
 

 

9.1 Interatomic Forces. 
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The forces between the atoms due to electrostatic interaction between the charges of the atoms are called 

interatomic forces. These  forces  are  electrical in nature  and these  are  active  if the  distance between  the  two 

atoms is of the order of atomic size i.e. 10–10  metre. 

(1) Every atom is electrically neutral, the number of electrons (negative charge) orbiting around the 

nucleus is equal to the number of proton (positive charge) in the nucleus. So if two atoms are placed at a very 

large distance from each other then there will be a very small (negligible) interatomic force working between 

them. 

(2) When these two atoms are brought close to each other to a distance of the order of 10–10 m, the 

distances between their positive nuclei and negative electron clouds get disturbed, and due to this, attractive 

interatomic force is produced between two atoms. 

(3) This attractive force increases continuously with decrease in r and becomes maximum for one value of 

r called critical distance, represented by x (as shown in the figure). Beyond this 

the attractive force starts decreasing rapidly with further decrease in the value 

of r. 

(4) When the distance between the two atoms becomes r0, the interatomic 

force will be zero. This distance r0 is called normal or equilibrium distance. 

(r0 = 0.74 Å for hydrogen). 

(5) When the distance between the two atoms further decreased, the 

interatomic force becomes repulsive in nature and increases very rapidly with 

decrease in distance between two atoms. 

(6) The potential energy U is related with the interatomic force F by the 

following relation. 

F  
 dU 

dr 

(i) When two atoms are at very large distance, the potential energy is negative and becomes more negative as r is 

decreased. 

(ii) When the distance between the two atoms becomes r0, the potential energy of the system of two atoms 

becomes minimum (i.e. attains maximum negative value). As the state of minimum potential energy is the state 

of equilibrium, hence the two atoms at separation r0 will be in a state of equilibrium. 

( U0  7.2  10 
19

 Joule for hydrogen). 

(iii) When the distance between the two atoms is further decreased (i.e. r < r0) the negative value of 

potential energy of the system starts decreasing. It becomes zero and then attains positive value with further 

decrease in r (as shown in the figure). 
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The forces between the molecules due to electrostatic interaction between the charges of the molecules are 

called intermolecular forces. These forces are also called Vander Waal forces and are quite weak as compared 

to inter-atomic forces. These forces are also electrical in nature and these are active if the separation between 

two molecules is of the order of molecular size i.e.  10–9  m. 

(1) It is found that the force of attraction between molecules varies inversely as seventh power of the 

distance between them i.e. 

F   
1 

or F  
 a

 
  

att 
r

7 att 
r7 

The negative sign indicates that the force is attractive in nature. 

(2) When the distance between molecules becomes less than r0, the forces becomes repulsive in nature 

and is found to vary inversely as ninth power of the distance between them i.e. 

F   
1 

or F  
b 

. 
  

rep 
r

9 rep 
r 

9 

 

 
Therefore force between two molecules is given by  F  F  F  

 a 
 

b 
  

att rep 
r7 r 9 

The value of constants a and b depend upon the structure and nature of molecules. 

(3) Intermolecular forces between two molecules has the same general nature as shown in the figure for 

interatomic forces. 

(4) Potential Energy : Potential energy can be approximately expressed by the formula U  
A 
 

B
 

  

 

where the term 
A 

represents repulsive contribution and term 
rn 

rn rm 

B 
represents the attractive contribution. 

rm 

Constants A, B and numbers m and n are different for different molecules. 

For majority of solids n = 12 and m = 6. 

So potential energy can be expressed as U  A 
 

B 

r12 r 6 

9.3 Comparison Between Inter atomic and Intermolecular Forces. 

(1) Similarities 

(i) Both the forces are electrical in origin. 

(ii) Both the forces are active over short distances. 

(iii) General shape of force-distance graph is similar for both the forces. 

(iv) Both the forces are attractive up to certain distance between atoms/molecules and become repulsive 

when the distance between them become less than that value. 

(2) Dissimilarities 

(i) Interatomic force depends upon the distance between the two atoms, whereas the intermolecular force 

depends upon the distance between the two molecules as well as their relative orientation. 

(ii) Interatomic forces are about 50 to100 times stronger than intermolecular forces. 

9.2 Intermolecular Forces. 
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(iii) The value of r0 for two atoms is smaller than the corresponding value for the molecules. Therefore 

one molecule is not restricted to attract only one molecule, but can attract many molecule. It is not so incase of 

atoms, since the atoms of one molecule cannot bind the atoms of other molecules. 

 9.4 States of Matter  

The three states of matter differ from each other due to the following two factors. 

(1) The different magnitudes of the interatomic and intermolecular forces. 

(2) The extent of random thermal motion of atoms and molecules of a substance (which depends upon 

temperature). 

 

Comparison Chart of Solid, Liquid and Gaseous States 

Property Solid Liquid Gas 

Shape Definite Not definite Not definite 

Volume Definite Definite Not definite 

Density Maximum Less than solids but more 

than gases. 

Minimum 

Compressibility Incompressible Less than gases but more 

than solids. 

Compressible 

Crystallinity Crystalline Non-crystalline  

Interatomic or 

intermolecular distance 

Constant Not constant Not constant 

Relation between kinetic 

energy K and potential energy 

(U) 

K < U K> U K >> U 

Intermolecular force Strongest Less than solids but more 

than gases. 

Weakest 

Freedom of motion Molecules vibrate about 

their mean position but 

cannot move freely. 

Molecules have limited 

free motion. 

Molecules are free to move. 

Effect of temperature Matter remains in solid 

form below a certain 

temperature. 

Liquids are found at 

temperatures more than 

that of solid. 

These are found at 

temperatures greater than 

that of solids and liquids. 

 

Note :  The fourth state of matter in which the medium is in the form of positive and negative 

ions, is known as plasma. Plasma occurs in the atmosphere of stars (including the sun) and in 

discharge tubes. 
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A solid is that state of matter in which its constituent atoms or molecules are held strongly at the position 

of minimum potential energy and it has a definite shape and volume. The solids can be classified into two 

categories, crystalline and glassy or amorphous solids. 

 

Comparison chart of Crystalline and Amorphous Solids 

Crystalline solids Amorphous or glassy solids 

The constituent atoms, ions or molecules are arranged in a 

regular repeated three dimensional pattern, within the 

solid. 

The constituent atoms, ions or molecules are not arranged in 

a regular repeated three dimensional pattern, within the 

solid. 

Definite external geometric shape. No regularity in external shape. 

All the bonds in ions, or atoms or molecules are equally 

strong. 

All the bonds are not equally strong. 

They are anisotropic. They are isotropic. 

They have sharp melting point. They don't have no sharp melting point. 

They have a long-range order of atoms or ions or 

molecules in them. 

They don’t have a long-range order. 

They are considered true and stable solids. They are not regarded as true and stable solids. 

 

 9.6 Elastic Property of Matter  

(1) Elasticity : The property of matter by virtue of which a body tends to regain its original shape and 

size after the removal of deforming force is called elasticity. 

(2) Plasticity : The property of matter by virtue of which it does not regain its original shape and size 

after the removal of deforming force is called plasticity. 

(3) Perfectly elastic body : If on the removal of deforming forces the body regain its original 

configuration completely it is said to be perfectly elastic. 

A  quartz  fibre  and  phosphor  bronze  (an  alloy  of  copper  containing  4%  to  10%  tin,  0.05%  to  1% 

phosphorus)  is the nearest approach to the perfectly elastic body. 

(4) Perfectly plastic body : If the body does not have any tendency to recover its original configuration, 

on the removal of deforming force, it is said to be perfectly plastic. 

Paraffin wax, wet clay are the nearest approach to the perfectly plastic body. 

Practically there is no material which is either perfectly elastic or perfectly plastic and the behaviour of 

actual bodies lies between the two extremes. 

(5) Reason of elasticity : In a solids, atoms and molecules are arranged in such a way that each 

molecule is acted upon by the forces due to neighbouring molecules. These 

forces are known as intermolecular forces. 

For simplicity, the two molecules in their  equilibrium positions (at  inter- 

molecular  distance  r  =  r0)  (see  graph  in  article  9.1)  are  shown  by  connecting 

them with a spring. 

In fact, the spring connecting the two molecules represents the inter- 

molecular force between them. On applying the deforming forces, the molecules either come closer or go far 

apart from each other and restoring forces are developed. When the deforming force is removed, these 

9.5 Types of Solids 
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restoring forces bring the molecules of the solid to their respective equilibrium position (r = r0) and hence the 

body regains its original form. 

(6) Elastic limit : Elastic bodies show their property of elasticity upto a certain value of deforming force. 

If we go on increasing the deforming force then a stage is reached when on removing the force, the body will 

not return to its original state. The maximum deforming force upto which a body retains its property of 

elasticity is called elastic limit of the material of body. 

Elastic limit is the property of a body whereas elasticity is the property of material of the body. 

(7) Elastic fatigue : The temporary loss of elastic properties because of the action of repeated 

alternating deforming force is called elastic fatigue. 

It is due to this reason 

(i) Bridges are declared unsafe after a long time of their use. 

(ii) Spring balances show wrong readings after they have been used for a long time. 

(iii) We are able to break the wire by repeated bending. 

(8) Elastic after effect : The time delay in which the substance regains its original condition after the 

removal of deforming force is called elastic after effect. It is the time for which restoring forces are present after 

the removal of the deforming force it is negligible for perfectly elastic substance, like quartz, phosphor bronze 

and large for glass fibre. 

 9.7 Stress  

When a force is applied on a body there will be relative displacement of the particles and due to property 

of elasticity an internal restoring force is developed which tends to restore the body to its original state. 

The internal restoring force acting per unit area of cross section of the deformed body is called stress. 

At equilibrium, restoring force is equal in magnitude to external force, stress can therefore also be defined 

as external force per unit area on a body that tends to cause it to deform. 

If external force F is applied on the area A of a body then, 

Stress    
Force   

 
F

 
Area A 

Unit : N / m 
2
 (S.I.) , dyne / cm 

2
 (C.G.S.) 

Dimension : [ML
1

T 
2

] 

Stress developed in a body depends upon how the external forces are applied over it. 

On this basis there are two types of stresses : Normal and Shear or tangential stress 

(1) Normal stress : Here the force is applied normal to the surface. 

It is again of two types : Longitudinal and Bulk or volume stress 

(i) Longitudinal stress 

(a) It occurs only in solids and comes in picture when one of the three dimensions viz. length, breadth, 

height is much greater than other two. 

(b) Deforming force is applied parallel to the length and causes increase in length. 
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Difference between Pressure and Stress 

(c) Area taken for calculation of stress is area of cross section. 

(d) Longitudinal stress produced due to increase in length of a body under a deforming force is called tensile 

stress. 

(e) Longitudinal stress produced due to decrease in length of a body under a deforming force is called 

compressional stress. 

(ii) Bulk or Volume stress 

(a) It occurs in solids, liquids or gases. 

(b) In case of fluids only bulk stress can be found. 

(c) It produces change in volume and density, shape remaining same. 

(d) Deforming force is applied normal to surface at all points. 

(e) Area for calculation of stress is the complete surface area perpendicular to the applied forces. 

(f) It is equal to change in pressure because change in pressure is responsible for change in volume. 

(2) Shear or tangential stress : It comes in picture when successive layers of solid move on each other 

i.e. when there is a relative displacement between various layers of solid. 
  

(i) Here deforming force is applied tangential to one of the faces. 

(ii) Area for calculation is the area of the face on which force is applied. 

(iii) It produces change in shape, volume remaining the same. 
 
 
 
 

Pressure Stress 

Pressure is always normal to the area. Stress can be normal or tangential. 

Always compressive in nature. May be compressive or tensile in nature. 

 

Sample problems based on Stress 

Problem 1. A and B are two wires. The radius of A is twice that of B. they are stretched by the same load. Then the 

stress on B is [MP PMT 1993] 

(a) Equal to that on A (b) Four times that on A 

(c)   Two times that on A (d) Half that on A 
 

Solution : (b) Stress = 
Force

 
Area 

 
1 

 
F 

r 2 

 
(Stress) 

 

 

 r  
2
 

 Stress  B    
   A       (2)

2    (Stress)B  = 4 × (stress)A [As F = constant] 
 

r2 (Stress) A  rB 


Problem 2.      One end of a  uniform wire  of length  L and  of  weight  W is attached rigidly to a  point  in the  roof and  a 

weight W1  is suspended from its lower end. If S is the area of cross-section of the wire, the stress in the 

wire at a height 3L/4 from its lower end is 

A F 

Fixed 
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W 

 
(a) 

W1 (b) 
S 

W1  (W / 4) 
 

S 

 
(c) 

W1  (3W / 4) 
 

S 

 
(d) 

W1  W 

S 

Solution : (c) As the wire is uniform so the weight of wire below point P is 
3W

 
4 

 Total force at point P  W1  
3W 
4

 

and area of cross-section = S 

 
  Stress at point P   

Force 
 

1

 

Area 

 
3W 
4

S 

Problem 3. On suspending a weight Mg, the length l of elastic wire and area of cross-section A its length becomes 

double the initial length. The instantaneous stress action on the wire is 

(a)  Mg/A (b)  Mg/2A (c)   2Mg/A (d)  4Mg/A 

Solution : (c) When the length of wire becomes double, its area of cross section will become half because volume of wire is 

constant (V  AL) . 

 
So the instantaneous stress = 

Force 



Area 

Mg 

A / 2 
 

2Mg 
.
 

A 

Problem 4. A bar is subjected to equal and opposite forces as shown in the figure. PQRS is a plane making angle 

with the cross-section of the bar. If the area of cross-section be ‘A’, then what is the tensile stress on PQRS 

 

(a) F / A 

(b) F cos / A 

(c) F cos2 / A 

(d) F / A cos


Solution : (c) As tensile stress = 

Normal  force  
 

FN 

Area AN 

and here AN  (A / cos), FN 

F cos 

 Normal force = F cos

F cos 2 
So, Tensile stress 

A / cos   
 

A 

Problem 5. In the above question, what is the shearing stress on PQ 

(a)  F / A cos  (b)  F sin 2 / 2A (c)  F / 2A sin 2 (d)  F cos / A 

Solution : (b) Shear stress  
Tangential force 


Area 

F sin θ 
 

 

(A/ cos θ) 
 

F sin θ cos θ 

A 
 

F sin 2

2 A 

Problem 6. In the above question, when is the tensile stress maximum 

(a)   0o 
 
 

F cos 2 

(b)   30o (c)   45o 

 
2 

(d)   90o 

 
o 

Solution : (a) Tensile stress  . It will be maximum when cos 
A 

  max . i.e. cos  1    0 . 

Problem 7. In the above question, when is the shearing stress maximum 

(a)   0o (b)   30o (c)   45o (d)   90o 

S 

R 


F P 
F 

Q 

 

3 L 

 

L 

P 


F A F 
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Solution : (c) Shearing stress 

 

  45 o . 


 F sin 2 

. It will be maximum when 
2 A 

sin 2  max 

 
i.e. sin 2  1  2  90 o 

 9.8 Strain  

The ratio of change in configuration to the original configuration is called strain. 

Being the ratio of two like quantities, it has no dimensions and units. 

Strain are of three types : 

(1) Linear strain : If the deforming force produces a change in length 

alone, the strain produced in the body is called linear strain or tensile strain. 

 
Linear strain  Change in length( l) 

 

 

Original length( l) 

Linear strain in the direction of deforming force is called longitudinal 

strain and in a direction perpendicular to force is called lateral strain. 

(2) Volumetric strain : If the deforming force produces a change in 

volume alone the strain produced in the body is called volumetric strain. 

 
Volumetric strain  Change in volume( V) 

 

 

Original v olume( V) 
 

 

(3) Shearing strain : If the deforming force produces a change in the 

shape of the body without changing its volume, strain produced is called 

shearing strain. 

It is defined as angle in radians through which a plane perpendicular to 

the fixed surface of the cubical body gets turned under the effect of  

tangential force. 

  
x
 
L 

 

Note :  When a beam is bent both compression strain as well as an 

extension strain is produced. 

Sample problems based on Strain 
 

Problem 8. A cube of aluminium of sides 0.1 m is subjected to a shearing force of 100 N. The top face of the cube is 

displaced through 0.02 cm with respect to the bottom face. The shearing strain would be [MP PAT 1990] 

(a)  0.02 (b)  0.1 (c)  0.005 (d)  0.002 
 

Solution : (d) Shearing strain   
x
 
L 
 

0.02cm 
 0.002 

0.1m 

Problem 9. A wire is stretched to double its length. The strain is 

(a)  2 (b)  1 (c)  Zero (d)  0.5 

 

 
l 

 

 
l 

F 

 
 

 
(V – V) 

Fixed face 

L 



F 
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

Strain O 

C E P 

B 
A 

Plastic region Elastic 
region Breaking

 

Elastic limit 

Solution : (b) Strain    
Change   in length

 
Original length 

 
2L  L 

 1
 

L 
 

Problem 10.   The length of a wire increases by 1% by a load of 2 kg-wt. The linear strain produced in the wire will be 

(a)  0.02 (b)  0.001 (c)   0.01 (d)  0.002 

Solution : (c) Strain  
Change in length 

 
1% of L 

 
L / 100 

= 0.01 

Original length L L 
 

 9.9 Stress-strain Curve  

If by gradually increasing the load on a vertically suspended metal wire, a graph is plotted between stress 

(or load) and longitudinal strain (or elongation) we get the curve as shown in figure. From this curve it is clear 

that : 

(1) When the strain is small (< 2%) (i.e., in region OP) stress is proportional to strain. This is the region 

where the so called Hooke’s law is obeyed. The point P is called limit of proportionality and slope of line OP  

gives the Young’s modulus Y of the material of the wire. If  is the angle of OP 

from strain axis then Y = tan . 

(2) If the strain is increased a little bit, i.e., in the region PE, the stress is 

not proportional to strain. However, the wire still regains its original length 

after the removal of stretching force. This behaviour is shown up to point E 

known as elastic limit or yield-point. The region OPE represents the elastic 

behaviour of the material of wire. 

(3) If the wire is stretched beyond the elastic limit E, i.e., between EA, 

the strain increases much more rapidly and if the stretching force is removed the wire does not come back to its 

natural length. Some permanent increase in length takes place. 

(4) If the stress is increased further, by a very small increase in it a very large increase in strain is produced 

(region AB) and after reaching point B, the strain increases even if the wire is unloaded and ruptures at C. In the 

region BC the wire literally flows. The maximum stress corresponding to B after which the wire begins to flow and 

breaks is called breaking or tensile strength. The region EABC represents the plastic behaviour of the material of 

wire. 

(5) Stress-strain curve for different materials. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Sample problems based on Stress-strain curve 

Brittle material Elastomers 

E 
C 

P 
C 

O 
The plastic reg n betwe io 

Strain 
en E and C 

O Strain 

Stress strain curv 

line within the elastic limit for 

elastomers and strain produced is 

much larger than the stress applied. 

Such materials have no plastic 

range and the breaking point lies 

very close to elastic limit. Example 

rubber 

e is not a straight 

is small for brittle material and it 

will break soon after the elastic 

limit is crossed. 

good plastic range and such 

materials can be easily changed 

into different shapes and can be 

drawn into thin wires 

Strain 
al of the wire have a 

O 

The materi 

C 
P 

E 

Ductile material 

S
tr

es
s 

S
tr

es
s 

S
tr

es
s 

S
tr

es
s 
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Stress O 

R 

Q 
P 

Problem 11. The stress-strain curves for brass, steel and rubber are shown in the figure. The lines A, B and C are for 
 

 
(a) Rubber, brass and steel respectively 

 

(b) Brass, steel and rubber 
 

(c) Steel, brass and rubber respectively 
 

(d) Steel, rubber and brass 
 

Solution : (c) From the graph tan  C  tan B  tan A 

 

 

 

 

 

 
 YC  YB  YA 

 

 

 

 

 

 
YRubber 

 

 

 

 

 

 
 YBrass  YSteel 

 

Problem 12.    The strain stress curves of three wires of different materials are shown in the figure.  P, Q and R are the 

elastic limits of the wires. The figure shows that 

(a) Elasticity of wire P is maximum 
 

(b) Elasticity of wire Q is maximum 
 

(c) Tensile strength of R is maximum 
 

(d) None of the above is true 
 

Solution : (d) On the graph stress is represented on X- axis and strain Y-axis 
 

So from the graph Y  cot  
1 

 
1 

tan  
[where  is the angle from stress axis] 

 

YP  YQ  YR [As  P   Q   R ] 
 

We can say that elasticity of wire P is minimum and R is maximum. 

9.10 Hooke’s law and Modulus of Elasticity. 

According to this law, within the elastic limit, stress is proportional to the strain. 
 

i.e. stress  strain or 
stress 

 constant E 
strain 

The constant E is called modulus of elasticity. 

(1) It’s value depends upon the nature of material of the body and the 

manner in which the body is deformed. 

(2) It's value depends upon the temperature of the body. 

(3) It’s value is independent of the dimensions (length, volume etc.) of the body. 

There are three modulii of elasticity namely Young’s modulus (Y), Bulk modulus (K) and modulus of 

rigidity () corresponding to three types of the strain. 

9.11 Young's Modulus (Y). 

It is defined as the ratio of normal stress to longitudinal strain within limit of proportionality. 

Y  
Normal stress 

 
F / A 

  
FL 

longitudin al strain l / L Al 

If force is applied on a wire of radius r by hanging a weight of mass M, then 

Strain O 

C 

B 
A 

 
 
 
 

 
O Strain 

S
tr

a
in

 
S

tr
es

s 

S
tr

es
s 
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L 



 
Y 

 
ints 

 
MgL 

r 
2
l 

 

(i) If the length of a wire is doubled, 
 

Then longitudinal strain = change in length( l) 
 

final length  initial length 
 

2L  L 
 1

 

initial length( L) Initial length L 

 

 Young’s modulus = 
stress   

 Y = stress [As strain = 1] 
strain 

So young’s modulus is numerically equal to the stress which will double the length of a wire. 

 
(ii) Increment in the length of wire l  

FL 

r 
2
 Y 


As Y 


  

FL 

Al 

So if same stretching force is applied to different wires of same material, l  
L

 
r 2 

constant] 

 
[As F and Y are 

 
i.e., greater the ratio 

L 
, greater will be the elongation in the wire. 

r 2 

(iii) Elongation in a wire by its own weight : The weight of the wire Mg act at the centre of gravity of 

the wire so that length of wire which is stretched will be L/2. 

 Elongation  l   
FL

 
AY 

 
Mg(L / 2) 

=
 

AY 

MgL 
 

 

2 AY 

L
2
 dg 

 [As mass (M) = volume (AL) × density (d)] 
2Y 

(iv) Thermal stress : If a rod is fixed between two rigid supports, due to change in temperature its 

length will change and so it will exert a normal stress (compressive if temperature increases and tensile if 

temperature decreases) on the supports. This stress is called thermal stress. 

l 
As by definition, coefficient of linear expansion  




L


 thermal strain 
l 
 

L 

So thermal stress = Y  [As Y = stress/strain] 

And tensile or compressive force produced in the body = YA 

Note :  In case of volume expansion Thermal stress = K

Where K = Bulk modulus,  = coefficient of cubical expansion 

(v) Force between the two rods : Two rods of different metals, having the same area of cross section 

A, are placed end to end between two massive walls as shown in figure. The 

first  rod  has  a  length  L1,  coefficient  of  linear  expansion  1   and  young’s 

modulus Y1. The corresponding quantities for second rod are L2, 2  and Y2. If 

the temperature of both the rods is now raised by T degrees. 

Increase in length of the composite rod (due to heating) will be equal to 

L2 

2 

Y2 

L1 

1 

 
Y1 
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

  

l1  l2  [L11  L2 2 ]T [As l = L  ] 

and due to compressive force F from the walls due to elasticity, 

decrease in length of the composite rod will be equal to 
 L1

 

  1 

 
L2  F

2 


As l 



FL 




AY 

as the length of the composite rod remains unchanged the increase in length due to heating must be equal 

to decrease in length due to compression i.e. F  L1 
 

 

 
L2   [L   L  ]T 

 
 

A 
 

Y 


Y2 

1    1 2 2 

or F  A[L11  L2 2 ]T 
 

 L1    
L2  

  1 2 

(vi) Force constant of wire : Force required to produce unit elongation in a wire is called force 
constant of material of wire. It is denoted by k. 

 k  
F

 
l 

 

…..(i) 

 
but from the definition of young’s modulus Y  

F / A 
 

F 
 

YA 
 

…..(ii) 

 
from (i) and (ii) k  

YA
 

L 

l / L l L 

It is clear that the value of force constant depends upon the dimension (length and area of cross section) 
and material of a substance. 

(vii) Actual length of the wire : If the actual length of the wire is L, then under the tension T1, its length 

becomes L1 and under the tension T2, its length becomes L2. 

L1  L  l1  L1  L  
T1

 

k 

 

……(i) and L2  L  l2  L2  L  
T2

 

k 

 

..…(ii) 

From (i) and (ii) we get L  
L1T2  L2 T1

 

T2  T1 

Sample problems based on Young's modulus 

Problem 13.    The diameter of a brass rod is 4 mm and Young’s modulus of brass is  9  1010 N / m 2 . The force required 

to stretch by 0.1% of its length is [MP PET 1991; BVP 2003] 

(a)  360 N (b)  36 N (c) 144  10 3 N (d) 36 105 N 

 
Solution : (a) 

 
r  2  10 3 m, 

 

Y  9  10 10 N / m 2 , 

 

l  0.1% L  
l 
 0.001 
L 

As Y  
F L

  F  YA 
l
  9  10 10   (2  10 3 )2  0.001  360 N 

A  l L 

Problem 14.    A wire of length 2m is made from 10 cm3  of copper. A force F is applied so that its length increases by 2 

mm. Another wire of length 8 m is made from the same volume of copper. If the force F is applied to it, its 
length will increase by [MP PET 2003] 

(a)  0.8 cm (b)  1.6 cm (c)  2.4 cm (d)  3.2 cm 

 
Solution : (d) l   

FL 

AY 
 

FL2 

VY 

 
l  L2 

 
[As V, Y and F are constant] 
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l  L   
2 

 8  
2
 

  2  
 2 
  

   16   l2  = 16 l1  = 16  2 mm = 32 mm = 3.2 cm 
l1  L1   2 

Problem 15.    A wire of length L and radius r is rigidly fixed at one end. On stretching the other end of the wire with a 

force F, the increase in its length is l. If another wire of same material but of length 2L and radius 2r is 

stretched with a force of 2F, the increase in its length will be 

[AIIMS 1980; MP PAT 1990; MP PET 1989, 92; MP PET/PMT 1988; MP PMT 1996, 2002; UPSEAT 2002] 

 
(a)  l (b)  2l (c) 

l 
(d)   

l
 

2 4 

FL l F L  r  
2
  1  2 

Solution : (a) l      2      2 2  1    2  2     1 l2  l1 i.e. the increment in length will be same. 
 r 2 Y l1 F1 L1  r2   2 

Problem 16.    Two wires A and B are of same materials. Their lengths are in the ratio 1 : 2 and diameters are in the 

ratio 2 : 1 WHen stretched by force FA and FB  respectively they get equal increase in their lengths. Then the 

ratio FA/FB  should be [Orissa JEE 2002] 

(a)  1 : 2 (b)  1 : 1 (c)  2 : 1 (d)  8 : 1 

 
Solution : (d) Y    

FL 

r 2l 

 F  Y r 
2
 
l
 
L 

F Y  r  
2
  l   L   2  2  2 

    A  A  A   A   B   1     1    8 
FB YB  rB   lB   LA   1   1 

Problem 17.    A uniform plank of Young’s modulus Y is moved over a smooth horizontal surface by a constant horizontal 

force F. The area of cross-section of the plank is A. the compressive strain on the plank in the direction of 

the force is [Kerala (Engg.) 2002] 

 
(a) F 

(b) 
2 F 

 
(c) 

1    F  
  (d) 

3 F
 

AY 

 
Solution : (a) Compressive strain 

AY 
 

Stress 
 

F / A 
 

F 

2  AY  AY 

Young' s modulus Y AY 

Problem 18.   A  wire  is  stretched  by  0.01  m  by  a  certain  force  F.  Another  wire  of  same  material  whose  diameter  and 

length are double to the original wire is stretched by the same force. Then its elongation will be 

[EAMCET (Engg.) 1995; CPMT 2001] 

(a)  0.005 m (b)  0.01 m (c)  0.02 m (d)  0.002 m 

 
Solution : (a) l  

FL 

r 2 Y 

  l   
L

 
r 2 

 
[As F and Y are constants] 

l  L   r  
2
  1  

2
 1 

 
l 0.01 

  2   2   1   (2)          l2  
1
   0.005m . 

l1  L1   r2   2  2 2 2 

Problem 19. The length of an elastic string is a metres when the longitudinal tension is 4 N and b metres when the 

longitudinal tension is 5 N. The length of the string in metres when the longitudinal tension is 9 N is 

[EAMCET 2001] 

 
(a) a – b (b)  5b – 4a (c) 2b  

1 
a 

4 

 
(d) 4a – 3b 

Solution : (b) Let the original length of elastic string is L and its force constant is k. 

 
When longitudinal tension 4N is applied on it 

 

L  
4 
 a 

k 

 
.....(i) 
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and when longitudinal tension 5N is applied on it L  

5 
 b 

k 

 
.....(ii) 

By solving (i) and (ii) we get k  
1 

and L  5a  4b 
b   a 

Now when longitudinal tension 9N is applied on elastic string then its length = 

L  
9
 

k 
 5a  4b  9(b  a)  5b  4a 

Problem 20.   The load versus elongation graph for four wires of the same material is shown in the figure. The thickest 

wire is represented by the line [KCET (Engg./Med.) 2001] 

 

(a) OD 

(b) OC 

(c) OB 

(d) OA 
 

Solution : (a) Young's modulus  Y    
FL

 
Al 

 

 

 

 
 l  

1
 
A 

 

 

 
 

 

 

 
(As Y, L and F are constant) 

 

From the graph it is clear that for same load elongation is minimum for graph OD. 

As elongation (l) is minimum therefore area of cross-section (A) is maximum. 

So thickest wire is represented by OD. 

Problem 21.    A 5  m long aluminum wire  (Y   7  10 10 N / m 2 ) of diameter 3 mm supports a 40 kg mass. In order to 

have the same elongation in a copper wire 

weight, the diameter should now be, in mm 

(Y  12  1010 N / m 2) of the same length under the same 

(a)  1.75 (b)  2.0 (c)  2.3 (d)  5.0 
 

Solution : (c) l  
FL 

r 2 Y 
  

4 FL 

d 2 Y 
[As r  d / 2 ] 

If the elongation in both wires (of same length) are same under the same weight then d 2 Y  constant 

 d  
2
 Y 

    Cu 

 d Al  
 Al  d Cu

 

Y Cu 

 d Al   3   2.29 mm 

 

Problem 22.   On  applying  a  stress  of 20 108 N / m 2 the length of a perfectly elastic wire is doubled. Its Young’s 

modulus will be [MP PET 2000] 

(a) 40 108 N / m 2 (b) 20 108 N / m 2 (c) 10 108 N / m2 (d) 5 108 N / m 2 

Solution : (b) When strain is unity then Young's modulus is equal to stress. 

Problem 23.   The dimensions of four wires of the same material are given below. In which wire the increase in length 

will be maximum when the same tension is applied 

[IIT-JEE 1981; NCERT 1976; CPMT 1983, 90; MP PMT 1992, 94, 97; MP PET/PMT 1998; MP PET 1989, 90, 99] 

(a)  Length 100 cm, diameter 1 mm (b)  Length 200 cm, diameter 2 mm 

(c)  Length 300 cm, diameter 3 mm (d) Length 50 cm, diameter 0.5 mm 

Y Al  

YCu 

7  10
10

 

12  10
10

 

O Elongation 

A 

B 

C 

D Load 
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Solution : (d) If same force is applied on four wires of same material then elongation in each wire depends on the 

length and diameter of the wire and given by l  
L

 
d 2 

 

and the ratio of 
L 

is maximum for (d) option. 
d 2 

 

Problem 24.   The Young’s modulus of a wire of length L and radius r is Y N/m2. If the length and radius are reduced to 

L/2 and r/2, then its Young’s modulus will be [MP PMT 1985; MP PET 1997; KCET (Engg./Med.) 1999] 

(a)  Y/2 (b)  Y (c)  2Y (d)  4Y 

Solution : (b) Young's modulus do not depend upon the dimensions of wire. It is constant for a given material of wire. 

Problem 25.   A  fixed  volume  of  iron  is  drawn  into  a  wire  of  length  L.  The  extension  x  produced  in  this  wire  by  a 

constant force F is proportional to 

(a) 
1
 

L2 

 
FL 

 

 
 

FL2 

 

 
 

FL2 

 

(b) 
1 

(c) L2 
L 

 
2 

 

(d) L 

Solution : (c) l  
AY 


ALY VY 

for a fixed volume l  L 

Problem 26.   A  rod  is  fixed  between  two  points  at   20o C .  The  coefficient  of  linear  expansion  of  material  of  rod  is 

1.1  105 / oC and Young’s modulus is 1.2  1011 N / m 2 . Find the stress developed in the rod if 

temperature of rod becomes 10o C 
 

(a) 1.32  107 N / m 2 
 

(b) 1.10 1015 N / m 2 (c) 1.32 108 N / m 2 
 

(d) 1.10 106 N / m 2 
 

 

Solution : (a) Thermal stress 
F 
 Y  

A 
 1.2  10 11  1.1  10 5  (20  10)  1.32  107 N / m 2 

Problem 27.   The coefficient of linear expansion of brass and steel are 1  and 2. If we take a brass rod of length L1  and 

steel rod of length L2  at  0o C , their difference in length  (L2   L1 )  will remain the same at any temperature 

if 

[EAMCET (Med.) 1995] 

 
(a) 1 L2   2 L1 (b) 1 

2   2 
2 

 

(c)  2 L1   2 L2 

 

(d) 1 L1   2 L2 

Solution : (d) Difference in lengths of rods will remain same if expansion is same in both the rods. 

If expansion in first rod is l1  L11 and expansion in second rod is l2  L2 2 

then L11  L2 2  L11  L2 2 

Problem 28.   The  force  required  to  stretch  a  steel  wire  of  1  cm2    cross-section  to  1.1  times  its  length  would  be 

(Y  2 1011 Nm 2) [MP PET 1992] 
 

(a) 2  106 N (b) 2  103 N (c) 2 106 N (d) 2 107 N 
 

 
Solution : (a) 

 
L  1.1 L Strain  

l
 

 
L2  L1 

 
1.1L1   L1  = 0.1.

 
 

2 1 

1 1 1 
 

F  YA 
l 
 2  10

11
  1  10 

4
  0.1 

L 
 2  10 6 N . 

Problem 29.   A two metre long rod is suspended with the help of two wires of equal length. One wire is of steel and its 

cross-sectional area is 0.1 cm2  and another wire is of brass and its cross-sectional area is 0.2 cm2. If a load 
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W 
W 

T2 W 

T2 

T1 

 

  W is suspended from the rod and stress produced in both the wires is same then the ratio of tensions in 

them will be 

 

(a) Will depend on the position of W 

(b)   T1  / T2   2 

(c)   T1  / T2   1 

(d) T1 / T2  0.5 

 
Solution : (d) Stress = 

Tension 
 

 

Area of cross-section 

 
 constant 

 

 
T1   

T2 

A1 A2 

 
T1  

A1 

T2 A2 

 
0.1 

 
1 
 0.5 . 

0.2 2 

Problem 30.   Three blocks, each of same mass m, are connected with wires W1  and W2  of same cross-sectional area a 
and Young’s modulus Y. Neglecting friction the strain developed in wire W2  is 

 
(a) 

 

(b) 

 
 

(c) 

 
 

(d) 

2 mg  
 

 

3 aY 

3 mg 
 

 

2 aY 

1 mg 
 

 

3 aY 

3mg 

aY 

Solution : (a) If the system moves with acceleration a and T is the tension in the string W2 then by comparing this 

condition from standard case T 
m1 m 2 g 

m1  m 2 

In the given problem m1  (m  m)  2m and m 2  m 

 

 Tension 
m. 2m .g 

m  2m 
 

2 
mg 

3 

 Stress  
T

 
a 

 
2 

mg and Strain 
3a 

Stress 

Young' s modulus 
  

2 mg 

3 aY 

Problem 31.    A  wire  elongates  by  1.0  mm  when  a  load  W  is  hanged  from  it.  If  this  wire  goes  over  a  pulley  and  two 

weights W each are hung at the two ends, the elongation of the wire will be 

(a)  0.5 m (b)  1.0 mm (c)  2.0 mm (d)  4.0 mm 

Solution : (b) Elongation in the wire    Tension in the wire 

In first case T1  W and in second case T2  
2W  W 

 W
 

W  W 
 

As 
T1  1  

l1  1  l  l  1.0mm 

T2 l2 

W 

2m 

Brass 

T2 T1 

Steel 

m 

W2 
m m 

W1 

m2 

T 

P 
1 

T 
m 



18 Elasticity 

 

 

C 

0.15 m Y = 1  1010 N/m2 

   D 

10 kg 

Y = 4  1010 N/m2 0.2 m 

Y = 2.5  1010 N/m2 

B 

0.1 m 

A 

Problem 32.   The Young’s modulus of three materials are in the ratio 2 : 2 : 1. Three wires made of these materials have 

their cross-sectional areas in the ratio 1 : 2 : 3. For a given stretching force the elongation's in the three 

wires are in the ratio 

(a)  1 : 2 : 3 (b)  3 : 2 : 1 (c)  5 : 4 : 3 (d)  6 : 3 : 4 

 
Solution : (d) l   

FL 

AY 
and for a given stretching force l  

1
 

AY 

Let  three  wires  have  young's  modulus  2Y,  2Y  and  Y  and  their  cross  sectional  areas  are  A,  2A  and  3A 

respectively. 

 
l :l :l  1 

: 
1 

: 
1 

 
1 

: 
1 

    : 
1 

 
1 

: 
1  

:  
1 

    

 
 6 : 3 : 4 . 

1 2 3 
A1 Y1 A2 Y 2   A3 Y3 A  2Y 2 A  2Y 3 A  Y 2   4 3 

Problem 33.   A light rod with uniform cross-section of  10 4 m 2  is shown in the adjoining figure. The rod consists of three 

different  materials  whose  lengths  are  0.1  m,  0.2  m  and  0.15  m 

respectively and whose Young’s modulii are 2.5  10 10 N / m 2 , 

4  1010 N / m 2 and 1 1010 N / m 2 respectively. The displacement of 

point B will be 

(a) 24 106 m 

(b) 9 106 m 

(c) 4 106 m 

(d) 1 106 m 

Solution : (c) Increment in the length AB = 
MgL 




AY 

10  10  0.1 

10 4  2.5  10 10 
 4  10 6 m 

 Displacement of point B = 4 106 m 

Problem 34. In the above problem, displacement of point C will be 

(a) 24 106 m (b) 9 106 m (c) 4 106 m (d) 1 106 m 

 
Solution : (b) Increment in the length BC = 

MgL 



AY 

10  10  0.2 

104  4  1010 
 5  10

6
 m 

 Displacement of point C = 4  106  5  106  9  106 m 

Problem 35. In the above problem, the displacement of point D will be 

(a) 24 106 m (b) 9 106 m (c) 4 106 m (d) 1 106 m 

Solution : (a) Increment in the length CD  
MgL 

 
10  10  0.15

 
 

 15  106 m 
 

AY 104  1  1010 

 Displacement of point D = 4  10 6  5  10 6 m  15  10 6  24  10 6 m . 

Problem 36.   Two blocks of masses m1  and m2  are joined by a wire of Young’s modulus Y via a massless pulley. The area of 

cross-section of the wire is S and its length is L. When the system is released, increase in length of the wire is 

 
(a) 

 
 

(b) 

m1m 2 gL 

YS (m1  m 2 ) 

2m1m 2 gL 

YS (m1  m 2 ) 

m2 

T m1 

T 
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 L2 

 
(c) 

 
 

(d) 

(m1  m 2 )gL 

YS (m1  m 2 ) 

4m1m 2 gL 

YS (m1  m 2 ) 

Solution : (b) Tension in the wire T 
2m1m2 

m1  m2 

g  stress in the wire  
T 


S 

2m1m2 g 

S(m1  m2 ) 

 

 Strain 
l 
 

Stress 



L Y 

2m1m 2 g 

YS (m1  m 2 ) 

 
 l 

2m1m2 gL 

YS (m1  m2 ) 

Problem 37.   A steel wire of diameter d, area of cross-section A and length 2L is clamped firmly at two points A and B 

which are 2L metre apart and in the same plane. A body of mass m is hung from the middle point of wire 

such that the middle point sags by x lower from original position. If Young’s modulus is Y then m is given 

by 

1 YAx 2 
(a)   

2 gL2 

 
(b) 1 YAL 2 

 

 

2 gx 2 

 
(c) 

 
 

(d) 

YAx 3 
 

 

gL3 

YAL 3 
 

 

gx 2 

Solution : (c) Let the tension in the string is T and for the equilibrium of mass m 

 
2T sin   mg 

 
 T 

mg 

2 sin 
 

mgL 

2x 
[As  is small then sin   

x 
] 
L 

 

Increment in the length  l   AC  AB    L  (L2  x 2)1 / 2  L 

 x 2  
1 / 2 


 1 x 

2
 
 

 x 2 
 L1    1  L1 




 1 


 

 

   2  L
2
  2L 

As Young's modulus  Y    
T L

 
A  l 

 T  
YAl 

L 

 

 

 

mgL 
 

 

 

 
YA x 2 





 






YAx 3 
 

Substituting the value of T and l in the above equation we get  . 
2x L 2L 

m 
gL3 

 

Problem 38. Two wires of equal length and cross-section are suspended as shown. Their Young’s modulii are 

Y2 respectively. The equivalent Young’s modulus will be 

Y1 and 

(a) 

 
(b) 

 

(c) 

 
(d) 

Y1   Y2 

Y1   Y2  
 

2 

Y1Y2 
 

Y1  Y2 

Solution : (b) Let the equivalent young's modulus of given combination is Y and the area of cross section is 2A. 

 

m 

x 

L L 

 
 
 

Y1 Y2 

x   2Tsin 

T 

C 

m 

T 





L B A 
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keq 

  

For parallel combination k1  k2  keq. 

 

Y1 A 

L 
 

Y2 A 
L  

Y 2 A 

L 

 
Y1  Y2  2Y , Y  

Y1  Y2
 

2 

Problem 39. If a load of 9kg is suspended on a wire, the increase in length is 4.5 mm. The force constant of the wire is 
 

(a) 0.49 104 N / m 

 

(b) 1.96 104 N / m 

 

(c) 4.9 104 N / m 

 

(d) 0.196 104 N / m 

Solution : (b) Force constant k  
F 
 

mg 


 

9  9.8 
 
 k  1.96 104 N / m 

 

l l 4.5  103 

Problem 40. One end of a long metallic wire of length L, area of cross-section A and Young’s modulus Y is tied to the 

ceiling. The other end is tied to a massless spring of force constant k. A mass m hangs freely from the free 

end of the spring. It is slightly pulled down and released. Its time period is given by 
 

(a) 2 (b) 2 (c) 2 (d) 2




Solution : (d) Force constant of wire k  
F 
 

YA 
 

and force constant of spring k  k 
 
(given) 

1 
l L 

2
 

Equivalent force constant for given combination 
1 

keq 

  
1  
  

1 

k1 k2 

   
L   

 
1 

YA k 
 keq 

kYA 

kL  YA 

 Time period of combination  T  2  2

Problem 41. Two wires A and B have the same length and area of cross section. But Young’s modulus of A is two times 

the Young’s modulus of B. Then the ratio of force constant of A to that of B is 

(a)  1 (b)  2 (c) 
1 

(d) 
2 

Solution : (b) Force constant of wire k  
YA 

 
k A  

YA  2 [As L and A are same] 
L kB YB 

 9.12 Work Done in Stretching a Wire. 

In stretching a wire work is done against internal restoring forces. This work is stored in the wire as elastic 

potential energy or strain energy. 

If a force F acts along the length L of the wire of cross-section A and stretches it by x then 

Y  
stress 

 
F / A 

 
FL  F  

YA 
.x 

strain x / L Ax L 
 

So the work done for an additional small increase dx in length, dw  Fdx  
YA 

x . dx 
L 

 
Hence the total work done in increasing the length by l, 

W  dW   Fdx   
YA 

.x dx  
1 YA 

l
2
 

l 

0 0 0   L 2 L 

 

 

mYA 

KL 

mK 

YA 

 

 

 

 

2 

L, 2A 
Y 

L, A 
Y2 

L, A 
Y1 
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This work done is stored in the wire. 

1 YAl 
2 

1  YAl 
 Energy stored in wire U 

2 L 
 Fl 

2 


As F  

L   


Dividing both sides by volume of the wire we get energy stored in per unit volume of wire. 

U  
1 
 

F 
 

l 
 

1 
 stress strain  

1 
 Y (strain)

2
 

    

1 
(stress)

2
 

 

 
[As AL = volume of wire] 

V 
2 A L 2 2 2Y 

 

Total energy stored in wire (U) 
 

1 
Fl 

2 

 
1 
 stress  strain  volume 

2 

 
1 
 Y  (strain)

2
  volume 

2 

Energy stored in per unit volume of wire 

(UV) 

1 Fl 

2 volume 

 
1 
 stress  strain 

2 

 
1 
 Y  (strain)

2
 

2 
 

1   
 (stress)

2
  volume 

2Y 

 
1 
(stress)

2
 

2Y 
 

Note :  If  the  force on  the  wire  is  increased  from  F1  to  F2  and  the  elongation  in  wire  is  l  then 

energy stored in the wire  U  
1 (F1   F2 ) l 
2 2 

 Thermal energy density = Thermal energy per unit volume = 
1 
 Thermal stress  strain 

2 

=  
1  F  l 

2  A L 
= 

1 
(Y )( ) = 

2 

1 
Y  2 

( )2
 

2 

Sample problems based on Work done in Stretching a Wire 

Problem 42.   A wire suspended vertically from one of its ends is stretched by attaching a weight of 200  N to the lower 

end. The weight stretches the wire by 1 mm, then the elastic energy stored in the wire is 

(a)  0.1 J (b)  0.2 J (c)  10 J (d)  20 J 

Solution : (a) Elastic energy stored in wire = U  
1 

Fl  
1 
 200  1  10 

3
  0.1J 

2 2 

Problem 43.   The graph shows the behaviour of a length of wire in the region for which the substance obeys Hooke’s 

law. P and Q represent [AMU 2001] 

 

(a) P = applied force, Q = extension 

(b) P = extension, Q = applied force 

(c) P = extension, Q = stored elastic energy 

(d) P = stored elastic energy, Q = extension 

Solution : (c) The graph between applied force and extension will be straight line because in elastic range applied force 

 extension, but the graph between extension and stored elastic energy will be parabolic in nature. 

 

Q 

 
 
 
 

P 
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As U  
1 

kx 
2
 

2 

 
or U  x 2 

Problem 44.   When a 4 kg mass is hung vertically on a light spring that obeys Hooke’s law, the spring stretches by 2 cms. 
The work required to be done by an external agent in the stretching this spring by 5  cms will be (g = 9.8 
m/s2) 

 
(a)  4.900 J (b)  2.450 J (c)  0.495 J (d)  0.245 J 

[MP PMT 1995] 

Solution : (b) When a 4 kg mass is hung vertically on a spring, it stretches by 2 cm k    
F  


x 

4  9.8 

2  10 2 

 

 1960 N / m 

 
Now work done in stretching this spring by 5 cms U  

1 
kx 

2
  

1 
 1960(5  10 

2
 )

2
  2.45 J. 

2 2 

Problem 45. A rod of iron of Young’s modulus Y  2.0  10 11 N / m 2 just fits the gap between two rigid supports 1m 

apart. If the rod is heated through 100o C the strain energy of the rod is (   18  10 6 oC1 and area of 

cross-section A  1 cm 2 ) 

(a)  32.4 J (b)  32.4 mJ (c)  26.4 J (d)  26.4 mJ 

 Solution : (a) U  
1 
 Y  (strain)

2
  volume 

 
 

 
1 
 Y (  )2

  A  L 
 

 


Thermal strain 

l
    




 
2 2  L 

  
1 
 (2  10

11
 )  (18  10 

6
   100)

2
   1  10 

4
   1  324 10 1 = 32.4 J. 

2 

Problem 46. Which of the following cases will have the greatest strain energy (F is the stretching force, A is the area of 
cross section and s is the strain) 

(a)  F = 10 N, A = 1 cm2, s = 10–3  (b) F = 15 N, A = 2 cm2, s = 10–3 

 
(c)  F = 10 N, A = 

1  
cm2, s = 10–4 (d)  F = 5 N, A = 3 cm2, s = 10–3 

2 

Solution: (b) Strain energy  
1 
 stress × strain × volume  

1 
 

F 
× strain × AL  

1 
 F  strain × L 

2 2 A 2 

For wire (a) U    
1 
 10  10 

3
  L  5  10 

3
 L ; For wire (b) 

2 
U  

1 
 15  10 

3
  L  7.5  10 

3
 L 

2 

For wire (c) U  
1 
 10  10 

4
  L  0.5  10 

3
 L ; For wire (d) 

2 
U  

1 
 5  10 

3
 

2 
 2.5  10 

3
 L 

For a given length wire (b) will have greatest strain energy. 

9.13 Breaking of Wire 

When the wire is loaded beyond the elastic limit, then strain increases much more rapidly. The maximum 

stress corresponding to B (see stress-strain curve) after which the wire begin to flow and breaks, is called 

breaking stress or tensile strength and the force by application of which the wire breaks is called the breaking 

force. 

(i) Breaking force depends upon the area of cross-section of the wire i.e., Breaking force  A 

 Breaking force = P × A 

Here P is a constant of proportionality and known as breaking 

stress. 

(ii) Breaking stress is a constant for a given material and it does  

not depends upon the dimension (length or thickness) of wire. 

 
 
 

 
A 

F 
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(iii) If a wire of length L is cut into two or more parts, then again it's each part can hold the same weight. 

Since breaking force is independent of the length of wire. 

(iv) If a wire can bear maximum force F, then wire of same material but double thickness can bear 

maximum force 4F because Breaking force  r2. 

(v) The working stress is always kept lower than that of a breaking stress. 
 

So that safety factor = breaking stress 
 
may have large value. 

working stress 

(vi) Breaking of wire under its own weight. 

Breaking force = Breaking stress  Area of cross section 

Weight of wire = Mg = ALdg = PA [As mass = volume  density = ALd] 
 

 Ldg  P  L  
P 

dg 

This is the length of wire if it breaks by its own weight. 

Sample problems based on Breaking of Wire 

Problem 47.   A wire of diameter 1 mm breaks under a tension of 1000 N. Another wire of same material as that of the 

first one, but of diameter 2 mm breaks under a tension of 

(a)  500 N (b)  1000 N (c)  10000 N (d)  4000 N 

Solution : (d) Breaking force  area of cross-section (r 2 )  d 2 

F  d  
2
 F  2mm  2 

    2   2  2       F2  1000  4  4000 N. 
F1  d1  1000  1mm 

Problem 48. In steel, the Young’s modulus and the strain at the breaking point are 

The stress at the breaking point for steel is therefore 

2 
 1011 Nm 2 and 0.15 respectively. 

(a) 1.33  1011 Nm 2 (b) 1.33  1012 Nm 2 (c) 7.5  10 13 Nm 2 (d) 3  1010 Nm 2 

 
Solution : (d) Y   

Stress 

Strain 

 
 Stress = Y × Strain  2  1011  0.15  0.3  1011  3  1010 N / m 2

 

Problem 49. To break a wire, a force of 106 N / m 2 is required. If the density of the material is 3  103 kg / m 3 , then the 

length of the wire which will break by its own weight will be  [Roorkee 1979] 

(a)  34 m (b)  30 m (c)  300 m (d) 3 m 

P 10 6 100 

Solution : (a) Length of the wire which will break by its own weight L   
dg 3  10 3  10 3 

 33.3 m ≃ 34 m. 

Problem 50. The wires A and B shown in the figure are made of the same material and have radii rA and rB respectively. 

The block between them has a mass m. When the force F is mg/3, one of the wires break 

 
(a) A will break before B if rA = rB 

(b) A will break before B if rA < 2rB 

(c) Either A or B may break if rA = 2rB 

(d) The lengths of A and B must be known to predict which wire will 

break 

 
A 

m 

B 

 
F 
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1kg 

 
4 kg 

Solution :(a,b,c) When force F  
mg 

 
3 

 
is applied at the lower end then 

 
 

mg 
 mg 

 

 

Stress in wire B  
F

  
mg and stress in wire A = F  mg 

 3
 

 
4 mg 

r 2 3r 2 r 2  r 2 3  r 2 
B B A A A 

 
(i) if r  r  r (Let) then stress in wire B  

mg
 

 
and stress in wire A = 4 

. 
mg 

  

A B 
3r 2 3    r 2 

i.e. stress in wire A > stress in wire B so the A will break before B 

(ii) if rB  r , (let) then rA  2r 

Stress in wire B = 
mg

 
 

and Stress in wire A  4mg 
 

mg 
 

3r 2 3(2r)2 3r 2 

i.e. stress in wire A = stress in wire B. It means either A or B may break. 

(iii) If rA  2rB then stress in A will be more than B. i.e. A will break before B. 

Problem 51.    A body of mass 10 kg is attached to a wire 0.3 m long. Its breaking stress is 

 
 

 
4.8  107 N / m 2 . The area of 

cross-section of the wire is 106 m 2 . What is the maximum angular velocity with which it can be rotated in 

the horizontal circle 

(a) 1 rad/sec (b) 2 rad/sec (c)  4 rad/sec (d) 8 rad/sec 

Solution : (c) Breaking force = centrifugal force 

Breaking stress × area of cross-section = m  2 l 

4.8  10 7  10 6  10   2  0.3   2  16   4rad / sec 
 

Problem 52.   Two block of masses 1 kg and 4 kg are connected by a metal wire going over a smooth pulley as shown in 

the figure. The breaking stress of the metal is  3.18  1010 N / m 2 . The minimum radius of the wire so it will 

not break is 

(a) 1 105 m 

(b) 2 105 m 

(c) 3 105 m 

(d) 4 105 m 

Solution : (d) Tension in the wire T 
2m1 m 2 

m1   m 2 

g  T  
2  1  4 

 10  T  16N 
1  4 

Breaking force = Breaking stress × Area of cross-section 

Tension in the wire = 3.18 1010  r 2 

16  3.18 1010 r 2  r   4 10 5 m. 

 

 
 

9.14 Bulk Modulus. 

16 

3.18  1010  3.14 
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When a solid or fluid (liquid or gas) is subjected to a uniform pressure all over the surface, such that the 

shape remains the same, then there is a change in volume. 

Then the ratio of normal stress to the volumetric strain within the elastic limits is called as Bulk modulus. 

This is denoted by K. 

K   
Normal stress 

volumetric strain 

K  
F / A 

 V / V 
 
 pV 

V 

where p = increase in pressure; V = original volume; V = change in volume 

The negative sign shows that with increase in pressure p, the volume decreases by V i.e. if p is positive, 

V is negative. The reciprocal of bulk modulus is called compressibility. 

 
C = compressibility = 

1 
 
V 

K pV 

S.I. unit of compressibility is N–1m2 and C.G.S. unit is dyne–1  cm2. 

Gases have two bulk moduli, namely isothermal elasticity E and adiabatic elasticity E . 

(1) Isothermal elasticity (E) : Elasticity possess by a gas in isothermal condition is defined as isothermal 

elasticity. 

For isothermal process,  PV = constant (Boyle’s law) 

Differentiating both sides PdV + VdP = 0  PdV = – VdP 

P  
dP 

(dV / V) 
 

stress 
 E



strain 

 E = P 

i.e., Isothermal elasticity is equal to pressure. 

(2) Adiabatic elasticity (E) : Elasticity possess by a gas in adiabatic condition is defined as adiabatic 

elasticity. 

For adiabatic process, PV 

 = constant (Poisson’s law) 

Differentiating both sides, P  V 

 
1

dV  V 

 dP  0   PdV  VdP  0 

 

 P 
dP 

 

 

  dV   
stress 
strain 

 
 E

 
   V 

 E =  P 

 
i.e., adiabatic elasticity is equal to  times pressure. [where   

Cp 
] 

Cv 

Note :  Ratio of adiabatic to isothermal elasticity  
E



E

 
 P 

   1 

P 

 
 E


> E

i.e., adiabatic elasticity is always more than isothermal elasticity. 

9.15 Density of Compressed Liquid 

 
 
 

(V – V) 
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V 

V 

If a liquid of density  , volume V and bulk modulus K is compressed, then its density increases. 

 
As density   

m 
so 

 

 
 
 V 

  

 
…..(i) 

V V 

But by definition of bulk modulus K  
 VP 


  

V 
 
P 

  

 
…..(ii) 

 
 

From (i) and (ii) 

 
 






V 

   



V K 

 
P 

K 

 

[As  =   –  ] 

 

or     
 
 
P  

 [1  CP] 
 

 


As 

1 
 C







1 
K 



 K 




9.16 Fractional Change in the Radius of Sphere 

A solid sphere of radius R made of a material of bulk modulus K is surrounded by a liquid in a cylindrical 
container. 

A massless piston of area A floats on the surface of the liquid. 

Volume of the spherical body V  
4 
R

3
 

3 

V 
 3 

R 

V R 

 
R 

 
1 V 

 
…..(i) 

R 3 V 

Bulk modulus K   V 
P

 

V 

  
P 

 
mg 

 
  

 
…..(ii) 


As P  

mg 





K 

 
Substituting the value of 

AK 


V 
from equation (ii) in equation (i) we get 

A 


R 
 

1 mg 

V R 

Sample problems based on Bulk modulus 

3 AK 

 

 

Problem 53.   When a pressure of 100 atmosphere is applied on a spherical ball of rubber, then its volume reduces to 

0.01%. The bulk modulus of the material of the rubber in dyne/cm2 is 

(a) 10 1012 (b) 100 1012 (c) 1 1012 (d) 20 1012 

 
Solution : (c) 1 atm   10 5 N / m 2 100 atm  107 N / m 2 and V  0.01%V  

V
 

V 

 
 0.0001 

 

K  
P

 
V / V 

 
107 

0.0001 

 

 1  10 11 

 
N / m 2 

 

 1  10 12 
Dyne 

.
 

cm 2 

Problem 54. Coefficient of isothermal elasticity E and coefficient of adiabatic elasticity E are related by (  Cp / Cv ) 

[MP PET 2000] 

(a) E   E (b) E   E (c) E   / E (d) E   2 
E

m 



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Solution : (b) Adiabatic elasticity    isothermal elasticity  E   E . 
 

Problem 55.   A uniform cube is subjected to volume compression. If each side is decreased by 1%,then bulk strain is 

[EAMCET (Engg.) 1995; DPMT 2000] 

(a)  0.01 (b)  0.06 (c)  0.02 (d)  0.03 

Solution : (d) Volume of cube V  L3  Percentage change in V  3  (percentage change in L)= 3 (1%)  3% 

V  3% of V  Volumetric strain  
V 


V 

3 
 0.03 

100 

Problem 56.   A ball falling in a lake of depth 200 m shows 0.1% decrease in its volume at the bottom. What is the bulk 

modulus of the material of the ball [AFMC 1997] 

(a) 19.6  108 N / m 2 (b) 19.6  10 10 N / m 2 (c) 19.6  1010 N / m 2 (d) 19.6  108 N / m 2 
 

 
Solution : (a) K  

P
 

V / V 
 

hdg 

V / V 
 

200  10 3  9.8 

0.001 
 19.6  10

8
 N / m 

2
 

Problem 57.   The ratio of the adiabatic to isothermal elasticities of a triatomic gas is [MP PET 1991] 

 
(a) 

3 
(b) 

4 

4 
(c)  1 (d)   

5
 

3 3 

 
Solution : (b) For triatomic gas   4 / 3  Ratio of adiabatic to isothermal elasticity   

4 
. 

3 

Problem 58. A gas undergoes a change according to the law P  P0 e V . The bulk modulus of the gas is 

(a) P (b) PV (c)  P (d) 
PV

 




Solution : (b) P  P e V  

dP 
 P e V  P




[As P  P e V ] 

o 
dV 

dP  
V    P V 

dV 

o 
 

dP 
 

 

dV / V 



 P V 

o 
 

 

K  P V 

Problem 59.   The ratio of two specific heats of gas  Cp  / Cv   for argon iS1.6 and for hydrogen is 1.4. Adiabatic elasticity of 

argon at pressure P is E. Adiabatic elasticity of hydrogen will also be equal to E at the pressure 

(a)  P (b) 
8 

P 
7 

(c) 
7 

P 
8 

 

(d) 1.4 P 

Solution : (b) Adiabatic elasticity =  (pressure) 

For Argon (E )Ar  1.6 P and for Hydrogen (E )H 

 
 

 1.4 P


According to problem (E )  ( )  1.4P  1.6P  P   
16 

P  
8 

P . 
 

  

H 2  Ar 14 7 

Problem 60. The pressure applied from all directions on a cube is P. How much its temperature should be raised to  

maintain the original volume ? The volume elasticity of the cube is  and the coefficient of volume expansion is 



(a) 
P 

(b) 
P


 

(c) 
P



(d) 




P 

Solution : (a) Change in volume due to rise in temperature V  V 
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). 

 volumetric strain  
V

 
V 

 

  

But bulk modulus    
stress 


strain 

P 

 
    

P
 



9.17 Modulus of Rigidity 

Within limits of proportionality, the ratio of tangential stress to the shearing strain is called modulus of 

rigidity of the material of the body and is denoted by , i.e. 

   
Shearing 

Shearing 

stress 

strain 

In this case the shape of a body changes but its volume remains 

unchanged. 

Consider a cube of material fixed at its lower face and acted upon by a tangential force F at its upper 

surface having area A. The shearing stress, then, will be 

Shearing stress    
F||        

 
F

 
A A 

This shearing force causes the consecutive horizontal layers of the cube to be slightly displaced or sheared 
relative to one another, each line such as PQ or RS in the cube is rotated through an angle  by this shear. The 
shearing strain is defined as the angle  in radians through which a line normal to a fixed surface has turned. 

For small values of angle, 

Shearing strain     
QQ' 

 
x
 

PQ L 

So   
shear stress 

 
F / A 

 
F 

   

shear  strain  A

Only solids can exhibit a shearing as these have definite shape. 

9.18 Poisson’s Ratio. 

When a long bar is stretched by a force along its length then its length increases and the radius decreases 

as shown in the figure. 

Lateral strain : The ratio of change in radius to the original radius is called lateral strain. 

Longitudinal strain : The ratio of change in length to the original length is called longitudinal strain. 

The ratio of lateral strain to longitudinal strain is called Poisson’s ratio (

i.e.   
Lateral strain L r r – dr 

Longitudin al strain 

  
 dr / r 

dL / L 

L + dL 

 
 

F 

Negative sign indicates that the radius of the bar decreases when it is stretched. 

Poisson’s ratio is a dimensionless and a unitless quantity. 

9.19 Relation Between Volumetric Strain, Lateral Strain and Poisson’s Ratio. 

If a long bar have a length L and radius r then volume V  r 
2
 L 

Fixed face 

P S 

L 



F 
 

Q' Q 

A 
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

Differentiating both the sides dV  r 
2
dL   2rL dr 

 

 

Dividing both the sides by volume of bar 
dV 




V 

r 
2
dL 

r 
2
 L 

 
 2rL dr
r 

2
 L  

dL 

L 
 2 

dr

r 

 Volumetric strain = longitudinal strain + 2(lateral strain) 
 

 
dV 

 
dL 

 2 
dL  

 (1  2 ) 
dL

 
 

    


As   dr / r 

 
dr 

  
dL 




V L L L 

 dL / L r L 

or   
1  






dV 




 [where A = cross-section of bar] 

2 
1 

ints 

AdL 



(i) If a material having  = – 0.5 then 
dV 

 [1  2 ] 
dL 

= 0 
V L 

 Volume = constant or K =  i.e., the material is incompressible. 

(ii) If a material having  = 0, then lateral strain is zero i.e. when a substance is stretched its length 

increases without any decrease in diameter e.g. cork. In this case change in volume is maximum. 

(iii) Theoretical value of Poisson’s ratio  1    0.5 . 

(iv) Practical value of Poisson’s ratio 0    0.5 

9.20 Relation between Y, k,  and . 

Moduli of elasticity are three, viz. Y, K and  while elastic constants are four, viz, Y, K,  and . Poisson’s 

ratio  is not modulus of elasticity as it is the ratio of two strains and not of stress to strain. Elastic constants 

are found to depend on each other through the relations : Y  3K(1  2 ) and Y  2(1   ) 
 

Eliminating  or Y between these, we get Y 
 9 K 

and   
3K  2

3 K   6 K  2

Sample problems based on relation between Y, k,  and 

Problem 61.    Minimum and maximum values of Poisson’s ratio for a metal lies between [Orissa JEE 2003] 

(a)  –  to +  (b)  0 to 1 (c)  –  to 1 (d)  0 to 0.5 

Solution : (d) 

Problem 62.   For a given material, the Young’s modulus is 2.4 times that of rigidity modulus. Its Poisson’s ratio is 

[EAMCET 1990; RPET 2001] 

(a)  2.4 (b)  1.2 (c)  0.4 (d)  0.2 

Solution : (d) Y  2(1  )  2.4  2(1  )  1.2  1      0.2 

Problem 63. There is no change in the volume of a wire due to change in its length on stretching. The Poisson’s ratio of 

the material of the wire is 

(a)  + 0.50 (b)  – 0.50 (c)   + 0.25 (d)  – 0.25 
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B 


A 

O 



l 

     r P 
Q

 

 
Solution : (b) dV 

 
dL 

 2 
dL  (1   2 ) 

dL 
= 0 [As there is no change in the volume of the wire] 

V L L L 

1  2  0     
1
 
2 

Problem 64. The values of Young’s and bulk modulus of elasticity of a material are 8  1010 N / m 2 and 10  1010 N / m 2 

respectively. The value of Poisson’s ratio for the material will be 

(a)  0.25 (b)  – 0.25 (c)  0.37 (d)  – 0.37 

Solution : (c) Y  3K(1  2)  8  1010  3  10 1010 (1  2 )    0.37 

Problem 65.   The Poisson’s ratio for a metal is 0.25. If lateral strain is 0.0125, the longitudinal strain will be 

(a)  0.125 (b)  0.05 (c)  0.215 (d)  0.0125 

Solution : (b)    
Lateral strain 

Longitudin al strain 
Longitudinal strain  

Lateral strain
 


 

0.0125 

0.25 
 0.05 

Problem 66.   The ‘’ of a material is 0.20. If a longitudinal strain of 

volume change 

4.0  103 is caused, by what percentage will the 

(a)  0.48% (b)  0.32% (c)  0.24% (d)  0.50% 

Solution : (c) Longitudinal strain  4 10 3 or 0.4% 

Lateral strain    0.4%  0.2  0.4%  0.08% 

  Volumetric strain = longitudinal strain – 2 lateral strain   0.4  2  (0.08) = 0.24% 

  Volume will change by 0.24%. 

9.21 Torsion of Cylinder. 

If the upper end of a cylinder is clamped and a torque is applied at the lower end the cylinder gets twisted 

by angle . Simultaneously shearing strain  is produced in the cylinder. 

(i) The angle of twist  is directly proportional to  the distance from 

the fixed end of the cylinder. 

At fixed end   0 
o
 and at free end  = maximum. 

(ii) The value of angle of shear  is directly proportional to the radius 

of the cylindrical shell. 

At the axis of cylinder  = 0 and at the outermost shell  = maximum. 

(iii) Relation between angle of twist () and angle of shear () 

AB = r = l    
r 

l 

(iv) Twisting couple per unit twist or torsional rigidity or torque required to produce unit twist. 

r 
4
 

C 
2l 

 
 C  r 

4
 

 
 A 

2
 

 

 

1 2 r 
4 2 

 (v) Work done in twisting the cylinder through an angle  is W  C 
2 4l 

Sample problems based on Torsion 
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Problem 67.   Mark the wrong statement [MP PMT 2003] 

(a) Sliding of molecular layer is much easier than compression or expansion 

(b) Reciprocal of bulk modulus of elasticity is called compressibility 

(c) It is difficult to twist a long rod as compared to small rod 

(d) Hollow shaft is much stronger than a solid rod of same length and same mass 

Solution : (c) 

Problem 68.   A rod of length l and radius r is joined to a rod of length l / 2 and radius r / 2 of same material. The free 

end of small rod is fixed to a rigid base and the free end of larger rod is given a twist of , the twist angle at 

the joint will be [RPET 1997] 

(a)   / 4 (b)   / 2 (c)  5 / 6 (d)  8 / 9 

Solution : (d)  If torque  is applied at the free end of larger rod and twist  is given to it then twist at joint is  1 and twist 

at the upper end (fixed base)  2 

 r 4   r4 (   )  2 1  2 

  1 
2l 

 


2(l / 2) 

 
 (  1 )  

(1  0) 

8 

 
[As  2 

 
 0] 

 8   8     9  8    
8 

. 
1 1 1 1 

9
 

Problem 69.   The upper end of a wire of radius 4 mm and length 100 cm is clamped and its other end is twisted through 

an angle of  30o . Then angle of shear is [NCERT 1990; MP PMT 

1996] 

(a) 12o (b) 0.12o (c) 1.2o (d) 0.12 
o 

 
Solution : (b) 

 
L  r   

r


L 
 

4  10 3  30o 

1 

 
 0.12 o 

Problem 70.   Two wires A and B of same length and of the same material have the respective radii r1  and r2. Their one 

end is fixed with a rigid support, and at the other end equal twisting couple is applied. Then the ratio of 

the angle of twist at the end of A and the angle of twist at the end of B will be [AIIMS 1980] 

2 

(a)   1
 

2 

 

 

 
r 4






r 4

2 

(b)   2
 

1 

 





 r 

4
 

4 

(c)   2
 

1 

4 

(d)   1
 

2 

Solution : (c) 1   2 1    1  2 2  1   2 2l1 2l  2  r1 


2  


Problem 71. The   work   done   in   twisting   a   steel   wire   of   length   25   cm   and   radius   2mm   through 

(  8  1010 N / m 2) 

(a)  2.48 J (b)  3.1 J (c)  15.47 J (d)  18.79 J 

45o will be 

1 2 r 4 
2
 3.14  8  10 10  (2  10 3 )4  ( / 4)2 

 Solution : (a) W  C  
2 4l 4  25  10 2 

 2.48 J 
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9.22 Interatomic Force Constant 

Behaviour of solids with respect to external forces is such that if their atoms are connected to springs. 

When an external force is applied on a solid, this distance between its atoms changes and interatomic force 

works to restore the original dimension. 

The ratio of interatomic force to that of change in interatomic distance is defined as the interatomic force 

constant. K  
F

 
r 

It is also given by K  Y  r0 [Where Y = Young's modulus, r0 = Normal distance between the atoms of wire] 

Unit of interatomic force constant is N/m and Dimension MT–2 

 

Note :  The number of atoms having interatomic distance r0 in length l of a wire, N = l/r0. 
 

 The number of atoms in area A of wire having interatomic separation r0 is 

Sample problems based on Interatomic Force Constant 

N  A / r 
2
 . 

Problem 72.   The mean distance between the atoms of iron is 3 1010 m 

 

and interatomic force constant for iron is 7 

N/m. The Young’s modulus of elasticity for iron is [JIPMER 2002] 

 
(a) 2.33  105 N / m 2 

 

(b) 23.3  1010 N / m 2 (c) 233  1010 N / m 2 
 

(d) 2.33  1010 N / m 2 
 

 

Solution : (d) Y  
k 

ro 

 
7 

3  10 10 
 2.33  10 10 N / m 2 . 

 

Problem 73.   The Young’s modulus for steel is  Y   2  1011 N / m 2 . If the inter-atomic distance is 3.2Å, the inter atomic 

force constant in N/ Å will be 

(a) 6.4 109 (b) 6.4 109 (c) 3.2 109 (d) 3.2  109 
 

Solution : (b) k  Y  r0  2 1011  3.2 10 10  6.4  101 N / m = 6.4  10 9 N / Å . 

9.23 Elastic Hysteresis. 

When a deforming force is applied on a body then the strain does not change simultaneously with stress 

rather it lags behind the stress. The lagging of strain behind the stress is defined as elastic hysteresis. This is the 

reason why the values of strain for same stress are different while increasing the load and while decreasing the 

load. 

Hysteresis loop : The area of the stress-strain curve is called the hysteresis loop and it is numerically 

equal to the work done in loading the material and then unloading it. 

 
 
 
 
 
 

If we have two tyres of rubber having different hysteresis loop then rubber B should be used for making 

the car tyres. It is because of the reason that area under the curve i.e. work done in case of rubber B is lesser 

and hence the car tyre will not get excessively heated and rubber A should be used to absorb vibration of the 

machinery because of the large area of the curve, a large amount of vibrational energy can be dissipated. 

Strain O 

For A 

Strain O 

For B 

S
tr

es
s 

S
tr

es
s 
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(1) Hammering and rolling : Crystal grains break up into smaller units by hammering and rolling. This 

result in increase in the elasticity of material. 

(2) Annealing : The metals are annealed by heating and then cooling them slowly. Annealing results in 

decrease in the elasticity of material. 

(3) Temperature : Intermolecular forces decreases with rise in temperature. Hence the elasticity decreases 

with rise in temperature but the elasticity of invar steel (alloy) does not change with change of temperature. 

(4) Impurities : Due to impurities in a material elasticity can increase or decrease. The type of effect 

depends upon the nature of impurities present in the material. 

9.25 Important Facts About Elasticity. 

(1) The body which requires greater deforming force to produce a certain change in dimension is more 

elastic. 

Example : Ivory and steel balls are more elastic than rubber. 

(2) When equal deforming force is applied on different bodies then the body which shows less 

deformation is more elastic. 

Example : (i) For same load, more elongation is produced in rubber wire than in steel wire hence steel is 

more elastic than rubber. 

(ii) Water is more elastic than air as volume change in water is less for same applied pressure. 

(iii) Four identical balls of different materials are dropped from the same height then after collision balls 

rises upto different heights. 

The order of their height can be given by hivory > hsteel > hrubber > hclay because Yivory > Ysteel > Yrubber > Yclay. 

(3) The value of moduli of elasticity is independent of the magnitude of the stress and strain. It depends 

only on the nature of material of the body. 

(4) For a given material there can be different moduli of elasticity depending on the type of stress applied 

and resulting strain. 

 
Name of 

substance 

Young’s modulus (Y) 

1010N/m2 

Bulk modulus (K) 

1010N/m2 

Modulus of rigidity () 

1010N/m2 

Aluminium 6.9 7.0 2.6 

Brass 9.0 6.7 3.4 

Copper 11.0 13.0 4.5 

Iron 19.0 14.0 4.6 

Steel 20.0 16.0 8.4 

Tungsten 36.0 20.0 15.0 

Diamond 83.0 55.0 34.0 

Water – 0.22 – 

Glycerin – 0.45 – 

Air – 1.01 – 

9.24 Factors Affecting Elasticity. 
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d 
   

l b 

 

(5) The moduli of elasticity has same dimensional formula and units as that of stress since strain is 

dimensionless.  Dimensional formula ML
1

T 
2

 while units dyne/cm2 or Newton/m2. 

(6) Greater the value of moduli of elasticity more elastic is the material. But as Y  (1/l), K  (1/V) and 

   (1/)  for  a  constant  stress,  so  smaller  change  in  shape  or  size  for  a  given  stress  corresponds  to  greater 

elasticity. 

(7) The moduli of elasticity Y and  exist only for solids as liquids and gases cannot be deformed along one 

dimension only and also cannot sustain shear strain. However K exist for all states of matter viz. solid, liquid or 

gas. 

(8) Gases being most compressible are least elastic while solids are most i.e. the bulk modulus of gas is 

very low while that for liquids and solids is very high. Ksolid > Kliquid > Kgas 

(9) For a rigid body l, V or  = 0 so Y, K or  will be , i.e. elasticity of a rigid body is infinite. 

Diamond and carborundum are nearest approach to rigid bodies. 

(10) In a suspension bridge there is a stretch in the ropes by the load of the bridge. Due to which length of 

rope changes. Hence Young’s modulus of elasticity is involved. 

(11) In an automobile tyre as the air is compressed, volume of the air in tyre changes, hence the bulk 

modulus of elasticity is involved. 

(12) In transmitting power, an automobile shaft is sheared as it rotates, so shearing strain is set up, hence 

modulus of rigidity is involved. 

(13) The shape of rubber heels changes under stress, so modulus of rigidity is involved. 

9.26 Practical Applications of Elasticity 

(i) The metallic parts of machinery are never subjected to a stress beyond elastic limit, otherwise they will 

get permanently deformed. 

(ii) The thickness of the metallic rope used in the crane in order to lift a given load is decided from the 

knowledge of elastic limit of the material of the rope and the factor of safety. 

(iii) The bridges are declared unsafe after long use because during its long use, a bridge under goes quick 

alternating strains continuously. It results in the loss of elastic strength. 

(iv) Maximum height of a mountain on earth can be estimated from the elastic behaviour of earth. 

At the base of the mountain, the pressure is given by P = hg and it must be less than elastic limit (K) of 

earth’s supporting material. 

K > P > hg  h  
K

 

g 

 

or h max  
g

 

 

(v) In designing a beam for its use to support a load (in construction of roofs and bridges), it is 

advantageous to increase its depth rather than the breadth of the beam 

because the depression in rectangular beam. 
 

  
Wl 

3
 

4Ybd 
3
 

To minimize the depression in the beam, it is designed as I-shaped 
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Problems based on Interatomic and Intermolecular forces 

Problems based on Stress 

girder. 

 
(vi) For a beam with circular cross-section depression is given by 

 
  

WL
3
 

12 r 
4
 Y 

(vii) A hollow shaft is stronger than a solid shaft made of same mass, length and material. 

r 
4
 

Torque required to produce a unit twist in a solid shaft  solid   
2l ............................. 

(i) 

(r 
4
  r 

4
 ) 

and torque required to produce a unit twist in a hollow shaft  hollow 2 1  

2l 
…..(ii) 

 
From (i) and (ii), 

 hollow 

 solid 

r 
4
  r 

4
 

  2 1  

r 4 

(r 
2
  r 

2
 )(r 

2
  r 

2
 ) 

    2 1 2 1  

r 4 

 
…..(iii) 

Since two shafts are made from equal volume  r 
2
l   (r 

2
  r 

2
 )l  r 

2
  r 

2
  r 

2
 

 
 hollow 

2 1 2 1 

 
 

r 
2  
 r 

2   

   
Substituting this value in equation (iii) we get, 

 solid 

  2 1 1 

r 2 hollow > solid 

i.e., the torque required to twist a hollow shaft is greater than the torque necessary to twist a solid shaft of 

the same mass, length and material through the same angle. Hence, a hollow shaft is stronger than a solid 

shaft. 

 
 

1. In solids, inter-atomic forces are [DCE 1999] 

(a) Totally repulsive (b) Totally attractive 

(c)    Combination of (a) and (b) (d) None of these 

2. The potential energy U between two molecules as a function of the distance X between them has been shown in the figure. The 

two molecules are [CPMT 1986, 88, 91] 

 

(a) Attracted when x lies between A and B and are repelled when X lies between B and C 

(b) Attracted when x lies between B and C and are repelled when X lies between A and B 

(c) Attracted when they reach B 

(d) Repelled when they reach B 

3. The nature of molecular forces resembles with the nature of the 

(a) Gravitational force (b)  Nuclear force (c)   Electromagnetic force (d) Weak force 

 

4. The ratio of radius of two wire of same material is 2 : 1. Stretched by same force, then the ratio of stress is [PET 1991] 

(a)   2 : 1 (b)   1 : 2 (c)    1 : 4 (d)   4 : 1 

5. If equal and opposite forces applied to a body tend to elongate it, the stress so produced is called 

(a) Tensile stress (b)  Compressive stress (c)   Tangential stress (d) Working stress 

6. A vertical hanging bar of length l and mass m per unit length carries a load of mass M at the lower end, its upper end is clamped 

to a rigid support. The tensile force at a distance x from support is 

 
(a) Mg + mg(l – x) (b)  Mg (c)   Mg + mgl (d) (M  m)g 

x
 
l 

A B C 
– ve 

X 

U 

+ ve 
 

0 
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Problems based on Strain 

7. One end of a uniform rod of mass m1 and cross-sectional area A is hung from a ceiling. The other end of the bar is supporting 

mass m2. The stress at the midpoint is 

 
(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

g(m 2  2m1 ) 

2 A 

g(m2  m1 ) 

2 A 

g(2m 2  m1 ) 

2 A 

g(m2  m1 ) 
 

A 

8. A uniform bar of square cross-section is lying along a frictionless horizontal surface. A horizontal force is applied to pull it from 

one of its ends then 

 

(a) The bar is under same stress throughout its length 

(b) The bar is not under any stress because force has been applied only at one end 

(c) The bar simply moves without any stress in it 

(d) The stress developed reduces to zero at the end of the bar where no force is applied 

9. Which one of the following quantities does not have the unit of force per unit area [MP PMT 1992] 

(a) Stress (b) Strain 

(c)   Young’s modulus of elasticity (d) Pressure 

10. The reason for the change in shape of a regular body is [EAMCET 1980] 

(a) Volume stress (b)  Shearing strain (c)   Longitudinal strain (d) Metallic strain 

11. When a spiral spring is stretched by suspending a load on it, the strain produced is called 

(a) Shearing (b)  Longitudinal (c)   Volume (d) Transverse 

12. The longitudinal strain is only possible in 

(a) Gases (b)  Fluids (c)    Solids (d) Liquids 

13. The face EFGH of the cube shown in the figure is displaced 2 mm parallel to itself when forces of 5 105 N 

the lower and upper faces. The lower face is fixed. The strain produced in the cube is 

 
(a) 2 

(b) 0.5 

(c) 0.05 

each are applied on 

(d) 1.2 10 8 

14. Forces of 105 N each are applied in opposite direction on the upper and lower faces of a cube of side 10  cm, shifting the upper 

face parallel to itself by 0.5 cm. If the side of the cube were 20 cm, the displacement would be 
 
 

(a) 1 cm 

(b) 0.5 cm 

(c) 0.25 cm 

(d)   0.125 cm 

 
 
 
 
 

Problems based on Stress strain curve 
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[I 

Problems based on Young's Modulus 

15. The stress versus strain graphs for wires of two materials A and B are as shown in the figure. If YA and YB are the Young’s modulii 

of the materials, then [Kerala (Engg.) 2001] 

 

(a) YB  2YA 

(b) YA  YB 

(c) YB  3YA 

(d) YA  3YB 

16. The graph is drawn between the applied force F and the strain (x) for a thin uniform wire. The wire behaves as a liquid in the part 

[CPMT 1988] 

 
(a) ab 

(b) bc 

(c) cd 

(d) oa 

17. The diagram shows stress v/s strain curve for the materials A and B. From the curves we infer that 
 
 

(a) A is brittle but B is ductile 

(b) A is ductile and B is brittle 

(c) Both A and B are ductile 

(d) Both A and B are brittle 

18. The figure shows the stress-strain graph of a certain substance. Over which region of the graph is Hooke’s law obeyed 

 
 

(a) AB 

(b) BC 

(c) CD 

(d) ED 

19. Which one of the following is the Young’s modulus (in N/m2) for the wire having the stress-strain curve shown in the figure 
 

 
(a)    24 1011 

(b)    8.0 1011 

(c) 10 1011 

(d) 2.0 1011 

20. The adjacent graph shows the extension (l) of a wire of length 1m suspended from the top of a roof at one end with a load W 

connected to the other end. If the cross sectional area of the wire is 10–6m2, calculate the young’s modulus of the material of the 

wire 

 

(a) 

(b) 

(c) 

(d) 

 
2 1011 N / m 2 

2 10 11 N / m 2 

3 10 12 N / m 2 

2 10 13 N / m 2 

IT-JEE (Screening) 2003] 

21. In the Young’s experiment, if length of wire and radius both are doubled then the value of Y will become [RPET 2003] 
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(a) 2 times (b)  4 times (c)   Remains same (d) Half 

22. A rubber cord catapult has cross-sectional area 25mm2 and initial length of rubber cord is 10cm. It is stretched to 5cm. and then 

released to project a missile of mass 5gm. Taking Yrubber  5 10 8 N / m2 velocity of projected missile is [CPMT 2002] 

(a)   20 ms–1 (b)   100 ms–1 (c)   250 ms–1 (d)   200 ms–1 

23. Consider the following statements 

Assertion (A) : Stress is the internal force per unit area of a body. 

Reason (R) : Rubber is more elastic than steel. 

Of these statements [AIIMS 2002] 

(a) Both A and R are true and the R is a correct explanation of the A 

(b) Both A and R are true but the R is not a correct explanation of the A 

(c) A is true but the R is false 

(d) Both A and R are false 

(e) A is false but the R is true 

24. The area of cross-section of a steel wire (Y  2.0 1011 N / m2) is 0.1 cm2. The force required to double its length will be 

[MP PET 2002] 

(a) 2 1012 N (b) 2 1011 N (c) 2 1010 N (d) 2 106 N 

25. A metal bar of length L and area of cross-section A is clamped between two rigid supports. For the material of the rod, its Young’s 

modulus is Y and coefficient of linear expansion is . If the temperature of the rod is increased by toC , the force exerted by the 
rod on the supports is [MP PMT 2001] 

(a) Y AL t (b)   Y A  t (c) 
YL t 

A 
(d) Y AL t 

26. Which one of the following substances possesses the highest elasticity [MP PMT 1992; RPMT 1999; RPET 2000; MH CET (Med.) 2001] 

(a) Rubber (b)  Glass (c)    Steel (d) Copper 

27. There are two wires of same material and same length while the diameter of second wire is 2 times the diameter of first wire, 
then ratio of extension produced in the wires by applying same load will be 

(a)   1 : 1 (b)   2 : 1 (c)   1 : 2 (d)   4 : 1 

28. Consider the following statements 

Assertion (A) : Rubber is more elastic than glass. 

Reason (R) : The rubber has higher modulus of elasticity than glass. 

Of these statements [AIIMS 2000] 

(a) Both A and R are true and the R is a correct explanation of the A 

(b) Both A and R are true but the R is not a correct explanation of the A 

(c) A is true but the R is false 

(d) Both A and R are false 

(e) A is false but the R is true 

29. The longitudinal extension of any elastic material is very small. In order to have an appreciable change, the material must be in 
the form of 

(a) Thin block of any cross section (b) Thick block of any cross section 

(c)    Long thin wire (d) Short thin wire 

30. In suspended type moving coil galvanometer, quartz suspension is used because 

(a) It is good conductor of electricity (b) Elastic after effects are negligible 

(c) Young’s modulus is greater (d) There is no elastic limit 

31. You are given three wires A, B and C of the same length and cross section. They are each stretched by applying the same force to the 
ends. The wire A is stretched least and comes back to its original length when the stretching force is removed. The wire B is stretched 
more than A and also comes back to its original length when the stretching force is removed. The wire C is stretched most and 
remains stretched even when stretching force is removed. The greatest Young’s modulus of elasticity is possessed by the material of 
wire 

(a) A (b)  B (c)   C (d) All have the same elasticity 

32. The ratio of diameters of two wires of same material is n : 1. The length of wires are 4 m each. On applying the same load, the 
increase in length of thin wire will be 
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G 

x 

D B 

T1 O T2 

C A 

(a) n2 times (b)  n times (c)   2n times (d) None of the above 

33. A wire of radius r, Young’s modulus Y and length l is hung from a fixed point and supports a heavy metal cylinder of volume V at 

its lower end. The change in length of wire when cylinder is immersed in a liquid of density  is in fact 

 
(a) Decrease by 

 

(b) Increase by 

 

(c) Decrease by 
 

Vg 

Vlg 

Y r2 

Vrg 

Yl 2 

Vg 

Y r 

(d)  
Y 

34. If the ratio of lengths, radii and Young’s modulii of steel and brass wires in the figure are a, b and c respectively. Then the 

corresponding ratio of increase in their lengths would be 

2a
2
c 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
 

b 

3a 

2b 2c 

2ac 

b 2 

3c 

2ab 2 

35. A uniform heavy rod of weight W, cross sectional area A and length L is hung from a fixed support. Young’s modulus of the 
material of the rod is Y. If lateral contraction is neglected, the elongation of the rod under its own weight is 

(a) 
2WL 

AY 
(b) 

WL 
(c) 

AY 

WL 
 

 

2 AY 
(d) Zero 

36. A constant force F0 is applied on a uniform elastic string placed over a smooth horizontal surface as shown in figure. Young’s 

modulus of string is Y and area of cross-section is S. The strain produced in the string in the direction of force is 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

F0 Y 

S 

F0 

SY 

F0 
 

2SY 

F0 Y 
 

2S 

37. A uniform rod of length L has a mass per unit length  and area of cross section A. The elongation in the rod is l due to its own 

weight if it is suspended from the ceiling of a room. The Young’s modulus of the rod is 

 
(a) 

2gL
2
 

 

Al 

 
(b) 

gL
2
 

 

2 Al 

 
(c) 

2gL 

Al 

 
(d) 

gl
2
 

 

AL 

38. AB is an iron wire and CD is a copper wire of same length and same cross-section. BD is a rod of length 0.8 m. A load G = 2kg-wt 

is suspended from the rod. At what distance x from point B should the load be suspended for the rod to remain in a horizontal 

position (YCu  11.8 1010 N / m 2, YFe  19.6 1010 N / m 2) 

 

(a) 0.1 m 

(b) 0.3 m 

(c) 0.5 m 

(d) 0.7 m 

39. A slightly conical wire of length L and end radii r1 and r2 is stretched by two forces F, F applied parallel to length in opposite 

directions and normal to end faces. If Y denotes the Young’s modulus, then extension produced is 

 
Steel 

M 

Brass 

2M 

 

 
F0 
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Problems based on Breaking of wire 

 
(a) 

FL 
 

 

r
2
Y 

 
(b) 

FL 
 

 

r1Y 

 
(c) 

FL 
 

 

r1r2 Y 

 
(d) 

FLY 
 

 

r1r2 

40. The force constant of wire is K and its area of cross-section is A. If the force F is applied on it, then the increase in its length will be 
 

(a) KA (b)  FKA (c) 
F 

(d)   
FK 

K AL 

41. The value of force constant between the applied elastic force F and displacement will be 

(a) 

(b) 
1

 

 
(c) 

1
 

2 

 
(d) 

2 

42. The force constant of a wire does not depend on 

(a) Nature of the material (b)   Radius of the wire (c)   Length of the wire (d) None of the above 

43. A metal wire of length L, area of cross-section A and Young’s modulus Y behaves as a spring. The equivalent spring constant will 

be 

 

(a) 
Y 

(b) 
AL 

YA 
(c) 

L 

YL 
(d) 

L 

A AY 

44. A highly rigid cubical block A of small mass M and side L is fixed rigidly onto another cubical block B of the same dimensions and 

modulus of rigidity  such that the lower face of A completely covers the upper face of B. The lower face of B is rigidly held on a 

horizontal surface. A small force is applied perpendicular to one of the sides faces of A. After the force is withdrawn, block A 

execute small oscillations the time period of which is given by 
 

(a) 2 (b)  (d) 2







45. A wire of length L and cross-sectional area A is made of a material of Young’s modulus Y. It is stretched by an amount x. The 

work done is [MP PET 1996; BVP 2003] 

 
(a) 

YxA 
 

 

2 L 

 
(b) 

Yx 
2
 A 

L 

 
(c) 

Yx 
2
 A 

 

 

2L 

 
(d) 

2Yx 
2
 A 

L 

46. Two wires of same diameter of the same material having the length l and 2l. If the force F is applied on each, the ratio of the work 

done in the two wires will be [MP PET 1989] 

(a)   1 : 2 (b)   1 : 4 (c)   2 : 1 (d)   1 : 1 

47. If the potential energy of a spring is V on stretching it by 2 cm, then its potential energy when it is stretched by 10 cm will be 

[CPMT 1976] 

(a)   V/25 (b)   5V (c)   V/5 (d)   25V 

48. The strain energy stored in a body of volume V due to shear S and shear modulus  is 

 
(a) 

S 2V 
 

 

2


(b) 

SV 2 
 

 

2


(c) 

S 2V 
 

 




(d) 

1 
S 2V 

2 

49. K is the force constant of a spring. The work done in increasing its extension from l1 to l2 will be [MP PET 1995; MP PMT 1996] 

 
(a) 

 
K(l 

 
 l ) 

 
(b) 

K 
(l 

 

 

 
l )

 
(c) 

 
K(l2  l2) 

 
(d) 

K 
(l2  l2) 

 

2 1 2   
2 1 2 1 2   

2 1 

50. The breaking stress of a wire depends upon   [AIIMS 2002] 

 (a)   Length of the wire (b) Radius of the wire (c) Material of the wire (d) Shape of the cross section 

 

 

ML 
M

 
2 (c) 2

ML 



Problems based on Stretching a wire 

 

L 

X 
30o 

Displacement O 

Y 

F
o

rc
e
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51. An aluminium rod has a breaking strain of 0.2%. The minimum cross sectional area of the rod, in m2, in order to support a load 

of 104  N is  (Y   7 10 9  N / m 2) 

(a) 1.4 104 (b) 7.110 4 (c) 1.4 103 (d) 7.110 5 

52. A cable is replaced by another one of the same length and material but of twice the diameter. The maximum load that the new 

wire can support without exceeding the elastic limit, as compared to the load that the original wire could support, is 

(a) Half (b)  Double (c)   Four times (d) One-fourth 

53. A heavy mass is attached to a thin wire and is whirled in a vertical circle. The wire is most likely to break 

(a) When the mass is at the highest point (b) When the mass is at the lowest point 

(c) When the wire is horizontal (d) At an angle of cos–1 (1/3) from the upward vertical 

54. A heavy uniform rod is hanging vertically from a fixed support. It is stretched by its own weight. The diameter of the rod is 

(a) Smallest at the top and gradually increases down the rod 

(b) Largest at the top and gradually decreases down the rod 

(c) Uniform everywhere 

(d) Maximum in the middle 

 

55. The isothermal bulk modulus of a gas at atmospheric pressure is [AIIMS 2000; KCET (Engg./Med.) 1999] 

(a) 1 mm of Hg (b)   13.6 mm of Hg (c) 1.013 10 5 N / m2 (d) 2.026 10 5 N / m2 

56. The specific heat at constant pressure and at constant volume for an ideal gas are Cp and Cv and its adiabatic and isothermal 

elasticities are E and E respectively. The ratio of E to E is [MP PMT 1989; MP PET 1992] 

(a) Cv / Cp (b) Cp / Cv (c) CpCv (d) 1 / CpCv 

57. If a rubber ball is taken at the depth of 200 m in a pool. Its volume decreases by 0.1%. If the density of the water is 1 10 3 kg / m3 

and g = 10 m/s2, then the volume elasticity in N/m2 Will be [MP PMT 1991] 

(a) 108 (b) 2 10 
8 

(c) 109 (d) 2 10 9 

58. The compressibility of water is 4  10–5 per unit atmospheric pressure. The decrease in volume of 100 cubic centimetre of water 
under a pressure of 100 atmosphere will be [MP PMT 1990] 

(a) 0.4 cc (b) 4 10 5 cc (c)   0.025 cc (d)   0.004 cc 

59. An ideal gas of mass m, volume V, pressure p and temperature T undergoes a small change in state at constant temperature. Its 

adiabatic exponent i.e.,  
Cp

 

Cv 

is . The bulk modulus of the gas at the constant temperature process called isothermal process is 

(a) p (b)   p (c) 
m p 

T 
(d) 

pV 

T 

60. An ideal gas of mass m, volume V, pressure p and temperature T undergoes a small change under a condition that heat can neither 
enter into it from outside nor can it leave the system. Such a process is called adiabatic process. The bulk modulus of the gas 
 C p 
 
 C 

 is 

v 

(a) p (b)   p (c) 
m p 

T 
(d) 

pV 

T 

61. An ideal gas whose adiabatic exponent is  is expanded according to the law p= V where  is a constant. For this process the 
bulk modulus of the gas is 

(a) p (b) 
p 

(c)   p (d) (l – )p 


62. 1 c.c. of water is taken from the top to the bottom of a 200 m deep lake. What will be the change in its volume if K of water is 

2.2 10 9 N / m 2 

 

(a) 8.8 106 c.c. (b) 8.8 102 c.c. (c) 8.8 104 c.c. (d) 8.8 101 c.c 
 

 

63. Modulus of rigidity of a liquid 

Problems based on Bulk modulus 

Problems based on Modulus of rigidity 
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(a) Non zero constant (b)  Infinite (c)   Zero (d) Cannot be predicted 

64. The Young’s modulus of the material of a wire is 6 1012 N / m 2 and there is no transverse strain in it, then its modulus of rigidity 

will be 

(a) 3 1012 N / m 2 (b) 2 1012 N / m 2 (c) 1012 N / m 2 (d) None of the above 
 

 

65. The value of Poisson’s ratio lies between [AIIMS 1985; MP PET 1986; DPMT 2002] 

(a) –1 to 
1 

(b) 
2 

 
3   

to   
1
 

4 2 
(c)  

1   
to 1 (d)   1 to 2 

2 

66. Which of the following will be  if Y = 2.4 [RPET 2001] 

(a)   –1 (b)   0.2 (c)   0.1 (d)   – 0.25 

67. Which is correct relation [RPET 2001] 

(a)   Y <  (b)   Y >  (c)   Y =  (d)     = +1 

68. The relationship between Young’s modulus Y, bulk modulus K and modulus of rigidity  is [MP PET 1991; MP PMT 1997] 

 
(a) Y 

 9K  

  3 K 

 

(b)    
9yK 

Y  3 K 

 

(c) Y   
9K 

3  K 

 

(d) Y   
3K 

9  K 

69. The Poisson’s ratio cannot have the value [EAMCET 1989] 

(a)   0.7 (b)   0.2 (c)   0.1 (d)   0.5 

70. Which of the following relations is true [CPMT 1984] 

(a)   3Y = K(1 – ) (b) K    
9Y 

Y   
(c)    = (6K + ) Y (d)   

0.5Y  



71. The wrong relation for modulus of rigidity () is 
 

(a)   
Shearing 

Shearing 

stress 

strain 
(b) Unit of  is N / m 2 

 
(c)   

Y 
(d) 

2(1   ) 
  

Y
 

2(1   ) 
 

 
 

72. A rod of 2m length and radius 1 cm is twisted at one end by 0.8 rad with respect to other end being clamped. The shear strain 
developed in its rod will be [RPET 1997] 

(a)   0.002 (b)   0.004 (c)   0.008 (d)   0.016 

73. The upper end of a wire 1 metre long and 2 mm in radius is clamped. The lower end is twisted through an angle of 45o . The angle 

of shear is [MP PMT 1990] 

(a) 0.09o
 (b) 0.9o (c) 9o (d)  90o 

74. The end of a wire of length 0.5m and radius 10–3m is twisted through 0.80 radian. The shearing strain at the surface of wire will be 

(a) 1.6 103 (b) 1.6 10 3 (c) 16 103 (d) 16 106 

75.      Two cylinders A and B of the  same material have same length, their radii  being in the ratio of 1 : 2 respectively. The  two are 

joined in series. The upper end of A is rigidly fixed. The lower end of B is twisted through an angle , the angle of twist of the 

cylinder A is fig. 

 
(a) 

15 



16 

 
(b) 

16 



15 

 
(c) 

16 



17 

 
(d) 

17 



16 
 

 

76. If the interatomic spacing in a steel wire is 3.0Å and Ysteel  20 1010 N / m 2 , then force constant is 
 

(a) 6 10 2 N / Å 
 

(b) 6 10 9 N / Å 
 

(c) 4 10 5 N / Å 
 

(d) 6 10 5 N / Å 

77. The Young’s modulus of a metal is 1.2 1011 N / m2 

between the atoms of the metal is 

and the inter-atomic force constant is 3.6 10 9 N / Å . The mean distance 

(a)   2Å (b)   3 Å (c)   4.5 Å (d)   5 Å 

Problems based on relation between Y, , K and 

Problems based on Torsion 

Problems based on Interatomic force constant 
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78. The interatomic distance for a metal is 

modulus in N / m 2 will be 

3 10 10m . If the interatomic force constant is 3.6 10 9 N / Å , then the Young’s 

(a) 1.2 1011 (b) 4.2 1011 (c) 10.8 1019 (d) 2.4 1010 

 

79. A particle of mass m is under the influence of a force F which varies with the displacement x according to the relation 
F  kx  F0 in which k and F0 are constants. The particle when disturbed will oscillate 

(a) About x = 0, with  

(c) About x = F0/k with  

(b) About x = 0,with  

(d) About x = F0/k with  

80. The extension in a string obeying Hooke’s law is x. The speed of sound in the stretched string is v. If the extension in the string is 
increased to 1.5x, the speed of sound will be [IIT 1996] 

(a)   1.22 v (b)   0.61 v (c)   1.50 v (d)   0.75 v 

81. Railway lines and girders for buildings, are I shaped, because 

(a) The bending of a girder is inversely proportional to depth, hence high girder bends less 

(b) The coefficient of rigidity increases by this shape 

(c) Less volume strain is caused 

(d) This keeps the surface smooth 

82. If Young’s modulus for a material is zero, then the state of material should be 
 

 (a)   Solid (b) Solid but powder (c) Gas (d) None of the above 

83. The elasticity of invar   

 (a) Increases with temperature rise (b) Decreases with temperature rise 

 (c) Does not depend on temperature (d) None of the above 

84. For the same cross-sectional area and for a given load, the ratio of depressions for the beam of square cross-section and circular 
cross-section is 

(a)    : 3 (b)    : 1 (c)   3 :  (d)   1 : 

85. A uniform rod of mass m, length L, area of cross-section A is rotated about an axis passing through one of its ends and 
perpendicular to its length with constant angular velocity  in a horizontal plane. If Y is the Young’s modulus of the material of 
rod, the increase in its length due to rotation of rod is 

 
(a) 

m  2 
L

2
 

AY 

 
(b) 

m  2 
L

2
 

 

2 AY 

 
(c) 

m  2 
L

2
 

 

3 AY 

 
(d) 

2m  2 
L

2
 

AY 

86. A steel wire is suspended vertically from a rigid support. When loaded with a weight in air, it extends by la and when the weight is 
immersed completely in water, the extension is reduced to lw. Then the relative density of the material of the weight is 

(a) 
la

 
lw 

 
(b) (b) 

la 
 

la  lw 

 
(c)  

la 
 

la  lw 
(d) 

lw
 

la 

87. The twisting couple per unit twist for a solid cylinder of radius 4.9 cm is 0.1 N-m. The twisting couple per unit twist for a hollow 
cylinder of same material with outer and inner radii of 5 cm and 4 cm respectively, will be 

(a)   0.64 N-m (b)   0.64  10–1 N-m (c)   0.64  10–2 N-m (d)   0.64  10–3  N-m 
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c c c d b c d d c b 

31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 

a a a b c c b b c c 

41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 

b d b d c a d d d c 

51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 

b c b a c b d a a b 

61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 

a c c a a b b a a d 

71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 

c b a a c b b a c a 

81. 82. 83. 84. 85. 86. 87.  

a b c c c b b 
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