
CHAPTER XXXIV.

MISCELLANEOUS THEOREMS AND EXAMPLES.

506. We shall begin this chapter with some remarks on the

permanence of algebraical form, briefly reviewing the fundamental

laws which have been established in the course of the work.

507. In the exposition of algebraical principles we proceed

analytically : at the outset we do not lay down new names and
new ideas, but we begin from our knowledge of abstract

Arithmetic ; we prove certain laws of operation which are capable

of verification in every particular case, and the general theory of

these operations constitutes the science of Algebra.

Hence it is usual to speak of Arithmetical Algebra and Sym-
bolical Algebra., and to make a distinction between them. In the

former we define our symbols in a sense arithmetically intelligible,

and thence deduce fundamental laws of operation ; in the latter

we assume the laws of Arithmetical Algebra to be true in all

cases, whatever the nature of the symbols may be, and so find

out what meaning must be attached to the symbols in order that

they may obey these laws. Thus gradually, as we transcend the

limits of ordinary Arithmetic, new results spring up, new lan-

guage has to be employed, and interpretations given to symbols
which were not contemplated in the original definitions. At the

same time, from the way in which the general laws of Algebra
are established, we are assured of their permanence and uni-

versality, even when they are applied to quantities not arithmeti-

cally intelligible.

508. Confining our attention to positive integral values of

the symbols, the following laws are easily established from a priori

arithmetical definitions.
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I. The Law of Commutation, which we enunciate as follows

:

(i) Additions and subtractions may be made in any order.

Thus a + b-c = a-c + b = b-c + a.

(ii) Multiplications and divisions may be made in any order.

Thus axb=bxa;

axbxc = bxcxa = axcxb'
}
and so on.

ab-±- c = a x b -=- c = (a -f- c) x b = (b + c) xa.

II. The Law of Distribution, which we enunciate as follows :
|

Multiplications and divisions may be distributed over additions

and subtractions.

Thus {a - b + c) m = am—bm + cm,

(a — b)(c — d) = ac — ad — bc + bd.

[See Elementary Algebra, Arts. 33, 35.]

And since division is the reverse of multiplication, the distri-

butive law for division requires no separate discussion.

III. The Laws of Indices.

(i) am xan = am+n
3

am + aH = am-".

(n) [a ) = a .

[See Elementary Algebra, Art. 233 to 235.]

These laws are laid down as fundamental to our subject, having

been proved on the supposition that the symbols employed are

positive and integral, and that they are restricted in such a way
that the operations above indicated are arithmetically intelligible.

If these conditions do not hold, by the principles of Symbolical

Algebra we assume the laws of Arithmetical Algebra to be true

in every case and accept the interpretation to which this assump-
tion leads us. By this course we are assured that the laws of

Algebraical operation are self-consistent, and that they include in

their generality the particular cases of ordinary Arithmetic.

509. From the law of commutation we deduce the rules

for the removal and insertion of brackets [Elementary Algebra,

Arts. 21, 22] ; and by the aid of these rules we establish the law
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of distribution as in Art. 35. For example, it is proved that

(a -b)(c — d)~ac — ad—bc + bd,

with the restriction that a, b, c, d are positive integers, and a
greater than b, and c greater than d. Now it is the province of

Symbolical Algebra to interpret results like this when all restric-

tions are removed. Hence by putting a = and c = 0, we obtain

(— b) x (— d) = bd, or the product of two negative quantities is

positive. Again by putting 6 = and c= 0, we obtain a x (—d) =—a<I,

or the product of two quantities of opposite signs is negative.

"We are thus led to the Rule of Signs as a direct consequence
of the law of distribution, and henceforth the rule of signs is

included in our fundamental laws of operation.

510. For the way in which the fundamental laws are applied
to establish the properties of algebraical fractions, the reader is

referred to Chapters xix., xxi., and xxn. of the Elementary Algebra

;

it will there be seen that symbols and operations to which we
cannot give any a priori definition are always interpreted so as

to make them conform to the laws of Arithmetical Algebra.

511. The laws of indices are fully discussed in Chapter xxx.
of the Elementary Algebra. When m and n are positive integers

and m > n, we prove directly from the definition of an index that

am xan = am+n
;

am -r a'
1 = am

~ n

j
(a

m
)

n = am".

We then assume the first of these to be true when the indices

are free from all restriction, and in this way we determine mean-
ings for symbols to which our original definition does not apply.

p

The interpretations for a\ a , a~" thus derived from the first law
are found to be in strict conformity with the other two laws

;

and henceforth the laws of indices can be applied consistently and
with perfect generality.

512. In Chapter vill. we defined the symbol i or J— 1 as

obeying the relation i
2 = — 1 . From this definition, and by

making i subject to the general laws of Algebra we are enabled
to discuss the properties of expressions of the form a + ib, in

which real and imaginary quantities are combined. Such forms
are sometimes called complex numbers, and it will be seen by
reference to Articles 92 to 105 that if we perform on a complex
number the operations of addition, subtraction, multiplication,

and division, the result is in general itself a complex number,
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Also since every rational function involves no operations but

those above mentioned, it follows that a rational function of a

complex number is in general a complex number.

Expressions of the form ax+ly
, \og(x±iy) cannot be fully-

treated without Trigonometry; but by the aid of De Moivre's

theorem, it is easy to shew that such functions can be reduced to

complex numbers of the form A + iB.

The expression e
x+iy

is of course included in the more general

form ax+i\ but another mode of treating it is worthy of attention.

We have seen in Art. 220 that

(x\ n

1 H—
) , when n is infinite,

nj

x being any real quantity ; the quantity e
x+i!/ may be similarly

defined by means of the equation

e
*+iy = Lini (1 H ) , when n is infinite,

\ n J

x and y being any real quantities.

The development of the theory of complex numbers will be

found fully discussed in Chapters x. and XI. of Schlomilch's

Handbuch der algebraischen Analysis.

513. We shall now give some theorems and examples illus-

trating methods which will often be found useful in proving

identities, and in the Theory of Equations.

514. Tofind the remainder ivhen any rational integralfunction

of x is divided by x - a.

Let fix) denote any rational integral function of x ; divide

f(x) hyx-a until a remainder is obtained which does not involve
x ; let Q be the quotient, and R the remainder ; then

f(x) = Q(x-a) + R.

Since R does not involve x it will remain unaltered whatever
value we give to x

;
put x = a, then

f(a) = QxO + R;

now Q is finite for finite values of x, hence
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Cor. Iff{x) is exactly divisible by x - a, then R == 0, that is

f(a) = ; hence if a rational integralfunction of x vanishes when

x — a, it is divisible by x - a.

515. The proposition contained in the preceding article is so

useful that we give another proof of it which has the advantage

of exhibiting the form of the quotient.

Suppose that the function is of n dimensions, and let it be

denoted by

p xn

+2\x
"~ }+ P^"~

2

+P-^""
3+ -+P»>

then the quotient will be of n - 1 dimensions ; denote it by

q{fc"-
x +

qix
n - 2 +q2

xn - 3 + ... +q H _ l ;

let R be the remainder not containing x ; then

pjf +p
1
x- 1

+2>2
x'-

2
+p.ax"~

3
+ ••• +P„

= (x-a) (q X^ + qix"~
2 + q2

x"~
3 + ... + qa_ x)

+ R
Multiplying out and equating the coefficients of like powers of x,

we have

9.2
- aQi=P2 >

or qs
= a4i+Pa

'>

q3 - n2 = ihi or & = «<i2
+ ih ;

R - oq
n- %=Pn , or R = aq

n_ l
+pn ;

thus each successive coefficient in the quotient is formed by
multiplying by a the coefficient last formed, and adding the

next coefficient in the dividend. The process of finding the

successive terms of the quotient and the remainder may be

arranged thus

:

Po Pi P2 P3 Pa-X Pa

«?0 Ct(
lx

Cl(l2
Cl(In-2 (l(2n-l

% q x % v, ?.-, x

Thus R = aq^ +p n
- « («<?„-- +#.-i) + P* =

=P<P* +P^"~
1

+P/<<
n ~ 2

+ ••• +P,r

If tlie divisor is x + a the same method can be used, only in

this case the multiplier is - a.

H. H. A. 28
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Example. Find the quotient and remainder when 3a;7 - a;
6 + 31a:4 + 21a; + 5

is divided by x + 2.

Here the multiplier is - 2, and we have

3-10 31 00 21 5

-6 14 -28 -6 12 -24 6

3 -7 14 3 -6 12 - 3 11

Thus the quotient is 3.r6 - 7a;5 + 14a;4 + 3a;3 - 6a;2 +12a;-3, and the re-

mainder is 11.

516. In the preceding example the work has been abridged

by writing down only the coefficients of the several terms, zero

coefficients being used to represent terms corresponding to powers

of x which are absent. This method of Detached Coefficients may
frequently be used to save labour in elementary algebraical

processes, particularly when the functions we are dealing with

are rational and integral. The following is another illustration.

Example. Divide 3a;5 - 8a;4 - 5a;3 + 26a;2 - 33a; + 26 by a;
3 - 2a;

2 - 4a; + 8.

1 + 2 + 4-8)3-8- 5 + 26-33 + 26(3-2 + 3

3 + 6 + 12-24
-2 +
-2-
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we form the next horizontal line, and add the terms in the third column;
this gives 3, which is the coefficient of the third term of the quotient.

By adding up the other columns we get the coefficients of the terms in
the remainder. ]

Example. Divide 6a5+ ba*b - 8a?b2 - 6a2b3 - 6a¥ by 2a3 + 3a26 - b z

to four terms in the quotient.

2
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Put z = 0, then A = 3, being the coefficient of x2

y in the ex-

pansion of (x + y)
3

.

Put x = y = z = l, and we get 27 = 3 + (3 x 6) + B ; whence

B = 6.

Thus (x + y + z)
3

= x3 + y
3 + z

3 + 3x2
y + 3xy2 + 3y

2
z + 3yz2 + 3z

3x + 3zx2 + 6xyz.

520. A function is said to be alternating with respect to its

variables, when its sign but not its value is altered by the inter-

change of any pair of them. Thus x — y and

a2 (b-c) + b
2 (c-a) + c

2
(a - b)

are alternating functions.

It is evident that there can be no linear alternating function

involving more than two variables, and also that the product of

a symmetrical function and an alternating function must be an
alternating function.

521. Symmetrical and alternating functions may be con-

cisely denoted by writing down one of the terms and prefixing

the symbol % ; thus %a stands for the sum of all the terms of which
a is the type, %ab stands for the sum of all the terms of which
ab is the type; and so on. For instance, if the function involves
four letters a, b, c, d

}

^a-a + b + c + d;

%ab = ab + ac + ad +bc + bd+ cd;
and so on.

Similarly if the function involves three letters a, b, c,

$a2
(b -c) = a2 (b-c)± b

2
(c - a) + c

2
(a - b) •

%a2
bc = a2

bc + b
2
ca + c

2
ab;

and so on.

It should be noticed that when there are three letters involved
%a2

b does not consist of three terms, but of six : thus

2<a
2
b = a2

b + a2
c + b

2
c + b

2a + c
2a + c

2
b.

The symbol 2 may also be used to imply summation with
regard to two or more sets of letters; thus

%yz (b-c) = yz (b~c) + zx (c-a) + xy (a - b).
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522. The above notation enables us to express in an abridged

form the products and powers of symmetrical expressions : thus

(a+b + c)
3 = %a3 + 32a2

b + Gabc
j

(a + b + c + df = 2«3 + 3$a2
b + Gtabc;

(a + b + c)
4 = %aA + i%cfb + 6Sa"6fl + 1 2%a2

bc;

%a x 2«2 = 2a3 + %a2
b .

Example 1. Prove that

(a + b) 5 - a5 - b*= 5ab (a + b) (a 2 + ab + b2
).

Denote the expression on the left by E ; then E is a function of a which
vanishes when a = ; hence a is a factor of E ; similarly 6 is a factor of E.
Again E vanishes when a— - b, that is a + b is a factor of E; and therefore

E contains ab(a + b) as a factor. The remaining factor must be of two
dimensions, and, since it is symmetrical with respect to a and b, it must be

of the form Act? + Bab + Ab'z ; thus

(a + b) 5 - a5 - b5= ab (a + 6) (Aa* + Bab + A b~),

where A and B are independent of a and b.

Putting a = 1, b= 1, we have 15= 2A + B
;

putting a = 2, b = - 1, we have 15 = 5A - 2B
;

whence A = o, J5 = 5; and thus the required result at once follows.

Example 2. Find the factors of

(&3 + c3) (b-c) + (c
3 + a3

)
(c-a) + (a 3 + b3

)
(a - b).

Denote the expression by E ; then E is a function of a which vanishes
when a = b, and therefore contains a - b as a factor [Art. 514]. Similarly it

contains the factors b-c and c-a; thus E contains (b - c) (c - a) (a - b) as a
factor.

Also since E is of the fourth degree the remaining factor must be of the
first degree; and since it is a sj^mmetrical function of a, b, c, it must be of

the form M{a + b + c). [Art. 518];

.-. E =M (b-c) (c-a) (a-b)(a + b + c).

To obtain M we may give to a, b, c any values that we find most con-
venient; thus by putting a = 0, 6 = 1, c = 2, we find M=l, and we have the
required result.

Example 3. Shew that

(x + y + zjt-x5 -yb - z?= 5 (y + z) (z + x) (x + y) (x2 + y
2 + z~ + yz + zx+ xy).

Denote the expression on the left by E ; then E vanishes when y=-z,
and therefore y + z is a factor of E; similarly z + x and x + y are factors;

therefore E contains (y + z) (z + x) [x + (/)asa factor. Also since E is of the
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fifth degree the remaining factor is of the second degree, and, since it is

symmetrical in x, y, z, it must be of the form

A (x2 + y
2 + z2) + B (yz + zx + xy) .

Put»=2/=z=l; thus 10=^1+5;

put x=2, y=l, 2 = 0; thus 35 = 5A + IB ;

whence A=B = 5,

and we have the required result.

523. We collect here for reference a list of identities which
are useful in the transformation of algebraical expressions; many
of these have occurred in Chap. xxix. of the Elementary Algebra.

^bc (b — c) = —(b-c)(c- a) (a - b).

$a2 (b-c) = -(b-c)(c-a)(a-b).

$a(b2 -c2

) = (b-c)(c-a)(a-b).

2a3 (b-c) = -(b-c) (c-a) (a-b) (a + b + c).

as + b
3 + c

3 - 3abc = (a + b + c)(a2+b 2+ c
2- bc-ca- ab).

This identity may be given in another form,

a3
+ b

3 + c
3 -3abc = l(a + b + c){(b-c) 2 + (c-a) 2 + (a-b) 2

}.

(b-c)3 + (c-a)3 + (a-b) 3 = 3(b-c)(c-a)(a-b).

(a + b + c)
3 -a3 -b3 -c3 = 3(b + c)(c + a)(a + b).

Hbc (b + c) + 2abc = (b + c)(c + a)(a + b).

%a2
{b + c) + 2abc =(b + c)(c + a) (a + b).

(a + b + c) (be + ca + ab) - abc =(b + c)(c + a) (a + b).

2b
2
c
2 + 2cV + 2a2

b
2 -tf-fr-c*

= (a + b + c)(b + c-a)(c + a-b)(a+b-c).

EXAMPLES. XXXIV. a.

1. Find the remainder when 3^+ 11^+ 90#2 - 19# + 53 is divided
by x + 5.

2. Find the equation connecting a and b in order that

2xi -7x3+ax+ b

may be divisible by x - 3.
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3. Find the quotient and remainder when

jfi _ 5#4 + 9iV
3 _ qxi _ iq v+ 13 j >s divided by x2 - 3v+ 2.

4. Find a in order that x3 -7x+ 5 may be a factor of

tf _ 2xA - 4^+ 19.V2 - Six+ 12 + a.

5. Expand^.^^.g ^ descending powers of x to four

terms, and find the remainder.

Find the factors of

6. a(6-c)3+ 6(c-a)3+ c(a-6)3.

7. a4 (6
2 - c2) + 64 (c2 - a2

) + c4 (a2 - 62
).

8. (a+ 6 + c)3 -(6 + c-a)3 -(c+a-6)3 -(a + 6-c)3
.

9. a (6 - cf+ & (c - af+ c(a- 6)
2+ 8a6c.

10. a (6
4 - c4) + b (c4 - a4

) + c(ai - 64).

11. (6c+ ca+ a6)3 - J3**
3 - c%3 - a363 .

12. (a+ 6 + c)
4 -(6 + c)4 -(c + a)4 -(a+ 6)

4+ a 4 + 64+ c4.

13. (a+ 6 + c)
5 -(6+ c-a)5 -(c+ a-6)5 -(a + 6-c)5

.

14. (tf - a)3 (6 - cf+ (x - b)s (c - af+ (x - c) 3 (a - 6)
3

.

Prove the following identities :

15. 2 (6 + c - 2a)3= 3(6+ c- 2a) (c+ a- 26) (a+ 6- 2c).

a(b-cf He-*)* c{a-bf _fl|M . gi0,
(c-a)(a-6r (a-6)(6-cr (6-c)(c-a)

17 J^ _?L 2c (6-c)(c-a)(a-6)_
3

'" a+ 6 6+ c c+ a (6+ c)(c + a)(a+6)

18. 2a2(&+c)-2a3 -2a&c=^& + c-a)(c+ a-6)(a+ &-c)-

iy
* (a-6)(a-c)^(6-c)(6-a)^(c-a)(c-6)

20. 42(6-c)(6+ c-2a)2= 92(6-c)(6 + c-a) 2
.

21. ty+z)*(e+x)*(x+y)*=tx*(y+zY+2(^z)3-2^2
z*'

22. ^ («6 - c2) (ac- 62
) = (26c) (26c - 2a2

).

23. «6c (2a)3 - (26c)3= abc2a 3 - 263c3= (a2 - 6c) (6
2 - ca) (c2 - a6).

24. 5(6- c) 3 (6 + c - 2a) = ; hence deduce 2 - y) (£+ 7 - 2a
)
3= °-
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25. (b + cf+(c+ af+(a+ bf-Z(b + c)(c+ a)(a+ b)

= 2(a3 -\-b
3 + c3 -3abc).

26. If x=b+c-a, y= c + a-b, z= a + b-c, shew that

#3 +^3+# _ g^g= 4 (a3+ 63 + c3 - 3a6c).

27. Prove that the value of a3 + b3 + c3 - 3a6c is unaltered if we
substitute s-«. s- b, s-c for a, 6, c respectively, where

3s= 2(a + 6+ c).

Find the value of

28. , ,w « w i + /1
»_w_ » +(a-b)(a-c)(x-a) (b-c)(b-a)(x-b) (c-a) (c-b) (x-c)'

a2 — b2 — c2 b2 — c
z — a2 c2 — a2 - Z>

2

29. 7 ft7 ;+77 wt x +
(a -b)(a- c) (b -c)(b — a) (c -a) (c-b)

'

30. (
a +P)(a+ <l)

,

(b+p)(b+ q) + (
c +p)(c+ (J)

(a-b)(a-c)(a+x) (b-c)(b-a) (b+ x) (c-a) (c-b)(c+ x)
'

31. 3__w^ w ^ . 32. s
(a -b) (a- c) (a — d)' (a- b) (a — c) (a- d)

'

33. If x+y+ z= s, and #yz =£<2
,shew that

'jp _y\(p__z\ + fp__ A /£. _ #\ + /£ _ A /> _ y\ 4

,y« p)\zs p) \zs pj\xs p) \xs pj\ys p)
'

"

8

Miscellaneous Identities.

524. Many identities can be readily established by making
use of the properties of the cube roots of unity; as usual these
will be denoted by 1, w, o>

2
.

Example. Shew that

(x + yf -x7 -y7= Ixy (x + y) (x2 + xy + y
2
)

2
.

The expression, E, on the left vanishes when x = 0, y = 0, x + y = 0;
hence it must contain xy (x + y) as a factor.

Putting x = coy, we have

E= {(1 + ta)7 - W7 - 1} y7= {(_ w2)7 _ w7 _ !} y
i

= (_ w2 - w -l)y7= 0;

hence E contains x - wy as a factor ; and similarly we may shew that it con-
tains x - ury as a factor; that is, E is divisible by

(x- ury) (x - to
2
?/), or x^ + xy + y

2
.
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Further, E being of seven, and xy(x + y) (x2 + xy + y
2
) of five dimensions,

the remaining factor must be of the form A (x2 + y'2
) + Bxy ; thus

(x + y)
7 - x7 - y

7 = xy {x + y) (x2 + xy + y
2
)
(Ax2 + Bxy + Ay2

).

Putting a;= l, y= l, we have 21 = 2^+5;
putting x

=

2, y=- 1, we have 21 = 5^1 -2B;

whence A = 7, B = 7

;

.-. (x + y)
7 - x7 - y

7 = Ixy (x + y)(x2 + xy + y
2
)

2
.

525. We know from elementary Algebra that

aa + b
3 + c

3 - 3abc = (a+ b + c) (a
2 + b

2 + c
2 -be- ca — ab)

;

also we have seen in Ex. 3, Art. 110, that

a* + b
2 + c

2 — be — ca — ab = (a + ub + ore) (a + <a
2
b + wc)

;

hence a3 + b
3 + c

3 — 3abc can be resolved into three linear factors;

thus

a3 + b
3 + c

3 - 3abc = (a + b +c) (a + mb + arc) (a + <D
2
b + wc).

Example. Shew that the product of

a3+ b3 + c3 - dabc and a;
3 + y

3 + z3 - Sxyz

can be put into the form A3 +B3 + C3 - SABC.

The product = [a + b + c) (a + wb + ore) (a + w2& + wc)

x (x + y + z) (x + uy + urz) (x + w2
y + uz).

By taking these six factors in the pairs (a + b + c) (x + y + z);

(a + u>b + w2
c) (x + cry + uz) ; and (a + urb + uc) (x + wy + urz),

we obtain the three partial products

A + B + C, A + wB + u-C, A+u2B + u)C,

where A = ax + by + cz, B — bx + cy + az, C= cx + ay + bz.

Thus the product= (A + B + C) [A + wB + u2C) (A + orB + «C)

= A 3 + B3+C3 -SABC.

526. In order to find the values of expressions involving

a, b, c when these quantities are connected by the equation

a + b + c = 0, we might employ the substitution

a — h + k, b = ioh + (x>

2
k, c = ufh + u>k.

If however the expressions involve a, b, c symmetrically the

method exhibited in the following example is preferable.
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Example. If a + b + c = 0, shew that

6 (a5 + b5 + c
5
) = 5 (a3 + 63+ c3) (a2 + 62 + c2).

We have identically

(1 + ax) (1 + bx) (1 + cz) = 1 +px + qx2 +rx3
,

where p — a + b + c, q = bc + ca + ab, r— abc.

Hence, using the condition given,

(1 + ax) (1 -t bx)(l + cx) = l + qx2+ rx3 .

Taking logarithms and equating the coefficients of xn , we have

(~ '
(an + bn + c

n
) = coefficient of xn in the expansion of log(l + qx2+ rx3

)

n

= coefficient of xn in [qx2 + rx3) - ^ {qx2 + rx3
)
2+ ^ (qx2 + rx3

)

3 - . .

.

By putting rc= 2, 3, 5 we obtain

a2 + b2+ c2 a3 + b3+ c3 a5 + b5+c5

j— =*• 3— =r
' T- = - <?r;

whence »-— = ~ • « '

and the required result at once follows.

If a=fi-y, 6= 7 -a, c = a-/3, the given condition is satisfied; hence

we have identically for all values of a, /3, y

6{(iS-7) 5 + (7-«) 5 +("-/3) 5
}

= 5{(/3- 7)
3+ (Y-a) 3 + (a-/3) 3

} {{§- y?+ (y- a) 2 + (a-/S)2
}

that is,

(/3-7)
5 + (7-a)5 + (a-^) 5=5(

J
8-7)(7 -a)(a- i

3)(a2 +^ + 7
2 -/37-7a-a^;

compare Ex. 3, Art. 522.

EXAMPLES. XXXIV. b.

1. If (a + b + cf = a3 + bz + c3, shew that when n is a positive

integer (a+ b+ cfn +

1

= a2n +

1

+ b2n +

1

+ c2n + K

2. Shew that

(a+ <ob+ a)
2c)3+ (a+ a>

2b + a>c)
3= (2a - b - c) (2b - c - a) (2c - a - b).

3. Shew that (x+y)n -x1l -yn is divisible by xy(x2+xy+y2
), if

n is an odd positive integer not a multiple of 3.

4. Shew that

a3 (bz - cy) 3+ b3 (ex - azf+ c3 (ay - bx)3= Sabc (bz - cy) (ex - az) (ay - bx).
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5. Find the value of

(6 -c)(c — a) (a-b) + (b- a>c) (c - a>a) (a - cob)+ (6 - eo
2
c) (c - arc<) (a - a>

2
6).

6. Shew that (a2 + b2+ c2 - be — ca - ab) (x2 -f y
2 + z2—yz - zx - xy)

may be put into the form A2+B2 + C2-BC-CA- AB.

7. Shew that (a2 + ab + b2
) (x

2+ xy + y
2
) can be put into the form

A 2+AB+B2
, and find the values of A and B.

Shew that

8. 2 («
a + 26c)3 - 3 (a2+ 26c) (6

2+ 2ca) (c2 + 2ab) = (a3 + 63 + c3 - 3a6c)2
.

9. 2 (a2 - fc)3 - 3 (a2 - be) (b2 - ca) (c2 - ab)= (a3 + 63+ c3 - 3a6c)2
.

10. («
2+ 62+ c2

)
3+2(6c+ ca+ a6)3 -3(a2+ 62 + c2)(6c + ca+ a6)2

= (a?+b3+ c3 -3abc)2
.

If a+ 6+ c= 0, prove the identities in questions 11—17.

11. 2(a4+ 64+ c4) = (a2+ 62+ c2
)
2

.

12. a5 + 65 + c5= - 5a6c (6c+ ca+ ab).

13. a6+ 66 + c6= 3aW - 2 (6c+ ca+ a6)3
.

14. 3(a2 + 62 + c2)(a5+ 66+ c5)= 5(a3+ 63+ c3)(«
4+ 64+ c4).

,_ a7 + b7 + c7 a5+ 65+ c5 a0+ 62+ c2

15. m =
! • -R •

/6-c c--a a-b\ ( a b c \
16. +-—

-J
=9-

a b c J\b — c c — a a

17. (6
2c+ c2a+ a26 - 3a6c) (6c2+ ca2+ ab2 - 3abc)

= (be+ ca+ ab)3+ 27a262c2.

18. 25 {Q, - zf + (z - x)7 + (x - y)
7
} {{y - zf + (z- xf+ (x-yf)
= 21 {(y - zf+ (z - xf+ (x- yf]

2
.

19. {(y-z)2+ (z-xf+ (x-y)2
}
3 -54:(i/-z)2 (z-x)2 (x-yf

= 2(y + z-2x) 2 (z+x- 2y)
2 (x+y- 2z)2.

20. (6 - cf+ (e - a)6 + (a - 6)
6 - 3 (6 - c) 2 (c - a) 2 (a - bf

= 2 (a2+ b2+ c2 -be- ca- ab)3.

21. (6-c)7+ (c-a)7 + (a-6)7

= 7(6-c)(c-a)(a-6)(a2+ 62+ c2 -6c-ca-a6)2
.

22. If a + 6+ c= 0, and x+y + z= 0, shew that

4 (ax + by+ czf -3(ax+ by+ cz) (a2+

6

2+

c

2
) (x

2+y2+ z2)

-2(b-c)(c-a)(a-b)(y-z)(z- x) (x-y) = 54abcxyz.
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If a + b+ c + d=0, shew that

a5 + &5+c5 + c#> g?+ b3+ (?+ d3 a2+ b2+ c2 + d2

23. g 3— -•
2

24. (a3+ Z>
3+ c3+ d3

)
2= 9 (M

+

cda+ da& + abc) 2

= 9 (be- ad) (ca - bd) (ab - cd).

25. If 2s= a+ b + c and 2o-
2= a2+ 62 + c2

,
prove that

5 (s - b) (s - c) (a 2 - a2
) + 5a6cs= {s

2 - cr
2
)
(4s2+ a-

2
).

26. Shew that (a?+ 6.2%+ 3.vy2 - y
3
)
3+ (v3+ 6xy2+ 3x2y ~ x3

)
3

= Zlxy (x+y) (x2+ xy+y2
)
3
.

27. Shew that 2
a5

(a — b)(a — c) (a - d)

= a2+ b2+ c2+ d2 + ab + ac+ ad+bc + bd+cd.

28. Resolve into factors

2«262c2+ (a3+ b3+ c3) abc+ Z>
3c3 + c-%3+ a3

Z>
3

.

Elimination.

527. In Chapter xxxiii. we have seen that the eliminant of

a system of linear equations may at once be written down in the

form of a determinant. General methods of elimination ap-

plicable to equations of any degree will be found discussed in

treatises on the Theory of Equations ; in particular we may refer

the student to Chapters iv. and VI. of Dr Salmon's Lessons Intro-

ductory to the Modern Higher Algebra, and to Chap. xm. of

Burnside and Panton's Theory of Equations.

These methods, though theoretically complete, are not always
the most convenient in practice. We shall therefore only give a
brief explanation of the general theory, and shall then illustrate

by examples some methods of elimination that are more practi-

cally useful.

528. Let us first consider the elimination of one unknown
quantity between two equations.

Denote the equations by f(x) = Q and <£ (x) = 0, and suppose
that, if necessary, the equations have been reduced to a form in

which f(x) and <£ (x) represent rational integral functions of x.

Since these two functions vanish simultaneously there must be
some value of x which satisfies both the given equations ; hence
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the eliminant expresses the condition that must hold between the

coefficients in order that the equations may have a common root.

Suppose that x = a, x =
J3,

x = y,... are the roots of f(x) = 0,

then one at least of the quantities
<f>

(a),
<f> (/?), <f> (y), must

be equal to zero ; hence the eliminant is

4> (a)
<f> tf) <f> (y) =0.

The expression on the left is a symmetrical function of the

roots of the equation fix) = 0, and its value can be found by the

methods explained in treatises on the Theory of Equations.

529. We shall now explain three general methods of elimina-

tion : it will be sufficient for our purpose to take a simple

example, but it will be seen that in each case the process is

applicable to equations of any degree.

The principle illustrated in the following example is due to

Euler.

Example. Eliminate x between the equations

ax* + bx2 + cx + d= 0, fx2 + gx + h= 0.

Let x + k be the factor corresponding to the root common to both equa-
tions, and suppose that

ax3+ bx2 + ex + d= (x + k) (ax2 + lx + m),

and fx2+ gx + h= (x + k) (fx + n)
,

k, I, m, n being unknown quantities.

From these equations, we have identically

(axs + bx2 + cx + d)(fx + n) = (ax2 + Ix + m) (fx2 + gx + h).

Equating coefficients of like powers of x, we obtain

fl -an + ag-bf=0,

gl +fm -bn + ah- cf= 0,

Jd + gm- en - df= 0,

hm-dn =0.

From these linear equations by eliminating the unknown quantities I, in,

n, we obtain the determinant

/ a ag-bf

g f b ah-cf

h g c -df

h d

= 0.
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530. The eliminant of the equations f(x) = 0, <f>
(x) = can

be very easily expressed as a determinant by Sylvester's Dialytic

Method of Elimination. We shall take the same example as

before.

Example. Eliminate x between the equations

axs+ bx2 + cx + d= 0, fx2 +gx + h= 0.

Multiply the first equation by x, and the second equation by x and x2 in

succession ; we thus have 5 equations between which we can eliminate the 4

quantities x4
, xz

, x2
, x regarded as distinct variables. The equations are

ax* + bx2+cx + d=0,

axi + bx3+cx2 + dx =0,

fx2 + gx + h= 0,

fxs+ gx2 + hx = 0,

fx4 + gx3 + ltx2 =0.

Hence the eliminant is

a

/

a

b

/

9

b

c

f

9

h

c

d

9

h

d

h

= 0.

531. The principle of the following method is due to Bezout;

it has the advantage of expressing the result as a determinant of

lower order than either of the determinants obtained by the pre-

ceding methods. We shall choose the same example as before,

and give Cauchy's mode of conducting the elimination.

Example. Eliminate x between the equations

ax3 + bx2+ cx + d=0, fx2 + gx + h= 0.

From these equations, we have

a _ bx2 + ex + d

f gx2+hx '

ax + b cx + d
fx +g~ Jix

'

(ag - bf) x1+ {ah ~cf)x- df= 0,

(ah - cf) x2 +(bh - eg - df) x - dg= 0.

Combining these two equations with

fx2+gx + h= 0,

whence

and
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and regarding x'z and x as distinct variables, we obtain for the eliminant

f g h =o.

ag - bf ah -cf - df

a h - cf bh - eg -df - dg

532. If we have two equations of the form <£, (x, y) — 0,

<£.,(#, 2/)=0, then y may be eliminated by any of the methods
already explained; in this case the eliminant will be a function of x.

If we have three equations of the form

0, (*» y> z
) = °> 2 (^ y> z

) = °> 03 (
a;

> y» *) = °>

l>y eliminating z between the first and second equations, and then

between the first and third, we obtain two equations of the form

•A, (»> V) = °> ^ (
x

> y) = °-

If we eliminate y from these equations we have a result of

the form/* (a:) = 0.

By reasoning in this manner it follows that we can eliminate

n variables between n + 1 equations.

533. The general methods of elimination already explained

may occasionally be employed with advantage, but the eliminants

so obtained are rarely in a simple form, and it will often happen
that the equations themselves suggest some special mode of

elimination. This will be illustrated in the following examples.

Example 1. Eliminate Z, m between the equations

lx + my = a, vix-ly = b, Z
2 +m2 =l.

By squaring the first two equations and adding,

7-.c
2 + m-x2 + »»V + *V = a2 + &2

>

that is, (Z
2 + /»

2
)

(.t
2 + y*) = a2 + Z,

2
;

hence the eliminant is .t
2 + ?/

2= a2 + ZA

If Z = cos0, m= sin $, the third equation is satisfied identically; that is,

the eliminant of

x cos 6 + y sin 6= a , x sin 6 - y cos = Z>

is x2 + y*= a° + b*.
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Example 2. Eliminate x, y, z between the equations

y*+z*=zayz, z2 + x2 =bzx, x2 + y*= cxy.

v z z x . x
, yWe have * + -=a, - + ~ = h -+"= c 5

z y x z y x

by multiplying together these three equations we obtain,

w2 z 2 z2 z2 z2
y
2

.

z 2
t/

2
a;

2 sa 2/
2 X'

hence 2 + (a2 - 2) + (6
2 - 2) + (c

2 -2)= abc

;

.-. a2 + &2 +c2 -4= a&c.

Example 3. Eliminate #, ?/ between the equations

x2 -y2=px-qy, ±xy = qx+py, x2 + y
2=l.

Multiplying the first equation by x, and the second by y, we obtain

xs + Sxy~=p {x2 + y
2
)\

hence, by the third equation,

p = x3 + Sxy2
.

Similarly q = Bx2
y + y

s
.

Thus p + q={x+y) 3
>
p-q={x-y)3

\

.: (p + q)* + (p- q)* = {x + y)* + {x - yf
= 2(x2 + y

2
);

Example 4. Eliminate x, y, z between the equations

v z z x T x y?--- = a, = b, --^= c.

z y x z y x

x(y2 -z2)+y(z2 -x2)+z(x2 -y2
)We have a + o + c =

xyz

_{y-z){z-x) (x-y)

xyz

If we change the sign of x, the signs of b and c are changed, while the

sign of a remains unaltered

;

(y-z){z + x)(x + y)
hence a-b-c—

Similarly, b-c-a=

and c-a-b=

xyz

(y + z){z-x)(x + y)

xyz

(y + z)(z + x){x^y)

xyz
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.-. {a^b+c)(b + c-a){c + a-h){a + b-c) = -
{ul ~ Z

"
)2

^~fJ^ztl

\z y) \x z) \y x)

= -a?b-2c 2 .

.• . 26V + 2c2a2 + 2a262 - a4 - i4 - c4 + a262c2 = 0.

EXAMPLES. XXXIV. c.

1. Eliminate m from the equations

m2x — ?ny+a=0
}
my+ x=Q.

2. Eliminate m, n from the equations

m\v — my+ a= 0, n2x — ny+ a= 0, mn + 1 = 0.

3. Eliminate m, n between the equations

mx — ny — a (m2 — n2
), nx+my= 2amu, m2+ n2= 1

.

4. Eliminate p, q, r from the equations

p + q+ r— Of a(qr+rp+pq) = 2a-x,
apqr=y, qr= — 1.

5. Eliminate x from the equations

ax2 - 2a2x+ 1=0, a2+ x2 - 3ax= 0.

6. Eliminate m from the equations

y+mx=a (1 + ??i), wy - x— a (1 - m).

7. Eliminate a:, y, z from the equations

yz= a2
, zx=b2

, xy = c2 , x2+y2 + z2= d2
.

8. Eliminate p, q from the equations

x(p+ q)=y, p-q= k(l+pq), xpq= a.

9. Eliminate x, y from the equations

x — y= a, x2 — y
2= b2 , x3 —y3= c3

.

10. Eliminate x, y from the equations

x+y= a, x2+y2= b2, #*+#*=c*.

11. Eliminate x, y, z, u from the equations

x= by + cz + rfw
}

y=cz + cfo + a#,

2= cfti+ a#+ fry, w = cu;+ by + cs.

12. Eliminate x, y, z from the equations

x+y + z= 0, x2+y2+ z2= a2
,

aP+ff+sP^fc, ^,5+y5 + 25= c5 .

n. h. a. 29
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13. Eliminate #, y, z from the equations

y s # ' z^x^y ' \y zj\z xj\x y)

14. Eliminate #, y, z from the equations

ff
2 (y+z) = y

2 (z+ x) = g2 fo+ff) a^ a!l(
a3 b3 c3 abc

15. Eliminate x, y from the equations

4 (.r
2+

y

2
) = ax + Z>y, 2(x2 -y2

)= ax - by, xy=

c

2
.

16. Eliminate #, y, z from the equations

(y -f- z)
2= 4a2yz, (2;+ #)

2 = 46^, (a;

+

y)
2= 4c2#y.

17. Eliminate x, y, z from the equations

(x+y - z) (x-y + z)= ayz, (y+ z - x) (y - z+ x) = 6s#,

(z+x—y) (z — x + y) = cxy.

18. Eliminate a?, y from the equations

x2y=a, x(x-{-y) = b, 2x-\-y= c.

19. Shew that (a+6+ c)3 -4 (b+ c) (c+ a) (a+ 6) + 5a&c=0

is the eliminant of

cm;2+ fry
2+ cz2= ax+ by + cz=yz+ zx+ xy= 0.

20. Eliminate #, y from the equations

ax2 -t-by
2=ax+by= —— =c.

21. Shew that &3c3 + c%3+ a3P= 5a2b2c2

is the eliminant of

ax+yz= bc, by+ zx=cai
cz + xy= ab, xyz=abc.

22. Eliminate x, y, z from

x2+y2+z2=x + y+ z=l,

^(x-p)=-(y-q)= C
-{z-r).

23. Employ Bezout's method to eliminate x, y from

ax3 + bx2y+ cxy2+ dy3= 0, a'x3+ b'x2y+ c'xy2+ d'y3= 0.


