
CHAPTER XXVII.

RECURRING CONTINUED FRACTIONS.

355. We have seen in Chap. XXV. that a terminating con-

tinued fraction with rational quotients can be reduced to an

ordinary fraction with integral numerator and denominator, and
therefore cannot be equal to a surd ; but we shall prove that a

quadratic surd can be expressed as an infinite continued fraction

whose quotients recur. We shall first consider a numerical

example.

Example. Express ^19 as a continued fraction, and find a series of

fractions approximating to its value.

x/19 = 4 + (v/19-4) = 4+ Tl9

3
-

+
-;

v

v/19 + 4_ 2 ,x/19z_2_ 5 ,

3
+

3 V19 + 2
'

N/19 + 2_ 1j_
^19-3 , . 2=1+^— = 1 +

5 5 \/19 + 3'

,/19+ S ^£9-8 5 .

2 2 \/19 + 3'

v/19 + 3_ 1 1 V19-2_
1 ,

3
1 +

5 ~ 1 +
N/

2 +
/L9 + 2 n iN/19-4 0i 1

3 ~ \/19 + 4'

N/19 + 4 = 8 + (N/19-4) = 8 +

after this the quotients 2, 1, 3, 1, 2, 8 recur; hence

1 1 Jl_£ 1 2.
V 19- 4 +

2+ 1+ 3+ 1+ 2+8+ •••

It will be noticed that the quotients recur as soon as we come to a

quotient which is double of the first. In Art. 361 we shall prove that this is

always the case.
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[Explanation. In each of the lines above we perform the same series of

operations. For example, consider the second line : we first find the

greatest integer in -—-— ; this is 2, and the remainder is -— 2, that
o 6

is ^—^— . We then multiply numerator and denominator by the surd
o

5
conjugate to ^19-2, so that after inverting the result . , we begin a

new line with a rational denominator.]

The first seven convergents formed as explained in Art. 336 are

4 9 13 48 61 170 1421

1 ' 2 ' 3 ' 11 ' 14 ' 39 ' 326
'

The eiTor in taking the last of these is less than ,
' _ , and is therefore

less than .
— - , or , and a fortiori less than -00001. Thus the

seventh convergent gives the value to at least four places of decimals.

356. Every periodic continued fraction is equal to one of the

roots of a quadratic equation of which the coefficients are rational.

Let x denote the continued fraction, and y the periodic part,

and suppose that

1 1

»

x = a+ z
,

,

b + c +
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The equation s'y
2 + {s — r) y — r = 0, which gives the value of

y, has its roots real and of opposite signs ; if the positive value of

v'y + p
ii be substituted in x = -, —— , on rationalising the denominator

qy+q

the value of x is of the form ~-— , where A, B, C are integers,
G

B being positive since the value of y is real.

,1111
Example. Express l + s— 5

— ~— ^-— ... as a surd.

1 1
Let x be the value of the continued fraction ; then x - 1 = =— — —

;
£> + O + \X — 1)

whence 2x2 + 2x - 7 = 0.

The continued fraction is equal to the positive root of this equation, and

is therefore equal to ^—-— .

EXAMPLES. XXVII. a.

Express the following surds as continued fractions, and hnd the

sixth convergent to each

:

1. v/3. 2. ^5. 3. y/6. 4. s/8.

5. v/11. 6. x/13. 7. x/14. 8. V22.

9. 2^3. 10. 4 v/2. 11. 3^5. 12. 4 N/10.

13
- j&- 14

- V33-
15

- \/s-
16

- \/n-
268

17. Find limits of the error when —— is taken for N/17.
65

916
18. Find limits of the error wThen '—- is taken for v/23.

19. Find the first convergent to N/101 that is correct to five places

of decimals.

20. Find the first convergent to VI 5 that is correct to five places

of decimals.

Express as a continued fraction the positive root of each of the

following equations

:

21. x*+ 2x-l = 0. 22. a8 -4*?- 3=0. 23. la?- 8x- 3=0.

24. Express each root of x2 - 5^+ 3= as a continued fraction.

Ill
25. Find the value of 3 +5— x— x--

6+ 6+ 6+

26. Find the value of ,— -

—

1+ 3+ 1+ 3 +
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111111
1+ 2 + 3+ 1+ 2 + 3 +

1111
27. Find the value of 3+

28. Find the value of 5 + ,1+ 1+ 1+ 10 +
29. Shew that

*+ i+6+ i+ e+""~*\1+ a+ 2+ 3+ 2+ ;

30. Find the difference between the infinite continued fractions111111 111111
1+ 3+ 5+ 1+ 3+ 5+ •"' 3+ 1+ 5+ 3+ 1+ 5+ ""

*357. To convert a quadratic surd into a continuedfraction.

Let N be a positive integer which is not an exact square,

and let a
x
be the greatest integer contained in JN j then

N/iV = «, + (Jff- a,) = «, + -j£— , if r, = W- »,\

Let b be the greatest integer contained in —
' ; then

JM+a
l = b |

JN-b
x
r

x
+ a

x ^ h ,

JN-a
2 ^ h

r
i

+

where «
2
= b

i

r
1
— a

x
and r

x
r
2
=N — a„

2
.

Similarly

r
2

2 »*
2

- JN + a./

where «
3
= bf2

— a
s
and r

2
r
3
—N — a

3

2

;

and so on ; and generally

JN+a
,

. JN-a . r-— -s=i = b , + v —" = b , + ,
"

"-' jy + a '

> it

M-l
H— 1 ' (1-1

where an
= &„_,/•„_, - a„_

1

and ?•„_,*•„ = N - a/.

1111
Hence *JN= a, +

and thus JN can be expressed as an infinite continued fraction.

"We shall presently prove that this fraction consists of re-

curring periods ; it is evident that the period will begin when-
ever any complete quotient is first repeated.
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We shall call the series of quotients

JAr + a, JN + a
2

JJST+ a
JAT

.

r
x

r2 r
3

3
)

the first, second, third, fourth complete quotients.

*358. From the preceding article it appears that the quan-
tities av rv bv b , b

3
are positive integers; we shall now prove

that the quantities a
2, a3 , a4 , , r

8, r
3

, r
4
, . . . are also positive in-

tegers.

p p p
Let — , —.. —r. be three consecutive convergents to JN. and

q q q
° x

P"
let — be the convergent corresponding to the partial quotient b

n
.

The complete quotient at this stage is —
; hence

v^=
— p + p

r
, t = P JW+a„P+rvp

Clearing of fractions and equating rational and irrational

parts, we have

«y + rnP = ^Y> ck<l + r
nq =p ;

whence an ( pq - pq) =pp* ~
<Z<7

'^j rn {ptf —p<i) = A
Tq'

2 —p'2
.

But pq' —p'qssdslf and pq —pq-, pp' —qq'N, Nq 2 — p
2 have

the same sign [Art. 344] ; hence an and rn are positive integers.

Since two convergents precede the complete quotient -

r*

this investigation holds for all values of n greater than 1.

*359. To prove that the complete and partial quotients recur.

In Art. 357 we have proved that rnrn _ l
= N—a 2

. Also rn
and

r
n _ l

are positive integers ; hence an must be less than ^/JV, thus

a
n
cannot be greater than a v and therefore it cannot have any

values except 1, 2, 3, ...a
x

'

}
that is, the number of different values of

a
n cannot exceed a

x
.

Again, an+1 =rvbu -ah , that is rnbn = a
n + an+v and therefore

rnbn cannot be greater than 2a
l

; also bn is a positive integer

;

hence rn
cannot be greater than 2av Thus rn cannot have any

values except 1, 2, 3,...2a
1 ; that is, the number of different values

ofi\ cannot exceed 2ar
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Thus the complete quotient — — cannot have more than
rn

2a* different values ; that is, some one complete quotient, and
therefore all subsequent ones, must recur.

Also b
n
is the greatest integer in — — ; hence the partial

rn

quotients must also recur, and the number of partial quotients in
each cycle cannot be greater than 2a 2

']

*3G0. To prove that a, < a
u + r

n
.

We have «,_, + an = bH_1
rn_ l ;

«»_i + a«= or >?,
t,-i 5

since 6„_ l
is a positive integer

;

But N"-a;=rnrn_ l

-

i

a
i
~ a

n < rn ,

which proves the proposition.

*361. To shew that the period begins loith the second partial

quotient and terminates ivith a partial quotient double of the first.

Since, as we have seen in Art. 359, a recurrence must take

place, let us suppose that the (n+ l)
th complete quotient recurs at

the (*+ l)th ; then

a. = a , r, = r , and b. = b
;

we shall prove that

a, . =a , . rm , = r ,
, b, = b ,

.

4— 1 n — 1' »—

1

ii — 1' *—

1

ii —

1

We have

r. , r = N -a,2
' — iV — a 2 = r ,r —r . r,

;

* — i * » it H — i ii H — l *

'

v = r

Again,

a
,

_ a* 1 7 7
.-. " '

~ -b ,
— om . = zero, or an integer.

n-1
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But, by Art. 360, a
l
-a

n_ l
<.r

ii
_

x

, and a
l
-a

s_ l

<r
s_ i

; that is

a. -a. , < r '

, : therefore a ,
- aa , < r . ; hence -^ — is less

n-

1

than unity, and therefore must be zero.

Thus «,_! = «„_!, and also 6#_1 = 6
fl_i.

Hence if the (n + l)th complete quotient recurs, the ?^
th com-

plete quotient must also recur; therefore the (n- l)th complete

quotient must also recur; and so on.

This proof holds as long as n is not less than 2 [Art. 358],

hence the complete quotients recur, beginning with the second

quotient — -
. It follows therefore that the recurrence

1 r
x

begins with the second partial quotient b
x ;

we shall now shew

that it terminates with a partial quotient 2a
x

.

Let - "be the complete quotient which just precedes the

second complete quotient - when it recurs ; then —— a

1 H

ancj v l are two consecutive complete quotients ; therefore
»",

but N- a* = r, ; hence rn = 1.

Again, a
y

— aH
< ?'„, that is < 1 ; hence a

x

- an
- 0, that is

«« = «,•

Also an + a = rn bn — bn ; hence bn = 2a
i ; which establishes the

proposition.

*362. To shew that in any period the partial quotients equi-

distant from the beginning and end are equal, the last partial

quotient being excluded.

Let the last complete quotient be denoted by *—
; then

rn=l, cin = a
x ,

bn =2ar

We shall prove that

^-2
=^

2) «h-2=«3 > ^.-2= &2^

r.
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We have

r«-x = r* rH_t
=-N- a,; N - a; - r,

.

Also

»„_, + a
x

= «„_, + a
H
= rm_, &„_, = r, &„_,

;

and «,+«., = ?•,&,;

. . -=- - = 0, — oM-1 = zero, or an integer,

i

But "-' I^ <
CT

i
~ a"~ l

, that is <
a'~ a'- 1

, which is less than

unity ; thus a
2
- an_x

= • hence a,,.! = «
2 , and o,,^ = b

l
.

Similarly r
n_2

= r
2 , «„_2

= «
3 , 6„_2

- b
2 ; and so on.

*363. From the results of Arts. 3G1, 362, it appears that
when a quadratic surd v/iV

r
is converted into a continued fraction,

it must take the following form

J_ J_ J_ J_ J_ J 1_
1

&i
+ &

3
+6

3
+ °

3
+ &

2
+

°i +2a,+

*364. To obtain the penultimate convergents of the recurring

periods.

Let n be the number of partial quotients in the recurring
period ; then the penultimate convergents of the recurring periods

are the ?i
ih

, 2nth
, 3nth

,
convergents ; let these be denoted by

V-\ ^=, ^, respectively.

xt /v 111 11
Now JiV = a

l
+ i
—

j— — -— —-
v

b
i
+ b

2
+ b

3
+ b

7l
_

l

+ 2a
l
+

7)

so that the partial quotient corresponding to —+1
is 2a

t
; hence

Pn+X = ^Pn+Pn-l
SWl

" 2«1 9n + ?n-l

'

Tlie complete quotient at the same stage consists of the period

2«,+T -r : ,

b
i
+ K + 6«-i

+



300 HIGHER ALGEBRA,

and is therefore equal to a
x

+ J'N ; hence

Clearing of fractions and equating rational and irrational

parts, we obtain

*iP.+JV-i= -jfy«i ai9,

H + 9
rn-i=^« (!)•

Again— can be obtained from — and -^ by taking for the

quotient

1 1 1
2*

1
+
V?V^ C

which is equal to rtj + — . Thus
in

& = 1 2^ = &
, from (1);

** U+%)qn + q^ P« +%.qn

?2„

. l(A + *&) (2)>

In like manner we may prove that if — - is the penultimate
icn

convergent in the cth recurring period,

«i ^c« +Fcn-i = Nqmi a, qcn + qm_l =#*,

and by using these equations, we may obtain £— , — , suc-

cessively.

It should be noticed that equation (2) holds for all multiples

of n ; thus

Ol

the proof being similar to that already given.

*365. In Art. 356, we have seen that a periodic continued

fraction can be expressed as the root of a quadratic equation

with rational coefficients.
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Conversely, we might prove by the method of Art. 357 that

an expression of the form —tt~~ > where -<4> B, C are positive

integers, and B not a perfect square, can be converted into a

recurring continued fraction. In this case the periodic part will

not usually begin with the second partial quotient, nor will

the last partial quotient be double the first.

For further information on the subject of recurring continued
fractions we refer the student to Serret's Cours cVAlgebre Supe-
rieure, and to a pamphlet on The Expression of a Quadratic Surd
as a Continued Fraction, by Thomas Muir, M.A., F.R.S.E.

^EXAMPLES. XXVII. b.

Express the following surds as continued fractious, and find the

fourth convergent to each :

1. N/a
2+ l. 2. Ja* -a. 3. N/«--l.

4. V/T7T. 5 . y«"^f . 6 . ^l
7. Prove that

J9a*+ 3=3a+ —— -i
2a + 6a + 2a + 6a +

and find the fifth convergent.

8. Shew that

2 1111 i—»—r-

p i+ p+ i+ p

9. Shew that/111 \ 111
V a \-\ =Pa \ + ——

\ P9Cl
2 + tt

3+ P9Ct
4 + / aCL

l + PaZ + OCl
\ +

10. If Ja'2 + 1 be expressed as a continued fraction, shew that

2(a*+l)qn=pn _ 1 +pn + 1 , 2pn = qn _ l + qn + l
.

11 Tf 1111
11. If .%'= — ...,

a
x + «

2 + ai+ a2 +1111
•
?/ ~2a

1
+ 2«2+ 2a

x
+ 2a

2+
""'

1111
~3tf

1
+~3a2 + 3^+ 3«2+

'"'

shew that x {f-
- z-) + 2y (z2 - .r2) + 3z {a? -

y

1
) = 0.



302 HIGHER ALGEBRA.

12. Prove that

(
JL J_ Jl J_ V———— ^ = -
b + a+ b + a+ '")\b+ a+ b+ a+ '")"b

1 J_ J_ J_13. U X~ a+
b+ b+ a+ a+ ••'

J_ J_ J_ J_y- b + a+ a+ i+ b+ •••'

shew that (ab2+ a+ b)x- (a2b + a+ b)y = a2 -b2
.

14. If — be the nth convergent to Ja2+ l. shew that

P2
2+P3

2 +'"+P2
n + l = Pn + lPn + 2-PlP2

15. Shew that

1 1 1 \ l + bc(——\a+ b +
c +

v
a+ b + c+

'

"/ \ ^+ a + c+ / l+ctb'

16. If — denote the rih convergent to ^——— , shew that
qr

&
2

Pi+Pi>+ >~+P°.n-l=P2n-p<L, ?3+ ?5+ - + &» - 1= ?8» ~ ft.

17. Prove that the difference of the infinite continued fractions

_i_j_2_ i i i

a+ b+ c+ •' b+ a+ c+
'••'

is equal to = .

1 + ao

18. If s/JV is converted into a continued fraction, and if n is the

number of quotients in the period, shew that

19. If \/^ De converted into a continued fraction, and if the pen-

ultimate convergents in the first, second, ...kth recurring periods be

denoted by nlt n2i ...nk respectively, shew that


