
CHAPTER XXIX.

SUMMATION OF SERIES.

380. Examples of summation of certain series have occurred

in previous chapters ; it will be convenient here to give a

synopsis of the methods of summation which have already been

explained.

(i) Arithmetical Progression, Chap. IV.

(ii) Geometrical Progression, Chap. Y.

(iii) Series which are partly arithmetical and partly geo-

metrical, Art. 60.

(iv) Sums of the powers of the Natural Numbers and allied

Series, Arts. 68 to 75.

(v) Summation by means of Undetermined Coefficients,

Art. 312.

(vi) Recurring Series, Chap. XXIY.

We now proceed to discuss methods of greater generality
;

but in the course of the present chapter it will be seen that some

of the foregoing methods may still be usefully employed.

381. If the rth term of a series can be expressed as the dif-

ference of two quantities one of which is the same function of r

that the other is of r - 1 , the sum of the series may be readily

found.

For let the series be denoted by

and its sum by S , and suppose that any term u
r
can be put in

the form v
r
-v

r_ 1 ; then

^.=(«i-0+(w.-«i)+(*.-«f) + »- + (
w.-i-0

!

+(*.- ,,--i)

= v - v n .
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Example. Sum to n terms the series

1 1 1
+ U . »„v„ . n T + „ . , . +

(l + s)(l+2s) (l + 2u-)(l + 3.r) (l + 3j-)(l + 4ar)

If we denote the series by

*-±(—-—\
- a;\l + 2x 1 + 3*/'

_!/ 1 1 \
Ws

a;\l + 3# 1 + 4*,/
'

x\l + nx i+n+ i.x/

b}' addition, SL=-
I

^ —
I

ar\l + a; l +w + l.a?/

n

(1 + x) (1 + n + l ..r)

382. Sometimes a suitable transformation may be obtained

by separating u into partial fractions by the methods explained

in Chap. XXIII.

Example. Find the sum of

1 a a2

+ n, x~n z~r + t-, ., > ,, 5—
v + . . . to n terms.

(l + x)(l + ax) (l + ax)(l+a*x) (1 + a-x) (1 + a 3x)

nu, ft* «n_1 A B
The nth term= —

n . w ,
— = —.t- + — suppose:

{l + an
-1x)(l + anx) l + a"- 1^ l + anx **

.'. an
~ x-A (1+ a**) + B (1 + a7'- 1

*).

By putting 1 + «" _1 .r, 1 + aux equal to zero in succession, we obtain

an-l nn
A=- , B= —

1 -a' 1 -a'

1/1 a
Hence u, = —

1
1 - a \1 + a: 1 + axJ

.... 1 / a a 2 \
similarly, t**=; , — -5— 5 .

1 / a"- 1 aw \
Wn~l-a Vl+a*" 1* l + anj/

'"• *~l-o\l+ * l + anx)'
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383. To jind the sum of\\ terms of a series each term of which
is composed of r factors in arithmetical progression, the firstfactors

of the several terms being in the same arithmetical progression.

Let the series be denoted by u
x + u2 + us + + un ,

where

u„ - (a + nb) (a + n + 1 . b) (a + n + 2 . b) ... (a + n + r — 1 . b).

Replacing n by n— 1, we have

«„ ! = (a + n — 1 . &) (a + nb) (a + n + 1 . 6) . .. (a + n + r — 2 . b)

;

k»-i

.'. (« + ?i — 1 . b) un = (a + n + /• — 1 . b) ?.«.„_! = vn , say.

Replacing n by n + 1 we have

(a + w + r. 6)tf»= «Il+1 j

therefore, by subtraction,

(r+l)b . un= vn+i-vn .

Similarly, (7+1)6. wB_, = r
/(
- /<„_,,
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Example. Find the sum of n terms of the series

1.3.5+3.5.7+5.7.9+
The nth term is {2n - 1) (2« + 1) (2n + 3) ; hence by the rule

- _ (2w-l)(2n + l)(2n + 3)(2n+5)
, n>\- ^ +C7.

To determine C, put n = 1 ; then the series reduces to its first term, and

we have 15 = —-—
-j

—

:—f- C ; whence C =— ;8 8

(2n-l)(2n+l)(2n+3)(2n+5) 15
•'• S*~ 8 + 8"

= n (2n3 + 8«2 + In - 2), after reduction.

384. The sum of the series in the preceding article may
also be found either by the method of Undetermined Coefficients

[Art. 312] or in the following manner.

We have un
= (2w - 1) (2w + 1) (2w + 3) = $n3 + 12>i

2 - 2m - 3;

. \ Sm = 82?i
3 + 122^ 2 - 22m - 3m,

using the notation of Art. 70
;

. \SU
= 2m2 (m + l)

2 + 2m (n + 1) (2n + 1) - n (n + 1) - 3m

= w(2m3 + 8m2 + 7?i-2).

385. It should be noticed that the rule given in Art. 383 is

only applicable to cases in which the factors of each term form an
arithmetical progression, and the first factors of the several terms

are in the same arithmetical progression.

Thus the sum of the series

1.3. 5 + 2.4. 6 + 3.5. 7 + to n terms,

may be found by either of the methods suggested in the preceding
article, but not directly by the rule of Art. 383. Here

u
n
= n (m + 2) (m + 4) - n (m +1 + 1 )

(m + 2 + 2)

= n{n+ l)(™ + 2) + 2n(n+ \) + u(a + '2) + 2/4

= n (m + 1) (m + 2) + 3m (n + 1) + 3m.

The rule can now be applied to each term ; thus

S
n
= \n (m+ 1) (m + 2)(m + 3) +n (n+ 1) (m + 2) + |« (»+ 1) + C

\ )> (r h l)(/r»-l) (» + 5), the constant being zero.
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386. To find the sum of\\ terms of a series each term of which

is composed of the reciprocal of the product of r factors in arith-

metical progression, the first factors of the several terms being in

tlie same arithmetical progression.

Let the series be denoted by u
x
+ it, + u

:i
+ + un ,

where

— = (a + nb) (a + n + 1 . b) (a + n + 2 . b) (a + n + r-l .b).
4iUn

M„_i

Replacing n by n - 1,

— = (a + n - 1 . b) (a + nb) (a + n + 1 . b) ...(a + n + r—2 . b)

;

ln-l

.'. (a + n + r-l . b) un = (a + n - 1 . b) un_x = vni say.

Replacing n by n + 1, we have

(a+nb)un = vn+1 ;

therefore, by subtraction,

(r-l)b. un = vn -vn+1 ,

Similarly (r - 1) b . un_x
= v

ll _ l
- vn ,

(r — l)b . u.2 = v.2
— vSt

(r— 1) b . Wj = v
x

— v.2 .

By addition, (r — 1) b . Sn = vx
— vn+1 ;

, , ,
. Q ^i - ?W _ r _ (

a + nb) un
tnatis

*"-(r-l)6~
U

(r-l)6 '

where C is a quantity independent of n, which may be found by

ascribing to n some particular value.

Thus Sn = C- ,

*
. = -

,
.

(r-l)6 (a + n+L.b)... (a + n + r-l. b)

Hence the sum may be found by the following rule :

Write doivn the nth term, strike offa factor from the beginning,

divide by the number offactors so diminished and by the common
difference, change the sign and add a constant.

The value of C= -, Vv~7 = t tti ui
'> but ** is advisable in

(r — 1) o (r — 1) 6

each case to determine C by ascribing to n some particular value.
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Example 1. Find the sum of re terms of the series

The re'
1
' term is -

1.2.3.4 + 2.3.4.5 + 3.4.5.6 +

1

»(n+ l)(n+ 2)(n+ 3)'

hence, hy the rule, we have

3(n+l)(w+ 2)(»+ 3)

rut »=1, then ^=0-3^; whence (7=1;

• 5
X *

" 18 3(re + l)(re + 2)(re + 3)

By making n indefinitely great, we obtain fi^ =—

.

Example 2. Find the sum to n terms of the series

3 4 5
+ a—T7—- + rt—r—5 +1.2.42.3.5 3.4.6

Here the rule is not directly applicable, because although 1,2,3, ,

the first factors of the several denominators, are in arithmetical progression,

the factors of any one denominator are not. In this example we may
proceed as follows

:

n + 2 (n+2)2

" re(re+l)(re + 3) n{n+l) (n + 2) (re + 3)

re (re 4-1) + 3re + 4
:

re(re + l)(re + 2)(re + 3)"

1 3

(re+ 2)(w + 3) (re + l)(re + 2)(re + 3) w(re+l)(n + 2)(re + 3)'

Each of these expressions may now be taken as the ?i
th term of a series

to which the rule is applicable.

• S -c l 3 4

n + S 2(re + 2)(re + 3) 3 (re+ 1) (re + 2) (re + 3)
'

put re=l, then3-13 4 29

17271= C "4 " 27174 " 372.3 .4'
Whence C=

36 ;

_29 1 3 4
n 36 re + 3 2 (re + 2) (re + 3) 3 (re + 1) (re + 2) (re + 3)'
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387. In cases where the methods of Arts. 383, 386 are directly

applicable, instead of quoting the rules we may always effect the

summation in the following way, which is sometimes called ' the

Method of Subtraction.'

Example. Find the sum of n terms of the series

2.5 + 5.8 + 8.11 + 11.14+

The arithmetical progression in this case is

2, 5,8, 11, 14,

In each term of the given series introduce as a new factor the next term

of the arithmetical progression ; denote this series by &", and the given series

by S; then

S' = 2. 5. 8 + 5. 8. 11 + 8. 11. 14+ +(3w-l)(3n+2)(3»+5);

.-. £'-2.5.8= 5.8.11 + 8. 11.14 + 11. 14.17+... to (u-1) terms.

By subtraction,

_2.5.8=9[5.8+ 8.11 + 11.14+...to(»-l)terms]-(3n-l)(3n+2)(3n+5),

- 2 . 5 . 8 = 9 [S - 2 . 5] - (3/i - 1) (3n+2) (3n+5),

9S = (3/i - 1) (3/i + 2) (3/i + 5) -2. 5. 8 + 2, 5.0,

fif=n(3n3+6n+l).

388. When the nth term of a series is a rational integral

function of n it can be expressed in a form which will enable us

readily to apply the method given in Art. 383.

For suppose <j> (n) is a rational integral function of n of p
dimensions, and assume

cf)(n) = A +Bn+ Cti(n + 1) +B)i(u+ l)(n + 2)+ ,

where A, JB, C, D, are undetermined constants p + l in

number.

This identity being true for all values of n, we may equate

the coefficients of like powers of n; we thus obtain ^> + 1 simple

equations to determine the p + 1 constants.

Example. Find the sum of n terms of the series whose general term is

n*+6n3+ 5w2.

Assume

7i
4 + 6/i3 + 5/t

2=A +Bn+ Gn [n + 1) + Dn [n + 1) (n + 2) + En (n + 1) (n + 2) (w + 3)

;

it is at once obvious that ,4=0, 2? = 0, E= 1 ; and by putting n= - 2, n = - 3

successively, we obtain C= - 6, J) = 0. Thus

«4 + 6» 3 + 5/< 2 =//(n + l) (n+2) (?i + 3)-6/t(/i + l).
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Hence Sn= s n (/t + l)(» + 2)(n + 3)(?i + 4) - 2n(n+ l)(n+ 2)
o

= \n(n+l)(n+2){n'i + 7n + 2).
o

Polygonal and Figurate Numbers.
•

389. If in the expression n+ \n(n— l)b, which is the sum
of n terms of an arithmetical progression whose first term is 1

and common difference b, we give to b the values 0, 1, 2, 3,

we get
•>

n j
u, \n (n + 1), n*

s
\n (Bn — 1)

which are the uih terms of the Polygonal Numbers of the second,

third, fourth, fifth, orders; the first order being that in which
each term is unity. The polygonal numbers of the second, third,

fourth, fifth, orders are sometimes called linear, triangular

square, pentagonal)

390. To find the sum of the first n terms of the rth order of
j>olygonal numbers.

The nih term of the rtb order is n + \n (n - 1) (r — 2);

.-. $
i

=$n + l(r-2)%(n-l)u

= \n (n + 1) + 1 (r -2)(n-l) n (n + 1) [Art. 383]

= in(n + l){(r-2)(n-l) + $}.

391. If the sum of n terms of the series

1, 1, 1, 1,1, ,

be taken as the ?*
th term of a new series, we obtain

1,2,3,4,5,

n in + 1

)

If again we take — , which is the sum of n terms of the
-j

last series, as the ?t
th term of a new series, we obtain

1, 3, 6, 10, 15,

By proceeding in this way, we obtain a succession of series

such that in any one, the nih term is the sum of n terms of the

preceding series. The successive series thus formed are known
as Figurate Numbers of the first, second, third, ... orders.
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392. To find the nth term and the sum of n terms of ilie rth

order offigurate numbers.

The nih term of the first order is 1; the nth term of the

second order is n; the nth term of the third order is Hn, that is

\n (n + 1); the ntYl term of the fourth order is 2 "V >
tnat is

1 . 2

n(n+l)(n+2) ..
tIl , , . . ~M , . ^ n(n+l) (n+2)

-— L± '- • the uth term of the fifth order is 2, —*-=—^5 ,

1.2.3 1 . 2 . o

xl . w(w+l)(n + 2)(M + 3)
that is —2 ^-n—— ; and so on.

4

Tims it is easy to see that the nth term of the rth order is

w(?*+l )(w + 2)...(n + r-2)
i

|rc+r-2
. 01

r-1 n — 1 I r — 1

A«rain, the sum of n terms of the rth order is

n (n + 1) (n + 2) . . . (w + r - 1)

which is the wth term of tlie (r + l) th order.

Note. In applying the rule of Art. 383 to find the sum of n terms of

any order of figurate numbers, it will be found that the constant is always

zero.

393. The properties of figurate numbers are historically

interesting on account of the use made of them by Pascal in

his Traite du triangle arithmetique, published in 1665.

The following table exhibits the Arithmetical Triangle in its

simplest form

1 ...1 1
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Pascal constructed the numbers in the triangle by the follow-

ing rule :

Each number is the sum of that immediately above it and that

immediately to the left of it;

thus 15 = 5 + 10, 28 = 7 + 21, 126 = 56 + 70.

From the mode of construction, it follows that the numbers in

the successive horizontal rows, or vertical columns, are the hgurate
numbers of the first, second, third, . . . orders.

A line drawn so as to cut off an equal number of units from
the top row and the left-hand column is called a base, and the

bases are numbered beginning from the top left-hand corner.

Thus the 6th base is a line drawn through the numbers 1, 5, 10,

10, 5, 1 ; and it will be observed that there are six of these num-
bers, and that they are the coefficients of the terms in the ex-

pansion of (1 + x)
5

.

The properties of these numbers were discussed by Pascal
with great skill : in particular he used his Arithmetical Trianyle
to develop the theory of Combinations, and to establish some
interesting propositions in Probability. The subject is fully

treated in Todhunter's History of Probability, Chapter n.

304. "Where no ambiguity exists as to the number of terms

in a series, we have used the symbol % to indicate summation

;

but in some cases the following modified notation, which indicates

the limits between which the summation is to be effected, will be
found more convenient.

Let cf> (x) be any function of x, then 2
<f>

(x) denotes the sum
x=l

of the series of terms obtained from
<f>

(x) by giving to x all posi-

tive integral values from I to m inclusive.'a 1

For instance, suppose it is required to find the sum of all the

terms of the series obtained from the expression

(p-l)(p-2)...(p-r)

by giving to p all integral values from r + 1 to j> inclusive.

H.H. A. 21
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Writing the factors of the numerator in ascending order,

.
*=* (p - r) (p - r + 1) ... (p - 1)

the required sum = 2 — —- —

= i{1.2.3....r+2.SA....(r+l)+...+(p-r)(p-r+l)...(p-l)}

=l (p-r)(p-r + l) „(p-l)p
[Art. 383.]

\r r + 1
L J

=
y~(-l)(y-2)...(^-r)

jr+1
i

Since the given expression is zero for all values of p from 1 to

r inclusive, we may write the result in the form

%p (p-l)
(p-2) •(p- r) _ p(p-l) (ff-2) ...(p-r)

v-\ \r
|

r +

1

EXAMPLES. XXIX. a.

Sum the following series to n terms :

1. 1.2.3 + 2.3.4 + 3.4.5 +

2. 1.2.3.4 + 2.3.4.5 + 3.4.5.6 +

3. 1.4.7 + 4.7.10 + 7.10.13 +

4. 1.4.7 + 2.5.8 + 3.6.9 +

5. 1.5.9 + 2.6.10+ 3.7.11 +

Sum the following series to n terms and to infinity :

I 1 1

1.2^2.3 3.4^

II 1
7

' 174 + 4.

7

+
77l0

+

1 1 1_

1.3.5
+ 3.5.7

+
5.7.9

+

1 1_ 1

1.4.7
+
4.7.10

+
7.10.13

+

4 5 6
10 1 1- - 4-

1.2.3^2.3.4 .3.4.5^

11 J_ _1_ _JL
* 3.4.5

+
4.5.6 + 5.6.7

+ *""'

io 1 3 5 7
\9, ———

-l
—

i u
1.2.3 2.3.4 3.4.5 4.5.6
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Find the sum of n terms of the series :

13. 1 ,3.22+2.4.3a+3.5.4*+

14. (?i
2 -l 2

) + 2<>2 -22
) + 3(>2 -32

) +

Find the sum of n terms of the series whose na term is

15. »*(»*- 1). 16. (n* + DR + 4)(n2+ 5n + H).

?i
2

(?i'
2 -l) ?*

4 + 2/> 3 + h2 -1
17. A 9 i • *&• v, •

4w2 -l u- + /i

1Q n*+3n?+2n+2 7i*+n2+ l
iy. ., _ . zu. ,

n* + 2)i iv + n

21. Shew that the ?i
th term of the rth order of figurate numbers is

equal to the r
th term of the n tXx order.

22. If the nth term of the rth order of figurate numbers is equal to

the (n + 2)
th term of the (>-2)th order, shew that r=n+%

23. Shew that the sum of the first n of all the sets of polygonal

numbers from the linear to that of the ?
,th order inclusive is

{r-\)n(n + \), „ oN

Summation by the Method of Differences.

395. Let un denote some rational integral function of », and
let Mj, u.2 , w 3 , tt4,... denote the values of un when for n the values

1 , 2, 3, 4, . . . are written successively.

We proceed to investigate a method of finding un when a

certain number of the terms u
x , u.2 , w3 , u4 ,... are given.

From the series u
x , u 2 , u 3 , uA , u5 ,... obtain a second series

by subtracting each term from the term which immediately

follows it.

The series

u.2 — w,, us -u.2 , u4
— u3 , u5 -u4 ,...

thus found is called the series of the first order of differences, and
may be conveniently denoted by

Aw,, &u~ &uA , At*4,...

By subtracting each term of this series from the term that

immediately follows it, wre have

Am.,- A?*,, Attg — Awg, Aw4— Awj,...

which may be called the series of the second order of differences,

and denoted by
A../',, A.,?'.,, AjWg,...
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From this series we may proceed to form the series of the

third, fourth, fifth,... orders of differences, the general terms of

these series being A3ur , AAur , A 5?tr) ... respectively.

From the law of formation of the series

Uj
t

u.2 , u 3 , u±, u5 , u6 ,

Attj, Au.2 , Au3 , Aw4 , Au5 ,

A.y^ , A2w2 , A.m3 , A2ui ,

.
A 3Wj, A3u,, A

3u3 ,

it appears that any term in any series is equal to the term
immediately preceding it added to the term below it on the left.

Thus u.2 = «j 4- Auly and Ait.2 = Aui
+ A.m^ .

By addition, since u.2 + Au.2 = u3
we have

ii.j = t^ + 2Au ± + A.2ux
.

In an exactly similar manner by using the second, third, and
fourth series in place of the first, second, and third, we obtain

Au3
= Au

x + 2A.2u1 + A^.

By addition, since u3 + Au3
= u4i we have

?f4 - u
x
+ ZAu

x + SA^ + A^ .

So far as we have proceeded, the numerical coefficients follow

the same law as those of the Binomial theorem. We shall now
prove by induction that this will always be the case. For sup-

pose that

un+i = «i + mAmj + v

9
A,u

l
+ ... + "CVA^j + + AnWj i

X -J

then by using the second to the (n + 2)
th

series in the place of the
first to the (n + l)

th
series, we have

it (11 — 1

)

Aun+1 = A%! + nA.2u
}

+ -A.—jr-f- A 3Wj + . . . + BCf

r_1A^w1 + . . . + An^uY .

By addition, since un+l + Aun+1 = un+2i we obtain

M»+a = Mj + fa + 1) Awj + . . . + (
nCr + *Gr_j) A rux + ...+ A„+1«,

.
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But *Cr + HJr-i - (—^ + l) x »Cr_ x
= ?i±i x "C,,.,

(n + l)w(w-l) ...(w+l-r+1) _
1.2. 3... (r-l)r

Hence if tlie law of formation holds for un+l it also holds for

f£n+8 , hut it is true in the case of w4 , therefore it holds for urn and
therefore universally. Hence

, 1X . (w-l)(w-2) .

"„ = Ui + (n - 1) A?^ + —£*_ * A 2?^ + ... + An.iWi.

39G. To find the sum of w terms of the series

in terms of the differences of ul .

Suppose the series u^, u.2 , u3 ,... is the first order of differences

of the series

Vl, v.2) v3 , v4 ,...,

then vn+1 = (vn+1 - vn) + (vn - vn_t) + ... + (v2 - v
x ) + v

x
identically

;

•
'• ^»+l = u a + un-l + •• + u2 + u\ + v

l
•

Hence in the series

0, va1 v3i v4 , v5

1

)

2

)

3 J 4 J

Aw1? Aw2 , Aw3

the law of formation is the same as in the preceding article;

•' «»+i = + «Wi + -4—s— Awx + . . . + A„?^
;

that is, Wj + w3 + uz + ... + un

n (n—\)
t

n(n—l)(n-2)
>- nu

x +—y

—r— AWj + -— -^ A 2M! + . . . + A„?f ,

.

The formula) of this and the preceding article may be ex-

pressed in a slightly different form, as follows : if a is the first

term of a given series, (I
x , d2 , d3 ,... the first terms of the suc-

cessive orders of differences, the nth term of the given series is

obtained from the formula
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and the sum of n terras is

^i"^" 1 )^
,

»(»-l)("- 2
)

f/

n(»-l)(tt-a)(n-3)

2 j3 4

Example. Find the general term and the sum of ?* terms of the series

12, 40,90, 168, 280, 432,

The successive orders of difference are

28, 50, 78, 112, 152,

22, 28, 34, 40,

6, 6, 6,

0, 0,...

,c ™, ,x 22(re-l)(re-2) 6 (re- 1) (re- 2) (re -3)
Hence the nth term = 12 + 28 (re - 1) +—K- ~P ' + -v M M -

'

l± II
= ?i

3 + 5re2 + 6>t.

The sum of n terms may now be found by writing down the value of

2re3 + 52re2 + 62re. Or we may use the formula of the present article and

obtain S^ia^28"'"- 1
' +

22"'"- 1)("- 2
» + «M»-D (»-2) (-8)

= ^(3re2 + 26re + 69re + 46),

= in(re+l)(3n2 + 23re + 46).

397. It will be seen that this method of summation will only

succeed when the series is such that in forming the orders of

differences we eventually come to a series in which all the terms

are equal. This will always be the case if the nth term of the

series is a rational integral function of n.^» j

For simplicity we will consider a function of three dimensions;

the method of proof, however, is perfectly general.

Let the series be

u. + ua + ua + + u +u .,+u . „ + u , „ +
1 2 3 ii n + \ n+2 u + 3

where u = An3 + Bn2 + Cn + D.
"

and let v , w , % denote the ?i
th term of the first, second, third

n' ii* ii * *

orders of differences;
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then v
h

- m
m+1
—un

= A(3n* + 3n+ l) + 2?(2» + 1) +C:

that is, v
n
= 3Au 2 + (3A + 2B) n + A + 11 + C

;

Similarly w = v
. , — v = 3A (2n + I) + 3A + 211

and z =w .— iv =6-4.
H »ti ii

Thus the terms in the third order of differences are equal;
and generally, if the nih term of the given series is of p dimensions,
the terms in the p

th order of differences will be equal.

Conversely, if the terms in the ]j
th order of differences are

equal, the utu term of the series is a rational integral function of

ii of p dimensions.

Example. Find the «th term of the series -1, - 3, 3, 23, G3, 129,

The successive orders of differences are

-2, 6, 20, 40, GO,

8, 14, 20,20,

6, 6, 0,

Thus the terms in the third order of differeLces are equal ; hence we may
assume it H=A+Bn+Cn2 + Dn 3

,

where A, B, G, D have to be determined.

Putting 1, 2, 3, 4 for 7i in succession, we have four simultaneous
equations, from which we obtain A =3, B = -3, C= - 2, D — \

;

hence the general term of the series is 3 - 3n - 2n2 + n9.

398. If a
ri

is a rational integral function of p dimensions

in n, the series

a, + ax + ajx
2 + ... + a xn12 »i

is a recurring series, ivhose scale of relation is (I — x)p+1 .

Let S denote the sum of the series ; then

S (1 - x) -- a
o
+ (a

x

- a )x + {a, - ajx* + . .. + (a, - a ,_>" - ax" + l

= a + b
t

x + bjc
2 + ... + bx" - ax" +

\ say;

here b =a —a
,

, so that 6n is of p - 1 dimensions in n.
n h it — 1

' "• x

Multiplying this last series by 1 - x, we have

S(i-xy

=s+(^-a„)*+(^-^K+..-+(6n-6„-iK-(«J
,+6>" +l+«X

+a

= c^+{b-a )x+c^2 + c
i
x^...+cX-{a

i

+b
iy, ^ + a

i

:c
,+
% say;

here cn -bn -b u u so that cn is of p - 2 dimensions in n.
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Hence it follows that after the successive multiplications by
1 — x, the coefficients of xn

in the first, second, third, . . . products

are general terms in the first, second, third, . . . orders of differences

of the coefficients.

By hypothesis an is a rational integral function of n of p
dimensions ; therefore after p multiplications by 1 - x we shall

arrive at a series the terms of which, with the exception of p
terms at the beginning, and p terms at the end of the series, form

a geometrical progression, each of whose coefficients is the same.

[Art. 397.]

Thus S (1 - xf = k(xp + x>'
+1 + ...+ x") +/(a?),

where k is a constant, and f (x) stands for the p terms at

the beginning and p terms at the end of the product.

r.Sil-xyJ^l^K/ix);

kx»(l-x"-^) + (l-x)f(x)
^

that is, a = (1 -x)p+l '

thus the series is a recurring series whose scale of relation is

(l-x)p+1
. [Art. 325.]

If the general term is not given, the dimensions of a
n
are

readily found by the method explained in Art. 397.

Example. Find the generating function of the series

3 + 5a; + 9a;2 +15a;3 + 23a;4 + 33a;5 +

Forming the successive orders of differences of the coefficients, we have
the series

2, 4, G, 8, 10,

2, 2, 2, 2, ;

thus the terms in the second order of differences are equal ; hence an is a
rational integral function of n of two dimensions ; and therefore the scale

of relation is (1 - a;)
3

. We have

S = 3 + 5x + 9a;
2 + 15.r3 + 23a;4 + 33a;5 +

- SxS = - 9.r - 15a;2 - 27.x-3 - 45a;4 - 69^ -

Sx2S = 9a;2 + 15a;3 + 27.r4 + 45a;5 +

-xsS= - 3^- 5a;4 - 9a;
5 -

By addition, ( 1 - a;)
3 S= 3 - 4a; + 3a;

2
;

3-4.r + 3a;2

•*• b ~ (1-a;) 3
*
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399. We have seen in Chap, xxiv. that the generating

function of a recurring series is a rational fraction whose denomi-

nator is the scale of relation. Suppose that this denominator can

be resolved into the factors (1 — ax) (1 — bx) (1 — ex) ; then the

generating function can be separated into partial fractions of the

- ABC
torm , 1-

1 - ax 1 — bx 1 - ex

Each of these fractions can be expanded by the Binomial Theorem
in the form of a geometrical series; hence in this case the re-

curring series can be expressed as the sum of a number of

geometrical series.

If however the scale of relation contains any factor 1 - ax
more than once, corresponding to this repeated factor there will be

A A
partial fractions of the form -^ —-7, ... —r=, : which

(1 -axy (1 - ax)

when expanded by the Binomial Theorem do not form geometrical

series; hence in this case the recurring series cannot be expressed

as the sum of a number of geometrical series.

400. The successive orders of differences of the geometrical

progression

a, ar, ar2
, ar3

, ar\ ar
n

,

are «(r-l), a(r—l)r, a(r-l)r2
, a(r—\)r?'

a(r-l)2
, a(r-l) 2

r, a(r-\fr2

,

which are themselves geometrical progressions having the same
common ratio r as the original series.

401. Let us consider the series in which

where </>(rc) is a rational integral function of n of p dimensions,

and from this series let us form the successive orders of differences.

Each term in any of these orders is the sum of two parts, one
arising from terms of the form arn~\ and the other from terms of

the form <£(?i) in the original series. Now since <f>(n) is of ;;

dimensions, the part arising from <f>(n) will be zero in the (p + l)th

and succeeding orders of differences, and therefore these series

will be geometrical progressions whose common ratio is r.

[Art. 400.]
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Hence if the first few terms of a series are given, and if the

p
th order of differences of these terms form a geometrical pro-

gression whose common ratio is r, then we may assume that the

general term of the given series is ar""
1

+f(n), where f(n) is a

rational integral function of n of p - 1 dimensions.

Example. Find the nth term of the series

10, 23, 60, 169, 494,

The successive orders of differences are

13, 37, 109, 335,

24, 72, 216,

Thus the second order of differences is a geometrical progression in which

the common ratio is 3 ; hence we may assume for the general term

un—a . Sn-^ + bn + c.

To determine the constants a, b, c, make n equal to 1, 2, 3 successively;

then a+ b + c=10, 3a + 2b+c = 23, 9a + 3b + c = 60;

whence a= 6, 6=1, c = S.

Thus un = 6 .
3'1

"
1 + n + 3 = 2 . 3» + n + 3.

402. In each of the examples on recurring series that we
have just given, on forming the successive orders of differences

we have obtained a series the law of which is obvious on inspec-

tion, and we have thus been enabled to find a general expression

for the ?4
th term of the original series.

If, however, the recurring series is equal to the sum of a

number of geometrical progressions whose common ratios are

«, b, c, ..., its general term is of the form Aa"' 1 + Bbn~ l + Cc
n~\

and therefore the general term in the successive orders of

differences is of the same form ; that is, all the orders of differ-

ences follow the same law as the original series. In this case to

find the general term of the series we must have recourse to the

more general method explained in Chap. xxiv. But when the

coefficients are large the scale of relation is not found without

considerable arithmetical labour ; hence it is generally worth

while to write down a few of the orders of differences to see

whether we shall arrive at a series the law of whose terms is

evident.

403. We add some examples in further illustration of the

preceding principles.
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Example 1. Find the sum of n terras of the series

1.2'3 + 2.3'33+ 3.4'35 + 4.5 *3^ +

„ 2« + 3 1

" 1l(ll + l) 3"

2n + 3 .4 7?
Assuming —

= . = - + = ,n(u+l) n n + 1

we find A =3, B= -1.

tt /3 1 \ 1 1 1 11
Hence t/,. =

(
) — = - .

-—,
. — .

" \n n + 1) 3" n 3"- 1 n + 1 3"'

and therefore #,, = 1 . - .n n + 1 3'1

Example 2. Find the sum of n terms of the series

1 _3_ _5 7

3
+

3. 7
+
3. 7. 11

+
3. 7. 11. 15

+

The rih term is .,„,., r, kt: •, •

3.7 . 11 (An- 5) (4/i-l)

. 2n-l A (n + 1) + B An + B
ssume

3 7 (4n _ 5) (4n _i)
~

3 . 7 ......4»-l
"
3.7 (4„ - 5)

'

.-. 2rc-l= ,4n + (J+I>>

)-(.-t» + .B)(4?i-l).

On equating coefficients we have three equations involving the two
unknowns A and B, and our assumption will be correct if values of A and B
can be found to satisfy all three.

Equating coefficients of n 2
, we obtain ^1=0.

Equating the absolute terms, -1 = 2B; that is B = -%; and it will be
found that these values of A and B satisfy the third equation.

1 1 1 1
""' V,l~2 *3.7 (4»-5) 2'3.7 (4»-5)(4»-l) ;

hence S„ = . —
" 2 2 3.7.11 (4»-l)

Example 3. Sum to n terms the series

G. 9 + 12. 21 + 20. 37 + 30. 57 + 42. 81 +

By the method of Art. 396, or that of Art. 397, we find that the ;t
th terra

of the series 6, 12, 20, 30, 42, is ?r + 3» + 2,

and the ;«
th term of the series

9, 21, 37, 57, 81, is2n*+6n+l.
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Hence »„=(« + 1) (a + 2) {2m (m+3) + 1}

= 2m [n + 1) (?i + 2) (»+ 3) + (n + 1) (m + 2)

;

•'• S«=ln(»+l)(»+2)(n+3)(n+4)+|(n+i)(n+2)(n+8)-2.

Example 4. Find the sum of ??. terms of the series

2.2 + 6.4 + 12.8 + 20.16 + 30.32+

In the series 2, 6, 12, 20, 30, the ?i
th term is n2 + n

;

hence un= {n2 + n) 2n .

Assume (rc
2 + m) 2'1= (An2 + Bn+ C)2n - {A (n-l) 2 +B (n - 1) + C\ 2"- 1

;

dividing out by 2'1_1 and equating coefficients of like powers of n, we have

2 = A
t
2=2A+B, 0=C-A + B;

whence A=2, B= -2, 0=4.

.-. wn= (2?i2 - 2n + 4) 2n - { 2 (n - l)2 - 2 (n - 1) + 4 }
2"- 1

j

and Sn= (2m2 - 2m + 4) 2 n - 4 = (na - n + 2) 2*« - 4.

EXAMPLES. XXIX. b.

Find the nth term and the sum of n terms of the series

1. 4, 14, 30, 52, 80, 114,

2. 8, 26, 54, 92, 140, 198,

3. 2, 12, 36, 80, 150, 252,

4. 8, 16, 0, -64, -200, -432,

5. 30, 144, 420, 960, 1890, 3360,

Find the generating functions of the series :

6. 1 + 3x+ 7x2 +13.^ + 21a4 + 31a6+

7. 1 + 2a+ 9a2+ 20a3 + 35a4+ 54a3+

8. 2 + 5a + 10a2 + 1 7a-3 + 26a4+ 37a-5 +

9. 1 - 3a+ 5a2 - 7Xs+ 9a4 - 11a6 +

10. I 4+ 2% + 34a2 + 44^ + 5 4a4 +

Find the sum of the infinite series :

11.
3
+

32
+ 33 +

g4
+

12 i 2 _?-
2

+ ??_iV 2

_ 62
+1Z>

* 5
+

52 53
+

5« 5*
+ "
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Find the general term and the sum of n terms of the series :

13. 9, 16, 29, 54, 103,

14. -3, -1, 11, 39, 89, 167,

15. 2, 5, 12, 31, 8(i,

16. 1, 0, 1, 8, 29, 80, 193,

17. 4, 13, 35, 94, 262, Tr»5

Find the sum of n terms of the series :

18. 1 + 8*+ 3.>/- + 4./,-'; + 5.t-
1 +

19. 1+ 3.i-+ 6x2 + lO.f'5 + 1 5.r* +

onJLi 4 1 5 1 6 1

1.2*2 + 2.3 "2 :2

'f 3.4'2 !
+ 4.5'2 4

+

21 '

2T3-
4+ i£i-

4S+
4^5- 4' +0- 44+

22. 3.4 + 8. 11 + 15.20 + 24.31+35.44+

23. 1.3 + 4.7 + 9.13 + 16.21+25.31 +

24. 1.5 + 2.15 + 3.31+4.53 + 5.81 +

oC 1 2 3 4
25 1 A k — 4-

' 1.3^1.3.5 1.3.5.7 1.3.5.7.9

nn 1.2 2.2-' 3.23 4.2 4

26 ' ^- + 14- +
-T5-

+
-T6-

+

27. 2.2 + 4.4 + 7.8 + 11.16+16.32 +

28. 1 . 3 + 3 . 32 + 5 . 33+ 7 . 34+9. 3>+ ...

rtr. 1 1.3 1.3.5 1.3.5.7
'

2. 42. 4. 62.4. 6. 82. 4. 6. 8. 10

30 -± +— 2+i5L 92, ll 23+^
1.2

+ 2.3' 2+ 3.4' 2 + 4.5" 2 +

_4_ 1 _5_ 1 (J 1

1.2.3*3 2.3.4' 32
+
3.4. 5" 33

+

32 ±+A + H + ^ +
(3^ |4 |5 |6

33
19

I
28 1 _39_ J_ 52 1

'

1 . 2 . 3 ' 4
+

2 . 3 . 4 " 8
+

3 . 4 . 5 * 16
+

4 . 5 . 6 ' 32
+
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404. There are many series the summation of which can be

brought under no general rule. In some cases a skilful modifi-

cation of the foregoing methods may be necessary ; in others it

Avill be found that the summation depends on the properties of

certain known expansions, such as those obtained by the Binomial,

Logarithmic, and Exponential Theorems.

Example 1. Find the sum of the infinite series

2 12 28 50 78

[I
+

|2
+

|3_

+
|I
+

|5

+

term of the series 2, 12, 28, 50, 78. .. v . is 3n- + n -2; hence

3h2 +j«-2 3h(h-1)+4»-2
a»"

]n |n

+
2

;i-2 n-1 In"

Put n equal to 1, 2, 3, 4,... in succession ; then we have

2 4 2 3 4 2
", = 4--; „ 2

= 3 +
ri

-
r2

; «3=ji + ^ - -gj
i

and so on.

Whence ,Sf„ = Se + 4e - 2 {e - 1) = 5e + 2.

Example 2. If (1 + a;)
n= c + crr + c

2
.r
2 + . . . + cnx

n
, find the value of

l-c
1 + 22c2 + 32c3 +... + n\v

As in Art. 398 we may easily shew that

l2 + 22
.r + 32

.r
2 + &x3 +...+ n-xn

~ l + . . . =

Also cn + cn_x
x + . . .c.2£

n-2 + c^11'1 + c xn= (1 + .r)
n

.

Multiply together these two results; then the given series is equal to

(l + .r)
n+1

. . (2 - 1 - x)n+1
the coefficient of x 11 x in ,., .„ , that is, in -

—

7
- J=— .

(1 - x) A
(1 - x)3

The only terms containing jc
n-1 in this expansion arise from

2"+! (1 - .r)- 3 - (n + 1) 2>l (1 - .t)" 2 + \!l±Jll
%*-i (i _ ^-l.

.-. the given series=
fL^+3 2»+i _ „ („ + 1)

gn + ?ii"±:
l
) 2h-i

-n(w+l)2«-!
.
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Example 3. If b = a + l, and )i is a positive integer, find the value of

IP _ (n _ 1) „,,. - +
»-»>(»-«>

rfj. . _ C-3)(»-4)(»-5)^ +
|2 \6

By the Binomial Theorem, we see that

(n-8) (n-2) (n-5)(n-4)(»-3)

are the coefficients of xn , .r'
1-2

, .r
n_4

, .r'
1 -*5

,
in the expansions of (1 x) ',

(1-.t)- 2
, (1-x)-*, (l-.r) -4 , respectively. Hence the sum required is

e<pial to the coefficient of x* in the expansion of the scries

1 ax* a-x4 a*x6

+1-bx {1-bx)3 ' (1-fcc)8 (1 - bx)*
'

and although the given expression consists only of a finite number of terms,

this series may be considered to extend to infinity.

But the sum of the series = ,

—

;
—•- ( 1 + , ) = z

—

z

1-bx \ 1-bxJ 1-bx + ax"

i

, since b — a+1.
1 - (a + l)x + ax-

Hence the given series = coefficient of xn in
(l-x)(l-ax)

= coefficient of xn in = (
- - ~ -

}

a - 1 \1 -ax 1—x)

a H+l _ 1

a-1

Example 4. If the series

, x3 xe X* X7 x'
2 X5 X8

1 +
J3

+
JG
+

'

•r +
]5
+

|7

+
'

|2_

+
|5

+
|8_

+

are denoted by a, b, c respectively, shew that a8+ 63+ c8 -3o6c=l.

If w is an imaginary cube root of unity,

a3 + b3 + c3 - Sabc = {a + b + c) (a + wb + w'-c )
(a + w-b + ojc) .

.t
2 xz

.t
4 Xs

Now ' lA~ h + c = 1+x + ~\9 +
\3
+

Tl
+

~\5
+

and
w-.r- ur\r- w4

.c
4 w'.r'

>/ + lob + OJ-C-1+ C0X+ — + -r^- + —T- + -r=~

\ \ \ \

I= e

similarly a + io'-b + wc = c

bc =

1, since l + w + ur = 0.

0)=X

•.
, , .,

, , o , X uX co
2X (l+u> + w!)x
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405. To find the sum of the rth powers of the first n natural
numbers.

Let the sum be denoted by S
n ; then

S
H
=V+2 r + 3

r + ... + nr

.

Assume that

S =A
n
nr+i +Anr + A nr- 1 +Anr~ 2 + ... +An + A + 1 (1),n 1 2 3 r r + 1 \ /

'

where A , A^ A
2 , A 3 , ... are quantities whose values have to be

determined.

Write n + 1 in the place of n and subtract; thus

(n + l)
r = A {(n + l)

r+1 - nr+1
] + A

x
{{n + 1)' - nr

]

+ A 2
{(n+ l)- 1 -n'- 1

} + A 3
{(n + iy~2 -nr- 2

} + ... +A
r...(2).

Expand (?i+l)
r+
\ (n + l)

r

,
(n+l)r_1

,
... and equate the co-

efficients of like powers of n. By equating the coefficients of n r

,

we have
1

l=A. (r + 1), so that A a
= T .

By equating the coefficients of nr !

, we have

A (r+ l)r 1
r = ° —— + A

x
r ; whence A

x
= ^

.

Equate the coefficients of nr p
, substitute for A and A

Jf
and

multiply both sides of the equation by

\P

r(r-l)(r-2) ... {r- 2)+ 1)
;

we thus obtain

i ~p + l
+

2
+ A

'r
+ A

'r(r-l)
+ ^ r(r - 1) (r-2)

+ "^
In (1) write w — 1 in the place of n and subtract; thus

nr=A {n
r+l -(n-iy +i}+A

l

{?i
r-(n-l) r

} +A 2
{nr ' 1 -(n-iy- 1

} + ...

Equate the coefficients of nr~p
, and substitute for A , A 1 ; thus

o '4 +^-^gzi) +i/^;);^) -....w
p + 1 2 2

r
3 r (?• - 1

)

4 v (?• - 1) (r - 2)
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From (3) and (4), by .addition .and subtraction,

2 p + 1 "r * r(r-l)(r-2)

o^/_^)^/ 0'-i)(p-g(^-3)
+ (6).3 r (r - 1) r (?• - 1) (r - 2) (r - 3)

w
By ascribing to }> in succession the values 2, 4, 6, . .

.
, we see

from (G) that each of the coefficients A.^ A 5>
A.,... is equal

to zero; and from (5) we obtain

1 r ___1_ r (r-l)(r-2)
,

6 "

1^
J

30
'

li

. _J_ r(r-l)(r-2)(r-3)(r-4)
8 ~42"

|6
;

By equating the absolute terms in (2), we obtain

\=A^A
X
+ A

%
+ A

Z
+ +A

r

-

and by putting n= 1 in equation (1), we have

1 = A +A
l
+ A

a
+A9 + +A

r +Ar+l ;

thus A r+1
= 0.

406. The result of the preceding article is most conveniently

expressed by the formula,

„ nr+x
1 , „ r

r_ x
_ r(r-l)(r-2)

r_ 3

" r+1 2
l 2 3 4

r(r-l)(r-2)(r-3)(r-4)^ +
'6

w }lprp 7? - i 7?- 1 7? i 7? i 7? — 5

The quantities B
x

, B3 , 2?
5 ,

... are known as Bernoulli's Numbers;
for examples of their application to the summation of other series

the advanced student may consult Boole's Finite Differences.

Example. Find the value of l5 + 25 + 35
-f + n 5

.

ttt , r. n6 n5 ^,5 . _5 . 4 . 3 „ _We have S„= ^- + ^+^ -^ n* - Ba—j— n* + C,

_?t6 n5 5?i4 n2

~6 + "2 + l2~r2'
the constant being zero.

II. ii. A. 22
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EXAMPLES. XXIX. c.

Find the sum of the following series:
^ ^ ^JL +A

5. l +^+-\T'T |1 2 ii 3

-3 r/3

6. *rz
p
r p

r-i q £± £ + f^l.2- + to r + 1 terms.

(1 + .r) _ »^"2) _

X + 2
^

7- TX^" "'
12 "•(1+^)"

1+tm;

?i(?i-l)(™- 2)
1+3a? - to n terms.

2n+ l
, K /2/i + xY + ... to n terms.

o,2 W2
( 7l

2 _ 12) 7i
2 (ft

2 -

1

2)^
2^2

) + to w + 1 terms.

9. i-j[i+-ii7? 12 .2*.3
2

1 + 23

1L r2T3
+ 3^T5 + 5T677

+

2 3^6 11 18

12.
ji
+

]|
+

[3

+
|4

+
|5

+

2a8 ^ W 23s5 121s6
_

is. 1

+-J2-|3
+ "[7-'|r 16

14 Without fuming the formula, find the sum of the series:

W !«+*+*+ +»«• « 17 + 2;+ 3? + + "-
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33 43 53
15. Find the sum of l 3+ 23 + - + — + _+

B I* I*

16. Shew that the coefficient of xn in the expansion of ., is
(l-X)2 -r.r

fl 1

"'- 1
/-

1
("

2 -l)(«2 -4)
,

1

(n*-lKn*-4)(n*-9)
)

Y
+
if" n

c+
[7

* + }'

17. If n is a positive integer, find the value of

8.- (
»-i)^ + e»- g)('t

- 8)
2^- (»- 8)(»- 4)»- 6 )

g^+
\ 2 \o

and if 11 is a multiple of 3, shew that

1 - (
»- 1)+

(»-»H»-3) _(»-8)(»-4)(»-6)
+ =(_ 1)n

18. If ?i is a positive integer greater than 3, shew that

rf+«flga (
.-y+ "(»-i)<«-«)(— *)

(
,l 4y+ ...

=»»*(»+ 3) SP*"4.

19. Find the sum of ??. terms of the series :

1 2 3W
i + i2+ i"4

+
l + 2 2+ 2

4+ l+32 + 34
+

(2) _5__J_+JL__L+i3 _JLL+ 17

2.3 3.4 4.5 5.6 6.7 7.8

(-l)n + 1xn
20. Sum to infinity the series whose nth term is

?i(n+l)(n+ 2)

21. If (1 + x)n— Cq+ cvv+ c^v2+ CyV3+ + cn#n, n being a positive

integer, find the value of

(n - \)\+ (n - 3)
2c3+ (?i - 5)

2c5 +

22. Find the sum of n terms of the series :

„ N 2 4 8 16 32

1.5 5.7 7.17 17.31 31.65

7 17 31 49 _71_^ 1.2.3 2.3.4
+
3.4.5 4.5.6 5.6.7

23. Prove that, if a< 1, ( 1 + or) ( 1 +A) ( 1 + a?x) ....

ax a*x2 aPx3
= 1 + 5- -,+T: =5wi—=K +1-a2

' (l-«2)(l-a4
)

' (l-« 2)(l-a4)(l-a' !

)
"

22—2
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24. If A r is the coefficient of xr in the expansion of

2/ *A2 / ^.\2

2~3 J
'(i +,f(i +

|)

2

(i +
|)

2

(i + ;

2s ,, , v j , 1072
prove that ^l r=2^ (^4 r-i+ ^r-2) >

and ^4= "3^5

25. If n is a multiple of 6, shew that each of the series

n-^~\i— - 3+
[5

- 3 "

w(w-l)(w-2) 1 ,
n(n-l)(n-2)(n-S)(n-4) 1

11

[3
*3 +

|5
""'32 •-

is equal to zero.

26. If n is a positive integer, shew that

pti + 1 _ qn + 1

is equal to .

27. If Pr
=(w-r)(»-r+l)(n-r+2) (n-r+^-1),

&=r(r+l)(r+2) (r+^-1),

shew that
ho k \n-l+p+ qP&+ P2Q2+ P3Q3+ +P»-i^-i=
|> + g+l|n-2

28. If ?i is a multiple of 3, shew that

, »-3 (m-4)(w-5) (w-5)(w-6)(w-7)
1 "^" + "~

|3 H^ (n-r-l)(w-r-2)...(tt-2r+ l)
,

+ (-!) u.
"'"•••'

3 1
is equal to - or— , according as n is odd or even.u n n

29. If x is a proper fraction, shew that

x xz x5 x x3 Xs

1_^2 l_#6
T l_a?io 1 +.v2^1+^ ' l+.r10



CHAPTER XXX.

Theory of Numbers.

407. In this chapter we shall use the word number as equi-

valent in meaning to positive integer.

A number which is not exactly divisible by any number
except itself and unity is called a prime number, or a prime; a

number which is divisible by other numbers besides itself and
unity is called a composite number \ thus 53 is a prime number,
and 35 is a composite number. Two numbers which have no
common factor except unity are said to be prime to each other

;

thus 24 is prime to 77.

408. We shall make frequent use of the following elementary
propositions, some of which arise so naturally out of the definition

of a prime that they may be regarded as axioms.

(i) If a number a divides a product be and is prime to one
factor b, it must divide the other factor c.

For since a divides be, every factor of a is found in be; but
since a is prime to b, no factor of a is found in b; therefore all

the factors of a are found in c ; that is, a divides c.

(ii) If a prime number a divides a product bed..., it must
divide one of the factors of that product ; and therefore if a

prime number a divides b", where n is any positive integer, it

must divide b.

(iii) If a is prime to each of the numbers b and c, it is prime

to the product be. For no factor of a can divide b or c ; there-

fore the product be is not divisible by any factor of a, that is, a

is prime to be. Conversely if a is prime to be, it is prime to eacli

of the numbers b and c.

Also if a is prime to each of the numbers b, c, d, ..., it is

prime to the product bed... ; and conversely if a is prime to any
number, it is prime to every factor of that number.
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(iv) If a and b are prime to each other, every positive

integral power of a is prime to every positive integral power of b.

This follows at once from (iii).

(v) If a is prime to b, the fractions =- and j- are in theirbo
ft

lowest terms, n and m being any positive integers. Also if j and

- are any two equal fractions, and j is in its lowest terms, then

c and d must be equimultiples of a and b respectively.

409. The number ofprimes is infinite.

For if not, let p be the greatest prime number; then the

product 2 . 3 . 5 . 7 . 11 . . .p, in which each factor is a prime num-
ber, is divisible by each of the factors 2, 3, 5, . . .p ; and therefore

the number formed by adding unity to their product is not

divisible by any of these factors ; hence it is either a prime

number itself or is divisible by some prime number greater than

p : in either case p is not the greatest prime number, and there-

fore the number of primes is not limited.

410. No rational algebraical formula can represent prime

numbers only.

If possible, let the formula a + bx + ex
2 + dx3 + ... represent

prime numbers only, and suppose that when x = m the value of

the expression is ]), so that

p — a + bm + cm2 + dm3 + ;

when x = m + np the expression becomes

a + b (m + np) + c {m + np) 2 + d (m + np)
3 + ...,

that is, a + bm + cm2 + dm3 + . . . + a multiple of p,

or p + a multiple of p,

thus the expression is divisible by £>, and is therefore not a prime

number.

411. A number can be resolved into prime factors ,in only one

way.

Let N denote the number; suppose N = abed..., where

a, b, c, d, ... are prime numbers. Suppose also that JV = a/3yS...,

where a, /3, y, 8, ... are other prime numbers. Then

abed... = a/3yS...
;
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hence a must divide; abed... ; but eacli of the factors of this pro-

duct is a prime, therefore a must divide one of them, a suppose.

But a and a are both prime ; therefore a must be equal to a.

Hence bed. . . =/3yS. .
.

; and as before, /? must be equal to one of the

factors of bed...
J
and so on. Hence the factors in a/3y<$... are

equal to those in abed..., and therefore iV can only be resolved

into prime factors in one way.

412. To find the number of divisors of a composite number.

Let N denote the number, and suppose N"=apbg<f..., where
a, b, c, ... are different prime numbers and p, q, r, ... are positive

integers. Then it is clear that each term of the product

(l+a + a' + ...+a'')(l+b + b
2 + ... + V) (I + c + c

2 + ...+c
r

)...

is a divisor of the given number, and that no other number is a
divisor ; hence the number of divisors is the number of terms in

the product, that is,

(f>+l)fe+l)(r + l)

This includes as divisors, both unity and the number itself.

413. To find the number of ways in which a composite number
can be resolved into two factors.

Let N" denote the number, and suppose N = a'tyc' . .
.
, where

a, b, c... are different prime numbers and ]), q, r... are positive

integers. Then each term of the product

(I + a + a2 + ... + of) (1 + b + b
2 + . . . + b'

1

) (1 + c + c
2 + . . . + c

r

) . .

.

is a divisor of iV; but there are two divisors corresponding to

each way in which iV can be resolved into two factors ; hence the

required number is

}(!>+l)& + l)(r + l)

This supposes N not a perfect square, so that one at least of the

quantities^, q, r, ... is an odd number.

If N is a perfect square, one way of resolution into factors

is x/iVx JNj and to this way there corresponds only one divisor

JX. If we exclude this, the number of ways of resolution is

!{(p+l)(? + l)(r + l)...-l},

and to this we must add the one way JN x N/iV; thus we obtain

for the required number

\{(P + !)(</+ !)(<•+ l)- + lj
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414. To find the number of ways in which a composite

number can be resolved into two factors which are prime to each

other.

As before, let the number N = avbqc
r
.... Of the two factors

one must contain ap, for otherwise there would be some power of

a in one factor and some power of a in the other factor, and thus

the two factors would not be prime to each other. Similarly bq

must occur in one of the factors only ; and so on. Hence the

required number is equal to the number of ways in which the

product abc... can be resolved into two factors; that is, the

number of ways is -(1 + 1)(1 + 1)(1 + 1)... or 2"" 1

, where n is

the number of different prime factors in N.

415. To find the sum of the divisors of a number.

Let the number be denoted by apb qc
r
..., as before. Then each

term of the product

(1 +a + a2 + ...+ar)(l+b + b
2 + ... + b'

1

) (1 + c + c
2 + ...+c

r

)...

is a divisor, and therefore the sum of the divisors is equal to this

product ) that is,

the sum required =
a. _ i &»+'_! c

r+1 -l
a -1 * b-l " c-1

Example 1. Consider the number 21600.

Since 21600 = 63
. 102= 23

. 33
. 22

. 52 = 23
. 33

. 52,

the number of divisors = (5 + 1) (3 + 1) (2 + 1) = 72

;

.. ... ,. .
26-1 3*-l 53 -l

the sum of the divisors = —

—

? . 5—— .
-—

-

2 — 1 o — 1 5 — 1

= 63x40x31
= 78120.

Also 21600 can be resolved into two factors prime to each other in 23_1
,

or 4 ways.

Example 2. If n is odd shew that n (n2 - 1) is divisible by 24.

We have n(n2 - l) = 7i {n- 1) (n+1).

Since n is odd, n - 1 and n+1 are two consecutive even numbers ; hence
one of them is divisible by 2 and the other by 4.

Again n - 1, n, n + 1 are three consecutive numbers ; hence one of them
is divisible by 3. Thus the given expression is divisible by the product of 2,

3, and 4, that is, by 24.
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Example 3. Find the highest power of 3 which is contained in
J

100.

Of the first 100 integers, as many are divisible by 3 as the number of
times that 3 is contained in 100, that is, 33 ; and the integers are 3, G, 9,... 99.

Of these, some contain the factor 3 again, namely 9, 18, 27,... 99, and their

number is the quotient of 100 divided by 9. Some again of these last

integers contain the factor 3 a third time, namely 27, 54, 81, the number of

them being the quotient of 100 by 27. One number only, 81, contains the
factor 3 four times.

Hence the highest power required = 33 + 11 + 3 + 1 = 48.

This example is a particular case of the theorem investigated in the next
article.

416. To find the highest 'power of a prime number a which is

contained in In.

n iii n
Let the greatest integer contained in -, —

2 ,
—

tJ
... respectively

Cv Ct CL

be denoted by / ( --
] , /(-,], /(-§),... Thenamong thenumbers

1,2, 3, ... n. there are / (
-

j
which contain a at least once, namely

the numbers a, 2a, 3a, 4a, ... Similarly there are I[-A which

contain a2 at least once, and I ( —
g

) which contain «3
at least once;

and so on. Hence the highest power of a contained in \n is

'©'©)*'6) + ~

417. In the remainder of this chapter we shall find it con-

venient to express a multiple of n by the symbol Jl(n).

418. To prove that the prodicct of r consecutive integers is

divisible by |r.

Let P
n
stand for the product of r consecutive integers, the

least of which is n ; then

Pn
= n(n+l)(n + 2) ... (u + r-l),

and Pn+l
= (n+l)(n + 2)(n+3) ...(n+r);

• \ nPm+i = (n + r) P = nP
n
+ rP

H ;

p
.-. 1> -P =lsxr

= r times the product of r — 1 consecul ive integer-.
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Hence if the product of r — 1 consecutive integers is divisible by
\r — 1, we have

Pm+1 -Pm
= rM(\r-l)

= M(\r).

Now P, = |?', and therefore P
2

is a multiple of \r \ therefore

also P. , P , . . . are multiples of (r. We have thus proved that if

the product of r— 1 consecutive integers is divisible by \r — 1, the

product of r consecutive integers is divisible by \r ; but the

product of every two consecutive integers is divisible by
1 2

;

therefore the product of every three consecutive integers is divisible

by
1

3 ; and so on generally.

This proposition may also be proved thus

:

By means of Art. 416, we can shew that every prime factor

is contained in \n + r as often at least as it is contained in \n \r.

This we leave as an exercise to the student.

419. If p is a prime number, the coefficient of every term in

the expansion q/*(a + b)p , except the first and last, is divisible by p.

"With the exception of the first and last, every term has a co-

efficient of the form

p(p-l)(p-2)...(p-r + l)

'-

where r may have any integral value not exceeding p— 1. Now
this expression is an integer; also since p is prime no factor of

\
r

is a divisor of it, and since p is greater than r it cannot divide

any factor of \r ; that -is, (p — 1) (p — 2)... (p - r + 1) must be

divisible by |r. Hence every coefficient except the first and

the last is divisible by p.

420. If p is a prime number, to prove that

(a + b + c + d + ...)p= a5 + b 1 ' + cp + dp + . . . + M(p).

Write ft for b + c + . .

.

; then by the preceding article

(a +py = a* + p' + M(p).

Again J3
p = (b + c + d+ . .

.

)

p = (b + y)
p suppose

;

= bp+y + M{p).

By proceeding in this way we may establish the required result.
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421 [Fermat'a Theorem.] If p is a prime number and N isprime to p, then N"" 1 -lis a multiple of p.

We have proved that

(a + b + c + d+ ...y^a' + V+c* + d"+ ... + M (p);
let each of the quantities «, 6, Cj 4 ... be equal to unity, and sunpose they are N in number ; then

J ' P

But ,V is prime top, and therefore iV'- - 1 is a multiple of p.

' °°\
}

SiT ^ is P l™°> P-li* an even number except when/>=J. lherefore r

Hence either 2^ + 1 or S^ - 1 « a multiple of ft

that is .V -• = 7^ ± 1, where K is some positive integer.

422. It should be noticed that in the course of Art. 421 it

tins result is sometimes more useful than Fermat's theorem.

Example 1. Shew that n7 - n is divisible by 42.

Since 7 is a prime, n7 - n

=

M (7)

;

a

T

1S° n? - n:=n (»
G -l) = >i(n + l)(n-l)(n* + nS + l).

Now (n - 1) n (n + 1) is divisible by |3 ; hence n? - n is divisible by 6 x 7, or 42.

Dowfra of^J; tSL*
iS \pHme DU^ber

'
shew that the difference of the p"

mXpleof^7
mimbeiS GXCeedS thG dlfference of the numbers b/a

Let .r, y be the numbers ; then

*p-x=M(p) and y»-y=M (p),thatls
> *p-yp-(*-y)=^(p);

whence we obtain the required result.

Example 3. Prove that every square number is of the form Sn or on ± 1.

Tf v -

V iS
-

UOt
?
r
L
ml t0 5

x'J
e have AT2= 5;i where » w some positive integer

S£r^PTi?5n 1 l

G
• ~ l

iS
i*

n
i
ultipIe 0f 5 ^ Fermat'« theorem

;
thuseitner n»- 1 or N*+l is a multiple of 5 ; that is, tf»=5w ± 1.


