of its graph (rise, fall, convexity, concavity, etc.). 

It is convenient to investigate a function and construct its graph 
according to the following plan: 

1. Find the domain of definition of the function. 
2. Find out whether the function is even, odd or periodic. 
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3. Test the function for continuity, find out the discontinuities 
and their character. 

4. Find the asymptotes of the graph of the function. 
5. Find the points of extremum of the function and compute the 

values of the function at these points. 
6. Find the points of inflection on the graph of the function, 

compute the values of the function and of its derivative at these 
points. Find the intervals of convexity of the graph of the function. 

7. Graph the function using the results of this investigation. If 
it is necessary to specify certain regions of the curve, calculate the 
coordinates of several additional points (in particular, the x- and 
y-intercepts). 

This is a very tentative plan, and various alternatives are pos­
sible. For instance, we recommend the student to begin sketching 
the graph as soon as he finds the asymptotes (if any), but in any 
case before the points of inflection are found. It should be remem­
bered that in sketching the graph of a function the principal refe­
rence points are the points of the curve corresponding to the extremal 
values of the function, points of inflection, asymptotes. 

3.11.1. Investigate and graph the following functions: 

(a) y=x6 -3x4 +3x2 -5; (b) Y=Vx-Vx+l; 
2x3 

(c) y = x2_4; 

(e) y=x+ln(x2 -l); 

l-x3 

(d) y=X2; 

(f) y =+sin 2x+ cosx; 

. l-x2 

(h) y =arc sm 1 +x2 • 

Solution. (a) The function is defined and continuous throughout 
the number scale, therefore the curve has no vertical asymptote. 
The function is even, since f(-x)=f(x). Consequently, its graph 
is symmetrical about the y-axis, and therefore it is sufficient to 
investigate the function only on the interval [O, oo ). 

There are no inclined asymptotes, since as X-+ oo the quantity 
y turns out to be an infinitely large quantity of the sixth order 
with respect to x. 

Investigate the first derivative: 

y' = 6x5 - l2x3 + 6x = 6x (x4 -2x2 + 1) =6x (x2 - l)2; 

the critical points are: 

X1 =-1, X2 =0, Xa=l. 

Since in the interval [O, oo) the derivative y';:;;;:: 0, the function 
increases. 
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Investigate the second derivative: 

y" = 30x4 -36x~ + 6= 6 (5x4 -6x2 + 1). 

The positive roots of the second derivative: 

X1 = l/J/5, X2 = 1. 

For convenience and pictorialness let us compile the following 
table, where all the points of interest are arranged in an ascending 
order: 

0 ( o. ;5-) I ( ~;· 1) I (I. 00) 
!I 

2 )( vs 
ii 

I II 
93 

ii 
t/ 0 + 25 vs-~ 1.7 + 0 I + 

I 

I I I I ! 
I 

'I 
y " (j + 0 - - 0 

I 
-t 

I, 

I 
-~ 

ii 
y ~ -4 .L. 23 

'"?" 

On the right one more additi.onal value of the function is com­
puted to improve the graph after the point of inflection. 

Using the results of the investigation and the above table and 
taking into consideratio_n the symmetry principle, we construct the 
graph of the function (see Fig. 50). As is seen from the graph, the 
function has roots X= ±a, where a:::::::; 1.6. 

(b) The function is defined and continuous over the entire number 
scale and is negative everywhere, since Vx < V x+ 1. 

The graph has neither vertical, nor inclined asymptotes, since the 
order of magnitude of y is less than unity as x-... oo. Determine 
the horizontal asymptote: 

limy= Jim (Vx-Vx+l)= 
x-.±oo X-+±oo 

. -I 
= hm 3 a,. a = 0. 

x-·±oo v x2 + v x (x+ I)+ v/(x-t- J 1! 

Hence, the straight line y = 0 is the horiZ0ntal asymptote of the 
graph. 
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The first derivative 
, I I V(x+n2-VX2 

Y =3Vx2 -3t/(x+1)2 avx2tx+1)2 

becomes zero at the point x2 = - ~ and infinity at the points 

!f X1 = - 1, Xb = 0. 

1 
!/ 

-f -12 0 f 

-5 

Fig. 50 Fig. 51 

The second derivative 

" I ( 2.) I I ( 2) I 2[ViX+TJii-VX&J 
Y =3 -3 Vx•-3 -3 V<x+l)0 = 9Vlx<x+l)Jo 

does not vanish and is infinite at the same points x1 = - 1, x3 = 0. 
Compile a table: 

(-1. -~) I 1 I ) 0 x -I -2 \ -2· 0. (0, 00) I 

I 

y' I - 00 I - I 
0 I + I 00 I + 

11 

16 l 
y" 00 + +gv2 + 00 -

I 

-1 3 J y ~-~L -0.26 

With the aid of this table, and of the asymptote y = 0 construct 
the graph of the function (see Fig. 51). 
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(c) The function is defined and continuous over the entire axis 
except at the points x = + 2. The function is odd, its graph is 
symmetrical about the origin, therefore it is sufficient to investigate 
the function on the interval [O, oo). 

The straight line X= 2 is a vertical asymptote: 
2 3 . 2x3 

Jim ~= - oo; hm - 2- 4-= -j-oo, 
x - 2 - 0 x--4 x-2+0 X -

Determine the inclined asymptote: 
y 2x2 

k= lim -= lim --=2 
x--.+oo x x- +oo x2-4 , 

b= lim (y-2x) = lim ~=0. 
X-++oo x ....... +oo X-

The curve has an inclined asymptote y = 2x, and 

y-2X= ~ { > 0 at X > 2, 
x 2 -4 < 0 at x < 2 

The first derivative 
, 6x2(x2-4)-4x4 2x2 (x2 -12) 

Y = (x2_4)2 = (x2-4)?. 

in the interval [O, oo) vanishes at the points 

x = o, x = 2 V3 ~ 3.46 

and becomes infinite at the point x = 2. 
The second derivative 

,, 16x (x2 + 12) 
y = (x2-4)3 

. becomes zero at the point x = 0 and infinite at x = 2. 
Compile a table: 

x 0 (0' 2) 2 (2, 2y3) 2y3 

y' -0 - 00 - 0 

3 V3 y" +o - 00 + --2-

1j ~ ll ~ 
\! 

(2V3. ooJ 

+ 

I 
I 

I 
+ 

I 
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Using the results of the investigation, sketch the graph of the 
function (see Fig. 52). 

(e) The function is defined and continuous at all values of x for 
which x2-l >0 or lxl> 1, i.e. on two intervals: (-oo, -1) 
and (1, + oo). 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

!J1L/ I / 
I / 
I // 
I / 
I / 
I // 
I / 
I / 
I// 

4 -r 
//I 

~~~~:-t--=""""......+-~~~----x 
-21 / O jZ 

Y-4 I 
/I I 

// I I 

/1/ i i 
I I 
I I 
I I 

/. I I 

-1-Vi 
-1 0 

/\ -1 

'I 

!f 1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Fig. 52 Fig. 53 

We seek the vertical asymptotes: 

lim y= lim [x+ln(x2 -l)]=-oo; 
x- - I - 0 x- - I - 0 

limy= Jim [x+ln(x2 -l)]=-oo. 
x-l+O x-1+0 

Thus, the curve has two vertical asymptotes: 

x = - I and x = + 1. 

Find inclined asymptotes: 

k I. y 1. x+ln (x2 -I) 1. rl +ln(x2 -1)] l = Im -= Im = Im = , 
X-+±OOX x-±(,£) x x-±® x 

b= Jim [y-x]= lim ln(x2 -l)= +oo. 
x-±oo x-±oo 

Hence, the curve has neither inclined, nor horizontal asymptotes. 
Since the derivative 

, l + 2x 
y = x2-1 

exists and is finite at all points of the domain of definition of the 
function, only the zeros of the derivative 

X1=- l-V2; X2=-l+J/2 
can be critical points. At the point x2 = - 1 + V2 the function is 
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not defined; hence, there is one critical point Xi= - 1- J/2 belon­
ging to the interval (-oo, -1). In the interval (l, oo) both the 
derivative y' > 0 and the function increase. 

The second derivative 
• 2 (x2 +I) 

y = - (x2-1)2 <O, 

hence, the curve is convex everywhere, and at the point Xi = 

= - l-V2 ~-2.41 the function has a maximum 

y(-t-V2)~-1-V2+111(2+2V2) ~-0.84. 

To plot the graph in the interval (l,oo), where thereare no characte­
ristic points, we choose the following additional points: 

x= 2; y= 2+ ln3 ~ 3.10 and x= 1.2; y= l.2+ ln0.44 ~ 0.38. 

The graph of the function is shown in Fig. 53. 
(f) The function is defined and continuous throughout the num­

ber scale and has a period 2n. Therefore in investigating we may 
.confine ourselves to the interval [O, 2n]. The graph of the function 
has no asymptote by virtue of continuity and periodicity. 

Find the first derivative: 

y' =cos 2x-sin x. 

On the interval [O, 2n] it has three roots: 

n 5n 3n 
X1=5, X2=5, Xs=2· 

Evaluate the second derivative: 

y" = - 2 sin 2x-cos x. 

On the interval [O, 2n] it has four roots: 

x1 =;, x2 =n+arcsin(l/4),X3 = 3;, x.=2n-arcsin(l/4). 

Let us draw up a table of the results of investigation of all cri­
tical points of the first and second derivatives (the table also in­
cludes the end-points of the interval [O, 2n]). 

Since in the interval ( 0, 3;) the roots of the first and second 

derivatives alternate, the signs of the second derivative in the in­
tervals between its critical points are indicated only for the last 
three intervals. 

The results of the investigation enable us to construct the graph 
of the function (see Fig. 54). 

(g) The function is defined, positive and continuous on each of 
the intervals (-oo, 0) and (0, oo). The point x=O is a disconti-
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I I 

0 
l1 

:rt 

I ~ 
5:rt 

(x2, 3;) 
3:rt (3; ,x4) x - 6 X2 X4 (X4,2:rt) 6 2 

I 
I_! I 1 _! 1/ I 0 -2 0 0 ! 8 

I b-I ! 

II-'~, ! r/' 0 3 V3 0 - 0 + 0 ---
2 

JVJ 

\ -31/f -~ ~r -4- 0 y I 
7 

0 

\ ~ 4:rd" 16 ro 16 

nuity. Since (see Problem 3.2.2.) 

Jim y= Jim x2e11x= Jim e~ =oo ( t= ~), 
x-+o x-+o t-+oot 

the straight line x =0 is a vertical asymptote. But 

Jim y = Jim x2e11 x = 0. 
K-+-0 x--..-0 

2:rt 

·1 

I 
ii 

I 

I 

There are no inclined asymptotes, ~ince the function y= x2e11x 

has the second order of smallness with respect to x as x-.+oo. 

0 }_TC 
6 

-f 

Fig. 54 

Let us find the extrema of the function, for which purpose we 
·evaluate the derivative: 

y' = 2xe 11x_et/x = 2e 1/x (x- 1/2), 

whence we find the only critical point x = ~ . 
Since for x =F 0 

y" (x) = 2el/x_f el/x + ~ et/x= ~2 e11x (2x2 -2x+ 1) > 0, 
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on each of the intervals of the domain of definition the graph of 
the function is concave, and at the point x = 1/ 2 the function has 
a minimum 

From the information obtained we can sketch the graph as in Fig. 55. 
To specify the graph in the intervals (-oo, 0) and (1/2 , oo) the 

!J following additional points are used: 

V X= - 1, y=e- 1 ~ 0.37; X= 1, 
y=e ~ 2.72. 

(h) The function is defined and continuous 
1 throughout the number scale, since at any x 

1 I 
I 11-x21 

l+x2 ~ 1. 

Fig. 55 

Since the function is even, we may confine 
ourselves to the investigation of the function 
at x~O. 

As the function is continuous, the graph has no vertical asymp­
totes, but it has a horizontal asymptote: 

Jim y =arc sin (-1) = - ~. 
:C-++CD 

The first derivative 
, I -2x (I +x2)-2x (I -x2) I 4x 

Y = , I (l-x2)2 X (I +x2)2 = -2TXT X (I +.t2)2 
V l-(l+x2)2 

is negative for x > 0, therefore the function decreases. 
The derivative is non-existent 

at the point x = 0. By virtue of 
the symmetry of the graph about 
the y-axis there will be a maxi-

mum at the point y (0) = ~. No­

tice that at the point x = 0 the 
right derivative is equal to -1, 
and the left one to + 1. 

The second derivative is posi-

!f 

_1' 
2 

tive: Fig. 56 
,, 2 (I + x2) 2x Bx 

y (x) =2 (I +x2)4 =n+x2)3 > 0 for all x > 0. 

Hence, in the interval (0, oo) the graph of the function is concave. 
Also note that the curve intersects with the x-axis at the points 

X=± 1. 
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Taking into consideration the results of the investigation, con­
struct the graph of the function (see Fig. 56). 

3.11.2. Investigate and graph the following functions: 
x4 x4 

(a) y=l+x2 - 2 ; (b) y=(l+x):i; 

I x 3 
(c) y=-+4x2 ; (d) y=-:i-1 ; x x -

( e) y = V x2 - V x2 - 4; 
(f) y=x2 ln(x+2); (g) y=x3e-4x; 

(h) y = ( x arctan + at x =F 0, 
l 0 at X= 0. 

§ 3.12. Approximate Solution of Algebraic 
and Transcendental Equations 

Approximate determination of isolated real roots of the equation 
f (x) = 0 is usually carried out in two stages: 

l. Separating roots, i.e. determining the intervals [a, ~] which 
contain one and only one root of the equation. 

2. Specifying the roots, i.e. computing them with the required 
degree of accuracy. 

The process of separation of roots begins with determining the 
signs of the function f (x) at a number of points x = a 1 , a 2 ••• , 

whose choice takes into account the peculiarities of the function f (x). 
If it turns out that f (ak) f (ak+r) < 0, then, by virtue of the 

property of a continuous function, there is a root of the equation 
f (x) = 0 in the interval (ak, ak+1). 

Real roots of an equation can also be determined graphically as 
x-intercepts of the graph of the function y = f (x). If the equation 
has no roots close to each other, then its roots are easi 1 y separated 
by this method. In practice, it is often advantageous to replace 
a given equation by an equivalent one 

'l-'r (x) = 'ljl2 (x), 

where the functions 'ljl1 (x) and 'ljl2 (x) are simpler than the function 
f (x). Sketch the graph of the functions y = 'ljl1 (x) and y = 'ljl2 (x) 
and find the desired roots as the abscissas of the points of inter­
section of these graphs. 

The Methods of Approximating a Root. I. Method of Chords. If 
the interval [a, b] contains the only real root s of the equation 
f (x) = 0 and f (x) is continuous on the interval, then the first ap­
proximation x1 is found by the formula 

f (a) 
Xi= a- t (b)--f(a) (b-a). 
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To obtain the second approximation x2 a similar formula is ap­
plied to that of the intervals [a, x1] or [x1, b], at the end-points 
of which the function f (x) attains values having opposite signs. The 
process is continued until the required accuracy is obtained, which 
is judged of by the length of the last obtained segment. 

2. Method of Tangents (Newton's method). If f (a) f (b) < 0, and 
f' (x) and f" (x) are non-zero and retain definite signs for a~ x ~ b, 
then, proceeding from the initial approximation x0 (x0 E [a, b]) for 
which f (x0 ) f" (x0 ) > 0, we obtain all successive approximations of 
the root £ by the formulas: 

f (Xo) f (x1) f (Xn-1) 
Xi=Xo-f'(xo)' X2=X1-f'(x1)' ··•' Xn=Xn-I-f'(Xn-1)" 

To estimate the absolute error in the nth approximation we can 
apply the general formula 

'
t_x J~I f (xn)I 
"' n ...._,, m1 ' 

where 
m1 = min If' (x) j. 

a<;;;x<O;b 

Under the above conditions the method of chords and the method 
of tangents approximate the sought-for root from different sides. 
Therefore, it is usual practice to take advantage of their combination, 
i.e. to apply both methods simultaneously. In this case one can obtain 
the most precise approximation of a root more rapidly and the cal­
culations can be checked. Generally speaking, the calculation of the 
approximations x1 , x2 , ••• , xn should be continued until the decimal 
digits to be retained in the answer cease to change (in accordance 
with the predetermined degree of accuracy!). For intermediate trans­
formations we have to take one or two spare digits. 

3. Iteration Method. The equation f (x) = 0 is first reduced to the 
form x = cp (x) where I cp' (x) I~ q < 1 (q = const) for a~ x ~ b. Star­
ting from any initial value x0 E [a, b], successive approximations of 
the root£ are computed by the formulas x1 = cp (x0), x2 =cp (x1), ••• , xn= 
=qi (x,._ 1). The absolute error in the nth approximation can be 
estimated by the following formulas: 

1£-x,.J~ I q qlxn-1-XnJ, 

if the approximations xn-i and xn lie on the same side of the root, 
and 

I £-Xn J :;:; I _;.q J Xn-1-Xn J, 

if the approximations xn-i and xn lie on di·fferent sides of the root. 
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3. 12. l. Locate the roots of the equation 

f (x) _ x:•-6x+ 2 = 0. 

Solution. Compile a table of signs of f (x) at some chosen points 

x I f (x) I x I f (x) 
--·· 

- 00 - I -
-3 -- 3 + 
-I + + 00 + 

0 + 

From this table we draw the conclusion that the equation has 
three real roots lying in the intervals (-3, --!), (0, 1) and (I. 3). 

3.12.2. Determine the number of real roots of the equation 

f (x) == x+ex = 0. 

Solution. Since f' (x) = 1 +ex> O; f (-oo)=-oo; f (+ oo)=+oo, 
the given equation has only one real root. 

3.12.3. An approximate value of the root of the equation f (x) _ 
_ x4 -x-1=0 is x=l.22. Estimate the absolute error in this 
root. 

Solution. We have f(x)=2.2!53-l.22-l=-0.0047. Since at 
X= 1.23 

f (x) =2.2888-1.23-1=0.0588, 

the root £ lies in the interval (1.22, 1.23). The derivative f' (x) = 
= 4x3 - I increases monotonically, therefore its least value in the 
given interval is 

m1 =4x1.223 - l =4x1.816-1 =6.264, 

wherefrom we get an estimate of the error 

Ix-£ I~ It ~~l 1 = 05_02°6~ ~ 0.00075 < 0.001. 

3.12.4. Solve graphically the equation 

x logx-1=0. 

Solution. Let us rewrite the equation in the form 

I logx= - . 
x 
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I 
Here '¢1 (x) =log x, '¢2 (x) = - . There are tables for the values of x 

these functions, and this simplifies the construction of their graphs. 

Constructing the graphs y =log x and y = J.. (see Fig. 57), we find 
x 

!f the approximate value of the only 
root £ ~ 2.5. 

1 

Fig. 57 

3.12.5. Find the real root of the 
equation 

f (x) = x3 -2x2 +3x-5 = 0 

with an accuracy up to 10- 4: 

(a) by applying the method of 
chords, 

(b) by applying the method of 
tangents. 

one real root. 

Solution. Let us first make sure 
that the given equation has only 

This follows from the fact that the derivative 

f' (x) =3x2 -4x+3 > 0. 

Then, from f ( 1) = - 3 < 0, f (2) = 1 > 0 it follows that the given 
polynomial has a single positive root, which lies in the interval (l, 2). 

(a) Using the method of chords, we obtain the first approximation: 

-3 
X1 = l-4 · l = l.75. 

Since 
f (I. 75) = - 0.5156 < 0, 

and f (2) = l > 0, then I. 75 < £ < 2. 
The second approximation: 

0.5156 
X2 = l.75+ 1. 5156 • 0.25= l.75+0.0850= l.8350. 

Since f ( l .835) = - 0.05059 < 0, then 1.835 < £ < 2. 
The sequence of the approximations converges very slowly. Let 

us try to narrow down the interval, taking into account that the 
value of the function f (x) at the point x2 = 1.835 is considerably 
less in absolute value than f (2). We have 

f (1.9) = 0.339 > 0. 

Hence, 1.835 < £ < 1.9. 
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Applying the method of chords to the interval (l.835, 1.9), we 
will get a new approximation: 

-0.05059 
X3 = l.835- 0 .339 +o.05059 • 0.065= 1.8434. 

Further calculations by the method of chords yield 

X 4 =l.8437, X0 =1.8438, 

and since f ( 1.8437) < 0, and f (1.8438) > 0, then 6 ~ 1.8438 with 
the required accuracy of 10- 4 • 

(b) For the method of tangents we choose x0 = 2 as the initial 
approximation, since f (2) = 1 > 0 and f" (x) = 6x-4 > 0 in the in­
terval (1, 2). The first derivative f' (x)=3x2 -4x+3 also retains its 
sign in the interval ( 1, 2), therefore the method of tangents is ap­
plicable. 

The first approximation: 

X1 = 2-1/7 = 1.857. 

The second approximation: 
f (I.857) 0.0779 

X2 = 1.857- f' (1. 857) = 1.857 - 5 .9275 = 1.8439. 

The third approximation: 
f (1.8439) 

X3 = 1.8439 - f' (l. 8439) = 1.8438, 

already gives the required accuracy. Here the sequence of the ap­
proximations converges much more rapidly than in the method of 
chords, and in the third approximation we could obtain an accuracy 
up to 10- 6 • 

3.12.6. Find the least positive root of the equation tan x = x with 
an accuracy up to 0.0001 applying Newton's method. 

3.12.7. Find the real root of the equation 2-x-logx=O by 
combining the method of chords with the method of tangents. 

Solution. Rewrite the left member of the equation in the folio-
wing way: 

f (x) = (2-x) + (-log x), 

whence it is seen that the function f (x) is a sum of two monoto­
nically decreasing functions, and therefore it decreases itself. Con­
sequently, the given equation has a single root 6. 

Direct verification shows that this root lies in the interval (1, 2). 
This interval can be narrowed still further: 

1.6 < s < 1.8, 
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since 

Then 

and 

f(l.6)=0.1959 > 0; f(l.8)=-0.0553 < o. 

f' (x) = - 1 - ...!.. loge; f" (x) = ~ loge x x 

f' (x) < O; f" (x) > 0 over the whole interval [ 1.6; I 8]. 
Applying to this interval both the method of chords and the 

method of tangents with the initial point x0 = 1.6 we obtain the 
first approximations: 

X1 = l.6-(lf~l~8;~),'(l('.6~) = l.6--j-0. I559= 1.7559; 

x; = 1.6 - /, ~\ ·.~) = 1.6 + 0.1540 = l. 7540. 

Applying the same methods to the interval [1.7540, l.7559], we 
get the second approximations: 

= I 7559 (I. 7540- I. 7559) f (I. 7559) = I 75558 
X2 ' f (I. 7540) - / (I. 7559) . ' 

' f(l.7540) 
X2 = 1. 7540- I' (I. 7540) = 1. 75557. 

Since x2 -x; = 0.00001, the root £ is computed with an accuracy 
up to 0.00001. 

3.12.8. Using the combined method find all roots of the equation 
f (x) == x3 -5x+ 1=0 accurate to three decimal places. 

3.12.9. Applying the iteration method find the real roots of the 
equation x-sin X= 0.25 accurate to three decimal places. 

Solution. Represent the given equation in the form x-0.25 =sin x. 
Using the graphical method, we find that the equation has one 

J 
real root £, which is approximately equal 
to x0 = 1.2 (see Fig. 58). 

Since 

sin l.1=0.89I2> l.l-0.25, 

sin 1.3 = 0.9636 < 1.3-0.25, 

the root£ lies in the interval (I.I, I 3). --=-o __ __.__._ ____ a: 
Let us rewrite the equation in the 

form -D.25 f f.2 

Fig. 58 x = cp (x) =sin x+ 0.25. 

Since the derivative cp' (x) =cos x in the interval (I. I, l.3) does. 
not exceed cos 1.1 < 0.46 < 1 in absolute value, the itE>ration method 
is applicable. Let us write successive approximations 

Xn=sinxn-i+0.25 (n= I, 2, ... ), 



§ 3.12. Algebr. and Transcendent. Equations 

taking X0 = l.2 for the initial approximation: 

X1 =Sin l.2 +0.25=0.932 +0.25= J.182; 
x2 =sin 1.182 + 0.25 = 0. 925 + 0.25 = 1.175; 
X3 =Sin J.175 +0.25=0.923 +0.25= 1.173; 
X4 =sin J.173 +0.25=0.9219+0.25= J.1719; 
x0 =sin l.1719 + 0.25 = 0.9215 + 0.25 = 1.1715; 
x6 =sin l.1715+ 0.25 = 0.9211+0.25 = 1.1711. 
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Since q=0.46 and hence, -1 q <I, we have ~=1.171 within the 
-q 

required accuracy. 

3.12. lO. Applying the iteration method, find the greatest positive 
root of the equation 

accurate to four decimal places. 
Solution. Rough estimation gives us the approximate value of the 

root x0 = 10. 
We can rewrite the given equation in the lorm 

X= 1000-x3 , 

or in the form 
1000 I 

X=---
x2 x ' 

or in the form 

X= V 1000-x and so on. 

The most advantageous of the indicated methods is the preceding 
one, since taking (9, !OJ for the main interval and putting 

<p (x) = V 1000-x, 

we find that the derivative 
-I 

cp' (x) = -,a 7==== 
3 V (l000-x)2 

does not exceed 1/300 in absolute value: 

I <r' (x) I~ V1 ~ 3~0 = q. 
3 9902 
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Compute successive approximations of xn with one spare digit by 
the formula 

av Xn+i= 1000-Xn (n=O, 1, 2, ... ), 
X0 = 10, 

v X1 = 1000-10=9.96655, 

X 2 =v1000- 9.96655 = 9.96666, 

v X3 = 1000-9.96666 = 9.96667. 

We may put 6 = 9.9667 with an accuracy of 10- 4 , 

Note. Here, the relatively rapid convergence of the process of ite­
ration is due to the smallness of the quantity q. In general, the 
smaller the q, the faster the process of iteration converges. 

3.12.11. Applying the method of chords, find the positive root of 
the equation 

f (x) == X3 + 1. lx2 + 0.9x- l.4 = 0 

with an accuracy of 0.0005. 

3.12.12. Using the method of chords, find approximate values of 
the real roots of the following equations with an accuracy up to 0.01: 

(a) (x-l)2 -2sinx=0; (b) ex-2(1-x)2 =0. 

3.12.13. Applying Newton's method, find with an accuracy up 
to 0.0 l the positive roots of the following equations: 

(a) x3 +50x-60=0; (b) x3 +x-32=0. 

3.12.14. Using the combined method find the values of the root 
of the equation 

x3 -x- l =0 

on the interval [ 1, 2] with an accuracy up to 0.005. 

3.12.15. Applying the iteration method, find all roots of the equa­
tion 4x-5 lnx=5 accurate to four decimal places. 

§ 3.13. Additional Problems 

3.13. l. Does the function 

f (x) = { ~/x if x < 1 
if x~ 1 

satisfy the conditions of the Lagrange theorem on the interval [O, 2]? 

3.13.2. Prove that for the function y=ax2 +~x+y the number 6 
in the Lagrange formula, used on an arbitrary interval [a, b], is the 
arithmetic mean of the numbers a and b: 6 =(a+ b)/2. 
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3.13.3. Prove that ii the equation 

a0xn + a1x"- 1 + ... + an_ 1X = 0 

has a positive root x0 , then the equation 

naoxn-l + (n-1) alxn- 2 + ... + an-1 = 0 

has a positive root less than x0 • 

191 

3.13.4. Prove that the equation x4 -4x-1=0 has two different 
real roots. 

3.13.5. Prove that the function f(x)=xn+px+q cannot have 
more than two real roots for n even and more than three for n odd. 

3.13.6. Prove that all roots of the derivative of the given poly­
nomial f(x)=(x+l)(x-l)(x-2)(x-3) are real. 

3.13. 7. Find a mistake in the followin_5 reasoning. 
The function 

I x2 sin ( l/x) for x =I= 0, 
f (x) = \ 0 for x = 0 

is differentiable for any x. By Lagrange's theorem 

x2 sin+= x ( 2£ sin ~ -cos i-) , 
whence 

I 2i: • I . I cos-= c sm--x sm-6 . 6 x (0 < £ < x). 

As x tends to zero ~ will also tend to zero. Passing to the limit, 
we obtain lim cos(!/£)= 0, whereas it is known that Jim cos ( l/x) is 

~ ... 0 X-+ 0 

non-existent. 

3.13.8. Find a mistake in the following deduction of Cauchy's 
formula. Let the functions f (x) and cp (x) satisfy all the conditions 
of the Cauchy theorem on the interval [a, b]. Then each of them 
will satisfy the conditions of Lagrange's theorem as well. Consequ­
ently, for each function we can write the Lagrange formula: 

f (b)-f (a)= f' (£) (b-a), a<£< b, 
cp(b)-cp (a)= cp' (£) (b-a), a<£< b. 

Dividing the first expression by the second, we obtain: 
f(b)-f(a) t'<s)(b-a) f'(s) 
cp(b)-q;(a) = cp'(s)(b-a) = cp'(s) • 

3.13.9. Prove the following inequalities: 
a-b l a a-b 'f O b (a) -a- < n b < -b- 1 < < a, 
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(b)pyP- 1 (x-y)<;_xP-yP<;_pxP- 1 (x-y) if O<y<x and p>l. 

3.13.10. Prove that all roots of the Chebyshev-Laguerre polynomial 

are positive. 

3.13.ll. Prove that if the function f(x) satisfies the following 
conditions: 

(I) it is defined and has a continuous derivative of the (n- l)th 
order rn-1! (x) on the interval [xo, xn]; 

(2) it has a derivative of the nth order f(n) (x) in the interval 
(xo, xn); 

(3) f (x0 ) = f (x1 ) = ... = f (x,,) (x0 < x1 < ... < x,,), 
then inside the interval [x0 , x,,] there is at least one point '£ such 
that f(">(£)=0. 

3.13.12. The limit of the ratio of the functions 

(. e- 2 x(cosx+2sinx) 1. -xl+2tanx Im . = tm e 
x- 00 e-x(cosx+stnx) x- 00 I+tanx 

. . t t . th . I +2 tan x . d" t" t is non-ex ts en , smce e expression 1 +tan x 1s 1scon muous a 
the points x,,=nn+n/2 (n=O, 1, ... ), but at the same time the 
limit of the ratio of the derivatives does exist: 

I. (e- 2-<(cosx+2sinx)]' 1. -5e- 2xsinx 5 1. -x O 1m . = tm . = - tm e = . 
x-•oo (e-X(cosx+stnx)]' x- 00 -2e-xstnx 2x-"' 

Explain this seeming contradiction. 

3.13.13. Prove that the number 8 in the remainder of the Taylor 
formula of the first order 

f (a+h) = f (a) +hf' (a)+~; f" (a+ Sh) 

tends to 1/3 as h-.. 0 if f"' (x) is continuous at x-= a and f"' (a) =r'=O. 

3.13.14. Prove that the number e is an irrational number. 

3.13.15. Prove that for 0 < x <;_ n/2 the function f (x) '--=(sin x)/x 
decreases. From this obtain the inequality 2x/n <sin x < x for 
0 < x < n/2 and give its geometric meaning. 

3.13.16. Show that the function f(x)=x+cosx-a increases; 
whence deduce that the equation x +cos x =a has no positive roots 
for a < 1 and has one positive root for a> 1. 

3.13.17. Show that the equation xex=2 has only one positive 
root found in the interval (0, I). 
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3.13.18. Prove that the function 

( I + 2 • I f (x) = < 2 x x sin x for x =¥= 0, 
l 0 for X= 0 

is not monotonic in any interval containing the origin. Sketch the 
graph f (x). 

3.13.19. Prove the theorem if: (I) f (x) and qi (x) are continuous 
in the interval [a, b] and differentiable inside it; (2) f (a)= qi (a); 
and (3) f' (x) >qi' (x) (a< x < b), then f (x) > qi(x) (a< x < b). 

3.13.20. Show that the function f (x) = ~;t~ has neither maxima, 

nor minima at ad-be=¥= 0. 

3.13.21. In the trinomial x2 + px + q choose the coefficients p and q 
so that the trinomial has a minimum at x = 3 and that the mini­
mum equals 5. 

3.13.22. Test the function f (x) = (x-x 0r qi (x) for extremum at 
the point x:--= x0 , where n is a natural number; the function qi (x) is 
continuous at x = x0 and qi (x0) =¥= 0. 

3.13.23. Given a continuous function 

at x=FO, 

at x=O. 

Show that f (x) has a minimum at the point x = 0, but is not 
monotonic either on the left or on the right of x = 0. 

3.13.24. Find the greatest and the least values of the following 
functions on the indicated intervals: 

(a) Y=\x\ for -l~x~ I, 
(b) y = E (x) for - 2 ~ x ~ 1. 

3.13.25. Do the following functions have the greatest and the 
least values on the indicated intervals? 

(a) f(x)=cosx for -n/2~x< n, 
(b) f (x) = arcsinx for -1 < x < l. 

3.13.26. Prove that between two maxima (minima) of a continuous 
function there is a minimum (maximum) of this function. 

3.13.27. Prove that the function 

{ x
2 sin2 (l/x) for x =¥= 0, 

f (x) = 0 for x = 0 



194 Ch. fl I. Differential Calculus: Investigation of Funct's 

has a minimum at the point x0 = 0 (not a strict minimum). 

3.13.28. Prove that if at the point of a minimum there exists a 
right-side derivative, then it is non-negative, and if there exists a 
left-side derivative, then it is non-positive. 

3.13.29. Show that the function 

y= { l/x2 (x > 0), 
3x2 (x~ 0) 

has a minimum at the point x= 0, though its first derivative does 
not change sign when passing through this point. 

3.13.30. Let x0 be the abscissa of the point of i flection on the 
curve y = f (x). Will the point x0 be a point of extremum for the 
function y=f'(x)? 

3.13.31. Sketch the graph of the function y = f (x) in the neigh­
bourhood of the point x = -1 if 

f (-1) = 2, f' (-1) = -1, f" (-1) = 0, f'" (x) > 0. 

3.13.32. For what choice of the parameter h does the "curve of 
probabilities" 

y = ;it e-h·x· (h > 0) 

have points of inflection x = ± cr? 

3.13.33. Show that any twice continuously differentiable function 
has at least one abscissa of the point of inflection on the graph of 
the function between two points of extremum. 

3.13.34. Taking the function y = x' + 8x3 + 18x2 + 8 as an example, 
ascertain that there may be no points of extremum between the 
abscissas of the points of inflection on the graph of a function. 

3.13.35. Prove that any polynomial with positive coefficients, 
which is an even function, is concave everywhere and has only one 
point of minimum. 

3.13.36. Prove that any polynomial of an odd degree n ~ 3 has 
at least one point of inflection. 

3.13.37. Proceeding directly from the definition, ascertain that 
the straight line y = 2x + 1 is an asymptote of the curve y = 

2x4 +x3 + I 
= 


