
CHAPTER XIV.

Binomial Theorem. Any Index.

177. In the last chapter we investigated the Binomial
Theorem when the index was any positive integer; we shall now
consider whether the formula? there obtained hold in the case

of negative and fractional values of the index.

Since, by Art. 167, every binomial may be reduced to one
common type, it will be sufficient to confine our attention to

binomials of the form (1 +x)
n

.

By actual evolution, we have

(1 + xf = V 1 + X = 1 + ^ X - - X2 + yr. x3 -
;

and by actual division,

(1 - x)~
2 = 7^ -

x
-
a = 1 + 2x + 3x* + ix3 + :

[Compare Ex. 1, Art. CO.]

and in each of these series the number of terms is unlimited.

In these cases we have by independent processes obtained an
i

expansion for each of the expressions (1 + x)
2 and (1 + x)~~. We

shall presently prove that they are only particular cases of the

general formula for the expansion of (1 + x)
n
, where it is any

rational quantity.

This formula was discovered by Newton.

178. Suppose we have two expressions arranged in ascending
powers of x, such as

,
m (m - 1 ) „ m (m - 1 ) (m - 2) ,

I + mx+ v 'x-+ -
x /x 'a?+ (I ).

and l+n.v + -

l

g
>x-+-±

]

J
K- a? + (2).
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The product of these two expressions will be a series in as-

cending powers of x\ denote it by

1+ Ax +Bx2 + Cx3 + Dx4 + ;

then it is clear that A, B, C, are functions of m and n,

and therefore the actual values of A, B, C, in any particular

case will depend upon the values of m and n in that case. But
the way in which the coefficients of the powers of a; in (1) and (2)

combine to give A, B, C, is quite independent of m and n
;

in other words, whatever values in and n may have, A, B, C,

preserve the same invariable form. If therefore we can determine

the form of A, B, C, for any value of m and n, we conclude

that A, B, C, will have the same form for all values of m
and n.

The principle here explained is often referred to as an example
of "the permanence of equivalent forms ;

" in the present case we
have only to recognise the fact that in any algebraical product the

form of the result will be the same whether the quantities in-

volved are whole numbers, or fractions ;
positive, or negative.

We shall make use of this principle in the general proof of

the Binomial Theorem for any index. The proof which Ave

give is due to Euler.

179. To prove the Binomial Theorem ivhen the index is a

positivefraction.

Wliatever be the value of m, positive or negative, integral or

fractional, let the symbol f(m) stand for the series

, m (m - 1) „ m (m-Y) (m — 2) s
1 + mx +—y—^

—

-x- +—v ' v
'

x

3 + ...

;

then.y(n) will stand for the series

- n(n — l)„ n(n — l)(n — 2) „

1 + nx + \ ' x2 + v ' v
'-

x

3 + ....

If we multiply these two series together the product will be
another series in ascending powers of x, whose coefficients loill be

unaltered inform whatever m and n may be.

To determine this invariable form of the product we may give

to m and n any values that are most convenient ; for this purpose
suppose that m and n are positive integers. In this casey(m)
is the expanded form of (1 + x)

m
, andy*(?i) is the expanded form of

(1 +x)
n

; and therefore
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f(m) xf(n) - (1 + x)
m

x (1 + a?)" = (1 + x)
m+

\

but when m and n are positive integers the expansion of (1 + x)"
, + "

-, / v (m + n) (m + n - 1 ) .

I . —

This then is the form of the product of f(m) x/(><) in o#
cases, whatever tlie values of m and n may be; and in agreement
with our previous notation it may be denoted hyf(m + n) ; there-
forefor all values ofm and n

/(m) xf(n)=f(m + n).

Also /(w) x/(n) x/(^) =/(w + ») x/( p)

=f(m + n +p), similarly.

Proceeding in tliis way we may shew that

f(m) xf(n) x/(j;)...to k factors =/(»» + n +p +...to k terms).

Let each of these quantities m, ?i, j), be equal to =
,

rC

where h and k are positive integers
;

but since h is a positive integer,f(h) = (1 + x)
h

;

but y*
( y ) stands for the series

, h k\k J 2

,, vi , h k \k J ,

.*. ( 1 + a;) = 1 + T x + x /
x- + ,

« 1.2

which proves the Binomial Theorem for any positive fractional

index.
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180. To prove the Binomial Theorem when the index is any
negative quantity.

It has been proved that

f(m) x/(w) =/(w* + n)

for all values of m and n. Replacing in by — n (wliere n is

positive), we have

f(-n) •xf(n)=f(-n + 7i)

=/(0)

=%

since all terms of the series except the first vanish

;

•'•

/hr/(
- n)

'

but/(w) = (l + x)'\ for any positive value of n;

or (1 + *)"" =/(-*)•

But f(—n) stands for the series

1 + (- n) x + ^
'-f—,

= ar +
;

1 . L

... (1 + «.)- = 1 + (_ W) a. + (rg) <" " " *> g» +
;

which proves the Binomial Theorem for any negative index.

Hence the theorem is completely established.

181. The proof contained in the two preceding articles may
not appear wholly satisfactory, and will probably present some dif-

ficulties to the student. There is only one point to which we
shall now refer.

In the expression iovf(in) the number of terms is finite when
vi is a positive integer, and unlimited in all other cases. See

Art. 182. It is therefore necessary to enquire in what sense we
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are to regard the statement thaty(m) x/(n) =f(m + n). It a\ ill

be seen in Chapter xxi., that when x< 1, each of the series/^/),

/(n)i/(m + n) *s convergent, and/(m + «) is the true arithmetical
equivalent of f(m) *f(n). But when sol, all these series are
divergent, and we can only assert that if we multiply the series

denoted by/(m) by the series denoted by f(u), the first r terms
of the product will agree with the first r terms of f(m + n),

whatever finite value r may have. [8ee Art. 308.]

3

Example 1. Expand (1 - xf2 to four terms.

3 Id- 1

), ,.J(H(S-)

Example 2. Expand (2 + 3a;)
-4 to four terms.

(2 + 3z)-4= 2-<(l + ^)~
4

182. In finding the general term we must now. use the
formula

m(w-1)(w-2) (n-r + l)
rx

written in full ; for the symbol "C
r
can no longer be employed

when n is fractional or negative.

Also the coefficient of the general term can never vanish unless

one of the factors of its numerator is zero; the series will there-

fore stop at the rth term, when n — r + 1 is zero ; that is, when
r=oi+ l ; but since r is a positive integer this equality can never

hold except when the index n is positive and integral. Thus the

expansion by the Binomial Theorem extends to w+1 terms when
n is a positive integer, and to an infinite number of terms in all

other cases.
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1

Example 1. Find the general term in the expansion of (1 +x)'\

The (r+l)th term- —- L±
r

-5) (-2r + 3)

2r lr
af.

The number of factors in the numerator is r, and r - 1 of these are nega-

tive ; therefore, by taking -- 1 out of each of these negative factors, we may
write the above expression

(-i)~
1 - 8 - 6-<»-V

i

Example 2. Find the general term in the expansion of (l-nx) n
.

The (r+ 1)'- term = » V " A" / M £ ( - «»)r

E /

= !(!-«) (l-ar.) (1-F^Un) _ ^
wr I r

l(l-n)(l-2n) (1-r-l.n) ^

=
(
_ i)r

(
_ i)r-i

(n-l)(2n-l) (r-l.n-1)^

(n - 1) (2« - 1) .

.

....(^l.n-l)

since (_1)»- (_ l)r-i = (_ i)2r-i= _ 1#

Example 3. Find the general term in the expansion of (1 - x)~3.

The(r+ irterm=<-
3'(- 4>'-_5)^-(- 3 -'-+ 1

)

(
-,)r

r

= (1)r 3.4.5 (r+ 2) (1)ffa,

~
[ } 1.2.3 r

X

_ (r+l)(r+2) .
~ 1.2

*»

by removing like factors from the numerator and denominator.
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EXAMPLES. XIV. a.

Expand to 4 terms the following expressions:

s

1

1. (l+xf.
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and, if not, under what conditions the expansion of (1 + x)
n may

be used as its true equivalent.

Suppose, for instance, that n — — l; then we have

(1 -x)~
r = 1 + x + x2 + x3 + x* + (1);

in this equation put x = 2 ; we then obtain

(-l)~ 1 =l+2 + 2
2 + 2 3 + 2

4 +

This contradictory result is sufficient to shew that we cannot

take

, n(n-l)l+nx+—
\
—~—

' x2 +

as the true arithmetical equivalent of (1 + x)
n
in all cases.

Now from the formula for the sum of a geometrical pro-

gression, we know that the sum of the first r terms of the

1 - xr

series (1) = -z
v '

I —x
1 xr

1 - X 1 - x y

and, when x is numerically less than 1, by taking r sufficiently

xr

large we can make ^ as small as we please ; that is, by taking

a sufficient number of terms the sum can be made to differ as

little as we please from ^ . But when x is numerically

xr

greater than 1, the value of ^ r increases with r. and therefore
1 - x

no such approximation to the value of is obtained by taking
JL vC

any number of terms of the series

1 + X + Xs + X3
4-

It will be seen in the chapter on Convergency and Diver-

gency of Series that the expansion by the Binomial Theorem
of (1+x)" in ascending powers of a? is always arithmetically in-

telligible when x is less than 1.

But if x is greater than 1, then since the general term of

the series

,
n(n-\) „

1 + nx H
.j

x" +
I . -
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contains x r

, it can be made greater than any Unite quantity by
taking r sufficiently large ; in which case there is no limit to the
value of the above series; and therefore the expansion of (1 + x)

n

as an infinite series in ascending powers of x has no meaning
arithmetically intelligible when x is greater than 1.

184. We may remark that we can always expand (x + y)"

by the Binomial Theorem ; for we may write the expression in

either of the two following forms :

x" ('*!)' '(•ff.
and we obtain the expansion from the first or second of these
according as x is greater or less than y.

185. To find in its simplest form the general term in the

expansion of (1 — x)-u .

The (r + l)
th term

(- n)(-n- I) (-71- 2)... (-n-r+1)
(-*y

= (- iy
»(*+1Hw + 2) -(** + »•-

1)

= (_ I)*
ttv*+l)(tt+2)...ytt + r-l ) xr

n (n + 1) (n + 2) ... (n + r - 1) r

From this it appears that every term in the expansion of

(1 -x)~* is positive.

Although the general term in the expansion of any binomial

may always be found as explained in Art. 182, it will be found
more expeditious in practice to use the above form of the general

term in all cases where the index is negative, retaining the

form

n(n- l)(n-2) ... (n - r + 1
) ,

i

x

t
only in the case of positive indices.



158 HIGHER ALGEBRA.

Example. Find the general term in the expansion of - _ . .

1 -1
-—-

—

= (l-3x) 3
.

The (r + l) th term

1.4.7 (3r-2) 3rrr

1.4.7 (Sr-2) ^
^H : w •

r

_i

If the given expression had been (1 + Sx) 3 we should have used the same

formula for the general term, replacing Sx by - 3x.

186. The following expansions should be remembered :

(1 - x)'
1 = 1 + x + x2 + x3 + + xr +

(1 - x)~
2 = 1 + 2x + 3x2 + ±x3 + + (r + 1) x

r +

(I - x)~
3 =1 + 3x + 6x* + 10x3 + + (

r+ l

J%—Kr +

expansion of (1 + x)
n

, when n is unrestricted in value, will be

found in Art. 189 ; but the student will have no difficulty in

applying to any numerical example the method explained in

Art. 172.

Example. Find the greatest term in the expansion of (l+a;)~n when
2

x= - , and n— 20.
3

fi j_ <t' ^
We have ^V+i— ,xxTr , numerically,

- 19+r ? r •

•"• 'r+l> -'r»

2 (19 + r)
so long as —£ > 1

;

that is, 38 >r.

Hence for all values of r up to 37, we have jrr+1>Tr ; but if r=38, then

I^k= T,. , and these are the greatest terms. Thus the 38th and 39th terms
are equal numerically and greater than any other term.
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188. Some useful applications of the Binomial Theorem are
explained in the following examples.

Example 1. Find the first three terms in the expansion of

i _i

(l + 3*)
r
-(l-2x) 3.

Expanding the two binomials as far as the term containing x'\ we have

, /3 2\ /8 3 2

1
13 55 .

= 1 + -Q X +
72

X"'

If in this Example ^='002, so that ar= -000004, we see that the third
term is a decimal fraction beginning with 5 ciphers. If therefore we were
required to find the numerical value of the given expression correct to 5 places

of decimals it would be sufficient to substitute *002 for x in 1 + - x, neglect-
o

ing the term involving x2
.

Example 2. When x is so small that its square and higher powers may
be neglected, find the value of

J(± + xJ*

Since x- and the higher powers may be neglected, it will be sufficient to

retain the first two terms in the expansion of each binomial. Therefore
i

the expression

_tl±±±l
b(i+|.)

-K-S-).
the term involving x- being neglected.
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Example 3. Find the value of -rj= to four places of decimals.
x/47

_i

1 -- -- 1 / 2 \ 2

-^= (47) *=(7*-2)*=-(l-n)

1/ 1 3 ^ 5 :L_

-7^ + 72 + 3 -74 + 2 -7G+--

-7 + 73 + 2 * 75
+

2 *77+ ""

To obtain the values of the several terms we proceed as follows

:

1)1
!

7 ) -142857 =t,
7 ) -020408

'

7 ) -002915 = 7-3,

7 ) -000416

•000059 =^;

5 1
and we can see that the term - . = is a decimal fraction beginning with

5 ciphers.

.-. -i- = -142857 + -002915 + -000088
\/47

= •14586,

and this result is correct to at least four places of decimals.

Example 4. Find the cube root of 126 to 5 places of decimals.

!

(126)3= (5
3 + l) a

5

1

/
t

1 1 M 5 1 \~ 5
V 3"5 :J 9'5« + 81*59 '")

1 1_ 1
J.

_1 1
~ 3 ' 52 ~ 9 ' 55 + 81 *57 •"

1^1^ 1 W_
~ +

3*"l02 9'105
+

81 *107
"••

_ -04 -00032 -0000128
= 5-1 h —^ 3 9 81

=5-f -013333 ... - -000035 ...+...

= 5 '01329, to five places of decimals.
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EXAMPLES. XIV. b.

Find the (r+1)" 1 term in each of the following expansions :

-I i

!• (l+#) 2
. 2. (l-.t-)

-5
. 3. (l+3.e) :]

.

J 3

4. (l+#) 3
. 5. (l+.r2)-3. 6 . (i-2.v)~*.

7. (a+fo?)" 1
. 8. (2-.r)~ 2

. 9. tt{rf-x*)\

10
- 7=A=. 11. 3/

*

12. ,

*

</T+2* N
f/

(l-3.^ V&Z^
Find the greatest term in each of the following expansions :

4
13. ( 1 + .v)

~

7 when x=— .

lo

— 2
14. ( 1 + a?)

2 when a?= 5

.

-
1-1 1

15. (1 — 74?)
4 wheu#= -.

o

16. (2a?+ 5J/)
12 when a?= 8 and y= 3.

17. (5 - 4.v)
~ 7 when tv=-

.

25

18. (3-r2+ 4/) - n when x= 9, y= 2, «= 1 5.

Find to five places of decimals the value of

19. v98. 20. 4/998. 21. \
3/
1003. 22. \

4/

2400.

1

1 3

23. ^=. 24. (1^)3. 25. (630) *. 26. tfilla

If x be so small that its square and higher powers may be neglected,

find the value of

1 3

27. (l-7tf)s(l + 2a?)"*.
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31. V^+C+jj '

32 .

^T^-^1^

(1+5*)*+ (4+|Y

33. Prove that the coefficient of sf in the expansion of (l-4r) *

is
v2

'

31 Prove that (1 +*)*=2- |l-—^ +-^ (f^) f
35. Find the first three terms in the expansion of

1

(1 + x) 2 Vl + 4x
'

36. Find the first three terms in the expansion of

3

(! + #)* + *Jl + bx

37. Shew that the nth coefficient in the expansion of (1 - x)~n is

double of the (n-l)th
.

189. To find the numerically greatest term in the expansion

of (1 + x)n
,
for any rational value of\\.

Since we are only concerned with the numerical value of the

greatest term, we shall consider x throughout as positive.

Case I. Let n be a positive integer.

The (r+l)th term is obtained by multiplying the rth term

by . x ; that is, by f 1
J
x ; and therefore the

terms continue to increase so long as

'n+ 1

Or
1 - 1)- 1 '

., (n+ l)x
,that is. — > 1 + x,

r

(n + 1 ) x
or *— — >r.

1+02
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(ll 4- 1 ^ X
If — — be an integer, denote it by p; then if r=p, the

multiplying factor is 1, and the (;>+l) th term is equal to the
^>

th
, and these are greater than any other term.

( 71 4- 1 ) X
If —, — be not an integer, denote its integral part by q ;

then the greatest value of r is 7, and the (q + l) th term is the
greatest.

Case II. Let n be a positive fraction.

As before, the (r+ l)
th term is obtained by multiplying the

_. , (n + 1
t
\

rm term by (
— I )x.

(1) If x be greater than unity, by increasing r the above
multiplier can be made as near as we please to - x ; so that after

a certain term each term is nearly x times the preceding term
numerically, and thus the terms increase continually, and there

is no greatest term.

(2) If x be less than unity we see that the multiplying

factor continues positive, and decreases until r > n + 1 , and from
this point it becomes negative but always remains less than 1

numerically ; therefore there will be a greatest term.

As before, the multiplying factor will be greater than 1

(n + l)x
so Ions: as -^ — > r.

1 +x
( Jl 4- 1 \ X

If ^ -— be an integer, denote it by p ; then, as in Case I.,

the (p + l) th term is equal to the £>
th

, and these are greater than

any other term.

( 7t 4" 1 ) X
If ^p • be not an integer, let q be its integral part; then

the (q 4- l)th term is the greatest.

Case III. Let n be negative.

Let n - — in, so that m is positive ; then the numerical
nil _L f J

value of the multiplying factor is — . x ; that is

(

m-l \
+ 1 ) x.

r J

11—2
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(1) If x be greater than unity we may shew, as in Case II.,

that there is no greatest term.

(2) If x be less than unity, the multiplying factor will be

greater than 1, so long as

(m - 1 ) x
that is, — > 1 - x,

r

(m—\)x
or -.

—— > r.
I -x

lyn. 1 ) CC

If ^— — be a positive integer, denote it by p \ tlien the
x — x

(p + l)th term is equal to the p
th term, and these are greater than

any other term.

(fjr 1 ) £C

If * '— be positive but not an integer, let q be its inte-
1 -x

gral part ; then the (q + l)th term is the greatest.

If i '-— be negative, tlien m is less than unity ; and by

writing the multiplying factor in the form (1 —
J
x, we

see that it is always less than 1 : hence each term is less than

the preceding, and consequently the first term is the greatest.

190. To find the number of homogeneous products of v dimen-

sions that can beformed out of the n letters a, b, c, and their

powers.

By division, or by the Binomial Theorem, we have

= = 1 + ax + a2x2 + a3x3 + ,

1 — ax

1

1 — bx

1

1 — ex

= 1 + bx + b
2x2 + b

3x3 + ,

= 1 + ex + c
2x2 + c

3x3 + ,
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Hence, by multiplication,

1 1 1

1 _ ax 1 — bx 1 — ex

= (1 + ax + aV + ...) (1 + bx + b*x* + ...) (1 + ex + c°x
2 + ...) ...

= 1 + x (a + b + c + ...) +x2
(a

2 + ab + ac + b'
2 + bc±c 2

4- . .

.

) + ...

= 1 + S
t
x + Sjfx? + Sa

xa + suppose

;

where S
lt

>S'.,, SaJ
are the sums of the homogeneous pro-

duets of one, two, three, dimensions that can be formed of

a, b, c, and their powers.

To obtain the number of these products, put a, b, c, each
equal to 1 ; each term in JS

l9
S

2 , S
:i ,

now becomes 1, and the
values of Sl9

S
2 , S

:i ,
so obtained give the number of the

homogeneous products of one, two, three, dimensions.

Also
1 1 1

1 — ax 1 — bx 1 — ex

becomes — or (1 — a;)
".

(1 - x)

Hence S
r
= coefficient of xr

in the expansion of (1 — x)~

n(n+ l)(n + 2) (n+r- 1)~
jr

n + r—1

\r \n— 1

191. To find the number of terms in the expansion of any

multinomial when the index is a positive integer.

In the expansion of

(a
t
+ a

B
+ a

B
+ +a

r
)",

every term is of n dimensions; therefore the number of terms is

the same as the number of homogeneous products of n dimensions

that can be formed out of the r quantities a,, a , ... a
r ,
and their

powers ; and therefore by the preceding article is equal to

I?' + n — 1

n r — 1
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192. From the result of Art. 190 we may deduce a theorem

relating to the number of combinations of n things.

Consider n letters a, b, c, d, ; then if we were to write

down all the homogeneous products of r dimensions which can be

formed of these letters and their powers, every such product

would represent one of the combinations, r at a time, of the n
letters, when any one of the letters might occur once, twice,

thrice, ... up to r times.

Therefore the number of combinations of n things r at a time

when repetitions are allowed is equal to the number of homo-

geneous products of r dimensions which can be formed out of n
\n + r — 1

letters, and therefore equal to , - , or
n+r

*C .

\r n—\ T

That is, the number of combinations of it things r at a time

when repetitions are allowed is equal to the number of com-
binations of n + r— 1 things r at a time when repetitions are

excluded.

193. We shall conclude this chapter with a few miscel-

laneous examples.

(1 - 2a;) 2

Example 1. Find the coefficient of xr in the expansion of ~
.

The expression = (1 - Ax + 4.x
2
) (1 +PyC +p^xr + ... +prx

r+ ...) suppose.

The coefficient of xr will be obtained by multiplying pr , p r-x , pr-» by 1,

-4,4 respectively, and adding the results ; hence

the required coefficient =p r
- 4pr_ x

+ 4pr_2 .

But pr=(- iy fe±afc±9
. [Ex . 3 , Art. 182.]

Hence the required coefficient

=
(
.

1)
r
(r+lHr + 2) _ 4( _ 1)r. 1rJ^ + 4( _ ira (I^r

= ^-[(r + l)(r+ 2) + 4r(r + l)+4r(r-l)]

f-l) r
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Example 2. Find the value of the scries

„ , 5 5.7 5.7.!)
2 4- . -4-

|_2. 3
T

|3.32 ^
1
4 . 3 :J

+ •••

mU . 3 . 5 1 3.5.7 1 3.5.7.9 1The expression = 2 + —— . — + . — + :—- . _ +v
[2 3-

1

3

3 ;! 14 3 4

3 5 3 5 7 3 5 7 1)

- Q 2Ll? 2~ 2 ' 2 ' 2 2J 2 ' 2 ' 2 ' 2 24

|2 '3?*"1 ~|3~ '3:i+ ]i~ *35+ ••'

3 3 5 3 5 7

2 2 2' 2 /2\- 2*2*2
1
*3 +

"~J2~
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o-.r-ffl"
1
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Example 3. If ?t is any positive integer, shew that the integral part of

(3 + Jl)n is an odd number.

Suppose I to denote the integral and/ the fractional part of (3 + a/7)'
1
.

Then I+f=3n+C
1
S"- i

s/7 + a2 S
n~2

. 7+(783*-«^7)8+ (1).

Now 3- N/7 is positive and less than 1, therefore (S-^)'1 is a proper
fraction; denote it by/';

.•./'= 3n -C,

1
3'l-V7 + C'2

3'l
-2 .7+C3

3'l-3(
v/7)

3 + (2).

Add together (1) and (2) ; the irrational terms disappear, and we have

I+f+f = 2 (3» + C2
3'1

"2
. 7 + . . .

)

= an even integer.

But since/ and/' are proper fractions their sum must be 1

;

:\ I=an odd integer.

EXAMPLES. XIV. c.

Find the coeflicient of

1. xm in the expansion of

2. an in the expansion of

3. «* in the expansion of
X "T" X

(1 - xf
'

4 + 2a - a2
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2 4- x+X2

4. Find the coefficient of xn in the expansion of
( 1 + ^J

5. Prove that

1 1 1.3 1 1.3.5 2_ 1-3.5.7 1^

2 * 2
+ 271 ' 2* 2.4.6'23

+ 2.4.6.8'2*

6. Prove that

3 3^5 3.5.7
4

H '

4. 8
H ~ 4.8.12

7. Prove that

V 3'

N/8 = 1 + - + t^~; + , \ \ n +

2n 2n(2n+ 2) 2n(2n+ 2) (2n+ 4)
+ ~3

+ ~ 3.6 "
+

3.6.9
+

~ 2
V
+

3
+ _

3T6~
+

3.6.9
+

J

8. Prove that

7- h + ?i + ^ (^-1)
.
n{n-\)(n-2) 1

'

J 7
+

7.14
+

7.14.21
+

J

±n Ji .
%

j.
»(*+!) , n(»+ l)(n+ 2) \(2 2.4

+ " 2.4.6
+

J

•

9. Prove that approximately, when x is very small,

"7! 9 \ 2 256' '

2
(
1+r6'V

10. Shew that the integral part of (5 + 2 >JQ)
n is odd, if n be a

positive integer.

11. Shew that the integral part of (8 + 3 V/7)
H is odd, if n be a

positive integer.

12. Find the coefficient of xn in the expansion of

(l-2.v+ 3.v2 -4.v3 + )-*.

/ 1\ 4 '1

13. Shew that the middle term of ( x + - 1 is equal to the coefficient

of xn in the expansion of (1 -Ax) ^" 2
.

14. Prove that the expansion of (1 — x^)n may be put into the form

(1 - xfn+ 3nx (1 - xfn ~ 2+ 3n @n - 3) xi (i _ xyn - 4+
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15. Prove that the coefficient of at* ill the expansion —
, is

1,0, - 1 according as n is of the form 3m, 3m - 1, or 3//<.+ 1.

16. In the expansion of (a + b + c)s find (1) the number of terms,

(2) the sum of the coefficients of the terms.

17. Prove that if n be an even integer,111 1 2"" 1

l\n-l \'S

\

n -

3

\b\n-5
\

u-\ ,1 |rc '

18. If c , (',, C2 , fn are the coefficients in the expansion of

(1 +.f) u
,
when n is a positive integer, prove that

I//-1

a) c -cl+ c2 -c3+ +(-mv-(-i)'-
1/

,

|

;^r_
1

.

(2) ^-2^+3^-4^+ + (_i)n (/i4. 1)t .

M= 0>

(3) c*- c *+c£-c*+ + (-l)»cn
2=0, or (-1)^,

according as n is odd or even.

19. If *„ denote the sum of the first n natural numbers, prove that

(1) (l-;r)- 3= ^ + %^+ ^.^+ +V»~ 1 +...

j2^+ 4
(2) 2 (*! *,B+ 82*2, _j + + 8n8n + l )

= -——^ .

„ T . 1.3.5.7 (2)i-l)
20. If fr- 2 .4. 6 , 8 2n . P*>™ that

(!) ?2n + l + <Mj»+ Man - 1 + + 2n- \<ln + 2+ ?«?• +1= 5-

(2) 2 {?2n - ?1y, (l
_ j + g^a.

_

2+ + (
- 1)"

- 1
tj n _ #„ + J

21. Find the sum of the products, two at a time, of the coefficients

in the expansion of (1 +x)n, when n is a positive integer.

22. If (7 +4 v/3)
n=p + /3, where n and p are positive integers, and |9

a proper fraction, shew that (1 -f3)(p + p) = l.

23. If c , <?!, c^, rn are the coefficients in the expansion of

(1 +#)*, where ?i is a positive integer, shew that

c2 .

c
\

(-I)n_1fn ,11 1

2 3 n 2 3 n


