19. Indefinite Integrals # Exercise 19.2 # 1. Question Evaluate the following integrals: $$\int \left(3x\sqrt{x} + 4\sqrt{x} + 5\right) dx$$ #### **Answer** Given: $$\int (3x\sqrt{x} + 4\sqrt{x} + 5) dx$$ By Splitting, we get, $$\Rightarrow \int ((3x\sqrt{x})dx + (4\sqrt{x})dx + 5dx)$$ $$\Rightarrow \int 3x\sqrt{x}dx + \int 4\sqrt{x}dx + \int 5dx$$ $$\Rightarrow \int 3x^{\frac{3}{2}} dx + \int 4x^{(\frac{1}{2})} d + \int 5dx$$ By using the formula, $\int x^n dx = \frac{x^{n+1}}{n+1}$ $$\Rightarrow \frac{3x^{\frac{3}{2}+1}}{\frac{3}{2}+1} + \frac{4x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + \int 5dx$$ $$\int kdx = kx + c$$ $$\Rightarrow \frac{3x^{\frac{5}{2}}}{5/2} + \frac{4x^{\frac{3}{2}}}{5/2} + 5x + c$$ $$\Rightarrow \frac{6}{5}x^{\frac{5}{2}} + \frac{4}{5}x^{3/2} + 5x + c$$ ### 2. Question Evaluate the following integrals: $$\int \left(2^x + \frac{5}{x} - \frac{1}{x^{1/3}}\right) \mathrm{d}x$$ # Answer Given: $$\int \left(2^x + \frac{5}{x} - \frac{1}{x^{1/3}}\right) dx$$ By Splitting them, we get, $$\Rightarrow \int 2^x dx + \int \left(\frac{5}{x}\right) dx - \int \frac{1}{x^{1/3}} dx$$ By using the formula, $$\int a^x dx = \frac{a^x}{loga}$$ $$\Rightarrow \frac{2^{x}}{\log 2} + 5 \int \left(\frac{1}{x}\right) dx - \int x^{-1/3} dx$$ By using the formula, $$\int \left(\frac{1}{x}\right) dx = \log x$$ $$\Rightarrow \frac{2^{x}}{\log 2} + 5\log x - \int x^{-1/3} dx$$ By using the formula, $$\int x^n\,dx=\frac{x^{n+1}}{n+1}$$ $$\Rightarrow \frac{2^{x}}{\log 2} + 5\log x - \frac{x^{-\frac{1}{3}+1}}{-\frac{1}{3}+1}$$ $$\Rightarrow \frac{2^{x}}{\log 2} + 5\log x - \frac{x^{\frac{2}{3}}}{2/3}$$ $$\Rightarrow \frac{2^{x}}{\log 2} + 5\log x - \frac{3}{2}x^{2/3} + c$$ # 3. Question Evaluate the following integrals: $$\int \left\{ \sqrt{x} \left(ax^2 + bx + c \right) \right\} dx$$ ### **Answer** #### Given: $$\int \{\sqrt{x(ax^2 + bx + c)}\} dx$$ $$\Rightarrow \int (\sqrt{xax^2} + \sqrt{xbx} + \sqrt{xc}) \, dx$$ By Splitting, we get, $$\Rightarrow a \int x^2 \times x^{\frac{1}{2}} dx + b \int x^1 \times x^{\frac{1}{2}} dx + c \int x^{1/2} dx$$ $$\Rightarrow a \int x^{\frac{5}{2}} dx + b \int x^{\frac{3}{2}} dx + c \int x^{\frac{1}{2}} dx$$ By using the formula $$\int x^n dx = \frac{x^{n+1}}{n+1}$$ $$\Rightarrow \frac{ax^{\frac{5}{2}+1}}{\frac{5}{2}+1} + \frac{bx^{\frac{3}{2}+1}}{\frac{3}{2}+1} + \frac{cx^{\frac{1}{2}+1}}{\frac{1}{2}+1} + c$$ $$\Rightarrow \frac{ax^{\frac{7}{2}}}{7/2} + \frac{bx^{\frac{5}{2}}}{5/2} + \frac{cx^{\frac{3}{2}}}{3/2} + c$$ Evaluate the following integrals: $$\int (2-3x)(3+2x)(1-2x)dx$$ #### **Answer** #### Given: $$\Rightarrow \int (2 - 3x)(3 + 2x)(1 - 2x)dx$$ By multiplying, $$\Rightarrow \int (6 - 4x - 9x - 6x^2) dx$$ $$\Rightarrow (6 - 13x - 6x^2) dx$$ By Splitting, we get, $$\Rightarrow \int 6dx - \int 13 x dx - \int 6x^2 dx$$ By using the formulas, $$\int x^n dx = \frac{x^{n+1}}{n+1} \text{ and }$$ $$\int kdx = kx + c$$ We get, $$\Rightarrow 6x - \frac{13x^{1+1}}{1+1} - \frac{6x^{2+1}}{2+1} + c$$ $$\Rightarrow 6x - \frac{13x^2}{2} - \frac{6x^3}{3} + c$$ ### 5. Question Evaluate the following integrals: $$\int \left(\frac{m}{x} + \frac{x}{m} + m^x + x^m + mx\right) dx$$ ### **Answer** #### Given: $$\int \left(\frac{m}{x} + \frac{x}{m} + m^x + x^m + mx\right) dx$$ By Splitting, we get, $$\Rightarrow \int \frac{m}{x} \, dx + \int \frac{x}{m} \, dx + \int x^m dx + \int m^x dx + \int mx dx$$ By using formula, $$\int \frac{1}{x} dx = \log x + c$$ $$\Rightarrow mlogx + \frac{1}{m} \int x dx + \int x^m dx + \int m^x dx + \int mx dx$$ By using the formula, $$\int x^n \, dx = \frac{x^{n+1}}{n+1}$$ $$\Rightarrow$$ mlogx $+\frac{\frac{1}{m}x^{1+1}}{1+1} + \frac{x^{m+1}}{m+1} + \int m^x dx + \frac{mx^{1+1}}{1+1}$ By using the formula, $$\int a^x dx = \frac{a^x}{loga}$$ $$\Rightarrow mlogx + \frac{\frac{1}{m}x^2}{2} + \frac{x^{m+1}}{m+1} + \frac{m^x}{logm} + \frac{mx^2}{2} + c$$ ### 6. Question Evaluate the following integrals: $$\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 dx$$ # **Answer** Given: $$\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 dx$$ By applying $(a - b)^2 = a^2 - 2ab + b^2$ $$\Rightarrow \int \left(\left(\sqrt{x} \right)^2 + \left(\frac{1}{\sqrt{x}} \right)^2 - 2 \left(\sqrt{x} \right) \left(\frac{1}{\sqrt{x}} \right) \right) dx$$ $$\Rightarrow \int\!\left(\left(\sqrt{x}\right)^2 + \left(\frac{1}{\sqrt{x}}\right)^2 - 2\!\left(\sqrt{x}\right)\!\left(\frac{1}{\sqrt{x}}\right)\right)\!dx$$ After computing, $$\Rightarrow \int \left(x + \frac{1}{x} - 2\right) dx$$ By Splitting, we get, $$\Rightarrow \int x dx + \int \frac{1}{x} dx - 2 \int dx$$ By applying the formulas: $$\int x^n \, dx = \frac{x^{n+1}}{n+1}$$ $$\int \left(\frac{1}{x}\right) dx = \log x$$ $$\int \mathbf{k} d\mathbf{x} = \mathbf{k} \mathbf{x} + \mathbf{c}$$ We get, $$\Rightarrow \frac{X^{1+1}}{1+1} + \log X - 2X + cI = 1/2 x^2 + \log X - 2X + c$$ Evaluate the following integrals: $$\int \frac{(1+x)^3}{\sqrt{x}} \, dx$$ **Answer** Given: $$\int \frac{(1+x)^3}{\sqrt{x}} \, \mathrm{d}x$$ Applying: $(a + b)^3 = a^3 + b^3 + 3ab^2 + 3a^2b$ $$\Rightarrow \int \frac{1+x^3+3x^2\times 1+3\times 1^2\times x}{\sqrt{x}} dx$$ $$\Rightarrow \int \frac{1+x^3+3x^2+3x}{\sqrt{x}} dx$$ By Splitting, we get, $$\Rightarrow \int \frac{1}{\sqrt{x}} dx + \int \frac{x^3}{\sqrt{x}} dx + \int \frac{3x^2}{\sqrt{x}} dx + \int \frac{3x}{\sqrt{x}} dx$$ $$\Rightarrow \int x^{-\frac{1}{2}} dx + \int x^3 \times x^{-\frac{1}{2}} dx + \int 3x^2 \times x^{-\frac{1}{2}} dx + \int 3x \times x^{-\frac{1}{2}} dx$$ $$\Rightarrow \int x^{-\frac{1}{2}} dx + \int x^{\frac{5}{2}} dx + 3 \int x^{\frac{3}{2}} dx + 3 \int x^{\frac{1}{2}} dx$$ By applying formula, $$\int x^{n} dx = \frac{x^{n+1}}{n+1}$$ $$\Rightarrow \frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + \frac{x^{\frac{5}{2}+1}}{\frac{5}{2}+1} + 3\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1} + \frac{3x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + c$$ $$\Rightarrow \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + \frac{x^{\frac{7}{2}}}{\frac{7}{2}} + \frac{3x^{\frac{5}{2}}}{\frac{5}{2}} + \frac{3x^{\frac{3}{2}}}{\frac{3}{2}} + c$$ ### 8. Question Evaluate the following integrals: $$\int \left\{ x^2 + e^{\log x} + \left(\frac{e}{2}\right)^x \right\} dx$$ **Answer** Given: $$\int \left\{ x^2 + e^{\log x} + \left(\frac{e}{2}\right)^x \right\} dx$$ By Splitting, we get, $$\Rightarrow \int x^2 dx + \int e^{logx} dx + \int \left(\frac{e}{2}\right)^x dx$$ By applying formula, $$\begin{split} &\int x^n \, dx = \frac{x^{n+1}}{n+1} \\ &\Rightarrow \frac{x^{2+1}}{2+1} + \int e^{\log_e x} dx + \int \left(\frac{e}{2}\right)^x dx \\ &\Rightarrow \frac{x^3}{3} + \int x \, dx + \frac{1}{\log\left(\frac{e}{2}\right)} \log\left(\frac{e}{2}\right)^x \\ &\Rightarrow \frac{x^3}{3} + \int x dx + \frac{1}{\log\left(\frac{e}{2}\right)} \log\left(\frac{e}{2}\right)^x \\ &\Rightarrow \frac{x^3}{3} + \frac{x^2}{2} + \frac{1}{\log\left(\frac{e}{2}\right)} \log\left(\frac{e}{2}\right)^x + c \end{split}$$ #### 9. Question Evaluate the following integrals: $$\int (x^e + e^x + e^e) dx$$ #### **Answer** # Given: $$\int (x^e + e^x + e^e) dx$$ By Splitting, we get, $$\Rightarrow \int x^e dx + \int e^x dx + \int e^e dx$$ By using the formula, $$\int x^{n} dx = \frac{x^{n+1}}{n+1}$$ $$\Rightarrow \frac{x^{e+1}}{e+1} + \int e^{x} dx + \int e^{e} dx$$ By applying the formula, $$\int a^{x} dx = \frac{a^{x}}{\log a}$$ $$\Rightarrow \frac{x^{e+1}}{e+1} + \frac{e^{x}}{\log_{e} e} + \int e^{e} dx$$ We know that, $$\int kdx = kx + c$$ $$\Rightarrow \frac{x^{e+1}}{e+1} + \frac{e^x}{\log_e e} + e^e x + c$$ $$\Rightarrow \frac{x^{e+1}}{e+1} + \frac{e^x}{\log_e e} + e^e x + c$$ # 10. Question Evaluate the following integrals: $$\int \sqrt{x} \left(x^3 - \frac{2}{x} \right) dx$$ # Answer Given: $$\int \sqrt{x} \left(x^3 - \frac{2}{x} \right) dx$$ Opening the bracket, we get, $$\Rightarrow \int (x^{\frac{1}{2}} \times x^3 - x^{\frac{1}{2}} \times \frac{2}{x}) dx$$ $$\Rightarrow \int (x^{\frac{1}{2}+3} - x^{\frac{1}{2}-1} \times 2) dx$$ $$\Rightarrow \int (x^{\frac{7}{2}} - 2x^{-\frac{1}{2}}) dx$$ By multiplying, $$\Rightarrow \int x^{\frac{7}{2}} dx - 2 \int x^{-\frac{1}{2}} dx$$ By applying the formula, $$\int x^n \, dx = \frac{x^{n+1}}{n+1}$$ $$\Rightarrow \frac{x^{\frac{7}{2}+1}}{\frac{7}{2}+1} - 2\frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + c$$ $$\Rightarrow \frac{X^{\frac{9}{2}}}{\frac{9}{2}} - 2\frac{X^{\frac{1}{2}}}{\frac{1}{2}} + c$$ $$\Rightarrow \frac{2x^{\frac{9}{2}}}{9} - 4x^{\frac{1}{2}} + c$$ # 11. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{x}} \left(1 + \frac{1}{x} \right) dx$$ #### Answer Given: $$\int \frac{1}{\sqrt{x}} \left\{ 1 + \frac{1}{x} \right\} dx$$ By multiplying $\frac{1}{\sqrt{x}}$ with inside brackets, $$\Rightarrow \int \left\{ \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{x}} \times \frac{1}{x} \right\} dx$$ $$\Rightarrow \int \left\{ \frac{1}{v_{2}^{\frac{1}{2}}} + \frac{1}{v_{2}^{\frac{1}{2}}} \times \frac{1}{x} \right\} dx$$ $$\Rightarrow \int \left\{ \frac{1}{x^{\frac{1}{2}}} + \frac{1}{x^{\frac{1}{2}+1}} \right\} dx$$ $$\Rightarrow \int \left\{ \frac{1}{x^{\frac{1}{2}}} + \frac{1}{x^{\frac{3}{2}}} \right\} dx$$ By Splitting them, we get, $$\Rightarrow \int x^{-\frac{1}{2}} dx + \int x^{-\frac{3}{2}} dx$$ By applying the formula, $$\int x^n \, dx = \frac{x^{n+1}}{n+1}$$ $$\Rightarrow \frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + \frac{x^{-\frac{3}{2}+1}}{-\frac{3}{2}+1} + c$$ $$\Rightarrow \frac{X^{\frac{1}{2}}}{\frac{1}{2}} + \frac{X^{-\frac{1}{2}}}{-\frac{1}{2}} + c$$ $$\Rightarrow 2x^{\frac{1}{2}} - 2x^{-\frac{1}{2}} + c$$ # 12. Question Evaluate the following integrals: $$\int \frac{x^6 + 1}{x^2 + 1} dx$$ # Answer Given: $$\int \frac{x^6 + 1}{x^2 + 1} dx$$ By applying: $a^3 + b^3 = (a + b)(a^2 + b^2 - ab)$ $$\Rightarrow \int \frac{(x^2)^3 + (1)^3}{x^2 + 1} dx$$ $$\Rightarrow \int \frac{(x^2+1)((x^2)^2+(1)^2-x^2\times 1)}{(x^2+1)} dx$$ $$\Rightarrow \int \frac{(x^2+1)(x^4+1-x^2)}{x^2+1} dx$$ $$\Rightarrow \int (x^4 + 1 - x^2) \, \mathrm{d}x$$ By Splitting $$\Rightarrow \int x^4 dx + 1 \int dx - \int x^2 dx$$ By using the formula, $$\int
x^n dx = \frac{x^{n+1}}{n+1}$$ $$\int kdx = kx + c$$ $$\Rightarrow \frac{x^{5+1}}{5+1} + x - \frac{x^{3+1}}{3+1} + c$$ $$\Rightarrow \frac{x^6}{6} + x - \frac{x^4}{4} + c$$ Evaluate the following integrals: $$\int \frac{x^{-1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx$$ ### **Answer** #### Given: $$\int \frac{x^{-\frac{1}{2}} + \sqrt{x} + 2}{\sqrt[3]{x}} dx$$ By Splitting them, $$\begin{split} &\Rightarrow \int \frac{x^{-\frac{1}{3}}}{\sqrt[3]{x}} dx + \int \frac{\sqrt{x}}{\sqrt[3]{x}} dx + \int \frac{2}{\sqrt[3]{x}} dx \\ &\Rightarrow \int x^{-\frac{1}{3}} \times x^{-\frac{1}{3}} dx + \int x^{\frac{1}{2}} \times x^{-\frac{1}{3}} dx + 2 \int x^{-\frac{1}{3}} dx \\ &\Rightarrow \int x^{-\frac{1}{3} - \frac{1}{3}} dx + \int x^{\frac{1}{2} - \frac{1}{3}} dx + 2 \int x^{-\frac{1}{3}} dx \\ &\Rightarrow \int x^{-\frac{1}{2} - \frac{1}{3}} dx + \int x^{\frac{5}{6}} dx + 2 \int x^{-\frac{1}{3}} dx \end{split}$$ By applying the formula, $$\int x^n dx = \frac{x^{n+1}}{n+1}$$ ### We get, $$\Rightarrow \frac{x^{-\frac{2}{3}+1}}{-\frac{2}{3}+1} + \frac{x^{\frac{5}{6}+1}}{\frac{5}{6}+1} + \frac{2x^{-\frac{1}{3}+1}}{-\frac{1}{3}+1} + c$$ $$\Rightarrow \frac{x^{\frac{1}{3}}}{\frac{1}{3}} + \frac{x^{\frac{11}{6}}}{\frac{11}{6}} + \frac{2x^{\frac{2}{3}}}{\frac{2}{3}} + c$$ $$\Rightarrow 3x^{\frac{1}{3}} + \frac{6x^{\frac{11}{6}}}{11} + 3x^{\frac{2}{3}} + c$$ # 14. Question Evaluate the following integrals: $$\int \frac{(1+\sqrt{x})^2}{\sqrt{x}} dx$$ #### **Answer** ### Given: $$\int \frac{\left(1+\sqrt{x}\right)^2}{\sqrt{x}} \, dx$$ By applying $(a + b)^2 = a^2 + b^2 + 2ab$ $$\Rightarrow \int \frac{(1)^2 + \left(\sqrt{x}\right)^2 + 2 \times 1 \times \sqrt{x}}{\sqrt{x}} dx$$ $$\Rightarrow \int \frac{1 + x + 2\sqrt{x}}{\sqrt{x}} dx$$ By Splitting, we get, $$\Rightarrow \int (\frac{1}{\sqrt{x}} + \frac{x}{\sqrt{x}} + \frac{2\sqrt{x}}{\sqrt{x}}) dx$$ $$\Rightarrow \int x^{-\frac{1}{2}} dx + \int x \times x^{-\frac{1}{2}} dx + 2 \int dx$$ $$\Rightarrow \frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + \int x^{1-\frac{1}{2}} dx + 2x + c$$ $$\Rightarrow \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + \int x^{\frac{1}{2}} dx + 2x + c$$ $$\Rightarrow 2x^{\frac{1}{2}} + \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + 2x + c$$ $$\Rightarrow 2x^{\frac{1}{2}} + \frac{2x^{\frac{3}{2}}}{3} + 2x + c$$ #### 15. Question Evaluate the following integrals: $$\int \sqrt{x(3-5x)} dx$$ ### **Answer** Given: $$\int \sqrt{x}(3-5x)dx$$ By multiplying \sqrt{x} inside the bracket we get, $$\Rightarrow \int (3\sqrt{x} - 5x\sqrt{x})dx$$ $$\Rightarrow \int \left(3x^{\frac{1}{2}} - 5x^{1} \times x^{\frac{1}{2}}\right) dx$$ $$\Rightarrow \int (3x^{\frac{1}{2}} - 5x^{1 + \frac{1}{2}}) dx$$ $$\Rightarrow \int (3x^{\frac{1}{2}} - 5x^{\frac{3}{2}}) dx$$ By Splitting, we get, $$\Rightarrow 3 \int x^{\frac{1}{2}} dx - 5 \int x^{\frac{3}{2}} dx$$ By using the formula, $$\int x^n \, dx = \frac{x^{n+1}}{n+1}$$ $$\Rightarrow \frac{3x^{\frac{1}{2}+1}}{\frac{1}{2}+1} - \frac{5x^{\frac{3}{2}+1}}{\frac{3}{2}+1} + c$$ $$\Rightarrow \frac{3x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{5x^{\frac{5}{2}}}{\frac{5}{2}} + c$$ $$\Rightarrow 2x^{\frac{3}{2}} - 2x^{\frac{5}{2}} + c$$ # 16. Question Evaluate the following integrals: $$\int \frac{(x+1)(x-2)}{\sqrt{x}} \, dx$$ ### **Answer** #### Given: $$\int \frac{(x+1)(x-2)}{\sqrt{x}} \, \mathrm{d}x$$ $$\Rightarrow \int \frac{x^2 - 2x + x - 2}{\sqrt{x}} dx$$ $$\Rightarrow \int \frac{x^2 - x - 2}{\sqrt{x}} dx$$ By Splitting, $$\Rightarrow \int \frac{x^2}{\sqrt{x}} dx - \int \frac{x}{\sqrt{x}} dx - \int \frac{2}{\sqrt{x}} dx$$ $$\Rightarrow \int x^2 \times x^{-\frac{1}{2}} dx - \int x \times x^{-\frac{1}{2}} dx - 2 \int x^{-\frac{1}{2}} dx$$ $$\Rightarrow \int x^{2-\frac{1}{2}} dx - \int x^{1-\frac{1}{2}} dx - 2 \int x^{-\frac{1}{2}} dx$$ $$\Rightarrow \int x^{\frac{3}{2}} dx - \int x^{\frac{1}{2}} dx - 2 \int x^{-\frac{1}{2}} dx$$ By applying the formula, $$\int x^n\,dx=\frac{x^{n+1}}{n+1}$$ $$\Rightarrow \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1} - \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} - \frac{2x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + c$$ $$\Rightarrow \frac{X^{\frac{5}{2}}}{\frac{5}{2}} - \frac{X^{\frac{3}{2}}}{\frac{3}{2}} - \frac{2X^{\frac{1}{2}}}{\frac{1}{2}} + c$$ $$\Rightarrow \frac{2}{5}x^{\frac{5}{2}} - \frac{2}{3}x^{\frac{2}{2}} - 4x^{\frac{1}{2}} + c$$ Evaluate the following integrals: $$\int \frac{x^5 + x^{-2} + 2}{x^2} dx$$ ### **Answer** # Given: $$\int \frac{x^5 + x^{-2} + 2}{x^2} \, dx$$ By Splitting, we get, $$\Rightarrow \int \left(\frac{x^5}{x^2} + \frac{x^{-2}}{x^2} + \frac{2}{x^2}\right) dx$$ $$\Rightarrow \int (x^5 \times x^{-2} + x^{-2} \times x^{-2} + 2 \times x^{-2}) dx$$ By applying, $$\Rightarrow \int (x^{5-2} + x^{-2-2} + 2x^{-2}) dx$$ $$\Rightarrow \int (x^3 + x^{-4} + 2x^{-2}) dx$$ By Splitting, we get, $$\Rightarrow \int x^3 dx + \int x^{-4} dx + 2 \int x^{-2} dx$$ By applying the formula, $$\int x^n dx = \frac{x^{n+1}}{n+1}$$ $$\Rightarrow \frac{x^{3+1}}{3+1} + \frac{x^{-4+1}}{-4+1} + \frac{2x^{-2+1}}{-2+1} + c$$ $$\Rightarrow \frac{x^4}{4} + \frac{x^{-3}}{-3} + \frac{2x^{-1}}{-1} + c$$ ### 18. Question Evaluate the following integrals: $$\int (3x + 4)^2 dx$$ ### **Answer** #### Given: $$\int (3x+4)^2 dx$$ By applying, $$(a + b)^2 = a^2 + b^2 + 2ab$$ $$\Rightarrow \int ((3x)^2 + 4^2 + 2 \times 3x \times 4) dx$$ $$\Rightarrow \int (9x^2 + 16 + 24x) dx$$ By Splitting, we get, $$\Rightarrow \int 9x^2 dx + \int 16 dx + \int 24x dx$$ $$\Rightarrow 9 \int x^2 + 16 \int dx + 24 \int x dx$$ By applying, $$\int x^n dx = \frac{x^{n+1}}{n+1}$$ $$\int kdx = kx + c$$ $$\Rightarrow \frac{9x^{2+1}}{2+1} + 16x + \frac{24x^{1+1}}{1+1} + c$$ $$\Rightarrow \frac{9}{3}x^3 + 16x + \frac{24}{2}x^2 + c$$ $$\Rightarrow 3x^3 + 16x + 12x^2 + c$$ ### 19. Question Evaluate the following integrals: $$\int \frac{2x^4 + 7x^3 + 6x^2}{x^2 + 2x} dx$$ # **Answer** #### Given: $$\int \frac{2x^4 + 7x^3 + 6x^2}{x^2 + 2x} dx$$ Take x is common on both numerator and denominator, $$\Rightarrow \int \frac{x(2x^3 + 7x^2 + 6x)}{x(x+2)} dx$$ $$\Rightarrow \int \frac{2x^3 + 7x^2 + 6x}{x + 2} dx$$ Splitting $7x^2$ into $4x^2$ and $3x^2$ $$\Rightarrow \int \frac{2x^3 + 4x^2 + 3x^2 + 6x}{x + 2} dx$$ Common the $2x^2$ from first two elements and 3x from next elements, $$\Rightarrow \int \frac{2x^2(x+2) + 3x(x+2)}{x+2} dx$$ Now common the x + 2 from the elements $$\Rightarrow \int \frac{(x+2)(2x^2+3x)}{x+2} dx$$ $$\Rightarrow \int (2x^2 + 3x) dx$$ Now Splitting, we get, $$\Rightarrow \int 2x^2 dx + \int 3x dx$$ Now applying the formula, $$\Rightarrow \frac{2x^{2+1}}{2+1} + \frac{3x^{1+1}}{1+1} + c$$ $$\Rightarrow \frac{2x^3}{3} + 3x + c$$ # 20. Question Evaluate the following integrals: $$\int \frac{5x^4 + 12x^3 + 7x^2}{x^2 + x} dx$$ #### **Answer** Given: $$\int \frac{5x^4 + 12x^3 + 7x^2}{x^2 + x} dx$$ Now spilt $12x^3$ into $7x^3$ and $5x^3$ $$\Rightarrow \int \frac{5x^4 + 7x^3 + 5x^3 + 7x^2}{x^2 + x} dx$$ Now common $5x^3$ from two elements 7x from other two elements, $$\Rightarrow \int \frac{5x^2(x+1) + 7x(x+1)}{x^2 + x} dx$$ $$\Rightarrow \frac{\int (5x^2 + 7x)(x+1)}{x(x+1)} dx$$ $$\Rightarrow \int (5x^2 + 7x) dx$$ Now Splitting, we get, $$\Rightarrow \int 5x^2 dx + \int 7x dx$$ $$\Rightarrow \frac{5x^{2+1}}{2+1} + \frac{7x^{1+1}}{1+1} + c$$ $$\Rightarrow \frac{5x^3}{3} + \frac{7x^2}{2} + c$$ #### 21. Question Evaluate the following integrals: $$\int \frac{\sin^2 x}{1+\cos^2 x} dx$$ # **Answer** # Given: $$\int \frac{\sin^2 x}{1 + \cos x} dx$$ We know that, $$\sin^2 x = 1 - \cos^2 x$$ $$\Rightarrow \int \frac{1 - \cos^2 x}{1 + \cos x} \, dx$$ We treat $1 - \cos^2 x$ as $a^2 - b^2 = (a + b)(a - b)$ $$\Rightarrow \int \frac{(1)^2 - (\cos x)^2}{1 + \cos x} dx$$ $$\Rightarrow \int \frac{(1+\cos x)(1-\cos x)}{1+\cos x} dx$$ $$\Rightarrow \int (1-\cos x)dx$$ By Splitting, we get, $$\Rightarrow \int dx - \int \cos x \, dx$$ We know that, $$\int kdx = kx + c$$ $$\int \cos x \, dx = \sin x$$ $$\Rightarrow$$ x - sin x + c ### 22. Question Evaluate the following integrals: $$\int (se^2x + cosec^2x) dx$$ #### **Answer** ### Given: $$\int (\sec^2 x + \csc^2 x) dx$$ By Splitting, we get, $$\Rightarrow \int \sec^2 x \, dx + \int \csc^2 x dx$$ By applying the formula, $$\int \sec^2 x \, dx = \tan x$$ $$\int codec^2x dx = -cotx$$ $$\Rightarrow$$ tan x - cot x + c Evaluate the following integrals: $$\int \frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx$$ ### **Answer** #### Given: $$\int \frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx$$ By Splitting, we get, $$\Rightarrow \int \left(\frac{\sin^3 x}{\sin^2 x \cos^2 x} - \frac{\cos^3 x}{\sin^2 x \cos^2 x}\right) dx$$ By cancelling the $\sin^2 x$ on first and $\cos^2 x$ on second, $$\Rightarrow \int (\frac{\sin x}{\cos^2 x} - \frac{\cos x}{\sin^2 x}) dx$$ We know that, $$\frac{\sin x}{\cos x} = \tan x$$ $$\frac{\cos x}{\sin x} = \cot x$$ $$\frac{1}{\cos x} = \sec x$$ $$\frac{1}{\sin x} = \csc x$$ $$\Rightarrow \int (\tan x \sec x - \cot x \csc x) dx$$ We know that, $$\int \tan x \sec x \, dx = \sec x$$ $$\int \cot x \csc x dx = -\cot x$$ #### 24. Question Evaluate the following integrals: $$\int \frac{5\cos^3 x + 6\sin^3 x}{2\sin^2 x \cos^2 x} dx$$ #### **Answer** ### Given: $$\int \frac{5\cos^3 x + 6\sin^3 x}{2\sin^2 x \cos^2 x} dx$$ By Splitting we get, $$\Rightarrow \int \frac{5\cos^3 x}{2\sin^2 x \cos^2 x} dx + \int \frac{6\sin^3 x}{2\sin^2 x \cos^2 x} dx$$ $$\Rightarrow \frac{5}{2} \int \frac{\cos x \cos^2 x}{\sin^2 x \cos^2 x} dx + 3 \int \frac{\sin^2 x \sin^1 x}{\sin^2 x \cos^2 x} dx$$ $$\Rightarrow \frac{5}{2} \int \frac{\cos x}{\sin^2 x} dx + 3 \int \frac{\sin^1 x}{1 \cos^2 x} dx$$ We know that, $$\int 1 \frac{\cos x}{\sin x} dx = \cot x$$ $$\int \frac{\sin x}{\cos x} \, dx = \tan x$$ $$\int 1 \frac{1}{\sin x} \, dx = \sec x$$ $$\int 1 \frac{1}{\sin x} dx = \csc x$$ $$\Rightarrow \frac{5}{2} \int \cot x \csc x \, dx + 3 \int \sec x \tan x \, dx$$ We know that, $$\int \cot x \csc x dx = -\csc x$$ $$\int \sec x \tan x \, dx = \sec x$$ $$\Rightarrow \frac{5}{2}(-\csc x) + 3\sec x + c$$ $$I = -\frac{5}{2}\csc x + 3\sec x + c$$ # 25. Question
Evaluate the following integrals: $$\int (\tan x + \cot x)^2 dx$$ #### **Answer** # Given: $$I = \int (\tan x + \cot x)^{2} dx$$ $$\Rightarrow \int (\tan^{2} x + \cot^{2} x + 2 \tan x \cot x)^{1} dx$$ We know that, $$tan^2x = sec^2x - 1$$ $$\cot^2 x = \csc^2 x - 1$$ $$\tan x = \frac{1}{\cot x}$$ $$\Rightarrow \int \left(\sec^2 x - 1 + \csc^2 - 1 + \frac{2}{\cot x} \cot x \right) dx$$ $$\Rightarrow \int (\sec^2 x + \csc^2 x - 2 + 2) dx$$ $$\Rightarrow \int (\sec^2 x + \csc^2 x) dx$$ $$\Rightarrow \int \sec^2 x + \int \csc^2 x dx$$ We know that, $$\int \sec^2 x \, dx = \tan x$$ $$\int \csc^2 x dx = -\cot x$$ ### 26. Question Evaluate the following integrals: $$\int \frac{1-\cos 2x}{1+\cos 2x} dx$$ ### **Answer** Let $$I = \int \frac{1-\cos 2x}{1+\cos 2x} dx$$ We know $$cos2\theta = 1 - 2sin^2\theta = 2cos^2\theta - 1$$ Hence, in the numerator, we can write $1 - \cos 2x = 2\sin^2 x$ In the denominator, we can write $1 + \cos 2x = 2\cos^2 x$ Therefore, we can write the integral as $$I = \int \frac{2\sin^2 x}{2\cos^2 x} dx$$ $$\Rightarrow I = \int \frac{\sin^2 x}{\cos^2 x} dx$$ $$\Rightarrow I = \int \tan^2 x \, dx$$ $$\Rightarrow I = \int (\sec^2 x - 1) dx [\because \sec^2 \theta - \tan^2 \theta = 1]$$ $$\Rightarrow I = \int \sec^2 x \, dx - \int dx$$ Recall $$\int sec^2 x dx = tan x + c$$ and $\int dx = x + c$ $$\therefore I = \tan x - x + c$$ Thus, $$\int \frac{1-\cos 2x}{1+\cos 2x} dx = \tan x - x + c$$ ### 27. Question Evaluate the following integrals: $$\int \frac{\cos x}{1-\cos x} dx$$ #### **Answer** Let $$I = \int \frac{\cos x}{1 - \cos x} dx$$ On multiplying and dividing $(1 + \cos x)$, we can write the integral as $$I = \int \frac{\cos x}{1 - \cos x} \left(\frac{1 + \cos x}{1 + \cos x} \right) dx$$ $$\Rightarrow I = \int \frac{\cos x (1 + \cos x)}{(1 - \cos x)(1 + \cos x)} dx$$ $$\Rightarrow I = \int \frac{\cos x + \cos^2 x}{1 - \cos^2 x} dx$$ $$\Rightarrow I = \int \frac{\cos x + \cos^2 x}{\sin^2 x} dx \, [\because \sin^2 \theta + \cos^2 \theta = 1]$$ $$\Rightarrow I = \int \left(\frac{\cos x}{\sin^2 x} + \frac{\cos^2 x}{\sin^2 x} \right) dx$$ $$\Rightarrow I = \int \left(\frac{1}{\sin x} \times \frac{\cos x}{\sin x} + \frac{\cos^2 x}{\sin^2 x} \right) dx$$ $$\Rightarrow I = \int (\cos e c x \cot x + \cot^2 x) dx$$ $$\Rightarrow I = \int (\csc x \cot x + \csc^2 x - 1) dx [\because \csc^2 \theta - \cot^2 \theta = 1]$$ $$\Rightarrow I = \int \csc x \cot x \, dx + \int \csc^2 x \, dx - \int dx$$ Recall $$\int cosec^2 x dx = -cotx + c$$ and $\int dx = x + c$ We also have $\int \mathbf{cosecx} \, \mathbf{cotx} \, d\mathbf{x} = -\mathbf{cosecx} + \mathbf{c}$ $$\therefore I = -\cos c x - \cot x - x + c$$ Thus, $$\int \frac{\cos x}{1-\cos x} dx = -\csc x - \cot x - x + c$$ # 28. Question Evaluate the following integrals: $$\int \frac{\cos^2 x - \sin^2 x}{\sqrt{1 + \cos 4x}} dx$$ # **Answer** Let $$I = \int \frac{\cos^2 x - \sin^2 x}{\sqrt{1 + \cos 4x}} dx$$ We know $$\cos 2\theta = 2\cos^2 \theta - 1 = \cos^2 \theta - \sin^2 \theta$$ Hence, in the numerator, we can write $\cos^2 x - \sin^2 x = \cos^2 x$ In the denominator, we can write $4x = 2 \times 2x$ $$\Rightarrow$$ 1 + cos4x = 1 + cos(2×2x) $$\Rightarrow$$ 1 + cos4x = 2cos²2x Therefore, we can write the integral as $$I = \int \frac{\cos 2x}{\sqrt{2\cos^2 2x}} dx$$ $$\Rightarrow I = \int \frac{\cos 2x}{\sqrt{2}\cos 2x} dx$$ $$\Rightarrow I = \int \frac{1}{\sqrt{2}} \, dx$$ $$\Rightarrow I = \frac{1}{\sqrt{2}} \int dx$$ Recall $\int d\mathbf{x} = \mathbf{x} + \mathbf{c}$ $$\Rightarrow I = \frac{1}{\sqrt{2}} \times x + c$$ $$\therefore I = \frac{x}{\sqrt{2}} + c$$ Thus, $$\int \frac{\cos^2 x - \sin^2 x}{\sqrt{1 + \cos 4x}} dx = \frac{x}{\sqrt{2}} + c$$ #### 29. Ouestion Evaluate the following integrals: $$\int \frac{1}{1-\cos x} dx$$ #### **Answer** Let $$I = \int \frac{1}{1 - \cos x} dx$$ On multiplying and dividing $(1 + \cos x)$, we can write the integral as $$I = \int \frac{1}{1 - \cos x} \left(\frac{1 + \cos x}{1 + \cos x} \right) dx$$ $$\Rightarrow I = \int \frac{1 + \cos x}{(1 - \cos x)(1 + \cos x)} dx$$ $$\Rightarrow I = \int \frac{1 + \cos x}{1 - \cos^2 x} dx$$ $$\Rightarrow I = \int \frac{1 + \cos x}{\sin^2 x} dx \, [\because \sin^2 \theta + \cos^2 \theta = 1]$$ $$\Rightarrow I = \int \left(\frac{1}{\sin^2 x} + \frac{\cos x}{\sin^2 x} \right) dx$$ $$\Rightarrow I = \int \left(\frac{1}{\sin^2 x} + \frac{1}{\sin x} \times \frac{\cos x}{\sin x} \right) dx$$ $$\Rightarrow I = \int (\csc^2 x + \csc x \cot x) dx$$ $$\Rightarrow I = \int \csc^2 x \, dx + \int \csc x \cot x \, dx$$ Recall $$\int \mathbf{cosec}^2 \mathbf{x} \, d\mathbf{x} = -\mathbf{cot} \mathbf{x} + \mathbf{c}$$ We also have $\int \mathbf{cosec} \mathbf{x} \mathbf{cot} \mathbf{x} \, d\mathbf{x} = -\mathbf{cosec} \mathbf{x} + \mathbf{c}$ $$\therefore I = -\cot x - \csc x + c$$ Thus, $$\int \frac{1}{1-\cos x} dx = -\cot x - \csc x + c$$ Evaluate the following integrals: $$\int \frac{1}{1-\sin x} dx$$ #### **Answer** Let $$I = \int \frac{1}{1-\sin x} dx$$ On multiplying and dividing $(1 + \sin x)$, we can write the integral as $$I = \int \frac{1}{1 - \sin x} \left(\frac{1 + \sin x}{1 + \sin x} \right) dx$$ $$\Rightarrow I = \int \frac{1 + \sin x}{(1 - \sin x)(1 + \sin x)} dx$$ $$\Rightarrow I = \int \frac{1 + \sin x}{1 - \sin^2 x} dx$$ $$\Rightarrow I = \int \frac{1 + \sin x}{\cos^2 x} dx \left[\because \sin^2 \theta + \cos^2 \theta = 1 \right]$$ $$\Rightarrow I = \int \left(\frac{1}{\cos^2 x} + \frac{\sin x}{\cos^2 x} \right) dx$$ $$\Rightarrow I = \int \left(\frac{1}{\cos^2 x} + \frac{1}{\cos x} \times \frac{\sin x}{\cos x} \right) dx$$ $$\Rightarrow I = \int (\sec^2 x + \sec x \tan x) dx$$ $$\Rightarrow I = \int \sec^2 x \, dx + \int \sec x \tan x \, dx$$ Recall $$\int sec^2 x dx = tan x + c$$ We also have $\int sec x tan x dx = sec x + c$ $$\therefore I = \tan x + \sec x + c$$ Thus, $$\int \frac{1}{1-\sin x} dx = \tan x + \sec x + c$$ #### 31. Question Evaluate the following integrals: $$\int \frac{\tan x}{\sec x + \tan x} dx$$ # **Answer** Let $$I = \int \frac{\tan x}{\sec x + \tan x} dx$$ On multiplying and dividing (sec x – tan x), we can write the integral as $$I = \int \frac{\tan x}{\sec x + \tan x} \left(\frac{\sec x - \tan x}{\sec x - \tan x} \right) dx$$ $$\Rightarrow I = \int \frac{\tan x (\sec x - \tan x)}{(\sec x + \tan x)(\sec x - \tan x)} dx$$ $$\Rightarrow I = \int \frac{\sec x \tan x - \tan^2 x}{\sec^2 x - \tan^2 x} dx$$ $$\Rightarrow I = \int (\sec x \tan x - \tan^2 x) dx [\because \sec^2 \theta - \tan^2 \theta = 1]$$ $$\Rightarrow I = \int (\sec x \tan x - (\sec^2 x - 1)) dx$$ $$\Rightarrow I = \int (\sec x \tan x - \sec^2 x + 1) dx$$ $$\Rightarrow I = \int \sec x \tan x \, dx - \int \sec^2 x \, dx + \int dx$$ Recall $$\int sec^2 x dx = tan x + c$$ and $\int dx = x + c$ We also have $\int \mathbf{secx} \, \mathbf{tan} \, \mathbf{x} \, d\mathbf{x} = \mathbf{secx} + \mathbf{c}$ $$\therefore I = \sec x - \tan x + x + c$$ Thus, $$\int \frac{\tan x}{\sec x + \tan x} dx = \sec x - \tan x + x + c$$ #### 32. Ouestion Evaluate the following integrals: $$\int \frac{\cos e c x}{\cos e c x - \cot x} dx$$ #### **Answer** Let $$I = \int \frac{\text{cosecx}}{\text{cosecx-cotx}} dx$$ On multiplying and dividing (cosec $x + \cot x$), we can write the integral as $$I = \int \frac{cosecx}{cosecx - cotx} \left(\frac{cosecx + cotx}{cosecx + cotx} \right) dx$$ $$\Rightarrow I = \int \frac{\cos(x)(\csc(x) + \cot(x))}{(\csc(x) - \cot(x))(\csc(x) + \cot(x))} dx$$ $$\Rightarrow I = \int \frac{\csc^2 x + \csc x \cot x}{\csc^2 x - \cot^2 x} dx$$ $$\Rightarrow I = \int (\csc^2 x + \csc x \cot x) dx \, [\because \csc^2 \theta - \cot^2 \theta = 1]$$ $$\Rightarrow I = \int \csc^2 x \, dx + \int \csc x \cot x \, dx$$ $$\mathsf{Recall} \int \mathbf{cosec}^2 x \, dx = -\cot x + \mathbf{c}$$ We also have $\int \mathbf{cosecx} \, \mathbf{cotx} \, d\mathbf{x} = -\mathbf{cosecx} + \mathbf{c}$ $$\therefore I = -\cot x - \csc x + c$$ Thus, $$\int \frac{\cos cx}{\cos cx - \cot x} dx = -\cot x - \csc x + c$$ #### 33. Question Evaluate the following integrals: $$\int \frac{1}{1+\cos 2x} dx$$ # Answer Let $$I = \int \frac{1}{1 + \cos 2x} dx$$ We know $\cos 2\theta = 2\cos^2 \theta - 1$ Hence, in the denominator, we can write $1 + \cos 2x = 2\cos^2 x$ Therefore, we can write the integral as $$I = \int \frac{1}{2\cos^2 x} dx$$ $$\Rightarrow I = \frac{1}{2} \int \frac{1}{\cos^2 x} dx$$ $$\Rightarrow I = \frac{1}{2} \int \sec^2 x \, dx$$ Recall $\int \sec^2 x \, dx = \tan x + c$ $$:: I = \frac{1}{2}tanx + c$$ Thus, $$\int \frac{1}{1 + \cos 2x} dx = \frac{1}{2} \tan x + c$$ # 34. Question Evaluate the following integrals: $$\int \frac{1}{1-\cos 2x} dx$$ #### **Answer** Let $$I = \int \frac{1}{1-\cos^2 x} dx$$ We know $cos2\theta = 1 - 2sin^2\theta$ Hence, in the denominator, we can write $1 - \cos 2x = 2\sin^2 x$ Therefore, we can write the integral as $$I = \int \frac{1}{2\sin^2 x} dx$$ $$\Rightarrow I = \frac{1}{2} \int \frac{1}{\sin^2 x} dx$$ $$\Rightarrow I = \frac{1}{2} \int \csc^2 x \, dx$$ Recall $\int \mathbf{cosec}^2 x \, dx = -\mathbf{cot}x + \mathbf{c}$ $$\Rightarrow I = \frac{1}{2}(-\cot x) + c$$ $$:: I = -\frac{1}{2}cotx + c$$ Thus, $$\int \frac{1}{1-\cos 2x} dx = -\frac{1}{2} \cot x + c$$ # 35. Question Evaluate the following integrals: $$\int \tan^{-1} \left(\frac{\sin 2x}{1 + \cos 2x} \right) dx$$ ### Answer Let $$I = \int tan^{-1} \left(\frac{\sin 2x}{1 + \cos 2x} \right) dx$$ We know $\cos 2\theta = 2\cos^2 \theta - 1$ Hence, in the denominator, we can write $1 + \cos 2x = 2\cos^2 x$ In the numerator, we have sin2x = 2sinxcosx Therefore, we can write the integral as $$I = \int tan^{-1} \left(\frac{2 \sin x \cos x}{2 \cos^2 x} \right) dx$$ $$\Rightarrow I = \int tan^{-1} \left(\frac{\sin x}{\cos x} \right) dx$$ $$\Rightarrow I = \int tan^{-1}(tanx) \, dx$$ $$\Rightarrow I = \int x dx$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I = \frac{x^{1+1}}{1+1} + c$$ $$:: I = \frac{x^2}{2} + c$$ Thus, $$\int tan^{-1} \left(\frac{\sin 2x}{1 + \cos 2x} \right) dx =
\frac{x^2}{2} + c$$ # 36. Question Evaluate the following integrals: $$\int \cos^{-1}(\sin x) dx$$ #### **Answer** Let $$I = \int \cos^{-1}(\sin x) dx$$ We know $$sin\theta = cos(90^{\circ} - \theta)$$ $$I = \int cos^{-1} \left[cos \left(\frac{\pi}{2} - x \right) \right] dx$$ $$\Rightarrow I = \int \left(\frac{\pi}{2} - x\right) dx$$ $$\Rightarrow I = \int \frac{\pi}{2} \, dx - \int x dx$$ $$\Rightarrow I = \frac{\pi}{2} \int dx - \int x dx$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ and $\int dx = x + c$ $$\Rightarrow I = \frac{\pi}{2} \times x - \frac{x^{1+1}}{1+1} + c$$ $$\therefore I = \frac{\pi x}{2} - \frac{x^2}{2} + c$$ Thus, $$\int \cos^{-1}(\sin x) dx = \frac{\pi x}{2} - \frac{x^2}{2} + c$$ Evaluate the following integrals: $$\int cot^{-1} \left(\frac{\sin 2x}{1 - \cos 2x} \right) dx$$ #### **Answer** Let $$I = \int \cot^{-1} \left(\frac{\sin 2x}{1 - \cos 2x} \right) dx$$ We know $cos2\theta = 1 - 2sin^2\theta$ Hence, in the denominator, we can write $1 - \cos 2x = 2\sin^2 x$ In the numerator, we have sin2x = 2sinxcosx Therefore, we can write the integral as $$I = \int \cot^{-1} \left(\frac{2 \sin x \cos x}{2 \sin^2 x} \right) dx$$ $$\Rightarrow I = \int \cot^{-1} \left(\frac{\cos x}{\sin x} \right) dx$$ $$\Rightarrow I = \int \cot^{-1}(\cot x) \, dx$$ $$\Rightarrow I = \int x dx$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I = \frac{X^{1+1}}{1+1} + c$$ $$: I = \frac{x^2}{2} + c$$ Thus, $$\int \cot^{-1}\left(\frac{\sin 2x}{1-\cos 2x}\right)dx = \frac{x^2}{2} + c$$ #### 38. Question Evaluate the following integrals: $$\int \sin^{-1} \left(\frac{2 \tan x}{1 + \tan^2 x} \right) dx$$ #### **Answer** Let $$I = \int \sin^{-1} \left(\frac{2 \tan x}{1 + \tan^2 x} \right) dx$$ We know $$\sin 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta}$$ $$I = \int \sin^{-1}(\sin 2x) \, dx$$ $$\Rightarrow I = \int 2xdx$$ $$\Rightarrow I = 2 \int x dx$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I = 2 \times \frac{x^{1+1}}{1+1} + c$$ $$\Rightarrow I = 2 \times \frac{x^2}{2} + c$$ $$\therefore I = x^2 + c$$ Thus, $$\int \sin^{-1}\left(\frac{2\tan x}{1+\tan^2 x}\right) dx = x^2 + c$$ Evaluate the following integrals: $$\int \frac{\left(x^3+8\right)\left(x-1\right)}{x^2-2x+4} dx$$ #### **Answer** Let $$I = \int \frac{(x^2+8)(x-1)}{x^2-2x+4} dx$$ We know $$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$ Hence, in the numerator, we can write $$x^3 + 8 = x^3 + 2^3$$ $$\Rightarrow$$ x³ + 8 = (x + 2)(x² - x × 2 + 2²) $$\Rightarrow$$ x³ + 8 = (x + 2)(x² - 2x + 4) $$I = \int \frac{(x+2)(x^2-2x+4)(x-1)}{x^2-2x+4} dx$$ $$\Rightarrow I = \int (x+2)(x-1)dx$$ $$\Rightarrow I = \int (x^2 + x - 2) dx$$ $$\Rightarrow I = \int x^2 dx + \int x dx - \int 2 dx$$ $$\Rightarrow I = \int x^2 dx + \int x dx - 2 \int dx$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ and $\int dx = x + c$ $$\Rightarrow I = \frac{X^{2+1}}{2+1} + \frac{X^{1+1}}{1+1} - 2 \times X + C$$ $$\therefore I = \frac{x^3}{3} + \frac{x^2}{2} - 2x + c$$ Thus, $$\int \frac{(x^2+8)(x-1)}{x^2-2x+4} dx = \frac{x^3}{3} + \frac{x^2}{2} - 2x + c$$ Evaluate the following integrals: $$\int (a \tan x + b \cot x)^2 dx$$ ### **Answer** Let $$I = \int (a \tan x + b \cot x)^2 dx$$ We know $$(a + b)^2 = a^2 + 2ab + b^2$$ Therefore, we can write the integral as $$I = \int [(a \tan x)^2 + 2(a \tan x)(b \cot x) + (b \cot x)^2] dx$$ $$\Rightarrow I = \int (a^2 \tan^2 x + 2ab \tan x \cot x + b^2 \cot^2 x) dx$$ $$\Rightarrow I = \int (a^2 \tan^2 x + 2ab + b^2 \cot^2 x) dx \left[\because \cot \theta = \frac{1}{\tan \theta} \right]$$ We have $sec^2\theta - tan^2\theta = cosec^2\theta - cot^2\theta = 1$ $$\Rightarrow I = \int [a^2(sec^2x - 1) + 2ab + b^2(cosec^2x - 1)]dx$$ $$\Rightarrow I = \int (a^2 \sec^2 x - a^2 + 2ab + b^2 \csc^2 x - b^2) dx$$ $$\Rightarrow I = \int (a^2 \sec^2 x + b^2 \csc^2 x - a^2 + 2ab - b^2) dx$$ $$\Rightarrow I = \int (a^2 \sec^2 x + b^2 \csc^2 x - (a^2 - 2ab + b^2)) dx$$ $$\Rightarrow I = \int (a^2 \sec^2 x + b^2 \csc^2 x - (a - b)^2) dx$$ $$\Rightarrow I = \int a^2 \sec^2 x \, dx + \int b^2 \csc^2 x \, dx - \int (a-b)^2 dx$$ $$\Rightarrow I = a^2 \int \sec^2 x \, dx + b^2 \int \csc^2 x \, dx - (a - b)^2 \int dx$$ Recall $$\int sec^2\,x\,dx = tan\,x + c$$ and $\int dx = x + c$ We also have $$\int cosec^2x dx = -cotx + c$$ $$\Rightarrow I = a^2 \tan x + b^2 (-\cot x) - (a - b)^2 \times x + c$$ $$\therefore I = a^2 tan x - b^2 cot x - (a - b)^2 x + c$$ Thus, $$\int (a \tan x + b \cot x)^2 dx = a^2 \tan x - b^2 \cot x - (a - b)^2 x + c$$ # 41. Question Evaluate the following integrals: $$\int \frac{x^3 - 3x^2 + 5x - 7 + x^2 a^x}{2x^2} dx$$ **Answer** Let $$I = \int \frac{x^3 - 3x^2 + 5x - 7 + x^2 a^x}{2x^2} dx$$ ⇒ $I = \frac{1}{2} \int \frac{x^3 - 3x^2 + 5x - 7 + x^2 a^x}{x^2} dx$ ⇒ $I = \frac{1}{2} \int \left(\frac{x^3}{x^2} - \frac{3x^2}{x^2} + \frac{5x}{x^2} - \frac{7}{x^2} + \frac{x^2 a^x}{x^2}\right) dx$ ⇒ $I = \frac{1}{2} \int \left(x - 3 + \frac{5}{x} - \frac{7}{x^2} + a^x\right) dx$ ⇒ $I = \frac{1}{2} \int \left(x - 3 + \frac{5}{x} - 7x^{-2} + a^x\right) dx$ ⇒ $I = \frac{1}{2} \left[\int x dx - \int 3 dx + \int \frac{5}{x} dx - \int 7x^{-2} dx + \int a^x dx\right]$ ⇒ $I = \frac{1}{2} \left[\int x dx - 3 \int dx + 5 \int \frac{1}{x} dx - 7 \int x^{-2} dx + \int a^x dx\right]$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ and $\int dx = x + c$ We also have $$\int a^x dx = \frac{a^x}{\log a} + c$$ and $\int \frac{1}{x} dx = \log x + c$ $$\Rightarrow I = \frac{1}{2} \left[\frac{x^{1+1}}{1+1} - 3 \times x + 5 \times \log x - 7 \left(\frac{x^{-2+1}}{-2+1} \right) + \frac{a^x}{\log a} \right] + c$$ $$\Rightarrow I = \frac{1}{2} \left[\frac{x^2}{2} - 3x + 5 \log x + 7x^{-1} + \frac{a^x}{\log a} \right] + c$$ $$\therefore I = \frac{1}{2} \left[\frac{x^2}{2} - 3x + 5 \log x + \frac{7}{x} + \frac{a^x}{\log a} \right] + c$$ Thus, $$\int \frac{x^3 - 3x^2 + 5x - 7 + x^2 a^X}{2x^2} dx = \frac{1}{2} \left[\frac{x^2}{2} - 3x + 5 \log x + \frac{7}{x} + \frac{a^X}{\log a} \right] + c$$ #### 42. Ouestion Evaluate the following integrals: $$\int \frac{\cos x}{1 + \cos x} dx$$ # Answer Let $$I = \int \frac{\cos x}{1 + \cos x} dx$$ On multiplying and dividing $(1 - \cos x)$, we can write the integral as $$I = \int \frac{\cos x}{1 + \cos x} \left(\frac{1 - \cos x}{1 - \cos x} \right) dx$$ $$\Rightarrow I = \int \frac{\cos x (1 - \cos x)}{(1 + \cos x)(1 - \cos x)} dx$$ $$\Rightarrow I = \int \frac{\cos x - \cos^2 x}{1 - \cos^2 x} dx$$ $$\Rightarrow I = \int \frac{\cos x - \cos^2 x}{\sin^2 x} dx \, [\because \sin^2 \theta + \cos^2 \theta = 1]$$ $$\Rightarrow I = \int \left(\frac{\cos x}{\sin^2 x} - \frac{\cos^2 x}{\sin^2 x} \right) dx$$ $$\Rightarrow I = \int \left(\frac{1}{\sin x} \times \frac{\cos x}{\sin x} - \frac{\cos^2 x}{\sin^2 x} \right) dx$$ $$\Rightarrow I = \int (\csc x \cot x - \cot^2 x) dx$$ $$\Rightarrow I = \int (cosecx \cot x - cosec^2x + 1)dx \, [\because cosec^2\theta - cot^2\theta = 1]$$ $$\Rightarrow I = \int \csc x \cot x \, dx - \int \csc^2 x \, dx + \int dx$$ Recall $$\int cosec^2x dx = -cotx + c$$ and $\int dx = x + c$ We also have $\int \mathbf{cosecx} \, \mathbf{cotx} \, \mathbf{dx} = -\mathbf{cosecx} + \mathbf{c}$ $$\Rightarrow$$ I = -cosec x - (-cot x) + x + c $$\Rightarrow$$ I = -cosec x + cot x + x + c Thus, $$\int \frac{\cos x}{1+\cos x} dx = -\csc x + \cot x + x + c$$ #### 43. Ouestion Evaluate the following integrals: $$\int \frac{1-\cos x}{1+\cos x} dx$$ #### **Answer** Let $$I = \int \frac{1-\cos x}{1+\cos x} dx$$ We have $$\cos x = \cos \left(2 \times \frac{x}{2}\right)$$ We know $$cos2\theta = 1 - 2sin^2\theta = 2cos^2\theta - 1$$ Hence, in the numerator, we can write $$1 - \cos x = 2 \sin^2 \frac{x}{2}$$ In the denominator, we can write $1 + \cos x = 2\cos^2\frac{x}{2}$ $$I = \int \frac{2 \sin^2 \frac{x}{2}}{2 \cos^2 \frac{x}{2}} dx$$ $$\Rightarrow I = \int \frac{\sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2}} dx$$ $$\Rightarrow I = \int \tan^2 \frac{x}{2} dx$$ $$\Rightarrow I = \int \left(sec^2 \frac{x}{2} - 1 \right) dx \ [\because sec^2 \theta - tan^2 \theta = 1]$$ $$\Rightarrow I = \int sec^2 \frac{x}{2} dx - \int dx$$ Recall $$\int sec^2 x dx = tan x + c$$ and $\int dx = x + c$ $$\Rightarrow I = \frac{\tan\frac{x}{2}}{\frac{1}{2}} - x + c$$ $$:= 2 \tan \frac{x}{2} - x + c$$ Thus, $$\int \frac{1-\cos x}{1+\cos x} dx = 2 \tan \frac{x}{2} - x + c$$ Evaluate the following integrals: $$\int \left\{ 3\sin x - 4\cos x + \frac{5}{\cos^2 x} - \frac{6}{\sin^2 x} + \tan^2 x - \cot^2 x \right\} dx$$ ### **Answer** Let $$I = \int \left\{ 3 \sin x - 4 \cos x + \frac{5}{\cos^2 x} - \frac{6}{\sin^2 x} + \tan^2 x - \cot^2 x \right\} dx$$ $$\Rightarrow I = \int \{3\sin x - 4\cos x + 5\sec^2 x - 6\csc^2 x + \tan^2 x - \cot^2 x\} dx$$ We have $sec^2\theta - tan^2\theta = csec^2\theta - cot^2\theta = 1$ $$\Rightarrow I = \int \{3\sin x - 4\cos x + 5\sec^2 x - 6\csc^2 x + (\sec^2 x - 1) - (\csc^2 x - 1)\} dx$$ $$\Rightarrow I = \int \{3\sin x - 4\cos x + 5\sec^2 x - 6\csc^2 x + \sec^2 x - 1 - \csc^2 x + 1\} dx$$ $$\Rightarrow I = \int \{3\sin x - 4\cos x + 6\sec^2 x - 7\csc^2 x\} dx$$ $$\Rightarrow I = \int 3\sin x \, dx - \int 4\cos x \, dx + \int 6\sec^2 x \, dx - \int 7\csc^2 x \, dx$$ $$\Rightarrow I = 3 \int \sin x \, dx - 4 \int \cos x \, dx + 6 \int \sec^2 x \, dx - 7 \int \csc^2 x \, dx$$ Recall $$\int sec^2 x dx = tan x + c$$ and $\int sin x dx = -cos x + c$ We also have $\int cosec^2x dx = -cotx + c$ and $\int cosx dx = sinx + c$ $$\Rightarrow$$ I = 3(-cos x) - 4(sin x) + 6(tan x) - 7(-cot x) + c $$\therefore I = -3\cos x - 4\sin x + 6\tan x + 7\cot x + c$$ Thus, $$\int \left\{ 3\sin x - 4\cos x + \frac{5}{\cos^2 x} - \frac{6}{\sin^2 x} + \tan^2 x - \cot^2 x \right\} dx = -3\cos x - 4\sin x + 6\tan x + 7\cot x + c$$ ### 45. Question If $$f'(x) = x - \frac{1}{x^2}$$ and $f(1) = \frac{1}{2}$, find $f(x)$. # **Answer** Given $$f'(x) = x - \frac{1}{x^2}$$ and $f(1) = \frac{1}{2}$ On integrating the given equation, we have $$\int f'(x)dx = \int \left(x - \frac{1}{x^2}\right)dx$$ We know $\int f'(x)dx = f(x)$
$$\Rightarrow f(x) = \int \left(x - \frac{1}{x^2}\right) dx$$ $$\Rightarrow f(x) = \int (x - x^{-2}) dx$$ $$\Rightarrow f(x) = \int x dx - \int x^{-2} dx$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow f(x) = \frac{x^{1+1}}{1+1} - \frac{x^{-2+1}}{-2+1} + c$$ $$\Rightarrow f(x) = \frac{x^2}{2} - \frac{x^{-1}}{-1} + c$$ $$\Rightarrow f(x) = \frac{x^2}{2} + \frac{1}{x} + c$$ On substituting x = 1 in f(x), we get $$f(1) = \frac{1^2}{2} + \frac{1}{1} + c$$ $$\Rightarrow \frac{1}{2} = \frac{1}{2} + 1 + c$$ $$\Rightarrow 0 = 1 + c$$ $$\Rightarrow 1 + c = 0$$ $$\therefore c = -1$$ On substituting the value of c in f(x), we get $$f(x) = \frac{x^2}{2} + \frac{1}{x} + (-1)$$ $$\therefore f(x) = \frac{x^2}{2} + \frac{1}{x} - 1$$ Thus, $$f(x) = \frac{x^2}{2} + \frac{1}{x} - 1$$ #### 46. Question If $$f'(x) = x + b$$, $f(1) = 5$, $f(2) = 13$, find $f(x)$. ### **Answer** Given $$f'(x) = x + b$$, $f(1) = 5$ and $f(2) = 13$ On integrating the given equation, we have $$\int f'(x)dx = \int (x+b)dx$$ We know $\int f'(x)dx = f(x)$ $$\Rightarrow f(x) = \int (x+b)dx$$ $$\Rightarrow f(x) = \int x dx + \int b dx$$ $$\Rightarrow f(x) = \int x dx + b \int dx$$ Recall $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ and $\int dx = x + c$ $$\Rightarrow f(x) = \frac{x^{1+1}}{1+1} + b(x) + c$$ $$\Rightarrow f(x) = \frac{x^2}{2} + bx + c$$ On substituting x = 1 in f(x), we get $$f(1) = \frac{1^2}{2} + b(1) + c$$ $$\Rightarrow$$ 5 = $\frac{1}{2}$ + b + c $$\Rightarrow 5 - \frac{1}{2} = b + c$$ $$\Rightarrow$$ b + c = $\frac{9}{2}$ (1) On substituting x = 2 in f(x), we get $$f(2) = \frac{2^2}{2} + b(2) + c$$ $$\Rightarrow$$ 13 = 2 + 2b + c $$\Rightarrow$$ 13 - 2 = 2b + c $$\Rightarrow$$ 2b + c = 11 (2) By subtracting equation (1) from equation (2), we have $$(2b+c)-(b+c)=11-\frac{9}{2}$$ $$\Rightarrow 2b + c - b - c = \frac{13}{2}$$ $$\therefore b = \frac{13}{2}$$ On substituting the value of b in equation (1), we get $$\frac{13}{2} + c = \frac{9}{2}$$ $$\Rightarrow c = \frac{9}{2} - \frac{13}{2}$$ On substituting the values of b and c in f(x), we get $$f(x) = \frac{x^2}{2} + \frac{13}{2}x + (-2)$$ $$f(x) = \frac{x^2}{2} + \frac{13}{2}x - 2$$ Thus, $$f(x) = \frac{x^2}{2} + \frac{13}{2}x - 2$$ # 47. Question If $$f'(x) = 8x^3 - 2x$$, $f(2) = 8$, find $f(x)$. Answer Given $$f'(x) = 8x^3 - 2x$$ and $f(2) = 8$ On integrating the given equation, we have $$\int f'(x)dx = \int (8x^3 - 2x)dx$$ We know $\int f'(x)dx = f(x)$ $$\Rightarrow f(x) = \int (8x^3 - 2x) dx$$ $$\Rightarrow f(x) = \int 8x^3 dx - \int 2x dx$$ $$\Rightarrow f(x) = 8 \int x^3 dx - 2 \int x dx$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow f(x) = 8\left(\frac{x^{3+1}}{3+1}\right) - 2\left(\frac{x^{1+1}}{1+1}\right) + c$$ $$\Rightarrow f(x) = 8\left(\frac{x^4}{4}\right) - 2\left(\frac{x^2}{2}\right) + c$$ $$\Rightarrow f(x) = 2x^4 - x^2 + c$$ On substituting x = 2 in f(x), we get $$f(2) = 2(2^4) - 2^2 + c$$ $$\Rightarrow 8 = 32 - 4 + c$$ $$\Rightarrow$$ 8 = 28 + c On substituting the value of c in f(x), we get $$f(x) = 2x^4 - x^2 + (-20)$$ $$f(x) = 2x^4 - x^2 - 20$$ Thus, $$f(x) = 2x^4 - x^2 - 20$$ ### 48. Question If $f'(x) = a \sin x + b \cos x$ and f'(0) = 4, f(0) = 3, $f(\frac{\pi}{2}) = 5$, find f(x). ### Answer Given $f'(x) = a \sin x + b \cos x$ and f'(0) = 4 On substituting x = 0 in f'(x), we get $$f'(0) = asin0 + bcos0$$ $$\Rightarrow$$ 4 = a × 0 + b × 1 $$\Rightarrow$$ 4 = 0 + b $$\therefore b = 4$$ Hence, $f'(x) = a \sin x + 4 \cos x$ On integrating this equation, we have $$\int f'(x)dx = \int (a\sin x + 4\cos x)dx$$ We know $\int f'(x)dx = f(x)$ $$\Rightarrow f(x) = \int (a\sin x + 4\cos x) dx$$ $$\Rightarrow f(x) = \int a \sin x \, dx + \int 4 \cos x \, dx$$ $$\Rightarrow f(x) = a \int \sin x \, dx + 4 \int \cos x \, dx$$ Recall $\int \sin x \, dx = -\cos x + c$ and $\int \cos x \, dx = \sin x + c$ $$\Rightarrow$$ f(x) = a(-cosx) + 4(sinx) + c $$\Rightarrow$$ f(x) = $-a\cos x + 4\sin x + c$ On substituting x = 0 in f(x), we get $$f(0) = -a\cos 0 + 4\sin 0 + c$$ $$\Rightarrow$$ 3 = -a \times 1 + 4 \times 0 + c $$\Rightarrow$$ 3 = -a + c $$\Rightarrow$$ c - a = 3 ----- (1) On substituting $x = \frac{\pi}{2}$ in f(x), we get $$f\left(\frac{\pi}{2}\right) = -a\cos\frac{\pi}{2} + 4\sin\frac{\pi}{2} + c$$ $$\Rightarrow$$ 5 = -a \times 0 + 4 \times 1 + c $$\Rightarrow 5 = 0 + 4 + c$$ $$\Rightarrow$$ 5 = 4 + c $$\therefore c = 1$$ On substituting c = 1 in equation (1), we get $$1 - a = 3$$ $$\Rightarrow$$ a = 1 - 3 On substituting the values of c and a in f(x), we get $$f(x) = -(-2)\cos x + 4\sin x + 1$$ $$\therefore f(x) = 2\cos x + 4\sin x + 1$$ Thus, $$f(x) = 2\cos x + 4\sin x + 1$$ # 49. Question Write the primitive or anti-derivative of $f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$. # Answer Given $$f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$$ Let $$I = \int f(x) dx$$ $$\Rightarrow I = \int \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) dx$$ $$\Rightarrow I = \int \left(x^{\frac{1}{2}} + \frac{1}{x^{\frac{1}{2}}} \right) dx$$ $$\Rightarrow I = \int \left(x^{\frac{1}{2}} + x^{-\frac{1}{2}}\right) dx$$ $$\Rightarrow I = \int x^{\frac{1}{2}} dx + \int x^{-\frac{1}{2}} dx$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I = \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + \frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + c$$ $$\Rightarrow I = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + c$$ $$\Rightarrow I = \frac{2}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + c$$ $$\therefore I = \frac{2}{3}x\sqrt{x} + 2\sqrt{x} + c$$ Thus, the primitive of f(x) is $\frac{2}{3}x\sqrt{x} + 2\sqrt{x} + c$ # Exercise 19.3 # 1. Question Evaluate: $$\int (2x-3)^5 + \sqrt{3x+2} \, dx$$ # **Answer** Let I = $$\int (2x-3)^5 + \sqrt{3x+2}$$ then, $$1 = \int (2x-3)^5 + (3x+2)^{\frac{1}{2}}$$ $$=\frac{(2x-3)^{5+1}}{2(5+1)}+\frac{(3x+2)^{\frac{1}{2}+1}}{3(\frac{1}{2}+1)}$$ $$=\frac{(2x-3)^6}{2(6)}+\frac{(3x+2)^{\frac{3}{2}}}{3\binom{3}{2}}$$ $$=\frac{(2x-3)^6}{12}+\frac{2(3x+2)^{\frac{3}{2}}}{9}$$ Hence, $$I = \frac{(2x-3)^6}{12} + \frac{2(3x+2)^{\frac{3}{2}}}{9} + C$$ # 2. Question Evaluate: $$\int \frac{1}{(7x-5)^3} + \frac{1}{\sqrt{5x-4}} dx$$ # Answer Let I = $$\int \frac{1}{(7x-5)^3} + \frac{1}{\sqrt{5x-4}} dx$$ then, $$1 = \int (7x-5)^{-3} + (5x-4)^{-\frac{1}{2}}$$ $$=\frac{(7x-5)^{-3+1}}{7(-3+1)}+\frac{(5x-4)^{-\frac{1}{2}+1}}{5\left(-\frac{1}{2}+1\right)}$$ $$=\frac{(7x-5)^{-2}}{-14}+\frac{(5x-4)^{\frac{1}{2}}}{5\left(\frac{1}{2}\right)}$$ Hence, $$I = -\frac{1}{14}(7x-5)^{-2} + \frac{2}{5}\sqrt{5x-4} + C$$ Evaluate: $$\int \frac{1}{2-3x} + \frac{1}{\sqrt{3x-2}} dx$$ #### **Answer** Let I = $$\int \frac{1}{2-3x} + \frac{1}{\sqrt{3x-2}} dx$$ $$I = \int \frac{1}{2-3x} + \frac{1}{\sqrt{3x-2}} dx$$ We know $$\int \frac{1}{x} dx = \log |x| + C$$ $$= \frac{\log|2-3x|}{-3} + \frac{2}{3}(3x-2)^{\frac{1}{2}}$$ $$= -\frac{1}{3}x.\log|2x-3| + \frac{2}{3}\sqrt{3x-3} + C$$ # 4. Question Evaluate: $$\int \frac{x+3}{(x+1)^4} dx$$ #### **Answer** Let I = $$\int \frac{x+3}{(x+1)^4} dx$$ $$I = \int \frac{x+3}{(x+1)^4} dx$$ $$= \int \frac{x+1}{x+1^4} dx + \int \frac{2}{(x+1)^4} dx$$ $$=\int \frac{1}{(x+1)^2} dx + \int \frac{2}{(x+1)^4} dx$$ $$=\int (x+1)^{-3} dx + \int 2(x+1)^{-4} dx$$ $$= \frac{[x+1]^{-3+1}}{-3+1} + \frac{2(x+1)^{-4+1}}{-4+1}$$ $$=\frac{[x+1]^{-2}}{-2}+\frac{2(x+1)^{-3}}{-3}$$ Hence, $$I = -\frac{1}{2(x+1)^2} - \frac{2}{3(x+1)^3} + C$$ ### 5. Question Evaluate: $$\int \frac{1}{\sqrt{x+1} + \sqrt{x}} dx$$ Let I = $$\int \frac{1}{\sqrt{x+1} + \sqrt{x}} dx$$ $$= \int \frac{1}{\sqrt{x+1} + \sqrt{x}} dx$$ Now Multiply with the conjugate, we get $$= \int \frac{1}{\sqrt{x+1} + \sqrt{x}} \cdot \frac{\sqrt{x+1} - \sqrt{x}}{\sqrt{x+1} - \sqrt{x}} dx$$ $$=\int \frac{\sqrt{x+1}-\sqrt{x}}{x+1-x}dx$$ $$= \int \sqrt{x+1} - \sqrt{x} \, dx$$ $$= \int (x+1)^{\frac{1}{2}} - x^{\frac{1}{2}}$$ $$=\frac{(x+1)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{\frac{3}{2}}{\frac{3}{2}}$$ Hence $$I = \frac{2}{3}(X+1)^{\frac{3}{2}} - \frac{2}{3}(X)^{\frac{3}{2}} + C$$ ### 6. Question Evaluate: $$\int \frac{1}{\sqrt{2x+3} + \sqrt{2x-3}} dx$$ #### **Answer** Let I = $$\int \frac{1}{\sqrt{2x+3} + \sqrt{2x-3}} dx$$ $$I = \int \frac{1}{\sqrt{2x+3} + \sqrt{2x-3}} dx$$ Now, Multiply with the conjugate, we get $$= \int \frac{1}{\sqrt{2x+3} + \sqrt{2x-3}} \times \frac{\left(\sqrt{2x+3} - \sqrt{2x-3}\right)}{\sqrt{2x+3} - \sqrt{2x-3}} dx$$ $$= \int \frac{(\sqrt{2x+3} - \sqrt{2x-3})}{(\sqrt{2x+3})^2 - (\sqrt{2x-3})^2} dx$$ $$= \int \frac{(\sqrt{2x+3} - \sqrt{2x-3})}{2x+3-2x+3} dx$$ $$=\int \frac{\sqrt{2x+3}}{6} dx - \int \frac{\sqrt{2x-3}}{6} dx$$ $$= \frac{1}{6} \int (2x+3)^{\frac{1}{2}} dx - \frac{1}{6} \int (2x-3)^{\frac{1}{2}} dx$$ $$=\frac{1}{6}\left(\frac{2x+3}{2}\right)^{\frac{1}{2}+1}-\frac{1}{6}\left[\frac{2x-3}{2}\right]^{\frac{1}{2}+1}$$ $$=\frac{1}{6}\left(\frac{2x+3}{2x_{\frac{3}{2}}^{\frac{3}{2}}}\right)^{\frac{3}{2}}-\frac{1}{6}\left(\frac{2x-3}{2x_{\frac{3}{2}}^{\frac{3}{2}}}\right)^{\frac{3}{2}}$$ Hence, $$I = \frac{1}{18}(2x+3)^{\frac{3}{2}} - \frac{1}{18}(2x-3)^{\frac{2}{3}} + C$$ Evaluate: $$\int \frac{2x}{(2x+1)^2} dx$$ ### **Answer** Let $$I = \int \frac{2x}{(2x+1)^2} dx$$ = $\int \frac{2x+1-1}{(2x+1)^2} dx$ $$= \int \frac{2x+1}{(2x+1)^2} - \frac{1}{(2x+1)^2} dx$$ $$= \int \frac{1}{(2x+1)} - (2x+1)^{-2} dx$$ $$= \frac{1}{2} \log|2x+1| - \frac{(2x+1)^{-2+1}}{-2+1(2)}$$ $$= \frac{1}{2} \log|2x + 1| - \frac{(2x+1)^{-1}}{-2}$$ Hence, $$I = \frac{1}{2} \log|2x + 1| + \frac{1}{2(2x+1)} + C$$ # 8. Question Evaluate: $$\int \frac{1}{\sqrt{x+a} + \sqrt{x+b}} dx$$ ## **Answer** Let I = $$\int \frac{1}{\sqrt{x+a} + \sqrt{x+b}} dx$$ $$=\int \frac{1}{\sqrt{x+a}+\sqrt{x+b}} dx$$ Now, Multiply with conjugate, we get $$= \int \frac{1}{\sqrt{x+a} + \sqrt{x+b}} \times \frac{\left(\sqrt{x+a} - \sqrt{x+b}\right)}{\sqrt{x+a} - \sqrt{(x+b)}} dx$$ $$= \int \frac{\left(\sqrt{x+a} - \sqrt{x+b}\right)}{\left(\sqrt{x+a}\right)^2 - \sqrt{(x+b)}} dx$$ $$= \int \frac{(\sqrt{x+a} - \sqrt{x+b})}{a-b} dx$$ $$= \frac{1}{a-b} \left[\frac{2}{3} (x+a)^{\frac{2}{2}} - \frac{2}{3}
(x+b)^{\frac{2}{2}} \right]$$ Hence, $$I = \frac{2}{3(a-b)} [(x+a)^{\frac{3}{2}} - (x+b)^{\frac{3}{2}}] + C$$ # 9. Question Evaluate: $$\int \sin x \sqrt{1 + \cos 2x} \, dx$$ ## **Answer** Let $$I = \int \sin x \sqrt{(1 + \cos 2x)} dx$$ $$= \int \sin x \sqrt{(1 + \cos 2x)} dx$$ $$= \int \sin x \sqrt{2 \cos^2 x} dx$$ $$=\int \sin x \sqrt{2} \cos x \, dx$$ $$=\sqrt{2}\int\sin x\cos x\,dx$$ Now, Multiply and Divide by 2 we get, $$= \frac{\sqrt{2}}{2} \int 2 \sin x \cos x \, dx$$ $$=\frac{\sqrt{2}}{2}\int \sin 2x \, dx$$ $$=\frac{\sqrt{2}-\cos 2x}{2}$$ Hence, $$I = -\frac{1}{2\sqrt{2}}\cos 2x + C$$ # 10. Question $$\text{Evaluate:} \int \frac{1 + \cos x}{1 - \cos x} \, dx$$ ### **Answer** Let $$I = \int \frac{1 + \cos x}{1 - \cos x} dx$$ $$\Rightarrow \int \frac{1 + \cos x}{1 - \cos x} dx$$ $$\Rightarrow \int \frac{2\cos^2\frac{x}{2}}{2\sin^2\frac{x}{2}} dx$$ ⇒ $$\int \cot^2 \frac{x}{2} dx$$ $$\Rightarrow \int \left(\csc^2 \frac{x}{2} - 1 \right) dx$$ $$\Rightarrow \frac{\left(-\cot^{\mathbf{X}}_{\underline{-}}\right)}{\frac{1}{2}} - \mathbf{X}$$ Hence, $$I = -2 \cot \frac{x}{2} - x + C$$ # 11. Question Evaluate: $$\int \frac{1 - \cos x}{1 + \cos x} dx$$ ## Answer Let $$I = \int \frac{(1-\cos x)}{(1+\cos x)} dx$$ $$= \int \frac{(1-\cos x)}{(1+\cos x)} dx$$ $$= \int \frac{\left(2 \sin^2 \frac{x}{2}\right)}{2 \cos^2 \frac{x}{2}}$$ $$=\int \tan^2 \frac{x}{2} dx$$ $$= \int (\sec^2 \frac{x}{2} - 1) \, dx$$ $$=\frac{\left(\tan\frac{x}{2}\right)}{\frac{1}{2}}-x$$ Hence, $$I = 2 \tan \frac{x}{2} - x + C$$ Evaluate: $$\int \frac{1}{1-\sin\frac{x}{2}} dx$$ ### **Answer** Let $$I = \frac{1}{1-\sin\frac{x}{2}}dx$$ $$= \frac{1}{1 - \sin \frac{x}{2}} dx$$ Now, Multiply with the conjugate we get, $$= \int \frac{1}{1-\sin{\frac{x}{2}}} \times \frac{1+\sin{\frac{x}{2}}}{1+\sin{\frac{x}{2}}} dx$$ $$= \int \frac{1 + \sin{\frac{x}{2}}}{1 - \sin{\frac{2x}{2}}} dx$$ $$= \int \frac{1 + \sin \frac{x}{2}}{\cos^2 \frac{x}{2}} dx$$ $$=\textstyle\int\frac{1}{\cos^{2}\!\frac{x}{2}}dx+\int\frac{\sin^{x}_{2}}{\cos^{2}\!\frac{x}{2}}dx$$ $$= \int \sec^2 \frac{x}{2} dx + \int \tan \frac{x}{2} \cdot \sec \frac{x}{2} dx$$ $$=\frac{\left(\tan\frac{x}{2}\right)}{\frac{1}{2}}+\frac{\left(\sec\frac{x}{2}\right)}{\frac{1}{2}}$$ Hence, $$I = 2 \tan \frac{x}{2} + 2 \sec \frac{x}{2} + C$$ # 13. Question Evaluate: $$\int \frac{1}{1 + \cos 3x} dx$$ #### **Answer** Let $$I = \int \frac{1}{1 + \cos 3x} dx$$ $$= \int \frac{1}{1 + \cos 3x} dx$$ Now Multiply with Conjugate, $$= \int \frac{1}{1 + \cos 3x} \times \frac{1 - \cos 3x}{1 - \cos 3x} dx$$ $$= \int \frac{1-\cos 3x}{1-\cos^2 3x} dx$$ $$= \int \frac{1 - \cos 3x}{\sin^2 3x} dx$$ $$= \int \frac{1}{\sin^2 3x} dx - \int \frac{\cos 3x}{\sin^2 3x} dx$$ = $$\int (\csc^2 3x - \csc 3x \cdot \cot 3x) dx$$ $$=-\frac{\cot 3x}{3}+\frac{\csc 3x}{3}$$ $$=-\frac{1}{3}.\frac{\cos 3x}{\sin 3x}+\frac{1}{3}.\frac{1}{\sin 3x}$$ Hence, $$I = \frac{1 - \cos 3x}{3\sin 3x} + C$$ Evaluate: $\int (e^x + 1)^2 e^x dx$ ### **Answer** Let $$I = \int (e^x + 1)^2 e^x dx$$ Let $$e^x + 1 = t = e^x dx = dt$$ $$I = \int (e^x + 1)^2 e^x dx$$ $$= \int t^2 dt$$ $$=\frac{t^2}{3}$$ Now, substitute the value of t Hence, $$I = \frac{(e^X + 1)^3}{3} + C$$ # 15. Question Evaluate: $$\int \left(e^x + \frac{1}{e^x} \right)^2 dx$$ ### **Answer** Let $$I = \int \left(e^x + \frac{1}{e^x}\right)^2$$ $$= \int \left(e^{2x} + \frac{1}{e^{2x}} + 2 \right)$$ $$=\frac{e^{2x}}{2}-\frac{1}{2}e^{-2x}+2x$$ Hence, $$I = \frac{1}{2}e^x + 2x - \frac{1}{2}e^{-2x} + C$$ # 16. Question Evaluate: $$\int \frac{1 + \cos 4x}{\cot x - \tan x} dx$$ #### **Answer** Let $$I = \int \frac{1 + \cos 4x}{\cot x - \tan x} dx$$ $$= \int \frac{1 + \cos 4x}{\cot x - \tan x} dx$$ $$=\int \frac{\frac{1+\cos^2 2x}{\cos x}}{\frac{\cos x}{\sin x}\cos x} dx$$ $$= \int \frac{2\cos^2 2x}{\cos^2 x - \sin^2 x} dx$$ $$= \int \frac{2\cos^2 2x.\sin x.\cos x}{\cos^2 x-\sin^2 x} dx$$ $$= \int \frac{\cos^2 2x \sin 2x}{\cos^2 2x} dx$$ $$=\int \cos 2x \cdot \sin 2x dx$$ $$= \frac{1}{2} \int [2 \sin 2x \cos 2x] dx$$ $$= \frac{1}{2} \int \sin(2x + 2x) + \sin(2x - 2x) \, dx$$ $$= \frac{1}{2} \int \sin 4x + 0 \, dx$$ $$=\frac{1}{2}-\frac{\cos 4x}{4}$$ Hence, $$I = -\frac{1}{8}\cos 4x + C$$ Evaluate: $$\int \frac{1}{\sqrt{x+3} - \sqrt{x+2}} dx$$ ### **Answer** Let I = $$\int \frac{1}{\sqrt{x+3}-\sqrt{x+2}} dx$$ $$= \int \frac{1}{\sqrt{x+3} - \sqrt{x+2}} dx$$ Now, Multiply with the conjugate $$=\int \frac{1}{\sqrt{x+3}-\sqrt{x+2}} \times \frac{\sqrt{x+3}+\sqrt{x+2}}{\sqrt{x+3}+\sqrt{x+2}} dx$$ $$= \int \frac{\sqrt{x+3} + \sqrt{x+2}}{(\sqrt{x+3})^2 - (\sqrt{x+2})^2} \, dx$$ $$= \int \frac{\sqrt{x+3} + \sqrt{x+2}}{x+3 - x - 2} dx$$ $$= \int (x+3)^{\frac{1}{2}} + (x+2)^{\frac{1}{2}} dx$$ $$=\frac{(x+3)^{\frac{3}{2}}}{\frac{3}{2}}+\frac{(x+2)^{\frac{3}{2}}}{\frac{3}{2}}$$ Hence, $$I = \frac{2}{3}(x+3)^{\frac{3}{2}} + \frac{2}{3}(x+2)^{\frac{3}{2}} + C$$ # 18. Question $$\int \tan^2(2x - 3)dx$$ ### **Answer** Let $$I = \int \tan^2(2x - 3)dx$$ $$= \int \tan^2(2x - 3) dx$$ $$=\int \sec^2(2x-3)-1\,dx$$ Let $$2x - 3 = t dx = dt/2$$ $$= \frac{1}{2} \int \sec^2 t - 1 \, dt$$ $$=\frac{1}{2}\tan t -x$$ Substitute the value of t Hence, $$I = \frac{1}{2} \tan(2x - 3) - x + C$$ ## 19. Question Evaluate: $$\int \frac{1}{\cos^2 x (1 - \tan x)^2} dx$$ ## Answer Let I = $$\int \frac{1}{\cos^2 x (1 - \tan x)^2} dx$$ $$= \int \frac{1}{\cos^2 x (1 - \tan x)^2} dx$$ $$= \int \frac{1}{\cos^2 x \left(1 - \frac{\sin x}{\cos x}\right)^2} dx$$ $$= \int \frac{1}{(\cos x - \sin x)^2} dx$$ $$=\int \frac{1}{1-\sin 2x} dx$$ $$= \int \frac{1}{1 + \cos\left(\frac{\pi}{2} + 2x\right)} dx$$ $$= \int \frac{1}{2\cos^2(\frac{\pi}{4} + x)} dx$$ $$= \frac{1}{2} \int \sec^2 \left(\frac{\pi}{4} + x \right) dx$$ Hence, $$I = \frac{1}{8} \left[\tan \left(\frac{\pi}{4} + x \right) \right] + 1 + C$$ # Exercise 19.4 ### 1. Question Evaluate: $$\int \frac{x^2 + 5x + 2}{x + 2} dx$$ # Answer By doing long division of the given equation we get Quotient = $$x + 3$$ Remainder = $$-4$$ $\ensuremath{..}$ We can write the above equation as $$\Rightarrow$$ x + 3 $-\frac{4}{x+2}$.. The above equation becomes $$\Rightarrow \int x + 3 - \frac{4}{x+2} dx$$ $$\Rightarrow \int x \, dx + 3 \int dx - 4 \int \frac{1}{x+2} dx$$ We know $$\int x dx = \frac{x^n}{n+1}$$; $\int \frac{1}{x} dx = \ln x$ $$\Rightarrow \frac{x^2}{2} + 3x - 4\ln(x+2) + c$$. (Where c is some arbitrary constant) Evaluate: $$\int \frac{x^3}{x-2} dx$$ ### **Answer** By doing long division of the given equation we get Quotient = $$x^2+2x+4$$ Remainder = 8 .. We can write the above equation as $$\Rightarrow x^2 + 2x + 4 + \frac{8}{x-2}$$.. The above equation becomes $$\Rightarrow \int x^2 + 2x + 4 + \frac{8}{x-2} dx$$ $$\Rightarrow \int x^2 dx + 2 \int x dx + 4 \int dx + 8 \int \frac{1}{x-2} dx$$ We know $$\int x dx = \frac{x^n}{n+1}$$; $\int \frac{1}{x} dx = \ln x$ $$\Rightarrow \frac{x^3}{3} + 2\frac{x^2}{2} + 4x + 8\ln(x-2) + c$$ $$\Rightarrow \frac{x^2}{3} + x^2 + 4x + 8 \ln(x - 2) + c$$. (Where c is some arbitrary constant) # 3. Question Evaluate: $$\int \frac{x^2 + x + 5}{3x + 2} dx$$ #### **Answer** By doing long division of the given equation we get Quotient = $$\frac{x}{3} + \frac{1}{9}$$ Remainder = $$\frac{43}{9}$$: We can write the above equation as $$\Rightarrow \frac{x}{3} + \frac{1}{9} + \frac{43}{9} \left(\frac{1}{3x+2} \right)$$ ∴ The above equation becomes $$\Rightarrow \int \frac{x}{2} + \frac{1}{9} + \frac{43}{9} \left(\frac{1}{2y+2} \right) dx$$ $$\Rightarrow \frac{1}{3} \int x dx + \frac{1}{9} \int dx + \frac{43}{9} \int \frac{1}{3x+2} dx$$ We know $$\int x dx = \frac{x^n}{n+1}$$; $\int \frac{1}{x} dx = \ln x$ $$\Rightarrow \frac{1}{3} \times \frac{x^3}{2} + \frac{1}{9} \times \frac{x^2}{2} + \frac{43}{9} \ln(3x + 2) + c$$ $$\Rightarrow \frac{x^3}{6} + \frac{x^2}{18} + \frac{43}{9} \ln(3x+2) + c$$. (Where c is some arbitrary constant) Evaluate: $$\int \frac{2x+3}{(x-1)^2} dx$$ #### **Answer** The above equation can be written as $$\Rightarrow \int \frac{2x-2+2+3}{(x-1)^2}$$ $$\Rightarrow \int \frac{2(x-1)+5}{(x-1)^2}$$ $$\Rightarrow 2 \int \frac{1.dx}{(x-1)} + 5 \int \frac{1.dx}{(x-1)^2}$$ We know $$\int x dx = \frac{x^n}{n+1}$$; $\int \frac{1}{x} dx = \ln x$ $$\Rightarrow 2 \ln(x-1) + 5 \int (x-1)^{-2} dx$$ $$\Rightarrow 2 \ln(x-1) + 5 \int \frac{(x-1)^{-1}}{-1} dx$$ $$\Rightarrow 2 \ln(x-1) - \frac{5}{(x-1)} + c$$. (Where c is an arbitrary constant) # 5. Question Evaluate: $$\int \frac{x^2 + 3x - 1}{(x+1)^2} dx$$ ### **Answer** $$\Rightarrow \int \frac{x^2 + x + 2x - 1}{(x+1)^2} dx$$ $$\Rightarrow \int \frac{x(x+1)+2x-1}{(x+1)^2} dx$$ $$\Rightarrow \int \frac{x(x+1)}{(x+1)^2} dx + \int \frac{2x-1}{(x+1)^2} dx$$ $$\Rightarrow \int \frac{x}{x+1} dx + \int \frac{2x+2-2-1}{(x+1)^2} dx$$ $$\Rightarrow \int \frac{x+1-1}{x+1} \, dx + \int \frac{2(x+1)-3}{(x+1)^2} \, dx$$ $$\Rightarrow \int dx - \int \frac{1}{x+1} dx + \int \frac{2}{x+1} dx - \int \frac{3}{(x+1)^2} dx$$ We know $$\int x dx = \frac{x^n}{n+1}$$; $\int \frac{1}{x} dx = \ln x$ $$\Rightarrow$$ x - ln(x + 1) + 2 ln(x + 1) - \int 3(x + 1)⁻² dx $$\Rightarrow$$ x - ln(x + 1) + 2 ln(x + 1) + $\frac{3}{x+1}$ + c $$\Rightarrow$$ x + ln(x + 1) + $\frac{3}{x+1}$ + c. (Where c is some arbitrary constant) ## 6. Question Evaluate: $$\int \frac{2x-1}{(x-1)^2} dx$$ In this question degree of denominator is larger than that of numerator so we need to manipulate numerator. $$\Rightarrow \int \frac{2x+2-2-1}{(x-1)^2}$$ $$\Rightarrow \int \frac{2(x-1)-1}{(x-1)^2}$$ $$\Rightarrow \int \frac{2}{x-1} dx - \frac{1}{(x-1)^2} dx$$ We know $$\int x dx = \frac{x^n}{n+1}$$; $\int \frac{1}{x} dx = \ln x$ $$\Rightarrow 2 \ln(x-1) - \int (x-1)^{-2} dx$$ $$\Rightarrow 2 \ln(x-1) - \frac{1}{x-1} + c$$. (where c is some arbitrary constant) ## Exercise 19.5 ## 1. Question Evaluate: $$\int \frac{x+1}{\sqrt{2x+3}} dx$$ ### **Answer** In these questions, little manipulation makes the questions easier to solve Here multiply and divide by 2 we get $$\Rightarrow \frac{1}{2} \int \frac{2x+2}{\sqrt{2x+3}} dx$$ Add and subtract 1 from the numerator
$$\Rightarrow \frac{1}{2} \int \frac{2x+2+1-1}{\sqrt{2x+3}} dx$$ $$\Rightarrow \frac{1}{2} \int \frac{2x+3-1}{\sqrt{2x+3}} dx$$ $$\Rightarrow \frac{1}{2} \int \frac{2x+3}{\sqrt{2x+3}} dx - \frac{1}{2} \int \frac{1}{\sqrt{2x+3}} dx$$ $$\Rightarrow \frac{1}{2} \left(\int \sqrt{2x + 3} \, dx - \int (2x + 3)^{\frac{-1}{2}} \, dx \right)$$ $$\Rightarrow \frac{1}{2} \times \frac{(2x+3)^{\frac{3}{2}}}{2x_{\frac{3}{2}}^{\frac{3}{2}}} - \frac{1}{2} \times \frac{(2x+3)^{\frac{1}{2}}}{2x_{\frac{1}{2}}^{\frac{1}{2}}} + c$$ $$\Rightarrow \frac{(2x+3)^{\frac{3}{2}}}{6} - \frac{(2x+3)^{\frac{1}{2}}}{2} + c$$ # 2. Question Evaluate: $$\int x \sqrt{x+2} \, dx$$ #### **Answer** Here Add and subtract 2 from x We get $$\Rightarrow \int (x + 2 - 2)\sqrt{x + 2} dx$$ $$\Rightarrow \int (x + 2)^{\frac{3}{2}} dx - \int 2\sqrt{x + 2} dx$$ $$\Rightarrow \frac{2(x+2)^{\frac{5}{2}}}{5} - \frac{4(x+2)^{\frac{3}{2}}}{3} + c$$ Evaluate: $$\int \frac{x-1}{\sqrt{x+4}} dx$$ #### **Answer** In these questions, little manipulation makes the questions easier to solve Add and subtract 5 from the numerator $$\Rightarrow \int \frac{x+5-5-1}{\sqrt{x+4}} \, \mathrm{d}x$$ $$\Rightarrow \int \frac{x+4-5}{\sqrt{x+4}} dx$$ $$\Rightarrow \int \frac{x+4}{\sqrt{x+4}} dx - \int \frac{5}{\sqrt{x+4}} dx$$ $$\Rightarrow \left(\int \sqrt{x+4} \, dx - 5 \int (x+4)^{\frac{-1}{2}} dx\right)$$ $$\Rightarrow \frac{(x+4)^{\frac{3}{2}}}{\frac{3}{2}} - 5 \times \frac{(x+4)^{\frac{1}{2}}}{\frac{1}{2}} + c$$ $$\Rightarrow \frac{2(x+4)^{\frac{3}{2}}}{3} - 10(x+4)^{\frac{1}{2}} + c$$ ### 4. Question Evaluate: $$\int (x+2)\sqrt{3x+5} \ dx$$ #### **Answer** Here multiply and divide the question by 3 We get $$\Rightarrow \frac{1}{2} \int 3(x+2)\sqrt{3x+5} \, dx$$ $$\Rightarrow \frac{1}{3} \int (3x + 6) \sqrt{3x + 5} \, dx$$ Add and subtract 1 from above equation $$\Rightarrow \frac{1}{3} \int (3x + 6 + 1 - 1) \sqrt{3x + 5} \, dx$$ $$\Rightarrow \frac{1}{3} \int (3x + 5 - 1)\sqrt{3x + 5} dx$$ $$\Rightarrow \frac{1}{2} \int (3x + 5)^{\frac{3}{2}} dx - \int \frac{1}{2} \sqrt{3x + 5} dx$$ $$\Rightarrow \frac{1}{3} \times \frac{2(3x+5)^{\frac{5}{2}}}{3x^{\frac{5}{2}}} - \frac{2(3x+5)^{\frac{3}{2}}}{3x^{\frac{3}{2}}} + c$$ $$\Rightarrow \frac{2(3x+5)^{\frac{5}{2}}}{45} - \frac{2(3x+5)^{\frac{3}{2}}}{9} + c$$ # 5. Question Evaluate: $$\int \frac{2x+1}{\sqrt{3x+2}} dx$$ Let $$2x + 1 = \lambda(3x + 2) + \mu$$ $$2x + 1 = 3x\lambda + 2\lambda + \mu$$ comparing coefficients we get $$3\lambda = 2$$; $2\lambda + \mu = 1$ $$\Rightarrow \lambda = \frac{2}{3}; \mu = \frac{-1}{3}$$ Replacing 2x + 1 by $\lambda(3x + 2) + \mu$ in the given equation we get $$\Rightarrow \int \frac{\lambda(3x+2) + \mu}{\sqrt{3x+2}} dx$$ $$\Rightarrow \lambda \int \frac{3x+2}{\sqrt{3x+2}} dx + \mu \int \frac{1}{\sqrt{3x+2}} dx$$ $$\Rightarrow \left(\lambda \int \sqrt{3x + 2} \, dx - \mu \int (3x + 2)^{\frac{-1}{2}} dx\right)$$ $$\Rightarrow \frac{2}{3} \times \frac{(3x+2)^{\frac{3}{2}}}{3x_{\frac{3}{2}}^{\frac{3}{2}}} - \frac{1}{3} \times \frac{(3x+2)^{\frac{1}{2}}}{3x_{\frac{1}{2}}^{\frac{1}{2}}} + c$$ $$\Rightarrow \frac{4(3x+2)^{\frac{3}{2}}}{27} - \frac{2(3x+2)^{\frac{1}{2}}}{9} + c$$ # 6. Question Evaluate: $$\int \frac{3x+5}{\sqrt{7x+9}} dx$$ #### **Answer** Let $$3x + 5 = \lambda(7x + 9) + \mu$$ $$3x + 5 = 7x\lambda + 9\lambda + \mu$$ comparing coefficients, we get $$7\lambda = 3$$; $9\lambda + \mu = 1$ $$\Rightarrow \lambda = \frac{3}{7}; \mu = \frac{8}{7}$$ Replacing 3x + 5 by $\lambda(7x + 9) + \mu$ in the given equation we get $$\Rightarrow \int \frac{\lambda(7x+9) + \mu}{\sqrt{7x+9}} dx$$ $$\Rightarrow \lambda \int \frac{7x+9}{\sqrt{7x+9}} dx + \mu \int \frac{1}{\sqrt{7x+9}} dx$$ $$\Rightarrow \left(\lambda \int \sqrt{7x + 9} \, dx + \mu \int (7x + 9)^{\frac{-1}{2}} dx\right)$$ $$\Rightarrow \frac{3}{7} \times \frac{(7x+9)^{\frac{3}{2}}}{7 \times \frac{3}{2}} + \frac{8}{7} \times \frac{(7x+9)^{\frac{1}{2}}}{7 \times \frac{1}{2}} + c$$ $$\Rightarrow \frac{6(7x+9)^{\frac{3}{2}}}{147} - \frac{16(7x+9)^{\frac{1}{2}}}{49} + c$$ ### 7. Question Evaluate: $$\int \frac{x}{\sqrt{x+4}} dx$$ In these questions, little manipulation makes the questions easier to solve Add and subtract 4 from the numerator $$\Rightarrow \int \frac{x+4-4}{\sqrt{x+4}} dx$$ $$\Rightarrow \int \frac{x+4-4}{\sqrt{x+4}} dx$$ $$\Rightarrow \int \frac{x+4}{\sqrt{x+4}} dx - \int \frac{4}{\sqrt{x+4}} dx$$ $$\Rightarrow \left(\int \sqrt{x + 4} \, dx - 4 \int (x + 4)^{\frac{-1}{2}} dx\right)$$ $$\Rightarrow \frac{(x+4)^{\frac{3}{2}}}{\frac{3}{2}} - 4 \times \frac{(x+4)^{\frac{1}{2}}}{\frac{1}{2}} + c$$ $$\Rightarrow \frac{2(x+4)^{\frac{3}{2}}}{3} - 8(x+4)^{\frac{1}{2}} + c$$ #### 8. Question Evaluate: $$\int \frac{2-3x}{\sqrt{1+3x}} dx$$ #### **Answer** Let $$2 - 3x = \lambda(3x + 1) + \mu$$ $$2 - 3x = 3x\lambda + \lambda + \mu$$ comparing coefficients we get $$3\lambda = -3$$; $\lambda + \mu = 2$ $$\Rightarrow \lambda = -1; \mu = 3$$ Replacing 2 – 3x by $\lambda(3x + 1) + \mu$ in given equation we get $$\Rightarrow \int \frac{\lambda(3x+1) + \mu}{\sqrt{3x+1}} dx$$ $$\Rightarrow \lambda \int \frac{3x+1}{\sqrt{3x+1}} dx + \mu \int \frac{1}{1} dx$$ $$\Rightarrow \left(\lambda \int \sqrt{3x+1} \, dx \, + \, \mu \int (3x+1)^{\frac{-1}{2}} dx\right)$$ $$\Rightarrow -1 \times \frac{(3x+1)^{\frac{3}{2}}}{3x^{\frac{2}{2}}} + 3 \times \frac{(3x+1)^{\frac{1}{2}}}{3x^{\frac{1}{2}}} + c$$ $$\Rightarrow \frac{-2(3x+1)^{\frac{3}{2}}}{9} - 2(3x+1)^{\frac{1}{2}} + c$$ # 9. Question Evaluate: $$\int (5x+3)\sqrt{2x-1} dx$$ ## **Answer** Let $$5x + 3 = \lambda(2x - 1) + \mu$$ $$5x + 3 = 2x\lambda - \lambda + \mu$$ comparing coefficients we get $$2\lambda = 5 ; -\lambda + \mu = 3$$ $$\Rightarrow \lambda = \frac{5}{2}$$; $\mu = \frac{11}{2}$ Replacing 5x + 3 by $\lambda(2x - 1) + \mu$ in the given equation we get $$\Rightarrow \int \sqrt{2x-1} \lambda(2x-1) + \mu dx$$ $$\Rightarrow \lambda \int (2x-1)\sqrt{2x-1} dx + \int \sqrt{2x-1} \mu dx$$ $$\Rightarrow \left(\lambda \int (2x-1)^{\frac{3}{2}} dx - \mu \int (2x-1)^{\frac{1}{2}} dx\right)$$ $$\Rightarrow \frac{5}{2} \times \frac{(2x-1)^{\frac{5}{2}}}{2x^{\frac{5}{2}}} - \frac{11}{2} \times \frac{(2x-1)^{\frac{3}{2}}}{2x^{\frac{3}{2}}} + c$$ $$\Rightarrow \frac{(2x-1)^{\frac{5}{2}}}{2} - \frac{11(2x-1)^{\frac{3}{2}}}{6} + c$$ ## 10. Question Evaluate: $$\int \frac{x}{\sqrt{x+a} - \sqrt{x+b}} \, dx$$ ### **Answer** Rationalise the given equation we get $$\Rightarrow \int \frac{x}{\sqrt{x+a} - \sqrt{x-b}} \times \frac{\sqrt{x+a} + \sqrt{x-b}}{\sqrt{x+a} + \sqrt{x-b}} dx$$ $$\Rightarrow \int \frac{x(\sqrt{x+a}-\sqrt{x-b})}{x+a-x-b} dx$$ $$\Rightarrow \int \frac{x(\sqrt{x+a}-\sqrt{x-b})}{a} dx$$ $$\Rightarrow \frac{1}{a-b} \int x(\sqrt{x+a} - \sqrt{x-b}) dx$$ Assume $x = \sqrt{t}$ $$\Rightarrow dx = \frac{dt}{2\sqrt{t}}$$ Substituting t and dt $$\Rightarrow \int \sqrt{t} \frac{(\sqrt{\sqrt{t} + a} - \sqrt{\sqrt{t} - b})}{2\sqrt{t}(a - b)} dt$$ $$\Rightarrow \frac{1}{2(a-b)} \int (\sqrt{\sqrt{t} + a} - \sqrt{\sqrt{t} - b}) dt$$ $$\Rightarrow \frac{1}{2(a-b)} \int (\sqrt{t} + a)^{1/2} dt - \int (\sqrt{t} - b)^{1/2} dt$$ $$\Rightarrow \frac{1}{2(a-b)} \left(\frac{4}{3} \left(\sqrt{t} + a^2 \right)^{\frac{3}{2}} - \frac{4}{3} (t-a^2)^{\frac{3}{2}} \right)$$ But $$x = \sqrt{t}$$ $$\Rightarrow \frac{1}{2(a-b)} \left(\frac{2}{3} (x + a)^{\frac{3}{2}} - \frac{2}{3} (x - b)^{\frac{3}{2}} \right)$$ ## Exercise 19.6 Evaluate: $\int \sin^2(2x + 5) dx$ #### **Answer** $$\sin^2 x = \frac{1 - \cos 2x}{2}$$ ∴ The given equation becomes, $$\Rightarrow \int \frac{1-\cos 2(2x+5)}{2} \, \mathrm{d}x$$ We know $\int \cos ax \, dx = \frac{1}{a} \sin ax + c$ $$\Rightarrow \frac{1}{2} \int dx - \frac{1}{2} \int \cos(4x + 10) dx$$ $$\Rightarrow \frac{x}{2} - \frac{1}{8}\sin(4x + 10) + c$$ # 2. Question Evaluate: $\int \sin^3(2x + 1) dx$ #### **Answer** We know $\sin 3x = -4\sin^3 x + 3\sin x$ $$\Rightarrow 4\sin^3 x = 3\sin x - \sin^3 x$$ $$\Rightarrow \sin^3 x = \frac{3\sin x - \sin 3x}{4}$$ $$\Rightarrow \int \sin^3(2x+1) dx = \int \frac{3\sin(2x+1) - \sin 3(2x+1)}{4} dx$$ $$\Rightarrow$$ We know $\int \sin ax \, dx = \frac{-1}{a} \cos ax + c$ $$\Rightarrow \frac{3}{8} \int \sin(2x+1) dx - \frac{1}{4} \int \sin(6x+3) dx$$ $$\Rightarrow \frac{-3}{8}\cos(2x+1) + \frac{1}{24}\cos(6x+3) + c.$$ # 3. Question Evaluate:∫ cos⁴ 2x dx ### **Answer** $$\cos^4 2x = (\cos^2 2x)^2$$ $$\Rightarrow$$ cos²x = $\frac{1+\cos 2x}{2}$ $$\Rightarrow (\cos^2 2x)^2 = \left(\frac{1 + \cos 4x}{2}\right)^2$$ $$\Rightarrow \left(\frac{1+\cos 4x}{2}\right)^2 = \left(\frac{1+2\cos 4x + \cos^2 4x}{4}\right)$$ $$\Rightarrow$$ cos²4x = $\frac{1+\cos 8x}{2}$ $$\Rightarrow \left(\frac{1+2\cos 4x + \cos^2 4x}{4} = \frac{1}{4} + \frac{\cos 4x}{2} + \frac{1+\cos 8x}{8}\right)$$ Now the question becomes $$\Rightarrow \frac{1}{4} \int dx + \frac{1}{2} \int \cos 4x \, dx + \frac{1}{8} \int dx + \frac{1}{8} \int \cos 8x \, dx$$ We know $$\int \cos ax \, dx = \frac{1}{a} \sin ax + c$$ $$\Rightarrow \frac{x}{4} + \frac{1}{8}\sin 4x + \frac{x}{8} + \frac{\sin 8x}{64} + c$$ $$\Rightarrow \frac{24x + 8\sin 4x + \sin 8x}{64} + c$$ Evaluate:∫ sin² b x dx ### **Answer** $$\sin^2 x = \frac{1 - \cos 2x}{2}$$ ∴ The given equation becomes, $$\Rightarrow \int \frac{1-\cos 2b}{2} dx$$ We know $\int \cos ax \, dx = \frac{1}{a} \sin ax + c$ $$\Rightarrow \frac{1}{2} \int dx - \frac{1}{2} \int \cos(2b) dx$$ $$\Rightarrow \frac{x}{2} - \frac{1}{4b}\sin(2bx) + c$$ # 5. Question Evaluate: $$\int \sin^2 \frac{x}{2} dx$$ #### **Answer** $$\sin^2 x = \frac{1 - \cos 2x}{2}$$: The given equation becomes, $$\Rightarrow \int \frac{1-\cos 2\frac{x}{2}}{2} dx = \int \frac{1-\cos x}{2} dx$$ We know $\int \cos ax \, dx = \frac{1}{a} \sin ax + c$ $$\Rightarrow \frac{1}{2} \int dx - \frac{1}{2} \int \cos(x) dx$$ $$\Rightarrow \frac{x}{2} - \frac{1}{2}\sin(x) + c$$ # 6. Question Evaluate: $$\int \cos^2 \frac{x}{2} dx$$ # **Answer** We know, $$\cos^2 x = \frac{1+\cos 2x}{2}$$.. The given equation becomes, $$\label{eq:definition} \Rightarrow \int \frac{1 + \cos 2\frac{x}{2}}{2} \, dx = \int \frac{1 + \cos x}{2}
\, dx$$ We know $\int \cos ax \, dx = \frac{1}{a} \sin ax + c$ $$\Rightarrow \frac{1}{2} \int dx + \frac{1}{2} \int \cos(x) dx$$ $$\Rightarrow \frac{x}{2} + \frac{1}{2}\sin(x) + c$$ Evaluate:∫ cos²nx dx ## **Answer** We know, $$\cos^2 x = \frac{1 + \cos 2x}{2}$$.. The given equation becomes, $$\Rightarrow \int \frac{1 + \cos nx}{2} dx = \int \frac{1 + \cos 2nx}{2} dx$$ We know $\int \cos ax \, dx = \frac{1}{a} \sin ax + c$ $$\Rightarrow \frac{1}{2} \int dx + \frac{1}{2} \int \cos(2nx) dx$$ $$\Rightarrow \frac{x}{2} + \frac{1}{4n}\sin(2nx) + c$$ # 8. Question Evaluate: $\int \sin x \sqrt{1 - \cos 2x} \, dx$ ### **Answer** $$\Rightarrow 2\sin^2 x = 1 - \cos 2x$$ We can substitute the above result in the given equation ∴ The given equation becomes $$\Rightarrow \int \sin x \sqrt{2 \sin^2 x}$$ $$\Rightarrow \int \sqrt{2} \sin^2 x$$ $$\sin^2 x = \frac{1 - \cos 2x}{2}$$ $$\Rightarrow \frac{\sqrt{2}}{2} \int 1 - \cos 2x \, dx$$ $$\Rightarrow \frac{1}{\sqrt{2}} \int dx - \frac{1}{\sqrt{2}} \int \cos 2x \, dx$$ $$\Rightarrow \frac{x}{\sqrt{2}} - \frac{1}{2\sqrt{2}}\sin(2x) + c$$ # Exercise 19.7 ### 1. Question ∫ sin 4x cos 7x dx #### **Answer** We know $2\sin A\cos B = \sin(A + B) + \sin(A - B)$ $$\therefore \sin 4x \cos 7x = \frac{\sin 11x + \sin(-3x)}{2}$$ We know $sin(-\theta) = -sin\theta$ $$\therefore \sin(-3x) = -\sin 3x$$: The above equation becomes $$\Rightarrow \int \frac{1}{2} (\sin 11x - \sin 3x) dx$$ $$\Rightarrow \frac{1}{2} (\int \sin 11x \, dx - \int \sin 3x \, dx)$$ We know $$\int \sin ax \, dx = \frac{-1}{a} \cos ax + c$$ $$\Rightarrow \frac{1}{2} \left(\frac{-1}{11} \cos 11x + \frac{1}{3} \cos 3x \right)$$ $$\Rightarrow \frac{11\cos 3x - 3\cos 11x}{66} + C$$ ∫ cos 3x cos 4x dx #### **Answer** We know $2\cos A\cos B = \cos(A - B) + \cos(A + B)$ $$\therefore \cos 4x \cos 3x = \frac{\cos x + \cos 7x}{2}$$: The above equation becomes $$\Rightarrow \int \frac{1}{2} (\cos x - \cos 7x) dx$$ $$\Rightarrow \frac{1}{2} (\int \cos x \, dx - \int \cos 7x \, dx)$$ We know $\int \cos ax \, dx = \frac{1}{a} \sin ax + c$ $$\Rightarrow \frac{1}{2} \left(\sin x - \frac{1}{7} \sin 7x \right)$$ $$\Rightarrow \frac{7\sin x - \sin 7x}{14} + C$$ ## 3. Question $\int \cos mx \cos nx \, dx, \, m \neq n$ #### **Answer** We know $2\cos A\cos B = \cos(A - B) + \cos(A + B)$ $$\label{eq:cosmxcosnx} \begin{split} \therefore \text{cosmxcosnx} = \frac{\cos(m-n)x + \cos(m+n)x}{2} \end{split}$$: The above equation becomes $$\Rightarrow \int \frac{1}{2} (\cos(m-n)x + \cos(m+n)x) dx$$ We know $\int \cos ax \, dx = \frac{1}{a} \sin ax + c$ $$\Rightarrow \frac{1}{2} \left(\frac{1}{m-n} \sin(m-n)x + \frac{1}{m+n} \sin(m+n)x \right)$$ $$\Rightarrow \frac{1}{2} \bigg(\frac{(m+n)\sin(m-n)x + (m-n)\sin(m+n)x}{m^2 - n^2} \bigg) \ + \ C$$ ### 4. Question $\int \sin mx \cos nx \, dx, \, m \neq n$ ## Answer We know $2\sin A\cos B = \sin(A + B) + \sin(A - B)$ $$\therefore sinmxcosnx = \frac{\sin(m+n)x + \sin(m-n)x}{2}$$.. The above equation becomes $$\Rightarrow \int_{-\frac{1}{2}}^{\frac{1}{2}} (\sin(m + n)x + \sin(m - n)x) dx$$ We know $\int \sin ax \, dx = \frac{-1}{a} \cos ax + c$ $$\Rightarrow \frac{1}{2} \left(\frac{-1}{m+n} \cos(m+n) x - \frac{1}{(m-n)} \cos(m-n) x \right)$$ $$\Rightarrow \frac{1}{2} \Biggl(\frac{-(m-n)\cos(m+n)x - (m+n)\cos(m-n)x}{m^2 - n^2} \Biggr)$$ #### 5. Question ∫ sin 2x sin 4x sin 6x dx #### **Answer** We need to simplify the given equation to make it easier to solve We know $2\sin A \sin B = \cos(A - B) - \cos(A + B)$ $$\therefore \sin 4x \sin 2x = \frac{\cos 2x - \cos 6x}{2}$$ ∴ The above equation becomes $$\Rightarrow \int \frac{1}{2} (\cos 2x - \cos 6x) \sin 6x \, dx$$ $$\Rightarrow \frac{1}{2} \int ((\cos 2x \sin 6x) - (\cos 6x \sin 6x)) dx$$ We know $2\sin A\cos B = \sin(A + B) + \sin(A - B)$ $$\therefore \sin 6x \cos 2x = \frac{\sin 8x + \sin 4x}{2}$$ Also $2\sin x \cdot \cos x = \sin 2x$ $$\therefore \sin 6x \cos 6x = \frac{\sin 12x}{2}$$ ∴ The above equation simplifies to $$\Rightarrow \frac{1}{2} \int \frac{1}{2} (\sin 8x + \sin 4x) dx - \int \frac{1}{2} \sin 12x dx$$ $$\Rightarrow \frac{1}{4} \left(\int \sin 8x \, dx + \int \sin 4x \, dx - \int \sin 12x \, dx \right)$$ We know $\int \sin ax \, dx = \frac{-1}{a} \cos ax + c$ $$\Rightarrow \frac{1}{4} \left(\frac{-1}{8} \cos 8x + \frac{(-1)}{4} \cos 4x + \frac{1}{12} \cos 12x + c \right)$$ $$\Rightarrow \frac{1}{4} \left(\frac{2\cos 12x - 3\cos 8x - 6\cos 4x}{24} + c \right)$$ $$\Rightarrow \frac{2\cos 12x - 3\cos 8x - 6\cos 4x}{96} + c$$ (where c is some arbitrary constant) #### 6. Question ∫ sin x cos 2x sin 3x dx #### **Answer** We know $2\sin A\cos B = \sin(A + B) + \sin(A - B)$ $$\therefore \sin 3x \cos 2x = \frac{\sin 5x + \sin x}{2}$$ ∴ The given equation becomes $$\Rightarrow \int \frac{1}{2} (\sin 5x - \sin x) \sin x \, dx$$ $$\Rightarrow \int \frac{1}{2} (\sin 5x \sin x \, dx - \sin^2 x \, dx)$$ We know $2\sin A \sin B = \cos(A - B) - \cos(A + B)$ $$\therefore \sin 5x \sin x = \frac{\cos 4x - \cos 6x}{2}$$ Also $$\sin^2 x = \frac{1 - \cos 2x}{2}$$: Above equation can be written as $$\Rightarrow \int \frac{1}{2} (\frac{1}{2} (\cos 4x - \cos 6x) dx - \frac{1}{2} (1 - \cos 2x) dx)$$ $$\Rightarrow \frac{1}{4} \int \cos 4x \, dx - \int \cos 6x \, dx - \int dx + \int \cos 2x \, dx$$ We know $\int \cos ax \, dx = \frac{1}{a} \sin ax + c$ $$\Rightarrow \frac{1}{4} \left(\frac{1}{4} \sin 4x - \frac{1}{6} \sin 6x - x + \frac{1}{2} \sin 2x + c \right)$$ $$\Rightarrow \frac{1}{4} \left(\frac{3 \sin 4x - 2 \sin 6x - 12 + 6 \sin 2x}{12} + c \right)$$ $$\Rightarrow \frac{3\sin 4x - 2\sin 6x - 12 + 6\sin 2x}{4g} + c$$ NOTE: – Whenever you are solving integral questions having trigonometric functions in the product then the first thing that should be done is convert them in the form of addition or subtraction. # Exercise 19.8 #### 1. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{1-\cos 2x}} dx$$ #### **Answer** In the given equation $\cos 2x = \cos^2 x - \sin^2 x$ Also we know $\cos^2 x + \sin^2 x = 1$. ::Substituting the values in the above equation we get $$\Rightarrow \int \frac{1}{\sqrt{\sin^2 x + \cos^2 x - (-\sin^2 x + \cos^2 x)}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{\sin^2 x + \cos^2 x + \sin^2 x - \cos^2 x}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{2\sin^2 x}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{2}\sin x} dx$$ $$\Rightarrow \int \frac{\csc x}{\sqrt{2}} dx$$ $$\Rightarrow \frac{1}{\sqrt{2}} \int \csc x \, dx$$ $$\Rightarrow \frac{1}{\sqrt{2}} log \left| \frac{tan x}{2} \right| + c$$ Evaluate the following integrals: $$\int \frac{1}{\sqrt{1+\cos x}} \, dx$$ #### **Answer** In the given equation $$\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$$ Also, $$\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} = 1$$ Substituting in the above equation we get, $$\Rightarrow \int \frac{1}{\sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + \left(\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}\right)}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{2 \cos^2 \frac{x}{2}}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{2}\cos^{x}_{2}}\,dx$$ $$\Rightarrow \frac{1}{\sqrt{2}} \int \sec \frac{x}{2} dx$$ $$\Rightarrow \frac{1}{\sqrt{2}} \ln \left| \sec \frac{x}{2} + \tan \frac{x}{2} \right| + c$$ # 3. Question Evaluate the following integrals: $$\int \sqrt{\frac{1+\cos 2x}{1-\cos 2x}} \, dx$$ #### **Answer** $$1 + \cos 2x = 2\cos^2 x$$ $$1 - \cos 2x = 2 \sin^2 x$$ (both of them are trigonometric formuales) $$\Rightarrow \int \sqrt{\frac{2\cos^2 x}{2\sin^2 x}} dx$$ $$\Rightarrow \int \sqrt{\cot^2 x} \, dx$$ $$\Rightarrow \ln|\sin x| + c$$ ### 4. Question Evaluate the following integrals: $$\int \sqrt{\frac{1-\cos x}{1+\cos x}} \, dx$$ $$1 - \cos x = 2\sin^2\frac{x}{2}$$ $$1 + \cos x = 2 \cos^2 \frac{x}{2}$$ $$\Rightarrow \int \sqrt{\frac{2\sin^2\frac{x}{2}}{2\cos^2\frac{x}{2}}} \, dx$$ $$\Rightarrow \int \sqrt{\tan^2 \frac{x}{2} dx}$$ $$\Rightarrow \int \tan \frac{x}{2} dx$$ $$\Rightarrow -2 \ln \left| \cos \frac{x}{2} \right| + c$$ # 5. Question Evaluate the following integrals: $$\int \frac{\sec x}{\sec 2x} dx$$ #### **Answer** Here first of all convert secx in terms of cosx ∴ We get $$\Rightarrow$$ sec $x = \frac{1}{\cos x}$, sec $2x = \frac{1}{\cos 2x}$ ∴ We get $$\Rightarrow \frac{\frac{1}{\cos x}}{\frac{1}{\cos 2x}}$$ $$= \frac{\cos 2x}{\cos x}$$: The equation now becomes $$\Rightarrow \int \frac{\cos 2x}{\cos x} dx$$ We know $$\cos 2x = 2\cos^2 x - 1$$.. We can write the above equation as $$\Rightarrow \int \frac{2\cos^2 x - 1}{\cos x} dx$$ $$\Rightarrow \int 2 \cos x \, dx - \int \frac{1}{\cos x} \, dx$$ $$\Rightarrow$$ 2 sin x - \int sec x dx $$(\int \sec x \, dx = \ln|\sec x + \tan x| + c$$ $$\Rightarrow$$ 2 sin x - ln|sec x + tan x| + c ### 6. Question Evaluate the following integrals: $$\int \frac{\cos 2x}{(\cos x + \sin x)^2} dx$$ Expanding $(\cos x + \sin x)^2 = \cos^2 x + \sin^2 x + 2 \sin x \cos x$ We know $\cos^2 x + \sin^2 x = 1$, $2\sin x \cos x = \sin 2x$ $$\therefore (\cos x + \sin x)^2 = 1 + \sin 2x$$ ∴ we can write the given equation as $$\Rightarrow \int \frac{\cos 2x}{1 + \sin 2x} dx$$ Assume $1 + \sin 2x = t$ $$\Rightarrow \frac{d(1 + \sin 2x)}{dx} = \frac{dt}{dx}$$ $$\Rightarrow$$ 2cos2x dx = dt $$\therefore \cos 2x dx = \frac{dt}{2}$$ Substituting these values in the above equation we get $$\Rightarrow \int \frac{1}{2t} dt$$ $$\Rightarrow \frac{1}{2} \ln t + c$$ substituting $t = 1 + 2 \sin x$ in above equation $$\Rightarrow \frac{1}{2}\ln(1+2\sin x)+c$$ ## 7. Question Evaluate the following integrals: $$\int \frac{\sin(x-a)}{\sin(x-b)} dx$$ #### **Answer** While solving these types of questions, it is better to eliminate the denominator. $$\Rightarrow \int \frac{\sin(x-a)}{\sin(x-b)} dx$$ Add and subtract b in (x - a) $$\Rightarrow \int \frac{\sin(x-a+b-b)}{\sin(x-b)} dx$$ $$\Rightarrow \int \frac{\sin(x-b+b-a)}{\sin(x-b)}$$ Numerator is of the form sin(A + B) = sinAcosB + cosAsinB Where A = x - b; B = b - a
$$\Rightarrow \int \frac{\sin(x-b)\cos(b-a) + \cos(x-b)\sin(b-a)}{\sin(x-b)} dx$$ $$\Rightarrow \int \frac{\sin(x-b)\cos(b-a)}{\sin(x-b)} \, dx \; + \; \int \frac{\cos(x-b)\sin(b-a)}{\sin(x-b)} \, dx$$ $$\Rightarrow \int \cos(b-a) dx + \int \cot(x-b) \sin(b-a) dx$$ $$\Rightarrow \cos(b-a) \int dx + \sin(b-a) \int \cot(x-b) dx$$ As $$\int \cot(x) dx = \ln|\sin x|$$ $$\Rightarrow$$ cos(b - a)x + sin(b - a)ln|sin(x - b)| Evaluate the following integrals: $$\int \frac{\sin(x-\alpha)}{\sin(x+\alpha)} dx$$ #### **Answer** Add and subtract α in the numerator $$\Rightarrow \int \frac{\sin(x-\alpha+\alpha-\alpha)}{\sin(x+\alpha)} dx$$ $$\Rightarrow \int \frac{\sin(x + \alpha - 2\alpha)}{\sin(x + \alpha)}$$ Numerator is of the form sin(A - B) = sinAcosB - cosAsinB Where $$A = x + \alpha$$; $B = 2\alpha$ $$\Rightarrow \int \frac{\sin(x+\alpha)\cos(2\alpha) - \cos(x+\alpha)\sin(2\alpha)}{\sin(x+\alpha)} dx$$ $$\Rightarrow \int \frac{\sin(x+\alpha)\cos(2\alpha)}{\sin(x+\alpha)} \, dx \ + \ \int \frac{\cos(x+\alpha)\sin(2\alpha)}{\sin(x+\alpha)} \, dx$$ $$\Rightarrow \int \cos(2\alpha) dx + \int \cot(x + \alpha) \sin(2\alpha) dx$$ $$\Rightarrow \cos(2\alpha) \int dx + \sin(2\alpha) \int \cot(x + \alpha) dx$$ As $$\int \cot(x) dx = \ln|\sin x|$$ $$\Rightarrow$$ cos(2 α)x + sin(2 α)In|sin(x + α)| # 9. Question Evaluate the following integrals: $$\int \frac{1 + \tan x}{1 - \tan x} dx$$ #### Answer Convert tanx in form of sinx and cosx. $$\Rightarrow \tan x = \frac{\sin x}{\cos x}$$ \therefore The equation now becomes $$\Rightarrow \int \frac{1 + \frac{\sin x}{\cos x}}{1 - \frac{\sin x}{\cos x}} dx$$ $$\Rightarrow \int \frac{\frac{\cos x + \sin x}{\cos x}}{\frac{\cos x - \sin x}{\cos x}} dx$$ $$\Rightarrow \int \frac{\cos x + \sin x}{\cos x - \sin x} dx$$ Let cosx - sinx = t $$\Rightarrow$$ - (cosx + sinx)dx =dt Substituting dt and t We get $$\Rightarrow \int -\frac{dt}{t}$$ $$\Rightarrow$$ - In t + c $$t = cosx - sinx$$ $$\therefore$$ - $\ln|\cos x - \sin x| + c$ # 10. Question Evaluate the following integrals: $$\int \frac{\cos x}{\cos(x-a)} dx$$ ## **Answer** Add and subtract a from x in the numerator ∴ The equation becomes $$\Rightarrow \int \frac{\cos(x-a+a)}{\cos(x-a)}$$ Numerator is of the form cos(A + B) = cosAcosB - sinAsinB Where $$A = x - a$$; $B = a$ $$\Rightarrow \int \frac{\cos(x-a)\cos a}{\cos(x-a)} dx - \int \frac{\sin(x-a)\sin a}{\cos(x-a)} dx$$ $$\Rightarrow$$ cos a $\int dx - \sin a \int \tan(x - a) dx$ As $$\int \tan x = \ln|\sec x| + c$$ $$\Rightarrow$$ xcosa - sina $\frac{\ln|\sec(x-a)|}{(x-a)}$ + c ### 11. Question Evaluate the following integrals: $$\int \sqrt{\frac{1-\sin 2x}{1+\sin 2x}} \, dx$$ ### **Answer** We know $\cos^2 x + \sin^2 x = 1$. Also, $2\sin x \cos x = \sin 2x$ $$1 + \sin 2x = \cos^2 x + \sin^2 x + 2\sin x \cos x = (\cos x + \sin x)^2$$ $$1 - \sin 2x = \cos^2 x + \sin^2 x - 2\sin x \cos x = (\cos x - \sin x)^2$$: The equation becomes $$\Rightarrow \int \sqrt{\frac{(\cos x - \sin x)^2}{(\cos x + \sin x)^2}} dx$$ $$\Rightarrow \int \frac{(\cos x - \sin x)}{(\cos x + \sin x)} dx$$ Assume cosx + sinx = t $$d(\cos x + \sin x) = dt$$ $$= \cos x - \sin x$$ $$dt = \cos x - \sin x$$ $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|t| + c$$ But $$t = cosx + sinx$$ $$\therefore \ln|\cos x + \sin x| + c.$$ ## 12. Question Evaluate the following integrals: $$\int\!\frac{e^{3x}}{e^{3x}+1}dx$$ #### **Answer** Assume $e^{3x} + 1 = t$ $$\Rightarrow$$ d(e^{3x} + 1) = dt $$\Rightarrow$$ 3e^{3x}=dt $$\Rightarrow e^{3x} = \frac{dt}{3}$$ Substituting t and dt in the given equation we get $$\Rightarrow \int \frac{dt}{3t}$$ $$\Rightarrow \frac{1}{3} \int \frac{dt}{t}$$ $$\Rightarrow \frac{1}{3} \ln |t| + c$$ But $$t = e^{3x} + 1$$ ∴ The above equation becomes $$\Rightarrow \frac{1}{3} \ln |e^{3x} + 1| + c.$$ # 13. Question Evaluate the following integrals: $$\int \frac{\sec x \tan x}{3 \sec x + 5} dx$$ # **Answer** Assume $3 \sec x + 5 = t$ $$d(3secx + 5) = dt$$ 3secxtanx=dt $$Secxtanx = \frac{dt}{3}$$ Substitute t and dt We get $$\Rightarrow \frac{1}{3} \int \frac{dt}{t}$$ $$\Rightarrow \frac{1}{3}\ln|t| + c$$ But $$t = 3 \sec x + 5$$ ∴ the equation becomes $$\Rightarrow \frac{1}{3}\ln|3\sec x + 5| + c.$$ # 14. Question Evaluate the following integrals: $$\int \frac{1 - \cot x}{1 + \cot x} dx$$ ### **Answer** Convert cotx in form of sinx and cosx. $$\Rightarrow \cot x = \frac{\cos x}{\sin x}$$ ∴ The equation now becomes $$\Rightarrow \int \frac{1 - \frac{\cos x}{\sin x}}{1 + \frac{\cos x}{\sin x}} dx$$ $$\Rightarrow \int \frac{\frac{\cos x - \sin x}{\sin x}}{\frac{\cos x + \sin x}{\sin x}} dx$$ $$\Rightarrow \int \frac{\cos x - \sin x}{\cos x + \sin x} dx$$ Assume cosx + sinx = t $$\therefore d(\cos x + \sin x) = dt$$ $$= \cos x - \sin x$$ $$\therefore$$ dt = cosx - sinx $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|t| + c$$ But $$t = cosx + sinx$$ $$\ln |\cos x + \sin x| + c$$. ### 15. Question Evaluate the following integrals: $$\int \frac{\sec x \csc x}{\log(\tan x)} dx$$ # **Answer** Assume log(tanx) = t $$d(log(tanx)) = dt$$ $$\Rightarrow \frac{\sec^2 x}{\tan x} dx = dt$$ $$\Rightarrow$$ secx.cosecx.dx=dt Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|t| + c.$$ But $$t = log(tanx)$$ $$= \ln|\log(\tan x)| + c.$$ # 16. Question Evaluate the following integrals: $$\int\!\!\frac{1}{x(3+\log x)}dx$$ # **Answer** Assume $3 + \log x = t$ $$d(3 + log x) = dt$$ $$\Rightarrow \frac{1}{x}dx = dt$$ Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= In|t| + c.$$ But $$t = 3 + \log x$$ $$= \ln|3 + \log x| + c$$ # 17. Question Evaluate the following integrals: $$\int \frac{e^x + 1}{e^x + x} dx$$ ### **Answer** Assume $e^x + x = t$ $$d(e^{x} + x) = dt$$ $$e^{x} + 1 = dt$$ Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= In|t| + c.$$ But $$t = e^x + x$$ $$= \ln|e^{x} + 1| + c$$ ### 18. Question Evaluate the following integrals: $$\int\!\frac{1}{x\log x}dx$$ Assume logx = t d(logx)=dt $$\frac{1}{x}dx = dt$$ Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|t| + c.$$ But t = logx $$= \ln|\log x| + c$$ # 19. Question Evaluate the following integrals: $$\int \frac{\sin 2x}{a\cos^2 x + b\sin^2 x} dx$$ #### **Answer** Assume $a\cos^2 x + b\sin^2 x = t$ $$d(a\cos^2 x + b\sin^2 x) = dt$$ (-2acosx.sinx + 2bsinx.cosx)dx = dt (bsin2x - asin2x)dx=dt $(b - a)\sin 2x dx = dt$ $$\sin 2x dx = \frac{dt}{(b-a)}$$ Put t and dt in given equation we get $$\Rightarrow \frac{1}{(b-a)} \int \frac{dt}{t}$$ $$= \frac{1}{b-a} |n|t| + c.$$ But $t = a\cos^2 x + b\sin^2 x$ $$= \frac{1}{b-a} \ln|a\cos^2 x + b\sin^2 x| + c.$$ # 20. Question Evaluate the following integrals: $$\int \frac{\cos x}{2 + 3\sin x} dx$$ # Answer Assume $2 + 3\sin x = t$ $$d(2 + 3\sin x) = dt$$ $$3\cos x dx = dt$$ $$\cos x dx = \frac{dt}{3}$$ Put t and dt in given equation we get $$\Rightarrow \frac{1}{3} \int \frac{dt}{t}$$ $$=\frac{1}{3}\ln|\mathbf{t}| + \mathbf{c}$$ But $t = 2 + 3\sin x$ $$= \frac{1}{3} \ln|2 + 3\sin x| + c.$$ # 21. Question Evaluate the following integrals: $$\int \frac{1-\sin x}{x+\cos x} \, dx$$ #### **Answer** Assume $x + \cos x = t$ $$d(x + cosx) = dt$$ $$\Rightarrow$$ 1 - sinx dx = dt Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|t| + c.$$ But $t = x + \cos x$ $$= \ln|x + \cos x| + c$$ # 22. Question Evaluate the following integrals: $$\int \frac{a}{b+ce^x} dx$$ ## **Answer** First of all take e^x common from denominator so we get $$\Rightarrow \int \frac{a}{e^x \left(\frac{b}{e^x} + c\right)} \cdot dx$$ $$\Rightarrow \int \frac{a \cdot e^{-x}}{b \cdot e^{-x} + c} dx$$ Assume be -x + c = t $$d(be^{-x} + c) = dt$$ $$\Rightarrow$$ - be - $^{x}dx = dt$ $$\Rightarrow e^{-x}dx = \frac{-dt}{b}$$ Substituting t and dt we get $$\Rightarrow \int \frac{-adt}{bt}$$ $$\Rightarrow \frac{-a}{b} \ln |t| + c$$ But $$t = (be^{-x} + c)$$ $$\Rightarrow \frac{-a}{b} \ln |be^{-x} + c| + c$$ Evaluate the following integrals: $$\int \frac{1}{e^x + 1} dx$$ ### **Answer** First of all, take e^x common from the denominator, so we get $$\Rightarrow \int \frac{1}{e^X\left(\frac{1}{e^X}+1\right)}.\ dx$$ $$\Rightarrow \int \frac{1.e^{-x}}{e^{-x}+1} dx$$ Assume $e^{-x} + 1 = t$ $$d(e^{-x} + 1) = dt$$ $$\Rightarrow$$ - e - \times dx = dt $$\Rightarrow$$ e - \times dx = - dt Substituting t and dt we get $$\Rightarrow \int \frac{-dt}{t}$$ $$\Rightarrow \ln|t| + c$$ But $$t = (e^{-x} + 1)$$ $$\Rightarrow \ln |e^{-x} + 1| + c$$ # 24. Question Evaluate the following integrals: $$\int \frac{\cot x}{\log \sin x} dx$$ #### **Answer** Assume log(sinx) = t $$d(log(sinx)) = dt$$ $$\Rightarrow \frac{\cos x}{\sin x} dx = dt$$ $$\Rightarrow$$ cotx dx = dt Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|t| + c.$$ But $$t = log(sinx)$$ $$= \ln|\log(\sin x)| + c$$ Evaluate the following integrals: $$\int\!\frac{e^{2x}}{e^{2x}-2}\,dx$$ #### **Answer** Assume $e^{2x} - 2 = t$ $$d(e^{2x} - 2) = dt$$ $$\Rightarrow$$ 2e^{2x}dx =dt $$\Rightarrow e^{2x}dx = \frac{dt}{2}$$ Put t and dt in the given equation we get $$\Rightarrow \frac{1}{2} \int \frac{dt}{t}$$ $$=\frac{1}{2}\ln|\mathbf{t}| + \mathbf{c}$$ But $$t = e^{2x} - 2$$ $$=\frac{1}{2}\ln|e^{2x}-2|+c$$ # 26. Question Evaluate the following integrals: $$\int \frac{2\cos x - 3\sin x}{6\cos x + 4\sin x} dx$$ ### **Answer** Taking 2 common in denominator we get $$\Rightarrow \int \frac{2\cos x - 3\sin x}{2(3\cos x + 2\sin x)} \, dx$$ Now assume $$3\cos x + 2\sin x = t$$ $$(-3\sin x + 2\cos x)dx = dt$$ Put t and dt in given equation we get $$\Rightarrow \frac{1}{2} \int \frac{dt}{t}$$ $$=\frac{1}{2}\ln|\mathbf{t}| + \mathbf{c}$$ But $t = 3\cos x + 2\sin x$ $$= \frac{1}{2} \ln |3\cos x + 2\sin x| + c$$ ## 27. Question Evaluate the following integrals: $$\int \frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx$$ Assume $x^2 + \sin 2x + 2x = t$ $$d(x^2 + \sin 2x + 2x) = dt$$ $$(2x + 2\cos 2x + 2)dx = dt$$ $$2(x + \cos 2x + 1)dx = dt$$ $$(x + \cos 2x + 1)dx =
\frac{1}{2}dt$$ Put t and dt in given equation we get $$\Rightarrow \frac{1}{2} \int \frac{dt}{t}$$ $$= \frac{1}{2} \ln|\mathbf{t}| + c$$ But $$t = x^2 + \sin 2x + 2x$$ $$= \frac{1}{2} \ln |x^2 + \sin 2x + 2x| + c$$ # 28. Question Evaluate the following integrals: $$\int \frac{1}{\cos(x+a)\cos(x+b)} dx$$ #### **Answer** Let $$I = \int \frac{1}{\cos(x+a)\cos(x+b)} dx$$ Dividing and multiplying I by sin (a - b) we get, $$I = \frac{1}{\sin(a-b)} \int \frac{\sin(a-b)}{\cos(x+a)\cos(x+b)} dx$$ $$I = \frac{1}{\sin(a-b)} \int \frac{\sin\{(x+a) - (x+b)\}}{\cos(x+a)\cos(x+b)} dx$$ $$I = \frac{1}{\sin(a-b)} \int \frac{\sin(x+a)\cos(x+b) - \cos(x+a)\sin(x+b)}{\cos(x+a)\cos(x+b)} \, dx$$ $$I = \frac{1}{\sin(a-b)} \int \{ \tan(x+a) - \tan(x+b) \} dx$$ We know that, $$\int \tan x \, dx = |\log \sec x| + c$$ Therefore, $$I = \frac{1}{\sin(a-b)} \left\{ \frac{\log(\sec(x+a))}{x+a} - \frac{\log(\sec(x+b))}{x+b} \right\} + c$$ ## 29. Question Evaluate the following integrals: $$\int \frac{-\sin x + 2\cos x}{2\sin x + \cos x} dx$$ Assume $2\sin x + \cos x = t$ $$d(2\sin x + \cos x) = dt$$ $$(2\cos x - \sin x)dx = dt$$ Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|t| + c$$ But $$t = 2\sin x + \cos x$$ $$= \ln|2\sin x + \cos x| + c.$$ # 30. Question Evaluate the following integrals: $$\int \frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx$$ #### **Answer** Assume $\sin 4x - \sin 2x = t$ $$d(\sin 4x - \sin 2x) = dt$$ $$(\cos 4x - \cos 2x)dx = dt$$ Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|\mathbf{t}| + \mathbf{c}$$ But $$t = \sin 4x - \sin 2x$$ $$= \ln|\sin 4x - \sin 2x| + c.$$ # 31. Question Evaluate the following integrals: $$\int\!\!\frac{\sec x}{\log(\sec x + \tan x)}dx$$ ## **Answer** Assume log(secx + tanx) = t $$d(\log(\text{secx} + \text{tanx})) = dt$$ (use chain rule to differentiate first differentiate log(secx + tanx) then (secx + tanx) $$\Rightarrow \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x} dx = dt$$ $$\Rightarrow \frac{\sec x (\tan x + \sec x)}{\sec x + \tan x} dx = dt$$ $$\Rightarrow$$ secx dx =dt Put t and dt in the given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln |t| + c$$ But $$t = log(secx + tanx)$$ $$= \ln|\log(\text{secx} + \text{tanx})| + c.$$ Evaluate the following integrals: $$\int \frac{\cos ec \, x}{\log \tan \frac{x}{2}} \, dx$$ ## **Answer** Assume $log(tan_{\frac{x}{2}}^{x}) = t$ $$d(\log(\tan{\frac{x}{2}})) = dt$$ (use chain rule to differentiate) $$\Rightarrow \frac{\sec^{2\frac{X}{2}}}{\tan^{\frac{X}{2}}} dx = dt$$ $$\Rightarrow \frac{1}{2\sin\frac{x}{2}\cos\frac{x}{2}}dx = dt$$ $$\Rightarrow \frac{1}{\sin x} dx = dt$$ $$\Rightarrow$$ cosecx dx =dt Put t and dt in the given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|t| + c$$ But $$t = \log(\tan \frac{x}{2})$$ = $$\ln |\log(\tan \frac{x}{2})| + c$$. # 33. Question Evaluate the following integrals: $$\int \frac{1}{x \log x \log (\log x)} dx$$ #### **Answer** Assume log(logx) = t $$d(log(logx)) = dt$$ (use chain rule to differentiate first) $$\Rightarrow \frac{1}{\text{xlogx}} dx = dt$$ Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|t| + c$$ But $$t = \log(\log(x))$$ $$= \ln|\log(\log(x))| + c.$$ Evaluate the following integrals: $$\int \frac{\cos ec^2 x}{1+\cot x} dx$$ ## **Answer** Assume $1 + \cot x = t$ $$d(1 + \cot x) = dt$$ Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|t| + c$$ But $$t = 1 + \cot x$$ $$= \ln|1 + \cot x| + c.$$ # 35. Question Evaluate the following integrals: $$\int \frac{10x^9 + 10^x \log_e 10}{10^x + x^{10}} dx$$ # Answer Assume $10^{x} + x^{10} = t$ $$d(10^{x} + x^{10}) = dt$$ $$a^{x} = log_{e}a$$ $$\Rightarrow 10x^9 + 10^x \log_e 10 = dt$$ Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|t| + c$$ But $$t = 10^{x} + x^{10}$$ $$= \ln|10^{x} + x^{10}| + c.$$ # 36. Question Evaluate the following integrals: $$\int \frac{1-\sin 2x}{x+\cos^2 x} dx$$ # **Answer** Assume $x + \cos^2 x = t$ $$d(x + cos^2x) = dt$$ $$(1 + (-2\cos x.\sin x))dx = dt$$ $$(1 - \sin 2x)dx = dt$$ Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|\mathbf{t}| + \mathbf{c}$$ But $$t = x + \cos^2 x$$ $$= \ln |x + \cos^2 x| + c.$$ ### 37. Question Evaluate the following integrals: $$\int \frac{1 + \tan x}{x + \log x \sec x} dx$$ #### **Answer** Assume x + logxsecx = t $$d(x + logxsecx) = dt$$ $$1 + \frac{\sec x \tan x}{\sec x} dx = dt$$ $$(1 + tanx)dx = dt$$ Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|t| + c$$ But t = x + logxsecx $$= \ln |x + \log x \sec x| + c.$$ # 38. Question Evaluate the following integrals: $$\int \frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx$$ ### **Answer** Assume $a^2 + b^2 \sin^2 x = t$ $$d(a^2 + b^2 \sin^2 x) = dt$$ $$2b^2$$.sinx.cosx.dx=dt $$(2\sin x.\cos x = \sin 2x)$$ $$Sin2xdx = \frac{dt}{b^2}$$ Put t and dt in the given equation we get $$\Rightarrow \frac{1}{b^2} \int \frac{dt}{t}$$ $$=\frac{1}{b^2}\ln|t|+c$$ But $$t = a^2 + b^2 \sin^2 x$$ $$= \frac{1}{b^2} \ln|a^2 + b^2 \sin^2 x| + c.$$ Evaluate the following integrals: $$\int\!\!\frac{x+1}{x(x+\log x)}dx$$ ### **Answer** Assume x + log x = t $$d(x + log x) = dt$$ $$\Rightarrow \left(1 + \frac{1}{x}\right) dx = dt$$ $$\Rightarrow \left(\frac{x+1}{x}\right) dx = dt$$ Put t and dt in the given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln |t| + c$$ But $$t = x + \log x$$ $$= \ln|x + \log x| + c$$ # 40. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{1-x^2}} \frac{1}{(2+3\sin^{-1}x)} dx$$ ### **Answer** Assume $2 + 3\sin^{-1}x = t$ $$d(2 + 3\sin^{-1}x) = dt$$ $$\Rightarrow \frac{3}{\sqrt{1-x^2}} dx = dt$$ $$\Rightarrow \frac{dx}{\sqrt{1-x^2}} = \frac{dt}{3}$$ Put t and dt in the given equation we get $$\Rightarrow \frac{1}{3} \int \frac{dt}{t}$$ $$= \frac{1}{2} \ln|\mathbf{t}| + c$$ But $$t = 2 + 3\sin^{-1}x$$ $$= \frac{1}{b^2} \ln|2 + 3\sin^{-1}x| + c.$$ Evaluate the following integrals: $$\int \frac{\sec^2 x}{\tan x + 2} dx$$ ### **Answer** Assume tanx + 2 = t $$d(tanx + 2) = dt$$ $$(sec^2xdx) = dt$$ Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln |t| + c$$ But $$t = tanx + 2$$ $$= \ln|\tan x + 2| + c.$$ # 42. Question Evaluate the following integrals: $$\int \frac{2\cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx$$ #### **Answer** Assume $\sin 2x + \tan x - 5 = t$ $$d(tanx + sin2x - 5) = dt$$ $$(2\cos 2x + \sec^2 x)dx = dt$$ Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|t| + c$$ But $$t = \sin 2x + \tan x - 5$$ $$= \ln|\sin 2x + \tan x - 5| + c.$$ ### 43. Question Evaluate the following integrals: $$\int \frac{\sin 2x}{\sin 5x \sin 3x} dx$$ ### **Answer** $\sin 2x$ can be written as $\sin (5x - 3x)$ \therefore The equation now becomes $$\Rightarrow \int \frac{\sin(5x-3x)}{\sin 5x \sin 3x} dx$$ sin(A - B) = sinAcosB - cosAsinB $$\Rightarrow \int \frac{\sin 5 x \cos 3 x - \cos 5 x \sin 3 x}{\sin 5 x \sin 3 x} dx$$ $$\Rightarrow \int \frac{\sin 5 x \cos 3 x}{\sin 5 x \sin 3 x} dx - \int \frac{\cos 5 x \sin 3 x}{\sin 5 x \sin 3 x} dx$$ $$\Rightarrow \int \frac{\cos 3x}{\sin 3x} dx - \int \frac{\cos 5x}{\sin 5x} dx$$ $$\Rightarrow \int \cot 3x \, dx - \int \cot 5x \, dx$$ $$\Rightarrow \frac{1}{3}\ln|\sin 3x| - \frac{1}{5}\ln|\sin 5x| + c.$$ Evaluate the following integrals: $$\int \frac{1 + \cot x}{x + \log \sin x} \, dx$$ ### **Answer** Assume $x + \log(\sin x) = t$ $$d(x + log(sinx)) = dt$$ $$1 + \frac{\cos x}{\sin x} dx = dt$$ $$(1 + \cot)dx = dt$$ Put t and dt in given equation we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|t| + c$$ But $$t = x + \log(\sin x)$$ $$= \ln |x + \log(\sin x)| + c.$$ # 45. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{x} \left(\sqrt{x} + 1 \right)} dx$$ # Answer Assume $\sqrt{x + 1} = t$ $$d(\sqrt{x+1}) = dt$$ $$\Rightarrow \frac{1}{2\sqrt{x}}dx = dt$$ $$\Rightarrow \frac{1}{\sqrt{x}}dx = 2dt$$ Put t and dt in given equation we get $$\Rightarrow \int 2 \frac{dt}{t}$$ $$= \ln|\mathbf{t}| + \mathbf{c}$$ But $$t = \sqrt{x + 1}$$ $$=2 \ln |\sqrt{x+1}| + c.$$ Evaluate the following integrals: f tan 2x tan 3x tan 5x dx #### **Answer** We know tan5x = tan(2x + 3x) $$tan(A + B) = \frac{tanA + tanB}{1 - tanAtanB}$$ $$\therefore \tan(2x + 3x) = \frac{\tan 2x + \tan 3x}{1 - \tan 2x \tan 3x}$$ $$\therefore \tan(5x) = \frac{\tan 2x + \tan 3x}{1 - \tan 2x + \tan 3x}$$ $$\Rightarrow \tan(5x)(1 - \tan 2x \cdot \tan 3x) = \tan(2x) + \tan(3x)$$ $$\Rightarrow$$ tan(5x) - tan2x.tan3x.tan5x = tan(2x) + tan(3x) $$\Rightarrow$$ tan(5x) - tan(2x) - tan(3x) = tan2x.tan3x.tan5x Substituting the above result in given equation we get $$\Rightarrow \int \tan 5x - \tan 3x - \tan 2x dx$$ $$\Rightarrow \int \tan 5x \, dx - \int \tan 3x \, dx - \int \tan 2x \, dx$$ $$\Rightarrow \frac{-1}{5} \ln|\cos 5x| - \frac{(-1)}{3} \ln|\cos 3x| - \frac{(-1)}{2} \ln|\cos 2x| + c.$$ $$\Rightarrow \frac{-1}{5} \ln|\cos 5x| + \frac{1}{3} \ln|\cos 3x| + \frac{1}{2} \ln|\cos 2x| + c.$$ #### 47. Question Evaluate the following integrals: $$\int \{1 + \tan x \tan (x + \theta)\} dx$$ ### **Answer** $$tan(A - B) = \frac{tan A - tan B}{1 + tan A tan B}$$ $$\therefore tan(x - (x + \theta)) = \frac{tan x - tan(x + \theta)}{1 + tan x tan(x + \theta)}$$ $$\therefore \tan(\theta) = \frac{\tan x - \tan(x + \theta)}{1 + \tan x \tan(x + \theta)}$$ $$\Rightarrow \tan(\theta)(1 + \tan x \cdot \tan(x + \theta)) = \tan(x) - \tan(x + \theta)$$ $$\Rightarrow (1 + \tan x \cdot \tan(x + \theta)) = \frac{1}{\tan \theta} (\tan x - \tan(x + \theta))$$ $$\Rightarrow \int \frac{1}{\tan \theta} (\tan x - \tan(x + \theta)) . dx$$ $$\Rightarrow \frac{1}{\tan \theta} \int \tan x \, dx - \int \tan(x + \theta) \, dx$$ $$\Rightarrow \frac{1}{\tan \theta} (-\ln|\cos x| - (-\ln|\cos(x + \theta)| + c.$$ $$\Rightarrow \frac{1}{\tan \theta} (-\ln|\cos x| + \ln|\cos(x + \theta)| + c.$$ # 48. Question Evaluate the following integrals: $$\int \frac{\sin 2x}{\sin \left(x -
\frac{\pi}{6}\right) \sin \left(x + \frac{\pi}{6}\right)} dx$$ #### **Answer** sin(A - B) = sinAcosB - cosAsinB $\therefore \text{ We can write } \sin\left(x - \frac{\pi}{6}\right) = \sin x \cos\frac{\pi}{6} - \cos x \sin\frac{\pi}{6}$ sin(A + B) = sinAcosB + cosAsinB $\therefore \text{ We can write } \sin\left(x + \frac{\pi}{6}\right) = \sin x \cos\frac{\pi}{6} + \cos x \sin\frac{\pi}{6}$ ∴ The given equation becomes $$\Rightarrow \int \frac{\sin 2x}{\left(\sin x \cos \frac{\pi}{6} - \cos x \sin \frac{\pi}{6}\right) \left(\sin x \cos \frac{\pi}{6} + \cos x \sin \frac{\pi}{6}\right)} dx$$ $$\Rightarrow \int \frac{\sin 2x}{\left(\sin x \frac{\sqrt{3}}{2} - \cos x \frac{1}{2}\right) \left(\sin x \frac{\sqrt{3}}{2} + \cos x \frac{1}{2}\right)} dx$$ Denominator is of the form $(a - b)(a + b) = a^2 - b^2$ $$\Rightarrow \int \frac{\sin 2x}{\left(\frac{3}{4}\sin^2 x - \cos^2 x_{\frac{1}{4}}^{\frac{1}{4}}\right)} dx \dots (1)$$ We know $\sin^2 x + \cos^2 x = 1$ $$\therefore \sin^2 x = 1 - \cos^2 x$$ Substituting the above result in (1) we get $$\Rightarrow \int \frac{\sin 2x}{\left(\frac{3}{7}(1-\cos^2 x)-\cos^2 x\frac{1}{7}\right)} dx$$ $$\Rightarrow \int \frac{\sin 2x}{\left(\frac{3}{4} - \cos^2 x\right)} dx...(2)$$ Let us assume $\left(\frac{3}{4} - \cos^2 x\right) = t$ $$\Rightarrow d\left(\frac{3}{4} - \cos^2 x\right) = dt$$ - ⇒ 2sinx.cosx.dx=dt - \Rightarrow sin2x.dx=dt Substituting dt and t in (2) we get $$\Rightarrow \int \frac{dt}{t}$$ $$= \ln|t| + c$$ But $$t = \left(\frac{3}{4} - \cos^2 x\right)$$ $$: \ln \left| \left(\frac{3}{4} - \cos^2 x \right) \right| + c.$$ # 49. Question Evaluate the following integrals: $$\int \frac{e^{x-1} + x^{e-1}}{e^x + x^e} dx$$ #### Answer Multiplying and dividing the numerator by e we get the given as $$\Rightarrow \frac{1}{e} \int \frac{e^{x} + ex^{e-1}}{e^{x} + x^{e}} dx ...(1)$$ Assume $e^x + x^e = t$ $$\Rightarrow$$ d(e^x + x^e)=dt $$\Rightarrow$$ e^x + ex^{e - 1} = dt Substituting t and dt in equation 1 we get $$\Rightarrow \frac{1}{e} \int \frac{dt}{t}$$ $$= \ln|t| + c$$ But $$t = e^x + x^e$$ $$\therefore$$ In| $e^x + x^e$ | + c. # 50. Question Evaluate the following integrals: $$\int \frac{1}{\sin x \cos^2 x} dx$$ #### **Answer** We know $\sin^2 x + \cos^2 x = 1$ $$\Rightarrow \int \frac{\sin^2 x + \cos^2 x}{\sin x \cos^2 x}$$ $$\Rightarrow \int \frac{\sin^2 x}{\sin x \cos^2 x} dx + \int \frac{\cos^2 x}{\sin x \cos^2 x} dx$$ $$\Rightarrow \int \frac{\sin x}{\cos^2 x} dx + \int \frac{1}{\sin x} dx$$ $$\Rightarrow \int \tan x \sec x dx + \int \csc x dx$$ d(secx) = tanx.secx $$\int \tan x \sec x dx = \sec x + c$$ $$\therefore \int \csc x \, dx = \log \left| \tan \frac{x}{2} \right| + c$$ $$\Rightarrow$$ secx + log|tan $\frac{x}{2}$ | + c. ### 51. Question Evaluate the following integrals: $$\int \frac{1}{\cos 3x - \cos x} dx$$ ## **Answer** The denominator is of the form $\cos C - \cos D = -2 \sin \left(\frac{c+d}{2}\right) \cdot \sin \left(\frac{c-d}{2}\right)$ $$\therefore \cos 3x - \cos x = -2\sin\left(\frac{3+1}{2}x\right)\sin\left(\frac{3-1}{2}x\right)$$ $$\therefore$$ cos3x - cosx= - 2sin2x.sinx $$-2\sin 2x.\sin x = -2.2.\sin x.\cos x.\sin x$$ - $$2\sin 2x \cdot \sin x = -4\sin^2 x \cdot \cos x$$ Also $$\sin^2 x + \cos^2 x = 1$$ $$\Rightarrow \int \frac{\sin^2 x + \cos^2 x}{-4\sin^2 x \cos x} dx$$ $$\Rightarrow \frac{-1}{4} \int \frac{\sin^2 x}{\sin^2 x \cdot \cos x} dx + \frac{-1}{4} \int \frac{\cos^2 x}{\sin^2 x \cdot \cos x} dx$$ $$\Rightarrow \frac{-1}{4} \left(\int \frac{1}{\cos x} dx + \int \frac{\cos x}{\sin^2 x} dx \right)$$ $$\Rightarrow \frac{-1}{4} \int \sec x \, dx + \int \csc x \cdot \cot x \, dx$$ $$d(cscx) = cscx.cotx$$ $$\int \csc x \cot x \, dx = \csc x + c$$ $$\because \int \sec x \, dx = \log|\sec x + \tan x| + c$$ $$\Rightarrow \frac{-1}{4}(\csc x + \log|\sec x + \tan x|) + c$$ # Exercise 19.9 # 1. Question Evaluate the following integrals: $$\int \frac{\log x}{x} \, dx$$ ### **Answer** Assume log x = t $$\Rightarrow$$ d(logx) = dt $$\Rightarrow \frac{1}{x} dx = dt$$ Substituting t and dt in above equation we get $$\Rightarrow \frac{t^2}{2} + c$$ But $$t = log(x)$$ $$\Rightarrow \frac{\log^2 x}{2} + c$$ ### 2. Question Evaluate the following integrals: $$\int \frac{\log\left(1+\frac{1}{x}\right)}{x(1+x)} dx$$ ### **Answer** Assume $$log(1 + \frac{1}{x}) = t$$ $$\Rightarrow d(\log(1 + \frac{1}{x})) = dt$$ $$\Rightarrow \frac{1}{1 + \frac{1}{x}} \times \frac{-1}{x^2} dx = dt$$ $$\Rightarrow \frac{x}{x+1} \times \frac{-1}{x^2} dx = dt$$ $$\Rightarrow \frac{-1.dx}{x(x+1)} = dt$$ $$\Rightarrow \frac{dx}{x(x+1)} = -dt$$ \therefore Substituting t and dt in the given equation we get $$\Rightarrow \int -t. dt$$ $$\Rightarrow -\int t. dt$$ $$\Rightarrow \frac{-t^2}{2} + c$$ But $$\log\left(1 + \frac{1}{v}\right) = t$$ $$\Rightarrow -\frac{1}{2}\log^2\left(1+\frac{1}{x}\right)+c$$ ## 3. Question Evaluate the following integrals: $$\int \frac{\left(1+\sqrt{x}\right)^2}{\sqrt{x}} dx$$ # **Answer** Assume $1 + \sqrt{x} = t$ $$\Rightarrow$$ d(1 + \sqrt{x}) = dt $$\Rightarrow \frac{1}{2\sqrt{x}} dx = dt$$ $$\Rightarrow \frac{1}{\sqrt{x}} dx = 2dt$$: Substituting t and dt in the given equation we get $$\Rightarrow 2 \int t^2 . dt$$ $$\Rightarrow \frac{2t^3}{2} + c$$ But $1 + \sqrt{x} = t$ $$\Rightarrow \frac{2(1+\sqrt{x})^3}{2} + c$$ # 4. Question Evaluate the following integrals: $$\int \sqrt{1+e^x} e^x dx$$ # Answer Assume $1 + e^{x} = t$ $$\Rightarrow$$ d(1 + e^X) = dt $$\Rightarrow e^{x}dx = dt$$ \therefore Substituting t and dt in given equation we get ⇒ $$\int \sqrt{t} \cdot dt$$ $$\Rightarrow \int t^{1/2} \cdot dt$$ $$\Rightarrow \frac{2t^{\frac{3}{2}}}{3} + c$$ But $$1 + e^{X} = t$$ $$\Rightarrow \frac{2(1+e^X)^{3/2}}{3} + c$$ # 5. Question Evaluate the following integrals: $$\int \sqrt[3]{\cos^2 x} \sin x \, dx$$ ### **Answer** Assume cosx = t $$\Rightarrow$$ d(cos x) = dt $$\Rightarrow$$ - sinxdx = dt $$\Rightarrow dx = \frac{-dt}{\sin x}$$: Substituting t and dt in the given equation we get $$\Rightarrow \int \sqrt[3]{t^2} \sin x \cdot \frac{dt}{\sin x}$$ $$\Rightarrow \int t^{3/2} \cdot dt$$ $$\Rightarrow \frac{2t^{\frac{3}{2}}}{3} + c$$ But $\cos x = t$ $$\Rightarrow \frac{2(\cos x)^{3/2}}{3} + c.$$ # 6. Question Evaluate the following integrals: $$\int\!\!\frac{e^x}{\left(1+e^x\,\right)^2}\,dx$$ ### **Answer** Assume $1 + e^{x} = t$ $$\Rightarrow$$ d(1 + e^X) = dt $$\Rightarrow e^{x}dx = dt$$: Substituting t and dt in given equation we get $$\Rightarrow \int \frac{1}{t^2} dt$$ $$\Rightarrow \int t^{-2} \cdot dt$$ $$\Rightarrow \frac{-1}{t} + c$$ But $$1 + e^{x} = t$$ $$\Rightarrow \frac{-1}{1+e^{X}} + c.$$ # 7. Question Evaluate the following integrals: ### **Answer** Assume cotx = t $$\Rightarrow$$ d(cotx) = dt $$\Rightarrow$$ - cosec²x.dx = dt $$\Rightarrow$$ dt = $\frac{-dt}{csc^2x}$: Substituting t and dt in the given equation we get $$\Rightarrow \int t^3 \csc^2 x \cdot \frac{-dt}{\csc^2 x}$$ $$\Rightarrow \int -t^3 \cdot dt$$ $$\Rightarrow -\int t^3.dt$$ $$\Rightarrow \frac{-t^4}{4} + c$$ But $t = \cot x$ $$\Rightarrow \frac{-\cot^4 x}{4} + c$$ # 8. Question Evaluate the following integrals: $$\int \frac{\left\{e^{\sin^{-1}x}\right\}^2}{\sqrt{1-x^2}} dx$$ # **Answer** Assume $\sin^{-1}x = t$ $$\Rightarrow$$ d(sin ^{-1}x) = dt $$\Rightarrow \frac{dx}{\sqrt{1-x^2}} = dt$$: Substituting t and dt in the given equation we get $$\Rightarrow$$ ∫ e^{t^2} dt $$\Rightarrow \int e^{2t} \cdot dt$$ $$\Rightarrow \frac{e^{2t}}{2} + c$$ But $$t = \sin^{-1}x$$ $$\Rightarrow \frac{e^{2(sin^{-1}x)}}{2} + c$$ Evaluate the following integrals: $$\int \frac{1+\sin x}{\sqrt{x-\cos x}} dx$$ ### **Answer** Assume $x - \cos x = t$ $$\Rightarrow$$ d(x - cosx) = dt $$\Rightarrow$$ (1 + sinx)dx = dt : Substituting t and dt in given equation we get $$\Rightarrow \int \frac{1}{\sqrt{t}} dt$$ $$\Rightarrow \int t^{-1/2} \cdot dt$$ $$\Rightarrow 2t^{1/2} + c$$ But $$t = x - \cos x$$. $$\Rightarrow 2(x - \cos x)^{1/2} + c.$$ # 10. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{1-x^2} \left(\sin^{-1} x\right)^2} dx$$ #### **Answer** Assume $\sin^{-1}x = t$ $$\Rightarrow$$ d(sin ^{-1}x) = dt $$\Rightarrow \frac{dx}{\sqrt{1-x^2}} = dt$$ $\mathrel{\dot{.}\,{.}}$ Substituting t and dt in the given equation we get $$\Rightarrow \int \frac{1}{t^2} dt$$ $$\Rightarrow \int t^{-2} \cdot dt$$ $$\Rightarrow \frac{t^{-1}}{-1} + c$$ But $$t = \sin^{-1}x$$ $$\Rightarrow \frac{-1}{\sin^{-1}x} + c$$ # 11. Question Evaluate the following integrals: $$\int \frac{\cot x}{\sqrt{\sin x}} dx$$ ### **Answer** We know d(sinx) = cosx, and cot can be written in terms of cos and sin $$\therefore \cot x = \frac{\cos x}{\sin x}$$ ∴ The given equation can be written as $$\Rightarrow \int \frac{\cos x}{\sin x \sqrt{\sin x}} dx$$ $$\Rightarrow \int \frac{\cos x}{\sin^{3/2} x} dx$$ Now assume sinx = t $$d(sinx) = dt$$ $$cosx dx = dt$$ Substitute values of t and dt in above equation $$\Rightarrow \int \frac{dt}{t^{3/2}}$$ $$\Rightarrow \int t^{-3/2} dt$$ $$\Rightarrow -2t^{-1/2} + c$$ $$\Rightarrow -2\sin^{-1/2}x + c$$ $$\Rightarrow \frac{-2}{\sqrt{\sin x}} + c$$ ## 12. Question Evaluate the following integrals: $$\int \frac{\tan x}{\sqrt{\cos x}} dx$$ # **Answer** We know $d(\cos x) = \sin x$, and $\tan \cos x$ written interms of $\cos \sin x$ $$\therefore \tan x = \frac{\sin x}{\cos x}$$ ∴ The given equation can be written as $$\Rightarrow \int \frac{\sin x}{\cos x \sqrt{\cos x}} dx$$ $$\Rightarrow \int \frac{\sin x}{\cos^{2} \sqrt{2} x} dx$$ Now assume cosx = t $$d(cosx) = -dt$$ $$sinx dx = - dt$$ Substitute values of t and dt in above equation $$\Rightarrow \int \frac{-dt}{t^{3} \setminus 2}$$ $$\Rightarrow -\int t^{-3/2} dt$$ $$\Rightarrow 2t^{-1} + c$$ $$\Rightarrow 2\cos^{-1/2}x + c$$ $$\Rightarrow \frac{2}{\sqrt{\cos x}} + c$$ Evaluate the following integrals: $$\int \frac{\cos^3 x}{\sqrt{\sin x}} dx$$ #### **Answer** In this equation, we can manipulate numerator $$Cos^3x = cos^2x.cosx$$ \therefore Now the equation becomes, $$\Rightarrow \int \frac{\cos^2
x \cdot \cos x}{\sqrt{\sin x}} dx$$ $$\cos^2 x = 1 - \sin^2 x$$ $$\Rightarrow \int \frac{1-\sin^2 x.\cos x}{\sqrt{\sin x}} \, dx$$ Now, Let us assume sinx = t $$d(sinx) = dt$$ $\cos x \, dx = dt$ Substitute values of t and dt in the above equation $$\Rightarrow \int \frac{1-t^2}{\sqrt{t}} dt$$ $$\Rightarrow \int \frac{1}{\sqrt{t}} dt - \int \frac{t^2}{\sqrt{t}} dt$$ $$\Rightarrow \int t^{-1/2} dt - \int t^{3/2} dt$$ $$\Rightarrow 2t^{1/2} - \frac{2}{5}t^{\frac{5}{2}} + c$$ But t = sinx $$\Rightarrow 2\sin x^{1\backslash 2} - \tfrac{2}{5}\sin x^{\frac{5}{2}} + c \cdot$$ ### 14. Question Evaluate the following integrals: $$\int \frac{\sin^3 x}{\sqrt{\cos x}} dx$$ #### **Answer** In this equation, we can manipulate numerator $$\sin^3 x = \sin^2 x \cdot \sin x$$: Now the equation becomes, $$\Rightarrow \int \frac{\sin^2 x.\sin x}{\sqrt{\cos x}} \, dx$$ $$\sin^2 x = 1 - \cos^2 x$$ $$\Rightarrow \int \frac{1-\cos^2 x.\sin x}{\sqrt{\cos x}} \, dx$$ Now, Let us assume cosx = t $$d(cosx) = dt$$ $$-\sin x dx = dt$$ Substitute values of t and dt in above equation $$\Rightarrow -\int \frac{1-t^2}{\sqrt{t}} dt$$ $$\Rightarrow -\int \frac{1}{\sqrt{t}}dt - \int \frac{t^2}{\sqrt{t}}dt$$ $$\Rightarrow -\int t^{-1/2}dt + \int t^{3/2}dt$$ $$\Rightarrow -2t^{1/2} + \frac{2}{5}t^{\frac{5}{2}} + c$$ But $$t = cosx$$ $$\Rightarrow -2\cos x^{1/2} + \frac{2}{5}\cos x^{\frac{5}{2}} + c$$ # 15. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{\tan^{-1}x} (1+x^2)} dx$$ ### **Answer** Assume $tan^{-1}x = t$ $$d(tan^{-1}x) = dt$$ $$\Rightarrow \frac{1}{1+x^2} dx = dt$$ Substituting t and dt in above equation we get $$\Rightarrow \int \frac{1}{\sqrt{t}} dt$$ $$\Rightarrow \int t^{-1/2} \cdot dt$$ $$\Rightarrow 2t^{1/2} + c$$ But $$t = tan^{-1}x$$ $$\Rightarrow 2(\tan^{-1}x)^{1/2} + c.$$ ### 16. Question Evaluate the following integrals: $$\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx$$ ### Answer Multiply and divide by cosx $$\Rightarrow \int \frac{\sqrt{\tan x.\cos x}}{\sin x.\cos x.\cos x} dx$$ $$\Rightarrow \int \frac{\sqrt{\tan x}.}{\tan x.\cos^2 x} dx$$ $$\Rightarrow \int \frac{\sec^2 x}{\sqrt{\tan x}} dx$$ Assume tanx = t $$d(tanx) = dt$$ $$sec^2x dx = dt$$ Substituting t and dt in above equation we get $$\Rightarrow \int \frac{1}{\sqrt{t}} dt$$ $$\Rightarrow \int t^{-1/2} \cdot dt$$ $$\Rightarrow 2t^{1/2} + c$$ But t = tanx $$\Rightarrow$$ 2(tanx)^{1/2} + c. # 17. Question Evaluate the following integrals: $$\int \frac{1}{x} (\log x)^2 \, dx$$ # Answer Assume logx = t $$d(\log(x)) = dt$$ $$\Rightarrow \frac{1}{x} dx = dt$$: Substituting t and dt in given equation we get $$\Rightarrow \int t^2.dt$$ $$\Rightarrow \int t^2 \cdot dt$$ $$\Rightarrow \frac{t^3}{3} + c$$ But log x = t $$\Rightarrow \frac{(\log(x))^3}{3} + c$$ # 18. Question Evaluate the following integrals: $$\int \sin^5 x \cos x dx$$ # Answer Assume sinx = t $$d(sinx) = dt$$ $$cosxdx = dt$$: Substituting t and dt in given equation we get $$\Rightarrow \int t^5 dt$$ $$\Rightarrow \frac{t^6}{6} + c$$ But $$t = sinx$$ $$\Rightarrow \frac{\sin^6 x}{6} + c$$ # 19. Question Evaluate the following integrals: $$\int \tan^{3/2} x \sec^2 x dx$$ ### **Answer** Assume tanx = t $$d(tanx) = dt$$ $$sec^2xdx = dt$$: Substituting t and dt in given equation we get $$\Rightarrow \int t^{\frac{3}{2}} dt$$ $$\Rightarrow \frac{2t^{\frac{5}{2}}}{5} + c$$ But t = tanx $$\Rightarrow \frac{2\tan^{\frac{5}{2}}x}{5} + c$$ # 20. Question Evaluate the following integrals: $$\int \frac{x^3}{\left(x^2+1\right)^3} dx$$ # **Answer** Assume $x^2 + 1 = t$ $$\Rightarrow d(x^2 + 1) = dt$$ $$\Rightarrow 2x dx = dt$$ $$\Rightarrow$$ xdx = $\frac{dt}{2}$ x^3 can be write as x^2 .x ∴ Now the given equation becomes $$\Rightarrow \int \frac{x^2.x dx}{(x^2+1)^3}$$ $$x^2 + 1 = t \Rightarrow x^2 = t - 1$$ $$\Rightarrow \int \frac{(t-1)dt}{2t^3}$$ $$\Rightarrow \frac{1}{2} \int \frac{t}{t^3} dt - \int \frac{1}{t^3} dt$$ $$\Rightarrow \frac{1}{2} \int t^{-2} dt - \int t^{-3} dt$$ $$\Rightarrow \frac{1}{2}(-1t^{-1} + \frac{1}{2}t^{-2}) + c$$ But $$t = (x^2 + 1)$$ $$\Rightarrow \frac{1}{2}(-1(x^2+1)^{-1}+\frac{1}{2}(x^2+1)^{-2})+c$$ $$\Rightarrow \frac{-1}{2(x^2+1)} + \frac{1}{4(1+x^2)^2} + c$$ $$\Rightarrow \frac{-4(1+x^2)^2+2(1+x^2)}{8(1+x^2)^3} + c$$ Evaluate the following integrals: $$\int (4x+2)\sqrt{x^2+x+1}\,dx$$ #### **Answer** Here (4x + 2) can be written as 2(2x + 1). Now assume, $x^2 + x + 1 = t$ $$d(x^2 + x + 1) = dt$$ $$(2x + 1)dx = dt$$ $$\Rightarrow \int 2(2x+1)\sqrt{x^2+x+1}dx$$ $$\Rightarrow \int 2t^{1/2} \cdot dt$$ $$\Rightarrow \frac{4t^{\frac{3}{2}}}{2} + c$$ But $$t = x^2 + x + 1$$ $$\Rightarrow \frac{4(x^2+x+1)^{3/2}}{3} + c$$ ### 22. Question Evaluate the following integrals: $$\int \frac{4x+3}{\sqrt{2x^2+3x+1}} dx$$ #### **Answer** Assume, $2x^2 + 3x + 1 = t$ $$d(x^2 + x + 1) = dt$$ $$(4x + 3)dx = dt$$ Substituting t and dt in above equation we get $$\Rightarrow \int \frac{1}{\sqrt{t}} \, dt$$ $$\Rightarrow \int t^{-1/2} \cdot dt$$ $$\Rightarrow 2t^{1/2} + c$$ But $$t = 2x^2 + 3x + 1$$ $$\Rightarrow 2(2x^2 + 3x + 1)^{1/2} + c.$$ Evaluate the following integrals: $$\int \frac{1}{1+\sqrt{x}} dx$$ # Answer $$x = t^2$$ $$d(x) = 2t.dt$$ $$dx = 2t.dt$$ Substituting t and dt we get $$\Rightarrow \int \frac{2t.dt}{1+t}$$ $$\Rightarrow 2 \int \frac{t.dt}{1+t}$$ Add and subtract 1 from numerator $$\Rightarrow 2 \int \frac{t+1-1}{1+t} dt$$ $$\Rightarrow 2\left(\int \frac{t+1}{t+1}dt - \int \frac{1}{1+t}dt\right)$$ $$\Rightarrow 2\left(\int dt - \int \frac{1}{1+t} dt\right)$$ $$\Rightarrow$$ 2(t - ln|1 + t|) But $$t = \sqrt{x}$$ $$\Rightarrow 2(\sqrt{x} - \ln|1 + \sqrt{x}|) + c$$ ## 24. Question Evaluate the following integrals: $$\int e^{\cos^2 x} \sin 2x \, dx$$ ### **Answer** Assume $$\cos^2 x = t$$ $$d(\cos^2 x) = dt$$ - $$2\sin x \cos x dx = dt$$ $$-\sin 2x.dx = dt$$ Substituting t and dt $$\Rightarrow$$ ∫ e^t.dt $$\Rightarrow$$ e^t + c. But $$t = cos^2x$$ $$\Rightarrow$$ e^{cos2x} + c Evaluate the following integrals: $$\int \frac{1+\cos x}{\big(x+\sin x\big)^3} \, dx$$ ### **Answer** Assume $x + \sin x = t$ $$d(x + \sin x) = dt$$ $$(1 + \cos x)dx = dt$$ Substituting t and dt in given equation $$\Rightarrow \int \frac{dt}{t^2}$$ ⇒ $$\int t^{-3} dt$$ $$\Rightarrow \frac{t^{-2}}{-2} + c$$ $$\Rightarrow \frac{-1}{2t^2} + c$$ But $t = x + \sin x$ $$\Rightarrow \frac{-1}{2(x+\sin x)^2} + c$$ # 26. Question Evaluate the following integrals: $$\int \frac{\cos x - \sin x}{1 + \sin 2x} dx$$ #### **Answer** We know $\cos^2 x + \sin^2 x = 1$, $2\sin x \cos x = \sin 2x$: Denominator can be written as $$\cos^2 x + \sin^2 x + 2\sin x \cos x = (\sin x + \cos x)^2$$: Now the given equation becomes $$\Rightarrow \int \frac{\cos x - \sin x}{(\sin x + \cos x)^2} dx$$ Assume cosx + sinx = t $$d(\cos x + \sin x) = dt$$ $$= \cos x - \sin x$$ $$\therefore$$ dt = cosx - sinx $$\Rightarrow \int \frac{dt}{t^2}$$ $$\Rightarrow \int \frac{1}{t^2} dt$$ $$\Rightarrow \int t^{-2} \cdot dt$$ $$\Rightarrow \frac{t^{-1}}{-1} + c$$ But $$t = cosx + sinx$$ $$\Rightarrow \frac{-1}{\cos x + \sin x} + c$$ Evaluate the following integrals: $$\int \frac{\sin 2x}{(a+b\cos 2x)^2} dx$$ ## **Answer** Assume a + bcos2x = t $$d(a + bcos2x) = dt$$ $$-2bsin2x dx = dt$$ $$Sin2xdx = \frac{-dt}{2b}$$ $$\Rightarrow \frac{-1}{2b} \int \frac{dt}{t^2}$$ $$\Rightarrow \frac{-1}{2b} \int \frac{1}{t^2} dt$$ $$\Rightarrow \frac{-1}{2h} \int t^{-2} \cdot dt$$ $$\Rightarrow \frac{t^{-1}}{2h} + c$$ But t = a + bcos2x $$\Rightarrow \frac{1}{2b(a+b\cos 2x)} + c.$$ # 28. Question Evaluate the following integrals: $$\int \frac{\log x^2}{x} dx$$ ### **Answer** Assume $\log x = t$ $$\Rightarrow$$ d(logx) = dt $$\Rightarrow \frac{1}{x} dx = dt$$ Substituting the values oft and dt we get $$\Rightarrow \int t^2 dt$$ $$\Rightarrow \frac{t^3}{3} + c$$ But $$t = log x$$ $$\Rightarrow \frac{\log^3 x}{3} + c$$ Evaluate the following integrals: $$\int \frac{\sin x}{(1+\cos x)^2} dx$$ #### **Answer** Assume $1 + \cos x = t$ $$\Rightarrow$$ d(1 + cosx) = dt $$\Rightarrow$$ - sinx.dx = dt Substituting the values oft and dt we get $$\Rightarrow -\int \frac{dt}{t^2}$$ $$\Rightarrow -\int \frac{1}{t^2} dt$$ $$\Rightarrow -\int t^{-2} \cdot dt$$ $$\Rightarrow \frac{t^{-1}}{1} + c$$ But $t = 1 + \cos x$ $$\Rightarrow \frac{+1}{1+\cos x} + c$$ ## 30. Question Evaluate the following integrals: ∫ cotx log sin x dx #### **Answer** Assume log(sinx) = t $$d(log(sinx)) = dt$$ $$\Rightarrow \frac{\cos x}{\sin x} dx = dt$$ $$\Rightarrow$$ cot x dx = dt Substituting the values oft and dt we get $$\Rightarrow \frac{t^2}{2} + c$$ But t = log(sinx) $$\Rightarrow \frac{\log(\sin x)^2 x}{2} + c \cdot$$ ## 31. Question Evaluate the following integrals: $$\int \sec x \log (\sec x + \tan x) dx$$ #### **Answer** Assume log(secx + tanx) = t $$d(\log(\text{secx} + \text{tanx})) = dt$$ (use chain rule to differentiate first differentiate log(secx + tanx) then (secx + tanx) $$\Rightarrow \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x} dx = dt$$ $$\Rightarrow \frac{\sec x (\tan x + \sec x)}{\sec x + \tan x} dx = dt$$ $$\Rightarrow$$ secx dx = dt Put t and dt in given equation we get Substituting the values oft and dt we get $$\Rightarrow \frac{t^2}{2} + c$$ But t = log(secx + tanx) $$\Rightarrow \frac{\log^2(\sec x + \tan x)}{2} + c$$ # 32. Question Evaluate the following integrals: $$\int$$ cosec x log (cosec x - cot x) dx #### **Answer** Assume log(cosec x - cot x) = t $$d(\log(\csc x - \cot x)) = dt$$ (use chain rule to differentiate first differentiate log(secx + tanx) then (secx + tanx) $$\Rightarrow \frac{-\csc x \cot x + \csc^2 x}{\csc x - \cot x} dx = dt$$ $$\Rightarrow \frac{\csc x (\csc x - \cot x)}{\csc x - \cot x} dx = dt$$ $$\Rightarrow$$ cscx dx = dt Put t and dt in given equation we get Substituting the values oft and dt we get $$\Rightarrow \frac{t^2}{2} + c$$ But $t = \log(\csc x - \cot x)$ $$\Rightarrow \frac{\log^2(\operatorname{cosec} x - \cot x)}{2} + c$$ ### 33. Question Evaluate the following integrals: $$\int x^3 \cos x^4 dx$$ # **Answer** Assume $x^4 = t$
$$d(x^4) = dt$$ $$4x^3dx = dt$$ $$x^3 dx = \frac{dt}{4}$$ Substituting t and dt $$\Rightarrow \int \frac{1}{4} \cos t \, dt$$ $$\Rightarrow \frac{1 \sin t}{4} + c$$ But $$t = x^4$$ $$\Rightarrow \frac{1}{4}\sin x^4 + c.$$ # 34. Question Evaluate the following integrals: $$\int x^3 \sin x^4 dx$$ ## Answer Assume $x^4 = t$ $$d(x^4) = dt$$ $$4x^3dx = dt$$ $$x^3 dx = \frac{dt}{4}$$ Substituting t and dt $$\Rightarrow \int \frac{1}{4} \sin t \, dt$$ $$\Rightarrow \frac{-1 \cos t}{4} + c$$ But $$t = x^4$$ $$\Rightarrow \frac{-1}{4}\cos x^4 + c.$$ # 35. Question Evaluate the following integrals: $$\int \frac{x \sin^{-1} x^2}{\sqrt{1-x^4}} dx$$ # **Answer** Assume $\sin^{-1}x^2 = t$ $$\Rightarrow$$ d(sin ^{-1}x) = dt $$\Rightarrow \frac{2xdx}{\sqrt{1-x^4}} = dt$$ $$\Rightarrow \frac{xdx}{\sqrt{1-x^4}} = \frac{dt}{2}$$: Substituting t and dt in given equation we get $$\Rightarrow \int \frac{t}{2} dt$$ $$\Rightarrow \frac{1}{2} \int t \cdot dt$$ $$\Rightarrow \frac{t^2}{4} + c$$ But $t = \sin^{-1}x$ $$\Rightarrow \frac{(\sin^{-1}x^2)^2}{4} + c.$$ # 36. Question Evaluate the following integrals: $$\int x^3 \sin (x^4 + 1) dx$$ # Answer Assume $x^4 + 1 = t$ $$d(x^4 + 1) = dt$$ $$4x^3dx = dt$$ $$x^3 dx = \frac{dt}{4}$$ Substituting t and dt $$\Rightarrow \int \frac{1}{4} \sin t \, dt$$ $$\Rightarrow \frac{-1 \cos t}{4} + c$$ But $$t = x^4 + 1$$ $$\Rightarrow \frac{-1}{4}\cos(x^4 + 1) + c.$$ # 37. Question Evaluate the following integrals: $$\int \frac{(x+1)e^x}{\cos^2(xe^x)} dx$$ ### **Answer** Assume $xe^{x} = t$ $$d(xe^{x}) = dt$$ $$(e^{x} + xe^{x}) dx = dt$$ $$e^{x}(1 + x) dx = dt$$ Substituting t and dt $$\Rightarrow \int \frac{dt}{\cos^2 t}$$ But $$t = xe^{x} + 1$$ $$\Rightarrow$$ tan (xe^x) + c. ## 38. Question Evaluate the following integrals: $$\int x^2 e^{x^3} \cos \left(e^{x^3} \right) dx$$ ### Answer Assume $e^{x^3} = t$ $$\Rightarrow d(e^{x^3}) = dt$$ $$\Rightarrow 3x^2 \cdot e^{x^3} dx = dt$$ $$\Rightarrow$$ $x^2 \cdot e^{x^3} dx = \frac{dt}{3}$ Substituting t and dt $$\Rightarrow \int \frac{1}{2} \cos t \cdot dt$$ $$\Rightarrow \frac{1}{3}\sin t + c$$ But $$t = e^{x^3}$$ $$\Rightarrow \frac{1}{3}\sin e^{x^3} + c$$ # 39. Question Evaluate the following integrals: $$\int 2x \sec^3 (x^2 + 3) \tan (x^2 + 3) dx$$ #### **Answer** $sec^3 (x^2 + 3)$ can be written as $sec^2 (x^2 + 3)$. $sec (x^2 + 3)$ Now the question becomes $$\Rightarrow \int 2x \cdot \sec^2(x^2 + 3) \sec(x^2 + 3) \tan(x^2 + 3) dx$$ Assume sec $(x^2 + 3) = t$ $$d(sec (x^2 + 3)) = dt$$ $$2x \sec (x^2 + 3) \tan (x^2 + 3) dx = dt$$ Substituting t and dt in the given equation $$\Rightarrow \frac{t^3}{2} + c$$ $$\Rightarrow \frac{1}{2}(\sec(x^2 + 3)^3) + c$$ # 40. Question Evaluate the following integrals: $$\int \left(\frac{x+1}{x}\right) (x + \log x)^2 dx$$ ## **Answer** Assume $$(x + log x) = t$$ $$d(x + log x) = dt$$ $$\Rightarrow \left(1 \ + \frac{1}{x}\right) dx \ = \ dt$$ $$\Rightarrow \frac{x+1}{x} dx = dt$$ Substituting t and dt $$\Rightarrow \int t^2 dt$$ $$\Rightarrow \frac{t^3}{3} + c$$. But $t = x + \log x$ $$\Rightarrow \frac{(x + \log x)^3}{3} + c.$$ # 41. Question Evaluate the following integrals: $$\int \tan x \sec^2 x \sqrt{1 - \tan^2 x} \ dx$$ ### **Answer** Assume $1 - \tan^2 x = t$ $$d(1 - \tan^2 x) = dt$$ $$2.tanx.sec^2xdx = dt$$ Substituting t and dt we get $$\Rightarrow \Rightarrow \int \frac{1}{2} \sqrt{t} dt$$ $$\Rightarrow \int \frac{1}{2} t^{1/2} \cdot dt$$ $$\Rightarrow \frac{4t^{\frac{3}{2}}}{6} + c$$ But $t = 1 - \tan^2 x$ $$\Rightarrow \frac{-2\left(1-\tan^2x\right)^{3/2}}{3} + c \cdot$$ # 42. Question Evaluate the following integrals: $$\int\!\log x \frac{\sin\left\{1+\left(\log x\right)^2\right\}}{x}dx$$ # **Answer** Assume $1 + (\log x)^2 = t$ $$d(1 + (\log x)^2) = dt$$ $$\Rightarrow \frac{2 \log x}{x} dx = dt$$ $$\Rightarrow \frac{\log x}{x} dx = \frac{dt}{2}$$ $$\Rightarrow \int \sin t \frac{dt}{2}$$ $$\Rightarrow \frac{1}{2} \int \sin t \, dt$$ $$\Rightarrow \frac{-1}{2} \cos t + c$$ But $$t = 1 + (\log x)^2$$ $$\Rightarrow \frac{-1}{2}\cos(1 + \log x^2) + c.$$ Evaluate the following integrals: $$\int \frac{1}{x^2} \cos^2 \left(\frac{1}{x}\right) dx$$ ### **Answer** Assume $$\frac{1}{x} = t$$ $$\Rightarrow \frac{1}{x^2} dx = dt$$ Substituting t and dt we get $$\Rightarrow \cos^2 x = \frac{1 + \cos 2x}{2}$$: The given equation becomes, $$\Rightarrow \int \frac{1-\cos 2t}{2} dx$$ We know $\int \cos ax \, dx = \frac{1}{a} \sin ax + c$ $$\Rightarrow \frac{1}{2} \int dxt - \frac{1}{2} \int \cos(2t) dt$$ $$\Rightarrow \frac{t}{2} - \frac{1}{4}\sin(t) + c$$ But $$\frac{1}{x} = t$$ $$\Rightarrow \frac{1}{2x} - \frac{1}{4}\sin\left(\frac{1}{x}\right) + c$$ ## 44. Question Evaluate the following integrals: #### **Answer** Put tanx = t $$d(tanx) = dt$$ $$sec^2xdx = dt$$ $$\Rightarrow dx = \frac{dt}{\sec^2 x}$$ We can write $sec^4x = sec^2x$. sec^2x Now ,the question becomes $$\Rightarrow \int \sec^2 x \cdot \sec^2 x \cdot \tan x \frac{dt}{\sec^2 x}$$ $$\Rightarrow \int \sec^2 x \cdot \tan x \, dt$$ $$Tan^2x + 1 = sec^2x$$ $$tanx = t$$ $$t^2 + 1 = \sec^2 x$$ $$\Rightarrow \int (t^2 + 1)t dt$$ $$\Rightarrow \int t^3 dt + \int t . dt$$ $$\Rightarrow \frac{t^4}{4} + \frac{t^2}{2} + c$$ But $$t = tanx$$ $$\Rightarrow \frac{\tan^4 x}{4} + \frac{\tan^2 x}{2} + c$$ Evaluate the following integrals: $$\int\!\frac{e^{\sqrt{x}}\,\cos\!\left(e^{\sqrt{x}}\right)}{\sqrt{x}}dx$$ # **Answer** Assume $e^{\sqrt{x}} = t$ $$d(e^{\sqrt{x}}) = dt$$ $$\Rightarrow \frac{e^{\sqrt{x}}}{2\sqrt{x}}dx \ = \ dt$$ $$\Rightarrow \frac{e^{\sqrt{x}}}{\sqrt{x}} dx \ = \ 2dt$$ Substituting t and dt But $$t = e^{\sqrt{x}}$$ $$\Rightarrow$$ 2 sin(e ^{\sqrt{x}}) + c. # 46. Question Evaluate the following integrals: $$\int \frac{1}{x^2} \cos^2 \left(\frac{1}{x}\right) dx$$ ## **Answer** Assume $$\frac{1}{x} = t$$ $$\Rightarrow \frac{1}{x^2} dx = dt$$ Substituting t and dt we get $$\Rightarrow \int \cos^2 t \, dt$$ $$\Rightarrow \cos^2 x = \frac{1 + \cos 2x}{2}$$ \therefore The given equation becomes, $$\Rightarrow \int \frac{1-\cos 2t}{2} dx$$ We know $\int \cos ax \, dx = \frac{1}{a} \sin ax + c$ $$\Rightarrow \frac{1}{2} \int dxt - \frac{1}{2} \int \cos(2t) dt$$ $$\Rightarrow \frac{t}{2} - \frac{1}{4}\sin(t) + c$$ But $$\frac{1}{x} = t$$ $$\Rightarrow \frac{1}{2x} - \frac{1}{4} \sin\left(\frac{1}{x}\right) + c$$ # 47. Question Evaluate the following integrals: $$\int\!\frac{\sin\sqrt{x}}{\sqrt{x}}dx$$ ### **Answer** Assume $\sqrt{x} = t$ $$d(\sqrt{x}) = dt$$ $$\Rightarrow \frac{1}{2\sqrt{x}} dx = dt$$ $$\Rightarrow \frac{1}{\sqrt{x}} dx = 2dt$$ Substituting t and dt $$= -2 cost + c$$ But $$\sqrt{x} = t$$ $$\Rightarrow$$ 2 cos(\sqrt{x}) + c. # 48. Question Evaluate the following integrals: $$\int \frac{(x+1)e^x}{\sin^2(xe^x)} dx$$ ### **Answer** Assume $xe^{x} = t$ $$d(xe^{x}) = dt$$ $$(e^{x} + xe^{x}) dx = dt$$ $$e^{x}(1 + x) dx = dt$$ Substituting t and dt $$\Rightarrow \int \frac{dt}{\sin^2 t}$$ But $$t = xe^{x} + 1$$ $$\Rightarrow$$ - cot (xe^X) + c. Evaluate the following integrals: $$\int 5^{x+tan^{-1}x}\Bigg(\frac{x^2+2}{x^2+1}\Bigg)dx$$ # Answer Assume $x + tan^{-1}x = t$ $$d(x + tan^{-1}x) = dt$$ $$\Rightarrow 1 + \frac{1}{x^2 + 1} = dt$$ $$\Rightarrow \frac{2+x^2}{x^2+1} = dt$$ Substituting t and dt $$\Rightarrow \frac{5^{t}}{\log 5} + c$$ But $$t = x + tan^{-1}x$$ $$\Rightarrow \frac{5^{x + \tan^{-1}x}}{\log 5} + c.$$ # 50. Question Evaluate the following integrals: $$\int \frac{e^{m\sin^{-1}x}}{\sqrt{1-x^2}} dx$$ ### **Answer** Assume $\sin^{-1}x = t$ $$d(\sin^{-1}x) = dt$$ $$\Rightarrow \frac{dx}{\sqrt{1-x^2}} = dt$$: Substituting t and dt in given equation we get $$\Rightarrow \frac{e^{mt}}{m} + c$$ But $$t = \sin^{-1}x$$ $$\Rightarrow \frac{e^{m \sin^{-1} x}}{m} + c$$ Evaluate the following integrals: $$\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx$$ # **Answer** Assume $\sqrt{x} = t$ $$d(\sqrt{x}) = dt$$ $$\Rightarrow \frac{1}{2\sqrt{x}}dx = dt$$ $$\Rightarrow \frac{1}{\sqrt{x}} dx = 2dt$$ Substituting t and dt $$= 2sint + c$$ But $$\sqrt{x} = t$$ $$\Rightarrow$$ 2 sin(\sqrt{x}) + c. # 52. Question Evaluate the following integrals: $$\int \frac{\sin(\tan^{-1}x)}{1+x^2} dx$$ # Answer Assume $tan^{-1}x = t$ $$d(\tan^{-1}x) = dt$$ $$\Rightarrow \frac{1}{x^2+1} = dt$$ Substituting t and dt $$=$$ - cost + c But $$t = \tan^{-1}x$$ $$\Rightarrow$$ - cos(tan - 1x) + c. # 53. Question Evaluate the following integrals: $$\int \frac{\sin(\log x)}{x} dx$$ ### **Answer** Assume log x = t $$d(logx) = dt$$ $$\Rightarrow \frac{1}{x} dx = dt$$ Substituting t and dt $$= - cost + c$$ But $$t = log x$$ $$\Rightarrow$$ cos(logx) + c. # 54. Question Evaluate the following integrals: $$\int \frac{e^{m \tan^{-1} x}}{1+x^2} dx$$ # **Answer** Assume $tan^{-1}x = t$ $$d(tan^{-1}x) = dt$$ $$\Rightarrow \frac{1}{x^2 + 1} = dt$$ Substituting t and dt $$\Rightarrow \frac{e^{mt}}{m} + c$$ But $$t = \tan^{-1}x$$ $$\Rightarrow \frac{e^{mtan^{-1}x}}{m} + c$$ # 55. Question Evaluate the following integrals: $$\int \frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx$$ #### **Answer** Rationlize the given equation we get $$\Rightarrow \int \frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} \times \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 - a^2}}{\sqrt{x^2 + a^2} - \sqrt{x^2 - a^2}} dx$$ $$\Rightarrow \int \frac{x(\sqrt{x^2 + a^2} - \sqrt{x^2 - a^2})}{2a^2} dx$$ Assume $x^2 = t$ $$2x.dx = dt$$ $$\Rightarrow$$ dx = $\frac{dt}{2x}$ Substituting t and dt $$\Rightarrow \int \frac{(\sqrt{t+a^2} - \sqrt{t-a^2})}{4a^2} dt$$ $$\Rightarrow \frac{1}{4a^2} \int (\sqrt{t+a^2} - \sqrt{t-a^2}) dt$$ $$\Rightarrow \frac{1}{4a^2} \int (t + a^2)^{1/2} dt - \int (t - a^2)^{1/2} dt$$ $$\Rightarrow \frac{1}{4a^2} \left(\frac{2}{3} (t + a^2)^{\frac{3}{2}} - \frac{2}{3} (t - a^2)^{\frac{3}{2}} \right)$$ But $$t = x^2$$ $$\Rightarrow \frac{1}{4a^2} \left(\frac{2}{3} (x^2 + a^2)^{\frac{3}{2}} - \frac{2}{3} (x^2 - a^2)^{\frac{3}{2}} \right)$$ Evaluate the following integrals: $$\int \frac{x \tan^{-1} x^2}{1+x^4} dx$$ ### **Answer** Assume $tan^{-1}x^2 = t$ $$d(\tan^{-1}x^2) = dt$$ $$\Rightarrow
\frac{2x}{x^4+1} = dt$$ $$\Rightarrow \frac{x}{x^4+1} = \frac{dt}{2}$$ Substituting t and dt $$\Rightarrow \frac{1}{2} \int t dt$$ $$\Rightarrow \frac{t^2}{4} + c$$ But $$t = \tan^{-1}x^2$$ $$\Rightarrow \frac{(\tan^{-1} x^2)^2}{4} + c$$ ### 57. Question Evaluate the following integrals: $$\int \frac{\left(\sin^{-1}x\right)^3}{\sqrt{1-x^2}} dx$$ ## **Answer** Assume $\sin^{-1}x = t$ $$d(\sin^{-1}x) = dt$$ $$\Rightarrow \frac{dx}{\sqrt{1-x^2}} = dt$$: Substituting t and dt in given equation we get $$\Rightarrow \frac{t^4}{4} + c$$ But $$t = \sin^{-1}x$$ $$\Rightarrow \frac{\left(\sin^{-1}x\right)^4}{4} + c$$ Evaluate the following integrals: $$\int \frac{\sin(2+3\log x)}{x} dx$$ #### **Answer** Assume $2 + 3\log x = t$ $$d(2 + 3logx) = dt$$ $$\Rightarrow \frac{3}{x} dx = dt$$ $$\Rightarrow \frac{1}{x} dx = \frac{dt}{3}$$ Substituting t and dt $$\Rightarrow \frac{1}{2} \int \sin t \, dt$$ But $t = 2 + 3\log x$ $$\Rightarrow \frac{-1}{3}\cos(2 + 3\log x) + c.$$ ### 59. Question Evaluate the following integrals: $$\int xe^{x^2}dx$$ # **Answer** Assume $x^2 = t$ $$\Rightarrow 2x.dx = dt$$ $$\Rightarrow x.dx = \frac{dt}{2}$$ Substituting t and dt $$\Rightarrow \int e^{t} \cdot \frac{dt}{2}$$ $$\Rightarrow \frac{1}{2}e^{t} + c$$ But $$x^2 = t$$ $$\Rightarrow \frac{e^{x^2}}{2} + c$$ # 60. Question Evaluate the following integrals: $$\int \frac{e^{2x}}{1+e^x} dx$$ # **Answer** Assume $1 + e^{x} = t$ $$e^{x} = t - 1$$ $$d(1 + e^{X}) = dt$$ $$e^x dx = dt$$ $$dx = \frac{dt}{dx}$$ Substitute t and dt we get $$\Rightarrow \int e^{2x} \frac{dt}{e^x}$$ $$\Rightarrow \int (t-1)dt$$ $$\Rightarrow \int t.dt - \int dt$$ $$\Rightarrow \frac{t^2}{2} - t + c$$ But $$t = 1 + e^X$$ $$\Rightarrow \frac{(1+e^{x})^{2}}{2} - (1+e^{x}) + c$$ # 61. Question Evaluate the following integrals: $$\int \frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx$$ ### **Answer** Assume $\sqrt{x} = t$ $$d(\sqrt{x}) = dt$$ $$\Rightarrow \frac{1}{2\sqrt{x}}dx = dt$$ $$\Rightarrow \frac{1}{\sqrt{x}} dx = 2dt$$ Substituting t and dt $$= 2 tant + c$$ But $$\sqrt{x} = t$$ ⇒2 tan($$\sqrt{x}$$) + c. # 62. Question Evaluate the following integrals: ## Answer tan^32x . sec $2x = tan^22x$. tan2x.sec2x.dx $$tan^22x = sec^22x - 1$$ $$\Rightarrow$$ tan²2x. tan2x.sec2x.dx = (sec²2x - 1). tan2x.sec2x.dx $$\Rightarrow$$ sec²2x tan2x.sec2xdx - tan2x.sec2xdx $\therefore \int \sec^2 2x \cdot \tan 2x \cdot \sec 2x \, dx - \int \tan 2x \cdot \sec 2x \cdot dx$ $$\Rightarrow \int \sec^2 2x \cdot \tan 2x \cdot \sec 2x \cdot dx - \frac{\sec 2x}{2} + c$$ Assume sec2x = t $$d(sec2x) = dt$$ $$sec2x.tan2x.dx = dt$$ $$\Rightarrow \int t^2 \cdot dt - \frac{\sec 2x}{2} + c$$ $$\Rightarrow \frac{t^3}{3} - \frac{\sec 2x}{2} + c$$ But $$t = sec2x$$ $$\Rightarrow \frac{(\sec 2x)^3}{3} - \frac{\sec 2x}{2} + c$$ # 63. Question Evaluate the following integrals: $$\int \frac{x + \sqrt{x+1}}{x+2} dx$$ ## **Answer** The given equation can be written as $$\Rightarrow \int \frac{x}{x+2} dx + \int \frac{\sqrt{x+1}}{x+2} dx$$ First integration be I1 and second be I2. Add and subtract 2 from the numerator $$\Rightarrow \int \frac{x+2-2}{x+2}$$ $$\Rightarrow \int \frac{x+2}{x+2} \cdot dx - \int \frac{2}{x+2} \cdot dx$$ $$\Rightarrow \int dx - 2 \int \frac{dx}{x+2}$$ $$\Rightarrow$$ x - 2ln|x + 2| + c1 $$11 = x - 2\ln|x + 2| + c1$$ For I2 $$\Rightarrow \int \frac{\sqrt{x+1}}{x+2} dx$$ Assume x + 1 = t $$dt = dx$$ $$\Rightarrow \int \frac{\sqrt{t}}{t+1} dt$$ Substitute $u = \sqrt{t}$ $$dt = 2\sqrt{t}.du$$ $$t = u^2$$ $$\Rightarrow 2 \int \frac{u^2}{u^2 + 1} du$$ Add and subtract 1 in the above equation: $$\Rightarrow 2\int \frac{u^2+1-1}{u^2+1} du$$ $$\Rightarrow 2 \int \frac{u^2 + 1}{u^2 + 1} du - \int \frac{1}{u^2 + 1} du$$ $$\Rightarrow 2 \int du - \int \frac{1}{u^2 + 1} du$$ $$\Rightarrow$$ 2u - tan $^{-1}$ (u) + c2 $$\therefore 2\sqrt{t} - \tan^{-1}(\sqrt{t}) + c2$$ Also $$t = x + 1$$ $$\therefore 2\sqrt{(x+1)} - \tan^{-1}(x+1) + c2$$ $$I = I1 + I2$$ $$| \cdot | = x - 2\ln|x + 2| + c1 + 2\sqrt{(x + 1)} - \tan^{-1}(x + 1) + c2$$ $$I = x - 2\ln|x + 2| + 2\sqrt{(x + 1)} - \tan^{-1}(x + 1) + c.$$ # 64. Question Evaluate the following integrals: $$\int 5^{5^{5^{x}}} 5^{5^{x}} 5^{x} dx$$ # Answer Assume $$5^{5^X} = t$$ $$\Rightarrow d\left(5^{5^{5^{X}}}\right) = dt$$ $$\Rightarrow 5^{5^{x}}.5^{5^{x}}5^{x}(\log 5^{3})dx = dt$$ Substituting t and dt $$\Rightarrow 5^{5^{5^{X}}}.5^{5^{X}}5^{x}.dx = \frac{dt}{(\log 5^{2})}$$ $$\Rightarrow \int \frac{dt}{(\log 5^2)}$$ $$\Rightarrow \frac{1}{(\log 5^2)} \int dt + c$$ $$\Rightarrow \frac{t}{(\log 5^3)} + c$$ But $$t = 5^{5^{5^{3}}}$$ $$\Rightarrow \frac{5^{5^{5^X}}}{(\log 5^3)} + c$$ # 65. Question Evaluate the following integrals: $$\int \frac{1}{x\sqrt{x^4 - 1}} dx$$ # **Answer** Assume $x^2 = t$ $$2x.dx = dt$$ $$\Rightarrow dx = \frac{dt}{2x}$$ Substituting t and dt $$\Rightarrow \int \frac{dt}{2x} \times \frac{1}{x \times \sqrt{t^2 - 1}}$$ $$\Rightarrow \int \frac{dt}{2x^2} \times \frac{1}{\sqrt{t^2 - 1}}$$ $$\Rightarrow \frac{1}{2} \int \frac{dt}{t\sqrt{t^2-1}}$$ $$\Rightarrow \frac{1}{2} \sec^{-1} t + c$$ But $$t = x^2$$ $$\Rightarrow \frac{1}{2} sec^{-1} x^2 + c$$ # 66. Question Evaluate the following integrals: $$\int\! \sqrt{e^x-1}\; dx$$ # Answer Assume $e^x - 1 = t^2$ $$d(e^{X}-1)=d(t^{2})$$ $$e^{x}.dx = 2t.dt$$ $$\Rightarrow dx = \frac{2t}{e^x}dt$$ $$e^{x} = t^{2} + 1$$ $$\Rightarrow dx = \frac{2t}{t^2 + 1}dt$$ Substituting t and dt $$\Rightarrow \int \sqrt{t^2} \cdot \frac{2t}{t^2+1} dt$$ $$\Rightarrow \int t \cdot \frac{2t}{t^2 + 1} dt$$ $$\Rightarrow \int \frac{2t^2}{t^2+1} dt$$ $$\Rightarrow 2 \int \frac{t^2}{t^2+1} dt$$ Add and subtract 1 in numerator $$\Rightarrow 2 \int \frac{t^2 + 1 - 1}{t^2 + 1} dt$$ $$\Rightarrow 2 \int \frac{t^2+1}{t^2+1} dt - 2 \int \frac{1}{t^2+1} dt$$ $$\Rightarrow 2 \int dt - 2 \int \frac{1}{t^2 + 1} dt$$ $$\Rightarrow \int \frac{1}{t^2 + 1} dt = \tan^{-1} t + c$$ $$\Rightarrow$$ 2t - 2tan - 1(t) + c But $$t = (e^{x} - 1)^{1/2}$$ $$\Rightarrow$$ 2(e^x - 1) ^{1/2} - 2tan - 1(e^x - 1) ^{1/2} + c Evaluate the following integrals: $$\int \frac{1}{(x+1)(x^2+2x+2)} dx$$ ### **Answer** We can write $x^2 + 2x + 1 + 1 = (x + 1)^2 + 1$ $$\Rightarrow \frac{1.dx}{(x+1)(x+1)^2+1}$$ Assume x + 1 = tant $$\Rightarrow$$ dx = sec²t.dx $$\Rightarrow \int \frac{\sec^2 t.dt}{\tan t \tan^2 t + 1}$$ $$\Rightarrow \tan^2 t + 1 = \sec^2 t.$$ $$\Rightarrow \int \frac{.dt}{tant}$$ $$\Rightarrow \frac{\cos t}{\sin t} dt$$ $$\Rightarrow \log|\sinh| + c$$ $$\Rightarrow \sin t = \frac{\tan t}{\sec^2 t}$$ But tant = x + 1 $$\Rightarrow \sin t = \frac{x+1}{(1+x)^2+1}$$ The final answer is $$\Rightarrow \log \sin \left| \frac{x+1}{x^2+2x+2} \right| + c$$ # 68. Question Evaluate the following integrals: $$\int \frac{x^5}{\sqrt{1+x^3}} dx$$ # **Answer** Assume $x^3 + 1 = t^2$ $$d(x^3 + 1) = d(t^2)$$ $$3x^2.dx = 2t.dt$$ $$\Rightarrow dx = \frac{2t}{3x^2}dt$$ $$x^3 + 1 = t^2$$ $$\Rightarrow dx = \frac{2t}{3x^2}dt$$ Substituting t and dt $$\Rightarrow \int \frac{x^5}{\sqrt{t^2}} \ . \frac{2t}{3x^2} \, dt$$ $$\Rightarrow \int \frac{x^3}{t} \cdot \frac{2t}{3} dt$$ $$\Rightarrow \int \frac{2x^3}{3} dt$$ $$\Rightarrow$$ $x^3 = t^2 - 1$ $$\Rightarrow \frac{2}{3} \int (t^2 - 1) \cdot dt$$ $$\Rightarrow \frac{2}{3} \int t^2 dt - \frac{2}{3} \int dt$$ $$\Rightarrow \frac{2}{3} \times \frac{t^3}{3} - \frac{2}{3}t + c$$ $$\Rightarrow \frac{2}{9}(x^3 + 1)^{3/2} - \frac{2}{3}(x^3 + 1)^{1/2} + c$$ # 69. Question Evaluate the following integrals: $$\int 4x^3 \sqrt{5-x^2} \, dx$$ ## **Answer** Assume 5 - $x^2 = t^2$ $$d(5 - x^2) = d(t^2)$$ $$-2x.dx = 2t.dt$$ $$\Rightarrow x dx = -t.dx$$ $$\Rightarrow dx = -\frac{t}{x}dt$$ Substituting t and dt $$\Rightarrow \int 4x^3 \sqrt{t^2} \frac{-t}{x} dt$$ $$\Rightarrow 4 \int x^2 t^2$$ $$\Rightarrow$$ $x^2 = 5 - t^2$ $$\Rightarrow 4\int (5-t^2)t^2.dt$$ $$\Rightarrow$$ 20 $\int t^2 dt - 4 \int t^4 dt$ $$\Rightarrow$$ 20 $\times \frac{t^3}{3} - 4\frac{t^5}{5} + c$ $$\Rightarrow 20(5-x^2)^{3/2} - \frac{4}{5}(5-x^2)^{5/2} + c$$ Evaluate the following integrals: $$\int \frac{1}{\sqrt{x} + x} dx$$ # **Answer** $$x = t^2$$ $$d(x) = 2t.dt$$ $$dx = 2t.dt$$ Substituting t and dt we get $$\Rightarrow \int \frac{2t.dt}{t^2 + t}$$ $$\Rightarrow 2 \int \frac{t.dt}{t^2 + t}$$ $$\Rightarrow 2 \int \frac{1}{1+t} dt$$ $$\Rightarrow 2(\ln|1+t|)$$ But $$t = \sqrt{x}$$ $$\Rightarrow$$ 2(ln|1 + \sqrt{x} |) + c. # 71. Question Evaluate the following integrals: $$\int \frac{1}{x^2 (x^4 + 1)^{3/4}} \, dx$$ $$I = \int \frac{1}{x^2(x^4+1)^{\frac{3}{4}}} dx$$ $$\Rightarrow \int \frac{1}{x^5 \left(1 + \frac{1}{x^4}\right)^{\frac{3}{4}}} dx$$ $$Let 1 + \frac{1}{x^4} = t$$ $$\Rightarrow -\frac{4}{x^5} dx = dt$$ $$\Rightarrow \frac{1}{x^5} dx = \frac{-dt}{4}$$ $$I = \frac{-1}{4} \int \frac{1}{\frac{3}{4}} dt$$ $$\Rightarrow \frac{-1}{4} \left(\frac{\frac{1}{4}}{\frac{1}{2}} \right) + c$$ $$\Rightarrow -t^{\frac{1}{4}} + c$$ But $$t = 1 + \frac{1}{x^4}$$ $$\Rightarrow$$ $-\left(1 + \frac{1}{x^4}\right)^{\frac{1}{4}} + c$ Evaluate the following integrals: $$\int \frac{\sin^5 x}{\cos^4 x} dx$$ #### **Answer** $$Sin^5x = sin^4x.sinx$$ Assume $$\cos x = t$$ $$d(cosx) = dt$$ $$-\sin x.dx = dt$$ $$\Rightarrow dx = \frac{-dt}{\sin x}$$ Substitute t and dt we get $$\Rightarrow \int \frac{\sin^4 x \cdot \sin x}{\cos^4 x} \times \frac{-dt}{\sin x}$$ $$\Rightarrow \int \frac{-dt \left(1-\cos^2 x\right)^2}{\cos^4 x}$$ $$\Rightarrow \int \frac{-dt \left(1-t^2\right)^2}{t^4}$$ $$\Rightarrow -\int \frac{1+t^4-2t^2}{t^4} dt$$ $$\Rightarrow -\int \tfrac{1}{t^4} dt - \int \tfrac{t^4}{t^4} dt \, + \, 2 \int \tfrac{t^2}{t^4} dt$$ $$\Rightarrow - \int t^{-4} dt - \int dt + 2 \int t^{-2} dt$$ $$\Rightarrow \frac{t^{-3}}{3} - t - 2t^{-1} + c$$ But $t = \cos x$ $$\Rightarrow \frac{\cos^{-3}x}{3} - \cos x - 2\cos^{-1}x + c$$ # Exercise 19.10 # 1. Question Evaluate the followign integrals: $\int x^2 \sqrt{x+2} dx$ ### **Answer** $$Let I = \int x^2 \sqrt{x + 2} dx$$ Substituting, $x + 2 = t \Rightarrow dx = dt$, $$I = \int (t-2)^2 \sqrt{t} dt$$ $$\Rightarrow I = \int (t^2 - 4t + 4) \sqrt{t}
dt$$ $$\Rightarrow I = \int \left(t^{\frac{5}{2}} - 4t^{\frac{3}{2}} + 4t^{\frac{1}{2}}\right) dt$$ $$\Rightarrow I = \frac{2}{7}t^{\frac{7}{2}} - \frac{8}{5}t^{\frac{5}{2}} + \frac{8}{2}t^{\frac{3}{2}} + c$$ $$\Rightarrow I = \frac{2}{7}(x+2)^{\frac{7}{2}} - \frac{8}{5}(x+2)^{\frac{5}{2}} + \frac{8}{2}(x+2)^{\frac{3}{2}} + c$$ Therefore, $$\int x^2 \sqrt{x+2} dx = \frac{2}{7} (x+2)^{\frac{7}{2}} - \frac{8}{5} (x+2)^{\frac{5}{2}} + \frac{8}{2} (x+2)^{\frac{3}{2}} + c$$ Evaluate the following integrals: $\int \frac{x^2}{\sqrt{x-1}} dx$ #### **Answer** $$Let I = \int \frac{x^2}{\sqrt{x-1}} dx$$ Substituting $x - 1 = t \Rightarrow dx = dt$, $$\Rightarrow I = \int \frac{(t+1)^2}{\sqrt{t}} dt$$ $$\Rightarrow I = \int \frac{t^2 + 2t + 1}{\sqrt{t}} dt$$ $$\Rightarrow I = \int \left(t^{\frac{3}{2}} + 2t^{\frac{1}{2}} + t^{-\frac{1}{2}}\right) dt$$ $$\Rightarrow I = \frac{2}{5}t^{\frac{5}{2}} + 2t^{\frac{1}{2}} + \frac{4}{3}t^{\frac{3}{2}} + c$$ $$\Rightarrow I = \frac{\left(6t^{\frac{5}{2}} + 30t^{\frac{1}{2}} + 20t^{\frac{3}{2}}\right)}{15} + c$$ $$\Rightarrow I = \frac{2}{15}t^{\frac{1}{2}}(3t^2 + 15 + 10t) + c$$ $$\Rightarrow I = \frac{2}{15}(x-1)^{\frac{1}{2}}(3(x-1)^2 + 15 + 10(x-1)) + c$$ $$\Rightarrow I = \frac{2}{15}(x-1)^{\frac{1}{2}}(3(x^2-2x+1)^2+15+10x-10)+c$$ $$\Rightarrow I = \frac{2}{15}(x-1)^{\frac{1}{2}}(3x^2 + 4x + 8) + c$$ Therefore, $$\int \frac{x^2}{\sqrt{x-1}} dx = \frac{2}{15} (x-1)^{\frac{1}{2}} (3x^2 + 4x + 8) + c$$ # 3. Question Evaluate the following integrals: $\int \frac{x^2}{\sqrt{3x+4}} dx$ ### Answer Let $$I = \int \frac{x^2}{\sqrt{3x+4}} dx$$ Substituting $3x + 4 = t \Rightarrow 3dx = dt$, $$\Rightarrow I = \int \frac{\left(\frac{t-4}{3}\right)^2}{3\sqrt{t}} dt$$ $$\Rightarrow I = \frac{1}{27} \int \frac{t^2 + 16 - 8t}{\sqrt{t}} dt$$ $$\Rightarrow I = \frac{1}{27} \int \left(t^{\frac{3}{2}} - 8t^{\frac{1}{2}} + 16t^{-\frac{1}{2}}\right) dt$$ $$\Rightarrow I = \frac{1}{27} \left[\frac{2}{5}t^{\frac{5}{2}} - \frac{16}{2}t^{\frac{3}{2}} + 32t^{\frac{1}{2}}\right] + c$$ $$\Rightarrow I = \frac{1}{27} \left[\frac{1}{5} t^{\overline{2}} - \frac{1}{3} t^{\overline{2}} + 32t^{\overline{2}} \right] + c$$ $$\Rightarrow I = \frac{1}{27} \left[\frac{2}{5} (3x + 4)^{\frac{5}{2}} - \frac{16}{3} (3x + 4)^{\frac{3}{2}} + 32(3x + 4)^{\frac{1}{2}} \right] + c$$ $$\Rightarrow I = \frac{2}{135}(3x + 4)^{\frac{5}{2}} - \frac{16}{81}(3x + 4)^{\frac{3}{2}} + \frac{32}{27}(3x + 4)^{\frac{1}{2}} + c$$ Therefore, $$\int \frac{x^2}{\sqrt{3x+4}} dx$$ $$= \frac{2}{135} (3x+4)^{\frac{5}{2}} - \frac{16}{81} (3x+4)^{\frac{3}{2}} + \frac{32}{27} (3x+4)^{\frac{1}{2}} + c$$ Evaluate the following integrals: $\int \frac{2x-1}{\left(x-1\right)^{2}} dx$ ### **Answer** $$Let I = \int \frac{2x-1}{(x-1)^2} dx$$ Substituting $x - 1 = t \Rightarrow dx = dt$ $$\Rightarrow I = \int \frac{2(t+1)-1}{t^2} dt$$ $$\Rightarrow I = \int \frac{2t + 1}{t^2} dt$$ $$\Rightarrow I = \int \left(\frac{2}{t} + \frac{1}{t^2}\right) dt$$ $$\Rightarrow I = 2\log|t| + \frac{1}{t} + c$$ $$\Rightarrow I = 2\log|x-1| + \frac{1}{x-1} + c$$ Therefore, $$\int \frac{2x-1}{(x-1)^2} dx = 2 \log |x-1| + \frac{1}{x-1} + c$$ ### 5. Question Evaluate the following integrals: $\int \! \left(2x^2+3\right) \! \sqrt{x+2} \, dx$ # Answer $$Let I = \int (2x^2 + 3)\sqrt{x + 2} dx$$ Substituting $x + 2 = t \Rightarrow dx = dt$ $$\begin{split} & \Rightarrow I = \int [2(t-2)^2 + 3]\sqrt{t}dt \\ & \Rightarrow I = \int [2t^2 - 8t + 8 + 3]\sqrt{t}dt \\ & \Rightarrow I = \int \left[2t^{\frac{5}{2}} - 8t^{\frac{3}{2}} + 11^{\frac{1}{2}}\right]dt \\ & \Rightarrow I = \frac{4}{7}t^{\frac{7}{2}} - \frac{16}{5}t^{\frac{5}{2}} + \frac{22}{3}t^{\frac{3}{2}} + c \\ & \Rightarrow I = \frac{4}{7}(x+2)^{\frac{7}{2}} - \frac{16}{5}(x+2)^{\frac{5}{2}} + \frac{22}{3}(x+2)^{\frac{3}{2}} + c \\ & \Rightarrow I = \frac{4}{7}(x+2)^{\frac{7}{2}} - \frac{16}{5}(x+2)^{\frac{5}{2}} + \frac{22}{3}(x+2)^{\frac{3}{2}} + c \\ & \therefore \int (2x^2 + 3)\sqrt{x+2}dx = \frac{4}{7}(x+2)^{\frac{7}{2}} - \frac{16}{5}(x+2)^{\frac{5}{2}} + \frac{22}{3}(x+2)^{\frac{3}{2}} + c \end{split}$$ Evaluate the following integrals: $\int \frac{x^2 + 3x + 1}{(x+1)^2} dx$ #### Answer Let I = $$\int \frac{x^2 + 3x + 1}{(x + 1)^2} dx$$ Substituting $x + 1 = t \Rightarrow dx = dt$ $$\Rightarrow I = \int \frac{(t-1)^2 + 3(t-1) + 1}{t^2} dt$$ $$\Rightarrow I = \int \frac{t^2 - 2t + 1 + 3t - 3 + 1}{t^2} dt$$ $$\Rightarrow I = \int \frac{t^2 + t - 1}{t^2} dt$$ $$\Rightarrow I = \int \left(1 + \frac{1}{t} - \frac{1}{t^2}\right) dt$$ $$\Rightarrow I = t + \log|t| - \frac{1}{t} + c$$ $$\Rightarrow I = (x + 1) + \log|x + 1| + \frac{1}{x + 1} + c$$ Therefore, $$\int \frac{x^2 + 3x + 1}{(x + 1)^2} dx = (x + 1) + \log|x + 1| + \frac{1}{x + 1} + c$$ # 7. Question Evaluate the following integrals: $\int \frac{x^2}{\sqrt{1-x}} dx$ ### **Answer** Let $$I = \int \frac{x^2}{\sqrt{1-x}} dx$$ Substituting $1 - x = t \Rightarrow dx = -dt$, $$\Rightarrow I = -\int \frac{(1-t)^2}{\sqrt{t}} dt$$ $$\Rightarrow I = -\int \frac{t^2 - 2t + 1}{\sqrt{t}} dt$$ $$\Rightarrow I = -\int \left(t^{\frac{3}{2}} - 2t^{\frac{1}{2}} + t^{-\frac{1}{2}}\right) dt$$ $$\Rightarrow I = -\left[\frac{2}{5}t^{\frac{5}{2}} + 2t^{\frac{1}{2}} - \frac{4}{3}t^{\frac{3}{2}}\right] + c$$ $$\Rightarrow I = -\left[\frac{6t^{\frac{5}{2}} + 30t^{\frac{1}{2}} - 20t^{\frac{3}{2}}\right]}{15} + c$$ $$\Rightarrow I = \frac{-\left(6t^{\frac{5}{2}} + 30t^{\frac{1}{2}} - 20t^{\frac{3}{2}}\right)}{15} + c$$ $$\Rightarrow I = \frac{-2}{15}t^{\frac{1}{2}}(3t^2 + 15 - 10t) + c$$ $$\Rightarrow I = \frac{-2}{15}(1 - x)^{\frac{1}{2}}(3(1 - x)^2 + 15 - 10(1 - x)) + c$$ $$\Rightarrow I = \frac{2}{15}(1 - x)^{\frac{1}{2}}(3(x^2 - 2x + 1)^2 + 15 + 10x - 10) + c$$ $$\Rightarrow I = \frac{2}{15}(1 - x)^{\frac{1}{2}}(3x^2 + 4x + 8) + c$$ Therefore, $$\int \frac{x^2}{\sqrt{1-x}} dx = \frac{2}{15} (1-x)^{\frac{1}{2}} (3x^2 + 4x + 8) + c$$ Evaluate the following integrals: $\int x(1-x)^{23} dx$ ## **Answer** $$Let I = \int x(1-x)^{23} dx$$ Substituting $1 - x = t \Rightarrow dx = -dt$ $$\Rightarrow I = -\int (1-t)t^{23}dt$$ $$\Rightarrow I = -\int (t^{23} - t^{24})dt$$ $$\Rightarrow I = -\left[\frac{t^{24}}{24} - \frac{t^{25}}{25}\right] + c$$ $$\Rightarrow I = \frac{t^{25}}{25} - \frac{t^{24}}{24} + c$$ $$\Rightarrow I = \frac{(1-x)^{25}}{25} - \frac{(1-x)^{24}}{24} + c$$ $$\Rightarrow I = \frac{1}{600}(1-x)^{24}[24(1-x)-25]$$ $$\Rightarrow I = -\frac{1}{600}(1-x)^{24}[1+24x] + c$$ # 9. Question Evaluate the following integrals: $\int \frac{1}{\sqrt{x} + \sqrt[4]{x}} dx$ ### **Answer** Let $$I = \int \frac{1}{\sqrt{x} + \sqrt[4]{x}} dx$$ $$\Rightarrow I = \int \frac{1}{\sqrt[4]{x}(\sqrt[4]{x} + 1)} dx$$ Multiplying and dividing by \sqrt{x} $$\Rightarrow I = \int \frac{x^{\frac{1}{2}}}{x^{\frac{3}{4}}(\sqrt[4]{x} + 1)} dx$$ Let, $$\sqrt[4]{x} + 1 = t \Rightarrow \frac{1}{4}x^{-\frac{3}{4}}dx = dt$$ So, $$\Rightarrow$$ I = $4 \int \frac{(t-1)^2}{t} dt$ $$\Rightarrow I \ = \ 4 \int \frac{t^2 - 2t \ + \ 1}{t} dt$$ $$\Rightarrow I = 4 \int \left(t-2 + \frac{1}{t}\right) dt$$ $$\Rightarrow I = 4\left(\frac{t^2}{2} - 2t + log|t|\right) + c$$ $$\Rightarrow I = 4\left(\frac{\left(\sqrt[4]{x} + 1\right)^2}{2} - 2\left(\sqrt[4]{x} + 1\right) + \log\left|\left(\sqrt[4]{x} + 1\right)\right|\right) + c$$ Therefore, $$\begin{split} &\int \frac{1}{\sqrt{x} \; + \sqrt[4]{x}} dx \\ &= \; 4 \left(\frac{\left(\sqrt[4]{x} \; + \; 1 \right)^2}{2} - 2 \left(\sqrt[4]{x} \; + \; 1 \right) \; + \; log | \left(\sqrt[4]{x} \; + \; 1 \right) | \right) \; + \; c \end{split}$$ ## 10. Question Evaluate the following integrals: $\int \frac{1}{x^{1/3} \left(x^{1/3} - 1\right)} dx$ ## **Answer** Let I = $$\int \frac{1}{x^{\frac{1}{3}} (x^{\frac{1}{3}} - 1)} dx$$ Multiplying and dividing by $x^{\frac{1}{3}}$ $$\Rightarrow I = \int \frac{x^{\frac{1}{3}}}{x^{\frac{2}{3}} \left(x^{\frac{1}{3}} - 1\right)} dx$$ Let, $$x^{\frac{1}{3}} - 1 = t \Rightarrow \frac{1}{3}x^{-\frac{2}{3}}dx = dt$$ So, $$\Rightarrow$$ I = $3\int \frac{(t+1)}{t} dt$ $$\Rightarrow I = 3 \int \left(t + \frac{1}{t}\right) dt$$ $$\Rightarrow I \,=\, 3 \left(\frac{t^2}{2} \,+\, log |t| \right) + \,c$$ $$\Rightarrow I = 3\left(\frac{\left(x^{\frac{1}{3}}-1\right)^{2}}{2} + \log\left|\left(x^{\frac{1}{3}}-1\right)\right|\right) + c$$ Therefore, $$\int \frac{1}{\sqrt{x} \; + \; \sqrt[4]{x}} \, dx \; = \; 3 \left(\frac{\left(x^{\frac{1}{3}} - 1\right)^2}{2} \; + \; log \left| \left(x^{\frac{1}{3}} - 1\right) \right| \right) \; + \; c$$ # Exercise 19.11 # 1. Question Evaluate the following integrals: $$\int tan^3 x sec^2 x dx$$ ## **Answer** $$Let I = \int tan^3 x sec^2 x dx$$ Let tan x = t, then $$\Rightarrow$$ sec² x dx = dt $$\Rightarrow I = \int t^3 dt$$ $$\Rightarrow I = \frac{t^4}{4} + c$$ $$\Rightarrow I = \frac{\tan^4 x}{4} + c$$ Therefore, $$\int \tan^3 x \sec^2 x \, dx \, = \, \frac{\tan^4 x}{4} \, + \, c$$ ## 2. Question Evaluate the following integrals: $$\int \tan x \sec^4 x dx$$ Let $$I = \int \tan x \sec^4 x \, dx$$ $$\Rightarrow I = \int \tan x \sec^2 x \sec^2 x \, dx$$ $$\Rightarrow I = \int \tan x (1 + \tan^2 x) \sec^2 x dx$$ $$\Rightarrow I = \int (\tan x + \tan^3 x) \sec^2 x \, dx$$ Let tan x = t, then $$\Rightarrow$$ sec² x dx = dt $$\Rightarrow I = \int (t + t^3) dt$$ $$\Rightarrow I = \frac{t^2}{2} + \frac{t^4}{4} + c$$ $$\Rightarrow I = \frac{\tan^2 x}{2} + \frac{\tan^4 x}{4} + c$$ Therefore, $$\int \tan x \sec^4 x \, dx \, = \, \frac{\tan^2 x}{2} \, + \, \frac{\tan^4 x}{4} \, + \, c$$ # 3. Question Evaluate the following integrals: $$\int \tan^5 x \sec^4 x dx$$ # Answer Let $$I = \int \tan^5 x \sec^4 x \, dx$$ $$\Rightarrow I = \int \tan^5 x \sec^2 x \sec^2 x \, dx$$ $$\Rightarrow I = \int \tan^5 x (1 + \tan^2 x) \sec^2 x dx$$ $$\Rightarrow I = \int (\tan^5 x + \tan^7 x) \sec^2 x \, dx$$ Let tan x = t, then $$\Rightarrow$$ sec² x dx = dt $$\Rightarrow I = \int (t^5 + t^7) dt$$ $$\Rightarrow I = \frac{t^6}{6} + \frac{t^8}{8} + c$$ $$\Rightarrow I = \frac{\tan^6 x}{6} + \frac{\tan^8 x}{8} + c$$ Therefore, $$\int \tan^5 x \sec^4 x \, dx =
\frac{\tan^6 x}{6} + \frac{\tan^8 x}{8} + c$$ # 4. Question Evaluate the following integrals: $$\int sec^6 x tan x dx$$ Let $$I = \int sec^6 x tan x dx$$ $$\Rightarrow I = \int \sec^5 x (\sec x \tan x) dx$$ Substituting, $\sec x = t \Rightarrow \sec x \tan x dx = dt$ $$\Rightarrow I = \int t^5 dt$$ $$\Rightarrow I = \frac{t^6}{6} + c$$ $$\Rightarrow I = \frac{\sec^6 x}{6} + c$$ Therefore, $$\int \sec^5 x (\sec x \tan x) dx = \frac{\sec^6 x}{6} + c$$ # 5. Question Evaluate the following integrals: ## **Answer** $$Let I = \int tan^5 x \, dx$$ $$\Rightarrow I = \int \tan^2 x \tan^3 x \, dx$$ $$\Rightarrow I = \int (\sec^2 x - 1) \tan^3 x \, dx$$ $$\Rightarrow I = \int \tan^3 x \sec^2 x \, dx - \int \tan^3 x \, dx$$ $$\Rightarrow I \,=\, \int \tan^3 x \, sec^2 x \, dx - \int (sec^2 x - 1) \tan x \, dx$$ $$\Rightarrow I \ = \ \int \tan^3 x \sec^2 x \, dx - \int (\sec^2 x \tan x) dx \ + \ \int \tan x \, dx$$ Let tan x = t, then $$\Rightarrow$$ sec² x dx = dt $$\Rightarrow I \,=\, \int t^3 dt - \int t dt \,+\, \int t an\, x\, dx$$ $$\Rightarrow I = \frac{t^4}{4} - \frac{t^2}{2} + \log|\sec x| + c$$ $$\Rightarrow I = \frac{\tan^4 x}{4} - \frac{\tan^2 x}{2} + \log|\sec x| + c$$ Therefore, $$\int \tan^5 x \, dx = \frac{\tan^4 x}{4} - \frac{\tan^2 x}{2} + \log|\sec x| + c$$ # 6. Question Evaluate the following integrals: $$\int \sqrt{\tan x} \sec^4 x \, dx$$ $$Let I = \int \sqrt{\tan x} \sec^4 x \, dx$$ $$\Rightarrow I = \int \sqrt{\tan x} \sec^2 x \sec^2 x \, dx$$ $$\Rightarrow I = \int \sqrt{\tan x} (1 + \tan^2 x) \sec^2 x \, dx$$ $$\Rightarrow I = \int (\tan^{\frac{1}{2}}x + \tan^{\frac{5}{2}}x) \sec^2 x \, dx$$ Let tan x = t, then $$\Rightarrow$$ sec² x dx = dt $$\Rightarrow I = \int \left(t^{\frac{1}{2}} + t^{\frac{5}{2}}\right) dt$$ $$\Rightarrow I = \frac{2}{3}t^{\frac{3}{2}} + \frac{2}{7}t^{\frac{7}{2}} + c$$ $$\Rightarrow I = \frac{2}{3} \tan^{\frac{3}{2}} x + \frac{2}{7} \tan^{\frac{7}{2}} x + c$$ Therefore, $$\int \sqrt{\tan x} \sec^4 x \, dx \, = \, \frac{2}{3} \tan^{\frac{3}{2}} x \, + \, \frac{2}{7} \tan^{\frac{7}{2}} x \, + \, c$$ # 7. Question Evaluate the following integrals: ## **Answer** $$Let I = \int sec^4 2x \, dx$$ $$\Rightarrow I = \int sec^2 2x sec^2 2x dx$$ $$\Rightarrow I = \int (1 + \tan^2 2x) \sec^2 2x \, dx$$ $$\Rightarrow I = \int (\sec^2 2x + \tan^2 2x \sec^2 2x) dx$$ Let $\tan 2x = t$, then $$\Rightarrow$$ 2sec² 2x dx = dt $$\Rightarrow I = \frac{1}{2} \int (1 + t^2) dt$$ $$\Rightarrow I = \frac{1}{2}t + \frac{1}{2}.\frac{1}{3}t^3 + c$$ $$\Rightarrow I = \frac{1}{2} \tan 2x + \frac{1}{6} \tan^3 2x + c$$ Therefore, $$\int \sec^4 2x \, dx = \frac{1}{2} \tan 2x + \frac{1}{6} \tan^3 2x + c$$ ## 8. Question Evaluate the following integrals: ### **Answer** $$Let I = \int cosec^4 3x \, dx$$ $$\Rightarrow I = \int \csc^2 3x \csc^2 3x \, dx$$ $$\Rightarrow I = \int (1 + \cot^2 3x) \csc^2 3x \, dx$$ $$\Rightarrow I = \int (\csc^2 3x + \cot^2 3x \csc^2 3x) dx$$ Let cot 3x = t, then $$\Rightarrow$$ - 3cosec² 3x dx = dt $$\Rightarrow I = -\frac{1}{3} \int (1 + t^2) dt$$ $$\Rightarrow I = -\frac{1}{3}t - \frac{1}{3} \cdot \frac{1}{3}t^3 + c$$ $$\Rightarrow I = -\frac{1}{3}\cot 3x - \frac{1}{9}\cot^3 3x + c$$ Therefore, $$\int \csc^4 3x \, dx = -\frac{1}{3} \cot 3x - \frac{1}{9} \cot^3 3x + c$$ # 9. Question Evaluate the following integrals: $$\int \cot^n x \csc^2 x dx$$, $n \neq -1$ # Answer $$Let I = \int cot^n x cosec^2 x dx$$ Let cot $$x = t \Rightarrow -\csc^2 x dx = dt$$ $$\Rightarrow I = -\int t^n dt$$ $$\Rightarrow I = -\frac{t^{n+1}}{n+1} + c$$ $$\Rightarrow I = -\frac{\cot^{n+1}X}{n+1} + c$$ Therefore, $$\int \cot^n x \csc^2 x dx = -\frac{\cot^{n+1} x}{n+1} + c$$ ## 10. Question Evaluate the following integrals: $$Let I = \int cot^5 x cosec^4 x dx$$ $$\Rightarrow I = \int \cot^5 x \csc^2 x \csc^2 x dx$$ $$\Rightarrow I = \int \cot^5 x (1 + \cot^2 x) \csc^2 x dx$$ $$\Rightarrow I = \int (\cot^5 x + \cot^7 x) \csc^2 x \, dx$$ Let $\cot x = t$, then $$\Rightarrow$$ - cosec² x dx = dt $$\Rightarrow I = -\int (t^5 + t^7) dt$$ $$\Rightarrow I = -\frac{t^6}{6} - \frac{t^8}{8} + c$$ $$\Rightarrow I = -\frac{\cot^6 x}{6} - \frac{\cot^8 x}{8} + c$$ Therefore, $$\int \cot^5 x \csc^4 x \, dx = -\frac{\cot^6 x}{6} - \frac{\cot^8 x}{8} + c$$ # 11. Question Evaluate the following integrals: $$\int \cot^5 x \, dx$$ # **Answer** $$Let I = \int cot^5 x dx$$ $$\Rightarrow I = \int \cot^2 x \cot^3 x dx$$ $$\Rightarrow I = \int (\csc^2 x - 1) \cot^3 x \, dx$$ $$\Rightarrow I \,=\, \int \cot^3 x \, cosec^2 x \, dx - \int \cot^3 x \, dx$$ $$\Rightarrow I = \int \cot^3 x \csc^2 x \, dx - \int (\csc^2 x - 1) \cot x \, dx$$ $$\Rightarrow I = \int \cot^3 x \csc^2 x \, dx - \int (\csc^2 x \cot x) dx + \int \cot x \, dx$$ Let $\cot x = t$, then $$\Rightarrow$$ - cosec² x dx = dt $$\Rightarrow I = -\int t^3 dt + \int t dt + \int \cot x \, dx$$ $$\Rightarrow I = -\frac{t^4}{4} + \frac{t^2}{2} + \log|\sin x| + c$$ $$\Rightarrow I = -\frac{\cot^4 x}{4} + \frac{\cot^2 x}{2} + \log|\sin x| + c$$ Therefore, $$\int \cot^5 x \, dx = -\frac{\cot^4 x}{4} + \frac{\cot^2 x}{2} + \log|\sin x| + c$$ Evaluate the following integrals: ### **Answer** Let $$I = \int \cot^6 x dx$$ $$\Rightarrow I = \int \cot^2 x \cot^4 x dx$$ $$\Rightarrow I = \int (\csc^2 x - 1) \cot^4 x dx$$ $$\Rightarrow I = \int \cot^4 x \csc^2 x dx - \int \cot^4 x dx$$ $$\Rightarrow I = \int \cot^4 x \csc^2 x dx - \int (\csc^2 x - 1) \cot^2 x dx$$ $$\Rightarrow I = \int \cot^4 x \csc^2 x dx - \int (\csc^2 x \cot^2 x) dx + \int \cot^2 x dx$$ $$\Rightarrow I = \int \cot^4 x \csc^2 x dx - \int (\csc^2 x \cot^2 x) dx + \int (\csc^2 x - 1) dx$$ Let $\cot x = t$, then $$\Rightarrow$$ - cosec² x dx = dt $$\Rightarrow I \,=\, -\int t^4 dt \,+\, \int t^2 dt - \int dt - \int dx$$ $$\Rightarrow I = -\frac{t^5}{5} + \frac{t^3}{3} - t - x + c$$ $$\Rightarrow I = -\frac{\cot^5 x}{5} + \frac{\cot^3 x}{3} - \cot x - x + c$$ Therefore, $$\int \cot^6 x \, dx = \Rightarrow I = -\frac{\cot^5 x}{5} + \frac{\cot^3 x}{3} - \cot x - x + c$$ # Exercise 19.12 ### 1. Question Evaluate the following integrals: $$\int \sin^4 x \cos^3 x \, dx$$ #### **Answer** Let $$\sin x = t$$ We know the Differentiation of $\sin x = \cos x$ $$dt = d(\sin x) = \cos x dx$$ So, $$dx = \frac{dt}{\cos x}$$ substitute all in above equation, $$\int \sin^4 x \cos^3 x \, dx = \int t^4 \cos^3 x \, \frac{dt}{\cos x}$$ $$=\int t^4\cos^2 x dt$$ $$=\int t^4(1-\sin^2 x) dt$$ $$= \int t^4(1-t^2) dt$$ $$= \int (t^4 - t^6) dt$$ We know, basic integration formula, $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ for any $c \ne -1$ Hence, $$\int (t^4 - t^6) dt = \frac{t^5}{5} - \frac{t^7}{7} + c$$ Put back $t = \sin x$ $$\int \sin^4 x \cos^3 x \, dx = \frac{1}{5} \sin^5 x - \frac{1}{7} \sin^7 x + c$$ ## 2. Question Evaluate the following integrals: # Answer $$\int \sin^5 x \, dx = \int \sin^3 x \, \sin^2 x \, dx$$ = $$\int \sin^3 x (1 - \cos^2 x) dx \{ \text{ since } \sin^2 x + \cos^2 x = 1 \}$$ $$= \int (\sin^3 x - \sin^3 x \cos^2 x) dx$$ $$= \int (\sin x (\sin^2 x) - \sin^3 x \cos^2 x) dx$$ = $$\int (\sin x (1 - \cos^2 x) - \sin^3 x \cos^2 x) dx \{ \text{ since } \sin^2 x + \cos^2 x = 1 \}$$ $$= \int (\sin x - \sin x \cos^2 x - \sin^3 x \cos^2 x) dx$$ = $$\int \sin x \, dx - \int \sin x \cos^2 x \, dx - \int \sin^3 x \cos^2 x \, dx$$ (separate the integrals) We know, $d(\cos x) = -\sin x dx$ So put $\cos x = t$ and $dt = -\sin x dx$ in above integrals $$= \int \sin x \, dx - \int \sin x \cos^2 x \, dx - \int \sin^3 x \cos^2 x \, dx$$ $$= \int \sin x \, dx - \int t^2 (-dt) - \int (\sin^2 x \sin x) t^2 \, dx$$ $$= \int \sin x \, dx - \int t^2 (-dt) - \int (1 - \cos^2 x) t^2 (-dt)$$ $$= \int \sin x \, dx + \int t^2 \, dt + \int (1 - t^2) t^2 \, dt$$ $$= \int \sin x \, dx + \int t^2 \, dt + \int (t^2 - t^4) \, dt$$ $$= -\cos x + \frac{t^3}{3} + \frac{t^3}{3} - \frac{t^5}{5} + c$$ (since $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ for any $c \neq -1$) Put back $t = \cos x$ $$= -\cos x + \frac{t^3}{3} + \frac{t^3}{3} - \frac{t^5}{5} + c$$ $$= -\cos x + \frac{\cos^3 x}{2} + \frac{\cos^3 x}{2} - \frac{\cos^5 x}{5} + c$$ $$= -\cos x + \frac{2}{3}\cos^3 x - \frac{1}{5}\cos^5 x + c = -[\cos x - \frac{2}{3}\cos^3 x + \frac{1}{5}\cos^5 x] + c$$ ### 3. Question Evaluate the following integrals: $$\int \cos^5 x \, dx$$ ### **Answer** $$\int \cos^5 x \, dx = \int \cos^3 x \cos^2 x \, dx$$ $$= \int \cos^3 x (1 - \sin^2 x) dx \{ \text{ since } \sin^2 x + \cos^2 x = 1 \}$$ $$= \int (\cos^3 x - \cos^3 x \sin^2 x) dx$$ $$= \int (\cos x (\cos^2 x) - \cos^3 x \sin^2 x) dx$$ $$= \int (\cos x (1 - \sin^2 x) - \cos^3 x \sin^2 x) dx \{ \text{ since } \sin^2 x + \cos^2 x = 1 \}$$ $$= \int (\cos x - \cos x \sin^2 x - \cos^3 x \sin^2 x) dx$$ $$= \int \cos x \, dx - \int \cos x \sin^2 x \, dx - \int \cos^3 x \sin^2 x \, dx \text{ (separate the integrals)}$$ We know, $d(\sin x) = \cos x dx$ So put $\sin x = t$ and $dt = \cos x dx$ in above integrals $$= \int \cos x \, dx - \int t^2 \, dt - \int \cos x \cos^2 x \sin^2 x \, dx$$ $$= \int \cos x \, dx - \int t^2 (dt) - \int (\cos^2 x \cos x) t^2 \, dx$$ $$= \int \cos x \, dx - \int t^2 (dt) - \int (1 - \sin^2 x) t^2 (dt)$$ $$= \int \cos x \, dx - \int t^2 \, dt - \int (1 - t^2) t^2 \, dt$$ $$= \int \cos x \, dx - \int t^2 \, dt - \int (t^2 - t^4) \, dt$$ $$= \sin x - \frac{t^3}{3} - \frac{t^3}{3} + \frac{t^5}{5} + c$$ (since $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ for any $c \neq -1$) Put back $t = \sin x$ $$= \sin x - \frac{\sin^2 x}{3} - \frac{\sin^2 x}{3} + \frac{\cos^5 x}{5} + c$$ $$= \sin x - \frac{2}{3}\sin^3 x + \frac{1}{5}\sin^5 x + c$$ # 4. Question Evaluate the following integrals: $$\int \sin^5 x \cos x dx$$ #### **Answer** Let $$\sin x = t$$ Then $$d(\sin x) = dt = \cos x dx$$ Put $t = \sin x$ and $dt = \cos x dx$ in above equation $$\int \sin^5 x \cos x \, dx = \int t^5 dt$$ $$= \frac{t^6}{6} + c \text{ (since } \int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ for any } c \neq -1)$$ $$=\frac{\sin^6 x}{6} + c$$ #### 5. Question Evaluate the following integrals: $$\int \sin^3 x \cos^6 x dx$$ ### **Answer** Since
power of sin is odd, put $\cos x = t$ Then $dt = -\sin x dx$ Substitute these in above equation, $$\int \sin^3 x \cos^6 x \, dx = \int \sin x \sin^2 x \, t^6 \, dx$$ $$=\int (1-\cos^2 x) t^6 \sin x dx$$ $$= \int (1-t^2) t^6 dt$$ $$=\int (t^6-t^8)dt$$ $$=\frac{t^{7}}{7}-\frac{t^{9}}{9}+c$$ (since $\int x^{n} dx = \frac{x^{n+1}}{n+1}+c$ for any $c \neq -1$) $$=\frac{1}{7}\cos^7 x + \frac{1}{9}\cos^9 x + c$$ # 6. Question Evaluate the following integrals: $$\int \cos^7 x \, dx$$ # **Answer** $$\int \cos^7 x \, dx = \int \cos^6 x \cos x \, dx$$ $$=\int (\cos^2 x)^3 \cos x \, dx$$ = $$\int (1 - \sin^2 x)^3 \cos x \, dx$$ { since $\sin^2 x + \cos^2 x = 1$ } We know $$(a-b)^3 = a^3b^3 - 3a^2b + 3ab^2$$ Here, $$a = 1$$ and $b = \sin^2 x$ Hence, $$\int (1-\sin^2 x)^3 \cos x \, dx = \int (1-\sin^6 x - 3\sin^2 x + 3\sin^4 x) \cos x \, dx$$ = $$\int (\cos x \, dx - \sin^6 x \cos x \, dx - 3\sin^2 x \cos x \, dx + 3\sin^4 x \cos x \, dx)$$ {take cos xdx inside brackets) = $$\int \cos x \, dx - \int \sin^6 x \cos x \, dx - 3 \int \sin^2 x \cos x \, dx + 3 \int \sin^4 x \cos x \, dx$$ (separate the integrals) Put sinx = t and cos xdx = dt $$= \int \cos x \, dx - \int t^6 dt - 3 \int t^2 dt + 3 \int t^4 dt$$ $$=\sin x - \frac{t^7}{7} - \frac{3t^3}{3} - \frac{3t^5}{5} + c$$ $$=\sin x - \frac{t^7}{7} - t^3 - \frac{3t^5}{5} + c$$ Put back $t = \sin x$ $$= \sin x - \sin^3 x + \frac{3}{5} \sin^5 x - \frac{1}{7} \sin^7 x + c$$ # 7. Question Evaluate the following integrals: $$\int x \cos^3 x^2 \sin x^2 dx$$ Let $$cosx^2 = t$$ Then $d(\cos x^2) = dt$ Since $d(x^n) = nx^{n-1}$ and $d(\cos x) = -\sin x dx$ $$dt = 2x (-\sin x^2) = -2x \sin x^2 dx$$ $$x \sin x^2 dx = -\frac{dt}{2}$$ hence $\int x \cos^3 x^2 \sin x^2 dx = \int t^3 x - \frac{dt}{2}$ $$=-\frac{1}{2}\int t^3dt$$ $$=-\frac{1}{2}\times\frac{t^4}{4}+c$$ $$=-\frac{1}{8}\cos^4 x^2 + c$$ # 8. Question Evaluate the following integrals: ## **Answer** $\int \sin^7 x \, dx = \int \sin^6 x \sin x \, dx$ $$= \int (\sin^2 x)^3 \sin x \, dx$$ $$= \int (1 - \cos^2 x)^3 \sin x \, dx \{ \text{ since } \sin^2 x + \cos^2 x = 1 \}$$ We know $(a-b)^3 = a^3 - b^3 - 3a^2b + 3ab^2$ Here, $$a = 1$$ and $b = cos^2 x$ Hence, $\int (1-\cos^2 x)^3 \sin x \, dx = \int (1-\cos^6 x - 3\cos^2 x + 3\cos^4 x) \sin x \, dx$ = $$\int (\sin x \, dx - \cos^6 x \sin x \, dx - 3\cos^2 x \sin x \, dx + 3\cos^4 x \sin x \, dx)$$ {take sin xdx inside brackets) = $$\int \sin x \, dx - \int \cos^6 x \sin x \, dx - 3 \int \cos^2 x \sin x \, dx + 3 \int \cos^4 x \sin x \, dx$$ (separate the integrals) Put cosx = t and -sinx dx = dt $$= \int \sin x \, dx - \int t^6(-dt) - 3 \int t^2(-dt) \, + \, 3 \int t^4(-dt)$$ $$= -\cos x + \frac{t^7}{7} + \frac{3t^3}{3} - \frac{3t^5}{5} + c$$ $$= -\cos x + \frac{t^7}{7} + t^3 - \frac{3t^5}{5} + c$$ Put back $t = \cos x$ $$= -\cos x + \cos^3 x - \frac{3}{5}\cos^5 x + \frac{1}{7}\cos^7 x + c$$ # 9. Question Evaluate the following integrals: $$\int \sin^3 x \cos^5 x dx$$ ### **Answer** Let $\cos x = t$ then $dt = -\sin x dx$ $$dx = -\frac{dt}{sinx}$$ Substitute all these in the above equation, $$\int \sin^3 x \cos^5 x \, dx = \int \sin^3 x \, t^5 \left(-\frac{dt}{\sin x} \right)$$ $$= -\int \sin^2 x t^5 dt$$ $$= -\int (1 - \cos^2 x) t^5 dt$$ $$= -\int (1 - t^2) t^5 dt$$ $$= -\int t^5 dt - \int t^7 dt$$ $$= -\frac{t^6}{6} + \frac{t^8}{8} + c \left(\text{ since } \int x^n \, dx = \frac{x^{n+1}}{n+1} + c \text{ for any } c \neq -1 \right)$$ $$= -\frac{\cos^6 x}{6} + \frac{\cos^8 x}{8} + c$$ $$= \frac{1}{6} \cos^8 x - \frac{1}{6} \cos^6 x + c$$ ### 10. Question Evaluate the following integrals: $$\int \frac{1}{\sin^4 x \cos^2 x} dx$$ #### **Answer** $$\int \frac{1}{\sin^4 x \cos^2 x} dx = \int \sin^{-4} x \cos^{-2} x dx$$ Adding the powers : -4 + -2 = -6 Since all are even nos, we will divide each by cos⁶x to convert into positive power So, $$\int \frac{1}{\sin^4 x \cos^2 x} dx = \int \frac{\frac{1}{\cos^6 x}}{\frac{\sin^4 x \cos^2 x}{\cos^6 x}} dx$$ $$= \int \frac{\sec^6 x}{\frac{\sin^4 x}{\cos^4 x}} dx = \int \frac{\sec^6 x}{\tan^4 x} dx$$ $$= \int \frac{\sec^4 x \sec^2 x}{\tan^4 x} dx = \int \frac{(\sec^2 x)^2 \sec^2 x}{\tan^4 x} dx$$ $$= \int \frac{(1 + \tan^2 x)^2 \sec^2 x}{\tan^4 x} dx \left\{ \text{ since } \sec^2 x = 1 + \tan^2 x \right\}$$ $$= \int \frac{(1 + \tan^4 x + 2 \tan^2 x)^2 \sec^2 x}{\tan^4 x} dx \left(\text{ apply } (a + b)^2 = a^2 + b^2 + 2ab \right)$$ Let $\tan x = t$, so $dt = d(tanx) = \sec^2 x dx$ Put t and dx in the above equation, So, $dx = \frac{dt}{sec^2y}$ $$\begin{split} &\int \frac{(1+tan^4x+2tan^2x)\sec^2x}{tan^4x} dx = \frac{\int \left(1+t^4+2t^2\right)}{t^4} sec^2x * \frac{dt}{\sec^2x} \\ &= \frac{\int \left(1+t^4+2t^2\right)}{t^4} dt \end{split}$$ $$= \int (1 + t^{-4} + 2t^{-2})dt$$ $$= t - \frac{t^{-3}}{3} - 2t^{-1} + c$$ $$= t - \frac{2}{t} - \frac{1}{3t^{3}} + c$$ $$= \tan x - \frac{2}{\tan x} - \frac{1}{3\tan^{3}x} + c$$ $$= \tan x - 2\cot x - \frac{1}{3}\cot^{3}x + c \{1/\tan x = \cot x\}$$ Evaluate the following integrals: $$\int \frac{1}{\sin^3 x \cos^5 x} dx$$ #### **Answer** $$\int \frac{1}{\sin^3 x \cos^5 x} dx = \int \sin^{-3} x \cos^{-5} x dx$$ Adding the powers , -3 + -5 = -8 Since it is an even number, we will divide numerator and denominator by cos8x $$\begin{split} &\int \frac{1}{\sin^3 x \cos^5 x} \, dx = \int \frac{\frac{1}{\cos^8 x}}{\frac{\sin^3 x \cos^5 x}{\cos^8 x}} dx \\ &= \int \frac{\sec^8 x}{\tan^3 x} dx = \int \frac{\sec^6 x \sec^2 x}{\tan^3 x} dx = \int \frac{(\sec^2 x)^3 \sec^2 x}{\tan^3 x} dx \\ &= \int \frac{(1 + \tan^2 x)^3 \sec^2 x}{\tan^3 x} dx \end{split}$$ We know, $(a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2$ Here, a = 1 and $b = tan^2x$ Hence, $$\int \frac{(1 + \tan^2 x)^3 \sec^2 x}{\tan^3 x} dx = \int \frac{(1 + \tan^6 x + 3\tan^2 x + 3\tan^4 x)}{\tan^3 x} \frac{\sec^2 x}{dx} dx$$ Let tan x = t, then $dt = d(tanx) = sec^2xdx$ Put these values in above equation: $$\begin{split} &=\int \frac{1\,+\,t^6\,+\,3t^2\,+\,3t^4}{t^3} dt \,=\, \int \big(t^{-3}\,+\,t^3\,+\,3t^{-1}\,+\,3t\big) dt \\ &=-\frac{t^{-2}}{2}\,+\,\frac{t^4}{4}\,+\,3 logt\,+\,\frac{3t^2}{2}\,+\,c\,(\,\text{since}\,\int\!x^n\,dx\,=\,\frac{x^{n+1}}{n+1}\,+\,c\,\text{for any}\,c\neq -1\,\,\text{and}\,\int\!t^{-1}\,dt\,=\,logt) \\ &=-\frac{1}{2t^2}\,+\,\frac{1}{4}t^4\,+\,3 logt\,+\,\frac{3}{2}t^2\,+\,c \\ &=-\frac{1}{2\tan^2x}\,+\,\frac{1}{4}tan^4x\,+\,3 log(tanx)\,+\,\frac{3}{2}tan^2x\,+\,c \end{split}$$ ## 12. Question Evaluate the following integrals: $$\int \frac{1}{\sin^3 x \cos x} dx$$ ### Answer $$\int \frac{1}{\sin^3 x \cos x} dx = \int \sin^{-3} x \cos^{-1} x dx$$ Adding the powers, -3 + -1 = -4 Since it is an even number, we will divide numerator and denominator by cosx $$\int \frac{1}{\sin^3 x \cos x} dx = \int \frac{\frac{1}{\cos^4 x}}{\frac{\sin^3 x \cos x}{\cos^4 x}} dx$$ $$= \int \frac{\sec^4 x}{\tan^3 x} dx = \int \frac{\sec^2 x \sec^2 x}{\tan^3 x} dx$$ $$= \int \frac{(1 + \tan^2 x) \sec^2 x}{\tan^3 x} dx$$ Let tan x = t, then $dt = d(tanx) = se^2xdx$ Put these values in the above equation: $$\begin{split} &= \int \frac{1\,+\,t^2}{t^3} dt \,=\, \int \,(t^{-3}\,+\,t^{-1}) dt \\ &= -\frac{t^{-2}}{2}\,+\, logt \,+\, c\, (\, since\, \int x^n\, dx \,=\, \frac{x^{n+1}}{n+1}\,+\, c\, for\, any\, c \neq -1\, and\, \int t^{-1}\, dt \,=\, logt) \\ &= -\frac{1}{2t^2}\,+\, logt \,+\, c \\ &= -\frac{1}{2tan^2x}\,+\, log(tanx)\,+\, c \end{split}$$ # 13. Question Evaluate the following integrals: $$\int \frac{1}{\sin x \cos^3 x} dx$$ #### **Answer** We know, $\sin^2 x + \cos^2 x = 1$ Therefore $$\frac{1}{\sin x \cos^2 x} = \frac{\sin^2 x + \cos^2 x}{\sin x \cos^2 x}$$ Divide each term of numerator separately by sinxcos3x $$\begin{split} &=\frac{\sin^2 x}{\sin x \cos^3 x}+\frac{\cos^2 x}{\sin x \cos^3 x}=\frac{\sin x}{\cos^3 x}+\frac{1}{\sin x \cos x}\\ &=\frac{\sin x}{\cos x}*\left(\frac{1}{\cos^2 x}\right)+\frac{\frac{1}{\cos^2 x}}{\frac{\sin x \cos^2 x}{\cos^2 x}} \text{ (divide second term each by }\cos^2 x\text{)}\\ &=\tan x\sec^2 x+\frac{\sec^2 x}{\tan x} \end{split}$$ Therefore, $$\int \frac{1}{\sin x \cos^3 x} dx = \int \left(\tan x \sec^2 x + \frac{\sec^2 x}{\tan x} \right) dx$$ $$= \int \tan x \sec^2 x dx + \int \frac{\sec^2 x}{\tan x} dx$$ Put tanx = t, $$dt = sec^2x dx$$ $$= \int \tan x \sec^2 x \, dx + \int \frac{\sec^2 x}{\tan x} dx = \int t dt + \int \frac{1}{t} dt$$ $$= \frac{t^2}{2} + \log t + c = \frac{1}{2} \tan^2 x + \log(\tan x) + c$$ # Exercise 19.13 ### 1. Question Evaluate the following integrals: $$\int \frac{x^2}{\left(a^2 - x^2\right)^{3/2}} dx$$ # **Answer** $$\int \frac{x^2}{\left(a^2 - x^2\right)^{3/2}} dx$$ PUT $x = a \sin\theta$, so $dx = a \cos\theta d\theta$ and $\theta = \sin^{-}(x/a)$ Above equation becomes, $$\begin{split} &= \int \frac{a^2 \sin^2 \theta}{(a^2 - a^2 \sin^2 \theta)^{3/2}} (a \cos \theta \ d\theta) = \int \frac{a^2 \sin^2 \theta}{(a^2)(a^2 - a^2 \sin^2 \theta)^{3/2}} (a \cos \theta \ d\theta) \ \{ \text{take } a^2 \text{ outside} \} \\ &= \int \frac{a^2 \sin^2 \theta}{(a^2)^3/2 (a^2 - a^2 \sin^2 \theta)^{3/2}} (a \cos \theta \ d\theta) = \int \sin^2 \theta * \frac{\cos \theta}{\cos^2 \theta} \ d\theta \\ &= \int \frac{\sin^2 \theta}{\cos^2 \theta} \ d\theta = \int \tan^2 \theta d\theta = \int (\sec^2 \theta - 1) \ d\theta \ (\sec^2 \theta - 1 = \tan^2 \theta) \\ &= \int \sec^2 \theta \ d\theta - \int \theta \ d\theta = \tan \theta + c - \theta \\ &= \tan \theta - \theta + c \end{split}$$ $$-\tan\theta - \theta + \theta$$ Put $$\theta = \sin^-(x/a)$$ $$= \tan\theta * \sin^{-}\left(\frac{x}{2}\right) - \sin^{-}\left(\frac{x}{2}\right) + c$$ #### 2. Question Evaluate the following integrals: $$\int \frac{x^7}{\left(a^2 - x^2\right)^5} dx$$ ## **Answer** PUT $x = a \sin\theta$, so $dx = a \cos\theta d\theta$ and $\theta = \sin^{-}(x/a)$ Above equation becomes, $$\int \frac{x^{\prime}}{\left(a^{2}-x^{2}\right)^{5}} dx = \int \frac{a^{7}\sin^{7}\theta}{(a^{2}-a^{2}\sin^{2}\theta)^{5}} (a\cos\theta \ d\theta) = \int \frac{a^{7}\sin^{7}\theta}{(a^{2})^{5}(1-\sin^{2}\theta)^{5}} (a\cos\theta \ d\theta) \ \{take \
a^{2} \ outside)$$ $$= \int \frac{a^{7}\sin^{7}\theta}{(a^{2})^{5}(1-\sin^{2}\theta)^{5}} (a\cos\theta \ d\theta) = \int \frac{a^{7}\sin^{7}\theta}{(a^{1s}(1-\sin^{2}\theta)^{5}} (a\cos\theta \ d\theta)$$ $$= \frac{1}{a^{2}} \int \frac{1}{\cos^{2}\theta} d\theta = \frac{1}{a^{2}} \int \sec^{2}\theta d\theta = \frac{1}{a^{2}} (\tan\theta + c)$$ Put $$\theta = \sin^-(x/a)$$ $$= \frac{1}{a^2} \left(\tan \sin^-\left(\frac{x}{a}\right) + c \right)$$ Evaluate the following integrals: $$\int\!cos\!\left\{2\,cot^{-1}\,\sqrt{\frac{1+x}{1-x}}\right\}\!dx$$ #### **Answer** Let $$x = \cos 2t$$ and $t = \cos^{-}x\frac{x}{2}$ $$=\sqrt{\frac{1+x}{1-x}} = \sqrt{\frac{1+\cos 2t}{1-\cos 2t}}$$ We know $1 + \cos 2t = 2\cos^2 t$ and $1-2\cos 2t = 2\sin^2 t$ Hence, $$\sqrt{\frac{1+\cos 2t}{1-\cos 2t}} = \sqrt{\frac{\cos^2 t}{\sin^2 t}} = \sqrt{\cot^2 t} = \cot t$$ Therefore , $$\int\!cos\!\left\{2\,cot^{-1}\,\sqrt{\frac{1+x}{1-x}}\right\}\!dx\ =\int\,cos\!\theta\;dx$$ Put $$t = \cos^{-}x^{\frac{x}{2}}$$ $$=\int \cos\theta \, dx = \int \cos\frac{\cos^2 x}{2} dx = \int \frac{x}{2} \, dx = \frac{1}{2} \frac{x^2}{2} + c = \frac{x^2}{4} + c$$ # 4. Question Evaluate the following integrals: $$\int \frac{\sqrt{1+x^2}}{x^4} dx$$ ### **Answer** let $x = tan\theta$, so $dx = sec^2\theta \ d\theta$ and $\theta = tan^-x$ Putting above values, $$= \int \frac{\sqrt{1+x^2}}{x^4} dx = \int \frac{\sqrt{1+\tan^2\theta}}{\tan^4\theta} \sec^2\theta d\theta = \int \sec^2\theta/\tan^2\theta d\theta$$ $$=\int cosec^2\theta d\theta = -cot\theta + c$$ Put $$\theta = \tan^- x$$ $$= -\cot\theta + c = -\cot\tan^{-}x + c$$ ## 5. Question Evaluate the following integrals: $$\int \frac{1}{\left(x^2 + 2x + 10\right)^2} \mathrm{d}x$$ $$= x^2 + 2x + 10 = x^2 + 2x + 1 - 1 + 10$$ (add and substract 1) $$= (x^2 + 1)^2 - 1 + 10 = x^2 + 1)^2 + 9$$ $$=(x^2+1)^2+3^2$$ Put x + 1 = t hence dx = dt and x = t-1 $$\int \frac{1}{\left(x^2 + 2x + 10\right)^2} dx = \int 1/((x^2 + 1)^2 + 3^2) dx$$ $$= \int \frac{1}{t^2 + 3^2} dt$$ We have, $$\int \frac{dt}{t^2 + a^2} = \frac{1}{a} \log \left(\frac{t - a}{t + a} \right) + c$$ Here a = 3 Therefore, $$\int \frac{1}{t^2+3^2} dt = \frac{1}{3} log(\frac{t-3}{t+3}) + c$$ Put $$t = x + 1$$ $$= \frac{1}{3} \log \left(\frac{t-3}{t+3} \right) + c = \frac{1}{3} \log \left(\frac{x+1-3}{x+1+3} \right) + c = \frac{1}{3} \log \left(\frac{x-2}{x+4} \right) + c$$ # Exercise 19.14 ### 1. Question Evaluate the following integrals: $$\int \frac{1}{a^2 - b^2 x^2} dx$$ ### **Answer** Taking out $$b^2$$, $\frac{1}{b^2} \int \frac{1}{\left(\frac{a^2}{b^2}\right) - x^2} dx$ $$= \frac{1}{b^2} \int\! \frac{1}{\left(\!\frac{a^2}{b^2}\!\right)\!-\!x^2} \, dx \ = \ \frac{1}{b^2} \int\! \frac{1}{\left(\!\frac{a}{b}\!\right)^2\!-\!x^2} \, dx$$ $$= \frac{1}{b^2} \times \frac{1}{2{a \choose b}} log [\frac{\frac{a}{b} + x}{\frac{a}{b} - x}] \ + \ c \ \{ \ since \ \int \frac{1}{a^2 - x^2} dx \ = \ \frac{1}{2a} log \frac{x + a}{x - a} \ + \ c \ \}$$ $$= \frac{1}{2ab} \log \frac{a + bx}{a - bx} + c$$ # 2. Question Evaluate the following integrals: $$\int \frac{1}{a^2x^2 - b^2} dx$$ #### **Answer** take out a² $$= \frac{1}{a^2} \int \frac{1}{x^2 - \frac{b^2}{a^2}} \, \mathrm{d}x$$ $$= \frac{1}{a^2} \int \frac{1}{x^2 - (\frac{b}{a})^2} dx = \frac{1}{a^2} * \frac{1}{2(\frac{b}{a})} log[\frac{x - (\frac{b}{a})}{x + \frac{b}{a}}] + c \{ since \int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} log \frac{x + a}{x - a} + c \}$$ $$= \frac{1}{2ab} \log \frac{ax-b}{ax+b} + c$$ Evaluate the following integrals: $$\int \frac{1}{a^2x^2 + b^2} dx$$ #### **Answer** take out a² $$\begin{split} &= \frac{1}{a^2} \int \frac{1}{x^2 + \frac{b^2}{a^2}} \, dx \\ &= \frac{1}{a^2} \int \frac{1}{x^2 + (\frac{b}{a})^2} \, dx \, = \, \frac{1}{a^2} * \frac{1}{\left(\frac{b}{a}\right)} tan^{-1} \left[\frac{x}{b}\right] \, + \, c \, \{ \text{ since } \int \frac{1}{x^2 + a^2} dx \, = \, \frac{1}{a} tan^{-1} \left(\frac{b}{a}\right) \, + \, c \} \\ &= \frac{1}{ab} tan^{-1} \left(\frac{ax}{b}\right) \, + \, c \end{split}$$ ### 4. Ouestion Evaluate the following integrals: $$\int \frac{x^2 - 1}{x^2 + 4} dx$$ #### **Answer** Add and subtract 4 in the numerator, we get $$\begin{split} &= \int \frac{x^2 + 4 - 4 - 1}{x^2 + 4} = \int \frac{(x^2 + 4) - 4 - 1}{x^2 + 4} dx \\ &= \int \frac{(x^2 + 4) - 5}{x^2 + 4} dx = \int \frac{(x^2 + 4)}{x^2 + 4} dx - \int \frac{5}{x^2 + 4} dx \text{ {separate the numerator terms)}} \\ &= \int dx - \int \frac{5}{x^2 + 4} dx = \int dx - \int \int \frac{1}{x^2 + 4} dx \\ &= \int dx - \int \int \frac{1}{x^2 + 2^2} dx = x - \int \frac{1}{x^2 + 4} dx \\ &= \int dx - \int \int \frac{1}{x^2 + 2^2} dx = x - \int \frac{1}{x^2 + 4} dx - \int \int \frac{1}{x^2 + 4} dx \\ &= \int dx - \int \int \frac{1}{x^2 + 2^2} dx = x - \int \frac{1}{x^2 + 4} dx - \int \int \frac{1}{x^2 + 4} dx \\ &= \int dx - \int \int \frac{1}{x^2 + 2^2} dx = x - \int \frac{1}{x^2 + 4} dx - \int \int \frac{1}{x^2 + 4} dx \\ &= \int dx - \int \int \frac{1}{x^2 + 2^2} dx = x - \int \frac{1}{x^2 + 4} dx - \int \int \frac{1}{x^2 + 4} dx \\ &= \int dx - \int \int \frac{1}{x^2 + 2^2} dx = x - \int \frac{1}{x^2 + 4} dx - \int \int \frac{1}{x^2 + 4} dx \\ &= \int dx - \int \int \frac{1}{x^2 + 4} +$$ # 5. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{1+4x^2}} dx$$ ### **Answer** Let I = $$\int \frac{1}{\sqrt{1+4x^2}} dx = \int \frac{1}{\sqrt{1+(2x)^2}} dx$$ Let t = 2x, then dt = 2dx or dx = dt/2 Therefore, $$\int\!\frac{1}{\sqrt{1+(2x)^2}}dx\,=\,\frac{1}{2}\!\int\frac{dt}{\sqrt{1+t^2}}$$ $$= \frac{1}{2} log[t + \sqrt{1 + t^2}] + c \left\{ since \int \frac{1}{\sqrt{(a^2 + x^2)}} dx = log[x + \sqrt{(a^2 + x^2)} + c] \right\}$$ $$= \frac{1}{2} \log \left[2x + \sqrt{1 + 4x^2} \right] + c$$ Evaluate the following integrals: $$\int \frac{1}{\sqrt{a^2 + b^2 x^2}} dx$$ #### **Answer** Let bx = t then dt = bdx or $dx = \frac{dt}{b}$ Hence, $$\int \frac{1}{\sqrt{a^2 + b^2 x^2}} dx = \frac{1}{b} \int \frac{1}{\sqrt{(a^2 + t^2)}} dt$$ $$= \frac{1}{b} log[t + \sqrt{a^2 + t^2}] + c \left\{ since \int \frac{1}{\sqrt{(a^2 + x^2)}} dx = log[x + \sqrt{(a^2 + x^2)} + c] \right\}$$ Put t = bx $$=\frac{1}{b}\log[bx + \sqrt{a^2 + b^2x^2}] + c$$ ## 7. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{a^2 - b^2 x^2}} dx$$ #### **Answer** Let bx = t then dt = bdx or dx = $\frac{dt}{dt}$ Hence, $$\int \frac{1}{\sqrt{a^2 - b^2 x^2}} dx = \frac{1}{b} \int \frac{1}{\sqrt{(a^2 - t^2)}} dt$$ $$= \frac{1}{b} \int \sin^{-1} \left(\frac{t}{a}\right) \, + \, c \left\{ \text{since} \, \int \frac{1}{\sqrt{a^2 - x^2}} dx \, = \, \sin^{-1} \left(\frac{x}{a}\right) \, + \, c \right\}$$ Put t = bx $$=\frac{1}{b}\int \sin^{-1}\left(\frac{bx}{a}\right) + c$$ # 8. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{(2-x)^2+1}} dx$$ ### **Answer** Let (2-x) = t, then dt = -dx, or dx = -dt Hence, $$\int \frac{1}{\sqrt{(2-x)^2+1}} dx = \int \frac{1}{t^2+1} (-dt)$$ $$= -\int \frac{1}{t^2+1^2} dt = -log \int \left(t \,+\, \sqrt{t^2\,+\,1}\right)) \,+\, c \, \left\{ \text{since} \int \frac{1}{\sqrt{(a^2+x^2)}} dx \,=\, log[x \,+\, \sqrt{(a^2\,+\,x^2)} \,+\, c \right\} \right\}$$ Put $$t = 2-x$$ $$= -\log \int ((2-x) + \sqrt{(2-x)^2 + 1}) + c$$ Evaluate the following integrals: $$\int \frac{1}{\sqrt{(2-x)^2-1}} \, \mathrm{d}x$$ #### **Answer** Let (2-x) = t, then dt = -dx, or dx = -dt Hence, $$\int \frac{1}{\sqrt{(2-x)^2-1}} dx = \int \frac{1}{t^2-1} (-dt)$$ $$= - \int \frac{1}{t^2 - 1^2} dt \ = \ - log \int \left(t \ + \ \sqrt{t^2 - 1} \right)) \ + \ c \ \{ \text{since} \ \int \frac{1}{\sqrt{(x^2 + a^2)}} dx \ = \ log[x \ + \ \sqrt{(x^2 - a^2)} \ + \ c \} \, \}$$ Put $$t = 2-x$$ $$= -\log \int ((2-x) + \sqrt{(2-x)^2 - 1}) + c$$ #### 10. Question Evaluate the following integrals: $$\int \frac{x^4 + 1}{x^2 + 1} dx$$ #### **Answer** We will use basic formula : $(a + b)^2 = a^2 + b^2 + 2ab$ Or, $$a^2 + b^2 = (a + b)^2 - 2ab$$ Here, $$x^4 + 1 = x^4 + 1^4$$ $$=(x^2) + (1^2)^2$$ Applying above formula, we get, $x^4 + 1 = (x^2 + 1)^2 - 2 \times 1 \times x^2$ $$=(x^2+1)^2-2x^2$$ Hence, $$\int \frac{x^4 + 1}{x^2 + 1} dx = \int \frac{(x^2 + 1)^2 - 2x^2}{x^2 + 1} dx$$ Separate the numerator terms, $$\int \frac{(x^2+1)^2-2x^2}{x^2+1} dx = \int \frac{(x^2+1)^2}{x^2+1} dx - \int \frac{2x^2}{x^2+1} dx$$ = $$\int (x^2 + 1)dx - \int \frac{2x^2 + 2 - 2}{x^2 + 1}dx$$ { add and subtract 2 to the second term) $$= \int (x^2 + 1) dx - \int \frac{2(x^2 + 1)}{x^2 + 1} dx - 2 \int \frac{1}{x^2 1}$$ $$= \int (x^2 + 1)dx - \int 2dx - 2 \int 1/(x^2 + 1)dx$$ $$=\frac{x^2}{x^2} + x - 2x + 2\tan^{-1}x + c$$ { since $\int \frac{1}{x^2 + 1} dx = \tan^{-1}(x) + c$ } $$=\frac{x^3}{3}-x + 2\tan^{-1}x + c$$ # Exercise 19.15 # 1. Question Evaluate the following integrals: $$\int \frac{1}{4x^2 + 12x + 5} dx$$ #### **Answer** let $$I = \int \frac{1}{4x^2 + 12x + 5} dx$$ $$= \frac{1}{4} \int \frac{1}{x^2 + 3x + \frac{5}{4}} dx$$ $$= \frac{1}{4} \int \frac{1}{x^2 + 2x \times \frac{3}{2} + \left(\frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^2 + \frac{5}{4}} dx$$ $$=\frac{1}{4}\int \frac{1}{\left(x+\frac{3}{2}\right)^2-1} dx$$ Let $$\left(x + \frac{3}{2}\right) = t$$(i) $$\Rightarrow$$ dx = dt SO. $$I = \frac{1}{4} \int \frac{1}{t^2 - (1)^2} dt$$ $$I = \frac{1}{4} \times \frac{1}{2 \times 1} \log \left| \frac{t-1}{t+1} \right| + c$$ [since, $$\int \frac{1}{x^2 - (a)^2} dx = \frac{1}{2 \times a} \log \left| \frac{x - a}{x + a} \right| + c$$] $$I = \frac{1}{8} log \left| \frac{x - \frac{3}{2} - 1}{x + \frac{3}{2} + 1} \right| + c \text{ [using (i)]}$$ $$I = \frac{1}{8} \log \left| \frac{2x - 1}{2x + 5} \right| + c$$ # 2. Question Evaluate the following integrals: $$\int \frac{1}{x^2 - 10x + 34} dx$$ let $$I = \int \frac{1}{x^2 - 10x + 34} dx$$ $$I = \int \frac{1}{x^2 - 10x + 34} dx$$ $$= \int \frac{1}{x^2 + 2x \times 5 + (5)^2 - (5)^2 + 34} dx$$ $$= \int \frac{1}{(x-5)^2 - 9} \, \mathrm{d}x$$ Let $$(x-5) = t$$(i) $$\Rightarrow$$ dx = dt SO. $$I = \int \frac{1}{t^2 + (3)^2} dt$$ $$I = \frac{1}{3} \tan^{-1}(\frac{t}{3}) + c$$ [since, $$\int \frac{1}{x^2 +
(a)^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$$] $$I = \frac{1}{3} \tan^{-1}(\frac{x-5}{3}) + c$$ [using (i)] $$I = \frac{1}{3} \tan^{-1}(\frac{x-5}{3}) + c$$ # 3. Question Evaluate the following integrals: $$\int \frac{1}{1+x-x^2} \, \mathrm{d}x$$: let $$I = \int \frac{1}{1+x-x^2} dx = \int \frac{1}{-(x^2-x-1)} dx$$ $$=\int \frac{1}{-(x^2-x-1)} dx$$ $$= \int \frac{1}{-(x^2 - x - \frac{1}{4} - 1 + \frac{1}{4})} dx$$ $$=\int \frac{1}{-\left(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\right)} dx$$ $$=\int \frac{1}{\left(\left(\frac{\sqrt{5}}{2}\right)^2-\left(x-\frac{1}{2}\right)^2\right)}dx$$ $$I = \frac{1}{2 \times \frac{\sqrt{5}}{2}} \log \left| \frac{\frac{\sqrt{5}}{2} + (x - \frac{1}{2})}{\frac{\sqrt{5}}{2} - (x - \frac{1}{2})} \right| + c$$ [since, $$\int \frac{1}{x^2 - (a)^2} dx = \frac{1}{2 \times a} \log \left| \frac{x - a}{x + a} \right| + c$$] $$I = \frac{1}{\sqrt{5}} \log \left| \frac{\sqrt{5} + 2x - 1}{\sqrt{5} - 2x + 1} \right| + c$$ $$I = \frac{1}{\sqrt{5}} log \left| \frac{\sqrt{5} - 1 + 2x}{\sqrt{5} + 1 - 2x} \right| + c$$ Evaluate the following integrals: $$\int \frac{1}{2x^2 - x - 1} dx$$ #### **Answer** $$let I = \int \frac{1}{2x^2 - x - 1} dx$$ $$=\frac{1}{2}\int \frac{1}{x^2 - \frac{x}{2} - \frac{1}{2}} dx$$ $$= \frac{1}{2} \int \frac{1}{x^2 + 2x \times \frac{1}{4} + \left(\frac{1}{4}\right)^2 - \left(\frac{1}{4}\right)^2 - \frac{1}{2}} dx$$ $$=\frac{1}{2}\int \frac{1}{\left(x-\frac{1}{4}\right)^2-\frac{9}{16}}dx$$ Let $$\left(x - \frac{1}{4}\right) = t$$(i) $$\Rightarrow$$ dx = dt SO, $$I = \frac{1}{2} \int \frac{1}{t^2 - \left(\frac{3}{4}\right)^2} dt$$ $$I = \frac{1}{2} \times \frac{1}{2 \times \frac{3}{4}} log \left| \frac{t - \frac{3}{4}}{t + \frac{3}{4}} \right| + c$$ [since, $$\int \frac{1}{x^2 - (a)^2} dx = \frac{1}{2 \times a} \log \left| \frac{x - a}{x + a} \right| + c$$] $$I = \frac{1}{3} log \begin{vmatrix} \frac{x^{-\frac{1}{3}} - \frac{3}{4}}{4} \\ \frac{1}{x^{-\frac{1}{4}} + \frac{3}{4}} \end{vmatrix} + c \text{ [using (i)]}$$ $$I = \frac{1}{3} \log \left| \frac{x-1}{2x+1} \right| + c$$ ## 5. Question Evaluate the following integrals: $$\int \frac{1}{x^2 + 6x + 13} dx$$ # **Answer** We have, $$x^2 + 6x + 13 = x^2 + 6x + 3^2 - 3^2 + 13$$ $$=(x+3)^2+4$$ Sol, $$\int \frac{1}{x^2+6x+13} dx = \int \frac{1}{(x+3)^2+2^2} dx$$ Let $$x+3 = t$$ Then dx = dt $$\int \frac{1}{(t)^2+2^2} dt = \frac{1}{2} tan^{-1} \frac{t}{2} + c$$ [since, $$\int \frac{1}{x^2 + (a)^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$$] $$\frac{1}{2}\tan^{-1}\frac{x+3}{2}+c$$ # Exercise 19.16 ## 1. Question Evaluate the following integrals: $$\int \frac{\sec^2 x}{1-\tan^2 x} dx$$ # Answer let $$I = \int \frac{\sec^2 x}{1-\tan^2 x} dx$$ Let $$tan x = t \dots(i)$$ $$\Rightarrow$$ sec² x dx = dt SO, $$I = \int \frac{dt}{(1)^2 - t^2}$$ $$I = \frac{1}{2 \times 1} \log \left| \frac{1+t}{1-t} \right| + c \text{ [since, } \int \frac{1}{a^2 - (x)^2} dx = \frac{1}{2 \times a} \log \left| \frac{a+x}{a-x} \right| + c]$$ $$I = \frac{1}{2} log \left| \frac{1 + tanx}{1 - tanx} \right| + c \left[using (i) \right]$$ # 2. Question Evaluate the following integrals: $$\int \frac{e^x}{1+e^{2x}} dx$$ # **Answer** : let $$I = \int \frac{e^x}{1 + e^{2x}} dx$$ Let $$e^{x} = t(i)$$ $$\Rightarrow e^x dx = dt$$ SO, $$I = \int \frac{dt}{(1)^2 + t^2}$$ $$I = \tan^{-1} t + c$$ [since, $$\int \frac{1}{1+(x)^2} dx = \tan^{-1} x + c$$] $$I = tan^{-1}(e^x) + c [using(i)]$$ Evaluate the following integrals: $$\int \frac{\cos x}{\sin^2 x + 4\sin x + 5} dx$$ ### **Answer** Let $$I = \int \frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx$$ Let $$\sin x = t \dots (i)$$ $$\Rightarrow$$ cos x dx = dt So, $$I = \int \frac{dt}{t^2 + 4t + 5}$$ $$= \int \frac{dt}{t^2 + (2t)(2) + 2^2 - 2^2 + 5}$$ $$\int \frac{dt}{(t+2)^2+1}$$ Again, let $$t + 2 = u(ii)$$ $$\Rightarrow$$ dt = du $$I = \int \frac{du}{u^2 + 1}$$ $$= \tan^{-1} u + c$$ [since, $$\int \frac{1}{1+(x)^2} dx = \tan^{-1} x + c$$] $$= \tan^{-1}(\sin x + 2) + c [using(i),(ii)]$$ ## 4. Question Evaluate the following integrals: $$\int \frac{e^x}{e^{2x} + 5e^x + 6} dx$$ $$let I = \int \frac{e^x}{e^{2x} + 5e^x + 6} dx$$ Let $$e^{x} = t(i)$$ $$\Rightarrow e^{x} dx = dt$$ $$= \int \frac{1}{t^2 + 5t + 6} dt$$ $$= \int \frac{1}{t^2 + 2t \times \frac{5}{2} + \left(\frac{5}{2}\right)^2 - \left(\frac{5}{2}\right)^2 + 6} dt$$ $$=\int \frac{1}{\left(t+\frac{5}{2}\right)^2-\frac{1}{4}}dt$$ Let $$t + \frac{5}{2} = u$$(i) $$\Rightarrow$$ dt = du SO, $$I=\int\frac{1}{u^2-\left(\frac{1}{2}\right)^2}du$$ $$I = \frac{1}{2 \times \frac{1}{2}} log \left| \frac{u - \frac{1}{2}}{u + \frac{1}{2}} \right| + c$$ [since, $$\int \frac{1}{x^2 - (a)^2} dx = \frac{1}{2 \times a} \log \left| \frac{x - a}{x + a} \right| + c$$] $$I = log \left| \frac{2u - 1}{2u + 1} \right| + c$$ $$I = log \left| \frac{2(t+\frac{5}{2})-1}{2(t+\frac{5}{2})+1} \right| + c \left[using (i) \right]$$ $$I = log \left| \frac{e^{x} + 2}{e^{x} + 3} \right| + c \text{ [using (ii)]}$$ ## 5. Question Evaluate the following integrals: $$\int \frac{e^{3x}}{4e^{6x}-9} dx$$ ## **Answer** let $$I = \int \frac{e^{3x}}{4e^{6x}-9} dx$$ Let $$e^{3x} = t$$(i) $$\Rightarrow 3e^{3x} dx = dt$$ $$I = \frac{1}{3} \int \frac{1}{4t^2 - 9} dt$$ $$= \frac{1}{12} \int \frac{1}{t^2 - \frac{9}{4}} dt$$ $$I = \frac{1}{12} \int \frac{1}{t^2 - \left(\frac{3}{2}\right)^2} dt$$ $$I = \frac{1}{36} log \left| \frac{t - \frac{3}{2}}{t + \frac{3}{2}} \right| + c$$ [since, $$\int \frac{1}{x^2 - (a)^2} dx = \frac{1}{2 \times a} \log \left| \frac{x - a}{x + a} \right| + c$$] $$I = \log \left| \frac{2t - 3}{2t + 3} \right| + c$$ $$I = log \left| \frac{2e^{3X} - 3}{2e^{3X} + 3} \right| + c \text{ [using (i)]}$$ ## 6. Question Evaluate the following integrals: $$\int \frac{1}{e^x + e^{-x}} dx$$ ## Answer let $$I = \int \frac{1}{e^x + e^{-x}} dx$$ $$= \int \frac{1}{e^x + \frac{1}{e^x}} dx$$ $$= \int \frac{e^x}{(e^x)^2 + 1} dx$$ Let $$e^x = t \dots(i)$$ $$\Rightarrow e^{x} dx = dt$$ $$I=\int \frac{1}{(t)^2+1}dt$$ $$I = \tan^{-1} t + c$$ [since, $$\int \frac{1}{1+(x)^2} dx = \tan^{-1} x + c$$] $$I = tan^{-1}(e^x) + c [using (i)]$$ ## 7. Question Evaluate the following integrals: $$\int \frac{x}{x^4 + 2x^2 + 3} dx$$ Let $$I = \int \frac{x}{x^4 + 2x^2 + 3} dx$$ Let $$x^2 = t$$(i) $$\Rightarrow$$ 2x dx = dt $$I = \frac{1}{2} \int \frac{1}{t^2 + 2t + 3} \, dt$$ $$= \frac{1}{2} \int \frac{1}{t^2 + 2t + 1 - 1 + 3} dt$$ $$=\frac{1}{2}\int \frac{1}{(t+1)^2+2} dt$$ Put $$t + 1 = u \dots (ii)$$ $$\Rightarrow$$ dt = du $$I = \frac{1}{2} \int \frac{1}{(u)^2 + (\sqrt{2})^2} du$$ $$I = \frac{1}{2\sqrt{2}} \tan^{-1} \frac{u}{\sqrt{2}} + c$$ [since, $$\int \frac{1}{x^2 + (a)^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$$] $$I = \frac{1}{2\sqrt{2}} tan^{-1} \frac{t+1}{\sqrt{2}} + c$$ [using (i)] $$I=\frac{1}{2\sqrt{2}}tan^{-1}\frac{x^2+1}{\sqrt{2}}+c$$ [using (ii)] Evaluate the following integrals: $$\int \frac{3x^5}{1+x^{12}} dx$$ ### **Answer** let $$I = \int \frac{3x^5}{1+x^{12}} dx$$ $$= \int \frac{3x^5}{1 + (x^6)^2} dx$$ Let $$x^6 = t$$(i) $$\Rightarrow 6x^5 dx = dt$$ $$I = \frac{3}{6} \int \frac{1}{(t)^2 + 1} dt$$ $$I = \frac{1}{2} \tan^{-1} t + c$$ [since, $$\int \frac{1}{1+(x)^2} dx = \tan^{-1} x + c$$] $$I = \frac{1}{2} \tan^{-1}(x^6) + c \text{ [using (i)]}$$ ## 9. Question Evaluate the following integrals: $$\int \frac{x^2}{x^6 - a^6} dx$$ $$let I = \int \frac{x^2}{x^6 - a^6} dx$$ $$= \int \frac{x^2}{(x^3)^2 - (a^3)^2} dx$$ Let $$x^3 = t$$(i) $$\Rightarrow$$ 3x² dx = dt $$I = \frac{1}{3} \int \frac{1}{t^2 - (a^3)^2} dt$$ $$I = \frac{1}{3} \times \frac{1}{2 \times a^3} log \left| \frac{t - a^3}{t + a^3} \right| + c$$ [since, $$\int \frac{1}{x^2 - (a)^2} dx = \frac{1}{2 \times a} \log \left| \frac{x - a}{x + a} \right| + c$$] $$I = \frac{1}{6a^3} log \left| \frac{x^3 - a^3}{x^3 + a^3} \right| + c [using (i)]$$ Evaluate the following integrals: $$\int \frac{x^2}{x^6 + a^6} dx$$ ## **Answer** $$let I = \int \frac{x^2}{x^6 + a^6} dx$$ $$= \int \frac{x^2}{(x^3)^2 + (a^3)^2} dx$$ Let $$x^3 = t$$(i) $$\Rightarrow$$ 3x² dx = dt $$I = \frac{1}{3} \int \frac{1}{t^2 + (a^3)^2} dt$$ $$I = \frac{1}{3a^3} tan^{-1} \frac{t}{a^3} + c$$ [since, $$\int \frac{1}{x^2 + (a)^2} dx = \frac{1}{a} tan^{-1} \left(\frac{x}{a}\right) + c$$] $$I = \frac{1}{3a^3} tan^{-1} \frac{x^3}{a^3} + c \text{ [using (i)]}$$ ## 11. Question Evaluate the following integrals: $$\int \frac{1}{x(x^6+1)} dx$$ $$let I = \int \frac{1}{x(x^6+1)} dx$$ $$=\int \frac{x^5}{x^6(x^6+1)} dx$$ Let $$x^6 = t$$(i) $$\Rightarrow 6x^5 dx = dt$$ $$I = \frac{1}{6} \int \frac{1}{t(t+1)} dt$$ $$I = \frac{1}{6} \int (\frac{1}{t} - \frac{1}{t+1}) dt$$ $$I = \frac{1}{6} \biggl(\int \frac{1}{t} \, dt - \int \frac{1}{(t+1)} \, dt \biggr)$$ $$I = \frac{1}{6}(\log t - \log(t+1)) + c$$ $$I = \frac{1}{6}(\log x^6 - \log(x^6 + 1)) + c \text{ [using (i)]}$$ $$I = \frac{1}{6}log\frac{x^6}{x^6+1} + c \left[log \ m - log \ n = log\frac{m}{n}\right]$$ Evaluate the following integrals: $$\int \frac{x}{x^4 - x^2 + 1} dx$$ ## Answer Let $$I = \int \frac{x}{x^4 - x^2 + 1} dx$$ Let $$x^2 = t$$(i) $$\Rightarrow$$ 2x dx = dt $$I = \frac{1}{2} \int \frac{1}{t^2 - t + 1} dt$$ $$= \frac{1}{2} \int \frac{1}{t^2 - 2t(\frac{1}{2}) + (\frac{1}{2})^2 - (\frac{1}{2})^2 + 1} dt$$ $$= \frac{1}{2} \int \frac{1}{(t - \frac{1}{2})^2 + \frac{3}{4}} dt$$ Put $$t - 1/2 = u \dots ----(ii)$$ $$\Rightarrow$$ dt = du $$I = \frac{1}{2} \int \frac{1}{(u)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} du$$ $$I = \frac{1}{2\frac{\sqrt{3}}{2}} tan^{-1} \frac{u}{\frac{\sqrt{3}}{2}} + c$$ [since, $$\int \frac{1}{x^2 + (a)^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$$] $$I = \frac{1}{2\frac{\sqrt{3}}{2}} tan^{-1} \frac{t^{-\frac{1}{2}}}{\frac{\sqrt{3}}{2}} + c \text{ [using (i)]}$$ $$I = \frac{1}{\sqrt{3}} \tan^{-1} \frac{2x^2 - 1}{\sqrt{3}} + c \text{ [using (ii)]}$$ ### 13. Question Evaluate the following integrals: $$\int \frac{x}{3x^4 - 18x^2 + 11} dx$$ Let $$I = \int \frac{x}{3x^4 - 18x^2
+ 11} dx$$ Let $$x^2 = t$$(i) $$\Rightarrow$$ 2x dx = dt $$I = \frac{1}{6} \int \frac{1}{t^2 - 6t + \frac{11}{3}} dt$$ $$= \frac{1}{6} \int \frac{1}{t^2 - 2t(3) + (3)^2 - (3)^2 + 11} dt$$ $$= \frac{1}{6} \int \frac{1}{(t-3)^2 - \frac{16}{3}} dt$$ Put $$t - 3 = u(ii)$$ $$\Rightarrow$$ dt = du $$I = \frac{1}{6} \int \frac{1}{(u)^2 - \left(\frac{4}{\sqrt{3}}\right)^2} du$$ $$I = \frac{1}{6} \times \frac{1}{2 \times \frac{4}{\sqrt{3}}} \log \left| \frac{u - \frac{4}{\sqrt{3}}}{u + \frac{4}{\sqrt{3}}} \right| + c$$ [since, $$\int \frac{1}{x^2 - (a)^2} dx = \frac{1}{2 \times a} \log \left| \frac{x - a}{x + a} \right| + c$$] $$I = \frac{\sqrt{3}}{48} log \left| \frac{t - 3 - \frac{4}{\sqrt{3}}}{t - 3 + \frac{4}{\sqrt{2}}} \right| + c \text{ [using (ii)]}$$ $$I = \frac{\sqrt{3}}{48} log \left| \frac{x^2 - 3 - \frac{4}{\sqrt{3}}}{x^2 - 3 + \frac{4}{\sqrt{5}}} \right| + c \text{ [using (i)]}$$ Evaluate the following integrals: $$\int \frac{e^x}{\left(1+e^x\right)\left(2+e^x\right)} \, \mathrm{d}x$$ #### Answei To evaluate the following integral following steps: Let $$e^x = t \dots (i)$$ $$\Rightarrow e^x dx = dt$$ Now $$\int \frac{e^{x}}{(1+e^{x})(2+e^{x})} dx = \int \frac{1}{(1+t)(2+t)} dt$$ $$=\int \frac{1}{(1+t)} dt - \int \frac{1}{(2+t)} dt$$ $$= \log |(1+t)| - \log |(2+t)| + c$$ $$= log \left| \frac{1+t}{2+t} \right| + c \ [log \ m - log \ n = log \frac{m}{n}]$$ $$=\log\left|\frac{1+e^{x}}{2+e^{x}}\right|+c$$ [using(i)] Evaluate the following integrals: $$\int \frac{1}{\cos x + \cos \cot x} dx$$ #### **Answer** $$let I = \frac{1}{\cos x + \csc x} dx$$ Multiply and divide by sinx $$I = \frac{\frac{1}{\sin x}}{\frac{\cos x}{\sin x} + \frac{\csc x}{\sin x}} dx$$ $$= \frac{\csc x}{\cot x + \csc^2 x} dx$$ $$= \frac{\csc x}{\cot x + \cot^2 x} dx$$ $$= \frac{\operatorname{cosec} x}{\cot^2 x + \cot x + 1} \, \mathrm{d} x$$ Let $$\cot x = t$$ $$-cosec x dx = dt$$ So, $$I = -\int \frac{dt}{t^2+t+1}$$ $$= \int \frac{dt}{t^2 + 2t \cdot \frac{1}{2} + \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 + 1}$$ $$=\int\frac{dt}{\left(t+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}$$ $$= \frac{1}{\frac{\sqrt{3}}{2}} \tan^{-1} \frac{t + \frac{1}{2}}{\frac{\sqrt{3}}{2}} + c$$ $$= \frac{2}{\sqrt{3}} tan^{-1} \frac{2t+1}{\sqrt{3}} + c$$ $$= \frac{2}{\sqrt{3}} \tan^{-1} \frac{2 \cot x + 1}{\sqrt{3}} + c$$ ## Exercise 19.17 ### 1. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{2x-y^2}} dx$$ $$\begin{aligned} & \text{let I} = \int \frac{1}{\sqrt{2x - x^2}} dx \\ &= \int \frac{1}{\sqrt{-(x^2 - 2x)}} dx \\ &= \int \frac{1}{\sqrt{-[x^2 - 2x(1) + 1^2 - 1^2]}} dx \\ &= \int \frac{1}{\sqrt{-[(x - 1)^2 - 1]}} dx \\ &= \int \frac{1}{\sqrt{1 - (x - 1)^2}} dx \end{aligned}$$ let (x-1)=t dx=dt so, $$I = \int \frac{1}{\sqrt{1-t^2}} dt$$ $$= \sin^{-1} t + c \left[\text{since } \int \frac{1}{\sqrt{1 - x^2}} dx = \sin^{-1} x + c \right]$$ $$I = \sin^{-1}(x-1) + c$$ ## 2. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{8+3x-x^2}} dx$$ ### **Answer** 8+3x-x2 can be written as 8- $$\left(x^2-3x+\frac{9}{4}-\frac{9}{4}\right)$$ Therefore $$\begin{split} 8 - \left(x^2 - 3x + \frac{9}{4} - \frac{9}{4}\right) \\ &= \frac{41}{4} - \left(x - \frac{3}{2}\right)^2 \\ &\int \frac{1}{\sqrt{8 + 3x - x^2}} dx = \int \frac{1}{\sqrt{\frac{41}{4} - \left(x - \frac{3}{2}\right)^2}} dx \end{split}$$ Let x-3/2=t dx=dt $$\int \frac{1}{\sqrt{\frac{41}{4} - \left(x - \frac{3}{2}\right)^2}} dx = \int \frac{1}{\sqrt{\left(\frac{\sqrt{41}}{2}\right)^2 - t^2}} dt$$ $$= \sin^{-1}\left(\frac{t}{\frac{\sqrt{41}}{2}}\right) + c$$ $$\begin{split} &[since \ \int \frac{1}{\sqrt{a^2 - x^2}} dx = sin^{-1} \left(\frac{x}{a}\right) + c] \\ &= sin^{-1} \left(\frac{x - \frac{3}{2}}{\frac{\sqrt{41}}{2}}\right) + c \\ &= sin^{-1} \left(\frac{2x - 3}{\sqrt{41}}\right) + c \end{split}$$ Evaluate the following integrals: $$\int \frac{1}{\sqrt{5-4x-2x^2}} dx$$ ### **Answer** Let $$I = \int \frac{1}{\sqrt{5-4x-2x^2}} dx$$ $$= \int \frac{1}{\sqrt{-2\left[x^2 + 2x - \frac{5}{2}\right]}} dx$$ $$= \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{-\left[x^2 + 2x + (1)^2 - (1)^2 - \frac{5}{2}\right]}} dx$$ $$= \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{-\left[(x+1)^2 - \frac{7}{2}\right]}} dx$$ $$= \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\frac{7}{2} - (x+1)^2}} dx$$ Let $$(x + 1) = t$$ Differentiating both sides, we get, $$dx = dt$$ So, $$I = \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\left(\sqrt{\frac{2}{2}}\right)^2 - t^2}} dt$$ $$= \frac{1}{\sqrt{2}} \sin^{-1} \left(\frac{t}{\sqrt{\frac{7}{2}}}\right) + c$$ [since $$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c$$] $$I = \frac{1}{\sqrt{2}}\sin^{-1}\left(\sqrt{\frac{2}{7}} \times (x+1)\right) + c$$ # 4. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{3x^2 + 5x + 7}} dx$$ #### **Answer** $$\begin{aligned} & | \text{et I} = \int \frac{1}{\sqrt{3}x^2 + 5x + 7} dx \\ &= \frac{1}{\sqrt{3}} \int \frac{1}{\sqrt{x^2 + \frac{5}{3}x + \frac{7}{3}}} dx \\ &= \frac{1}{\sqrt{3}} \int \frac{1}{\sqrt{x^2 + 2x\left(\frac{5}{6}\right) + \left(\frac{5}{6}\right)^2 - \left(\frac{5}{6}\right)^2 + \frac{7}{3}}} dx \\ &= \frac{1}{\sqrt{3}} \int \frac{1}{\sqrt{\left(x + \frac{5}{6}\right)^2 - \frac{59}{36}}} dx \\ & | \text{let } \left(x + \frac{5}{6}\right) = t \end{aligned}$$ $$dx=dt$$ $$I=\frac{1}{\sqrt{3}}\int\frac{1}{\sqrt{t^2-\left(\frac{\sqrt{59}}{6}\right)^2}}dt$$ $$= \frac{1}{\sqrt{3}} \log \left| t + \sqrt{t^2 - \left(\frac{\sqrt{59}}{6}\right)} \right| + c \left[\text{since } \int \frac{1}{\sqrt{x^2 - a^2}} dx = \log \left| x + \sqrt{x^2 - a^2} \right| + c \right]$$ $$I = \frac{1}{\sqrt{3}} \log \left| x + \frac{5}{6} + \sqrt{\left(x + \frac{5}{6} \right)^2 - \left(\frac{\sqrt{59}}{6} \right)^2} \right| + c$$ $$I = \frac{1}{\sqrt{3}} \log \left| x + \frac{5}{6} + \sqrt{x^2 + \frac{5x}{3} + \frac{7}{3}} \right| + c$$ ## 5. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{(x-\alpha)(\beta-x)}} dx, (\beta > \alpha)$$ let $$I=\int \frac{1}{\sqrt{(x-\alpha)(\beta-x)}} dx$$, (as $\beta>\alpha)$ $$= \int \frac{1}{\sqrt{-x^2 - x(\alpha + \beta) - \alpha\beta}} dx$$ $$= \int \frac{1}{\sqrt{-\left[x^2 - 2x\left(\frac{\alpha+\beta}{2}\right) + \left(\frac{\alpha+\beta}{2}\right)^2 - \left(\frac{\alpha+\beta}{2}\right)^2 + \alpha\beta\right]}} dx$$ $$\begin{split} &= \int \frac{1}{\sqrt{-\left[\left(x-\frac{\alpha+\beta}{2}\right)^2-\left(\frac{\alpha+\beta}{2}\right)^2\right]}} dx \\ &= \int \frac{1}{\sqrt{\left[\left(\frac{\beta-\alpha}{2}\right)^2-\left(x-\frac{\alpha+\beta}{2}\right)^2\right]}} dx \\ &[\beta > \alpha] \end{split}$$ Let $$(x-(\alpha+\beta)/2)=t$$ dx=dt $$I = \int \frac{1}{\sqrt{\left(\frac{\beta - \alpha}{2}\right)^2 - t^2}} dt$$ $$= \sin^{-1}\left(\frac{t}{\frac{\beta - \alpha}{2}}\right) + c$$ $$I = \sin^{-1}\left(2\frac{x - \frac{\alpha + \beta}{2}}{\beta - \alpha}\right) + c$$ $$I = \sin^{-1}\left(\frac{2x - \alpha - \beta}{\beta - \alpha}\right)$$ ### 6. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{7-3x-2x^2}} dx$$ ### **Answer** $$\begin{split} & | \text{let I} = \int \frac{1}{\sqrt{7 - 3x - 2x^2}} dx \\ &= \int \frac{1}{\sqrt{-2} \left[x^2 + \frac{3}{2}x - \frac{7}{2} \right]} dx \\ &= \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{-\left[x^2 + 2x \left(\frac{3}{4} \right) + \left(\frac{3}{4} \right)^2 - \left(\frac{3}{4} \right)^2 - \frac{7}{2} \right]}} dx \\ &= \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{-\left[\left(x - \frac{3}{4} \right)^2 - \frac{65}{16} \right]}} dx \end{split}$$ $$let \left(x + \frac{3}{4} \right) = t$$ $=\frac{1}{\sqrt{2}}\int \frac{1}{\left[\left(\frac{\sqrt{65}}{4}\right)^2 - \left(x + \frac{3}{4}\right)^2\right]} dx$ dx=dt $$I = \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\left(\frac{\sqrt{65}}{4}\right)^2 - (t)^2}} dt$$ $$=\frac{1}{\sqrt{2}}\sin^{-1}\left(\frac{t}{\frac{\sqrt{65}}{4}}\right)+c$$ $$I = \frac{1}{\sqrt{2}} \sin^{-1} \left(\frac{4\left(x + \frac{3}{4}\right)}{\sqrt{65}} \right) + c$$ $$I = \frac{1}{\sqrt{2}} \sin^{-1} \left(\frac{4x + 3}{\sqrt{65}} \right) + c$$ # 7. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{16-6x-x^2}} dx$$ ## **Answer** $$\begin{aligned} & | \text{let I} = \int \frac{1}{\sqrt{16 - 6x - x^2}} dx \\ &= \int \frac{1}{\sqrt{-[x^2 + 6x - 16]}} dx \\ &= \int \frac{1}{\sqrt{-[x^2 + 2x(3) + (3)^2 - (3)^2 - 16]}} dx \\ &= \int \frac{1}{\sqrt{-[(x - 3)^2 - 25]}} dx \\ &= \int \frac{1}{\sqrt{25 - (x + 3)^2}} dx \end{aligned}$$ $$let(x+3) = t$$ dx=dt $$\begin{split} I &= \int \frac{1}{\sqrt{5^2 - t^2}} dt \\ &= \sin^{-1} \left(\frac{t}{5}\right) + c \\ I &= \sin^{-1} \left(\frac{x + 3}{5}\right) + c \end{split}$$ ## 8. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{7 - 6x - x^2}} dx$$ #### Answer 7-6x- x^2 can be written as 7-(x^2 +6x+9-9) Therefore $$7-(x^2+6x+9-9)$$ $$= 16 - (x^2 + 6x + 9)$$ $$= 16 - (x+3)^2$$ $$=(4)^2-(x+3)^2$$ $$\int \frac{1}{\sqrt{7-6x-x^2}} dx = \int \frac{1}{\sqrt{(4)^2-(x+3)^2}} dx$$ Let $$x+3=t$$ dx=dt $$\int \frac{1}{\sqrt{(4)^2 - (x+3)^2}} dx = \int \frac{1}{\sqrt{(4)^2 - (t)^2}} dt$$ $$=\sin^{-1}\left(\frac{t}{4}\right)+c$$ $$=\sin^{-1}\left(\frac{x+3}{4}\right)+c$$ ## 9. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{5x^2 - 2x}} dx$$ # **Answer** we have $$\int\!\frac{dx}{\sqrt{5x^2-2x}}=\int\!\frac{dx}{\sqrt{5\left(x^2-\frac{2X}{5}\right)}}$$ $$=\frac{1}{\sqrt{5}}\int\frac{dx}{\sqrt{\left(x-\frac{1}{5}\right)^2-\left(\frac{1}{5}\right)^2}}$$ completing the square Put x-1/5=t then dx = dt Therefore $$\int\!\frac{dx}{\sqrt{5x^2-2x}} = \frac{1}{\sqrt{5}}\int\!\frac{dx}{\sqrt{(t)^2-\!\left(\frac{1}{5}\right)^2}}$$ $$=\frac{1}{\sqrt{5}}\log|t+\sqrt{t^2-\left(\frac{1}{5}\right)^2}|+c$$ $$= \frac{1}{\sqrt{5}} \log|x - \frac{1}{5} + \sqrt{x^2 - \frac{2x}{5}}| + c$$ # Exercise 19.18 ## 1. Question Evaluate the following integrals: $$\int\!\frac{x}{\sqrt{x^4+a^4}}\,dx$$ #### **Answer** $$\int \frac{x}{\sqrt{x^4 + a^4}} dx \ = \ \int \frac{x}{\sqrt{(x^2)^2 \, + \, (a^2)^2}} dx$$ Let $$x^2 = t$$,
so $2x dx = dt$ Or, $$x dx = dt/2$$ Hence, $$\int \frac{x}{\sqrt{(x^2)^2 + (a^2)^2}} dx = \int \frac{1}{\sqrt{t^2 + (a^2)^2}} \frac{dt}{2} = \frac{1}{2} \int \frac{1}{\sqrt{t^2 + (a^2)^2}} dt$$ Since, $$\int \frac{1}{\sqrt{(x^2 + a^2)}} dx = \log[x + \sqrt{(x^2 + a^2)} + c]$$ Hence, $$\frac{1}{2} \int \frac{1}{\sqrt{t^2 + (a^2)^2}} dt = \frac{1}{2} \log(t + \sqrt{t^2 + (a^2)^2} + c)$$ Put $$t = x^2$$ $$= \frac{1}{2} \log(x^2 + \sqrt{(x^2)^2 + (a^2)^2} + c$$ $$=\frac{1}{2}\log[x^2+\sqrt{x^4+a^4}]+c$$ ## 2. Question Evaluate the following integrals: $$\int \frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} \, dx$$ ## Answer Let tan x = t Then $dt = sec^2x dx$ Therefore, $$\int \frac{\sec^2 x}{\sqrt{4+\tan^2 x}} dx = \int \frac{dt}{\sqrt{2^2+t^2}}$$ Since, $$\int \frac{1}{\sqrt{(x^2 + a^2)}} dx = \log[x + \sqrt{(x^2 + a^2)} + c]$$ Hence, $$\int \frac{dt}{\sqrt{2^2+t^2}} = log[t + \sqrt{t^2 + 2^2}] + c$$ $$= \log[\tan x + \sqrt{\tan^2 x + 4}] + c$$ ## 3. Question Evaluate the following integrals: $$\int \frac{e^x}{\sqrt{16 - e^{2x}}} dx$$ #### **Answer** Let $$e^{x} = t$$ Then we have, $e^{x} dx = dt$ Therefore, $$\int\!\frac{e^x}{\sqrt{16-e^{2x}}}dx \ = \ \int \frac{dt}{\sqrt{4^2-t^2}}$$ Since we have, $$\int \frac{1}{\sqrt{a^2-x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c$$ Hence, $$\int \frac{dt}{\sqrt{4^2-t^2}} = \sin^{-1}\left(\frac{e^x}{a}\right) + c$$ Evaluate the following integrals: $$\int \frac{\cos x}{\sqrt{4 + \sin^2 x}} \, dx$$ #### **Answer** Let $$sinx = t$$ Then $$dt = \cos x dx$$ Hence, $$\int\!\frac{\cos x}{\sqrt{4+\sin^2 x}}dx=\int\!\frac{dt}{\sqrt{2^2+t^2}}$$ Since we have, $$\int \frac{1}{\sqrt{(x^2 + a^2)}} dx = \log[x + \sqrt{(x^2 + a^2)}] + c$$ Therefore, $$\int \frac{dt}{\sqrt{2^2 + t^2}} = \log[t + \sqrt{t^2 + 2^2}] + c$$ $$= \log[t + \sqrt{t^2 + 2^2}] + c = \log[\sin x + \sqrt{\sin^2 x + 4}] + c$$ ## 5. Question Evaluate the following integrals: $$\int \frac{\sin x}{\sqrt{4\cos^2 x - 1}} dx$$ #### **Answer** Let $2\cos x = t$ Then $dt = -2\sin x dx$ Or, $$\sin x \, dx = -\frac{dt}{2}$$ Therefore, $$\int \frac{\sin x}{\sqrt{4\cos^2 x - 1}} dx = \int -\frac{dt}{2\sqrt{(t^2 - 1^2)}}$$ Since, $$\int \frac{1}{\sqrt{(x^2-a^2)}} dx = \log[x + \sqrt{(x^2-a^2)}] + c$$ Therefore, $$\int -\frac{dt}{2\sqrt{(t^2-1^2)}} = -\frac{1}{2} lod \left[t + \sqrt{t^2-1}\right] + c$$ $$= -\frac{1}{2} \log \left[2 \cos x + \sqrt{4 \cos^2 x - 1} \right] + c$$ ## 6. Question Evaluate the following integrals: $$\int \frac{x}{\sqrt{4-x^4}} dx$$ Let $$x^2 = t$$ 2x dx = dt or x dx = dt/2 Hence, $$\int \frac{x}{\sqrt{4-x^4}} = \int \frac{dt}{2\left(\sqrt{2^2-t^2}\right)}$$ Since we have, $$\int \frac{1}{\sqrt{a^2-x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c$$ So, $$\int \frac{dt}{2\left(\sqrt{2^2-t^2}\right)} = \frac{1}{2} \sin^{-1}\left(\frac{t}{2}\right) + c$$ Put $$t = x^2$$ $$=\frac{1}{2}\sin^{-1}\left(\frac{t}{2}\right) + c = \frac{1}{2}\sin^{-1}\left(\frac{x^2}{2}\right) + c$$ ## 7. Question Evaluate the following integrals: $$\int \frac{1}{x\sqrt{4-9(\log x)^2}} dx$$ ### **Answer** Put $3\log x = t$ We have d(logx) = 1/x Hence, $d(3\log x) = dt = 3/x dx$ Or $$1/x dx = dt/3$$ Hence, $$\int \frac{1}{x\sqrt{4-9(\log x)^2}} dx = \int \frac{1}{3} \frac{dt}{\sqrt{2^2-t^2}}$$ Since we have, $$\int \frac{1}{\sqrt{a^2-x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c$$ Hence, $$\int \frac{1}{3} \frac{dt}{\sqrt{2^2 - t^2}} = \frac{1}{3} \sin^{-1} \left(\frac{t}{2}\right) + c$$ Put $t = 3 \log x$ $$=\frac{1}{3}\sin^{-1}\left(\frac{t}{2}\right) + c = \frac{1}{3}\sin^{-1}\left(\frac{3\log x}{2}\right) + c$$ ## 8. Question Evaluate the following integrals: $$\int \frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} \, dx$$ ### **Answer** Let $$t = \sin^2 4x$$ $$dt = 2\sin 4x \cos 4x \times 4 dx$$ we know sin2x = 2sins2xcos2x therefore, $dt = 4 \sin 8x dx$ or, $\sin 8x \, dx = dt/4$ $$\int \frac{\sin 8x}{\sqrt{9 + \sin^4 x}} dx = \frac{1}{4} \int \frac{dt}{\sqrt{3^2 + t^2}}$$ Since we have, $$\int \frac{1}{\sqrt{(x^2 + a^2)}} dx = \log[x + \sqrt{(x^2 + a^2)}] + c$$ $$= \frac{1}{4} \int \frac{dt}{\sqrt{3^2 + t^2}} = \frac{1}{4} \log[t + \sqrt{t^2 + 3^2} + c]$$ $$= \frac{1}{4} \log[\sin^2 4x + \sqrt{9 + \sin^4 4x} + c]$$ Evaluate the following integrals: $$\int \frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx$$ ### **Answer** Let = sin2x $dt = 2\cos 2x dx$ Cos2x dx = dt/2 $$\int \frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx = \frac{1}{2} \int dt / \sqrt{(t^2 + (2\sqrt{2})^2)}$$ Since we have, $\int \frac{1}{\sqrt{(x^2 + a^2)}} dx = \log[x + \sqrt{(x^2 + a^2)}] + c$ $$= \frac{1}{2} \int dt / \sqrt{(t^2 + (2\sqrt{2})^2)} = \frac{1}{2} log[t + \sqrt{t^2 + 8}] + c$$ $$= \frac{1}{2} \log \left[t + \sqrt{t^2 + 8} \right] + c = \frac{1}{2} \log \left[\sin 2x + \sqrt{\sin^2 2x + 8} \right] + c$$ ### 10. Question Evaluate the following integrals: $$\int \frac{\sin 2x}{\sqrt{\sin^4 x + 4\sin^2 x - 2}} dx$$ ### **Answer** Let $t = \sin^2 x$ $dt = 2\sin x \cos x dx$ we know $\sin 2x = 2\sin 2x \cos 2x$ therefore, $dt = \sin 2x dx$ $$\int \frac{\sin 2x}{\sqrt{\sin^4 x + 4\sin^2 x - 2}} dx \ = \int \frac{dt}{\sqrt{t^2 \, + \, 4t - 2}} \label{eq:delta}$$ Add and subtract 2² in denominator $$= \int \frac{dt}{\sqrt{t^2 + 4t - 2}} = \int \frac{dt}{\sqrt{t^2 + 2 \times 2t + 2^2 - 2^2 - 2}}$$ Let t + 2 = u dt = du $$= \int dt/\sqrt{((t+2)^2-6)} = \int dt/\sqrt{(u^2-6)}$$ Since, $$\int \frac{1}{\sqrt{(x^2-a^2)}} dx = \log[x + \sqrt{(x^2-a^2)}] + c$$ $$= \int dt/\sqrt{(u^2-6)} = \log[u + \sqrt{u^2-6} + c$$ $$= \log[t + 2 + \sqrt{(t+2)^2-6} + c$$ $$= \log[t + 2 + \sqrt{(t+2)^2-6} + c = \log[\sin^2 x + 2 + \sqrt{(\sin^2 x + 2)^2-6} + c$$ Evaluate the following integrals: $$\int \frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx$$ #### **Answer** Let $$t = \cos^2 x$$ $$dt = 2\cos x \sin x dx = -\sin 2x dx$$ therefore, $$\int \frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx \ = \ \int -\frac{dt}{\sqrt{t^2 - (1 - t^2) + 2}}$$ since, [$$\sin^2 x = 1 - \cos^2 x$$] $$\int -\frac{dt}{\sqrt{t^2-(1-t^2)+2}} \ = \ \int -\frac{dt}{\sqrt{t^2+t+1}} \ = \ \int -\frac{dt}{\sqrt{t^2+t+\frac{1}{4}+\frac{2}{4}}}$$ $$= \int -\frac{dt}{\sqrt{(t+\frac{1}{2})^2 + \frac{3}{4}}}$$ Since, $$\int \frac{1}{\sqrt{(x^2-a^2)}} dx = \log[x + \sqrt{(x^2-a^2)}] + c$$ $$= \int -\frac{dt}{\sqrt{(t+\frac{1}{2})^2 + \frac{3}{4}}} = \log[t+\frac{1}{2} + \sqrt{(t+\frac{1}{2})^2 - (\frac{\sqrt{3}}{2})^2} + c$$ $$= \log[t + \frac{1}{2} + \sqrt{t^2 + t + 1} + c = \log[\cos^2 x + \frac{1}{2} + \sqrt{\cos^4 x + \cos^2 x + 1} + c]$$ # 12. Question Evaluate the following integrals: $$\int \frac{\cos x}{\sqrt{4-\sin^2 x}} dx$$ Let $$sinx = t$$ $$dt = cosxdx$$ therefore, $$\int\!\frac{\cos x}{\sqrt{4-\sin^2 x}}dx = \int\!\frac{dt}{\sqrt{2^2-t^2}}$$ Since we have, $$\int \frac{1}{\sqrt{a^2-x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c$$ $$=\int \frac{dt}{\sqrt{2^2-t^2}} = \sin^{-1}\left(\frac{t}{2}\right) + c = \sin^{-1}\left(\frac{\sin x}{2}\right) + c$$ Evaluate the following integrals: $$\int \frac{1}{x^{\frac{2}{3}}\sqrt{x^{\frac{2}{3}}-4}} dx$$ ## **Answer** Let $$x^{\frac{1}{3}} = t$$ So, $$dt = 1/3 x^{\frac{1}{3}-1} dx$$ $$= dt = \frac{1}{3}x^{\frac{1}{3}-1}dx = \frac{1}{3}x^{-\frac{2}{3}}$$ Or, $$\frac{dx}{\frac{2}{x^2}} = 3 dt$$ $$\int \frac{1}{\frac{2}{x^{2}} \sqrt{\frac{2}{x^{2}-4}}} dx = 3 \int \frac{dt}{\sqrt{t^{2}-2^{2}}}$$ Since, $$\int \frac{1}{\sqrt{(x^2-a^2)}} dx = \log[x + \sqrt{(x^2-a^2)}] + c$$ $$=3\int \frac{dt}{\sqrt{t^2-2^2}} = 3 \log[t + \sqrt{t^2-4}] + c$$ $$= 3 \log \left[x^{\frac{1}{3}} + \sqrt{(x^{\frac{1}{3}})^2 - 4} \right] + c = 3 \log \left[x^{\frac{1}{3}} + \sqrt{x^{\frac{2}{3}} - 4} \right] + c$$ ## 14. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{(1-x^2)\left\{9+\left(\sin^{-1}x\right)^2\right\}}} \, dx$$ ### **Answer** Let $$\sin^{-1}x = t$$ $$dt = \frac{1}{\sqrt{1-x^2}} dx$$ Therefore, $$\int \frac{1}{\sqrt{(1-x^2)(9+(\sin^{-1}x)^2)}} dx = \int \frac{1}{\sqrt{3^2-t^2}} dt$$ Since we have, $$\int \frac{1}{\sqrt{(x^2 + a^2)}} dx = \log[x + \sqrt{(x^2 + a^2)}] + c$$ $$= \int \frac{1}{\sqrt{3^2 - t^2}} dt = \log[t + \sqrt{9 + t^2}] + c$$ $$= \log[t + \sqrt{9 + t^2}] + c = \log[\sin^{-1}x + \sqrt{9 + (\sin^{-1}x)^2}] + c$$ ## 15. Question Evaluate the following integrals: $$\int \frac{\cos x}{\sqrt{\sin^2 x - 2\sin x - 3}} dx$$ ### **Answer** Let sinx = t Cosx dx = dt $$\textstyle \int \frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx \; = \; \int \frac{dt}{\sqrt{t^2 - 2t - 3}}$$ Add and subtract 12 in denominator $$= \int \frac{dt}{\sqrt{t^2 - 2t - 3}} \ = \int \frac{dt}{\sqrt{t^2 - 2t + \, 1^2 - 1^2 - 3}} \ = \int \frac{dt}{\sqrt{((t - 1)^2 - 2^2)}}$$ Let t - 1 = u dt = du $$= \int \frac{dt}{\sqrt{((t-1)^2 - 2^2)}} \ = \ \int \frac{dt}{\sqrt{(u^2 - 2^2)}}$$ Since, $$\int \frac{1}{\sqrt{(x^2-a^2)}} dx = log[x + \sqrt{(x^2-a^2)}] + c$$ $$= \int \frac{dt}{\sqrt{(u^2 - 2^2)}} = \log \left[u + \sqrt{u^2 - 4} \right] + c$$ Put u = t - 1 $$= \log \left[t - 1 + \sqrt{(t-1)^2 - 4} \right] + c$$ Put t = sinx $$= \log \left[t - 1 + \sqrt{(t-1)^2 - 4} \right] + c$$ $$= \log \left[\sin x - 1 + \sqrt{(\sin x - 1)^2 - 4} \right] + c$$ $$= \log[\sin x - 1 + \sqrt{\sin^2 x - 2\sin x - 3}] + c$$ ## 16. Question Evaluate the following integrals: $$\int \sqrt{\cos \operatorname{ec} x - 1} \, \mathrm{d} x$$ #### **Answer** $$\int \sqrt{\operatorname{cosec} x - 1} dx$$ Since cosec $x = 1/\sin x$ $$\int \sqrt{ \text{cosec } x - 1} dx \ = \ \int \sqrt{\frac{1}{\text{sinx}} - 1} \ dx \ = \ \int \sqrt{\frac{1 - \text{sinx}}{\text{sinx}}} \ dx$$ Multiply with $(1 + \sin x)$ both numerator and denominator $$= \int \sqrt{\frac{1-\sin x}{\sin x}} \, dx = \int \sqrt{\frac{1-\sin x * (1+\sin x)}{\sin x * (1+\sin x)}} \, dx$$ Since $$(a + b) \times (a - b) = a^2 - b^2$$, $$= \int \sqrt{\frac{1 - \sin x \times (1 + \sin x)}{\sin x \times (1 + \sin x)}} \, dx = \int \sqrt{\frac{1 - \sin^2 x}{\sin x + \sin^2 x}} \, dx$$ $$= \int \sqrt{\frac{\cos^2 x}{\sin x + \sin^2 x}} \, dx$$ $$= \int \frac{\cos x}{\sqrt{\sin x + \sin^2 x}} \, dx$$ Let sinx = t $dt = \cos x dx$ therefore,
$$\int\!\frac{\cos\!x}{\sqrt{\sin\!x+\sin^2\!x}}\,dx\ =\ \int\!\frac{dt}{\sqrt{t^2-t}}$$ multiply and divide by 2 and add and subtract $(1/2)^2$ in denominator, $$=\int \frac{dt}{\sqrt{t^2-2t\big(\frac{1}{2}\big)+\big(\frac{1}{2}\big)^2-\big(\frac{1}{2}\big)^2}}=\frac{\int dt}{\sqrt{\big(t+\frac{1}{2}\big)^2-\big(\frac{1}{2}\big)^2}}$$ Let t + 1/2 = u dt = du $$=\frac{\int dt}{\sqrt{\left(t+\frac{1}{2}\right)^2}-\left(\frac{1}{2}\right)^2)}\,=\,\int\frac{dt}{\sqrt{\left(u^2-\left(\frac{1}{2}\right)^2}}$$ Since, $$\int \frac{1}{\sqrt{(x^2-a^2)}} dx = \log[x + \sqrt{(x^2-a^2)}] + c$$ $$= \int \frac{dt}{\sqrt{\left(u^2 - \left(\frac{1}{2}\right)^2}} = \log\left[u + \sqrt{\left(\left(u^2 - \left(\frac{1}{2}\right)^2\right)\right]} + c$$ = log[t + $$\frac{1}{2}$$ + $\sqrt{\left(\left(t + \frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2\right)}$ + c $$= \log[\sin x + \frac{1}{2} + \sqrt{\sin^2 x + \sin x}] + c$$ ### 17. Question Evaluate the following integrals: $$\int \frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx$$ ### **Answer** $$\int \frac{\sin x - \cos x}{\sqrt{\sin 2 x}} dx = \int (\sin x - \cos x) / \sqrt{((\sin x + \cos x)^2 - 1)} dx$$ Let sinx + cosx = t $$(Cosx - sinx) = dt$$ Therefore, $$\int \frac{\sin x - \cos x}{\sqrt{(\sin x + \cos x)^2 - 1}} \, dx \, = \, \int -\frac{dt}{\sqrt{t^2 - 1}}$$ Since, $$\int \frac{1}{\sqrt{(x^2-a^2)}} dx = \log[x + \sqrt{(x^2-a^2)}] + c$$ $$= \int -\frac{dt}{\sqrt{t^2-1}} = -\log[t + \sqrt{t^2-1}] + c$$ $$= -\log[t + \sqrt{t^2-1}] + c = -\log[\sin x + \cos x + \sqrt{\sin 2x}] + c$$ Evaluate the following integrals: $$\int \frac{\cos x - \sin x}{\sqrt{8 - \sin 2x}} dx$$ #### **Answer** $$= \int \frac{\cos x - \sin x}{\sqrt{8 - \sin 2x}} dx = \int \frac{\sin x - \cos x}{\sqrt{8 - (\sin x + \cos x)^2 + 1}} dx$$ Let sinx + cosx = t $$(Cosx - sinx) = dt$$ Therefore, $$\int \frac{\sin x - \cos x}{\sqrt{8 - (\sin x + \cos x)^2 + 1}} dx = \int \frac{dt}{\sqrt{9 - t^2}}$$ Since we have, $$\int \frac{1}{\sqrt{a^2-x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c$$ $$= \int \frac{dt}{\sqrt{9-t^2}} \ = \int \frac{dt}{\sqrt{3^2-t^2}} \ = \ sin^{-1} \left(\frac{t}{3}\right) \, + \, c$$ $$= \sin^{-1}\left(\frac{\sin x + \cos x}{3}\right) + c = \sin^{-1}\left(\frac{\sin x}{3} + \frac{\cos x}{3}\right) + c = \sin^{-1}\left(\frac{\sin x}{3}\right) + \sin^{-1}\left(\frac{\cos x}{3}\right) + c$$ $$=\frac{x}{3} + \sin^{-1}\left(\frac{\sin x}{3}\right) + c$$ ## Exercise 19.19 ### 1. Question Evaluate the integral: $$\int \frac{x}{x^2 + 3x + 2} dx$$ ### Answer $$I = \int \frac{x}{x^2 + 3x + 2} dx$$ As we can see that there is a term of x in numerator and derivative of x^2 is also 2x. So there is a chance that we can make substitution for $x^2 + 3x + 2$ and I can be reduced to a fundamental integration. As, $$\frac{d}{dx}(x^2 + 3x + 2) = 2x + 3$$ ∴ Let, $$x = A(2x + 3) + B$$ $$\Rightarrow$$ x = 2Ax + 3A + B On comparing both sides - We have, $$2A = 1 \Rightarrow A = 1/2$$ $$3A + B = 0 \Rightarrow B = -3A = -3/2$$ Hence. $$I = \int \frac{\frac{1}{2}(2x+3) - \frac{3}{2}}{x^2 + 3x + 2} dx$$ $$\therefore I = \frac{1}{2} \int \frac{2x+3}{x^2+3x+2} dx - \frac{3}{2} \int \frac{1}{x^2+3x+2} dx$$ Let, $$I_1 = \frac{1}{2} \int \frac{2x+3}{x^2+3x+2} dx$$ and $I_2 = \frac{3}{2} \int \frac{1}{x^2+3x+2} dx$ Now, $$I = I_1 - I_2 eqn 1$$ We will solve I_1 and I_2 individually. As, $$I_1 = \frac{1}{2} \int \frac{2x+3}{x^2+3x+2} dx$$ Let $$u = x^2 + 3x + 2 \Rightarrow du = (2x + 3)dx$$ $$\therefore I_1 \text{ reduces to } \frac{1}{2} \int \frac{du}{u}$$ Hence, $$I_1 = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \log|u| + C \{ : \int \frac{dx}{x} = \log|x| + C \}$$ On substituting value of u, we have: $$I_1 = \frac{1}{2}\log|x^2 + 3x + 2| + C \dots \text{eqn } 2$$ As, $I_2 = \frac{3}{2} \int \frac{1}{x^2 + 3x + 2} dx$ and we don't have any derivative of function present in denominator. \therefore we will use some special integrals to solve the problem. As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$ Now we have to reduce I₂ such that it matches with any of above two forms. We will make to create a complete square so that no individual term of x is seen in denominator. $$\therefore I_2 = \frac{3}{2} \int \frac{1}{x^2 + 3x + 2} dx$$ $$\Rightarrow I_2 = \frac{3}{2} \int \frac{1}{\left\{x^2 + 2\left(\frac{3}{2}\right)x + \left(\frac{3}{2}\right)^2\right\} + 2 - \left(\frac{3}{2}\right)^2} dx$$ Using: $$a^2 + 2ab + b^2 = (a + b)^2$$ We have: $$I_2 = \frac{3}{2} \int \frac{1}{\left(x + \frac{3}{2}\right)^2 - \left(\frac{1}{2}\right)^2} dx$$ $$I_2$$ matches with $\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$ $$\therefore I_2 = \frac{3}{2} \left\{ \frac{1}{2 \binom{1}{2}} log \left| \frac{(x + \frac{3}{2}) - \frac{1}{2}}{(x + \frac{3}{2}) + \frac{1}{2}} \right| + C \right\}$$ $$\Rightarrow I_2 = \frac{3}{2} \log \left| \frac{2x+3-1}{2x+3+1} \right| + C$$ $$\Rightarrow I_2 = \frac{3}{2} \log \left| \frac{2x+2}{2x+4} \right| + C = \frac{3}{2} \log \left| \frac{x+1}{x+2} \right| + C \dots \text{eqn } 3$$ From eqn 1: $$I = I_1 - I_2$$ Using eqn 2 and eqn 3: $$I = \frac{1}{2}\log|x^2 + 3x + 2| + \frac{3}{2}\log\left|\frac{x+1}{x+2}\right| + C$$ ## 2. Question Evaluate the integral: $$\int \frac{x+1}{x^2+x+3} dx$$ ### **Answer** $$I = \int \frac{x+1}{x^2 + x + 3} dx$$ As we can see that there is a term of x in numerator and derivative of x^2 is also 2x. So there is a chance that we can make substitution for $x^2 + x + 3$ and I can be reduced to a fundamental integration. As, $$\frac{d}{dx}(x^2 + x + 1) = 2x + 1$$ $$\therefore$$ Let, $x = A(2x + 1) + B$ $$\Rightarrow$$ x = 2Ax + A + B On comparing both sides - We have, $$2A = 1 \Rightarrow A = 1/2$$ $$A + B = 0 \Rightarrow B = -A = -1/2$$ Hence, $$I = \int \frac{\frac{1}{2}(2x+1) - \frac{1}{2}}{x^2 + x + 3} dx$$ $$\therefore I = \frac{1}{2} \int \frac{2x+1}{x^2+x+3} dx - \frac{1}{2} \int \frac{1}{x^2+x+3} dx$$ Let, $$I_1 = \frac{1}{2} \int \frac{2x+1}{x^2+x+3} dx$$ and $I_2 = \frac{1}{2} \int \frac{1}{x^2+x+3} dx$ Now, $$I = I_1 - I_2 eqn 1$$ We will solve I_1 and I_2 individually. As $$I_1 = \frac{1}{2} \int \frac{2x+1}{x^2+x+3} dx$$ Let $$u = x^2 + x + 3 \Rightarrow du = (2x + 1)dx$$ $$\therefore I_1 \text{ reduces to } \frac{1}{2} \int \frac{du}{u}$$ Hence, $$I_1 = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \log|u| + C \{ : \int \frac{dx}{x} = \log|x| + C \}$$ On substituting the value of u, we have: $$I_1 = \frac{1}{2} \log |x^2 + x + 3| + C \dots \text{ eqn } 2$$ As, $I_2 = \frac{1}{2} \int \frac{1}{x^2 + x + 3} dx$ and we don't have any derivative of function present in denominator. \therefore we will use some special integrals to solve the problem. As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$ Now we have to reduce I₂ such that it matches with any of above two forms. We will make to create a complete square so that no individual term of x is seen in denominator. $$\therefore I_2 = \frac{1}{2} \int \frac{1}{v^2 + v + 2} dx$$ $$\Rightarrow I_2 = \frac{1}{2} \int \frac{1}{\{x^2 + 2(\frac{1}{2})x + (\frac{1}{2})^2\} + 3 - (\frac{1}{2})^2} dx$$ Using: $$a^2 + 2ab + b^2 = (a + b)^2$$ We have: $$I_2 = \frac{1}{2} \int \frac{1}{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{11}}{2}\right)^2} dx$$ I_2 matches with $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$ $$\therefore I_2 = \frac{1}{2} \left\{ \frac{1}{\left(\frac{\sqrt{11}}{2}\right)} \tan^{-1} \left(\frac{x + \frac{1}{2}}{\sqrt{\frac{11}{2}}}\right) + C \right\}$$ $$\Rightarrow I_2 = \frac{1}{\sqrt{11}} \tan^{-1} \left(\frac{2x+1}{\sqrt{11}} \right) + C \dots eqn 3$$ From eqn 1: $$I = I_1 - I_2$$ Using eqn 2 and eqn 3: $$I = \frac{1}{2} \log |x^2 + x + 3| + \frac{1}{\sqrt{11}} \tan^{-1} \left(\frac{2x+1}{\sqrt{11}} \right) + C$$ ## 3. Question Evaluate the integral: $$\int \frac{x-3}{x^2+2x-4} dx$$ #### Answer $$I = \int \frac{x-3}{x^2 + 2x - 4} dx$$ As we can see that there is a term of x in numerator and derivative of x^2 is also 2x. So there is a chance that we can make substitution for $x^2 + 2x - 4$ and I can be reduced to a fundamental integration. As, $$\frac{d}{dx}(x^2 + 2x - 4) = 2x + 2$$ $$\therefore$$ Let, x - 3 = A(2x + 2) + B $$\Rightarrow$$ x - 3 = 2Ax + 2A + B On comparing both sides - We have, $$2A = 1 \Rightarrow A = 1/2$$ $$2A + B = -3 \Rightarrow B = -3 - 2A = -4$$ Hence. $$I = \int \frac{\frac{1}{2}(2x+2)-4}{x^2+2x-4} dx$$ $$\therefore I = \frac{1}{2} \int \frac{2x+2}{x^2+2x-4} dx - 4 \int \frac{1}{x^2+2x-4} dx$$ Let, $$I_1 = \frac{1}{2} \int \frac{2x+2}{x^2+2x-4} dx$$ and $I_2 = \int \frac{1}{x^2+2x-4} dx$ Now, $$I = I_1 - 4I_2 \dots eqn 1$$ We will solve I_1 and I_2 individually. As, $$I_1 = \frac{1}{2} \int \frac{2x+2}{x^2+2x-4} dx$$ Let $$u = x^2 + 2x - 4 \Rightarrow du = (2x + 2)dx$$ $$\therefore I_1 \text{ reduces to } \frac{1}{2} \int \frac{du}{u}$$ Hence, $$I_1 = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \log|u| + C \{ : \int \frac{dx}{x} = \log|x| + C \}$$ On substituting value of u, we have: $$I_1 = \frac{1}{2} \log |x^2 + 2x - 4| + C \dots \text{ eqn } 2$$ As, $I_2 = \int \frac{1}{x^2 + 2x - 4} dx$ and we don't have any derivative of function present in denominator. \therefore we will use some special integrals to solve the problem. As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a}
\tan^{-1} \left(\frac{x}{a} \right) + C$ Now we have to reduce I₂ such that it matches with any of above two forms. We will make to create a complete square so that no individual term of x is seen in denominator. $$\therefore I_2 = \int \frac{1}{x^2 + 2x - 4} dx$$ $$\Rightarrow I_2 = \int \frac{1}{\{x^2 + 2(1)x + (1)^2\} - 4 - (1)^2} dx$$ Using: $$a^2 + 2ab + b^2 = (a + b)^2$$ We have: $$I_2 = \int \frac{1}{(x+1)^2 - (\sqrt{5})^2} dx$$ $$I_2$$ matches with $\int \frac{1}{x^2-a^2} dx = \frac{1}{2a} \log \left| \frac{x-a}{x+a} \right| + C$ $$I_2 = \frac{1}{2\sqrt{5}} \log \left| \frac{x+1-\sqrt{5}}{x+1+\sqrt{5}} \right| + C \dots \text{eqn } 3$$ From eqn 1: $$I = I_1 - 4I_2$$ Using eqn 2 and eqn 3: $$I = \frac{1}{2} \log |x^2 + 2x - 4| - 4\left(\frac{1}{2\sqrt{5}} \log \left| \frac{x+1-\sqrt{5}}{x+1+\sqrt{5}} \right| \right) + C$$ $$I = \frac{1}{2} \log |x^2 + 2x - 4| - \frac{2}{\sqrt{5}} \log \left| \frac{x+1-\sqrt{5}}{x+1+\sqrt{5}} \right| + C$$ ## 4. Question Evaluate the integral: $$\int \frac{2x-3}{x^2+6x+13} dx$$ ### **Answer** $$I = \int \frac{2x - 3}{x^2 + 6x + 13} \, dx$$ As we can see that there is a term of x in numerator and derivative of x^2 is also 2x. So there is a chance that we can make a substitution for $x^2 + 6x + 13$ and I can be reduced to a fundamental integration. As $$\frac{d}{dx}(x^2 + 6x + 13) = 2x + 6$$ $$\therefore$$ Let, $2x - 3 = A(2x + 6) + B$ $$\Rightarrow$$ 2x - 3 = 2Ax + 6A + B On comparing both sides - We have, $$2A = 2 \Rightarrow A = 1$$ $$6A + B = -3 \Rightarrow B = -3-6A = -9$$ Hence $$I = \int \frac{(2x+6)-9}{v^2+6v+12} dx$$ $$\therefore I = \int \frac{2x+6}{x^2+6x+13} dx - 9 \int \frac{1}{x^2+6x+13} dx$$ Let, $$I_1 = \int \frac{2x+6}{x^2+6x+13} dx$$ and $I_2 = \int \frac{1}{x^2+6x+13} dx$ Now, $$I = I_1 - 9I_2 \dots eqn 1$$ We will solve I_1 and I_2 individually. As, $$I_1 = \int \frac{2x+6}{x^2+6x+13} dx$$ Let $$u = x^2 + 6x + 13 \Rightarrow du = (2x + 6)dx$$ $$\therefore$$ I₁ reduces to $\int \frac{du}{u}$ Hence, $$I_1 = \int \frac{du}{u} = \log|u| + C \left\{ \because \int \frac{dx}{x} = \log|x| + C \right\}$$ On substituting value of u, we have: $$I_1 = \log |x^2 + 6x + 13| + C \dots eqn 2$$ As, $I_2 = \int \frac{1}{x^2 + 6x + 13} dx$ and we don't have any derivative of function present in denominator. \therefore we will use some special integrals to solve the problem. As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$ Now we have to reduce I₂ such that it matches with any of above two forms. We will make to create a complete square so that no individual term of x is seen in denominator. $$\therefore I_2 = \int \frac{1}{x^2 + 6x + 13} dx$$ $$\Rightarrow I_2 = \int \frac{1}{\{x^2 + 2(3)x + (3)^2\} + 13 - (3)^2} dx$$ Using: $$a^2 + 2ab + b^2 = (a + b)^2$$ We have: $$I_2 = \int \frac{1}{(x+3)^2 + (2)^2} dx$$ $$I_2$$ matches with $\int \frac{1}{x^2+a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$ $$I_2 = \frac{1}{2} \tan^{-1} \left(\frac{x+3}{2} \right) + C \dots \text{eqn } 3$$ From eqn 1: $$I = I_1 - 9I_2$$ Using eqn 2 and eqn 3: $$I = \log|x^2 + 6x + 13| - 9 \frac{1}{2} \tan^{-1} \left(\frac{x+3}{2}\right) + C$$ $$I = \log|x^2 + 6x + 13| - \frac{9}{2}\tan^{-1}\left(\frac{x+3}{2}\right) + C$$ ## 5. Question Evaluate the integral: $$\int \frac{x-1}{3x^2-4x+3} dx$$ ## **Answer** $$I = \int \frac{x-1}{3x^2-4x+3} dx$$ As we can see that there is a term of x in numerator and derivative of x^2 is also 2x. So there is a chance that we can make substitution for $3x^2$ -4x + 3 and I can be reduced to a fundamental integration. As, $$\frac{d}{dx}(3x^2-4x+3)=6x-4$$ $$\therefore$$ Let, x - 1 = A(6x - 4) + B $$\Rightarrow$$ x - 1 = 6Ax - 4A + B On comparing both sides - We have, $$6A = 1 \Rightarrow A = 1/6$$ $$-4A + B = -1 \Rightarrow B = -1 + 4A = -2/6 = -1/3$$ Hence, $$I = \int_{\frac{6}{3x^2 - 4x + 3}}^{\frac{1}{6}(6x - 4) - \frac{1}{3}} dx$$ $$\therefore I = \frac{1}{6} \int \frac{6x-4}{3x^2-4x+3} dx - \frac{1}{3} \int \frac{1}{3x^2-4x+3} dx$$ Let, $$I_1 = \frac{1}{6} \int \frac{6x-4}{3x^2-4x+3} dx$$ and $I_2 = \frac{1}{3} \int \frac{1}{3x^2-4x+3} dx$ Now, $I = I_1 - I_2 eqn 1$ We will solve I_1 and I_2 individually. As, $$I_1 = \frac{1}{6} \int \frac{6x-4}{3x^2-4x+3} dx$$ Let $$u = 3x^2 - 4x + 3 \Rightarrow du = (6x - 4)dx$$ $$\therefore I_1 \text{ reduces to } \frac{1}{6} \int \frac{du}{u}$$ Hence, $$I_1 = \frac{1}{6} \int \frac{du}{u} = \frac{1}{6} \log|u| + C \{ : \int \frac{dx}{x} = \log|x| + C \}$$ On substituting value of u, we have: $$I_1 = \frac{1}{6} \log|3x^2 - 4x + 3| + C \dots \text{ eqn } 2$$ As, $I_2 = \frac{1}{3} \int \frac{1}{3x^2 - 4x + 3} dx$ and we don't have any derivative of function present in denominator. \therefore we will use some special integrals to solve the problem. As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$ Now we have to reduce I₂ such that it matches with any of above two forms. We will make to create a complete square so that no individual term of x is seen in the denominator. $$\therefore I_2 = \frac{1}{9} \int \frac{1}{x^2 - \frac{4}{3}x + 1} dx \text{ {on taking 3 common from denominator}}$$ $$\Rightarrow I_2 = \frac{1}{9} \int \frac{1}{\left\{x^2 - 2\left(\frac{2}{3}\right)x + \left(\frac{2}{3}\right)^2\right\} + 1 - \left(\frac{2}{3}\right)^2} dx$$ Using: $$a^2 + 2ab + b^2 = (a + b)^2$$ We have: $$I_2 = \frac{1}{9} \int \frac{1}{\left(x - \frac{2}{3}\right)^2 + \left(\frac{\sqrt{5}}{3}\right)^2} dx$$ I_2 matches with $\int \frac{1}{x^2+a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$ $$\therefore I_2 = \frac{1}{9} \frac{\frac{1}{\sqrt{5}}}{\frac{\sqrt{5}}{3}} tan^{-1} \left(\frac{x - \frac{2}{3}}{\frac{\sqrt{5}}{3}} \right) + C$$ $$I_2 = \frac{3}{9\sqrt{5}} \tan^{-1} \left(\frac{3x-2}{\sqrt{5}} \right) + C = \frac{1}{3\sqrt{5}} \tan^{-1} \left(\frac{3x-2}{\sqrt{5}} \right) + C \dots \text{eqn } 3$$ From eqn 1: $$I = I_1 - I_2$$ Using eqn 2 and eqn 3: $$I = \frac{1}{6} \log|3x^2 - 4x + 3| - \frac{1}{3\sqrt{5}} \tan^{-1} \left(\frac{3x - 2}{\sqrt{5}}\right) + C$$ Evaluate the integral: $$\int \frac{2x}{2+x-x^2} dx$$ #### **Answer** $$I = \int \frac{2x}{2 + x - x^2} dx$$ As we can see that there is a term of x in numerator and derivative of x^2 is also 2x. So there is a chance that we can make substitution for $-x^2 + x + 2$ and I can be reduced to a fundamental integration. As, $$\frac{d}{dx}(-x^2+x+2) = -2x+1$$ $$\therefore$$ Let, $2x = A(-2x + 1) + B$ $$\Rightarrow 2x = -2Ax + A + B$$ On comparing both sides - We have, $$-2A = 2 \Rightarrow A = -1$$ $$A + B = 0 \Rightarrow B = -A = 1$$ Hence. $$I = \int \frac{-(-2x+1)+1}{2+x-x^2} dx$$ $$: I = - \int \frac{(-2x+1)}{2+x-x^2} dx + \int \frac{1}{2+x-x^2} dx$$ Let, I $$_1=-\int \frac{(-2x+1)}{2+x-x^2}dx$$ and I $_2=\int \frac{1}{2+x-x^2}dx$ Now, $$I = I_1 + I_2 eqn 1$$ We will solve I_1 and I_2 individually. As, $$I_1 = -\int \frac{(-2x+1)}{2+x-x^2} dx$$ Let $$u = 2 + x - x^2 \Rightarrow du = (-2x + 1)dx$$ $$\therefore I_1 \text{ reduces to } -\int \frac{du}{u}$$ Hence, $$I_1 = -\int \frac{du}{u} = -\log|u| + C \{: \int \frac{dx}{x} = \log|x| + C \}$$ On substituting value of u, we have: $$I_1 = -\log|2 + x - x^2| + C$$eqn 2 As, $I_2 = \int \frac{1}{2+x-x^2} dx$ and we don't have any derivative of function present in denominator. \therefore we will use some special integrals to solve the problem. As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$ Now we have to reduce I_2 such that it matches with any of above two forms. We will make to create a complete square so that no individual term of x is seen in denominator. $$\therefore I_2 = -\int \frac{1}{x^2 - x - 2} dx$$ $$\Rightarrow I_2 = -\int \frac{1}{\{x^2 - 2(\frac{1}{2})x + (\frac{1}{2})^2\} - 2 - (\frac{1}{2})^2} dx$$ Using: $a^2 + 2ab + b^2 = (a + b)^2$ We have: $$I_2 = -\int \frac{1}{\left(x - \frac{1}{2}\right)^2 - \left(\frac{3}{2}\right)^2} dx$$ I_2 matches with $\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$ $$\therefore I_2 = -\frac{1}{2\binom{3}{2}} \log \left| \frac{(x - \frac{1}{2}) - \frac{3}{2}}{(x - \frac{1}{2}) + \frac{3}{2}} \right| + C$$ From egn 1: $$I = I_1 + I_2$$ Using eqn 2 and eqn 3: $$\therefore I = -\log|2 + x - x^2| - \frac{1}{3}\log\left|\frac{x-2}{x+1}\right| + C$$ ## 7. Question Evaluate the integral: $$\int \frac{1-3x}{3x^2+4x+2} dx$$ ## **Answer** $$I = \int \frac{1 - 3x}{3x^2 + 4x + 2} dx$$ As we can see that there is a term of x in numerator and derivative of x^2 is also 2x. So there is a chance that we can make substitution for $3x^2 + 4x + 2$ and I can be reduced to a fundamental integration. As, $$\frac{d}{dx}(3x^2 + 4x + 2) = 6x + 4$$ $$\therefore$$ Let, 1-3x = A(6x + 4) + B $$\Rightarrow$$ 1-3x = 6Ax + 4A + B On comparing both sides - We have, $$6A = -3 \Rightarrow A = -1/2$$ $$4A + B = 1 \Rightarrow B = -4A + 1 = 3$$ Hence, $$I = \int \frac{-\frac{1}{2}(6x+4)+3}{3x^2+4x+2} dx$$ $$\therefore I = -\frac{1}{2} \int \frac{6x+4}{3x^2+4x+2} dx + \int \frac{3}{3x^2+4x+2} dx$$ Let, $$I_1 = -\frac{1}{2} \int \frac{6x+4}{3x^2+4x+2} dx$$ and $I_2 = \int \frac{3}{3x^2+4x+2} dx$ Now, $$I = I_1 + I_2 eqn 1$$ We will solve I_1 and I_2 individually. As $$I_1 = -\frac{1}{2} \int \frac{6x+4}{3x^2+4x+2} dx$$ Let $$u = 3x^2 + 4x + 2 \Rightarrow du = (6x + 4)dx$$
$$\therefore I_1 \text{ reduces to } -\frac{1}{2} \int \frac{du}{u}$$ Hence, $$I_1 = -\frac{1}{2} \int \frac{du}{u} = -\frac{1}{2} \log|u| + C \{:: \int \frac{dx}{x} = \log|x| + C \}$$ On substituting the value of u, we have: $$I_1 = -\frac{1}{2}\log|3x^2 + 4x + 2| + C \dots \text{ eqn } 2$$ As, $I_2 = \int \frac{3}{3x^2 + 4x + 2} dx$ and we don't have any derivative of function present in denominator. \therefore we will use some special integrals to solve the problem. As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$ Now we have to reduce I₂ such that it matches with any of above two forms. We will make to create a complete square so that no individual term of x is seen in denominator. $$\therefore I_2 = \int \frac{3}{3(x^2 + \frac{4}{9}x + \frac{2}{9})} dx = \int \frac{1}{x^2 + \frac{4}{9}x + \frac{2}{9}} dx$$ $$\Rightarrow I_2 = \int \frac{1}{\{x^2 + 2(\frac{2}{3})x + (\frac{2}{3})^2\} + \frac{2}{3} - (\frac{2}{3})^2} dx$$ Using: $$a^2 + 2ab + b^2 = (a + b)^2$$ We have: $$I_2 = \int \frac{1}{\left(x + \frac{2}{3}\right)^2 + \left(\frac{\sqrt{2}}{3}\right)^2} dx$$ I_2 matches with $\int \frac{1}{x^2+a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$ $$\therefore I_2 = \frac{1}{\frac{\sqrt{2}}{3}} \tan^{-1} \left(\frac{x + \frac{2}{3}}{\frac{\sqrt{2}}{3}} \right) + C$$ $$I_2 = \frac{3}{\sqrt{2}} \tan^{-1} \left(\frac{3x+2}{\sqrt{2}} \right) + C \dots \text{ eqn } 3$$ From eqn 1: $$I = I_1 + I_2$$ Using eqn 2 and eqn 3: $$\therefore I = -\frac{1}{2} \log |3x^2 + 4x + 2| + \frac{3}{\sqrt{2}} \tan^{-1} \left(\frac{3x+2}{\sqrt{2}} \right) + C$$ Evaluate the integral: $$\int \frac{2x+5}{x^2-x-2} \, \mathrm{d}x$$ ### **Answer** $$I = \int \frac{2x+5}{x^2-x-2} dx$$ As we can see that there is a term of x in numerator and derivative of x^2 is also 2x. So there is a chance that we can make substitution for $x^2 - x - 2$ and I can be reduced to a fundamental integration. As, $$\frac{d}{dx}(x^2-x-2)=2x-1$$ $$\therefore$$ Let, $2x + 5 = A(2x - 1) + B$ $$\Rightarrow$$ 2x + 5= 2Ax - A + B On comparing both sides - We have. $$2A = 2 \Rightarrow A = 1$$ $$-A + B = 5 \Rightarrow B = A + 5 = 6$$ Hence, $$I = \int \frac{(2x-1)+6}{x^2-x-2} dx$$ $$: I = \int \frac{(2x-1)}{x^2 - x - 2} dx + \int \frac{6}{x^2 - x - 2} dx$$ Let, $$I_1 = \int \frac{(2x-1)}{x^2-x-2} dx$$ and $I_2 = \int \frac{6}{x^2-x-2} dx$ Now, $$I = I_1 + I_2 eqn 1$$ We will solve I_1 and I_2 individually. As, $$I_1 = \int \frac{(2x-1)}{x^2-x-2} dx$$ Let $$u = x^2 - x - 2 \Rightarrow du = (2x - 1)dx$$ $$\therefore I_1$$ reduces to $\int \frac{du}{u}$ Hence, $$I_1 = \int \frac{du}{u} = \log|u| + C \left\{ \because \int \frac{dx}{x} = \log|x| + C \right\}$$ On substituting value of u, we have: $$I_1 = \log |x^2 - x - 2| + C \dots eqn 2$$ As, $I_2 = \int \frac{6}{x^2 - x - 2} dx$ and we don't have any derivative of function present in denominator. \therefore we will use some special integrals to solve the problem. As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$ Now we have to reduce I_2 such that it matches with any of above two forms. We will make to create a complete square so that no individual term of x is seen in denominator. $$\therefore I_2 = \int \frac{6}{x^2 - x - 2} dx$$ $$\Rightarrow I_2 = \int \frac{6}{\{x^2 - 2(\frac{1}{2})x + (\frac{1}{2})^2\} - 2 - (\frac{1}{2})^2} dx$$ Using: $a^2 - 2ab + b^2 = (a - b)^2$ We have: $$I_2 = 6 \int \frac{1}{\left(x - \frac{1}{2}\right)^2 - \left(\frac{3}{2}\right)^2} dx$$ I_2 matches with $\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$ $$\therefore I_2 = \frac{6}{2\binom{3}{2}} log \left| \frac{\left(x - \frac{1}{2}\right) - \frac{3}{2}}{\left(x - \frac{1}{2}\right) + \frac{3}{2}} \right| + C$$ From eqn 1, we have: $$I = I_1 + I_2$$ Using eqn 2 and 3, we get - $$I = \log|x^2 - x - 2| + 2\log\left|\frac{x-2}{x+1}\right| + C \dots$$ ans # 9. Question Evaluate the integral: $$\int \frac{ax^3 + bx}{x^4 + c^2} dx$$ ## **Answer** $$I = \int \frac{ax^3 + bx}{x^4 + c^2} dx$$ As we can see that there is a term of x^3 in numerator and derivative of x^4 is also $4x^3$. So there is a chance that we can make substitution for $x^4 + c^2$ and I can be reduced to a fundamental integration but there is also a x term present. So it is better to break this integration. $$I = \int \frac{ax^3}{x^4 + c^2} dx + \int \frac{bx}{x^4 + c^2} dx = I_1 + I_2 \dots \text{eqn } 1$$ $$I_1 = \int \frac{ax^3}{x^4 + c^2} dx = \frac{a}{4} \int \frac{4x^3}{x^4 + c^2} dx$$ As, $$\frac{d}{dx}(x^4 + c^2) = 4x^3$$ To make the substitution, I_1 can be rewritten as $$I_1 = \frac{a}{4} \int \frac{4x^3}{x^4 + c^2} dx$$ $$\therefore \text{ Let, } x^4 + c^2 = u$$ $$\Rightarrow$$ du = $4x^3$ dx I_1 is reduced to simple integration after substituting u and du as: $$I_1 = \frac{a}{4} \int \frac{du}{u} = \frac{a}{4} \log|u| + C$$ $$I_1 = \frac{a}{4} \log |x^4 + c^2| + C \dots eqn 2$$ As, $$I_2 = \int \frac{bx}{x^4 + c^2} dx$$ \because we have derivative of x^2 in numerator and term of x^2 in denominator. So we can apply method of substitution here also. As, $$I_2 = \int \frac{bx}{(x^2)^2 + c^2} dx$$ Let, $$x^2 = v$$ $$\Rightarrow$$ dv = 2x dx $$I_2 = \frac{b}{2} \int \frac{2x}{(x^2)^2 + c^2} dx = \frac{b}{2} \int \frac{dv}{(v)^2 + c^2}$$ As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$ $$I_2$$ matches with $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$ $$\therefore I_2 = \frac{b}{2} \frac{1}{c} \tan^{-1} \left(\frac{v}{c} \right) + K = \frac{b}{2c} \tan^{-1} \left(\frac{v}{c} \right) + K$$ $$\Rightarrow I_2 = \frac{b}{2c} \tan^{-1} \left(\frac{x^2}{c} \right) + \text{K...eqn 3}$$ From eqn 1, we have: $$I = I_1 + I_2$$ Using eqn 2 and 3, we get - $$I = \frac{a}{4} \log |x^4 + c^2| + \frac{b}{2c} \tan^{-1} \left(\frac{x^2}{c}\right) + K \dots$$ ans ## 10. Question Evaluate the integral: $$\int \frac{(3\sin x - 2)\cos x}{5 - \cos^2 x - 4\sin x} dx$$ $$I = \int \frac{(3 \sin x - 2)\cos x}{5 - \cos^2 x - 4 \sin x} dx = \int \frac{(3 \sin x - 2)\cos x}{5 - (1 - \sin^2 x) - 4 \sin x} dx$$ $$\Rightarrow I = \int \frac{(3\sin x - 2)\cos x}{4 + \sin^2 x - 4\sin x} dx$$ Let, $$\sin x = t \Rightarrow \cos x \, dx = dt$$ $$\therefore I = \int \frac{(3t-2)}{t^2-4t+4} dt$$ As we can see that there is a term of t in numerator and derivative of t^2 is also 2t. So there is a chance that we can make substitution for t^2 – 4t + 4 and I can be reduced to a fundamental integration. As, $$\frac{d}{dt}(t^2 - 4t - 4) = 2t - 4$$ $$\therefore$$ Let, 3t - 2 = A(2t - 4) + B $$\Rightarrow$$ 3t - 2 = 2At - 4A + B On comparing both sides - We have, $$2A = 3 \Rightarrow A = 3/2$$ $$-4A + B = -2 \Rightarrow B = 4A - 2 = 4$$ Hence, $$I = \int \frac{(3t-2)}{t^2 - 4t + 4} dt$$ $$\therefore I = \int \frac{\frac{3}{2}(2t-4)}{t^2-4t+4} dt + \int \frac{4}{t^2-4t+4} dt$$ Let, $$I_1 = \frac{3}{2} \int \frac{(2t-4)}{t^2-4t+4} dt$$ and $I_2 = \int \frac{4}{t^2-4t+4} dt$ Now, $$I = I_1 + I_2 eqn 1$$ We will solve I_1 and I_2 individually. As, $$I_1 = \frac{3}{2} \int \frac{(2t-4)}{t^2-4t+4} dt$$ Let $$u = t^2 - 4t + 4 \Rightarrow du = (2t - 4)dx$$ $$\therefore I_1 \text{ reduces to } \frac{3}{2} \int \frac{du}{u}$$ Hence, $$I_1 = \frac{3}{2} \int \frac{du}{u} = \log|u| + C \{ : \int \frac{dx}{x} = \log|x| + C \}$$ On substituting value of u, we have: $$I_1 = \frac{3}{2} \log |t^2 - 4t + 4| + C$$ $$I_1 = \frac{3}{2} \log|t - 2|^2 + C = 3 \log|t - 2| + C \dots \text{eqn } 2$$ $$\because I_2 = \int \frac{4}{t^2 - 4t + 4} dt$$ $$\Rightarrow I_2 = \int \frac{4}{\{t^2 - 2(2)t + 2^2\}} dx$$ Using: $$a^2 - 2ab + b^2 = (a - b)^2$$ We have: $$I_2 = 4 \int \frac{1}{(t-2)^2} dx$$ As, $$\int \frac{1}{x^2} dx = -\frac{1}{x}$$ $$I_2 = \frac{-4}{t-2} = \frac{4}{2-t} + C \dots eqn 3$$ From eqn 1, we have: $$I = I_1 + I_2$$ Using eqn 2 and 3, we get - $$I = 3 \log |t - 2| + \frac{4}{2-t} + C$$ Putting value of t in I: $$I = 3 \log |\sin x - 2| + \frac{4}{2 - \sin x} + C \dots$$ ans #### 11. Question Evaluate the integral: $$\int \frac{x+2}{2x^2+6x+5} dx$$ #### **Answer** $$I = \int \frac{x+2}{2x^2+6x+5} dx$$ As we can see that there is a term of x in numerator and derivative of x^2 is also 2x. So there is a chance that we can make substitution for $2x^2 + 6x + 5$ and I can be reduced to a fundamental integration. As, $$\frac{d}{dx}(2x^2+6x+5) = 4x+6$$ $$\therefore$$ Let, $x + 2 = A(4x + 6) + B$ $$\Rightarrow$$ x + 2 = 4Ax + 6A + B On comparing both sides - We have, $$4A = 1 \Rightarrow A = 1/4$$ $$6A + B = 2 \Rightarrow B = -6A + 2 = 1/2$$ Hence, $$I = \int \frac{\frac{1}{4}(4x+6) + \frac{1}{2}}{2x^2 + 6x + 5} dx$$ $$\therefore I = \int \frac{\frac{1}{4}(4x+6)}{2x^2+6x+5} dx + \int \frac{\frac{1}{2}}{2x^2+6x+5} dx$$ Let, $$I_1 = \frac{1}{4} \int \frac{(4x+6)}{2x^2+6x+5} dx$$ and $I_2 = \frac{1}{2} \int \frac{1}{2x^2+6x+5} dx$ Now, $$I = I_1 + I_2 eqn 1$$ We will solve I_1 and I_2 individually. As, $$I_1 = \frac{1}{4} \int \frac{(4x+6)}{2x^2+6x+5} dx$$ Let $$u = 2x^2 + 6x + 5 \Rightarrow du = (4x + 6)dx$$ $$\therefore I_1 \text{ reduces to } \frac{1}{4} \int \frac{du}{u}$$ Hence $$I_1 = \frac{1}{4} \int \frac{du}{u} = \frac{1}{4} \log|u| + C \{ : \int \frac{dx}{x} = \log|x| + C \}$$ On substituting value of u, we have: $$I_1 = \frac{1}{4} \log |2x^2 + 6x + 5|
+ C \dots eqn 2$$ As, $I_2 = \frac{1}{2} \int \frac{1}{2x^2 + 6x + 5} dx$ and we don't have any derivative of function present in denominator. \therefore we will use some special integrals to solve the problem. As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$ Now we have to reduce I₂ such that it matches with any of above two forms. We will make to create a complete square so that no individual term of x is seen in denominator. $$\therefore \text{ I}_2 = \frac{1}{2} \! \int \! \frac{1}{2x^2 + 6x + 5} dx = \frac{1}{2} \! \int \! \frac{1}{2(x^2 + 3x + \frac{5}{2})} dx = \frac{1}{4} \! \int \! \frac{1}{x^2 + 3x + \frac{5}{2}} dx$$ $$\Rightarrow I_2 = \frac{1}{4} \int \frac{6}{\left\{x^2 + 2\binom{3}{2}x + \binom{3}{2}^2\right\} + \frac{5}{2} - \binom{3}{2}^2} dx$$ Using: $$a^2 + 2ab + b^2 = (a + b)^2$$ We have: $$I_2 = \frac{1}{4} \int \frac{1}{\left(x + \frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2} dx$$ I_2 matches with $1x2 + a2dx = 1112 \ tan - 1x + 32112 + CI_2$ matches with the form $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$ $$\therefore I_2 = \frac{1}{4} \frac{1}{\frac{4}{2}} \tan^{-1} \left(\frac{x + \frac{3}{2}}{\frac{1}{2}} \right) + C$$ $$I_2 = \frac{1}{2} \tan^{-1}(2x+3) + C \dots eqn 3$$ From eqn 1, we have: $$I = I_1 + I_2$$ Using eqn 2 and 3, we get - $$I = \frac{1}{4}\log|2x^2 + 6x + 5| + C + \frac{1}{2}\tan^{-1}(2x + 3) + C$$ans #### 12. Question Evaluate the integral: $$\int \frac{5x-2}{1+2x+3x^2} dx$$ #### **Answer** $$I = \int \frac{5x - 2}{3x^2 + 2x + 1} \, dx$$ As we can see that there is a term of x in numerator and derivative of x^2 is also 2x. So there is a chance that we can make substitution for $3x^2 + 2x + 1$ and I can be reduced to a fundamental integration. As, $$\frac{d}{dx}(3x^2 + 2x + 1) = 6x + 2$$ $$\therefore$$ Let, $5x - 2 = A(6x + 2) + B$ $$\Rightarrow$$ 5x - 2 = 6Ax + 2A + B On comparing both sides - We have. $$6A = 5 \Rightarrow A = 5/6$$ $$2A + B = -2 \Rightarrow B = -2A - 2 = -11/3$$ Hence, $$I = \int \frac{\frac{5}{6}(6x+2) - \frac{11}{3}}{3x^2 + 2x + 1} dx$$ $$\therefore I = \int \frac{\frac{5}{6}(6x+2)}{3x^2+2x+1} dx + \int \frac{-\frac{11}{2}}{3x^2+2x+1} dx$$ Let, $$I_1 = \frac{5}{6} \int \frac{(6x+2)}{3x^2+2x+1} dx$$ and $I_2 = -\frac{11}{3} \int \frac{1}{3x^2+2x+1} dx$ Now, $$I = I_1 + I_2 eqn 1$$ We will solve I_1 and I_2 individually. As, $$I_1 = \frac{5}{6} \int \frac{(6x+2)}{3x^2+2x+1}$$ Let $$u = 3x^2 + 2x + 1 \Rightarrow du = (6x + 2)dx$$ $$\therefore I_1 \text{ reduces to } \frac{5}{6} \int \frac{du}{u}$$ Hence, $$I_1 = \frac{5}{6} \int \frac{du}{u} = \frac{5}{6} \log|u| + C \{:: \int \frac{dx}{x} = \log|x| + C \}$$ On substituting value of u, we have: $$I_1 = \frac{5}{6} \log|3x^2 + 2x + 1| + C \dots \text{ eqn } 2$$ As, $I_2 = -\frac{11}{3} \int \frac{1}{3x^2 + 2x + 1} dx$ and we don't have any derivative of function present in denominator. \therefore we will use some special integrals to solve the problem. As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$ Now we have to reduce I_2 such that it matches with any of above two forms. We will make to create a complete square so that no individual term of x is seen in denominator. $$\therefore I_2 = -\frac{11}{3} \int \frac{1}{3x^2 + 2x + 1} dx = \frac{-11}{3} \int \frac{1}{3(x^2 + \frac{1}{3}x + \frac{1}{3})} dx = -\frac{11}{9} \int \frac{1}{x^2 + \frac{1}{3}x + \frac{1}{3}} dx$$ $$\Rightarrow I_2 = -\frac{11}{9} \int \frac{6}{\{x^2 + 2(\frac{1}{3})x + (\frac{1}{3})^2\} + \frac{1}{3} - (\frac{1}{3})^2} dx$$ Using: $$a^2 + 2ab + b^2 = (a + b)^2$$ We have: $$I_2 = -\frac{11}{9} \int \frac{1}{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2} dx$$ I_2 matches with the form $\int \frac{1}{x^2+a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$ $$\therefore I_2 = -\frac{11}{9} \frac{1}{\frac{\sqrt{2}}{3}} \tan^{-1} \left(\frac{x + \frac{1}{3}}{\frac{\sqrt{2}}{3}} \right) + C$$ $$I_2 = -\frac{11}{3\sqrt{2}} \tan^{-1} \left(\frac{3x+1}{\sqrt{2}} \right) + C \dots \text{eqn } 3$$ From eqn 1, we have: $$I = I_1 + I_2$$ Using eqn 2 and 3, we get - $$I = \frac{5}{6} \log|3x^2 + 2x + 1| - \frac{11}{3\sqrt{2}} \tan^{-1} \left(\frac{3x+1}{\sqrt{2}}\right) + C$$ #### 13. Question Evaluate the integral: $$\int \frac{x+5}{3x^2+13x-10} dx$$ #### **Answer** $$I = \int \frac{x+5}{3x^2+13x-10} dx$$ As we can see that there is a term of x in numerator and derivative of x^2 is also 2x. So there is a chance that we can make substitution for $3x^2 + 13x - 10$ and I can be reduced to a fundamental integration. As, $$\frac{d}{dx}(3x^2 + 13x - 10) = 6x + 13$$ $$\therefore$$ Let, x + 5 = A(6x + 13) + B $$\Rightarrow$$ x + 5 = 6Ax + 13A + B On comparing both sides - We have, $$6A = 1 \Rightarrow A = 1/6$$ $$13A + B = 5 \Rightarrow B = -13A + 5 = 17/6$$ Hence, $$I = \int \frac{\frac{1}{6}(6x+13) + \frac{17}{6}}{3x^2 + 13x - 10} dx$$ $$\therefore I = \int \frac{\frac{1}{6}(6x+13)}{3x^2+13x-10} dx + \int \frac{\frac{17}{6}}{3x^2+13x-10} dx$$ Let, $$I_1 = \frac{1}{6} \int \frac{(6x+13)}{3x^2+13x-10} dx$$ and $I_2 = \frac{17}{6} \int \frac{1}{3x^2+13x-10} dx$ Now, $$I = I_1 + I_2 eqn 1$$ We will solve I_1 and I_2 individually. As, $$I_1 = \frac{1}{6} \int \frac{(6x+13)}{3x^2+13x-10} dx$$ Let $$u = 3x^2 + 13x - 10 \Rightarrow du = (6x + 13)dx$$ $$\therefore I_1$$ reduces to $\frac{1}{6} \int \frac{du}{u}$ Hence $$I_1 = \frac{1}{6} \int \frac{du}{u} = \frac{1}{6} \log|u| + C \{ : \int \frac{dx}{x} = \log|x| + C \}$$ On substituting value of u, we have: $$I_1 = \frac{1}{6}\log|3x^2 + 13x - 10| + C \dots eqn 2$$ As, $I_2 = \frac{17}{6} \int \frac{1}{3x^2 + 13x - 10} dx$ and we don't have any derivative of function present in denominator. \therefore we will use some special integrals to solve the problem. As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$ Now we have to reduce I₂ such that it matches with any of above two forms. We will make to create a complete square so that no individual term of x is seen in denominator. $$\therefore \text{ I}_2 = \frac{17}{6} \int \frac{1}{3x^2 + 13x - 10} dx = \frac{17}{6} \int \frac{1}{3(x^2 + \frac{13}{3}x - \frac{10}{3})} dx = \frac{17}{18} \int \frac{1}{x^2 + \frac{13}{3}x - \frac{10}{3}} dx$$ $$\Rightarrow I_2 = \frac{17}{18} \int \frac{6}{\left\{x^2 + 2\left(\frac{13}{6}\right)x + \left(\frac{13}{6}\right)^2\right\} - \frac{10}{2} - \left(\frac{13}{6}\right)^2}} dx$$ Using: $$a^2 + 2ab + b^2 = (a + b)^2$$ We have: $$I_2 = \frac{17}{18} \int \frac{1}{\left(x + \frac{13}{6}\right)^2 - \left(\frac{17}{6}\right)^2} dx$$ I_2 matches with the form $\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$ $$\therefore I_2 = \frac{17}{18} \times \frac{1}{2 \times \frac{17}{6}} log \left| \frac{\left(x + \frac{13}{6}\right) - \frac{17}{6}}{\left(x + \frac{13}{6}\right) + \frac{17}{6}} \right| + C$$ $$I_2 = \frac{1}{6} \log \left| \frac{6x+13-17}{6x+13+17} \right| + C = \frac{1}{6} \log \left| \frac{6x-4}{6x+30} \right| + C \dots \text{eqn } 3$$ From eqn 1, we have: $$I = I_1 + I_2$$ Using eqn 2 and 3, we get - $$I = \frac{1}{6}\log|3x^2 + 13x - 10| + \frac{1}{6}\log\left|\frac{6x - 4}{6x + 30}\right| + C$$ #### 4. Question Evaluate the integral: $$\int \frac{(3\sin x - 2)\cos x}{13 - \cos^2 x - 7\sin x} dx$$ #### Answei $$I = \int \frac{(3\sin x - 2)\cos x}{13 - \cos^2 x - 7\sin x} dx = \int \frac{(3\sin x - 2)\cos x}{13 - (1 - \sin^2 x) - 7\sin x} dx$$ $$\Rightarrow I = \int \frac{(3\sin x - 2)\cos x}{12 + \sin^2 x - 7\sin x} dx$$ Let, $\sin x = t \Rightarrow \cos x \, dx = dt$ $$I = \int \frac{(3t-2)}{t^2-7t+12} dt$$ As we can see that there is a term of t in numerator and derivative of t^2 is also 2t. So there is a chance that we can make substitution for t^2 – 7t + 12 and I can be reduced to a fundamental integration. As, $$\frac{d}{dt}(t^2 - 7t + 12) = 2t - 7$$ $$\therefore$$ Let, 3t - 2 = A(2t - 7) + B $$\Rightarrow$$ 3t - 2 = 2At - 7A + B On comparing both sides - We have, $$2A = 3 \Rightarrow A = 3/2$$ $$-7A + B = -2 \Rightarrow B = 7A - 2 = 17/2$$ Hence, $$I = \int \frac{(3t-2)}{t^2 - 7t + 12} dt$$ $$\begin{tabular}{l} $: I = \int \frac{\frac{3}{2}(2t-7)}{t^2-7t+12} dt + \int \frac{\frac{17}{2}}{t^2-7t+12} dt \end{tabular}$$ Let, $$I_1 = \frac{3}{2} \int \frac{(2t-7)}{t^2-7t+12} dt$$ and $I_2 = \frac{17}{2} \int \frac{1}{t^2-7t+12} dt$ Now, $$I = I_1 + I_2 eqn 1$$ We will solve I_1 and I_2 individually. As, $$I_1 = \frac{3}{2} \int \frac{(2t-7)}{t^2-7t+12} dt$$ Let $$u = t^2 - 7t + 12 \Rightarrow du = (2t - 7)dx$$ $$\therefore I_1 \text{ reduces to } \frac{3}{2} \int \frac{du}{u}$$ Hence, $$I_1 = \frac{3}{2} \int \frac{du}{u} = \log|u| + C \{ : \int \frac{dx}{x} = \log|x| + C \}$$ On substituting value of u, we have: $$I_1 = \frac{3}{2} \log |t^2 - 7t + 12| + C \dots eqn 2$$ As, $I_2 = \frac{17}{2} \int \frac{1}{t^2 - 7t + 12} dt$ and we don't have any derivative of function present in denominator. \therefore we will use some special integrals to solve the problem. As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1}
\left(\frac{x}{a} \right) + C$ $$|\cdot|_2 = \frac{17}{2} \int \frac{1}{t^2 - 7t + 12} dt$$ $$\Rightarrow I_2 = \frac{17}{2} \int \frac{4}{\{t^2 - 2(\frac{7}{2})t + (\frac{7}{2})^2\} + 12 - (\frac{7}{2})^2}} dx$$ Using: $$a^2 - 2ab + b^2 = (a - b)^2$$ We have: $$I_2 = \frac{17}{2} \int \frac{1}{\left(t - \frac{7}{2}\right)^2 - \left(\frac{1}{2}\right)^2} dx$$ I_2 matches with the form $\int \frac{1}{x^2-a^2} dx = \frac{1}{2a} \log \left| \frac{x-a}{x+a} \right| + C$ $$\therefore I_2 = \frac{17}{2} \frac{1}{2(\frac{1}{2})} log \left| \frac{(t - \frac{7}{2}) - \frac{1}{2}}{(t - \frac{7}{2}) + \frac{1}{2}} \right| + C$$ $$I_2 = \frac{17}{2} \log \left| \frac{2t-7-1}{2t-7+1} \right| + C = \frac{17}{2} \log \left| \frac{2t-8}{2t-6} \right| + C$$ $$I_2 = \frac{17}{2} \log \left| \frac{t-4}{t-3} \right| + C \dots eqn 3$$ From eqn 1, we have: $$I = I_1 + I_2$$ Using eqn 2 and 3, we get - $$I = \frac{3}{2}\log|t^2 - 7t + 12| + \frac{17}{2}\log\left|\frac{t-4}{t-3}\right| + C$$ Putting value of t in I: $$I = \frac{3}{2} \log |\sin^2 x - 7\sin x + 12| + \frac{17}{2} \log \left| \frac{4 - \sin x}{3 - \sin x} \right| + C \dots \text{ans}$$ ## 5. Question Evaluate the integral: $$\int \frac{x+7}{3x^2 + 25x + 28} \, dx$$ #### **Answer** $$I = \int \frac{x+7}{2x^2+25x+29} dx$$ As we can see that there is a term of x in numerator and derivative of x^2 is also 2x. So there is a chance that we can make substitution for $3x^2 + 13x - 10$ and I can be reduced to a fundamental integration. As, $$\frac{d}{dx}(3x^2 + 25x + 28) = 6x + 25$$ $$\therefore$$ Let, x + 7 = A(6x + 25) + B $$\Rightarrow$$ x + 7 = 6Ax + 25A + B On comparing both sides - We have, $$6A = 1 \Rightarrow A = 1/6$$ $$25A + B = 5 \Rightarrow B = -25A + 5 = 5/6$$ Hence, $$I = \int \frac{\frac{1}{6}(6x+25) + \frac{5}{6}}{3x^2 + 25x + 28} dx$$ $$\therefore I = \int \frac{\frac{1}{6}(6x+25)}{3x^2+25x+28} dx + \int \frac{\frac{5}{6}}{3x^2+25x+28} dx$$ Let, $$I_1 = \frac{1}{6} \int \frac{(6x+25)}{3x^2+25x+28} dx$$ and $I_2 = \frac{5}{6} \int \frac{1}{3x^2+25x+28} dx$ Now, $$I = I_1 + I_2 eqn 1$$ We will solve I_1 and I_2 individually. As, $$I_1 = \frac{1}{6} \int \frac{(6x+25)}{3x^2+25x+28} dx$$ Let $$u = 3x^2 + 25x + 28 \Rightarrow du = (6x + 25)dx$$ $\therefore I_1 \text{ reduces to } \frac{1}{6} \int \frac{du}{u}$ Hence, $$I_1 = \frac{1}{6} \int \frac{du}{u} = \frac{1}{6} \log|u| + C \{:: \int \frac{dx}{x} = \log|x| + C \}$$ On substituting value of u, we have: $$I_1 = \frac{1}{6}\log|3x^2 + 25x + 28| + C \dots eqn 2$$ As, $I_2 = \frac{5}{6} \int \frac{1}{3x^2 + 25x + 28} dx$ and we don't have any derivative of function present in denominator. \therefore we will use some special integrals to solve the problem. As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$ Now we have to reduce I_2 such that it matches with any of above two forms. We will make to create a complete square so that no individual term of x is seen in denominator. $$\therefore \, I_2 = \frac{5}{6} \int \frac{1}{3x^2 + 25x + 28} dx = \frac{5}{6} \int \frac{1}{3(x^2 + \frac{25}{3}x + \frac{28}{3})} dx = \frac{5}{18} \int \frac{1}{x^2 + \frac{25}{3}x + \frac{28}{3}} dx$$ $$\Rightarrow I_2 = \frac{5}{18} \int \frac{1}{\left\{x^2 + 2\left(\frac{25}{6}\right)x + \left(\frac{25}{6}\right)^2\right\} + \frac{28}{3} - \left(\frac{25}{6}\right)^2}} dx$$ Using: $$a^2 + 2ab + b^2 = (a + b)^2$$ We have: $$I_2 = \frac{5}{18} \int \frac{1}{\left(x + \frac{25}{6}\right)^2 - \left(\frac{17}{6}\right)^2} dx$$ I_2 matches with the form $\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} log \left| \frac{x - a}{x + a} \right| + C$ $$\therefore I_2 = \frac{5}{18} \times \frac{1}{2 \times \frac{17}{6}} log \left| \frac{\left(x + \frac{25}{6}\right) - \frac{17}{6}}{\left(x + \frac{25}{6}\right) + \frac{17}{6}} \right| + C$$ From eqn 1, we have: $$I = I_1 + I_2$$ Using eqn 2 and 3, we get - $$I = \frac{1}{6}\log|3x^2 + 25x + 28| + \frac{5}{102}\log\left|\frac{6x-8}{6x+42}\right| + C$$ ## 16. Question Evaluate the integral: $$\int \frac{x^3}{x^4 + x^2 + 1} dx$$ #### **Answer** Let, $$I = \int \frac{x^3}{x^4 + x^2 + 1} dx$$ $$I = \int \frac{x^2 x}{(x^2)^2 + x^2 + 1} dx$$ If we assume x^2 to be an another variable, we can simplify the integral as derivative of x^2 i.e. x is present in numerator. Let, $$x^2 = u$$ $$\Rightarrow$$ 2x dx = du $$\Rightarrow$$ x dx = 1/2 du $$\therefore I = \frac{1}{2} \int \frac{u}{u^2 + u + 1} du$$ As, $$\frac{d}{du}(u^2 + u + 1) = 2u + 1$$ ∴ Let, $$u = A(2u + 1) + B$$ $$\Rightarrow$$ u = 2Au + A + B On comparing both sides - We have, $$2A = 1 \Rightarrow A = 1/2$$ $$A + B = 0 \Rightarrow B = -A = -1/2$$ Hence. $$I = \frac{1}{2} \int \frac{\frac{1}{2}(2u+1) - \frac{1}{2}}{u^2 + u + 1} du$$ Let, $$I_1 = \frac{1}{4} \int \frac{(2u+1)}{u^2+u+1} du$$ and $I_2 = -\frac{1}{4} \int \frac{1}{u^2+u+1} du$ Now, $$I = I_1 + I_2 eqn 1$$ We will solve I_1 and I_2 individually. As, $$I_1 = \frac{1}{4} \int \frac{(2u+1)}{u^2+u+1} du$$ Let $$v = u^2 + u + 1 \Rightarrow dv = (2u + 1)du$$ $$\therefore I_1 \text{ reduces to } \frac{1}{4} \int \frac{dv}{v}$$ Hence $$I_1 = \frac{1}{4} \int \frac{dv}{v} = \frac{1}{4} \log|v| + C \{ : \int \frac{dx}{x} = \log|x| + C \}$$ On substituting value of u, we have: $$I_1 = \frac{1}{4} \log |\mathbf{u}^2 + \mathbf{u} + 1| + C \dots \text{eqn } 2$$ As, $I_2 = -\frac{1}{4} \int \frac{1}{u^2 + u + 1} du$ and we don't have any derivative of function present in denominator. \therefore we will use some special integrals to solve the problem. As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$ Now we have to reduce I_2 such that it matches with any of above two forms. We will make to create a complete square so that no individual term of x is seen in denominator. $$\therefore I_2 = -\frac{1}{4} \int \frac{1}{u^2 + u + 1} du$$ $$\Rightarrow I_2 = -\frac{1}{4} \int \frac{1}{\{u^2 + 2(\frac{1}{2})u + (\frac{1}{2})^2\} + 1 - (\frac{1}{2})^2} du$$ Using: $a^2 + 2ab + b^2 = (a + b)^2$ We have: $$I_2 = -\frac{1}{4} \int \frac{1}{\left(u + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} du$$ $$\therefore I_2 = -\tfrac{1}{4}\,\tfrac{\tfrac{1}{\sqrt{3}}}{\tfrac{1}{2}}\, tan^{-1} \bigg(\tfrac{u+\tfrac{1}{2}}{\tfrac{\sqrt{3}}{2}} \bigg) + C$$ $$I_2 = -\frac{1}{2\sqrt{3}} tan^{-1} \left(\frac{2u+1}{\sqrt{3}}\right) + C \dots eqn 3$$ From eqn 1, we have: $$I = I_1 + I_2$$ Using eqn 2 and 3, we get - $$I = \frac{1}{4}\log|u^2 + u + 1| - \frac{1}{2\sqrt{3}}\tan^{-1}\left(\frac{2u+1}{\sqrt{3}}\right) + C$$ Putting value of u in I: $$I = \frac{1}{4} \log \left| x^{2^2} + x^2 + 1 \right| - \frac{1}{2\sqrt{3}} \tan^{-1} \left(\frac{2x^2 + 1}{\sqrt{3}} \right) + C$$ $$I = \frac{1}{4} \log |x^4 + x^2 + 1| - \frac{1}{2\sqrt{3}} \tan^{-1} \left(\frac{2x^2 + 1}{\sqrt{3}} \right) + C$$ # 17. Question Evaluate the integral: $$\int \frac{x^3 - 3x}{x^4 + 2x^2 - 4}$$ #### **Answer** Let, $$I = \int \frac{x^3 - 3x}{x^4 + 2x^2 - 4} dx$$ $$I = \int \frac{(x^2-3)x}{(x^2)^2+2x^2-4} dx$$ If we assume x^2 to be an another variable, we can simplify the integral as derivative of x^2 i.e. x is present in numerator. Let. $$x^2 = u$$ $$\Rightarrow$$ 2x dx = du $$\Rightarrow$$ x dx = 1/2 du $$\therefore I = \frac{1}{2} \int \frac{u-3}{u^2 + 2u - 4} du$$ As, $$\frac{d}{du}(u^2+2u-4)=2u+2$$ $$\therefore$$ Let, u - 3 = A(2u + 2) + B $$\Rightarrow$$ u - 3 = 2Au + 2A + B On comparing both sides - We have. $$2A = 1 \Rightarrow A = 1/2$$ $$2A + B = -3 \Rightarrow B = -3-2A = -4$$ Hence, $$I = \int_{\frac{u^2+2u-4}{u^2+2u-4}}^{\frac{1}{2}(2u+2)-4} du$$ $$\therefore I = \frac{1}{2} \int \frac{2u+2}{u^2+2u-4} du - 4 \int \frac{1}{u^2+2u-4} du$$ Let, $$I_1 = \frac{1}{2} \int \frac{2u+2}{u^2+2u-4} du$$ and $I_2 = \int \frac{1}{u^2+2u-4} du$ Now, $$I = I_1 - 4I_2 \dots eqn 1$$ We will solve I_1 and I_2 individually. As, $$I_1 = \frac{1}{2} \int \frac{2u+2}{u^2+2u-4} du$$ Let $$v = u^2 + 2u - 4 \Rightarrow dv = (2u + 2)du$$ $$\therefore$$ I₁ reduces to $\frac{1}{2} \int \frac{dv}{v}$ Hence. $$I_1 = \frac{1}{2} \int \frac{dv}{v} = \log|u| + C \left\{ : \int \frac{dx}{x} = \log|x| + C \right\}$$ On substituting value of u, we have: $$I_1 = \frac{1}{2}\log|u^2 + 2u - 4| + C \dots eqn 2$$ As, $I_2 = \int \frac{1}{u^2 + 2u - 4} du$ and we don't have any derivative of function present in denominator. \therefore we will use some special integrals to solve the problem. As denominator doesn't have any square root term. So one of the following two integrals will solve the problem. i) $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ ii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$ Now we have to reduce I₂ such that it matches with any of above two forms. We will make to create a complete square so that no individual term of x is seen in denominator. $$\therefore I_2 = \int \frac{1}{u^2 + 2u - 4} du$$ $$\Rightarrow I_2 = \int \frac{1}{\{u^2 + 2(1)u + (1)^2\} - 4 - (1)^2} du$$ Using: $$a^2 + 2ab + b^2 = (a + b)^2$$ We have: $$I_2 = \int \frac{1}{(u+1)^2 - (\sqrt{5})^2} du$$ $$I_2$$ matches with $\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$ $$I_2 = \frac{1}{2\sqrt{5}} \log \left| \frac{u+1-\sqrt{5}}{u+1+\sqrt{5}} \right| + C \dots \text{ eqn } 3$$ From eqn 1: $$I = I_1 - 4I_2$$ Using eqn 2 and eqn 3: $$I = \frac{1}{2}\log|u^2 + 2u - 4| - 4\left(\frac{1}{2\sqrt{5}}\log\left|\frac{u+1-\sqrt{5}}{u+1+\sqrt{5}}\right|\right) + C$$ $$I = \frac{1}{2}\log|u^2 + 2u - 4| - \frac{2}{\sqrt{5}}\log\left
\frac{u+1-\sqrt{5}}{u+1+\sqrt{5}}\right| + C$$ Putting value of u in I: $$I = \frac{1}{2}log|x^4 + 2x^2 - 4| - \frac{2}{\sqrt{5}}log\left|\frac{x^2 + 1 - \sqrt{5}}{x^2 + 1 + \sqrt{5}}\right| + C$$ ### Exercise 19.20 ### 1. Question Evaluate the following integrals: $$\int \frac{x^2 + x + 1}{x^2 - x} \, dx$$ #### **Answer** Given $$I = \int \frac{x^2 + x + 1}{x^2 - x} dx$$ Expressing the integral $\int \frac{P(x)}{ax^2+bx+c} dx = \int Q(x) dx + \int \frac{R(x)}{ax^2+bx+c} dx$ $$\Rightarrow \int \frac{x^2 + x + 1}{(x - 1)x} dx$$ $$\Rightarrow \int (\frac{2x+1}{(x-1)x}+1)dx$$ $$\Rightarrow \int \frac{2x+1}{(x-1)x} dx + \int 1 dx$$ Consider $$\int \frac{2x+1}{(x-1)x} dx$$ By partial fraction decomposition, $$\Rightarrow \frac{2x+1}{(x-1)x} = \frac{A}{x-1} + \frac{B}{x}$$ $$\Rightarrow 2x + 1 = Ax + B(x - 1)$$ $$\Rightarrow$$ 2x + 1 = Ax + Bx - B $$\Rightarrow$$ 2x + 1 = (A + B)x - B $$\therefore$$ B = -1 and A + B = 2 $$A = 2 + 1 = 3$$ Thus, $$\Rightarrow \frac{2x+1}{(x-1)x} = \frac{3}{x-1} - \frac{1}{x}$$ $$\Rightarrow \int (\frac{3}{x-1} - \frac{1}{x}) dx$$ $$\Rightarrow 3 \int \frac{1}{x-1} dx - \int \frac{1}{x} dx$$ Consider $$\int \frac{1}{x-1} dx$$ Substitute $u = x - 1 \rightarrow dx = du$. $$\Rightarrow \int \frac{1}{x-1} dx \ = \int \frac{1}{u} du$$ We know that $\int \frac{1}{x} dx = \log |x| + c$ $$\therefore \int \frac{1}{u} du = \log|u| = \log|x - 1|$$ Then, $$\Rightarrow 3 \int \frac{1}{x-1} dx - \int \frac{1}{x} dx = 3(\log|x-1|) - \int \frac{1}{x} dx$$ $$= 3(\log|x-1|) - \log|x|$$ $$\therefore \int \frac{2x+1}{(x-1)x} dx = 3(\log|x-1|) - \log|x|$$ Then, $$\Rightarrow \int \frac{2x+1}{(x-1)x} dx + \int 1 dx = 3(\log|x-1|) - \log|x| + \int 1 dx$$ We know that $\int 1 dx = x + c$ $$\Rightarrow \int \frac{2x+1}{(x-1)x} dx + \int 1 dx = 3(\log|x-1|) - \log|x| + x + c$$ ### 2. Question Evaluate the following integrals: $$\int \frac{x^2 + x - 1}{x^2 + x - 6} dx$$ ## **Answer** Consider I = $$\int \frac{x^2 + x - 1}{x^2 + x - 6} dx$$ Expressing the integral $\int \frac{P(x)}{ax^2+bx+c} dx = \int Q(x) dx + \int \frac{R(x)}{ax^2+bx+c} dx$ Let $$x^2 + x - 1 = x^2 + x - 6 + 5$$ $$\Rightarrow \int \frac{x^2 + x - 1}{x^2 + x - 6} dx = \int \left(\frac{x^2 + x - 6}{x^2 + x - 6} + \frac{5}{x^2 + x - 6} \right) dx$$ $$=\int \left(\frac{5}{x^2+x-6}+1\right)dx$$ $$=5\int \left(\frac{1}{x^2+x-6}\right) dx + \int 1 dx$$ Consider $$\int \frac{1}{x^2+x-6} dx$$ Factorizing the denominator, $$\Rightarrow \int \frac{1}{x^2 + x - 6} dx = \int \frac{1}{(x - 2)(x + 3)} dx$$ By partial fraction decomposition, $$\Rightarrow \frac{1}{(x-2)(x+3)} = \frac{A}{x-2} + \frac{B}{x+3}$$ $$\Rightarrow 1 = A(x + 3) + B(x - 2)$$ $$\Rightarrow$$ 1 = Ax + 3A + Bx - 2B $$\Rightarrow 1 = (A + B) x + (3A - 2B)$$ $$\Rightarrow$$ Then A + B = 0 ... (1) And $$3A - 2B = 1 ... (2)$$ Solving (1) and (2), $$2 \times (1) \rightarrow 2A + 2B = 0$$ $$1 \times (2) \rightarrow 3A - 2B = 1$$ $$5A = 1$$ $$\therefore A = 1/5$$ Substituting A value in (1), $$\Rightarrow A + B = 0$$ $$\Rightarrow 1/5 + B = 0$$ Thus, $$\frac{1}{(x-2)(x+3)} = \frac{1}{5(x-2)} - \frac{1}{5(x+3)}$$ $$=\frac{1}{5}\int \frac{1}{x-2} dx - \frac{1}{5}\int \frac{1}{x+3} dx$$ Let $$x - 2 = u \rightarrow dx = du$$ And $$x + 3 = v \rightarrow dx = dv$$. $$\Rightarrow \frac{1}{5} \int \frac{1}{u} du - \frac{1}{5} \int \frac{1}{v} dv$$ We know that $\int \frac{1}{x} dx = \log|x| + c$ $$\Rightarrow \frac{1}{5}\log|\mathbf{u}| - \frac{1}{5}\log|\mathbf{v}|$$ $$\Rightarrow \frac{1}{5}\log|\mathbf{x}-2| - \frac{1}{5}\log|\mathbf{x}+3|$$ $$\Rightarrow \frac{1}{5}(\log|x-2|-\log|x+3|)$$ Then, $$\Rightarrow 5 \int \left(\frac{1}{x^2 + x - 6}\right) dx + \int 1 dx = 5 \left(\frac{1}{5} (\log|x - 2| - \log|x + 3|)\right) + \int 1 dx$$ We know that $\int 1 dx = x + c$ $$\Rightarrow (\log|x-2| - \log|x+3|) + x + c$$ $$\dot{\cdot} I = \int \frac{x^2 + x - 1}{x^2 + x - 6} dx = -\log|x + 3| + x + \log|x - 2| + c$$ #### 3. Question Evaluate the following integrals: $$\int \frac{\left(1-x^2\right)}{x\left(1-2x\right)} dx$$ #### **Answer** Given $$I = \int \frac{1-x^2}{(1-2x)x} dx$$ Rewriting, we get $$\int \frac{x^2-1}{x(2x-1)} dx$$ Expressing the integral $\int \frac{P(x)}{ax^2+bx+c} dx = \int Q(x) dx + \int \frac{R(x)}{ax^2+bx+c} dx$ $$\Rightarrow \int \frac{x^2-1}{x(2x-1)} \, dx = \int \left(\frac{x-2}{2x(2x-1)} + \frac{1}{2}\right) dx$$ $$= \frac{1}{2} \int \frac{x-2}{x(2x-1)} dx + \frac{1}{2} \int 1 dx$$ Consider $$\int \frac{x-2}{x(2x-1)} dx$$ By partial fraction decomposition, $$\Rightarrow \frac{x-2}{x(2x-1)} = \frac{A}{x} + \frac{B}{2x-1}$$ $$\Rightarrow x - 2 = A(2x - 1) + Bx$$ $$\Rightarrow$$ x - 2 = 2Ax - A + Bx $$\Rightarrow$$ x - 2 = (2A + B) x - A $$\therefore$$ A = 2 and 2A + B = 1 $$\therefore B = 1 - 4 = -3$$ Thus, $$\Rightarrow \frac{x-2}{x(2x-1)} = \frac{2}{x} - \frac{3}{2x-1}$$ $$\Rightarrow \int (\frac{2}{x} - \frac{3}{2x - 1}) dx$$ $$\Rightarrow 2 \int \frac{1}{x} dx - 3 \int \frac{1}{2x - 1} dx$$ Consider $$\int \frac{1}{x} dx$$ We know that $\int \frac{1}{x} dx = \log|x| + c$ $$\Rightarrow \int \frac{1}{x} dx = \log|x|$$ And consider $$\int \frac{1}{2x-1} dx$$ Let $$u = 2x - 1 \rightarrow dx = 1/2 du$$ $$\Rightarrow \int \frac{1}{2x-1} dx = \frac{1}{2} \int \frac{1}{u} du$$ $$\Rightarrow \frac{1}{2} \int \frac{1}{u} du = \frac{\log|u|}{2} = \frac{\log|2x - 1|}{2}$$ Then. $$\Rightarrow \int \frac{x-2}{x(2x-1)} dx = 2 \int \frac{1}{x} dx - 3 \int \frac{1}{2x-1} dx$$ $$= 2(\log |x|) - 3\left(\frac{\log |2x-1|}{2}\right)$$ Then $$\Rightarrow \int \frac{x^2 - 1}{x(2x - 1)} dx = \frac{1}{2} \int \frac{x - 2}{x(2x - 1)} dx + \frac{1}{2} \int 1 dx$$ $$= \frac{1}{2} \left(2(\log|x|) - 3\left(\frac{\log|2x - 1|}{2} \right) \right) + \frac{1}{2} \int 1 \, dx$$ We know that $\int 1 dx = x + c$ $$\Rightarrow \log|x| - \frac{3\log|2x - 1|}{4} + \frac{x}{2} + c$$ $$\therefore I = \int \frac{1 - x^2}{(1 - 2x)x} dx = -\frac{3\log|2x - 1|}{4} + \log|x| + \frac{x}{2} + c$$ ### 4. Question Evaluate the following integrals: $$\int \frac{x^2 + 1}{x^2 - 5x + 6} dx$$ ### Answer Consider $$I = \int \frac{x^2+1}{x^2-5x+6} dx$$ Expressing the integral $\int \frac{P(x)}{ax^2+bx+c} dx = \int Q(x) dx + \int \frac{R(x)}{ax^2+bx+c} dx$ $$\Rightarrow \int \frac{x^2 + 1}{x^2 - 5x + 6} dx = \int \left(\frac{5x - 5}{x^2 - 5x + 6} + 1 \right) dx$$ $$= 5 \int \frac{x-1}{x^2 - 5x + 6} \, dx + \int 1 \, dx$$ Consider $$\int \frac{x-1}{x^2-5x+6} dx$$ Let $$x - 1 = \frac{1}{2}(2x - 5) + \frac{3}{2}$$ and split, $$\Rightarrow \int \left(\frac{2x-5}{2(x^2-5x+6)} + \frac{3}{2(x^2-5x+6)} \right) dx$$ $$\Rightarrow \frac{1}{2} \int \frac{2x-5}{(x^2-5x+6)} dx + \frac{3}{2} \int \frac{1}{x^2-5x+6} dx$$ Consider $$\int \frac{2x-5}{(x^2-5x+6)} dx$$ Let $$u = x^2 - 5x + 6 \rightarrow dx = \frac{1}{2x-5}du$$ $$\Rightarrow \int \frac{2x-5}{(x^2-5x+6)} dx = \int \frac{2x-5}{u} \frac{1}{2x-5} du$$ $$=\int \frac{1}{u}du$$ $$\Rightarrow \int \frac{1}{u} du = \log|u| = \log|x^2 - 5x + 6|$$ Now consider $\int \frac{1}{x^2-5x+6} dx$ $$\Rightarrow \int \frac{1}{x^2 - 5x + 6} dx = \int \frac{1}{(x - 3)(x - 2)} dx$$ By partial fraction decomposition, $$\Rightarrow \frac{1}{(x-3)(x-2)} = \frac{A}{x-3} + \frac{B}{x-2}$$ $$\Rightarrow 1 = A(x-2) + B(x-3)$$ $$\Rightarrow$$ 1 = Ax - 2A + Bx - 3B $$\Rightarrow 1 = (A + B) x - (2A + 3B)$$ $$\Rightarrow$$ A + B = 0 and 2A + 3B = -1 Solving the two equations, $$\Rightarrow$$ 2A + 2B = 0 $$2A + 3B = -1$$ $$-B = 1$$ $$\therefore$$ B = -1 and A = 1 $$\Rightarrow \int \frac{1}{(x-3)(x-2)} \, dx = \int \left(\frac{1}{x-3} - \frac{1}{x-2} \right) dx$$ $$=\int\frac{1}{x-3}\,dx-\int\frac{1}{x-2}\,dx$$ Consider $\int \frac{1}{x-3} dx$ Let $$u = x - 3 \rightarrow dx = du$$ $$\Rightarrow \int \frac{1}{x-3} \, dx = \int \frac{1}{u} \, du$$ We know that $\int \frac{1}{x} dx = \log|x| + c$ $$\Rightarrow \int \frac{1}{u} du = \log|u| = \log|x - 3|$$ Similarly $\int \frac{1}{y-2} dx$ Let $$u = x - 2 \rightarrow dx = du$$ $$\Rightarrow \int \frac{1}{x-2} \, \mathrm{d}x = \int \frac{1}{u} \, \mathrm{d}u$$ $$\Rightarrow \int \frac{1}{u} du = \log|u| = \log|x - 2|$$ Then. $$\Rightarrow \int \frac{1}{x^2 - 5x + 6} dx = \int \frac{1}{(x - 3)(x - 2)} dx = \int \frac{1}{x - 3} dx - \int \frac{1}{x - 2} dx$$ $$= \log|x - 3| - \log|x - 2|$$ Then, $$\begin{split} &\Rightarrow \int \frac{x-1}{x^2 - 5x + 6} dx = \frac{1}{2} \int \frac{2x - 5}{(x^2 - 5x + 6)} dx + \frac{3}{2} \int \frac{1}{x^2 - 5x + 6} dx \\ &= \frac{1}{2} (\log|x^2 - 5x + 6|) + \frac{3}{2} (\log|x - 3| - \log|x - 2|) \\ &= \frac{\log|x^2 - 5x + 6|}{2} + \frac{3\log|x - 3|}{2} - \frac{3\log|x - 2|}{2} \end{split}$$ Then $$\Rightarrow \int \frac{x^2 + 1}{x^2 - 5x + 6} dx = 5 \int \frac{x - 1}{x^2 - 5x + 6} dx + \int 1 dx$$ We know that $\int 1 dx = x + c$ $$\Rightarrow 5 \int \frac{x-1}{x^2 - 5x + 6} dx + \int 1 dx$$ $$= \frac{5 \log|x^2 - 5x + 6|}{2} + \frac{15 \log|x - 3|}{2} - \frac{15 \log|x - 2|}{2} + x + c$$ $$= \frac{5 \log|x - 2| \log|x - 3|}{2} + \frac{15 \log|x - 3|}{2} - \frac{15 \log|x - 2|}{2} + x + c$$ $$= x - 5 \log|x - 2| + 10 \log|x - 3| + c$$ $$\therefore I = \int \frac{x^2 + 1}{x^2 - 5x + 6} dx = x - 5 \log|x - 2| + 10 \log|x - 3| + c$$ #### 5. Question Evaluate the following integrals: $$\int \frac{x^2}{x^2 + 7x + 10} dx$$ ## Answer Given $$I = \int \frac{x^2}{x^2 + 7x + 10} dx$$ Expressing the integral $\int \frac{P(x)}{ax^2+bx+c} dx = \int Q(x) dx + \int \frac{R(x)}{ax^2+bx+c} dx$ $$\Rightarrow \int \frac{x^2}{x^2 + 7x + 10} dx = \int \left(\frac{-7x - 10}{x^2 + 7x + 10} + 1\right) dx$$ $$= - \int \frac{7x+10}{x^2+7x+10} \, dx + \int 1 \, dx$$ Consider $$\int \frac{7x+10}{x^2+7x+10} dx$$ Let $$7x + 10 = \frac{7}{2}(2x + 7) - \frac{29}{2}$$ and split, $$\Rightarrow \int \frac{7x+10}{x^2+7x+10} dx = \int \left(\frac{7(2x+7)}{2(x^2+7x+10)} - \frac{29}{2(x^2+7x+10)} \right) dx$$ $$= \frac{7}{2} \int \frac{2x+7}{x^2+7x+10} dx - \frac{29}{2} \int \frac{1}{x^2+7x+10} dx$$ Consider $\int \frac{2x+7}{x^2+7x+10} dx$ Let $$u = x^2 + 7x + 10 \rightarrow dx = \frac{1}{2x+7}du$$ $$\Rightarrow \int \frac{2x+7}{(x^2+7x+10)} dx = \int \frac{2x+7}{u}
\frac{1}{2x+7} du$$ $$=\int \frac{1}{u}du$$ We know that $\int \frac{1}{x} dx = \log|x| + c$ $$\Rightarrow \int \frac{1}{u} du = \log|u| = \log|x^2 + 7x + 10|$$ Now consider $\int \frac{1}{x^2 + 7x + 10} dx$ $$\Rightarrow \int \frac{1}{x^2 + 7x + 10} \, \mathrm{d}x = \int \frac{1}{(x+2)(x+5)} \, \mathrm{d}x$$ By partial fraction decomposition, $$\Rightarrow \frac{1}{(x+2)(x+5)} = \frac{A}{x+2} + \frac{B}{x+5}$$ $$\Rightarrow$$ 1 = A (x + 2) + B (x + 5) $$\Rightarrow 1 = Ax + 2A + Bx + 5B$$ $$\Rightarrow 1 = (A + B) x + (2A + 5B)$$ $$\Rightarrow$$ A + B = 0 and 2A + 5B = 1 Solving the two equations, $$\Rightarrow$$ 2A + 2B = 0 $$2A + 5B = 1$$ $$-3B = -1$$ ∴ B = $$1/3$$ and A = $-1/3$ $$\Rightarrow \int \frac{1}{(x+2)(x+5)} dx = \int \left(\frac{-1}{3(x+2)} + \frac{1}{3(x+5)}\right) dx$$ $$=-\frac{1}{3}\int \frac{1}{x+2}dx + \frac{1}{3}\int \frac{1}{x+5}dx$$ Consider $\int \frac{1}{x+2} dx$ Let $$u = x + 2 \rightarrow dx = du$$ $$\Rightarrow \int \frac{1}{x+2} dx = \int \frac{1}{u} du$$ $$\Rightarrow \int \frac{1}{u} du = \log |u| = \log |x+2|$$ Similarly $\int \frac{1}{x+5} dx$ Let $u = x + 5 \rightarrow dx = du$ $$\Rightarrow \int \frac{1}{x+5} dx = \int \frac{1}{u} du$$ We know that $\int_{x}^{1} dx = \log|x| + c$ $$\Rightarrow \int \frac{1}{u} du = \log |u| = \log |x+5|$$ Then $$\Rightarrow \int \frac{1}{x^2 + 7x + 10} dx = \int \frac{1}{(x+2)(x+5)} dx = -\frac{1}{3} \int \frac{1}{x+2} dx + \frac{1}{3} \int \frac{1}{x+5} dx$$ $$= \frac{-\log|x+2|}{3} + \frac{\log|x+5|}{3}$$ Then, $$\Rightarrow \int \frac{7x+10}{x^2+7x+10} dx = \frac{7}{2} \int \frac{2x+7}{x^2+7x+10} dx - \frac{29}{2} \int \frac{1}{x^2+7x+10} dx$$ $$= \frac{7}{2} (\log|x^2+7x+10|) - \frac{29}{2} (\frac{-\log|x+2|}{3} + \frac{\log|x+5|}{3})$$ $$= \frac{7\log|x^2+7x+10|}{2} + \frac{29\log|x+2|}{6} - \frac{29\log|x+5|}{6}$$ Then, $$\Rightarrow \int \frac{x^2}{x^2 + 7x + 10} dx = -\int \frac{7x + 10}{x^2 + 7x + 10} dx + \int 1 dx$$ We know that $\int 1 dx = x + c$ $$\Rightarrow -\int \frac{7x+10}{x^2+7x+10} dx + \int 1 dx$$ $$= \frac{-7 \log|x^2+7x+10|}{2} - \frac{29 \log|x+2|}{6} + \frac{29 \log|x+5|}{6} + x + c$$ $$= \frac{-7 \log|x+2| \log|x+5|}{2} - \frac{29 \log|x+2|}{6} + \frac{29 \log|x+5|}{6} + x + c$$ $$= -\frac{25 \log|x+2|}{3} + \frac{4 \log|x+5|}{3} + x + c$$ $$\therefore I = \int \frac{x^2}{x^2+7x+10} dx = -\frac{25 \log|x+2|}{3} + \frac{4 \log|x+5|}{3} + x + c$$ ## 6. Question Evaluate the following integrals: $$\int \frac{x^2 + x + 1}{x^2 - x + 1} dx$$ ### **Answer** Given $$I = \int \frac{x^2 + x + 1}{x^2 - x + 1} dx$$ Expressing the integral $\int \frac{P(x)}{ax^2+bx+c} dx = \int Q(x) dx + \int \frac{R(x)}{ax^2+bx+c} dx$ $$\Rightarrow \int \frac{x^2 + x + 1}{x^2 - x + 1} dx = \int \left(\frac{2x}{x^2 - x + 1} + 1\right) dx$$ $$=2\int \left(\frac{x}{x^2-x+1}\right)dx+\int 1\,dx$$ Consider $\int \frac{x}{x^2-x+1} dx$ Let x = 1/2 (2x - 1) + 1/2 and split, $$\Rightarrow \int (\frac{2x-1}{2(x^2-x+1)} + \frac{1}{2(x^2-x+1)}) dx$$ $$\Rightarrow \frac{1}{2} \int \frac{2x-1}{(x^2-x+1)} dx + \frac{1}{2} \int \frac{1}{(x^2-x+1)} dx$$ Consider $$\int \frac{2x-1}{(x^2-x+1)} dx$$ Let $$u = x^2 - x + 1 \rightarrow dx = du/2x - 1$$ $$\Rightarrow \int \frac{2x-1}{(x^2-x+1)} dx = \int \frac{2x-1}{u} \frac{du}{2x-1}$$ $$=\int \frac{1}{u}du$$ We know that $\int \frac{1}{x} dx = \log|x| + c$ $$\Rightarrow \int \frac{1}{u} du = log|u| = log|x^2 - x + 1|$$ Now consider $\int \frac{1}{(x^2-x+1)} dx$ $$\Rightarrow \int \frac{1}{\left(x^2 - x + 1\right)} dx = \int \frac{1}{\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}} dx$$ Let $$u = \frac{2x-1}{\sqrt{3}} \rightarrow dx = \frac{\sqrt{3}}{2} du$$ $$\Rightarrow \int \frac{1}{\left(x - \frac{1}{2}\right)^2 + \frac{3}{2}} dx = \int \frac{2\sqrt{3}}{3u^2 + 3} du$$ $$=\frac{2}{\sqrt{3}}\int\frac{1}{u^2+1}du$$ We know that $\int \frac{1}{x^2+1} dx = \tan^{-1} x + c$ $$\Rightarrow \frac{2}{\sqrt{3}} \int \frac{1}{u^2 + 1} du = \frac{2 \tan^{-1} u}{\sqrt{3}} = \frac{2 \tan^{-1} (\frac{2x - 1}{\sqrt{3}})}{\sqrt{3}}$$ Then, $$\begin{split} &\Rightarrow \int \frac{x}{x^2 - x + 1} dx = \frac{1}{2} \int \frac{2x - 1}{(x^2 - x + 1)} dx + \frac{1}{2} \int \frac{1}{(x^2 - x + 1)} dx \\ &= \frac{1}{2} (\log|x^2 - x + 1|) + \frac{1}{2} (\frac{2\tan^{-1} \left(\frac{2x - 1}{\sqrt{3}}\right)}{\sqrt{3}}) \\ &= \frac{\log|x^2 - x + 1|}{2} + \frac{\tan^{-1} \left(\frac{2x - 1}{\sqrt{3}}\right)}{\sqrt{3}} \end{split}$$ Now $$2 \int \left(\frac{x}{x^2-x+1}\right) dx + \int 1 dx$$ We know that $\int 1 dx = x + c$ $$\begin{split} & \Rightarrow 2 \int \left(\frac{x}{x^2 - x + 1}\right) dx + \int 1 \, dx = 2 \left(\frac{\log |x^2 - x + 1|}{2} + \frac{\tan^{-1}\left(\frac{2x - 1}{\sqrt{3}}\right)}{\sqrt{3}}\right) + x + c \\ & = (\log |x^2 - x + 1|) + \left(\frac{2\tan^{-1}\left(\frac{2x - 1}{\sqrt{3}}\right)}{\sqrt{3}}\right) + x + c \\ & \therefore I = \int \frac{x^2 + x + 1}{x^2 - x + 1} dx = (\log |x^2 - x + 1|) + \left(\frac{2\tan^{-1}\left(\frac{2x - 1}{\sqrt{3}}\right)}{\sqrt{3}}\right) + x + c \end{split}$$ $$\therefore I = \int \frac{x^2 + x + 1}{x^2 - x + 1} dx = (\log|x^2 - x + 1|) + \left(\frac{2 \tan^{-1} \left(\frac{2x - 1}{\sqrt{3}}\right)}{\sqrt{3}}\right) + x + c$$ ### 7. Question Evaluate the following integrals: $$\int \frac{(x-1)^2}{x^2+2x+2} dx$$ #### **Answer** Given $$I = \int \frac{(x-1)^2}{x^2 + 2x + 2} dx$$ Expressing the integral $\int \frac{P(x)}{ax^2+bx+c} dx = \int Q(x) dx + \int \frac{R(x)}{ax^2+bx+c} dx$ $$\Rightarrow \int \frac{(x-1)^2}{x^2 + 2x + 2} dx = \int \left(\frac{-4x - 1}{x^2 + 2x + 2} + 1\right) dx$$ $$= -\int \frac{4x + 1}{x^2 + 2x + 2} dx + \int 1 dx$$ Consider $$\int \frac{4x+1}{x^2+2x+2} dx$$ Let 4x + 1 = 2(2x + 2) - 3 and split, $$\Rightarrow \int \frac{4x+1}{x^2+2x+2} dx = \int \left(\frac{2(2x+2)}{x^2+2x+2} - \frac{3}{x^2+2x+2}\right) dx$$ $$= 4 \int \frac{x+1}{x^2+2x+2} dx - 3 \int \frac{1}{x^2+2x+2} dx$$ Consider $$\int \frac{x+1}{x^2+2x+2} dx$$ Let $$u = x^2 + 2x + 2 \rightarrow dx = \frac{1}{2x+2}du$$ $$\Rightarrow \int \frac{x+1}{(x^2+2x+2)} dx = \int \frac{x+1}{u} \frac{1}{2x+2} du$$ $$=\int \frac{1}{2u}du$$ $$\Rightarrow \frac{1}{2} \int \frac{1}{u} du = \frac{\log|u|}{2} = \frac{\log|x^2 + 2x + 2|}{2}$$ Now consider $\int \frac{1}{x^2+2x+2} dx$ $$\Rightarrow \int \frac{1}{x^2 + 2x + 2} dx = \int \frac{1}{(x+1)^2 + 1} dx$$ Let $u = x + 1 \rightarrow dx = du$ $$\Rightarrow \int \frac{1}{(x+1)^2 + 1} dx = \int \frac{1}{u^2 + 1} du$$ We know that $\int \frac{1}{x^2+1} dx = \tan^{-1} x + c$ $$\Rightarrow \int \frac{1}{u^2 + 1} \, du = \tan^{-1} u = \tan^{-1} (x + 1)$$ Then, $$\Rightarrow \int \frac{4x+1}{x^2+2x+2} dx = 4 \int \frac{x+1}{x^2+2x+2} dx - 3 \int \frac{1}{x^2+2x+2} dx$$ $$=4\left(\frac{\log|x^2+2x+2|}{2}\right)-3(\tan^{-1}(x+1))$$ $$= 2 \log |x^2 + 2x + 2| - 3 \tan^{-1}(x+1)$$ Then $$\Rightarrow \int \frac{(x-1)^2}{x^2 + 2x + 2} dx = -\int \frac{4x + 1}{x^2 + 2x + 2} dx + \int 1 dx$$ We know that $\int 1 dx = x + c$ $$\Rightarrow -\int \frac{4x+1}{x^2+2x+2} dx + \int 1 dx = -2 \log|x^2+2x+2| + 3 \tan^{-1}(x+1) + x + c$$ $$\therefore I = \int \frac{(x-1)^2}{x^2 + 2x + 2} dx = -2 \log |x^2 + 2x + 2| + 3 \tan^{-1}(x+1) + x + c$$ ### 8. Question Evaluate the following integrals: $$\int \frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1} dx$$ ### Answer Given $$I = \int \frac{x^2 + x^2 + 2x + 1}{x^2 - x + 1} dx$$ Expressing the integral $$\int \frac{P(x)}{ax^2+bx+c} dx = \int Q(x) dx + \int \frac{R(x)}{ax^2+bx+c} dx$$ $$\Rightarrow \int \frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1} dx = \int \frac{3x - 1}{x^2 - x + 1} + x + 2 dx$$ $$= \int \frac{3x - 1}{x^2 - x + 1} dx + \int x dx + 2 \int 1 dx$$ Consider $$\int \frac{3x-1}{x^2-x+1} dx$$ Let $$3x - 1 = \frac{3}{2}(2x - 1) + \frac{1}{2}$$ and split, $$\Rightarrow \int \frac{3x-1}{x^2-x+1} dx = \int \left(\frac{3(2x-1)}{2(x^2-x+1)} + \frac{1}{2(x^2-x+1)}\right) dx$$ $$= \frac{3}{2} \int \frac{(2x-1)}{(x^2-x+1)} dx + \frac{1}{2} \int \frac{1}{(x^2-x+1)} dx$$ Consider $$\int \frac{(2x-1)}{(x^2-x+1)} dx$$ Let $$u = x^2 - x + 1 \rightarrow dx = \frac{1}{2x-1}du$$ $$\Rightarrow \int \frac{(2x-1)}{(x^2-x+1)} dx = \int \frac{(2x-1)}{u} \frac{1}{2x-1} du$$ $$= \int \frac{1}{u} du$$ We know that $$\int \frac{1}{x} dx = \log|x| + c$$ $$\Rightarrow \int \frac{1}{u} du = \log |u| = \log |x^2 - x + 1|$$ Consider $$\int \frac{1}{(x^2-x+1)} dx$$ $$\Rightarrow \int \frac{1}{\left(x^2 - x + 1\right)} dx = \int \frac{1}{\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}} dx$$ Let $$u = \frac{2x-1}{\sqrt{3}} \rightarrow dx = \frac{\sqrt{3}}{2} du$$ $$\Rightarrow \int \frac{1}{\left(x - \frac{1}{2}\right)^2 + \frac{3}{2}} dx = \int \frac{2\sqrt{3}}{3u^2 + 3} du$$ $$=\frac{2}{\sqrt{3}}\int \frac{1}{u^2+1}du$$ We know that $\int \frac{1}{x^2+1} dx = \tan^{-1} x + c$ $$\Rightarrow \frac{2}{\sqrt{3}} \int \frac{1}{u^2 + 1} \, du = \frac{2 \tan^{-1} u}{\sqrt{3}} = \frac{2 \tan^{-1}(\frac{2x - 1}{\sqrt{3}})}{\sqrt{3}}$$ Then $$\Rightarrow \int \frac{3x-1}{x^2-x+1} \, dx = \frac{3}{2} \int \frac{2x-1}{(x^2-x+1)} \, dx + \frac{1}{2} \int \frac{1}{(x^2-x+1)} \, dx$$ $$= \frac{3}{2} (\log|x^2 - x + 1|) + \frac{1}{2} (\frac{2 \tan^{-1} \left(\frac{2x - 1}{\sqrt{3}}\right)}{\sqrt{3}})$$ $$= \frac{3 \log \lvert x^2 - x + 1 \rvert}{2} + \frac{\tan^{-1} \left(\frac{2x - 1}{\sqrt{3}}\right)}{\sqrt{3}}$$ Then $$\Rightarrow \int \frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1} dx = \int \frac{3x - 1}{x^2 - x + 1} dx + \int x dx + 2 \int 1 dx$$ We know that $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ and $\int 1 dx = x + c$ $$\begin{split} \Rightarrow \int \frac{3x-1}{x^2-x+1} dx + \int x dx + 2 \int 1 dx \\ &= \frac{3 \log |x^2-x+1|}{2} + \frac{\tan^{-1} \left(\frac{2x-1}{\sqrt{3}}\right)}{\sqrt{3}} + \frac{x^2}{2} + 2x + c \end{split}$$ $$= \frac{3\log|x^2 - x + 1| + x^2 + 4x}{2} + \frac{\tan^{-1}\left(\frac{2x - 1}{\sqrt{3}}\right)}{\sqrt{3}} + c$$ $$\therefore I = \int \frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1} dx = \frac{3 \log \lvert x^2 - x + 1 \rvert + x^2 + 4x}{2} + \frac{\tan^{-1} \left(\frac{2x - 1}{\sqrt{3}}\right)}{\sqrt{3}} + c$$ ### 9. Question Evaluate the following integrals: $$\int \frac{x^2
\left(x^4 + 4\right)}{x^2 + 4} dx$$ #### **Answer** Given $$I = \int \frac{x^2(x^4+4)}{x^2+4} dx$$ Expressing the integral $\int \frac{P(x)}{ax^2+bx+c} dx = \int Q(x) dx + \int \frac{R(x)}{ax^2+bx+c} dx$ $$\Rightarrow \int \frac{x^2(x^4+4)}{x^2+4} dx = \int \left(-\frac{80}{x^2+4} + x^4 - 4x^2 + 20 \right) dx$$ $$= -80 \int \frac{1}{x^2 + 4} dx + \int x^4 dx - 4 \int x^2 dx + 20 \int 1 dx$$ Consider $\int \frac{1}{x^2+4} dx$ Let $u = 1/2 x \rightarrow dx = 2du$ $$\Rightarrow \int \frac{1}{x^2 + 4} \, \mathrm{d}x = \int \frac{2}{4u^2 + 4} \, \mathrm{d}u$$ $$=\frac{1}{2}\int \frac{1}{u^2+1} du$$ We know that $\int \frac{1}{x^2+1} dx = tan^{-1} x + c$ $$\Rightarrow \frac{1}{2} \int \frac{1}{u^2 + 1} du = \frac{\tan^{-1} u}{2} = \frac{\tan^{-1} (\frac{x}{2})}{2}$$ Then, $$\Rightarrow \int \frac{x^2(x^4+4)}{x^2+4} dx = -80 \int \frac{1}{x^2+4} dx + \int x^4 dx - 4 \int x^2 dx + 20 \int 1 dx$$ We know that $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ and $\int 1 dx = x + c$ $$\Rightarrow -80 \left(\frac{\tan^{-1} \left(\frac{x}{2} \right)}{2} \right) + \frac{x^5}{5} - \frac{4x^3}{3} + 20x + c$$ $$\Rightarrow -40 \tan^{-1} \left(\frac{x}{2}\right) + \frac{x^5}{5} - \frac{4x^3}{3} + 20x + c$$ $$\therefore I = \int \frac{x^2(x^4+4)}{x^2+4} dx = -40 \tan^{-1}\left(\frac{x}{2}\right) + \frac{x^5}{5} - \frac{4x^3}{3} + 20x + c$$ # 10. Question Evaluate the following integrals: $$\int \frac{x^2}{x^2 + 6x + 12} dx$$ #### **Answer** Given $$I = \int \frac{x^2}{x^2 + 6x + 12} dx$$ Expressing the integral $\int \frac{P(x)}{ax^2+bx+c} dx = \int Q(x) dx + \int \frac{R(x)}{ax^2+bx+c} dx$ $$\Rightarrow \int \frac{x^2}{x^2 + 6x + 12} dx = \int (\frac{-6x - 12}{x^2 + 6x + 12} + 1) dx$$ $$= -6 \int \frac{x+2}{x^2+6x+12} dx + \int 1 dx$$ Consider $$\int \frac{x+2}{x^2+6x+12} dx$$ Let x + 2 = 1/2(2x + 6) - 1 and split, $$\Rightarrow \int \frac{x+2}{x^2+6x+12} \, dx = \int \left(\frac{(2x+6)}{2(x^2+6x+12)} - \frac{1}{(x^2+6x+12)} \right) dx$$ $$= \int \frac{x+3}{x^2+6x+12} dx - \int \frac{1}{x^2+6x+12} dx$$ Consider $$\int \frac{x+3}{x^2+6x+12} dx$$ Let $$u = x^2 + 6x + 12 \rightarrow dx = \frac{1}{2x+6}du$$ $$\Rightarrow \int \frac{x+3}{(x^2+6x+12)} dx = \int \frac{x+3}{u} \frac{1}{2x+6} du$$ $$=\int \frac{1}{2u}du$$ We know that $\int \frac{1}{x} dx = \log|x| + c$ $$\Rightarrow \frac{1}{2} \int \frac{1}{u} du = \frac{\log|u|}{2} = \frac{\log|x^2 + 6x + 12|}{2}$$ Now consider $\int \frac{1}{x^2+6x+12} dx$ $$\Rightarrow \int \frac{1}{x^2 + 6x + 12} \, dx = \int \frac{1}{(x+3)^2 + 3} \, dx$$ Let $$u = \frac{x+3}{\sqrt{3}} \rightarrow dx = \sqrt{3}du$$ $$\Rightarrow \int \frac{1}{(x+3)^2+3} \, \mathrm{d}x = \frac{\sqrt{3}}{3u^2+3}$$ $$=\frac{1}{\sqrt{3}}\int \frac{1}{u^2+1}du$$ We know that $\int \frac{1}{x^2+1} dx = \tan^{-1} x + c$ $$\Rightarrow \frac{1}{\sqrt{3}} \int \frac{1}{u^2 + 1} du = \frac{\tan^{-1} u}{\sqrt{3}} = \frac{\tan^{-1}(\frac{x + 3}{\sqrt{3}})}{\sqrt{3}}$$ Then. $$\Rightarrow \int \frac{x+2}{x^2+6x+12} \, dx = \int \frac{x+3}{x^2+6x+12} \, dx - \int \frac{1}{x^2+6x+12} \, dx$$ $$= \frac{\log|x^2 + 6x + 12|}{2} - \frac{\tan^{-1}(\frac{x+3}{\sqrt{3}})}{\sqrt{3}}$$ Then $$\Rightarrow \int \frac{x^2}{x^2 + 6x + 12} dx = -6 \int \frac{x + 2}{x^2 + 6x + 12} dx + \int 1 dx$$ We know that $\int 1 dx = x + c$ $$\begin{split} \Rightarrow -6 \int \frac{x+2}{x^2+6x+12} dx + \int 1 \, dx \\ &= -3 \log |x^2+6x+12| + \frac{6 \tan^{-1}(\frac{x+3}{\sqrt{3}})}{\sqrt{3}} + x + c \end{split}$$ $$= -3\log|x^2 + 6x + 12| + 2\sqrt{3}\tan^{-1}(\frac{x+3}{\sqrt{3}}) + x + c$$ $$\therefore I = \int \frac{x^2}{x^2 + 6x + 12} \, dx = -3 \log \lvert x^2 + 6x + 12 \rvert + 2.\sqrt{3} \tan^{-1}(\frac{x+3}{\sqrt{3}}) + x + c$$ ### Exercise 19.21 ## 1. Question Evaluate the following integrals: $$\int \frac{x}{\sqrt{x^2 + 6x + 10}} dx$$ #### **Answer** Given $$I = \int \frac{x}{\sqrt{x^2 + 6x + 10}} dx$$ Integral is of form $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$ Writing numerator as $px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$ $$\Rightarrow$$ px + q = λ (2ax + b) + μ $$\Rightarrow$$ x = λ (2x + 6) + μ $$\therefore \lambda = 1/2 \text{ and } \mu = -3$$ Let x = 1/2(2x + 6) - 3 and split, $$\Rightarrow \int \frac{x}{\sqrt{x^2+6x+10}} \, dx = \int \bigg(\frac{2x+6}{2\sqrt{x^2+6x+10}} - \frac{3}{\sqrt{x^2+6x+10}} \bigg) dx$$ $$= \int \frac{x+3}{\sqrt{x^2+6x+10}} \, dx - 3 \int \frac{1}{\sqrt{x^2+6x+10}} \, dx$$ Consider $$\int \frac{x+3}{\sqrt{x^2+6x+10}} dx$$ Let $$u = x^2 + 6x + 10 \rightarrow dx = \frac{1}{2x+6}du$$ $$\Rightarrow \int \frac{x+3}{\sqrt{x^2+6x+10}} dx = \int \frac{1}{2\sqrt{u}} du$$ $$=\frac{1}{2}\int \frac{1}{\sqrt{u}}du$$ We know that $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow \frac{1}{2} \int \frac{1}{\sqrt{u}} du = \frac{1}{2} (2\sqrt{u})$$ $$=\sqrt{u}=\sqrt{x^2+6x+10}$$ Consider $$\int \frac{1}{\sqrt{x^2+6x+10}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{x^2 + 6x + 10}} dx = \int \frac{1}{\sqrt{(x+3)^2 + 1}} dx$$ Let $$u = x + 3 \rightarrow dx = du$$ $$\Rightarrow \int \frac{1}{\sqrt{(x+3)^2+1}} dx = \int \frac{1}{\sqrt{(u)^2+1}} du$$ We know that $\int\!\frac{1}{\sqrt{x^2+1}}dx=\sinh^{-1}x+c$ $$\Rightarrow \int \frac{1}{\sqrt{u^2+1}} \, du = sinh^{-1}(u)$$ $$= \sinh^{-1}(x+3)$$ Then $$\Rightarrow \int \frac{x}{\sqrt{x^2 + 6x + 10}} \, dx = \int \frac{x + 3}{\sqrt{x^2 + 6x + 10}} \, dx - 3 \int \frac{1}{\sqrt{x^2 + 6x + 10}} \, dx$$ $$=\sqrt{x^2+6x+10}-3\sinh^{-1}(x+3)+c$$ $$\therefore I = \int \frac{x}{\sqrt{x^2 + 6x + 10}} dx = \sqrt{x^2 + 6x + 10} - 3\sinh^{-1}(x+3) + c$$ ### 2. Question Evaluate the following integrals: $$\int \frac{2x+1}{\sqrt{x^2+2x-1}} dx$$ ### **Answer** Given $$I = \int \frac{2x+1}{\sqrt{x^2+2x-1}} dx$$ Integral is of form $$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$$ Writing numerator as $$px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$$ $$\Rightarrow$$ px + q = $\lambda(2ax + b) + \mu$ $$\Rightarrow 2x + 1 = \lambda (2x + 2) + \mu$$ $$\therefore \lambda = 1$$ and $\mu = -1$ Let $$2x + 1 = 2x + 2 - 1$$ and split, $$\Rightarrow \int \frac{2x+1}{\sqrt{x^2+2x-1}} dx = \int \left(\frac{2x+2}{\sqrt{x^2+2x-1}} - \frac{1}{\sqrt{x^2+2x-1}}\right) dx$$ $$=2\int \frac{x+1}{\sqrt{x^2+2x-1}} dx - \int \frac{1}{\sqrt{x^2+2x-1}} dx$$ Consider $$\int \frac{x+1}{\sqrt{x^2+2x-1}} dx$$ Let $$u = x^2 + 2x - 1 \rightarrow dx = \frac{1}{2x+2}du$$ $$\Rightarrow \int \frac{x+1}{\sqrt{x^2+2x-1}} dx = \int \frac{1}{2\sqrt{u}} du$$ $$=\frac{1}{2}\int \frac{1}{\sqrt{u}}du$$ We know that $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow \frac{1}{2} \int \frac{1}{\sqrt{u}} du = \frac{1}{2} (2\sqrt{u})$$ $$=\sqrt{u}=\sqrt{x^2+2x-1}$$ Consider $$\int \frac{1}{\sqrt{x^2+2x-1}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{x^2 + 2x - 1}} dx = \int \frac{1}{\sqrt{(x+1)^2 - 2}} dx$$ Let $$u = \frac{x+1}{\sqrt{2}} \rightarrow dx = \sqrt{2}du$$ $$\Rightarrow \int \frac{1}{\sqrt{(x+1)^2 - 2}} dx = \int \frac{\sqrt{2}}{\sqrt{2u^2 - 2}} du$$ $$=\int \frac{1}{\sqrt{u^2-1}}du$$ We know that $$\int \frac{1}{\sqrt{x^2-1}} dx = \cosh^{-1} x + c$$ $$\Rightarrow \int \frac{1}{\sqrt{u^2 - 1}} du = \cosh^{-1}(u)$$ $$= \cosh^{-1}\left(\frac{x+1}{\sqrt{2}}\right)$$ Then. $$\begin{split} & \Rightarrow \int \frac{2x+1}{\sqrt{x^2+2x-1}} dx = 2 \int \frac{x+1}{\sqrt{x^2+2x-1}} dx - \int \frac{1}{\sqrt{x^2+2x-1}} dx \\ & = 2 \sqrt{x^2+2x-1} - \cosh^{-1} \left(\frac{x+1}{\sqrt{2}}\right) + c \\ & \therefore I = \int \frac{2x+1}{\sqrt{x^2+2x-1}} dx = 2 \sqrt{x^2+2x-1} - \cosh^{-1} \left(\frac{x+1}{\sqrt{2}}\right) + c \end{split}$$ ### 3. Question Evaluate the following integrals: $$\int \frac{x+1}{\sqrt{x+5x-x^2}} \, \mathrm{d}x$$ ### Answer Given $$I = \int \frac{x+1}{\sqrt{4+5x-x^2}} dx$$ Integral is of form $$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$$ Writing numerator as $$px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$$ $$\Rightarrow$$ px + q = $\lambda(2ax + b) + \mu$ $$\Rightarrow x + 1 = \lambda (-2x + 5) + \mu$$ $$\therefore \lambda = -1/2$$ and $\mu = 7/2$ Let $$x + 1 = -1/2(-2x + 5) + 7/2$$ $$\Rightarrow \int \frac{x+1}{\sqrt{-x^2+5x+4}} dx = \int \left(\frac{-2x+5}{2\sqrt{-x^2+5x+4}} + \frac{7}{2\sqrt{-x^2+5x+4}}\right) dx$$ 1 \(\int -2x+5 \) \(7 \) \(\int 1 \) $$= \frac{1}{2} \int \frac{-2x+5}{\sqrt{-x^2+5x+4}} dx + \frac{7}{2} \int \frac{1}{\sqrt{-x^2+5x+4}} dx$$ Consider $$\int \frac{-2x+5}{\sqrt{-x^2+5x+4}} dx$$ Let $$u = -x^2 + 5x + 4 \rightarrow dx = \frac{1}{-2x+5} du$$ $$\Rightarrow \int \frac{-2x+5}{\sqrt{-x^2+5x+4}} \, dx = -\int \frac{1}{\sqrt{u}} \, du$$ We know that $$\int x^n \, dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow -\int \frac{1}{\sqrt{u}} du = -(2\sqrt{u})$$ $$=-2\sqrt{x^2+6x+10}$$ Consider $$\int \frac{1}{\sqrt{-x^2+5x+4}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{-x^2 + 5x + 4}} dx = \int \frac{1}{\sqrt{-\left(x - \frac{5}{2}\right)^2 + \frac{41}{4}}} dx$$ Let $$u = \frac{2x-5}{\sqrt{41}} \rightarrow dx = \frac{\sqrt{41}}{2} du$$ $$\Rightarrow \int \frac{1}{\sqrt{-\left(x-\frac{5}{2}\right)^2 + \frac{41}{4}}} dx = \int \frac{\sqrt{41}}{\sqrt{41 - 41u^2}} du$$ $$= \int \frac{1}{\sqrt{1-u^2}} du$$ We know that $\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}(x) + c$ $$\Rightarrow \int \frac{1}{\sqrt{1-u^2}} du = sin^{-1} \left(\frac{2x-5}{\sqrt{41}} \right)$$ Then, $$\Rightarrow \int \frac{x+1}{\sqrt{-x^2+5x+4}} \, dx = \frac{1}{2} \int \frac{-2x+5}{\sqrt{-x^2+5x+4}} \, dx + \frac{7}{2} \int \frac{1}{\sqrt{-x^2+5x+4}} \, dx$$ $$= -\sqrt{-x^2 + 5x + 4} + \frac{7}{2} \left(\sin^{-1} \left(\frac{2x - 5}{\sqrt{41}} \right) \right) + c$$ $$\therefore I = \int \frac{x+1}{\sqrt{-x^2+5x+4}} \, dx = -\sqrt{-x^2+5x+4} + \frac{7}{2} \bigg(sin^{-1} \bigg(\frac{2x-5}{\sqrt{41}} \bigg) \bigg) + c$$ ### 4. Question Evaluate the following integrals: $$\int \frac{6x-5}{\sqrt{3x^2-5x+1}} dx$$ #### **Answer** Given $$I = \int \frac{6x-5}{\sqrt{3x^2-5x+1}} dx$$ Integral is of form $$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$$ Writing numerator as $px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$ $$\Rightarrow$$ px + q = $\lambda(2ax
+ b) + \mu$ $$\Rightarrow$$ 6x - 5 = λ (6x - 5) + μ $$\therefore \lambda = 1 \text{ and } \mu = 0$$ Let $$u = 3x^2 - 5x + 1 \rightarrow dx = \frac{1}{6x-5}du$$ $$\Rightarrow \int \frac{6x-5}{\sqrt{3x^2-5x+1}} dx = \int \frac{1}{\sqrt{u}} du$$ We know that $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ $$\Rightarrow \int \frac{1}{\sqrt{u}} du = (2\sqrt{u}) + c$$ $$= 2\sqrt{3x^2 - 5x + 1} + c$$ $$\therefore I = \int \frac{6x - 5}{\sqrt{3x^2 - 5x + 1}} dx = 2\sqrt{3x^2 - 5x + 1} + c$$ ### 5. Question Evaluate the following integrals: $$\int \frac{3x+1}{\sqrt{5-2x-x^2}} dx$$ # **Answer** Given $$I = \int \frac{3x+1}{\sqrt{-x^2-2x+5}} dx$$ Integral is of form $$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$$ Writing numerator as $$px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$$ $$\Rightarrow$$ px + q = $\lambda(2ax + b) + \mu$ $$\Rightarrow 3x + 1 = \lambda (-2x - 2) + \mu$$ $$\therefore \lambda = -3/2$$ and $\mu = -2$ Let $$3x + 1 = -(3/2)(-2x - 2) - 2$$ $$\Rightarrow \int \frac{3x+1}{\sqrt{-x^2-2x+5}} \, dx = \int \left(\frac{-3(-2x-2)}{2\sqrt{-x^2-2x+5}} - \frac{2}{\sqrt{-x^2-2x+5}} \right) dx$$ $$= 3 \int \frac{x+1}{\sqrt{-x^2-2x+5}} dx - 2 \int \frac{1}{\sqrt{-x^2-2x+5}} dx$$ Consider $$\int \frac{x+1}{\sqrt{-x^2-2x+5}} dx$$ Let $$u = -x^2 - 2x + 5 \rightarrow dx = \frac{1}{-2x-2}du$$ $$\Rightarrow \int \frac{x+1}{\sqrt{-x^2-2x+5}} dx = \int -\frac{1}{2\sqrt{u}} du$$ $$=-\frac{1}{2}\int \frac{1}{\sqrt{u}}du$$ We know that $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow -\frac{1}{2} \int \frac{1}{\sqrt{u}} du = -(\sqrt{u})$$ $$=-\sqrt{-x^2-2x+5}$$ Consider $$\int \frac{1}{\sqrt{-x^2-2x+5}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{-x^2 - 2x + 5}} dx = \int \frac{1}{\sqrt{6 - (x + 1)^2}} dx$$ Let $$u = \frac{x+1}{\sqrt{6}} \rightarrow dx = \sqrt{6}du$$ $$\Rightarrow \int \frac{1}{\sqrt{6-(x+1)^2}} dx = \int \frac{\sqrt{6}}{\sqrt{6-6u^2}} du$$ $$= \int \frac{1}{\sqrt{1-u^2}} du$$ We know that $\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}(x) + c$ $$\Rightarrow \int \frac{1}{\sqrt{1-u^2}} du = sin^{-1} \left(\frac{x+1}{\sqrt{6}} \right)$$ Then. $$\Rightarrow \int \frac{3x+1}{\sqrt{-x^2-2x+5}} dx = 3 \int \frac{x+1}{\sqrt{-x^2-2x+5}} dx - 2 \int \frac{1}{\sqrt{-x^2-2x+5}} dx$$ $$= -3\sqrt{-x^2-2x+5} - 2\left(\sin^{-1}\left(\frac{x+1}{\sqrt{6}}\right)\right) + c$$ $$\therefore I = \int \frac{3x+1}{\sqrt{-x^2-2x+5}} dx = -3\sqrt{-x^2-2x+5} - 2\sin^{-1}\left(\frac{x+1}{\sqrt{6}}\right) + c$$ # 6. Question Evaluate the following integrals: $$\int \frac{x}{\sqrt{8+x-x^2}} dx$$ #### **Answer** Given $$I = \int \frac{x}{\sqrt{-x^2 + x + 8}} dx$$ Integral is of form $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$ Writing numerator as $px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$ $$\Rightarrow$$ px + q = $\lambda(2ax + b) + \mu$ $$\Rightarrow x = \lambda (-2x + 1) + \mu$$ $$\therefore \lambda = -1/2$$ and $\mu = -1/2$ Let x = -1/2(-2x + 1) - 1/2 and split, $$\Rightarrow \int \frac{x}{\sqrt{-x^2 + x + 8}} dx = \int \left(\frac{-(-2x + 1)}{2\sqrt{-x^2 + x + 8}} - \frac{1}{2\sqrt{-x^2 + x + 8}} \right) dx$$ $$= \frac{1}{2} \int \frac{2x - 1}{\sqrt{-x^2 + x + 8}} dx - \frac{1}{2} \int \frac{1}{\sqrt{-x^2 + x + 8}} dx$$ Consider $$\int \frac{2x-1}{\sqrt{-x^2+x+8}} dx$$ Let $$u = -x^2 + x + 8 \rightarrow dx = \frac{1}{-2x+1} du$$ $$\Rightarrow \int \frac{2x-1}{\sqrt{-x^2+x+8}} dx = \int -\frac{1}{\sqrt{u}} du$$ $$=-\int \frac{1}{\sqrt{u}}du$$ We know that $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ $$\Rightarrow -\int \frac{1}{\sqrt{u}} du = -(2\sqrt{u})$$ $$=-2\sqrt{-x^2+x+8}$$ Consider $$\int \frac{1}{\sqrt{-x^2+x+8}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{-x^2 + x + 8}} dx = \int \frac{1}{\sqrt{\frac{33}{4} - \left(x - \frac{1}{2}\right)^2}} dx$$ Let $$u = \frac{2x-1}{\sqrt{33}} \to dx = \frac{\sqrt{33}}{2} du$$ $$\Rightarrow \int \frac{1}{\sqrt{\frac{33}{4} - \left(x - \frac{1}{2}\right)^2}} dx = \int \frac{\sqrt{33}}{\sqrt{33 - 33u^2}} du$$ $$=\int \frac{1}{\sqrt{1-u^2}}du$$ We know that $\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}(x) + c$ $$\Rightarrow \int \frac{1}{\sqrt{1-u^2}} du = \sin^{-1}(u)$$ $$= sin^{-1}\left(\frac{2x-1}{\sqrt{33}}\right)$$ Then, $$\Rightarrow \int \frac{x}{\sqrt{-x^2 + x + 8}} dx = \frac{1}{2} \int \frac{2x - 1}{\sqrt{-x^2 + x + 8}} dx - \frac{1}{2} \int \frac{1}{\sqrt{-x^2 + x + 8}} dx$$ $$= -\sqrt{-x^2 + x + 8} - \frac{1}{2} \left(\sin^{-1} \left(\frac{2x - 1}{\sqrt{33}} \right) \right) + c$$ $$\therefore I = \int \frac{x}{\sqrt{-x^2 + x + 8}} dx = -\sqrt{-x^2 + x + 8} - \frac{\sin^{-1}\left(\frac{2x - 1}{\sqrt{33}}\right)}{2} + c$$ ### 7. Question Evaluate the following integrals: $$\int \frac{x+2}{\sqrt{x^2+2x-1}} dx$$ #### **Answer** Given $$I = \int \frac{x+2}{\sqrt{x^2+2x-1}} dx$$ Integral is of form $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$ Writing numerator as $px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$ $$\Rightarrow$$ px + q = λ (2ax + b) + μ $$\Rightarrow x + 2 = \lambda (2x + 2) + \mu$$ $$\therefore \lambda = 1/2 \text{ and } \mu = 1$$ Let x + 2 = 1/2(2x + 2) + 1 and split, $$\Rightarrow \int \frac{x+2}{\sqrt{x^2+2x-1}} \, dx = \int \left(\frac{2x+2}{2\sqrt{x^2+2x-1}} + \frac{1}{\sqrt{x^2+2x-1}} \right) dx$$ $$= \int \frac{x+1}{\sqrt{x^2+2x-1}} \, dx + \int \frac{1}{\sqrt{x^2+2x-1}} \, dx$$ Consider $$\int \frac{x+1}{\sqrt{x^2+2x-1}} dx$$ Let $$u = x^2 + 2x - 1 \rightarrow dx = \frac{1}{2x+2}du$$ $$\Rightarrow \int \frac{x+1}{\sqrt{x^2+2x-1}} dx = \int \frac{1}{2\sqrt{u}} du$$ $$= \frac{1}{2} \int \frac{1}{\sqrt{u}} du$$ We know that $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ $$\Rightarrow \frac{1}{2} \int \frac{1}{\sqrt{u}} du = \frac{1}{2} (2\sqrt{u})$$ $$= \sqrt{u} = \sqrt{x^2 + 2x - 1}$$ Consider $$\int \frac{1}{\sqrt{x^2+2x-1}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{x^2+2x-1}} \, dx = \int \frac{1}{\sqrt{(x+1)^2-2}} \, dx$$ Let $$u = \frac{x+1}{\sqrt{2}} \rightarrow dx = \sqrt{2}du$$ $$\Rightarrow \int \frac{1}{\sqrt{(x+1)^2-2}} dx = \int \frac{\sqrt{2}}{\sqrt{2u^2-2}} du$$ $$=\int \frac{1}{\sqrt{u^2-1}}du$$ We know that $\int \frac{1}{\sqrt{x^2-1}} dx = \log(\sqrt{x^2-1} + x) + c$ $$\Rightarrow \int \frac{1}{\sqrt{u^2-1}} du = \log(\sqrt{u^2-1} + u)$$ $$= \log\left(\sqrt{\frac{(x+1)^2}{2} - 1} + \frac{x+1}{\sqrt{2}}\right)$$ Then, $$\Rightarrow \int \frac{x+2}{\sqrt{x^2+2x-1}} \, dx = \int \frac{x+1}{\sqrt{x^2+2x-1}} \, dx + \int \frac{1}{\sqrt{x^2+2x-1}} \, dx$$ $$= \sqrt{x^2 + 2x - 1} + \log \left(\sqrt{\frac{(x+1)^2}{2} - 1} + \frac{x+1}{\sqrt{2}} \right) + c$$ $$=\sqrt{x^2+2x-1}+\log(\sqrt{(x+1)^2-2}+x+1)+c$$ $$\therefore I = \int \frac{2x+1}{\sqrt{x^2+2x-1}} dx = \sqrt{x^2+2x-1} + \log(\sqrt{(x+1)^2-2} + x + 1) + c$$ ## 8. Question Evaluate the following integrals: $$\int \frac{x+2}{\sqrt{x^2-1}} dx$$ ### **Answer** Given $$I = \int \frac{x+2}{\sqrt{x^2-1}} dx$$ Integral is of form $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$ Writing numerator as $px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$ $$\Rightarrow$$ px + q = λ (2ax + b) + μ $$\Rightarrow$$ x + 2 = λ (2x) + μ $$\therefore \lambda = 1/2 \text{ and } \mu = 2$$ Let x + 2 = 1/2(2x) + 2 and split, $$\Rightarrow \int \frac{x+2}{\sqrt{x^2-1}} \, dx = \int \left(\frac{2x}{2\sqrt{x^2-1}} + \frac{2}{\sqrt{x^2-1}} \right) dx$$ $$= \int \frac{x}{\sqrt{x^2 - 1}} dx + 2 \int \frac{1}{\sqrt{x^2 - 1}} dx$$ Consider $\int \frac{x}{\sqrt{x^2-1}} dx$ Let $$u = x^2 - 1 \rightarrow dx = \frac{1}{2x} du$$ $$\Rightarrow \int \frac{x}{\sqrt{x^2 - 1}} dx = \int \frac{1}{2\sqrt{u}} du$$ $$=\frac{1}{2}\int \frac{1}{\sqrt{u}}du$$ We know that $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ $$\Rightarrow \frac{1}{2} \int \frac{1}{\sqrt{u}} du = \frac{1}{2} (2\sqrt{u})$$ $$=\sqrt{u}=\sqrt{x^2-1}$$ Consider $$\int \frac{1}{\sqrt{x^2-1}} dx$$ We know that $\int \frac{1}{\sqrt{x^2-1}} dx + c = \cosh^{-1} x + c$ $$\Rightarrow \int \frac{1}{\sqrt{x^2 - 1}} dx = \cosh^{-1}(x)$$ Then, $$\Rightarrow \int \frac{x+2}{\sqrt{x^2-1}} dx = \int \frac{x}{\sqrt{x^2-1}} dx + 2 \int \frac{1}{\sqrt{x^2-1}} dx$$ $$=\sqrt{x^2-1}+\cosh^{-1}(x)+c$$ $$\therefore I = \int \frac{x+2}{\sqrt{x^2-1}} dx = \sqrt{x^2-1} + \cosh^{-1}(x) + c$$ # 9. Question Evaluate the following integrals: ## **Answer** Given $$I = \int \frac{x-1}{\sqrt{x^2+1}} dx$$ Integral is of form $$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$$ Writing numerator as $$px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$$ $$\Rightarrow$$ px + q = $\lambda(2ax + b) + \mu$ $$\Rightarrow$$ x - 1 = λ (2x) + μ $$\therefore \lambda = 1/2 \text{ and } \mu = -1$$ Let $$x - 1 = 1/2(2x) - 1$$ and split, $$\Rightarrow \int \frac{x-1}{\sqrt{x^2+1}} dx = \int \left(\frac{2x}{2\sqrt{x^2+1}} - \frac{1}{\sqrt{x^2+1}}\right) dx$$ $$= \int \frac{x}{\sqrt{x^2+1}} dx - \int \frac{1}{\sqrt{x^2+1}} dx$$ Consider $$\int \frac{x}{\sqrt{x^2+1}} dx$$ Let $$u = x^2 + 1 \rightarrow dx = \frac{1}{2x} du$$ $$\Rightarrow \int \frac{x}{\sqrt{x^2+1}} dx = \int \frac{1}{2\sqrt{u}} du$$ $$=\frac{1}{2}\int \frac{1}{\sqrt{u}}du$$ We know that $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow \frac{1}{2} \int \frac{1}{\sqrt{u}} du = \frac{1}{2} (2\sqrt{u})$$ $$= \sqrt{u} = \sqrt{x^2 + 1}$$ Consider $$\int \frac{1}{\sqrt{x^2+1}} dx$$ We know that $\int \frac{1}{\sqrt{x^2+1}} dx + c = \sinh^{-1} x + c$ $$\Rightarrow \int \frac{1}{\sqrt{x^2 + 1}} dx = \sinh^{-1}(x)$$ Then, $$\Rightarrow \int \frac{x-1}{\sqrt{x^2+1}} dx = \int \frac{x}{\sqrt{x^2+1}} dx - \int \frac{1}{\sqrt{x^2+1}} dx$$ $$=\sqrt{x^2+1}-\sinh^{-1}(x)+c$$ $$\therefore I = \int \frac{x-1}{\sqrt{x^2+1}} dx = \sqrt{x^2+1} - \sinh^{-1}(x) + c$$ # 10. Question Evaluate the following integrals: $$\int \frac{x}{\sqrt{x^2 + x + 1}} dx$$ #### **Answer** Given $$I = \int \frac{x}{\sqrt{x^2 + x + 1}} dx$$ Integral is of form $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$ Writing numerator as $px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$ $$\Rightarrow$$ px + q = $\lambda(2ax + b) + \mu$ $$\Rightarrow x = \lambda (2x + 1) + \mu$$
$$\therefore$$ λ = 1/2 and μ = -1/2 Let x = 1/2(2x + 1) - 1/2 and split, $$\Rightarrow \int \frac{x}{\sqrt{x^2+x+1}} dx = \int \left(\frac{2x+1}{2\sqrt{x^2+x+1}} - \frac{1}{2\sqrt{x^2+x+1}} \right) dx$$ $$= \frac{1}{2} \int \frac{2x+1}{\sqrt{x^2+x+1}} dx - \frac{1}{2} \int \frac{1}{\sqrt{x^2+x+1}} dx$$ Consider $$\int \frac{2x+1}{\sqrt{x^2+x+1}} dx$$ Let $$u = x^2 + x + 1 \rightarrow dx = \frac{1}{2x+1}du$$ $$\Rightarrow \int \frac{2x+1}{\sqrt{x^2+y+1}} dx = \int \frac{1}{\sqrt{u}} du$$ $$=\int \frac{1}{\sqrt{u}} du$$ We know that $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ $$\Rightarrow \int \frac{1}{\sqrt{u}} du = (2\sqrt{u})$$ $$=2\sqrt{u}=2\sqrt{x^2+x+1}$$ Consider $$\int \frac{1}{\sqrt{x^2+x+1}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{x^2 + x + 1}} dx = \int \frac{1}{\sqrt{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}}} dx$$ Let $$u = \frac{2x+1}{\sqrt{3}} \rightarrow dx = \frac{\sqrt{3}}{2}du$$ $$\Rightarrow \int \frac{1}{\sqrt{\left(x + \frac{1}{2}\right)^2 + \frac{3}{2}}} dx = \int \frac{\sqrt{3}}{\sqrt{3u^2 + 3}} du$$ $$=\int \frac{1}{\sqrt{u^2+1}}du$$ We know that $\int\!\frac{1}{\sqrt{x^2+1}}dx=sinh^{-1}\,x+c$ $$\Rightarrow \int \frac{1}{\sqrt{u^2 + 1}} du = \sinh^{-1}(u)$$ $$= \sinh^{-1}\left(\frac{2x + 1}{\sqrt{3}}\right)$$ Then, $$\begin{split} & \Rightarrow \int \frac{x}{\sqrt{x^2 + x + 1}} dx = \frac{1}{2} \int \frac{2x + 1}{\sqrt{x^2 + x + 1}} dx - \frac{1}{2} \int \frac{1}{\sqrt{x^2 + x + 1}} dx \\ & = \sqrt{x^2 + x + 1} - \frac{\sinh^{-1}\left(\frac{2x + 1}{\sqrt{3}}\right)}{2} + c \end{split}$$ $$\therefore I = \int \frac{x}{\sqrt{x^2 + x + 1}} dx = \sqrt{x^2 + x + 1} - \frac{\sinh^{-1}\left(\frac{2x + 1}{\sqrt{3}}\right)}{2} + c$$ # 11. Question Evaluate the following integrals: $$\int \frac{x+1}{\sqrt{x^2+1}} dx$$ # **Answer** Given $$I = \int \frac{x+1}{\sqrt{x^2+1}} dx$$ Integral is of form $$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$$ Writing numerator as $px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$ $$\Rightarrow$$ px + q = $\lambda(2ax + b) + \mu$ $$\Rightarrow x + 1 = \lambda (2x) + \mu$$ $$\therefore \lambda = 1/2 \text{ and } \mu = 1$$ Let x + 1 = 1/2(2x) + 1 and split, $$\Rightarrow \int \frac{x+1}{\sqrt{x^2+1}} dx = \int \left(\frac{2x}{2\sqrt{x^2+1}} + \frac{1}{\sqrt{x^2+1}}\right) dx$$ $$= \int \frac{x}{\sqrt{x^2 + 1}} dx + \int \frac{1}{\sqrt{x^2 + 1}} dx$$ Consider $$\int \frac{x}{\sqrt{x^2+1}} dx$$ Let $$u = x^2 + 1 \rightarrow dx = \frac{1}{2x} du$$ $$\Rightarrow \int \frac{x}{\sqrt{x^2 + 1}} dx = \int \frac{1}{2\sqrt{u}} du$$ $$=\frac{1}{2}\int\frac{1}{\sqrt{u}}du$$ We know that $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow \frac{1}{2} \int \frac{1}{\sqrt{u}} du = \frac{1}{2} (2\sqrt{u})$$ $$= \sqrt{u} = \sqrt{x^2 + 1}$$ Consider $$\int \frac{1}{\sqrt{x^2+1}} dx$$ We know that $\int\!\frac{1}{\sqrt{x^2+1}}dx+c=sinh^{-1}\,x+c$ $$\Rightarrow \int \frac{1}{\sqrt{x^2 + 1}} dx = \sinh^{-1}(x)$$ Then. $$\Rightarrow \int \frac{x+1}{\sqrt{x^2+1}} dx = \int \frac{x}{\sqrt{x^2+1}} dx + \int \frac{1}{\sqrt{x^2+1}} dx$$ $$=\sqrt{x^2+1}+\sinh^{-1}(x)+c$$ $$\therefore I = \int \frac{x+1}{\sqrt{x^2+1}} dx = \sqrt{x^2+1} + sinh^{-1}(x) + c$$ # 12. Question Evaluate the following integrals: $$\int \frac{2x+5}{\sqrt{x^2+2x+5}} \, dx$$ #### **Answer** Given I = $$\int \frac{2x+5}{\sqrt{x^2+2x+5}} dx$$ Integral is of form $$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$$ Writing numerator as $px+q=\lambda\Big\{\frac{d}{dx}\left(ax^2+bx+c\right)\Big\}+\mu$ $$\Rightarrow$$ px + q = λ (2ax + b) + μ $$\Rightarrow 2x + 5 = \lambda (2x + 2) + \mu$$ $$\therefore \lambda = 1 \text{ and } \mu = 3$$ Let 2x + 5 = 2x + 2 + 3 and split, $$\Rightarrow \int \frac{2x+5}{\sqrt{x^2+2x+5}} \, dx = \int \bigg(\frac{2x+2}{\sqrt{x^2+2x+5}} + \frac{3}{\sqrt{x^2+2x+5}} \bigg) \, dx$$ $$=2\int \frac{x+1}{\sqrt{x^2+2x+5}}\,dx+3\int \frac{1}{\sqrt{x^2+2x+5}}\,dx$$ Consider $$\int \frac{x+1}{\sqrt{x^2+2x+5}} dx$$ Let $$u = x^2 + 2x + 5 \rightarrow dx = \frac{1}{2x+2}du$$ $$\Rightarrow \int \frac{x+1}{\sqrt{x^2+2x+5}} dx = \int \frac{1}{2\sqrt{u}} du$$ $$=\frac{1}{2}\int\frac{1}{\sqrt{u}}du$$ We know that $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow \frac{1}{2} \int \frac{1}{\sqrt{u}} \, du = \frac{1}{2} \left(2 \sqrt{u} \right)$$ $$=\sqrt{u}=\sqrt{x^2+2x+5}$$ Consider $$\int \frac{1}{\sqrt{x^2+2x+5}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{x^2 + 2x + 5}} dx = \int \frac{1}{\sqrt{(x+1)^2 + 4}} dx$$ Let $$u = \frac{x+1}{2} \rightarrow dx = 2du$$ $$\Rightarrow \int \frac{1}{\sqrt{(x+1)^2+4}} dx = \int \frac{2}{\sqrt{4u^2+4}} du$$ $$= \int \frac{1}{\sqrt{u^2+1}} \, du$$ We know that $\int \frac{1}{\sqrt{x^2+1}} dx = \sinh^{-1} x + c$ $$\Rightarrow \int \frac{1}{\sqrt{u^2+1}} \, du = sinh^{-1}(u)$$ $$= \sinh^{-1}\left(\frac{x+1}{2}\right)$$ Then, $$\Rightarrow \int \frac{2x+5}{\sqrt{x^2+2x+5}} dx = 2 \int \frac{x+1}{\sqrt{x^2+2x+5}} dx + 3 \int \frac{1}{\sqrt{x^2+2x+5}} dx$$ $$=2\sqrt{x^2+2x+5}+3sinh^{-1}\left(\frac{x+1}{2}\right)+c$$ $$\therefore I = \int \frac{2x+5}{\sqrt{x^2+2x+5}} dx = 2\sqrt{x^2+2x+5} + 3 \sinh^{-1} \left(\frac{x+1}{2}\right) + c$$ ### 13. Question Evaluate the following integrals: $$\int \frac{3x+1}{\sqrt{5-2x-x^2}} dx$$ ## **Answer** Given $$I = \int \frac{3x+1}{\sqrt{-x^2-2x+5}} dx$$ Integral is of form $$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$$ Writing numerator as $px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$ $$\Rightarrow$$ px + q = $\lambda(2ax + b) + \mu$ $$\Rightarrow 3x + 1 = \lambda (-2x - 2) + \mu$$ $$\therefore \lambda = -3/2$$ and $\mu = -2$ Let $$3x + 1 = -(3/2)(-2x - 2) - 2$$ $$\begin{split} & \Rightarrow \int \frac{3x+1}{\sqrt{-x^2-2x+5}} \, dx = \int \left(\frac{-3(-2x-2)}{2\sqrt{-x^2-2x+5}} - \frac{2}{\sqrt{-x^2-2x+5}} \right) dx \\ & = 3 \int \frac{x+1}{\sqrt{-x^2-2x+5}} \, dx - 2 \int \frac{1}{\sqrt{-x^2-2x+5}} \, dx \end{split}$$ Consider $$\int \frac{x+1}{\sqrt{-x^2-2x+5}} dx$$ Let $$u = -x^2 - 2x + 5 \rightarrow dx = \frac{1}{-2x-2} du$$ $$\Rightarrow \int \frac{x+1}{\sqrt{-x^2-2x+5}} dx = \int -\frac{1}{2\sqrt{u}} du$$ $$= -\frac{1}{2} \int \frac{1}{\sqrt{u}} \, du$$ We know that $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ $$\Rightarrow -\frac{1}{2} \int \frac{1}{\sqrt{u}} du = -(\sqrt{u})$$ $$=-\sqrt{-x^2-2x+5}$$ Consider $$\int \frac{1}{\sqrt{-x^2-2x+5}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{-x^2 - 2x + 5}} dx = \int \frac{1}{\sqrt{6 - (x + 1)^2}} dx$$ Let $$u = \frac{x+1}{\sqrt{6}} \rightarrow dx = \sqrt{6}du$$ $$\Rightarrow \int \frac{1}{\sqrt{6-(x+1)^2}} dx = \int \frac{\sqrt{6}}{\sqrt{6-6u^2}} du$$ $$= \int \frac{1}{\sqrt{1 - u^2}} du$$ We know that $\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}(x) + c$ $$\Rightarrow \int \frac{1}{\sqrt{1-u^2}} du = sin^{-1} \bigg(\frac{x+1}{\sqrt{6}} \bigg)$$ Then, $$\Rightarrow \int \frac{3x+1}{\sqrt{-x^2-2x+5}} dx = 3 \int \frac{x+1}{\sqrt{-x^2-2x+5}} dx - 2 \int \frac{1}{\sqrt{-x^2-2x+5}} dx$$ $$= -3\sqrt{-x^2-2x+5} - 2\left(\sin^{-1}\left(\frac{x+1}{\sqrt{6}}\right)\right) + c$$ $$\therefore I = \int \frac{3x+1}{\sqrt{-x^2-2x+5}} \, dx = -3\sqrt{-x^2-2x+5} - 2\sin^{-1}\left(\frac{x+1}{\sqrt{6}}\right) + c$$ # 14. Question Evaluate the following integrals: $$\int \sqrt{\frac{1-x}{1+x}} \, dx$$ **Answer** Given $$I = \int \frac{\sqrt{1-x}}{\sqrt{1+x}} dx$$ Rationalizing the denominator, $$\Rightarrow \int \sqrt{\frac{1-x}{1+x}} dx = \int \sqrt{\frac{1-x}{1+x}} \times \frac{1-x}{1-x} dx$$ $$= \int \frac{1-x}{\sqrt{1-x^2}} dx$$ Integral is of form $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$ Writing numerator as $px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$ $$\Rightarrow$$ px + q = $\lambda(2ax + b) + \mu$ $$\Rightarrow -x + 1 = \lambda (-2x) + \mu$$ $$\therefore \lambda = 1/2 \text{ and } \mu = 1$$ Let -x + 1 = 1/2(-2x) + 1 and split, $$\Rightarrow \int \frac{1-x}{\sqrt{1-x^2}} dx = \int \left(\frac{-2x}{2\sqrt{1-x^2}} + \frac{1}{\sqrt{1-x^2}}\right) dx$$ $$= -\int \frac{x}{\sqrt{1-x^2}} dx + \int \frac{1}{\sqrt{1-x^2}} dx$$ Consider $$\int \frac{x}{\sqrt{1-x^2}} dx$$ Let $$u = 1 - x^2 \rightarrow dx = \frac{-1}{2x} du$$ $$\Rightarrow \int \frac{x}{\sqrt{1-x^2}} dx = \int \frac{-1}{2\sqrt{u}} du$$ $$= \frac{-1}{2} \int \frac{1}{\sqrt{u}} du$$ We know that $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ $$\Rightarrow \frac{1}{2} \int \frac{1}{\sqrt{u}} du = \frac{1}{2} (2\sqrt{u})$$ $$= \sqrt{u} = -\sqrt{1 - x^2}$$ Consider $$\int \frac{1}{\sqrt{1-x^2}} dx$$ We know that $\int\!\frac{1}{\sqrt{1-x^2}}dx+c=sin^{-1}\,x+c$ $$\Rightarrow \int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}(x)$$ Then, $$\Rightarrow \int \frac{1-x}{\sqrt{1-x^2}} dx = -\int \frac{x}{\sqrt{1-x^2}} dx + \int \frac{1}{\sqrt{1-x^2}} dx$$ $$= \sqrt{1 - x^2} + \sin^{-1}(x) + c$$ $$\therefore I = \int \sqrt{\frac{1-x}{1+x}} dx = \sqrt{1-x^2} + \sin^{-1}(x) + c$$ Evaluate the following integrals: $$\int \frac{2x+1}{\sqrt{x^2+4x+3}} dx$$ # Answer Given $$I = \int \frac{2x+1}{\sqrt{x^2+4x+3}} dx$$ Integral is of form $$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$$ Writing numerator as $$px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$$ $$\Rightarrow$$ px + q = λ (2ax + b) + μ $$\Rightarrow 2x + 1 = \lambda (2x + 4) + \mu$$ $$\therefore \lambda = 1$$ and $\mu = -3$ Let $$2x + 1 = 2x + 4 - 3$$ and split, $$\Rightarrow \int \frac{2x+1}{\sqrt{x^2+4x+3}} dx = \int \left(\frac{2x+4}{\sqrt{x^2+4x+3}} - \frac{3}{\sqrt{x^2+4x+3}}\right) dx$$ $$=2\int \frac{x+2}{\sqrt{x^2+4x+3}} dx - 3\int \frac{1}{\sqrt{x^2+4x+3}} dx$$ Consider $$\int \frac{x+2}{\sqrt{x^2+4x+3}} dx$$ Let $$u = x^2 + 4x + 3 \rightarrow dx = \frac{1}{2x+4}du$$ $$\Rightarrow \int \frac{x+2}{\sqrt{x^2+4x+3}} dx = \int \frac{1}{2\sqrt{u}} du$$ $$=\frac{1}{2}\int \frac{1}{\sqrt{u}}du$$ We know that $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow \frac{1}{2} \int \frac{1}{\sqrt{u}} du = \frac{1}{2} (2\sqrt{u})$$ $$=\sqrt{u}=\sqrt{x^2+4x+3}$$ Consider $$\int \frac{1}{\sqrt{x^2+4x+3}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{x^2+4x+3}} \, dx = \int \frac{1}{\sqrt{(x+2)^2-1}} \, dx$$ Let $$u = x + 2 \rightarrow dx
= du$$ $$\Rightarrow \int \frac{1}{\sqrt{(x+2)^2 - 1}} dx = \int \frac{1}{\sqrt{u^2 - 1}} du$$ We know that $$\int \frac{1}{\sqrt{x^2-1}} dx = \log(\sqrt{x^2-1} + x) + c$$ $$\Rightarrow \int \frac{1}{\sqrt{u^2-1}} du = \log(\sqrt{u^2-1} + u)$$ $$= \log\left(\sqrt{(x+2)^2-1} + x + 2\right)$$ Then $$\begin{split} &\Rightarrow \int \frac{2x+1}{\sqrt{x^2+4x+3}} \, dx = 2 \int \frac{x+2}{\sqrt{x^2+4x+3}} \, dx - 3 \int \frac{1}{\sqrt{x^2+4x+3}} \, dx \\ &= 2 \sqrt{x^2+4x+3} - 3 \log \left(\sqrt{(x+2)^2-1} + x + 2 \right) + c \\ &= 2 \sqrt{x^2+4x+3} - 3 \log \left(\sqrt{x^2+4x+3} + x + 2 \right) + c \\ &= 2 \sqrt{(x+1)(x+3)} - 3 \log \left(\left| \sqrt{(x+1)(x+3)} + x + 2 \right| \right) + c \\ &\therefore I = \int \frac{2x+1}{\sqrt{x^2+4x+3}} \, dx \\ &= 2 \sqrt{(x+1)(x+3)} - 3 \log \left(\left| \sqrt{(x+1)(x+3)} + x + 2 \right| \right) + c \end{split}$$ # 16. Question Evaluate the following integrals: $$\int \frac{2x+3}{\sqrt{x^2+4x+5}} dx$$ # **Answer** Given I = $$\int \frac{2x+3}{\sqrt{x^2+4x+5}} dx$$ Integral is of form $$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$$ Writing numerator as $px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$ $$\Rightarrow$$ px + q = $\lambda(2ax + b) + \mu$ $$\Rightarrow 2x + 3 = \lambda (2x + 4) + \mu$$ $$\therefore \lambda = 1/2 \text{ and } \mu = -1$$ Let 2x + 3 = 2x + 4 - 1 and split, $$\Rightarrow \int \frac{2x+3}{\sqrt{x^2+4x+5}} dx = \int \left(\frac{2x+4}{\sqrt{x^2+4x+5}} - \frac{1}{\sqrt{x^2+4x+5}}\right) dx$$ $$= 2 \int \frac{x+2}{\sqrt{x^2+4x+5}} dx - \int \frac{1}{\sqrt{x^2+4x+5}} dx$$ Consider $$\int \frac{x+2}{\sqrt{x^2+4x+5}} dx$$ Let $$u = x^2 + 4x + 5 \rightarrow dx = \frac{1}{2x+4}du$$ $$\Rightarrow \int \frac{x+2}{\sqrt{x^2+4x+5}} dx = \int \frac{1}{2\sqrt{u}} du$$ $$= \frac{1}{2} \int \frac{1}{\sqrt{u}} du$$ We know that $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ $$\Rightarrow \frac{1}{2} \int \frac{1}{\sqrt{u}} du = \frac{1}{2} \left(2\sqrt{u} \right)$$ $$= \sqrt{u} = \sqrt{x^2 + 4x + 5}$$ Consider $\int \frac{1}{\sqrt{x^2+4x+5}} dx$ $$\Rightarrow \int \frac{1}{\sqrt{x^2+4x+5}} \, dx = \int \frac{1}{\sqrt{(x+2)^2+1}} \, dx$$ Let $u = x + 2 \rightarrow dx = du$ $$\Rightarrow \int \frac{1}{\sqrt{(x+2)^2+1}} dx = \int \frac{1}{\sqrt{u^2+1}} du$$ We know that $\int\!\frac{1}{\sqrt{x^2+1}}dx=sinh^{-1}\,x+c$ $$\Rightarrow \int \frac{1}{\sqrt{u^2+1}} \, du = sinh^{-1}(u)$$ $$= \sinh^{-1}(x+2)$$ Then, $$\Rightarrow \int \frac{2x+3}{\sqrt{x^2+4x+5}} dx = 2 \int \frac{x+2}{\sqrt{x^2+4x+5}} dx - \int \frac{1}{\sqrt{x^2+4x+5}} dx$$ $$=2\sqrt{x^2+4x+5}-\sinh^{-1}(x+2)+c$$ $$\therefore I = \int \frac{2x+3}{\sqrt{x^2+4x+5}} dx = 2\sqrt{x^2+4x+5} - \sinh^{-1}(x+2) + c$$ # 17. Question Evaluate the following integrals: $$\int \frac{5x+3}{\sqrt{x^2+4x+10}} dx$$ #### **Answer** Given $$I = \int \frac{5x+3}{\sqrt{x^2+4x+10}} dx$$ Integral is of form $$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$$ Writing numerator as $px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$ $$\Rightarrow$$ px + q = $\lambda(2ax + b) + \mu$ $$\Rightarrow 5x + 3 = \lambda (2x + 4) + \mu$$ $$\therefore \lambda = 5/2 \text{ and } \mu = -7$$ Let $$5x + 3 = \frac{5}{2}(2x + 4) - 7$$ and split, $$\begin{split} & \Rightarrow \int \frac{5x+3}{\sqrt{x^2+4x+10}} \, dx = \int \left(\frac{5(2x+4)}{2\sqrt{x^2+4x+10}} - \frac{7}{\sqrt{x^2+4x+10}} \right) dx \\ & = 5 \int \frac{x+2}{\sqrt{x^2+4x+10}} \, dx - 7 \int \frac{1}{\sqrt{x^2+4x+10}} \, dx \end{split}$$ Consider $$\int \frac{x+2}{\sqrt{x^2+4x+10}} dx$$ Let $$u = x^2 + 4x + 10 \rightarrow dx = \frac{1}{2x+4}du$$ $$\Rightarrow \int \frac{x+2}{\sqrt{x^2+4x+10}} dx = \int \frac{1}{2\sqrt{u}} du$$ $$=\frac{1}{2}\int \frac{1}{\sqrt{u}}du$$ We know that $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow \frac{1}{2} \int \frac{1}{\sqrt{u}} du = \frac{1}{2} (2\sqrt{u})$$ $$=\sqrt{u}=\sqrt{x^2+4x+10}$$ Consider $$\int \frac{1}{\sqrt{x^2+4x+10}} dx$$ $$\Rightarrow \int \frac{1}{\sqrt{x^2 + 4x + 10}} dx = \int \frac{1}{\sqrt{(x+2)^2 + 6}} dx$$ Let $$u = \frac{x+2}{\sqrt{6}} \rightarrow dx = \sqrt{6} du$$ $$\Rightarrow \int \frac{1}{\sqrt{(x+2)^2+6}} dx = \int \frac{\sqrt{6}}{\sqrt{6u^2+6}} du$$ $$= \int \frac{1}{\sqrt{u^2 + 1}} du$$ We know that $\int \frac{1}{\sqrt{x^2+1}} dx = \sinh^{-1} x + c$ $$\Rightarrow \int \frac{1}{\sqrt{u^2 + 1}} du = \sinh^{-1}(u)$$ $$= \sinh^{-1}\left(\frac{x+2}{\sqrt{6}}\right)$$ Then, $$\Rightarrow \int \frac{5x+3}{\sqrt{x^2+4x+10}} \, dx = 5 \int \frac{x+2}{\sqrt{x^2+4x+10}} \, dx - 7 \int \frac{1}{\sqrt{x^2+4x+10}} \, dx$$ $$= 5\sqrt{x^2 + 4x + 10} - 7\sinh^{-1}\left(\frac{x+2}{\sqrt{6}}\right) + c$$ $$\therefore I = \int \frac{5x+3}{\sqrt{x^2+4x+10}} dx = 5\sqrt{x^2+4x+10} - 7 sinh^{-1} \left(\frac{x+2}{\sqrt{6}}\right) + c$$ # 18. Question Evaluate the following integrals: $$\int \frac{x+2}{\sqrt{x^2+2x+3}}$$ #### **Answer** Given $$I = \int \frac{x+2}{\sqrt{x^2+2x+3}} dx$$ Integral is of form $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$ Writing numerator as $px + q = \lambda \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + \mu$ $$\Rightarrow$$ px + q = λ (2ax + b) + μ $$\Rightarrow x + 2 = \lambda (2x + 2) + \mu$$ $$\therefore \lambda = 1/2 \text{ and } \mu = 1$$ Let x + 2 = 1/2(2x + 2) + 1 and split, $$\Rightarrow \int \frac{x+2}{\sqrt{x^2+2x+3}}\,dx = \int \bigg(\frac{2x+2}{2\sqrt{x^2+2x+3}} + \frac{1}{\sqrt{x^2+2x+3}}\bigg)dx$$ $$= \int \frac{x+1}{\sqrt{x^2+2x+3}} \, dx + \int \frac{1}{\sqrt{x^2+2x+3}} \, dx$$ Consider $$\int \frac{x+1}{\sqrt{x^2+2x+3}} dx$$ Let $$u = x^2 + 2x + 3 \rightarrow dx = \frac{1}{2x+2}du$$ $$\Rightarrow \int \frac{x+1}{\sqrt{x^2+2x+3}} dx = \int \frac{1}{2\sqrt{u}} du$$ $$=\frac{1}{2}\int \frac{1}{\sqrt{u}}du$$ We know that $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ $$\Rightarrow \frac{1}{2} \int \frac{1}{\sqrt{u}} du = \frac{1}{2} (2\sqrt{u})$$ $$= \sqrt{u} = \sqrt{x^2 + 2x + 3}$$ Consider $\int \frac{1}{\sqrt{x^2+2x+3}} dx$ $$\Rightarrow \int \frac{1}{\sqrt{x^2 + 2x \mp 3}} \, dx = \int \frac{1}{\sqrt{(x+1)^2 + 2}} \, dx$$ Let $$u = \frac{x+1}{\sqrt{2}} \rightarrow dx = \sqrt{2}du$$ $$\Rightarrow \int \frac{1}{\sqrt{(x+1)^2+2}} dx = \int \frac{\sqrt{2}}{\sqrt{2u^2+2}} du$$ $$= \int \frac{1}{\sqrt{u^2 + 1}} du$$ We know that $\int\!\frac{1}{\sqrt{x^2+1}}dx=sinh^{-1}\,x+c$ $$\Rightarrow \int \frac{1}{\sqrt{u^2 + 1}} du = \sinh^{-1}(u)$$ $$= \sinh^{-1}\left(\frac{x + 1}{\sqrt{2}}\right)$$ Then. $$\begin{split} & \Rightarrow \int \frac{x+2}{\sqrt{x^2+2x+3}} \, dx = \int \frac{x+1}{\sqrt{x^2+2x+3}} \, dx + \int \frac{1}{\sqrt{x^2+2x+3}} \, dx \\ & = \sqrt{x^2+2x+3} + \sinh^{-1}\left(\frac{x+1}{\sqrt{2}}\right) + c \\ & \therefore I = \int \frac{x+2}{\sqrt{x^2+2x+3}} \, dx = \sqrt{x^2+2x+3} + \sinh^{-1}\left(\frac{x+1}{\sqrt{2}}\right) + c \end{split}$$ # Exercise 19.22 # 1. Question Evaluate the following integrals: $$\int \frac{1}{4\cos^2 x + 9\sin^2 x} dx$$ #### **Answer** Given $$I = \int \frac{1}{4\cos^2 x + 9\sin^2 x} dx$$ Dividing the numerator and denominator of the given integrand by $\cos^2 x$, we get $$\Rightarrow I = \int \frac{1}{4\cos^2 x + 9\sin^2 x} dx = \int \frac{\sec^2 x}{4 + 9\tan^2 x} dx$$ Putting tanx = t and $sec^2x dx = dt$, we get $$\Rightarrow I = \int \frac{dt}{4 + 9t^2} = \frac{1}{9} \int \frac{dt}{\frac{4}{9} + t^2}$$ We know that $\int \frac{1}{a^2+v^2} dx = \frac{1}{a} tan^{-1} \left(\frac{x}{a}\right) + c$ $$\Rightarrow \frac{1}{9} \int \frac{dt}{\frac{4}{9} + t^2} = \frac{1}{9} \times \frac{1}{\frac{2}{3}} tan^{-1} \left(\frac{t}{\frac{2}{3}}\right) + c$$ $$=\frac{1}{6}\tan^{-1}\left(\frac{3t}{2}\right)+c$$ $$=\frac{1}{6}\tan^{-1}\left(\frac{3\tan x}{2}\right)+c$$ $$\therefore I = \int \frac{1}{4\cos^2 x + 9\sin^2 x} dx = \frac{1}{6} \tan^{-1} \left(\frac{3\tan x}{2} \right) + c$$ # 2. Question Evaluate the following integrals: $$\int \frac{1}{4\sin^2 x + 5\cos^2 x} dx$$ Answer Given $$I = \int \frac{1}{4\sin^2 x + 5\cos^2 x} dx$$ Dividing the numerator and denominator of the given integrand by $\cos^2 x$, we get $$\Rightarrow I = \int \frac{1}{4\sin^2 x + 5\cos^2 x} dx = \int \frac{\sec^2 x}{4\tan^2 x + 5} dx$$ Putting tanx = t and $sec^2x dx = dt$, we get $$\Rightarrow I = \int \frac{dt}{4t^2 + 5} = \frac{1}{4} \int \frac{dt}{t^2 + {5 \choose 4}}$$ We know that $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} tan^{-1} \left(\frac{x}{a}\right) + c$ $$\Rightarrow \frac{1}{4} \int \frac{dt}{t^2 + {5 \choose 4}} = \frac{1}{4} \times \frac{1}{\frac{\sqrt{5}}{2}} tan^{-1} \left(\frac{t}{\frac{\sqrt{5}}{2}}\right) + c$$ $$= \frac{1}{2\sqrt{5}} \tan^{-1} \left(\frac{2t}{\sqrt{5}} \right) + c$$ $$=\frac{1}{2\sqrt{5}}\tan^{-1}\left(\frac{2\tan x}{\sqrt{5}}\right)+c$$ $$\therefore I = \int \frac{1}{4 \sin^2 x + 5 \cos^2 x} dx = \frac{1}{2\sqrt{5}} \tan^{-1} \left(\frac{2 \tan x}{\sqrt{5}} \right) + c$$ # 3. Question Evaluate the following integrals: $$\int \frac{2}{2 + \sin 2x} dx$$ ## **Answer** Given $$I = \int \frac{2}{2 + \sin 2x} dx$$ We know that $\sin 2x = 2 \sin x \cos x$ $$\Rightarrow \int \frac{2}{2 + \sin 2x} dx = \int \frac{2}{2 + 2\sin x \cos x} dx$$ $$= \int \frac{1}{1 + \sin x \cos x} dx$$ Dividing the numerator and denominator by $\cos^2 x$, $$\Rightarrow \int \frac{1}{1 + \sin x \cos x} dx = \int \frac{\sec^2 x}{\sec^2 x + \tan x} dx$$ Replacing $sec^2 x$ in denominator by $1 + tan^2 x$, $$\Rightarrow \int \frac{\sec^2 x}{\sec^2 x + \tan x} dx = \int \frac{\sec^2 x}{1 + \tan^2 x + \tan x} dx$$ Putting $\tan x = t$ so that $\sec^2 x dx = dt$, $$\Rightarrow \int \frac{sec^2x}{tan^2x + tanx + 1} dx = \int \frac{dt}{t^2 + t + 1}$$ $$= \int \frac{dt}{\left(t+\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$$ We know that $\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$ $$\Rightarrow \int \frac{dt}{\left(t+\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \frac{1}{\frac{\sqrt{3}}{2}} tan^{-1} \left(\frac{t+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) + c$$ $$=\frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{2t+1}{\sqrt{3}}\right)+c$$ $$\therefore I = \int \frac{2}{2 + \sin 2x} dx =
\frac{2}{\sqrt{3}} tan^{-1} \left(\frac{2t + 1}{\sqrt{3}} \right) + c$$ # 4. Question Evaluate the following integrals: $$\int \frac{\cos x}{\cos 3x} dx$$ ### Answer Given $$I = \int \frac{\cos x}{\cos 3x} dx$$ $$\Rightarrow \int \frac{\cos x}{\cos 3x} dx = \int \frac{\cos x}{4 \cos^3 x - 3 \cos x} dx$$ $$= \int \frac{1}{4\cos^2 x - 3} dx$$ Dividing numerator and denominator by $\cos^2 x$, $$\Rightarrow \int \frac{1}{4\cos^2 x - 3} dx = \int \frac{\sec^2 x}{4 - 3\sec^2 x} dx$$ Replacing sec^2x by $1 + tan^2x$ in denominator, $$\Rightarrow \int \frac{\sec^2 x}{4 - 3\sec^2 x} dx = \int \frac{\sec^2 x}{4 - 3 - 3\tan^2 x} dx$$ $$= \int \frac{\sec^2 x}{1 - 3\tan^2 x} dx$$ Putting $\tan x = t$ and $\sec^2 x dx = dt$, we get $$I = \int \frac{dt}{1 - 3t^2} = \frac{1}{3} \int \frac{1}{\frac{1}{3} - t^2} dt$$ We know that $\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$ $$\Rightarrow \frac{1}{3} \int \frac{1}{\frac{1}{3} - t^2} dt = \frac{1}{3} \times \frac{1}{2\sqrt{3}} \log \left| \frac{\frac{1}{\sqrt{3}} + t}{\frac{1}{\sqrt{3}} - t} \right| + c$$ $$=\frac{1}{6\sqrt{3}}\log\left|\frac{1+\sqrt{3}t}{1-\sqrt{3}t}\right|+c$$ $$=\frac{1}{6\sqrt{3}}\log\left|\frac{1+\sqrt{3}\tan x}{1-\sqrt{3}\tan x}\right|+c$$ $$\therefore I = \int \frac{\cos x}{\cos 3x} dx = \frac{1}{6\sqrt{3}} \log \left| \frac{1 + \sqrt{3} \tan x}{1 - \sqrt{3} \tan x} \right| + c$$ Evaluate the following integrals: $$\int \frac{1}{1+3\sin^2 x} dx$$ #### **Answer** Given $$I = \int \frac{1}{1+3\sin^2 x} dx$$ Divide numerator and denominator by $\cos^2 x$, $$\Rightarrow I = \int \frac{1}{1 + 3\sin^2 x} dx = \int \frac{\sec^2 x}{\sec^2 x + 3\tan^2 x} dx$$ Replacing $sec^2 x$ in denominator by $1 + tan^2 x$, $$\Rightarrow \int \frac{\sec^2 x}{\sec^2 x + 3\tan^2 x} dx = \int \frac{\sec^2 x}{1 + \tan^2 x + 3\tan^2 x} dx$$ $$= \int \frac{\sec^2 x}{1 + 4 \tan^2 x} dx$$ Putting tan x = t so that $sec^2 x dx = dt$, $$\Rightarrow \int \frac{\sec^2 x}{1 + 4\tan^2 x} dx = \int \frac{dt}{1 + 4t^2}$$ $$=\frac{1}{4}\int \frac{1}{\frac{1}{4}+t^2} dt$$ We know that $\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$ $$\Rightarrow \frac{1}{4} \int \frac{1}{\frac{1}{4} + t^2} dt = \frac{1}{4} \times \frac{1}{2} tan^{-1} \left(\frac{t}{2}\right) + c$$ $$= \frac{1}{8} \tan^{-1} \left(\frac{\tan x}{2} \right) + c$$ $$\therefore I = \int \frac{1}{1+3\sin^2 x} dx = \frac{1}{8} tan^{-1} \left(\frac{tan \, x}{2}\right) + c$$ # 6. Question Evaluate the following integrals: $$\int \frac{1}{3 + 2\cos^2 x} dx$$ #### **Answer** Given $$I = \int \frac{1}{3+2\cos^2 x} dx$$ Divide numerator and denominator by $\cos^2 x$, $$\Rightarrow I = \int \frac{1}{3 + 2\cos^2 x} dx = \int \frac{\sec^2 x}{3\sec^2 x + 2} dx$$ Replacing $sec^2 x$ in denominator by $1 + tan^2 x$, $$\Rightarrow \int \frac{\sec^2 x}{3\sec^2 x + 2} dx = \int \frac{\sec^2 x}{3 + 3\tan^2 x + 2} dx$$ $$= \int \frac{\sec^2 x}{5 + 3\tan^2 x} dx$$ Putting tan x = t so that $sec^2 x dx = dt$, $$\Rightarrow \int \frac{\sec^2 x}{5 + 3\tan^2 x} dx = \int \frac{dt}{5 + 3t^2}$$ $$= \frac{1}{3} \int \frac{1}{\frac{5}{3} + t^2} dt$$ We know that $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} tan^{-1} \left(\frac{x}{a}\right) + c$ $$\Rightarrow \frac{1}{3} \int \frac{1}{\frac{5}{3} + t^2} dt = \frac{1}{3} \times \sqrt{\frac{5}{3}} \tan^{-1} \left(\frac{t}{\sqrt{\frac{5}{3}}} \right) + c$$ $$=\frac{\sqrt{5}}{3\sqrt{3}}tan^{-1}\left(\frac{\sqrt{3}\,tan\,x}{\sqrt{5}}\right)+c$$ $$\therefore I = \int \frac{1}{3 + 2\cos^2 x} dx = \frac{\sqrt{5}}{3\sqrt{3}} \tan^{-1} \left(\frac{\sqrt{3} \tan x}{\sqrt{5}} \right) + c$$ # 7. Question Evaluate the following integrals: $$\int \frac{1}{(\sin x - 2\cos x)(2\sin x + \cos x)} dx$$ # **Answer** Given I = $$\int \frac{1}{(\sin x - 2\cos x)(2\sin x + \cos x)} dx$$ $$\begin{split} \Rightarrow \int \frac{1}{(\sin x - 2\cos x)(2\sin x + \cos x)} \, dx \\ &= \int \frac{1}{2\sin^2 x + \sin x \cos x - 4\sin x \cos x - 2\cos^2 x} \, dx \end{split}$$ Dividing the numerator and denominator by $\cos^2 x$, $$\Rightarrow \int \frac{1}{2\sin^2 x + \sin x \cos x - 4\sin x \cos x - 2\cos^2 x} dx$$ $$= \int \frac{\sec^2 x}{2\tan^2 x - 3\tan x - 2} dx$$ Putting $\tan x = t$ so that $\sec^2 x dx = dt$. $$\Rightarrow \int \frac{\sec^2 x}{2\tan^2 x - 3\tan x - 2} dx = \int \frac{dt}{2t^2 - 3t - 2}$$ $$= \frac{1}{2} \int \frac{1}{t^2 - \frac{3}{2} - 1} dt$$ $$= \frac{1}{2} \int \frac{1}{\left(t - \frac{3}{4}\right)^2 - \left(\frac{5}{4}\right)^2} dt$$ We know that $\int \frac{1}{x^2-a^2} dx = \frac{1}{2a} log \left| \frac{x-a}{x+a} \right| + c$ $$\Rightarrow \frac{1}{2} \int \frac{1}{\left(t - \frac{3}{4}\right)^2 - \left(\frac{5}{4}\right)^2} dt = \frac{1}{2} \times \frac{1}{2\left(\frac{5}{4}\right)} \log \left| \frac{t - \frac{3}{4} - \frac{5}{4}}{t - \frac{3}{4} + \frac{5}{4}} \right| + c$$ $$= \frac{1}{5} \log \left| \frac{t-2}{t+\frac{1}{2}} \right| + c$$ $$=\frac{1}{5}\log\left|\frac{2\tan x-4}{2\tan x+1}\right|+c$$ $$\therefore I = \int \frac{1}{(\sin x - 2\cos x)(2\sin x + \cos x)} dx = \frac{1}{5} \log \left| \frac{2\tan x - 4}{2\tan x + 1} \right| + c$$ # 8. Question Evaluate the following integrals: $$\int \frac{\sin 2x}{\sin^4 x + \cos^4 x} dx$$ #### **Answer** Given $$I = \int \frac{\sin 2x}{\sin^4 x + \cos^4 x} dx$$ Dividing the numerator and denominator by $\cos^4 x$, $$\Rightarrow \int \frac{\sin 2x}{\sin^4 x + \cos^4 x} dx = \int \frac{2 \tan x \sec^2 x}{\tan^4 x + 1} dx$$ Putting $tan^2 x = t$ so that $2tan x sec^2 x dx = dt$ $$\Rightarrow \int \frac{2\tan x \sec^2 x}{\tan^4 x + 1} dx = \int \frac{dt}{t^2 + 1}$$ We know that $\int \frac{1}{1+x^2} dx = tan^{-1}(x) + c$ $$\Rightarrow \int\!\frac{dt}{t^2+1} = tan^{-1}(t) + c$$ $$= \tan^{-1}(\tan^2 x) + c$$ $$\therefore I = \int \frac{\sin 2x}{\sin^4 x + \cos^4 x} dx = \tan^{-1}(\tan^2 x) + c$$ # 9. Question Evaluate the following integrals: $$.w \int \frac{1}{\cos x (\sin x + 2\cos x)} dx.$$ ## **Answer** Given $$I = \int \frac{1}{\cos x(\sin x + 2\cos x)} dx$$ $$\Rightarrow I = \int \frac{1}{\cos x \left(\sin x + 2\cos x\right)} dx = \int \frac{1}{\cos x \sin x + 2\cos^2 x} dx$$ Dividing the numerator and denominator by $\cos^2 x$, $$\Rightarrow \int \frac{1}{\cos x \sin x + 2 \cos^2 x} dx = \int \frac{\sec^2 x}{\tan x + 2} dx$$ Putting $\tan x + 2 = t$ so that $\sec^2 x \, dx = dt$, $$\Rightarrow \int \frac{\sec^2 x}{\tan x + 2} dx = \int \frac{dt}{t}$$ We know that $\int \frac{1}{x} dx = \log|x| + c$ $$\Rightarrow \int \frac{1}{t} dt = \log|t| + c$$ $$= \log |\tan x + 2| + x$$ $$\therefore I = \int \frac{1}{\cos x (\sin x + 2\cos x)} dx = \log|\tan x + 2| + c$$ ## 10. Question Evaluate the following integrals: $$\int \frac{1}{\sin^2 x + \sin 2x} dx$$ # Answer Given $$I = \int \frac{1}{\sin^2 x + \sin 2x} dx$$ We know that $\sin 2x = 2 \sin x \cos x$ $$\Rightarrow I = \int \frac{1}{\sin^2 x + 2\sin x \cos x} dx$$ Dividing numerator and denominator by $\cos^2 x$, $$\Rightarrow \int \frac{1}{\sin^2 x + 2\sin x \cos x} dx = \int \frac{\sec^2 x}{\tan^2 x + 2\tan x} dx$$ Putting $\tan x = t$ so that $\sec^2 x \, dx = dt$, $$\Rightarrow \int \frac{\sec^2 x}{\tan^2 x + 2\tan x} dx = \int \frac{dt}{t^2 + 2t}$$ $$= \int \frac{1}{t^2 + 2t + 1^2 - 1^2} dt$$ $$= \int \frac{1}{(t+1)^2 - 1^2} dt$$ We know that $\int \frac{1}{x^2-a^2} dx = \frac{1}{2a} \log \left| \frac{x-a}{x+a} \right| + c$ $$\Rightarrow \int \frac{1}{(t+1)^2 - 1^2} dt = \frac{1}{2} \log \left| \frac{t+1-1}{t+1+1} \right| + c$$ $$\begin{split} &= \frac{1}{2} \log \left| \frac{t}{t+2} \right| + c \\ &= \frac{1}{2} \log \left| \frac{\tan x}{\tan x + 2} \right| + c \\ &\therefore I = \int \frac{1}{\sin^2 x + \sin 2x} dx = \frac{1}{2} \log \left| \frac{\tan x}{\tan x + 2} \right| + c \end{split}$$ Evaluate the following integrals: $$\int \frac{1}{\cos 2x + 3\sin^2 x} dx$$ ### **Answer** Given $$I = \int \frac{1}{\cos 2x + 3\sin^2 x} dx$$ We know that $\cos 2x = 1 - 2\sin^2 x$. $$\Rightarrow \int \frac{1}{\cos 2x + 3\sin^2 x} dx = \int \frac{1}{1 - 2\sin^2 x + 3\sin^2 x} dx$$ $$= \int \frac{1}{1 + \sin^2 x} dx$$ Dividing numerator and denominator by $\cos^2 x$, $$\Rightarrow \int \frac{1}{1 + \sin^2 x} dx = \int \frac{\sec^2 x}{\sec^2 x + \tan^2 x} dx$$ Replacing sec^2x in denominator by $1 + tan^2x$, $$\Rightarrow \int \frac{\sec^2 x}{\sec^2 x + \tan^2 x} dx = \int \frac{\sec^2 x}{1 + 2\tan^2 x} dx$$ Putting tan x = t so that $sec^2x dx = dt$, $$\Rightarrow \int \frac{\sec^2 x}{1 + 2\tan^2 x} dx = \int \frac{dt}{1 + 2t^2}$$ $$= \frac{1}{2} \int \frac{1}{\frac{1}{2} + t^2} dt$$ We know that $$\int \frac{1}{a^2+x^2} dx = \frac{1}{a} tan^{-1} \left(\frac{x}{a}\right) + c$$ $$\Rightarrow \frac{1}{2} \int \frac{1}{\frac{1}{2} + t^2} dt = \frac{1}{2} \times \frac{1}{\frac{1}{\sqrt{2}}} tan^{-1} \left(\frac{t}{\frac{1}{\sqrt{2}}}\right) + c$$ $$= \frac{1}{\sqrt{2}} tan^{-1} (\sqrt{2} tan x) + c$$ $$\therefore I = \int \frac{1}{\cos 2x + 3 \sin^2 x} dx = \frac{1}{\sqrt{2}} \tan^{-1}(\sqrt{2} \tan x) + c$$ # Exercise 19.23 ### 1. Question Evaluate the following integrals: $$\int \frac{1}{5 + 4\cos x} dx$$ # Answer Given $$I = \int \frac{1}{5 + 4\cos x} dx$$ We know that $$cosx = \frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}$$ $$\Rightarrow \int \frac{1}{5+4\cos x} dx = \int \frac{1}{5+4\left(\frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}}\right)} dx$$ $$= \int \frac{1 + \tan^2 \frac{x}{2}}{5\left(1 + \tan^2 \frac{x}{2}\right) + 4(1 - \tan^2 \frac{x}{2})} dx$$ Replacing $1 + \tan^2 x/2$ in numerator by $\sec^2 x/2$, $$\Rightarrow \int \frac{1 + \tan^2 \frac{x}{2}}{5 \left(1 + \tan^2 \frac{x}{2} \right) + 4 (1 - \tan^2 \frac{x}{2})} dx = \int \frac{\sec^2 \frac{x}{2}}{\tan^2 \frac{x}{2} + 9} dx$$ Putting tanx/2 = t and $sec^2(x/2)dx = 2dt$, $$\Rightarrow \int \frac{\sec^2 \frac{x}{2}}{\tan^2 \frac{x}{2} + 9} dx = \int \frac{2dt}{t^2 + 9}$$ $$=2\int \frac{1}{t^2+9}dt$$ We know that $$\int \frac{1}{a^2+x^2} dx = \frac{1}{a} tan^{-1} \left(\frac{x}{a}\right) + c$$ $$\Rightarrow 2 \int \frac{1}{t^2 + 9} dt = 2
\left(\frac{1}{3}\right) tan^{-1} \left(\frac{t}{3}\right) + c$$ $$= \frac{2}{3} \tan^{-1} \left(\frac{\tan x}{3} \right) + c$$ $$\therefore I = \int \frac{1}{5 + 4\cos x} dx = \frac{2}{3} tan^{-1} \left(\frac{tan \, x}{3}\right) + c$$ # 2. Question Evaluate the following integrals: $$\int \frac{1}{5 - 4\sin x} dx$$ # **Answer** Given $$I = \int \frac{1}{5 - 4 \sin x} dx$$ We know that $$\sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$$ $$\Rightarrow \int \frac{1}{5 - 4\sin x} dx = \int \frac{1}{5 - 4\left(\frac{2\tan\frac{x}{2}}{1 + \tan^2\frac{x}{2}}\right)} dx$$ $$=\int\frac{1+\tan^2\frac{x}{2}}{5\left(1+\tan^2\frac{x}{2}\right)-4\left(2\tan\frac{x}{2}\right)}\,dx$$ Replacing $1 + \tan^2 x/2$ in numerator by $\sec^2 x/2$, $$\Rightarrow \int \frac{1+\tan^2\frac{x}{2}}{5\left(1+\tan^2\frac{x}{2}\right)-4\left(2\tan\frac{x}{2}\right)} dx = \int \frac{\sec^2\frac{x}{2}}{5+5\tan^2\frac{x}{2}-8\tan\frac{x}{2}} dx$$ Putting tanx/2 = t and $sec^2(x/2)dx = 2dt$, $$\Rightarrow \int \frac{\sec^2 \frac{x}{2}}{5 + 5\tan^2 \frac{x}{2} - 8\tan \frac{x}{2}} dx = \int \frac{2dt}{5 + 5t^2 - 8t}$$ $$= \frac{2}{5} \int \frac{1}{t^2 - \frac{8}{5}t + 1} dt$$ $$=\frac{2}{5}\int \frac{1}{\left(t-\frac{4}{5}\right)^2+\left(\frac{3}{5}\right)^2} dt$$ We know that $\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$ $$\Rightarrow \frac{2}{5} \int \frac{1}{\left(t - \frac{4}{5}\right)^2 + \left(\frac{3}{5}\right)^2} dt = \frac{2}{5} \left(\frac{1}{\frac{3}{5}}\right) tan^{-1} \left(\frac{t - \frac{4}{5}}{\frac{3}{5}}\right) + c$$ $$=\frac{2}{3}\tan^{-1}\left(\frac{5\tan x - 4}{3}\right) + c$$ $$\therefore I = \int \frac{1}{5 - 4\sin x} dx = \frac{2}{3} \tan^{-1} \left(\frac{5\tan x - 4}{3} \right) + c$$ # 3. Question Evaluate the following integrals: $$\int \frac{1}{1-2\sin x} dx$$ #### **Answer** Given $$I = \int \frac{1}{1 - 2\sin x} dx$$ We know that $$\sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$$ $$\Rightarrow \int \frac{1}{1-2\sin x} dx = \int \frac{1}{1-2\left(\frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}}\right)} dx$$ $$= \int \frac{1 + \tan^2 \frac{x}{2}}{1 \left(1 + \tan^2 \frac{x}{2}\right) - 2 \left(2 \tan \frac{x}{2}\right)} dx$$ Replacing $1 + \tan^2 x/2$ in numerator by $\sec^2 x/2$, $$\Rightarrow \int \frac{1 + \tan^2 \frac{x}{2}}{1 \left(1 + \tan^2 \frac{x}{2} \right) - 2 \left(2 \tan \frac{x}{2} \right)} dx = \int \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} - 4 \tan \frac{x}{2}} dx$$ Putting tanx/2 = t and $sec^2(x/2)dx = 2dt$, $$\Rightarrow \int \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} - 4 \tan \frac{x}{2}} dx = \int \frac{2dt}{1 + t^2 - 4t}$$ $$= 2 \int \frac{1}{t^2 - 4t + 1} dt$$ $$= 2 \int \frac{1}{(t - 2)^2 - (\sqrt{3})^2} dt$$ We know that $$\int \frac{1}{x^2-a^2} dx = \frac{1}{2a} \log \left| \frac{x-a}{x+a} \right| + c$$ $$\Rightarrow 2\int \frac{1}{(t-2)^2 - \left(\sqrt{3}\right)^2} dt = 2\left(\frac{1}{2\sqrt{3}}\right) tan^{-1} \left(\frac{t-2-\sqrt{3}}{t+2+\sqrt{3}}\right) + c$$ $$= \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{\tan x - (2 + \sqrt{3})}{\tan x + (2 + \sqrt{3})} \right) + c$$ $$\therefore I = \int \frac{1}{1 - 2\sin x} dx = \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{\tan x - (2 + \sqrt{3})}{\tan x + (2 + \sqrt{3})} \right) + c$$ # 4. Question Evaluate the following integrals: $$\int \frac{1}{4\cos x - 1} dx$$ ### **Answer** Given $$I = \int \frac{1}{4\cos x - 1} dx$$ We know that $$\cos x = \frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}}$$ $$\Rightarrow \int \frac{1}{-1 + 4\cos x} dx = \int \frac{1}{-1 + 4\left(\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right)} dx$$ $$= \int \frac{1 + \tan^2 \frac{x}{2}}{-1 \left(1 + \tan^2 \frac{x}{2}\right) + 4(1 - \tan^2 \frac{x}{2})} dx$$ Replacing $1 + \tan^2 x/2$ in numerator by $\sec^2 x/2$, $$\Rightarrow \int \frac{1 + \tan^2 \frac{x}{2}}{-1 \left(1 + \tan^2 \frac{x}{2}\right) + 4(1 - \tan^2 \frac{x}{2})} dx = \int \frac{\sec^2 \frac{x}{2}}{-5\tan^2 \frac{x}{2} + 3} dx$$ Puttingtan $$\frac{x}{2} = t$$ and $\frac{1}{2}$ sec² $(\frac{x}{2})$ dx = dt, $$\Rightarrow \int \frac{\sec^2 \frac{x}{2}}{-5\tan^2 \frac{x}{2} + 3} dx = \int \frac{dt}{3 - 5t^2}$$ $$=\frac{1}{5}\int \frac{1}{\frac{3}{5}-t^2} dt$$ We know that $$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$$ $$\Rightarrow \frac{1}{5} \int \frac{1}{\frac{3}{5} - t^2} dt = \frac{1}{5} \left(\frac{1}{\sqrt{\frac{3}{5}}} \right) log \left| \frac{\sqrt{\frac{3}{5}} + t}{\sqrt{\frac{3}{5}} - t} \right| + c$$ $$= \frac{1}{\sqrt{15}} \log \left| \frac{\sqrt{3} + \sqrt{5} \tan{\frac{x}{2}}}{\sqrt{3} - \sqrt{5} \tan{\frac{x}{2}}} \right| + c$$ $$\therefore I = \int \frac{1}{4\cos x - 1} dx = \frac{1}{\sqrt{15}} log \left| \frac{\sqrt{3} + \sqrt{5}\tan\frac{x}{2}}{\sqrt{3} - \sqrt{5}\tan\frac{x}{2}} \right| + c$$ Evaluate the following integrals: $$\int \frac{1}{1-\sin x + \cos x} dx$$ #### **Answer** Given $$I = \int \frac{1}{1-\sin x + \cos x} dx$$ We know that $$\sin x = \frac{2\tan{\frac{x}{2}}}{1+\tan{\frac{x}{2}}}$$ and $\cos x = \frac{1-\tan^{2}{\frac{x}{2}}}{1+\tan^{2}{\frac{x}{2}}}$ $$\Rightarrow \int \frac{1}{1-\sin x + \cos x} dx = \int \frac{1}{1-\frac{2\tan \frac{x}{2}}{1+\tan 2^{\frac{x}{2}}} + \frac{1-\tan 2^{\frac{x}{2}}}{1+\tan 2^{\frac{x}{2}}}} dx$$ $$= \int \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} - 2 \tan \frac{x}{2} + 1 - \tan^2 \frac{x}{2}} dx$$ Replacing $1 + \tan^2 x/2$ in numerator by $\sec^2 x/2$ and putting $\tan x/2 = t$ and $\sec^2 x/2$ dx = 2dt, $$\Rightarrow \int \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} - 2 \tan \frac{x}{2} + 1 - \tan^2 \frac{x}{2}} dx = \int \frac{\sec^2 \frac{x}{2}}{2 - 2 \tan \frac{x}{2}} dx$$ $$=\int \frac{2dt}{2-2t}$$ $$=\int \frac{1}{1-t}dt$$ We know that $\int_{x}^{1} dx = \log|x| + c$ $$\Rightarrow \int \frac{1}{1-t} dt = -\log|1-t| + c$$ $$=-\log\left|1-\tan\frac{x}{2}\right|+c$$ $$\therefore I = \int \frac{1}{1 - \sin x + \cos x} dx = -\log \left| 1 - \tan \frac{x}{2} \right| + c$$ # 6. Question Evaluate the following integrals: $$\int \frac{1}{3 + 2\sin x + \cos x} dx$$ #### **Answer** Given $$I = \int \frac{1}{3 + 2\sin x + \cos x} dx$$ We know that $$\sin x = \frac{2\tan{\frac{x}{2}}}{1+\tan{\frac{2x}{2}}}$$ and $\cos x = \frac{1-\tan^{2}{\frac{x}{2}}}{1+\tan^{2}{\frac{x}{2}}}$ $$\Rightarrow \int \frac{1}{3 + 2\sin x + \cos x} dx = \int \frac{1}{3 + 2\left(\frac{2\tan\frac{x}{2}}{1 + \tan^2\frac{x}{2}}\right) + \frac{1 - \tan^2\frac{x}{2}}{1 + \tan^2\frac{x}{2}}} dx$$ $$= \int \frac{1 + \tan^2 \frac{x}{2}}{3 + 3 \tan^2 \frac{x}{2} + 4 \tan \frac{x}{2} + 1 - \tan^2 \frac{x}{2}} dx$$ Replacing $1 + \tan^2 x/2$ in numerator by $\sec^2 x/2$ and putting $\tan x/2 = t$ and $\sec^2 x/2$ dx = 2dt, $$\Rightarrow \int \frac{1+\tan^2\frac{x}{2}}{3+3\tan^2\frac{x}{2}+4\tan\frac{x}{2}+1-\tan^2\frac{x}{2}} dx = \int \frac{\sec^2\frac{x}{2}}{2\tan^2\frac{x}{2}+4\tan\frac{x}{2}+4} dx$$ $$=\int \frac{2dt}{2t^2+4t+4}$$ $$= \int \frac{1}{t^2 + 2t + 2} dt$$ $$= \int \frac{1}{(t+1)^2 + 1^2} dt$$ We know that $\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$ $$\Rightarrow \int \frac{1}{(t+1)^2 + 1^2} dt = \tan^{-1}(t+1) + c$$ $$= \tan^{-1}(\tan{\frac{x}{2}} + 1) + c$$ $$\therefore I = \int \frac{1}{3 + 2\sin x + \cos x} dx = \tan^{-1}(\tan \frac{x}{2} + 1) + c$$ ### 7. Question Evaluate the following integrals: $$\int \frac{1}{13 + 3\cos x + 4\sin x} dx$$ ## Answer Given $$I = \int \frac{1}{13+3\cos x + 4\sin x} dx$$ We know that $$\sin x = \frac{2\tan{\frac{x}{2}}}{1+\tan{\frac{2x}{2}}}$$ and $\cos x = \frac{1-\tan{\frac{2x}{2}}}{1+\tan{\frac{2x}{2}}}$ $$\Rightarrow \int \frac{1}{13 + 4 \sin x + 3 \cos x} dx = \int \frac{1}{13 + 4 \left(\frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right) + 3 \left(\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right)} dx$$ $$= \int \frac{1 + \tan^2 \frac{x}{2}}{13 + 13 \tan^2 \frac{x}{2} + 8 \tan \frac{x}{2} + 3 - 3 \tan^2 \frac{x}{2}} dx$$ Replacing $1 + \tan^2 x/2$ in numerator by $\sec^2 x/2$ and putting $\tan x/2 = t$ and $\sec^2 x/2$ dx = 2dt, $$\Rightarrow \int \frac{1 + \tan^2 \frac{x}{2}}{13 + 13 \tan^2 \frac{x}{2} + 8 \tan \frac{x}{2} + 3 - 3 \tan^2 \frac{x}{2}} dx = \int \frac{\sec^2 \frac{x}{2}}{10 \tan^2 \frac{x}{2} + 8 \tan \frac{x}{2} + 16} dx$$ $$= \int \frac{2dt}{10t^2 + 8t + 16}$$ $$=\frac{2}{10}\int \frac{1}{t^2+\frac{4}{5}t+\frac{8}{5}}dt$$ $$= \frac{1}{5} \int \frac{1}{\left(t + \frac{2}{5}\right)^2 + \frac{6^2}{5}} dt$$ We know that $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} (\frac{x}{a}) + c$ $$\Rightarrow \frac{1}{5} \int \frac{1}{\left(t + \frac{2}{5}\right)^2 + \frac{6^2}{5}} dt = \frac{1}{5} \left(\frac{1}{\frac{6}{5}}\right) tan^{-1} \frac{t + \frac{2}{5}}{\frac{6}{5}} + c$$ $$= \frac{1}{6} \tan^{-1} \left(\frac{5 \tan \frac{x}{2} + 2}{6} \right) + c$$ $$\therefore I = \int \frac{1}{13 + 3\cos x + 4\sin x} dx = \frac{1}{6} \tan^{-1} \left(\frac{5 \tan \frac{x}{2} + 2}{6} \right) + c$$ # 8. Question Evaluate the following integrals: $$\int \frac{1}{\cos x - \sin x} dx$$ #### **Answer** Given $$I = \int \frac{1}{\cos x - \sin x} dx$$ We know that $\sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$ and $\cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$ $$\Rightarrow \int \frac{1}{-\sin x + \cos x} dx = \int \frac{1}{-\frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} dx$$ $$= \int \frac{1 + \tan^2 \frac{x}{2}}{-2 \tan \frac{x}{2} + 1 - \tan^2 \frac{x}{2}} dx$$ Replacing $1 + \tan^2 x/2$ in numerator by $\sec^2 x/2$ and putting $\tan x/2 = t$ and $\sec^2 x/2$ dx = 2dt, $$\Rightarrow \int \frac{1+\tan^2\frac{x}{2}}{-2\tan\frac{x}{2}+1-\tan^2\frac{x}{2}}dx = \int \frac{\sec^2\frac{x}{2}}{-\tan^2\frac{x}{2}-2\tan\frac{x}{2}+1}dx$$ $$= -\int \frac{2dt}{t^2 + 2t - 1}$$ $$= -2 \int \frac{1}{(t+1)^2 - (\sqrt{2})^2} dt$$ $$= 2 \int \frac{1}{(\sqrt{2})^2 - (t+1)^2} dt$$ We know that $$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$$
$$\Rightarrow 2 \int \frac{1}{\left(\sqrt{2}\right)^{2} - (t+1)^{2}} dt = \frac{2}{2\sqrt{2}} \log \left| \frac{\sqrt{2} + t + 1}{\sqrt{2} - t - 1} \right| + c$$ $$= \frac{1}{\sqrt{2}} log \left| \frac{\sqrt{2} + tan \frac{x}{2} + 1}{\sqrt{2} - tan \frac{x}{2} - 1} \right| + c$$ $$\therefore I = \int \frac{1}{\cos x - \sin x} dx = \frac{1}{\sqrt{2}} log \left| \frac{\sqrt{2} + tan \frac{x}{2} + 1}{\sqrt{2} - tan \frac{x}{2} - 1} \right| + c$$ Evaluate the following integrals: $$\int \frac{1}{\sin x + \cos x} dx$$ #### **Answer** Given $$I = \int \frac{1}{\sin x + \cos x} dx$$ We know that $$\sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$$ and $\cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$ $$\Rightarrow \int \frac{1}{\sin x + \cos x} dx = \int \frac{1}{\frac{2 \tan \frac{x}{2}}{1 + \tan^{\frac{2x}{2}}} + \frac{1 - \tan^{\frac{2x}{2}}}{1 + \tan^{\frac{2x}{2}}}} dx$$ $$= \int \frac{1 + \tan^2 \frac{x}{2}}{2 \tan \frac{x}{2} + 1 - \tan^2 \frac{x}{2}} dx$$ Replacing $1 + \tan^2 x/2$ in numerator by $\sec^2 x/2$ and putting $\tan x/2 = t$ and $\sec^2 x/2$ dx = 2dt, $$\Rightarrow \int \frac{1 + \tan^2 \frac{x}{2}}{2 \tan \frac{x}{2} + 1 - \tan^2 \frac{x}{2}} dx = \int \frac{\sec^2 \frac{x}{2}}{-\tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} + 1} dx$$ $$= -\int \frac{2dt}{t^2 - 2t - 1}$$ $$=-2\int \frac{1}{(t-1)^2-(\sqrt{2})^2} dt$$ $$=2\int \frac{1}{(\sqrt{2})^2-(t-1)^2} dt$$ We know that $\int \frac{1}{a^2-x^2} dx = \frac{1}{2a} \log \left| \frac{a+x}{a-x} \right| + c$ $$\Rightarrow 2\int \frac{1}{\left(\sqrt{2}\right)^2 - (t-1)^2} dt = \frac{2}{2\sqrt{2}} \log \left| \frac{\sqrt{2} + t - 1}{\sqrt{2} - t + 1} \right| + c$$ $$= \frac{1}{\sqrt{2}} log \left| \frac{\sqrt{2} + tan \frac{x}{2} - 1}{\sqrt{2} - tan \frac{x}{2} + 1} \right| + c$$ $$\therefore I = \int \frac{1}{\sin x + \cos x} \, dx = \frac{1}{\sqrt{2}} log \left| \frac{\sqrt{2} + tan \frac{x}{2} - 1}{\sqrt{2} - tan \frac{x}{2} + 1} \right| + c$$ Evaluate the following integrals: $$\int \frac{1}{5 - 4\cos x} dx$$ #### **Answer** Given $$I = \int \frac{1}{5 - 4\cos x} dx$$ We know that $$cosx = \frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}$$ $$\Rightarrow \int \frac{1}{5-4\cos x} dx = \int \frac{1}{5-4\left(\frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}}\right)} dx$$ $$= \int \frac{1 + \tan^2 \frac{x}{2}}{5\left(1 + \tan^2 \frac{x}{2}\right) - 4(1 - \tan^2 \frac{x}{2})} dx$$ Replacing $1 + \tan^2 x/2$ in numerator by $\sec^2 x/2$, $$\Rightarrow \int \frac{1 + \tan^2 \frac{x}{2}}{5\left(1 + \tan^2 \frac{x}{2}\right) - 4(1 - \tan^2 \frac{x}{2})} \, dx = \int \frac{\sec^2 \frac{x}{2}}{9\tan^2 \frac{x}{2} + 1} \, dx$$ Putting tanx/2 = t and $sec^2(x/2)dx = 2dt$, $$\Rightarrow \int \frac{\sec^2 \frac{x}{2}}{9\tan^2 \frac{x}{2} + 1} dx = \int \frac{2dt}{9t^2 + 1}$$ $$= \frac{2}{9} \int \frac{1}{t^2 + \frac{1}{9}} dt$$ We know that $\int \frac{1}{a^2+x^2} dx = \frac{1}{a} tan^{-1} \left(\frac{x}{a}\right) + c$ $$\Rightarrow \frac{2}{9} \int \frac{1}{t^2 + \frac{1}{9}} dt = \frac{2}{9} \left(\frac{1}{\frac{1}{3}} \right) tan^{-1} \left(\frac{t}{\frac{1}{3}} \right) + c$$ $$=\frac{2}{3}\tan^{-1}(3\tan x)+c$$ $$\therefore I = \int \frac{1}{5 - 4\cos x} dx = \frac{2}{3} \tan^{-1} (3\tan x) + c$$ # 11. Question Evaluate the following integrals: $$\int \frac{1}{2 + \sin x + \cos x} dx$$ #### **Answer** Given $$I = \int \frac{1}{2 + \sin x + \cos x} dx$$ We know that $$\sin x = \frac{2\tan{\frac{x}{2}}}{1+\tan{\frac{2x}{2}}}$$ and $\cos x = \frac{1-\tan{\frac{2x}{2}}}{1+\tan{\frac{2x}{2}}}$ $$\Rightarrow \int \frac{1}{2+\sin x + \cos x} dx = \int \frac{1}{2+\frac{2\tan \frac{x}{2}}{1+\tan 2\frac{x}{2}} + \frac{1-\tan 2\frac{x}{2}}{1+\tan 2\frac{x}{2}}} dx$$ $$= \int \frac{1 + \tan^2 \frac{x}{2}}{2 + 2\tan^2 \frac{x}{2} - 2\tan \frac{x}{2} + 1 - \tan^2 \frac{x}{2}} dx$$ Replacing $1 + \tan^2 x/2$ in numerator by $\sec^2 x/2$ and putting $\tan x/2 = t$ and $\sec^2 x/2$ dx = 2dt, $$\Rightarrow \int \frac{1+\tan^2\frac{x}{2}}{2+2\tan^2\frac{x}{2}-2\tan\frac{x}{2}+1-\tan^2\frac{x}{2}} dx = \int \frac{\sec^2\frac{x}{2}}{\tan^2\frac{x}{2}-2\tan\frac{x}{2}+3} dx$$ $$= \int \frac{2dt}{t^2 - 2t + 3}$$ $$=2\int \frac{1}{(t+1)^2 + (\sqrt{2})^2} dt$$ We know that $$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} tan^{-1} \left(\frac{x}{a}\right) + c$$ $$\Rightarrow 2 \int \frac{1}{(t+1)^2 + \left(\sqrt{2}\right)^2} dt = 2 \left(\frac{1}{\sqrt{2}}\right) tan^{-1} \left(\frac{t+1}{\sqrt{2}}\right)$$ $$= \sqrt{2} \tan^{-1} (\frac{\tan \frac{x}{2} + 1}{\sqrt{2}})$$ $$\therefore I = \int \frac{1}{2 + \sin x + \cos x} dx = \sqrt{2} \tan^{-1} \left(\frac{\tan \frac{x}{2} + 1}{\sqrt{2}} \right)$$ # 12. Question Evaluate the following integrals: $$\int \frac{1}{\sin x + \sqrt{3}\cos x} dx$$ ### **Answer** Given $$I = \int \frac{1}{\sin x + \sqrt{3}\cos x} dx$$ We know that $$\sin x = \frac{2 \tan{\frac{x}{2}}}{1 + \tan{\frac{2x}{2}}}$$ and $\cos x = \frac{1 - \tan{\frac{2x}{2}}}{1 + \tan{\frac{2x}{2}}}$ $$\Rightarrow \int \frac{1}{\sin x + \sqrt{3}\cos x} \, dx = \int \frac{1}{\frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}} + \sqrt{3}\left(\frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}}\right)} \, dx$$ $$= \int \frac{1 + \tan^2 \frac{x}{2}}{2 \tan \frac{x}{2} + \sqrt{3} - \sqrt{3} \tan^2 \frac{x}{2}} dx$$ Replacing $1 + \tan^2 x/2$ in numerator by $\sec^2 x/2$ and putting $\tan x/2 = t$ and $\sec^2 x/2$ dx = 2dt, $$\begin{split} &\Rightarrow \int \frac{1 + \tan^2 \frac{x}{2}}{2 \tan \frac{x}{2} + \sqrt{3} - \sqrt{3} \tan^2 \frac{x}{2}} dx = \int \frac{\sec^2 \frac{x}{2}}{-\sqrt{3} \tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} + \sqrt{3}} dx \\ &= -\int \frac{2 dt}{\sqrt{3} t^2 - 2t - \sqrt{3}} \\ &= -\frac{2}{\sqrt{3}} \int \frac{1}{\left(t - \frac{1}{\sqrt{3}}\right)^2 - \left(\frac{2}{\sqrt{3}}\right)^2} dt \\ &= \frac{2}{\sqrt{3}} \int \frac{1}{\left(\frac{2}{\sqrt{3}}\right)^2 - \left(t - \frac{1}{\sqrt{3}}\right)^2} dt \end{split}$$ We know that $\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$ $$\Rightarrow \frac{2}{\sqrt{3}} \int \frac{1}{\left(\frac{2}{\sqrt{3}}\right)^2 - \left(t - \frac{1}{\sqrt{3}}\right)^2} dt = \frac{2}{\sqrt{3}} \left(\frac{1}{2\left(\frac{2}{\sqrt{3}}\right)}\right) \log \left|\frac{\frac{2}{\sqrt{3}} + t - \frac{1}{\sqrt{3}}}{\frac{2}{\sqrt{3}} - t + \frac{1}{\sqrt{3}}}\right| + c$$ $$= \frac{1}{2} \log \left|\frac{\frac{2}{\sqrt{3}} + \tan \frac{x}{2} - \frac{1}{\sqrt{3}}}{\frac{2}{\sqrt{3}} - \tan \frac{x}{2} + \frac{1}{\sqrt{3}}}\right| + c$$ $$\therefore I = \int \frac{1}{\sin x + \sqrt{3}\cos x} dx = \frac{1}{2} \log \left| \frac{\frac{2}{\sqrt{3}} + \tan \frac{x}{2} - \frac{1}{\sqrt{3}}}{\frac{2}{\sqrt{3}} - \tan \frac{x}{2} + \frac{1}{\sqrt{3}}} \right| + c$$ # 13. Question Evaluate the following integrals: $$\int \frac{1}{\sqrt{3}\sin x + \cos x} dx$$ ### **Answer** Given $$I=\int\!\frac{1}{\sqrt{3}sin\,x+cos\,x}dx$$ Let $\sqrt{3} = r \cos\theta$ and $1 = r \sin\theta$ $$r = \sqrt{3+1} = 2$$ And $\tan \theta = 1/\sqrt{3} \rightarrow \theta = \pi/6$ $$\Rightarrow \int \frac{1}{\sqrt{3}\sin x + \cos x} dx = \int \frac{1}{r\cos\theta\sin x + r\sin\theta\cos x} dx$$ $$= \frac{1}{r} \int \frac{1}{\sin(x+\theta)} dx$$ $$= \frac{1}{r} \int \csc(x+\theta) dx$$ We know that $\int \csc x \, dx = \log \left| \tan \frac{x}{2} \right| + c$ $$\Rightarrow \frac{1}{r} \int \csc(x+\theta) dx = \frac{1}{2} \log \left| \tan \left(\frac{x}{2} + \frac{\theta}{2} \right) \right| + c$$ $$= \frac{1}{2} \log \left| \tan \left(\frac{x}{2} + \frac{\pi}{12} \right) \right| + c$$ $$\therefore I = \int \frac{1}{\sqrt{3} sin \, x + cos \, x} dx = \frac{1}{2} log \left| tan \left(\frac{x}{2} + \frac{\pi}{12} \right) \right| + c$$ Evaluate the following integrals: $$\int \frac{1}{\sin x - \sqrt{3}\cos x} dx$$ # **Answer** Given $$I = \int \frac{1}{\sin x - \sqrt{3}\cos x} dx$$ Let $1 = r \cos\theta$ and $\sqrt{3} = r \sin\theta$ $$r = \sqrt{3+1} = 2$$ And $\tan \theta = \sqrt{3} \rightarrow \theta = \pi/3$ $$\Rightarrow \int \frac{1}{\sin x - \sqrt{3}\cos x} dx = \int \frac{1}{r\cos\theta\sin x - r\sin\theta\cos x} dx$$ $$= \frac{1}{r} \int \frac{1}{\sin(x - \theta)} \, \mathrm{d}x$$ $$= \frac{1}{r} \int \csc(x - \theta) dx$$ We know that $\int \csc x \, dx = \log \left| \tan \frac{x}{2} \right| + c$ $$\Rightarrow \frac{1}{r} \int cosec(x-\theta) dx = \frac{1}{2} log \left| tan \left(\frac{x}{2} - \frac{\theta}{2} \right) \right| + c$$ $$=\frac{1}{2}\log\left|\tan\left(\frac{x}{2}-\frac{\pi}{6}\right)\right|+c$$ $$\therefore I = \int \frac{1}{\sin x - \sqrt{3}\cos x} dx = \frac{1}{2} \log \left| \tan \left(\frac{x}{2} - \frac{\pi}{6} \right) \right| + c$$ # 15. Question Evaluate the following integrals: $$\int \frac{1}{5 + 7\cos x + \sin x} dx$$ #### **Answer** Given $$I = \int \frac{1}{5+7\cos x + \sin x} dx$$ We know that $$\sin x = \frac{2\tan{\frac{x}{2}}}{1+\tan{\frac{x}{2}}}$$ and $\cos x = \frac{1-\tan^2{\frac{x}{2}}}{1+\tan^2{\frac{x}{2}}}$ $$\Rightarrow \int \frac{1}{5 + \sin x + 7 cos \, x} dx = \int \frac{1}{5 + \left(\frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right) + 7 \left(\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right)} dx$$ $$= \int \frac{1 + \tan^2 \frac{x}{2}}{5 + 5 \tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} + 7 - 7 \tan^2 \frac{x}{2}} dx$$ Replacing 1 + $tan^2x/2$ in numerator by $sec^2x/2$ and putting tan x/2 = t and $sec^2 x/2$ dx = 2dt, $$\Rightarrow \int \frac{1 + \tan^2 \frac{x}{2}}{5 + 5 \tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} + 7 - 7 \tan^2 \frac{x}{2}} dx = \int \frac{\sec^2 \frac{x}{2}}{-2 \tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} + 12} dx$$ $$= \int \frac{2dt}{-2t^2 + 2t + 12}$$ $$= -\int \frac{1}{t^2 - t - 6} dt$$ $$= -\int \frac{1}{\left(t - \frac{1}{2}\right)^2 - \frac{5}{2}} dt$$ We know that $$\int \frac{1}{x^2-a^2} dx = \frac{1}{2a} \log \left| \frac{x-a}{x+a} \right| + c$$ $$\Rightarrow -\int \frac{1}{\left(t - \frac{1}{2}\right)^2 - \frac{5}{2}^2} dt = -\left(\frac{1}{2\left(\frac{5}{2}\right)}\right) \log\left|\frac{t - \frac{1}{2} - \frac{5}{2}}{t - \frac{1}{2} +
\frac{5}{2}}\right| + c$$ $$= \frac{-1}{5} \log \left| \frac{\tan \frac{x}{2} - 3}{\tan \frac{x}{2} + 2} \right| + c$$ $$\therefore I = \int \frac{1}{5 + 7\cos x + \sin x} dx = \frac{-1}{5} \log \left| \frac{\tan \frac{x}{2} - 3}{\tan \frac{x}{2} + 2} \right| + c$$ # Exercise 19.24 # 1. Question Evaluate the integral $$\int \frac{1}{1-\cot x} dx$$ # **Answer** Ideas required to solve the problems: - * <u>Integration by substitution</u>: A change in the variable of integration often reduces an integral to one of the fundamental integration. If derivative of a function is present in an integration or if chances of its presence after few modification is possible then we apply integration by substitution method. - * Knowledge of integration of fundamental functions like sin, cos ,polynomial, log etc and formula for some special functions. Let, $$I = \int \frac{1}{1 - \cot x} dx$$ To solve such integrals involving trigonometric terms in numerator and denominators. We use the basic substitution method and to apply this simply we follow the undermentioned procedure- If I has the form $$\int \frac{a \sin x + b \cos x + c}{d \sin x + e \cos x + f} dx$$ Then substitute numerator as - $$a \sin x + b \cos x + c = A \frac{d}{dx} (d \sin x + e \cos x + f) + B(d \sin x + e \cos x + c) + C$$ Where A, B and C are constants We have, $$I = \int \frac{1}{1 - \cot x} dx = \int \frac{1}{1 - \frac{\cos x}{\sin x}} dx = \int \frac{\sin x}{\sin x - \cos x} dx$$ As I matches with the form described above, So we will take the steps as described. $$\sin x = A \frac{d}{dx} (\sin x - \cos x) + B(\sin x - \cos x) + C$$ $$\Rightarrow \sin x = A(\cos x + \sin x) + B(\sin x - \cos x) + C \{\because \frac{d}{dx}\cos x = -\sin x\}$$ $$\Rightarrow \sin x = \sin x (B + A) + \cos x (A - B) + C$$ Comparing both sides we have: $$C = 0$$ $$A - B = 0 \Rightarrow A = B$$ $$B + A = 1 \Rightarrow 2A = 1 \Rightarrow A = 1/2$$ $$\therefore A = B = 1/2$$ Thus I can be expressed as: $$I = \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{(\cos x + \sin x) + \frac{1}{2} (\sin x - \cos x)}{\sin x - \cos x} dx$$ $$I = \int \frac{1}{2} \frac{(\cos x + \sin x)}{\sin x - \cos x} dx + \int \frac{1}{2} \frac{(\sin x - \cos x)}{\sin x - \cos x} dx$$ $$\therefore \text{ Let } I_1 = \frac{1}{2} \int \frac{(\cos x + \sin x)}{\sin x - \cos x} dx \text{ and } I_2 = \frac{1}{2} \int \frac{(\sin x - \cos x)}{\sin x - \cos x} dx$$ $$\Rightarrow I = I_1 + I_2 \dots$$ equation 1 $$I_1 = \frac{1}{2} \int \frac{(\cos x + \sin x)}{\sin x - \cos x} dx$$ Let, $$u = \sin x - \cos x \Rightarrow du = (\cos x + \sin x)dx$$ So, I₁ reduces to: $$I_1 = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \log|u| + C_1$$ $$\therefore I_1 = \frac{1}{2} \log |\sin x - \cos x| + C_1 \dots \text{equation 2}$$ As, $$I_2 = \frac{1}{2} \int \frac{(\sin x - \cos x)}{\sin x - \cos x} dx = \frac{1}{2} \int dx$$ $$\therefore I_2 = \frac{x}{2} + C_2 \dots \text{equation } 3$$ From equation 1,2 and 3 we have: $$I = \frac{1}{2} \log|\sin x - \cos x| + C_1 + \frac{x}{2} + C_2$$ $$\therefore I = \frac{1}{2} \log|\sin x - \cos x| + \frac{x}{2} + C$$ # 2. Question Evaluate the integral $$\int \frac{1}{1-\tan x} dx$$ # Answer Ideas required to solve the problems: - * <u>Integration by substitution</u>: A change in the variable of integration often reduces an integral to one of the fundamental integration. If derivative of a function is present in an integration or if chances of its presence after few modification is possible then we apply integration by substitution method. - * Knowledge of integration of fundamental functions like sin, cos ,polynomial, log etc and formula for some special functions. Let, $$I = \int \frac{1}{1-\tan x} dx$$ To solve such integrals involving trigonometric terms in numerator and denominators. We use the basic substitution method and to apply this simply we follow the undermentioned procedure- If I has the form $\int \frac{a \sin x + b \cos x + c}{d \sin x + e \cos x + f} dx$ Then substitute numerator as - $$a\sin x + b\cos x + c = A\frac{d}{dx}\left(d\sin x + e\cos x + f\right) + B(d\sin x + e\cos x + c) + C$$ Where A, B and C are constants We have, $$I = \int \frac{1}{1-\tan x} dx = \int \frac{1}{1-\frac{\sin x}{\cos x}} dx = \int \frac{\cos x}{\cos x - \sin x} dx$$ As I matches with the form described above, So we will take the steps as described. $$\cos x = A \frac{d}{dx} (\cos x - \sin x) + B(\cos x - \sin x) + C$$ $$\Rightarrow \cos x = A(-\sin x - \cos x) + B(\cos x - \sin x) + C \{\because \frac{d}{dx}\cos x = -\sin x\}$$ $$\Rightarrow \cos x = -\sin x (B + A) + \cos x (B - A) + C$$ Comparing both sides we have: $$C = 0$$ $$B - A = 1 \Rightarrow A = B - 1$$ $$B + A = 0 \Rightarrow 2B - 1 = 0 \Rightarrow B = 1/2$$ $$\therefore A = B - 1 = -1/2$$ Thus I can be expressed as: $$I = \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{(\cos x + \sin x) + \frac{1}{2} (\cos x - \sin x)}{(\cos x - \sin x)} dx$$ $$I = \int_{-\frac{1}{2}(\cos x + \sin x)}^{\frac{1}{2}(\cos x + \sin x)} dx + \int_{-(\cos x - \sin x)}^{\frac{1}{2}(\cos x - \sin x)} dx$$ $$\therefore \text{ Let } \textbf{I}_1 = \frac{1}{2} \int \frac{(\cos x + \sin x)}{(\cos x - \sin x)} dx \text{ and } \textbf{I}_2 = \frac{1}{2} \int \frac{(\cos x - \sin x)}{(\cos x - \sin x)} dx$$ $$\Rightarrow I = I_1 + I_2 \dots$$ equation 1 $$I_1 = \frac{1}{2} \int \frac{(\cos x + \sin x)}{(\cos x - \sin x)} dx$$ Let, $$u = \cos x - \sin x \Rightarrow du = -(\cos x + \sin x)dx$$ So, I₁ reduces to: $$I_1 = -\frac{1}{2} \int \frac{du}{u} = -\frac{1}{2} \log|u| + C_1$$ $$\therefore I_1 = -\frac{1}{2}\log|\cos x - \sin x| + C_1 \dots \text{equation 2}$$ As, $$I_2 = \frac{1}{2} \int \frac{(\cos x - \sin x)}{(\cos x - \sin x)} dx = \frac{1}{2} \int dx$$ $$\therefore I_2 = \frac{x}{2} + C_2$$equation 3 From equation 1,2 and 3 we have: $$I = -\frac{1}{2}\log|\cos x - \sin x| + C_1 + \frac{x}{2} + C_2$$ $$\therefore I = -\frac{1}{2}\log|\cos x - \sin x| + \frac{x}{2} + C$$ Evaluate the integral $$\int \frac{3+2\cos x+4\sin x}{2\sin x+\cos x+3} dx$$ #### **Answer** Ideas required to solve the problems: - * <u>Integration by substitution</u>: A change in the variable of integration often reduces an integral to one of the fundamental integration. If derivative of a function is present in an integration or if chances of its presence after few modification is possible then we apply integration by substitution method. - * Knowledge of integration of fundamental functions like sin, cos ,polynomial, log etc and formula for some special functions. Let, $$I = \int \frac{3+2\cos x + 4\sin x}{2\sin x + \cos x + 3} dx$$ To solve such integrals involving trigonometric terms in numerator and denominators. We use the basic substitution method and to apply this simply we follow the undermentioned procedure- If I has the form $$\int \frac{a \sin x + b \cos x + c}{d \sin x + e \cos x + f} dx$$ Then substitute numerator as - $$a\sin x + b\cos x + c = A\frac{d}{dx}\left(d\sin x + e\cos x + f\right) + B(d\sin x + e\cos x + c) + C$$ Where A, B and C are constants We have, $$I = \int \frac{3+2\cos x + 4\sin x}{2\sin x + \cos x + 3} dx$$ As I matches with the form described above, So we will take the steps as described. $$3 + 2\cos x + 4\sin x = A\frac{d}{dx}(2\sin x + \cos x + 3) + B(2\sin x + \cos x + 3) + C$$ $$\Rightarrow 3 + 2\cos x + 4\sin x = A(2\cos x - \sin x) + B(2\sin x + \cos x + 3) + C \quad \{\because \frac{d}{dx}\cos x = -\sin x\}$$ $$\Rightarrow$$ 3 + 2cos x + 4sin x = sin x (2B - A) + cos x (B + 2A) + 3B + C Comparing both sides we have: $$3B + C = 3$$ $$B + 2A = 2$$ $$2B - A = 4$$ On solving for A, B and C we have: $$A = 0$$, $B = 2$ and $C = -3$ Thus I can be expressed as: $$I = \int \frac{2(2\sin x + \cos x + 3) - 3}{2\sin x + \cos x + 3} dx$$ $$I = \int \frac{2(2\sin x + \cos x + 3)}{2\sin x + \cos x + 3} dx + \int \frac{-3}{2\sin x + \cos x + 3} dx$$ $$\therefore \text{ Let } I_1 = 2 \int \frac{(2\sin x + \cos x + 3)}{2\sin x + \cos x + 3} dx \text{ and } I_2 = -3 \int \frac{1}{2\sin x + \cos x + 3} dx$$ $$\Rightarrow I = I_1 + I_2 \dots$$ equation 1 $$I_1 = 2 \int \frac{(2\sin x + \cos x + 3)}{2\sin x + \cos x + 3} dx$$ So, I₁ reduces to: $$I_1 = 2 \int dx = 2x + C_1 \dots$$ equation 2 As, $$I_2 = -3 \int \frac{1}{2 \sin x + \cos x + 3} dx$$ To solve the integrals of the form $\int \frac{1}{a\sin x + b\cos x + c} dx$ To apply substitution method we take following procedure. We substitute: $$\sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and } \cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$$ $$\therefore I_2 = -3 \int \frac{1}{2 \sin x + \cos x + 3} dx$$ $$\Rightarrow \text{I}_2 = \frac{-3\int \frac{1}{2\left(\frac{2\tan\frac{x}{2}}{1+\tan\frac{2x}{2}}\right) + 3\left(\frac{1-\tan\frac{2x}{2}}{1+\tan\frac{2x}{2}}\right) + 3}}{2\left(\frac{1-\tan\frac{2x}{2}}{1+\tan\frac{2x}{2}}\right) + 3}}\,dx$$ $$\Rightarrow \text{I}_2 = -3 \int \frac{1 + \tan^2 \frac{x}{2}}{4 \tan^{\frac{x}{2}} + 1 - \tan^2 \frac{x}{2} + 3(1 + \tan^2 \frac{x}{2})} \ dx$$ $$\Rightarrow I_2 = -3 \int \frac{\sec^{\frac{2x}{2}}}{2(2\tan^{\frac{x}{2}} + 2 + 1\tan^{\frac{2x}{2}})} \ dx$$ Let, $$t = \tan \frac{x}{2} \Rightarrow dt = \frac{1}{2} \sec^2 \frac{x}{2} dx$$ $$I_2 = -3 \int \frac{1}{(2t+2+t^2)} dt$$ As, the denominator is polynomial without any square root term. So one of the special integral will be used to solve I_2 . $$I_2 = -3 \int \frac{1}{(2t+2+t^2)} dt$$ $$\Rightarrow I_2 = -3 \int \frac{1}{(t^2 + 2(1)t + 1) + 1} dt$$ $$\therefore I_2 = -3 \int \frac{1}{(t+1)^2 + 1} dt \{ \because a^2 + 2ab + b^2 = (a+b)^2 \}$$ As, I₂ matches with the special integral form $$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$ $$I_2 = -3 \tan^{-1}(t+1)$$ Putting value of t we have: $$I_2 = -3 \tan^{-1} \left(\tan \frac{x}{2} + 1 \right) + C_2 \dots$$ equation 3 From equation 1,2 and 3: $$I = 2x + C_1 - 3 \tan^{-1} \left(\tan \frac{x}{2} + 1 \right) + C_2$$ $$I = 2x - 3 \tan^{-1} \left(\tan \frac{x}{2} + 1 \right) + C \dots \text{ans}$$ ### 4.
Question Evaluate the integral $$\int \frac{1}{p + q \tan x} dx$$ #### **Answer** Ideas required to solve the problems: - * <u>Integration by substitution</u>: A change in the variable of integration often reduces an integral to one of the fundamental integration. If derivative of a function is present in an integration or if chances of its presence after few modification is possible then we apply integration by substitution method. - * Knowledge of integration of fundamental functions like sin, cos ,polynomial, log etc and formula for some special functions. Let, $$I = \int \frac{1}{p+q \tan x} dx$$ To solve such integrals involving trigonometric terms in numerator and denominators. We use the basic substitution method and to apply this simply we follow the undermentioned procedure- If I has the form $\int \frac{a \sin x + b \cos x + c}{d \sin x + e \cos x + f} dx$ Then substitute numerator as - $$a\sin x + b\cos x + c = A\frac{d}{dx}\left(d\sin x + e\cos x + f\right) + B(d\sin x + e\cos x + c) + C$$ Where A, B and C are constants We have, I = $$\int \frac{1}{p+q\tan x} dx = \int \frac{1}{p+q\frac{\sin x}{\cos x}} dx = \int \frac{\cos x}{p\cos x+q\sin x} dx$$ As I matches with the form described above, So we will take the steps as described. $$\cos x = A \frac{d}{dx} (p\cos x + q\sin x) + B(p\cos x + q\sin x) + C$$ $$\Rightarrow \cos x = A(-p\sin x + q\cos x) + B(p\cos x - q\sin x) + C\left\{\because \frac{d}{dx}\cos x = -\sin x\right\}$$ $$\Rightarrow \cos x = -\sin x (Bq + Ap) + \cos x (Bp + Aq) + C$$ Comparing both sides we have: $$C = 0$$ $$Bp + Aq = 1$$ $$Bq + Ap = 0$$ On solving above equations, we have: $$A = \frac{q}{p^2 + q^2} B = \frac{p}{p^2 + q^2}$$ and $C = 0$ Thus I can be expressed as: $$I = \int \frac{\frac{q}{p^2 + q^2} \left(-p\sin x + q\sin x\right) + \frac{p}{p^2 + q^2} \left(p\cos x + q\sin x\right)}{\left(p\cos x + q\sin x\right)} \, dx$$ $$I = \int \frac{\frac{q}{p^{2} + q^{2}} (-p\sin x + q\sin x)}{(p\cos x + q\sin x)} dx + \int \frac{\frac{p}{p^{2} + q^{2}} (p\cos x + q\sin x)}{(p\cos x + q\sin x)} dx$$ $$\therefore \text{ Let } I_1 = \frac{q}{p^2 + q^2} \int \frac{(-p\sin x + q\sin x)}{(p\cos x + q\sin x)} dx \text{ and } I_2 = \frac{p}{p^2 + q^2} \int \frac{(p\cos x + q\sin x)}{(p\cos x + q\sin x)} dx$$ $\Rightarrow I = I_1 + I_2 \dots$ equation 1 $$I_1 = \frac{q}{p^2 + q^2} \int \frac{(-p\sin x + q\sin x)}{(p\cos x + q\sin x)} dx$$ Let, $u = p\cos x + q\sin x \Rightarrow du = (-p\sin x + q\cos x)dx$ So, I₁ reduces to: $$I_1 = \frac{q}{p^2 + q^2} \int \frac{du}{u} = \frac{q}{p^2 + q^2} \log|u| + C_1$$ $$\therefore I_1 = \frac{q}{p^2 + q^2} \log |(p \cos x + q \sin x)| + C_1 \dots \text{equation 2}$$ As, $$I_2 = \frac{p}{p^2 + q^2} \int \frac{(p\cos x + q\sin x)}{(p\cos x + q\sin x)} dx = \frac{p}{p^2 + q^2} \int dx$$ $$\therefore I_2 = \frac{px}{n^2 + q^2} + C_2 \dots \text{equation 3}$$ From equation 1,2 and 3 we have: $$I = \frac{q}{p^2 + q^2} \log |(p \cos x + q \sin x)| + C_1 + \frac{px}{p^2 + q^2} + C_2$$ $$\therefore | = \frac{q}{p^2 + q^2} \log |(p \cos x + q \sin x)| + \frac{px}{p^2 + q^2} + C$$ #### 5. Question Evaluate the integral $$\int \frac{5\cos x + 6}{2\cos x + \sin x + 3} dx$$ #### **Answer** Ideas required to solve the problems: - * <u>Integration by substitution</u>: A change in the variable of integration often reduces an integral to one of the fundamental integration. If derivative of a function is present in an integration or if chances of its presence after few modification is possible then we apply integration by substitution method. - * Knowledge of integration of fundamental functions like sin, cos ,polynomial, log etc and formula for some special functions. Let, $$I = \int \frac{5 \cos x + 6}{2 \cos x + \sin x + 3} dx$$ To solve such integrals involving trigonometric terms in numerator and denominators. We use the basic substitution method and to apply this simply we follow the undermentioned procedure- If I has the form $$\int \frac{a \sin x + b \cos x + c}{d \sin x + e \cos x + f} dx$$ Then substitute numerator as - $$a\sin x + b\cos x + c = A\frac{d}{dx}\left(d\sin x + e\cos x + f\right) + B(d\sin x + e\cos x + c) + C$$ Where A, B and C are constants We have, $$I = \int \frac{5\cos x + 6}{2\cos x + \sin x + 3} dx$$ As I matches with the form described above, So we will take the steps as described. $$\therefore 5\cos x + 6 = A\frac{d}{dx}(2\cos x + \sin x + 3) + B(2\cos x + \sin x + 3) + C$$ $\Rightarrow 5\cos x + 6 = A(-2\sin x + \cos x) + B(2\cos x + \sin x + 3) + C \quad \{\because \frac{d}{dx}\cos x = -\sin x\}$ ⇒ $5 \cos x + 6 = \sin x (B - 2A) + \cos x (2B + A) + 3B + C$ Comparing both sides we have: 3B + C = 6 2B + A = 5 B - 2A = 0 On solving for A, B and C we have: $$A = 1$$, $B = 2$ and $C = 0$ Thus I can be expressed as: $$I = \int \frac{(-2\sin x + \cos x) + 2(2\cos x + \sin x + 3)}{2\cos x + \sin x + 3} dx$$ $$I = \int \frac{(-2\sin x + \cos x)}{2\cos x + \sin x + 3} dx + \int \frac{2(2\cos x + \sin x + 3)}{2\cos x + \sin x + 3} dx$$ $$\therefore \text{ Let } I_1 = \int \frac{(-2\sin x + \cos x)}{2\cos x + \sin x + 3} dx \text{ and } I_2 = \int \frac{2(2\cos x + \sin x + 3)}{2\cos x + \sin x + 3} dx$$ $$\Rightarrow I = I_1 + I_2 \dots$$ equation 1 $$I_1 = \int \frac{(-2\sin x + \cos x)}{2\cos x + \sin x + 3} dx$$ Let, $$2 \cos x + \sin x + 3 = u$$ $$\Rightarrow$$ (-2sin x + cos x)dx = du So, I₁ reduces to: $$I_1 = \int \frac{du}{u} = \log|u| + C_1$$ $$\therefore I_1 = \log|2\cos x + \sin x + 3| + C_1 \dots \text{equation 2}$$ As, $$I_2 = \int \frac{2(2\cos x + \sin x + 3)}{2\cos x + \sin x + 3} dx$$ $$\Rightarrow$$ I₂ = 2 $\int dx = 2x + C_2$equation 3 From equation 1, 2 and 3 we have: $$1 = \log |2 \cos x + \sin x + 3| + C_1 + 2x + C_2$$ $$\therefore | = \log|2\cos x + \sin x + 3| + 2x + C$$ # 6. Question Evaluate the integral $$\int \frac{2\sin x + 3\cos x}{3\sin x + 4\cos x} dx$$ ### Answer Ideas required to solve the problems: - * <u>Integration by substitution</u>: A change in the variable of integration often reduces an integral to one of the fundamental integration. If derivative of a function is present in an integration or if chances of its presence after few modification is possible then we apply integration by substitution method. - * Knowledge of integration of fundamental functions like sin, cos ,polynomial, log etc and formula for some special functions. Let, $$I = \int \frac{2\sin x + 3\cos x}{4\cos x + 3\sin x} dx$$ To solve such integrals involving trigonometric terms in numerator and denominators. We use the basic substitution method and to apply this simply we follow the undermentioned procedure- If I has the form $\int \frac{a \sin x + b \cos x + c}{d \sin x + e \cos x + f} dx$ Then substitute numerator as - $$a\sin x + b\cos x + c = A\frac{d}{dx}(d\sin x + e\cos x + f) + B(d\sin x + e\cos x + c) + C$$ Where A, B and C are constants We have, $$I = \int \frac{2\sin x + 3\cos x}{4\cos x + 3\sin x} dx$$ As I matches with the form described above, So we will take the steps as described. $$2 \sin x + 3 \cos x = A \frac{d}{dx} (3 \sin x + 4 \cos x) + B(4 \cos x + 3 \sin x) + C$$ $$\Rightarrow 2\sin x + 3\cos x = A(3\cos x - 4\sin x) + B(4\cos x + 3\sin x) + C \quad \{\because \frac{d}{dx}\cos x = -\sin x\}$$ ⇒ $$2\sin x + 3\cos x = \sin x (3B - 4A) + \cos x (3A + 4B) + C$$ Comparing both sides we have: $$C = 0$$ $$3B - 4A = 2$$ $$4B + 3A = 3$$ On solving for A, B and C we have: $$A = 1/25$$, $B = 18/25$ and $C = 0$ Thus I can be expressed as: $$I = \int \frac{\frac{1}{25}(3\cos x - 4\sin x) + \frac{18}{25}(4\cos x + 3\sin x)}{4\cos x + 3\sin x} dx$$ $$I = \int \frac{\frac{1}{25}(3\cos x - 4\sin x)}{4\cos x + 3\sin x} dx + \int \frac{\frac{18}{25}(4\cos x + 3\sin x)}{4\cos x + 3\sin x} dx$$: Let $$I_1 = \frac{1}{25} \int \frac{(3\cos x - 4\sin x)}{4\cos x + 3\sin x} dx$$ and $I_2 = \frac{18}{25} \int \frac{(4\cos x + 3\sin x)}{4\cos x + 3\sin x} dx$ $$\Rightarrow I = I_1 + I_2 \dots$$ equation 1 $$I_1 = \frac{1}{25} \int \frac{(3 \cos x - 4 \sin x)}{4 \cos x + 3 \sin x} dx$$ Let. $$4 \cos x + 3 \sin x = u$$ $$\Rightarrow$$ (-4sin x + 3cos x)dx = du So, I₁ reduces to: $$I_1 = \frac{1}{25} \int \frac{du}{u} = \frac{1}{25} \log|u| + C_1$$ $$\therefore I_1 = \frac{1}{25} \log |4 \cos x + 3 \sin x| + C_1 \dots \text{equation 2}$$ As, $$I_2 = \frac{18}{25} \int \frac{(4 \cos x + 3 \sin x)}{4 \cos x + 3 \sin x} dx$$ $$\Rightarrow$$ I₂ = $\frac{18}{25}$ $\int dx = \frac{18x}{25} + C_2$equation 3 From equation 1, 2 and 3 we have: $$I = \frac{1}{25} \log |4 \cos x + 3 \sin x| + C_1 + \frac{18x}{25} + C_2$$ $$\therefore 1 = \frac{1}{25} \log |4 \cos x + 3 \sin x| + \frac{18x}{25} + C$$ #### 7. Question Evaluate the integral $$\int \frac{1}{3 + 4 \cot x} dx$$ #### **Answer** Ideas required to solve the problems: - * <u>Integration by substitution</u>: A change in the variable of integration often reduces an integral to one of the fundamental integration. If derivative of a function is present in an integration or if chances of its presence after few modification is possible then we apply integration by substitution method. - * Knowledge of integration of fundamental functions like sin, cos ,polynomial, log etc and formula for some special functions. Let, $$I = \int \frac{1}{3+4 \cot x} dx$$ To solve such integrals involving trigonometric terms in numerator and denominators. We use the basic substitution method and to apply this simply we follow the undermentioned procedure- If I has the form $\int \frac{a \sin x + b \cos x + c}{d \sin x + e \cos x + f} dx$ Then substitute numerator as - $$a\sin x + b\cos x + c = A\frac{d}{dx}\left(d\sin x + e\cos x + f\right) + B(d\sin x + e\cos x + c) + C$$ Where A, B and C are constants We have, I = $$\int \frac{1}{3+4\cot x} dx = \int \frac{1}{3+4\frac{\cos x}{\sin x}} dx = \int \frac{\sin x}{3\sin x + 4\cos x} dx$$ As I matches with the form described above, So we will take the steps as described. $$\sin x = A \frac{d}{dx} (3\sin x + 4\cos x) + B(4\cos x + 3\sin x) + C$$ $$\Rightarrow
\sin x = A(3\cos x - 4\sin x) + B(4\cos x + 3\sin x) + C \quad \{\because \frac{d}{dx}\cos x = -\sin x\}$$ ⇒ $$\sin x = \sin x (3B - 4A) + \cos x (3A + 4B) + C$$ Comparing both sides we have: $$C = 0$$ $$3B - 4A = 1$$ $$4B + 3A = 0$$ On solving for A, B and C we have: $$A = -4/25$$, $B = 3/25$ and $C = 0$ Thus I can be expressed as: $$I = \int \frac{\frac{-4}{25}(3\cos x - 4\sin x) + \frac{3}{25}(4\cos x + 3\sin x)}{4\cos x + 3\sin x} dx$$ $$I = \int_{-\frac{25}{25}(3\cos x - 4\sin x)}^{\frac{-4}{25}(3\cos x - 4\sin x)} dx + \int_{-\frac{25}{4}\cos x + 3\sin x}^{\frac{-4}{25}(4\cos x + 3\sin x)} dx$$ $$\therefore \text{ Let } I_1 = -\frac{4}{25} \int \frac{(3\cos x - 4\sin x)}{4\cos x + 3\sin x} dx \text{ and } I_2 = \frac{3}{25} \int \frac{(4\cos x + 3\sin x)}{4\cos x + 3\sin x} dx$$ $$\Rightarrow I = I_1 + I_2 \dots$$ equation 1 $$I_1 = -\frac{4}{25} \int \frac{(3\cos x - 4\sin x)}{4\cos x + 3\sin x} dx$$ Let, $$4 \cos x + 3 \sin x = u$$ $$\Rightarrow$$ (-4sin x + 3cos x)dx = du So, I₁ reduces to: $$I_1 = -\frac{4}{25} \int \frac{du}{u} = \frac{-4}{25} \log |u| + C_1$$ $$\therefore I_1 = -\frac{4}{25} \log |4 \cos x + 3 \sin x| + C_1 \dots \text{equation 2}$$ As, $$I_2 = \frac{3}{25} \int \frac{(4 \cos x + 3 \sin x)}{4 \cos x + 3 \sin x} dx$$ $$\Rightarrow$$ I₂ = $\frac{3}{25}\int dx = \frac{3x}{25} + C_2$equation 3 From equation 1, 2 and 3 we have: $$I = -\frac{4}{25} \log |4 \cos x + 3 \sin x| + C_1 + \frac{3x}{25} + C_2$$ $$\therefore I = -\frac{4}{25} \log |4 \cos x + 3 \sin x| + \frac{3x}{25} + C$$ ## 8. Question Evaluate the integral $$\int \frac{2\tan x + 3}{3\tan x + 4} dx$$ #### **Answer** Ideas required to solve the problems: - * <u>Integration by substitution</u>: A change in the variable of integration often reduces an integral to one of the fundamental integration. If derivative of a function is present in an integration or if chances of its presence after few modification is possible then we apply integration by substitution method. - * Knowledge of integration of fundamental functions like sin, cos ,polynomial, log etc and formula for some special functions. Let, $$I = \int \frac{2 \tan x + 3}{3 \tan x + 4} dx$$ To solve such integrals involving trigonometric terms in numerator and denominators. We use the basic substitution method and to apply this simply we follow the undermentioned procedure- If I has the form $$\int \frac{a \sin x + b \cos x + c}{d \sin x + e \cos x + f} dx$$ Then substitute numerator as - $$a\sin x + b\cos x + c = A\frac{d}{dx}\left(d\sin x + e\cos x + f\right) + B(d\sin x + e\cos x + c) + C$$ Where A, B and C are constants We have, $$I = \int \frac{2\tan x + 3}{3\tan x + 4} dx = \int \frac{2\frac{\sin x}{\cos x} + 3}{3\frac{\sin x}{\cos x} + 4} = \int \frac{2\sin x + 3\cos x}{4\cos x + 3\sin x} dx$$ As I matches with the form described above, So we will take the steps as described. $$\therefore 2 \sin x + 3 \cos x = A \frac{d}{dx} (3 \sin x + 4 \cos x) + B(4 \cos x + 3 \sin x) + C$$ $$\Rightarrow 2\sin x + 3\cos x = A(3\cos x - 4\sin x) + B(4\cos x + 3\sin x) + C \quad \{\because \frac{d}{dx}\cos x = -\sin x\}$$ ⇒ $$2\sin x + 3\cos x = \sin x (3B - 4A) + \cos x (3A + 4B) + C$$ Comparing both sides we have: $$C = 0$$ $$3B - 4A = 2$$ $$4B + 3A = 3$$ On solving for A ,B and C we have: $$A = 1/25$$, $B = 18/25$ and $C = 0$ Thus I can be expressed as: $$I = \int \frac{\frac{1}{25}(3\cos x - 4\sin x) + \frac{18}{25}(4\cos x + 3\sin x)}{4\cos x + 3\sin x} dx$$ $$I = \int \frac{\frac{1}{25}(3\cos x - 4\sin x)}{4\cos x + 3\sin x} dx + \int \frac{\frac{18}{25}(4\cos x + 3\sin x)}{4\cos x + 3\sin x} dx$$ $$\therefore \text{ Let } \textbf{I}_1 = \frac{1}{25} \int \frac{(3\cos x - 4\sin x)}{4\cos x + 3\sin x} dx \text{ and } \textbf{I}_2 = \frac{18}{25} \int \frac{(4\cos x + 3\sin x)}{4\cos x + 3\sin x} dx$$ $$\Rightarrow I = I_1 + I_2 \dots$$ equation 1 $$I_1 = \frac{1}{25} \int \frac{(3 \cos x - 4 \sin x)}{4 \cos x + 3 \sin x} dx$$ Let, $$4 \cos x + 3 \sin x = u$$ $$\Rightarrow$$ (-4sin x + 3cos x)dx = du So, I₁ reduces to: $$I_1 = \frac{1}{25} \int \frac{du}{u} = \frac{1}{25} \log|u| + C_1$$ $$\therefore I_1 = \frac{1}{25} \log |4 \cos x + 3 \sin x| + C_1 \dots \text{equation 2}$$ As, $$I_2 = \frac{18}{25} \int \frac{(4 \cos x + 3 \sin x)}{4 \cos x + 3 \sin x} dx$$ $$\Rightarrow$$ I₂ = $\frac{18}{25}$ $\int dx = \frac{18x}{25} + C_2$equation 3 From equation 1, 2 and 3 we have: $$I = \frac{1}{25} \log |4 \cos x + 3 \sin x| + C_1 + \frac{18x}{25} + C_2$$ $$\therefore 1 = \frac{1}{25} \log |4 \cos x + 3 \sin x| + \frac{18x}{25} + C$$ ## 9. Question Evaluate the integral $$\int \frac{1}{4+3\tan x} dx$$ #### **Answer** Ideas required to solve the problems: - * <u>Integration by substitution</u>: A change in the variable of integration often reduces an integral to one of the fundamental integration. If derivative of a function is present in an integration or if chances of its presence after few modification is possible then we apply integration by substitution method. - st Knowledge of integration of fundamental functions like sin, cos ,polynomial, log etc and formula for some special functions. Let, $$I = \int \frac{1}{4+3\tan x} dx$$ To solve such integrals involving trigonometric terms in numerator and denominators. We use the basic substitution method and to apply this simply we follow the undermentioned procedure- If I has the form $$\int \frac{a \sin x + b \cos x + c}{d \sin x + e \cos x + f} dx$$ Then substitute numerator as - $$a\sin x + b\cos x + c = A\frac{d}{dx}\left(d\sin x + e\cos x + f\right) + B(d\sin x + e\cos x + c) + C$$ Where A, B and C are constants We have, $$I = \int \frac{1}{4+3\tan x} dx = \int \frac{1}{4+3\frac{\sin x}{\cos x}} dx = \int \frac{\cos x}{3\sin x + 4\cos x} dx$$ As I matches with the form described above, So we will take the steps as described. $$\cos x = A \frac{d}{dx} (3\sin x + 4\cos x) + B(4\cos x + 3\sin x) + C$$ $$\Rightarrow \cos x = A(3\cos x - 4\sin x) + B(4\cos x + 3\sin x) + C \quad \{\because \frac{d}{dx}\cos x = -\sin x\}$$ $$\Rightarrow \cos x = \sin x (3B - 4A) + \cos x (3A + 4B) + C$$ Comparing both sides we have: $$C = 0$$ $$3B - 4A = 0$$ $$4B + 3A = 1$$ On solving for A, B and C we have: $$A = 3/25$$, $B = 4/25$ and $C = 0$ Thus I can be expressed as: $$I = \int \frac{3}{25} \frac{(3\cos x - 4\sin x) + \frac{4}{25} (4\cos x + 3\sin x)}{4\cos x + 3\sin x} dx$$ $$I = \int \frac{\frac{3}{25}(3\cos x - 4\sin x)}{4\cos x + 3\sin x} dx + \int \frac{\frac{4}{25}(4\cos x + 3\sin x)}{4\cos x + 3\sin x} dx$$ $$\therefore$$ Let $I_1 = \frac{3}{25} \int \frac{(3\cos x - 4\sin x)}{4\cos x + 3\sin x} dx$ and $I_2 = \frac{4}{25} \int \frac{(4\cos x + 3\sin x)}{4\cos x + 3\sin x} dx$ $$\Rightarrow I = I_1 + I_2 \dots$$ equation 1 $$I_1 = \frac{3}{25} \int \frac{(3\cos x - 4\sin x)}{4\cos x + 3\sin x} dx$$ Let, $$4 \cos x + 3 \sin x = u$$ $$\Rightarrow$$ (-4sin x + 3cos x)dx = du So, I₁ reduces to: $$I_1 = \frac{3}{25} \int \frac{du}{u} = \frac{3}{25} \log |u| + C_1$$ $$I_1 = \frac{3}{25} \log |4 \cos x + 3 \sin x| + C_1 \dots$$ equation 2 As, $$I_2 = \frac{4}{25} \int \frac{(4 \cos x + 3 \sin x)}{4 \cos x + 3 \sin x} dx$$ $$\Rightarrow$$ I₂ = $\frac{4}{25}\int dx = \frac{3x}{25} + C_2$equation 3 From equation 1, 2 and 3 we have: $$I = \frac{3}{25} \log |4 \cos x + 3 \sin x| + C_1 + \frac{4x}{25} + C_2$$ $$\therefore 1 = \frac{3}{25} \log|4\cos x + 3\sin x| + \frac{4x}{25} + C$$ #### 10. Question Evaluate the integral $$\int \frac{8\cot x + 1}{3\cot x + 2} dx$$ #### **Answer** Ideas required to solve the problems: - * <u>Integration by substitution</u>: A change in the variable of integration often reduces an integral to one of the fundamental integration. If derivative of a function is present in an integration or if chances of its presence after few modification is possible then we apply integration by substitution method. - * Knowledge of integration of fundamental functions like sin, cos ,polynomial, log etc and formula for some special functions. Let, $$I = \int \frac{8 \cot x + 1}{3 \cot x + 2} dx$$ To solve such integrals involving trigonometric terms in numerator and denominators. We use the basic substitution method and to apply this simply we follow the undermentioned procedure- If I has the form $$\int \frac{a \sin x + b \cos x + c}{d \sin x + e \cos x + f} dx$$ Then substitute numerator as - $$a\sin x + b\cos x + c = A\frac{d}{dx}\left(d\sin x + e\cos x + f\right) + B(d\sin x + e\cos x + c) + C$$ Where A, B and C are constants We have, I = $$\int \frac{8 \cot x + 1}{3 \cot x + 2} dx = \int \frac{8 \frac{\cos x}{\sin x} + 1}{3 \frac{\cos x}{\sin x} + 2} = \int \frac{8 \cos x + \sin x}{3 \cos x + 2 \sin x} dx$$ As I matches with the form described above, So we will take the steps as described. $$\sin x + 8\cos x = A\frac{d}{dx}(3\cos x + 2\sin x) + B(3\cos x + 2\sin x) + C$$ $$\Rightarrow \sin x + 8\cos x = A(-3\sin x + 2\cos x) + B(3\cos x + 2\sin x) + C \quad \{\because \frac{d}{dx}\cos x = -\sin x\}$$ $$\Rightarrow \sin x + 8\cos x = \sin x (2B - 3A) + \cos x (2A + 3B) + C$$ Comparing both sides we have: $$C = 0$$ $$2B - 3A = 1$$ $$3B + 2A = 8$$ On solving for A ,B and C we have: $$A = 1$$, $B = 2$ and $C = 0$ Thus I can be expressed as: $$I = \int \frac{(-3\sin x + 2\cos x) + 2(3\cos x + 2\sin x)}{3\cos x + 2\sin x} dx$$ $$I = \int \frac{(-3\sin x + 2\cos x)}{3\cos x + 2\sin x} dx + \int \frac{2(3\cos x + 2\sin x)}{3\cos x + 2\sin x} dx$$.. Let I $$_1=\int \frac{(-3\sin x+2\cos x)}{3\cos x+2\sin x}dx$$ and I $_2=\int \frac{2(3\cos x+2\sin x)}{3\cos x+2\sin x}dx$ $$\Rightarrow I = I_1 + I_2 \dots$$ equation 1 $$I_1 = \int \frac{(-3\sin x + 2\cos x)}{3\cos x + 2\sin x} dx$$ Let, $$3 \cos x + 2 \sin x = u$$ $$\Rightarrow$$ (-3sin x + 2cos x)dx = du So, I₁ reduces to: $$I_1 = \int \frac{du}{u} = \log|u| + C_1$$ $$\therefore I_1 = \log |3\cos x + 2\sin x| + C_1 \dots = \text{equation 2}$$ As, $$I_2 = \int \frac{2(3\cos x + 2\sin x)}{3\cos x + 2\sin x} dx$$ $$\Rightarrow I_2 = 2 \int dx = 2x + C_2$$equation 3
From equation 1, 2 and 3 we have: $$I = \frac{1}{25} \log|3\cos x + 2\sin x| + C_1 + 2x + C_2$$ $$I = \frac{1}{25} \log |3 \cos x + 2 \sin x| + 2x + C$$ # 11. Question Evaluate the integral $$\int \frac{4\sin x + 5\cos x}{5\sin x + 4\cos x} dx$$ #### **Answer** Ideas required to solve the problems: - * <u>Integration by substitution</u>: A change in the variable of integration often reduces an integral to one of the fundamental integration. If derivative of a function is present in an integration or if chances of its presence after few modification is possible then we apply integration by substitution method. - * Knowledge of integration of fundamental functions like sin, cos ,polynomial, log etc and formula for some special functions. Let, $$I = \int \frac{4\sin x + 5\cos x}{5\sin x + 4\cos x} dx$$ To solve such integrals involving trigonometric terms in numerator and denominators. We use the basic substitution method and to apply this simply we follow the undermentioned procedure- If I has the form $$\int \frac{a \sin x + b \cos x + c}{d \sin x + e \cos x + f} dx$$ Then substitute numerator as - $$a\sin x + b\cos x + c = A\frac{d}{dx}\left(d\sin x + e\cos x + f\right) + B(d\sin x + e\cos x + c) + C$$ Where A, B and C are constants We have, $$I = \int \frac{4\sin x + 5\cos x}{5\sin x + 4\cos x} dx$$ As I matches with the form described above, So we will take the steps as described. $$4\sin x + 5\cos x = A\frac{d}{dx}(5\sin x + 4\cos x) + B(4\cos x + 5\sin x) + C$$ $$\Rightarrow 4\sin x + 5\cos x = A(5\cos x - 4\sin x) + B(4\cos x + 5\sin x) + C \quad \{\because \frac{d}{dx}\cos x = -\sin x\}$$ ⇒ $$4\sin x + 5\cos x = \sin x (5B - 4A) + \cos x (5A + 4B) + C$$ Comparing both sides we have: $$C = 0$$ $$5B - 4A = 4$$ $$4B + 5A = 5$$ On solving for A, B and C we have: $$A = 9/41$$, $B = 40/41$ and $C = 0$ Thus I can be expressed as: $$I = \int \frac{\frac{9}{41}(5\cos x - 4\sin x) + \frac{40}{41}(4\cos x + 5\sin x)}{4\cos x + 5\sin x} dx$$ $$I = \int \frac{\frac{9}{44}(5\cos x - 4\sin x)}{4\cos x + 5\sin x} dx + \int \frac{\frac{40}{44}(4\cos x + 5\sin x)}{4\cos x + 5\sin x} dx$$:. Let $$I_1 = \frac{9}{41} \int \frac{(5\cos x - 4\sin x)}{4\cos x + 5\sin x}$$ and $I_2 = \frac{40}{41} \int \frac{(4\cos x + 5\sin x)}{4\cos x + 5\sin x} dx$ $$\Rightarrow I = I_1 + I_2 \dots$$ equation 1 $$I_1 = \frac{9}{41} \int \frac{(5\cos x - 4\sin x)}{4\cos x + 5\sin x}$$ Let, $$4 \cos x + 5 \sin x = u$$ $$\Rightarrow$$ (-4sin x + 5cos x)dx = du So, I₁ reduces to: $$I_1 = \frac{9}{41} \int \frac{du}{u} = \frac{9}{41} \log |u| + C_1$$ $$\therefore I_1 = \frac{9}{41} \log |4 \cos x + 5 \sin x| + C_1 \dots \text{ equation 2}$$ As, $$I_2 = \frac{40}{41} \int \frac{(4 \cos x + 5 \sin x)}{4 \cos x + 5 \sin x} dx$$ $$\Rightarrow I_2 = \frac{40}{41} \int dx = \frac{40x}{41} + C_2$$equation 3 From equation 1, 2 and 3 we have: $$I = \frac{9}{41} \log |4 \cos x + 5 \sin x| + C_1 + \frac{40x}{41} + C_2$$ $$I = \frac{9}{41} \log |4 \cos x + 5 \sin x| + \frac{40x}{41} + C$$ ### Exercise 19.25 ### 1. Question Evaluate the following integrals: ### **Answer** Let $I = \int x \cos x \, dx$ We know that, $\int UV = U \int Vdv - \int \frac{d}{dx} U \int Vdv$ Using integration by parts, $$I = x \int \cos x \, dx - \int \frac{d}{dx} x \int \cos x \, dx \, I = \int x \cos x \, dx$$ We have, $\int \sin x = -\cos x$, $\int \cos x = \sin x$ $$= x \times \sin x - \int \sin x \, dx$$ $$= xsinx + cosx + c$$ ## 2. Question Evaluate the following integrals: $$\int \log (x + 1) dx$$ # **Answer** Let $$I = \int \log(x+1) dx$$ That is, $$I = \int 1 \times \log(x+1) \, dx$$ Using integration by parts, $$I = \log(x+1) \int 1 dx - \int \frac{d}{dx} \log(x+1) \int 1 dx$$ We know that, $\int 1 dx = x$ and $\int \log x = \frac{1}{x}$ $$= \log(x+1) \times x - \int \frac{1}{x+1} \times x$$ $$\frac{x}{x+1} = 1 - \frac{1}{x+1}$$ $$= x \log(x+1) - \int \left(1 - \frac{1}{x+1}\right) dx$$ $$= x \log(x + 1) - x + \log(x + 1) + c$$ ### 3. Question Evaluate the following integrals: $$\int x^3 \log x dx$$ # **Answer** Let $$I = \int x^3 \log x \, dx$$ Using integration by parts, $$I = \log x \int x^3 dx - \int \frac{d}{dx} \log x \int x^3 dx$$ We have, $$\int x^n dx = \frac{x^{n+1}}{n+1}$$ and $\int \log x = \frac{1}{x}$ $$= \log x \times \frac{x^4}{4} - \int \frac{1}{x} \times \frac{x^4}{4}$$ $$= \log x \times \frac{x^4}{4} - \frac{1}{4} \int x^3 dx$$ $$= \frac{x^4}{4} \log x - \frac{1}{4} \times \frac{x^4}{4}$$ $$=\frac{x^4}{4}\log x - \frac{x^4}{16} + c$$ # 4. Question Evaluate the following integrals: ### **Answer** Let $$I = \int xe^x dx$$ Using integration by parts, $$I=x\int e^x dx - \int \frac{d}{dx} x \int e^x dx$$ We know that , $\int e^x dx = e^x$ and $\frac{d}{dx} x = 1$ $$= xe^x - \int e^x dx$$ $$= xe^{x} - e^{x} + c$$ # 5. Question Evaluate the following integrals: ### **Answer** Let $$I = \int xe^{2x}dx$$ Using integration by parts, $$I = x \int e^{2x} dx - \int \frac{d}{dx} x \int e^{2x} dx$$ We know that , $\int e^{nx} dx = \frac{e^x}{n}$ and $\frac{d}{dx} x = 1$ $$=\frac{xe^{2x}}{2}-\int\frac{e^{2x}}{2}dx$$ $$=\frac{xe^{2x}}{2}-\frac{e^{2x}}{4}+c$$ $$I = \left(\frac{x}{2} - \frac{1}{4}\right)e^{2x} + c$$ ## 6. Question Evaluate the following integrals: $$\int x^2 e^{-x} dx$$ ## Answer Let $$I = \int x^2 e^{-x} dx$$ Using integration by parts, $$=x^2\int e^{-x}dx-\int \frac{d}{dx}x^2\int e^{-x}\,dx$$ We know that, $\int e^{nx} dx = \frac{e^x}{n}$ and $\frac{d}{dx} x^n = n x^{n-1}$ $$= x^2 \times -e^{-x} - \int 2x \times -e^{-x} dx$$ Using integration by parts in second integral, $= -x^2 e^{-x} + 2\left(x \int e^{-x} dx - \int \frac{d}{dx} x \int e^{-x} dx\right)$ $$=-x^2e^{-x}+2(-xe^{-x}+(-e^{-x}))+c$$ $$=-x^2e^{-x}+2(-xe^{-x}-e^{-x})+c$$ $$I = -e^{-x}(x^2 + 2x + 2) + c$$ ### 7. Question Evaluate the following integrals: $$\int x^2 \cos x \, dx$$ #### **Answer** Let $$I = \int x^2 \cos x \, dx$$ Using integration by parts, $$= x^2 \int \cos x \, dx - \int \frac{d}{dx} x^2 \int \cos x \, dx$$ We know that, $\int \cos x \, dx = \sin x$ and $\frac{d}{dx} x^n = n x^{n-1}$ $$= x^2 \sin x - \int 2x \sin x \, dx$$ $$= x^2 \sin x - 2 \int x \sin x \, dx$$ We know that, $\int \sin x \, dx = -\cos x$ $$= x^2 \sin x - 2 \left(x \int \sin x \, dx - \int \frac{d}{dx} x \int \sin x \, dx \right)$$ $$= x^2 \sin x - 2 \left(-x \cos x + \int \cos x \, dx \right)$$ $$= x^2 \sin x - 2(-x \cos x + \sin x) + c$$ $$= x^2 \sin x + 2x \cos x - 2 \sin x + c$$ # 8. Question Evaluate the following integrals: $$\int x^2 \cos 2x \, dx$$ Let $$I = \int x^2 \cos 2x \, dx$$ Using integration by parts, $$= x^2 \int \cos 2x \, dx - \int \frac{d}{dx} x^2 \int \cos 2x \, dx$$ We know that, $$\int \cos 2x \, dx = \sin 2x \text{ and } \frac{d}{dx}x^2 = 2x$$ Then, $$=\frac{x^2}{2}\sin 2x - \int 2x \frac{\sin 2x \, dx}{2}$$ $$= \frac{x^2}{2} \sin 2x - \int x \sin 2x \, dx$$ Using integration by parts in $\int x \sin 2x \, dx$ $$= \frac{x^2}{2} \sin 2x - \left(x \int \sin 2x \, dx - \int \frac{d}{dx} x \int \sin 2x \, dx\right)$$ $$=\frac{x^2}{2}\sin 2x - \left(\frac{-x}{2}\cos 2x + \frac{1}{2}\int\cos 2x \,dx\right)$$ $$= \frac{x^2}{2} \sin 2x - \left(\frac{-x}{2} \cos 2x + \frac{1}{4} \sin 2x\right) + c$$ $$= \frac{x^2}{2} \sin 2x + \frac{x}{2} \cos 2x - \frac{1}{4} \sin 2x + c$$ # 9. Question Evaluate the following integrals: #### **Answer** Let $$I = \int x \sin 2x \, dx$$ Using integration by parts, $$= x \int \sin 2x \, dx - \int \frac{d}{dx} x \int \sin 2x \, dx$$ We know that, $\int \sin nx = \frac{-\cos nx}{n}$ and $\int \cos nx = \frac{\sin nx}{n}$ $$= \frac{x}{2} - \cos 2x + \int \frac{\cos 2x \, dx}{2}$$ $$= -\frac{x}{2}\cos 2x + \frac{1}{2}\frac{\sin 2x}{2} + c$$ $$=-\frac{x}{2}\cos 2x + \frac{1}{4}\sin 2x + c$$ # 10. Question Evaluate the following integrals: $$\int \frac{\log(\log x)}{x} dx$$ Let $$I = \int \frac{\log(\log x)}{x} dx$$ It can be written as, $=\int \left(\frac{1}{x}\right) (\log(\log x)) dx$ Using integration by parts, $$I = log \left(log x \right) \int \frac{1}{x} dx - \int \left(\frac{1}{x log x} \int \frac{1}{x} dx \right) dx$$ We know that, $$\int log x = \frac{1}{x}$$ and $\frac{d}{dx} = \frac{1}{x} = log x$ $$= \log x (\log x) \times \log x - \int \frac{1}{x \log x} \times \log x \, dx$$ $$= \log x(\log x) \times \log x - \int \frac{1}{x} dx$$ $$= \log x(\log x) \times \log x - \log x + c$$ $$= \log x(\log(\log x) - 1) + c$$ # 11. Question Evaluate the following integrals: $$\int x^2 \cos x \, dx$$ #### **Answer** Let $$I = \int x^2 \cos x \, dx$$ Using integration by parts, $$= x^2 \int \cos x \, dx - \int \frac{d}{dx} x^2 \int \cos x \, dx$$ We know that, $$\int \cos nx = \frac{\sin nx}{n}$$ $$= x^2 \sin x - \int 2x \sin x \, dx$$ $$= x^2 \sin x - 2 \int x \sin x \, dx$$ Using integration by parts in second integral, $$= x^{2} \sin x - 2 \left(x \int \sin x \, dx - \int \frac{d}{dx} x \int \sin x \, dx \right)$$ $$= x^2 \sin x - 2 \left(-x \cos x + \int \cos x \, dx \right)$$ $$= x^2 \sin x - 2(-x \cos x + \sin x) + c$$ $$= x^2 \sin x + 2x \cos x - 2 \sin x + c$$ # 12. Question Evaluate the following integrals: $$\int x \csc^2 x dx$$ Let $$I = \int x \csc^2 x \, dx$$ Using integration by parts, $$I = x \int \csc^2 x \, dx - \int \frac{d}{dx} x \int \csc^2 x \, dx$$ We know that, $\int \csc^2 x \, dx = -\cot x$ and $\int \cot x \, dx = \log |\sin x|$ $$= x \times -\cot x - \int -\cot x \, dx$$ $$= -x \cot x + \log |\sin x| + c$$ # 13. Question Evaluate the following integrals: $$\int x \cos^2 x dx$$ #### **Answer** Let $$I = \int x \cos^2 x dx$$ Using integration by parts, $$I = x \int \cos^2 x \, dx - \int \frac{d}{dx} x \int \cos^2 x \, dx$$ We know that, $$\cos^2 x = \frac{\cos 2x + 1}{2}$$ $$=x\int \left[\frac{\cos 2x+1}{2}\right]dx-\int \left[1\int \left[\frac{\cos 2x+1}{2}\right]dx\right]dx$$ We know that, $$\int \cos nx = \frac{\sin nx}{n}$$ $$=\frac{x}{2}\left[\frac{\sin 2x}{2}+x\right]-\frac{1}{2}\int\left(x+\frac{\sin 2x}{2}\right)dx$$ $$=\frac{x}{4}\sin 2x + \frac{x^2}{2} - \frac{1}{2} \times \frac{x^2}{2} - \frac{1}{4} \left(-\frac{\cos
2x}{2} \right) + c$$ $$I = \frac{x}{4}\sin 2x + \frac{x^2}{4} + \frac{1}{8}\cos 2x + c$$ # 14. Question Evaluate the following integrals: $$\int x^n \log x dx$$ ### **Answer** Let $$I = \int x^n \log x \, dx$$ Using integration by parts, $$I = \log x \int x^n dx - \int \frac{d}{dx} \log x \int x^n dx$$ We know that, $$\int x^n dx = \frac{x^{n+1}}{n+1} \, \text{and} \frac{d}{dx} log x = \frac{1}{x}$$ $$= \log x \frac{x^{n+1}}{n+1} - \int \frac{1}{x} \times \frac{x^{n+1}}{n+1} dx$$ $$= \log x \frac{x^{n+1}}{n+1} - \int \frac{x^n}{n+1} dx$$ $$= \log x \frac{x^{n+1}}{n+1} - \frac{1}{n+1} \left[\int x^n dx \right]$$ We know that, $$\int x^{n} dx = \frac{x^{n+1}}{n+1}$$ $$= \log x \frac{x^{n+1}}{n+1} - \frac{1}{(n+1)^{2}} x^{n+1} + c$$ # 15. Question Evaluate the following integrals: $$\int \frac{\log x}{x^n} dx$$ #### **Answer** Let $$I = \int \frac{\log x}{x^n} dx = \int \log x \frac{1}{x^n} dx$$ Using integration by parts, $$\int log x \frac{1}{x^n} dx = log x \int \frac{1}{x^n} dx - \int \frac{d}{dx} log x \int \frac{1}{x^n} dx$$ We know that, $$\begin{split} & \int x^{n} dx = \frac{x^{n+1}}{n+1} \\ & = \log x \left(\frac{x^{1-n}}{1-n} \right) - \int \frac{1}{x} \left(\frac{x^{1-n}}{1-n} \right) dx \\ & = \log x \left(\frac{x^{1-n}}{1-n} \right) - \int \left(\frac{x^{-n}}{1-n} \right) dx \\ & = \log x \left(\frac{x^{1-n}}{1-n} \right) - \left(\frac{1}{1-n} \right) \left(= \log x \left(\frac{x^{1-n}}{1-n} \right) - \right) \\ & = \log x \left(\frac{x^{1-n}}{1-n} \right) - \left(\frac{x^{1-n}}{(1-n)^{2}} \right) + c \end{split}$$ ### 16. Question Evaluate the following integrals: $$\int x^2 \sin^2 x \, dx$$ # **Answer** Let $$I = \int x^2 \sin^2 x \, dx$$ We know that, $$\sin^2 x = \frac{1 - \cos 2x}{2}$$ $$= \int x^2 \left(\frac{1 - \cos 2x}{2} \right) dx$$ Using integration by parts, $$=\int \frac{x^2}{2}\,dx-\int \frac{x^2\cos 2x}{2}\,\,dx$$ $$=\frac{x^3}{6}-\frac{1}{2}\left[\int x^2\cos 2x \ dx\right]$$ Using integration by parts in second integral, $$= \frac{x^3}{6} - \frac{1}{2} \left[x^2 \int \cos 2x dx - \int \frac{d}{dx} x^2 \int \cos 2x dx \right]$$ $$= \frac{x^3}{6} - \frac{1}{2} \left(x^2 \frac{\sin 2x}{2} \right) + \frac{1}{2} \times 2 \int x \frac{\sin 2x}{2} dx$$ Using integration by parts again, $$= \frac{x^3}{6} - \frac{1}{2} \left(x^2 \frac{\sin 2x}{2} \right) + \frac{1}{2} \left[x \int \sin 2x \, dx - \int \frac{d}{dx} x \int \sin 2x \, dx \right]$$ $$= \frac{x^3}{6} - \frac{1}{2} \left(x^2 \frac{\sin 2x}{2} \right) + \frac{1}{2} \left(\frac{x}{2} - \cos 2x + \int \frac{\cos 2x \, dx}{2} \right)$$ $$= \frac{x^3}{6} - \frac{1}{2} \left(x^2 \frac{\sin 2x}{2} \right) + \frac{1}{2} \left(-\frac{x}{2} \cos 2x + \frac{1}{2} \frac{\sin 2x}{2} \right) + c$$ $$= \frac{x^3}{6} - \frac{1}{4}(x^2 \sin 2x) - \frac{1}{4}x \cos 2x + \frac{1}{8}\sin 2x + c$$ ## 17. Question Evaluate the following integrals: $$\int 2x^3 e^{x^2} dx$$ #### **Answer** Let $$I = \int 2x^3 e^{x^2} dx$$ Put $$x^2 = t$$ $$2xdx=dt$$ $$I = \int t e^t dt$$ Using integration by parts, $$= t \int e^t dt - \int \frac{d}{dt} t \int e^t dt$$ We have, $\int e^x dx = e^x$ $$= te^t - e^t + c$$ $$= e^{t}(t-1) + c$$ Substitute value for t, $$I = e^{x^2}(x^2 - 1) + c$$ ## 18. Question Evaluate the following integrals: $$\int x^3 \cos x^2 dx$$ ### **Answer** Let $$I = \int x^3 \cos x^2 dx$$ Put $$x^2 = t$$ $$2xdx=dt$$ $$I = \frac{1}{2} \int t \cos t dt$$ Using integration by parts, $$I = \frac{1}{2} \Big(t \int \, cost \, dt - \int \frac{d}{dt} t \int \, cost \, dt \Big)$$ $$=\frac{1}{2}\left(t\times\sin t-\int \sin t\,dt\right)$$ $$=\frac{1}{2}(tsint + cost) + c$$ Substitute value for t, $$=\frac{1}{2}(x^2\sin x^2 + \cos x^2) + c$$ # 19. Question Evaluate the following integrals: #### **Answer** Let $I = \int x \sin x \cos x \, dx = \frac{1}{2} \int x \times 2 \sin x \cos x \, dx$ We know that, $\sin 2x = 2\sin x \cos x$ $$=\frac{1}{2}\int x \sin 2x$$ Using integration by parts, $$= \frac{1}{2} \left(x \int \sin 2x \, dx - \int \frac{d}{dx} x \int \sin 2x \, dx \right)$$ We have, $$\int \sin nx = \frac{-\cos nx}{n} \text{ and } \int \cos nx = \frac{\sin nx}{n}$$ $$=\frac{1}{2}\left(\frac{x}{2}-\cos 2x+\int\frac{\cos 2x\ dx}{2}\right)$$ $$=\frac{1}{2}\left(-\frac{x}{2}\cos 2x + \frac{1}{2}\frac{\sin 2x}{2}\right) + c$$ $$=-\frac{x}{4}\cos 2x+\frac{1}{8}\sin 2x+c$$ # 20. Question Evaluate the following integrals: #### **Answer** Let $I = \int \sin x \log(\cos x) dx$ Put $\cos x = t$ -sinx dx=dt $$I = \int -\log t \, dt$$ Using integration by parts, $$= \int 1 \times -\log t \, dt$$ $$= -\left(\log t \int dt - \int \frac{d}{dt} \log t \int 1 dt\right)$$ $$= -\left(t \log t - \int \frac{1}{t} \times t \, dt\right)$$ $$=-\left(t\log t-\int dt\right)$$ $$=-(t\log t - t) + c$$ $$= t(1 - \log t) + c$$ Replace t by cos x $$I = \cos x(1 - \log(\cos x)) + c$$ ### 21. Question Evaluate the following integrals: $$\int (\log x)^2 x dx$$ ## **Answer** Let $$I = \int (\log x)^2 x \, dx$$ Using integration by parts, $$= (log x)^2 \int x \, dx - \int \frac{d}{dx} (log x)^2 \int x \, dx$$ $$= (\log x)^2 \frac{x^2}{2} - \int \left(2(\log x) \left(\frac{1}{x}\right) \int x dx\right) dx$$ $$= \frac{x^2}{2} (\log x)^2 - 2 \int (\log x) \left(\frac{1}{x}\right) \left(\frac{x^2}{2}\right) dx$$ $$= \frac{x^2}{2} (\log x)^2 - \int x \log x \, dx$$ Using integration by integration by parts in second integral, $$= \frac{x^2}{2} (\log x)^2 - \left[\log x \int x \, dx - \int \frac{d}{dx} \log x \int x \, dx \right]$$ We know that, $$\int x dx = \frac{x^2}{2}$$ and $\frac{d}{dx} log x = \frac{1}{x}$ $$= \frac{x^2}{2} (\log x)^2 - \log x \frac{x^2}{2} - \int \frac{1}{x} \times \frac{x^2}{2}$$ $$= \frac{x^2}{2} (\log x)^2 - \log x \frac{x^2}{2} - \frac{1}{2} \int x \, dx$$ $$= \frac{x^2}{2} (\log x)^2 - \log x \frac{x^2}{2} - \frac{1}{2} \frac{x^2}{2} + c$$ $$= \frac{x^2}{2} (\log x)^2 - \log x \frac{x^2}{2} - \frac{x^2}{4} + c$$ $$I = \frac{x^2}{2} \left[(\log x)^2 - \log x - \frac{1}{2} \right] + c$$ ## 22. Question Evaluate the following integrals: $$\int e^{\sqrt{x}} \ dx$$ #### **Answer** Let $$I = \int e^{\sqrt{x}} dx$$ $$\sqrt{x} = t$$; $x = t^2$ $$dx=2tdt$$ $$I=2\int e^{t}tdt$$ Using integration by parts, $$I = 2\left(t\int e^{t} dt - \int \frac{d}{dt} t \int e^{t} dt\right)$$ $$= 2\left(te^{t} - \int e^{t} dt\right)$$ $$= 2(te^{t} - e^{t}) + c$$ $$= 2e^{t}(t-1) + c$$ Replace the value of t $$=2e^{\sqrt{x}}(\sqrt{x}-1)+c$$ # 23. Question Evaluate the following integrals: $$\int \frac{\log(x+2)}{(x+2)^2} dx$$ Let $$I=\int \frac{\log(x+2)}{(x+2)^2} dx$$ $$\frac{1}{x+2} = t$$ $$\frac{-1}{(x+2)^2} dx = dt$$ $$I = -\int log \bigg(\frac{1}{t}\bigg) dt$$ Using integration by parts, $$= - \int \log t^{-1} \, dt$$ $$= -\int 1 \times \log t^{-1} dt$$ We know that, $\frac{d}{dt} log t = \frac{1}{t}$ and $\int dt = t$ $$I = \log t \int dt - \int \left(\frac{d}{dt} \log t \int dt\right) dt$$ $$= \log t \int dt - \int \left(\frac{1}{t} \int dt\right) dt$$ $$= t \log t - \int \frac{1}{t} \times t dt$$ $$=$$ tlog t $-$ t $+$ c Replace the value of t, $$= \frac{1}{x+2} (\log(x+2)^{-1} - 1) + c$$ $$= -\frac{1}{x+2} - \frac{\log(x+2)}{x+2} + c$$ #### 24. Question Evaluate the following integrals: $$\int \frac{x + \sin x}{1 + \cos x} dx$$ # Answer Let $$I = \int \frac{x + \sin x}{1 + \cos x} dx$$ $1 + \cos x$ can be written as $2 \cos^2 \frac{x}{2}$ and $\sin x$ can be written as $2 \sin \frac{x}{2} \cos \frac{x}{2}$ $$= \int \frac{x}{2 \cos^2 \frac{x}{2}} dx + \int \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos^2 \frac{x}{2}} dx$$ $$= \frac{1}{2} \int x \sec^2 \frac{x}{2} + \int \tan \frac{x}{2} dx$$ Using integration by parts, $$=\frac{1}{2}\bigg[x\int sec^2\frac{x}{2}-\int\frac{d}{dx}x\int sec^2\frac{x}{2}\,dx\bigg]+\int tan\frac{x}{2}\,dx$$ $$= \frac{1}{2} \left[2x \tan \frac{x}{2} - 2 \int \tan \frac{x}{2} dx \right] + \int \tan \frac{x}{2} dx$$ $$= x \tan \frac{x}{2} - \int \tan \frac{x}{2} dx + \int \tan \frac{x}{2} dx$$ $$= x \tan \frac{x}{2} + c$$ ## 25. Question Evaluate the following integrals: ### **Answer** Let $$I = \int \log_{10} x \, dx$$ $$= \int \frac{\log x}{\log 10} \, dx$$ $$= \frac{1}{\log 10} \int 1 \times \log x \, dx$$ Using integration by parts, $$= \frac{1}{\log 10} \left(\log x \int dx - \int \frac{d}{dx} \log x \int 1 dx \right)$$ We know that $$\frac{d}{dx} log x = \frac{1}{x}$$ $$= \frac{1}{\log 10} \left(x \log x - \int \frac{1}{x} \times x \, dx \right)$$ $$= \frac{1}{\log 10} \left(x \log x - \int dx \right)$$ $$=\frac{1}{\log 10}(x\log x-x)+c$$ $$=\frac{x}{\log 10}(1-\log x)+c$$ # 26. Question Evaluate the following integrals: # **Answer** Let $$I = \int \cos \sqrt{x} dx$$ $$\sqrt{x} = t; x = t^2$$ $$dx=2tdt$$ $$=\int 2t\cos t\,dt$$ $$I = 2 \int t \cos t \, dt$$ Using integration by parts, $$I = 2\left(t\int cost \, dt - \int \frac{d}{dt}t\int cost \, dt\right)$$ $$=2(t \times \sin t - \int \sin t dt)$$ $$= 2(tsint + cost) + c$$ Replace the value of t, I = $2(\sqrt{x}\sin\sqrt{x} + \cos\sqrt{x}) + c$ ## 27. Question Evaluate the following integrals: $$\int \frac{x \cos^{-1} x}{\sqrt{1-x^2}} dx$$ **Answer** Let $$I=\int \frac{x\cos^{-1}x}{\sqrt{1-x^2}}dx$$ Let $$t = cos^{-1}x$$ $$dt = \frac{1}{\sqrt{1-x^2}} dx$$ Also, $$\cos t = x$$ Thus, $$I = -\int t \cos t \, dt$$ Now let us solve this by 'by parts' method Using integration by parts, $$I = -t \biggl(\int cost \, dt - \int \frac{d}{dt} t \int cost \, dt \biggr)$$ Let U=t; du=dt $$\int cost dt = v; sin t = dv$$ Thus, $$I = - \left[tsint - \int sint \, dt \right]$$ $$I = -[tsint + cost] + c$$ Substituting $$t = \cos^{-1}x$$ $$I = -[\cos^{-1}x \sinh + x] + c$$ $$I = -\left[\cos^{-1}x\sqrt{1 - x^2} + x\right] + c$$ # 28. Question Evaluate the following integrals: $$\int \frac{\log x}{(x+1)^2} dx$$ # Answer We know that integration by parts is given by: $$\int UV = U \int Vdv - \int \frac{d}{dx} U \int Vdv$$ Choosing log x as first function and $\frac{1}{(x+1)^2}$ as second function we get, $$\begin{split} &\int \frac{\log x}{(x+1)^2} \, dx = \log x \, \int \left(
\frac{1}{(x+1)^2} \right) dx - \int \left(\frac{d}{dx} (\log x) \right) \int \frac{1}{(x+1)^2} \, dx) \, dx \\ &\int \frac{\log x}{(x+1)^2} \, dx = \log x \, \left(-\frac{1}{x+1} \right) + \int \frac{1}{x} \left(\frac{1}{x+1} \right) dx \\ &\int \frac{\log x}{(x+1)^2} \, dx = -\frac{\log x}{x+1} + \int \frac{(x+1)-(x)}{x(x+1)} \, dx \end{split}$$ $$\int \frac{\log x}{(x+1)^2} dx = -\frac{\log x}{x+1} + \int \left(\frac{1}{x} - \frac{1}{x+1}\right) dx$$ $$\int \frac{\log x}{(x+1)^2} dx = -\frac{\log x}{x+1} + \log x - \log(x+1) + c$$ $$\textstyle \int \frac{\log x}{(x+1)^2} dx = -\frac{\log x}{x+1} + log\Big(\frac{x}{x+1}\Big) + c$$ # 29. Question Evaluate the following integrals: $$\int cosec^3 x dx$$ #### **Answer** Let $I = \int \csc^3 x \, dx$ $$= \int \csc x \times \csc^2 x \, dx$$ Using integration by parts, $$= \csc x \int \csc^2 x \, dx - \int \frac{d}{dx} \csc x \int \csc^2 x \, dx$$ We know that, $\int \csc^2 x \, dx = -\cot x$ and $\frac{d}{dx} \csc x = \csc x \cot x$ $$= \csc x \times -\cot x + \int \csc x \cot x - \cot x \, dx$$ $$= - cosec \, x \cot x + \int cosec \, x \cot^2 x \, dx$$ Using integration by parts, $$= -\csc x \cot x + \int \csc x (\csc^2 x - 1) dx$$ $$= -\csc x \cot x + \int \csc^3 x dx - \int \csc x dx$$ $$I = -\csc x \cot x - I + \log \left| \tan \frac{x}{2} \right| + c_1$$ $$2I = -\csc x \cot x + \log \left| \tan \frac{x}{2} \right| + c_1$$ $$I = -\frac{1}{2}\csc x \cot x + \frac{1}{2}\log\left|\tan\frac{x}{2}\right| + c_1$$ ## 30. Question Evaluate the following integrals: $$\int \sec^{-1} \sqrt{x} dx$$ **Answer** Let $$I = \int \sec^{-1} \sqrt{x} dx$$ $$\sqrt{x} = t$$; $x = t^2$ dx=2tdt $$I = \int 2tsec^{-1}t dt$$ Using integration by parts, $$= 2 \left[sec^{-1}t \int t dt - \int \frac{d}{dt} sec^{-1}t \int t dt \right]$$ We know that, $$\frac{d}{dt}sec^{-1}t=\frac{1}{t\sqrt{t^2-1}}$$ $$=2\left[\frac{t^2}{2}\text{sec}^{-1}t-\int\frac{1}{t\sqrt{t^2-1}}\int tdt\right]$$ $$= 2 \left[\! \frac{t^2}{2} \sec^{-1} \! t \! - \! \int \frac{t^2}{2t \sqrt{t^2 - 1}} \! \, dt \right]$$ $$= t^2 sec^{-1}t - \int \frac{t}{t\sqrt{t^2 - 1}} dt$$ $$= t^2 sec^{-1}t - \frac{1}{2} \int \frac{2t}{\sqrt{t^2 - 1}} dt$$ $$= t^2 sec^{-1}t - \frac{1}{2} \times 2\sqrt{t^2 - 1} + c$$ Substitute value for t, $$I = x \sec^{-1}\sqrt{x} - \sqrt{x-1} + c$$ ## 31. Question Evaluate the following integrals: $$\int \sin^{-1} \sqrt{x} \, dx$$ **Answer** Let $$I = \sin^{-1} \sqrt{x} dx$$ $$\sqrt{x} = t$$; $x = t^2$ dx=2tdt $$= \sin^{-1} t 2t dt$$ Using integration by parts, $$= sin^{-1}t \, \int 2tdt - \int \frac{d}{dt} sin^{-1}t \int \, 2tdt$$ We know that, $$\frac{d}{dt}sin^{-1}t = \frac{t}{\sqrt{1-t^2}}$$ $$= t^2 sin^{-1} t - 2 \int \frac{t^2}{\sqrt{1-t^2}} \ dt$$ let us solve, $$\int \frac{t^2}{\sqrt{1-t^2}} \; dt$$ $$= \int \frac{t^2-1+1}{\sqrt{1-t^2}} dt = \int \frac{t^2-1}{\sqrt{1-t^2}} dt + \int \frac{1}{\sqrt{1-t^2}} dt$$ $$\int \frac{1}{\sqrt{1-t^2}} dt = sin^{-1}t$$ $$\int \frac{t^2 - 1}{\sqrt{1 - t^2}} dt = \int -\sqrt{1 - t^2} \ dt$$ t=sin u;dt=cos u du $$\int -\sqrt{1-t^2} \ dt = \int -cos^2 u \ du = -\int \left[\frac{1+cos \ 2u}{2}\right] du$$ $$= -\frac{\mathrm{u}}{2} - \frac{\sin 2\mathrm{u}}{4}$$ $$u = \sin^{-1} t$$ and $t = \sqrt{x}$ $$= -\frac{\sin^{-1}t}{2} - \frac{\sin(2\sin^{-1}t)}{4}$$ There fore, $$\int \sin^{-1} \sqrt{x} \, dx = x \sin^{-1} \sqrt{x} - \frac{\sin^{-1} \sqrt{x}}{2} - \frac{\sin(2\sin^{-1} t)}{4}$$ $$= x \sin^{-1} \sqrt{x} - \frac{\sin^{-1} \sqrt{x}}{2} - \frac{\sqrt{x(1-x)}}{2}$$ # 32. Question Evaluate the following integrals: $$\int x \tan^2 x dx$$ #### **Answer** Let $$I = \int x \tan^2 x \, dx$$ $$= \int x \left(\sec^2 x - 1 \right) dx$$ $$= \int x \sec^2 x dx - \int x dx$$ Using integration by parts, $$=x\int sec^2xdx - \int \frac{d}{dx}x\int sec^2xdx - \frac{x^2}{2}$$ We know that, $\int sec^2x dx = tan x$ $$= x \tan x - \int \tan x \, dx - \frac{x^2}{2}$$ $$= x tan x - log|secx| - \frac{x^2}{2} + c$$ # 33. Question Evaluate the following integrals: $$\int x \left(\frac{\sec 2x - 1}{\sec 2x + 1} \right) dx$$ #### **Answer** Let $I = \int x \left(\frac{\sec 2x - 1}{\sec 2x + 1} \right) dx$ it can be written n terms of $\cos x$ $$= \int x \left(\frac{1 - \cos 2x}{1 + \cos 2x} \right) dx$$ $$= \int x \left(\frac{sec^2x}{cos^2x} \right) dx$$ $$=\int x \tan^2 x dx$$ $$= \int x (\sec^2 x - 1) dx$$ $$= \int x \sec^2 x - \int x \, dx$$ Using integration by parts, $$= x \int sec^2x dx - \int \frac{d}{dx} x \int sec^2x dx - \frac{x^2}{2}$$ $$= x \tan x - \int \tan x \, dx - \frac{x^2}{2}$$ $$= x tan x - log|secx| - \frac{x^2}{2} + c$$ # 34. Question Evaluate the following integrals: $$\int (x + 1)e^{x} \log(xe^{x}) dx$$ #### **Answer** Let $$I = \int (x+1)e^x \log(xe^x) dx$$ $$xe^x = t$$ $$(1 \times e^x + xe^x)dx = dt$$ $$(x+1)e^x dx = dt$$ $$I = \int logt dt$$ $$= \int 1 \times \log t \, dt$$ Using integration by parts, $$= \log t \int dt - \int \frac{d}{dt} \log t \int dt$$ $$= t \log t - \int \frac{1}{t} t \, dt$$ $$= t \log t - t + c$$ $$= t(\log t - 1) + c$$ Substitute value for t, $$I = xe^{x}(logxe^{x} - 1) + c$$ ### 35. Question Evaluate the following integrals: $$\int \sin^{-1} (3x - 4x^3) dx$$ #### **Answer** Let $$\int \sin^{-1} (3x - 4x^3) dx$$ $$x = \sin \theta$$ $$dx = \cos\theta d\theta$$ $$= \int \sin^{-1}(3\sin\theta - 4\sin^3\theta)\cos\theta \ d\theta$$ We know that $3\sin\theta - 4\sin^3\theta = \sin 3\theta$ $$= \int \sin^{-1}{(\sin 3\theta)} \cos\theta d\theta$$ We know that, $\int \sin^{-1} (\sin 3\theta) = 3\theta$ $$=\int 3\theta cos\theta d\theta$$ $$=3\int\theta\cos\theta d\theta$$ Using integration by parts, $$= 3 \left(\theta \int \cos \theta \ d\theta - \int \frac{d}{d\theta} \theta \int \cos \theta \ d\theta \right)$$ $$= 3 \left(\theta \times \sin \theta - \int \sin \theta \ d\theta \right)$$ $$= 3(\theta \sin\theta + \cos\theta) + c$$ $$I = 3\left[xsin^{-1}x + \sqrt{1 - x^2}\right] + c$$ # 36. Question Evaluate the following integrals: $$\int \sin^{-1} \left(\frac{2x}{1+x^2} \right) dx$$ Let $$I = \int \sin^{-1} \left(\frac{2x}{1+x^2} \right) dx$$ $$x = tan\theta \Rightarrow dx = sec^2\theta d\theta$$ $$\sin^{-1}\left(\frac{2x}{1+x^2}\right) = \sin^{-1}\left(\frac{2\tan\theta}{1+\tan^2\theta}\right) = \sin^{-1}(\sin 2\theta) = 2\theta$$ $$\int \sin^{-1}\left(\frac{2x}{1+x^2}\right) dx = \int 2\theta \sec^2\theta d\theta$$ Using integration by parts, $$=2\left(\theta\int sec^2\theta d\theta-\int \frac{d}{d\theta}\theta\int sec^2\theta d\theta\right)$$ $$= 2 \left(\theta \tan \theta - \int \tan \theta \; d\theta \right)$$ We know that, $\int \tan \theta \ d\theta = \log |\cos \theta|$ $$= 2(\theta \tan \theta - \log|\cos \theta|) + c$$ $$= 2 \left[x tan^{-1} x + log \left| \frac{1}{\sqrt{1 + v^2}} \right| \right] + c$$ $$= 2x tan^{-1}x + 2log\left|(1+x^2)^{\frac{1}{2}}\right| + c$$ $$= 2x \tan^{-1} x + 2 \left[\frac{1}{2} \log(1+x)^2 \right] + c$$ $$= 2x \tan^{-1} x + \log(1+x)^2 + c$$ # 37. Question Evaluate the following integrals: $$\int tan^{-1}\Biggl(\frac{3x-x^3}{1-3x^2}\Biggr)dx$$ ## **Answer** Let $$I = \int \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right) dx$$ $$x = tan\theta \Rightarrow dx = sec^2\theta d\theta$$ We know that, $$\frac{3\tan\theta-\tan\theta^3}{1-3\tan\theta^2}=\tan 3\theta$$ $$I = \int tan^{-1} \bigg(\frac{3tan\theta - tan\theta^3}{1 - 3tan\theta^2} \bigg) sec^2\theta d\theta$$ We know that, $tan^{-1}(tan 3 \theta) = 3\theta$ $$= \int \tan^{-1}(\tan 3\,\theta)\sec^2\theta d\theta$$ $$=\int 3\theta sec^2\theta d\theta$$ Using integration by parts, $$= 3\left(\theta \int sec^2\theta d\theta - \int \frac{d}{d\theta}\theta \int sec^2\theta d\theta\right)$$ $$=3\left(\theta\tan\theta-\int\tan\theta\;d\theta\right)$$ $$= 3(\theta tan \, \theta - log |sec \theta|) + c$$ $$= 3\left[x tan^{-1}x + \log\left|\sqrt{1 + x^2}\right|\right] + c$$ $$= 3x tan^{-1}x + \frac{3}{2} \log |1 + x^2| + c$$ # 38. Question Evaluate the following integrals: $$\int x^2 \sin^{-1} x dx$$ ### **Answer** Let $$I = \int x^2 \sin^{-1} x \, dx$$ Using integration by parts, $$I=sin^{-1}x\int x^2dx-\int\frac{d}{dx}sin^{-1}x\int x^2dx$$ $$=\frac{x^3}{3}\sin^{-1}x - \int \frac{x^3}{3\sqrt{1-x^2}}dx$$ $$I_1=-\int \frac{x^3}{3\sqrt{1-x^2}}dx$$ Let $$1-x^2=t^2$$ $$-2x dx = 2t dt$$ $$I_1 = -\int \frac{(1-t^2)tdt}{t}$$ $$I_1 = \int (t^2 - 1)dt$$ $$=\frac{t^3}{3}-t+c_2$$ $$=\frac{(1-x^2)^{\frac{3}{2}}}{3}-(1-x^2)^{\frac{1}{2}}+c_2$$ $$= \frac{x^3}{3} \sin^{-1} x - \frac{(1-x^2)^{\frac{3}{2}}}{9} + \frac{1}{3} (1-x^2)^{\frac{1}{2}} + c$$ # 39. Question Evaluate the following integrals: $$\int \frac{\sin^{-1} x}{x^2} dx$$ ### **Answer** Let $$I = \int \frac{\sin^{-1} x}{x^2} dx$$ $$= \int \frac{1}{x^2} \sin^{-1} x \, dx$$ Using integration by parts, Where. $$I_{\textbf{1}} = \int \frac{1}{x\sqrt{1-x^2}}$$ $$1 - x^2 = t^2$$ -2xdx=2tdt $$\begin{split} &I_{1} = \int \frac{tdt}{(1-t^{2})\sqrt{t}} \\ &= \frac{1}{2} \log \left| \frac{t-1}{t+1} \right| \\ &= \frac{1}{2} \log \left| \frac{\sqrt{1-x^{2}}-1}{\sqrt{1-x^{2}}+1} \right| + c_{1} \\ &I = \frac{-1}{x} \sin^{-1}x + \frac{1}{2} \log \left| \frac{\sqrt{1-x^{2}}-1}{\sqrt{1-x^{2}}+1} \right| + c \\ &= \frac{-1}{x} \sin^{-1}x + \frac{1}{2} \log \left(\frac{\sqrt{1-x^{2}}-1}{\sqrt{1-x^{2}}+1} \right) \left(\frac{\sqrt{1-x^{2}}-1}{\sqrt{1-x^{2}}-1} \right) + c \\ &= \frac{-1}{x} \sin^{-1}x + \frac{1}{2} \log \left(\frac{\left(\sqrt{1-x^{2}}-1^{2}\right)}{-x^{2}} \right) + c \\ &= \frac{-1}{x} \sin^{-1}x + \log \left| \frac{1-\sqrt{1-x^{2}}}{x} \right| + c \end{split}$$ # 40. Question Evaluate the following integrals: # Answer Let $$I = \int \frac{x^2 \tan^{-1}x}{1+x^2} dx$$ $$\tan^{-1}x = t$$; $x = \tan t \int \frac{x^2 \tan^{-1}x}{1+x^2} dx$ $$\frac{1}{1+v^2}dx = dt$$ $$I = \int t \, t an^2 t \; dt$$ We know that, $tan^2t = sec^2t - 1$ $$= \int t(\sec^2 t - 1)dt$$ $$= \int t \sec^2 t dt - \int t dt$$ Using integration by parts, $$= \left(t \int \sec^2 t dt - \int \frac{d}{dt} t \int \sec^2 t dt\right) - \frac{t^2}{2}$$ $$= \left(t \tan t - \int \tan t dt\right) - \frac{t^2}{2}$$ $$= \left(t \tan t
- \log|\sec t|\right) - \frac{t^2}{2} + c$$ $$= \left[x \tan^{-1} x + \log\left|\sqrt{1 + x^2}\right|\right] - \frac{\tan^2 x}{2} + c$$ # 41. Question Evaluate the following integrals: $= x \tan^{-1} x + \frac{1}{2} \log|1 + x^2| - \frac{\tan^2 x}{2} + c$ $$\int \cos^{-1} (4x^3 - 3x) dx$$ #### **Answer** Let $$I = \int \cos^{-1}(4x^3 - 3x)dx$$ $$x = \cos \theta \Rightarrow dx = -\sin \theta d\theta$$ $$I = -\int cos^{-1}(4cos^3\theta - 3\cos\theta)\sin\theta d\theta$$ We know that, $(4\cos^3\theta - 3\cos\theta) = \cos 3\theta$ $$= -\int \cos^{-1}(\cos 3\theta) \sin\theta d\theta$$ $$=-\int 3\theta \sin\theta d\theta$$ Using integration by parts, $$=-3\left[\theta\int sin\theta d\theta-\int\frac{d}{d\theta}\theta\int sin\theta d\theta\right]$$ $$= 3[-\theta\cos\theta + \int\cos\theta d\theta$$ $$=3\theta\cos\theta-3\sin\theta+c$$ $$I = 3x\cos^{-1}x - 3\sqrt{1 - x^2} + c$$ # 42. Question Evaluate the following integrals: $$\int \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) dx$$ ## Answer Let $$I = \int cos^{-1} \left(\frac{1-x^2}{1+x^2}\right) dx$$ Let x=tan t $dx = sec^2t dt$ $$I = \int cos^{-1} \left(\frac{1 - tan^2t}{1 + tan^2t}\right) sec^2t \, dt$$ We know that $\frac{1-tan^2t}{1+tan^2t} = cos 2t$ $$= \int \cos^{-1}(\cos 2t) \sec^2 t \, dt$$ $$=\int 2tsec^2t dt$$ Using integration by parts, $$= 2[t\int sec^2t\,dt - \int \frac{d}{dt}t\int sec^2t\,dt]$$ $$= 2[t tant - \int tant dt]$$ $$= 2[t tan t - log sect] + c$$ $$= 2[x \tan^{-1}x - \log|\sqrt{1 + x^2}|] + c$$ $$= 2x \tan^{-1} x - \log|1 + x^2| + c$$ # 43. Question Evaluate the following integrals: $$\int tan^{-1} \left(\frac{2x}{1-x^2} \right) dx$$ ### **Answer** Let $$I = \int tan^{-1} \left(\frac{2x}{1-x^2}\right) dx$$ $$x = tan\theta \Rightarrow dx = sec^2\theta d\theta$$ $$I = \int tan^{-1} \bigg(\frac{2tan\theta}{1 - 2tan\theta^2} \bigg) sec^2\theta d\theta$$ We know that, $$\frac{2\tan\theta}{1-2\tan\theta^2} = \tan 2\theta$$ $$= \int \tan^{-1}(\tan 2\,\theta)\, sec^2\theta d\theta$$ $$\int 2\theta \sec^2\theta d\theta$$ Using integration by parts, $$= 2 \left(\theta \int sec^2\theta d\theta - \int \frac{d}{d\theta} \theta \int sec^2\theta d\theta \right)$$ $$= 2 \left(\theta \tan \theta - \int \tan \theta \ d\theta \right)$$ $$= 2(\theta \tan \theta - \log|\sec \theta|) + c$$ $$= 2 \left[x tan^{-1} x + log \left| \sqrt{1 + x^2} \right| \right] + c$$ $$= 2xtan^{-1}x + log|1 + x^2| + c$$ Evaluate the following integrals: $$\int (x + 1) \log x dx$$ ### **Answer** Let $$I = \int (x+1) \log x \, dx$$ Using integration by parts, $$= \log x \int (x+1) dx - \int \frac{d}{dx} \log x \int (x+1) dx$$ We know that, $$\frac{d}{dx} \log x = \frac{1}{x}$$ $$= \log x \left(\frac{x^2}{2} + x\right) - \int \frac{1}{x} \left(\frac{x^2}{2} + x\right) dx$$ $$= \left(\frac{x^2}{2} + x\right) \log x - \int \frac{x}{2} dx - \int dx$$ $$= \left(\frac{x^2}{2} + x\right) \log x - \frac{x^2}{4} - x + c$$ $$=\left(\frac{x^2}{2} + x\right) \log x - \left(\frac{x^2}{4} + x\right) + c$$ ## 45. Question Evaluate the following integrals: $$\int x^2 \tan^{-1} x dx$$ # **Answer** Let $$I = \int x^2 \tan^{-1} x \, dx$$ Using integration by parts, Taking inverse function as first function and algebraic function as second function, $$= \tan^{-1} x \int x^2 dx - \int \left(\frac{1}{1+x^2}\right) \int x^2 dx$$ $$= \tan^{-1}x \frac{x^3}{3} - \frac{1}{3} \int \frac{x^3}{1+x^2} dx$$ $$= \tan^{-1}x \frac{x^3}{3} - \frac{1}{3} \int x - \frac{x}{1 + x^2} dx$$ $$= \tan^{-1}x \frac{x^3}{3} - \frac{1}{3} \times \frac{x^2}{2} + \int \frac{x}{1+x^2} dx$$ $$= \frac{1}{3}x^3 \tan^{-1}x - \frac{x^2}{6} + \frac{1}{6}\log|1 + x^2| + c$$ ## 46. Question Evaluate the following integrals: $$\int (e^{\log x} + \sin x) \cos x \, dx$$ ## **Answer** Let $$I = \int (e^{\log x} + \sin x) \cos x \, dx$$ $$= \int (x + \sin x) \cos x \, dx$$ $$= \int x \cos x \, dx + \int \sin x \cos x \, dx$$ Using integration by parts, $$= x \int \cos x \, dx - \int \frac{d}{dx} x \int \cos x \, dx + \frac{1}{2} \int \sin 2x \, dx$$ $$= x \times \sin x - \int \sin x \, dx + \frac{1}{2} \left(\frac{-\cos 2x}{2} \right) + c$$ $$= x sin x + cos x - \frac{1}{4} cos 2x + c$$ $$= x \sin x + \cos x - \frac{1}{4} [1 - 2 \sin^2 x] + c$$ $$I = x\sin x + \cos x - \frac{1}{4} + \frac{1}{2}\sin^2 x + c$$ $$I = x sinx + cosx + \frac{1}{2} sin^2x + c - \frac{1}{4}$$ $$I = x sinx + cosx + \frac{1}{2} sin^2 x + k \text{ where, } k = c - \frac{1}{4}$$ ## 47. Question Evaluate the following integrals: $$\int \frac{\left(x \tan^{-1} x\right)}{\left(1+x^2\right)^{3/2}} dx$$ ## Answer Let $$I = \int \frac{x tan^{-1}x}{(1+x^2)^{\frac{3}{2}}} dx$$ $$tan^{-1}x = t$$ $$\frac{1}{1+x^2}dx = dt$$ $$I = \int \frac{t t ant}{\sqrt{1 + t an^2 t}} dt$$ We know that, $\sqrt{1 + \tan^2 t} = \sec t$ $$= \int \frac{t \, tant}{sect} dt$$ $$= \int t \, \frac{\sin t}{\cos t} \cos t \, dt$$ $$=\int t \sin t dt$$ $$=t\int \sin t\,dt-\int \frac{d}{dt}t\int \sin\,t\,dt$$ $$= -t \cos t + \int \cos t \, dt$$ $$= -t \cos t + \sin t + c$$ Substitute value for t $$I = \frac{\tan^{-1}x}{\sqrt{1+x^2}} + \frac{x}{\sqrt{1+x^2}} + c$$ # 48. Question Evaluate the following integrals: $$\int tan^{-1} (\sqrt{x}) dx$$ ## **Answer** Let $$I = \int \tan^{-1}(\sqrt{x})dx$$ $$x=t^2$$ dx=2tdt $$I = \int 2t \, tan^{-1}t \, dt$$ Using integration by parts, $$= 2 \left(tan^{-1}t \int tdt - \int \frac{d}{dt} tan^{-1}t \int t \, dt \right)$$ We know that, $$\frac{d}{dt} \tan^{-1} t = \frac{1}{2(1+t^2)}$$ $$= 2 \left[\frac{t^2}{2} tan^{-1} t - \int \frac{t^2}{2(1+t^2)} dt \right]$$ $$= t^2 tan^{-1}t - \int \frac{t^2 + 1 - 1}{1 + t^2} dt$$ $$=t^2tan^{-1}t-\int \left(1-\frac{1}{1+t^2}\right)dt$$ $$= t^2 \tan^{-1} t - t + \tan^{-1} t + c$$ $$= (t^2 + 1)\tan^{-1}t - t + c$$ $$= (x + 1) \tan^{-1} \sqrt{x} - \sqrt{x} + c$$ ## 49. Question Evaluate the following integrals: $$\int x^3 \tan^{-1} x dx$$ Let $$I = \int x^3 \tan^{-1} x \, dx$$ We know that, $$\begin{split} &\frac{d}{dx} \tan^{-1} x = \frac{1}{2(1+x^2)} \\ &= \tan^{-1} x \int x^3 dx - \int \left(\frac{1}{1+x^2}\right) \int x^3 dx \\ &= \tan^{-1} x \frac{x^4}{4} - \frac{1}{4} \int \frac{x^4}{1+x^2} dx \\ &\frac{1}{4} \int \frac{x^4}{1+x^2} dx = \frac{1}{4} \left[\int \frac{1}{1+x^2} dx + (x^2-1) dx \right] = \frac{1}{4} \left[\tan^{-1} x + \frac{x^3}{3} - x \right] \end{split}$$ $$= \frac{x^4}{4} \tan^{-1} x - \frac{1}{4} \left[\tan^{-1} x + \frac{x^3}{3} - x \right] + c$$ # 50. Question Evaluate the following integrals: ### **Answer** Let $I = \int x \sin x \cos 2x \, dx = \frac{1}{2} \int x \times 2 \sin x \cos 2x \, dx$ Using integration by parts, $$= \frac{1}{2} \int x(\sin(x+2x) - \sin(2x-x)) dx$$ $$= \frac{1}{2} \int x(\sin 3x - \sin x) dx$$ Using integration by parts, $$\begin{split} &=\frac{1}{2}(x\int (\sin 3x - \sin x)dx - \int \frac{d}{dx}x\int (\sin 3x - \sin x)dx)dx \\ &=\frac{1}{2}\Big[x\Big(\frac{-\cos 3x}{3} + \cos x\Big) - \int -\Big(\frac{\cos 3x}{3} + \cos x\Big)dx\Big) \\ &I = \frac{1}{2}\Big[-x\frac{\cos 3x}{3} + x\cos x + \frac{1}{9}\sin 3x - \sin x\Big] + c \end{split}$$ ### 51. Question Evaluate the following integrals: $$\int (\tan^{-1} x^2) x dx$$ ## **Answer** Let $$I = \int (\tan^{-1} x^2) x \, dx$$ $$X^2=t$$ 2xdx=dt $$I = \frac{1}{2} \int (\tan^{-1} t) dt$$ $$=\frac{1}{2}\Big(tan^{-1}t\int dt-\int \frac{d}{dt}tan^{-1}t\int \ dt\Big)$$ We know that, $$\begin{split} &\frac{d}{dt} tan^{-1}t = \frac{1}{2(1+t^2)} \\ &= \frac{1}{2} \left[t tan^{-1}t - \int \frac{t}{(1+t^2)} dt \right] \\ &= \frac{t}{2} tan^{-1}t - \frac{1}{4} \int \frac{2t}{1+t^2} dt \\ &= \frac{t}{2} tan^{-1}t - \frac{1}{4} log|1+t^2| + c \\ &= \frac{x^2}{2} tan^{-1}x^2 - \frac{1}{4} log|1+x^4| + c \end{split}$$ ### 52. Question Evaluate the following integrals: $$\int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} dx$$ ### **Answer** Let $$I = \int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} dx$$ We are splitting this in to two functions First we find the integral of: $$\int \frac{x}{\sqrt{1-x^2}} \, dx$$ Put $1-x^2=t$ -2xdx=dt $$\int \frac{x}{\sqrt{1-x^2}} \, dx = -\frac{1}{2} \int \frac{dt}{\sqrt{t}} = -\sqrt{t} = -\sqrt{1-x^2}$$ $$I = \int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, \mathrm{d}x$$ Using integration by parts, $$= (\sin^{-1}x) \times -\sqrt{1 - x^2} - \int \frac{1}{\sqrt{1 - x^2}} (-\sqrt{1 - x^2}) dx$$ $$= (\sin^{-1}x) \times -\sqrt{1 - x^2} - \int dx$$ $$= (\sin^{-1}x) \times -\sqrt{1 - x^2} + x + c$$ $$= x - \sqrt{1 - x^2} (\sin^{-1} x) + c$$ ## 53. Question Evaluate the following integrals: ### **Answer** Let $$\sqrt{x} = t$$ $$x = t^2$$ dx=2tdt $$I=2\int tsin^3tdt$$ $$=2\int t\left(\frac{3sint-sin\,3t}{4}\right)dt$$ $$=\frac{1}{2}\int t(3\sin t - \sin 3t)dt$$ Using integration by parts, $$=\frac{1}{2}\bigg[t\bigg(-3\,cost+\frac{1}{3}cos\,3t\bigg)-\int\bigg(-3cost+\frac{cos\,3t}{3}\bigg)\,dt\bigg]$$ $$= \frac{1}{2} \left[\frac{-9t \cos t + t \cos 3t}{3} - \left\{ -3 \sin t + \frac{\sin 3t}{9} \right\} \right] + c$$ $$= \frac{1}{2} \left[\frac{-9 \cos t + t \cos 3t}{3} + \frac{27 \sin t - 3 \sin 3t}{9} \right] + c$$ $$= \frac{1}{18} \left[-27 \cos t + 3t \cos 3t + 27 \sin t - 3 \sin 3t \right] + c$$ $$I = \frac{1}{18} \left[3\sqrt{x} \cos 3\sqrt{x} + 27 \sin \sqrt{x} - 27\sqrt{x} \cos \sqrt{x} - 3 \sin 3\sqrt{x} \right] + c$$ # 54. Question Evaluate the following integrals: $$\int x \sin^3 x dx$$ ### **Answer** Let $$I = \int x \sin^3 x \, dx$$ We know that, $$\sin^3 x = \frac{3\sin x - \sin 3x}{4}$$ $$= \int x \left(\frac{3 \sin x - \sin 3x}{4} \right) dx$$ $$=\frac{1}{4}\int x(3\sin x - \sin 3x)dx$$ Using integration by parts, $$I = \frac{1}{4} \left[x \int (3\sin x - \sin 3x) dx - \int 1 \int (3\sin x - \sin 3x) dx \right]$$ $$=\frac{1}{4}\bigg[x\bigg(-3\cos x+\frac{\cos 3x}{3}\bigg)-\int\bigg(-3\cos x+\frac{\cos 3x}{3}\bigg)\,dx\bigg]$$ $$=\frac{1}{4}\left[-3x\cos x+\frac{x\cos 3x}{3}+3\sin x-\frac{\sin 3x}{9}\right]+c$$ $$I = \frac{1}{36} [3x \cos 3x - 27x \cos x + 27\sin x - \sin 3x] + c$$ Evaluate the following integrals: $$\int \cos^3 \sqrt{x} \, dx$$ ## **Answer** Let $$\sqrt{x} = t$$ $$x = t^2$$ dx=2tdt let $$I = 2 \int
t\cos^3 t dt$$ we know that, $\cos^3 t dt = \frac{3\cos t + \cos 3t}{4}$ $$=2\int t\left(\frac{3cost+cos3t}{4}\right)dt$$ $$=\frac{1}{2}\int t(3\cos t - \cos 3t)dt$$ Using integration by parts, $$=\frac{1}{2}\left[t\left(3\sin t+\frac{1}{3}\sin 3t\right)+\int\left(3\sin t+\frac{\sin 3t}{3}\right)dt\right]$$ $$= \frac{1}{2} \left[\frac{9t \sin t + t \sin 3t}{3} + \left\{ 3 \cos t + \frac{\cos 3t}{9} \right\} \right] + c$$ $$= \frac{1}{18} [27 t sint + 3t sin 3t + 9 cost + cos 3t] + c$$ $$I = \frac{1}{18} \left[27\sqrt{x} \sin\sqrt{x} + 3\sqrt{x} \sin 3\sqrt{x} + 9\cos \sqrt{x} + \cos 3\sqrt{x} \right] + c$$ ## 56. Question Evaluate the following integrals: $$\int x \cos^3 x dx$$ ## **Answer** Let $$I = \int x \cos^3 x \, dx$$ we know that, $\cos^3 t dt = \frac{3 \cosh + \cos 3t}{4}$ $$= \int x \left(\frac{3\cos x + \cos 3x}{4} \right) dx$$ $$= \frac{1}{4} \int x(3\cos x + \cos 3x) dx$$ Using integration by parts, $$I = \frac{1}{4} \left[x \int (3\cos x + \cos 3x) dx - \int 1 \int (3\cos x + \cos 3x) dx \right]$$ $$= \frac{1}{4} \left[x \left(3 \sin x + \frac{\sin 3x}{3} \right) - \int \left(3 \sin x + \frac{\sin 3x}{3} \right) dx \right]$$ $$= \frac{1}{4} \left[3 x \sin x + \frac{x \sin 3x}{3} + 3 \cos x + \frac{\cos 3x}{9} \right] + c$$ $$I = \frac{3 x \sin x}{4} + \frac{x \sin x}{12} + \frac{3 \cos x}{4} + \frac{\cos 3x}{36} + c$$ Evaluate the following integrals: $$\int tan^{-1} \sqrt{\frac{1-x}{1+x}} \ dx$$ #### **Answer** Let $$I = \int tan^{-1} \sqrt{\frac{1-x}{1+x}} dx$$ $$x = cos\theta$$; $dx = -sin\theta d\theta$ $$I = \int tan^{-1}(tan\frac{\theta}{2}) - sin\theta d\theta$$ $$=-\frac{1}{2}\int\theta sin\theta d\theta$$ Using integration by parts, $$=-\frac{1}{2}\Big[\theta\int sin\theta d\theta-\int\frac{d}{d\theta}\theta\int sin\theta d\theta\Big]$$ $$=\frac{1}{2}[-\theta\cos\theta+\int\cos\theta d\theta]$$ $$=\frac{1}{2}[-\theta\cos\theta+\sin\theta]+c$$ $$I = \frac{1}{2} \left[-x\cos^{-1}x + \sqrt{1 - x^2} \right] + c$$ # 58. Question Evaluate the following integrals: $$\int \sin^{-1} \sqrt{\frac{x}{a+x}} \, dx$$ Let $$I = \int sin^{-1} \sqrt{\frac{x}{a+x}} \ dx$$ Let $$x = a tan^2 \theta$$ $$dx = 2a tan^2 \theta sec^2 \theta$$ $$I = \int \left(sin^{-1} \sqrt{\frac{atan^2 \theta}{a + atan^2 \theta}} \right) 2a tan^2 \theta sec^2 \theta d\theta$$ $$= \int \sin^{-1}(\sin\theta) 2a \tan^2\theta \sec^2\theta d\theta$$ $$= \int \, 2\theta a \, tan^2\theta \, sec^2\theta \, d\theta$$ $$=2a\int\theta\ tan^2\theta\,sec^2\theta d\theta$$ $$=2a\,\left(\theta\int\,\tan^2\!\theta\,sec^2\theta d\theta-\int 1\int\,\tan^2\!\theta\,sec^2\theta d\theta\right)$$ $$=2a\left[\theta\frac{tan^2\theta}{2}-\int\frac{tan^2\theta}{2}d\theta\right]$$ $$=a\theta tan^2\theta-\frac{2a}{2}\int(sec^2\theta-1)d\theta$$ $$= a\theta tan^2\theta - a tan\theta + a\theta + c$$ $$= a \left(tan^{-1} \sqrt{\frac{x}{a}} \right) \!\! \frac{x}{a} - a \sqrt{\frac{x}{a}} + atan^{-1} \sqrt{\frac{x}{a}} + c$$ $$=x\tan^{-1}\sqrt{\frac{x}{a}}-\sqrt{ax}+atan^{-1}\sqrt{\frac{x}{a}}+c$$ # 59. Question Evaluate the following integrals: $$\int \frac{x^3 \sin^{-1} x^2}{\sqrt{1 - x^4}} \, dx$$ # Answer Let $$I = \int \frac{x^3 \sin^{-1} x^2}{\sqrt{1 - x^4}} dx$$ $$\sin^{-1}x^2 = t$$ $$\frac{1}{\sqrt{1-x^4}} 2x dx = dt$$ $$I = \int \frac{x^2 \sin^{-1} x^2}{\sqrt{1 - x^4}} x dx$$ $$=\int (\sin t) t \frac{dt}{2}$$ Using integration by parts, $$= \frac{1}{2} \left[t \int sint dt - \int \frac{d}{dt} t \int sint dt \right]$$ $$=\frac{1}{2}[-t\cos t - \int -\cos t dt]$$ $$=\frac{1}{2}\left[-tcost + sint\right] + c$$ $$= \frac{1}{2} [x^2 - \sqrt{1 - x^4} \sin^{-1} x^2] + c$$ ### 60. Question Evaluate the following integrals: $$\int \frac{x^2 \sin^{-1} x}{\left(1 - x^2\right)^{3/2}} \, dx$$ ## **Answer** Let $$I = \int \frac{x^2 \sin^{-1} x}{(1-x^2)^{3}\!/_{2}} \; dx$$ $$\sin^{-1} x = t$$ $$\frac{1}{\sqrt{1-x^2}}dx = dt$$ $$I = \int \frac{\sin^2 t \times t dt}{1 - \sin^2 t}$$ $$=\int \frac{t \sin^2 t}{\cos^2 t} dt$$ $$=\int t tan^2 t dt$$ $$= \int t(\sec^2 t - 1) dt$$ Using integration by parts, $$= \int tsec^2tdt - \int tdt$$ $$= t \int sec^2t dt - \int \frac{d}{dt} t \int sec^2t dt - \frac{t^2}{2}$$ We know that, $\int \sec^2 t \, dt = \tan t$ $$= t tan \, t - \int tan \, t \, dt - \frac{t^2}{2}$$ $$= ttan\,t - log|sect| - \frac{t^2}{2} + c$$ $$I = \frac{x}{\sqrt{1 - x^2}} \sin^{-1}x + \log|1 - x^2| - \frac{1}{2} (\sin^{-1}x)^2 + c$$ ## Exercise 19.26 ### 1. Question Evaluate the following integrals: $$\int e^x (\cos x - \sin x) dx$$ #### **Answer** Let $$I = \int e^x (\cos x - \sin x) dx$$ Using integration by parts, $$= \int e^x \cos x \, dx - \int e^x \sin x \, dx$$ We know that, $\frac{d}{dx} \cos x = -\sin x$ $$= \cos x \int e^x - \int \frac{d}{dx} \cos x \int e^x - \int e^x \sin x \, dx$$ $$= e^x \cos x + \int e^x \sin x \, dx - \int e^x \sin x \, dx$$ $$= e^x \cos x + c$$ Evaluate the following integrals: $$\int e^x \left(\frac{1}{x^2} - \frac{2}{x^3} \right) dx$$ #### **Answer** Let $$I = \int e^x \left(\frac{1}{x^2} - \frac{2}{x^3}\right) dx$$ = $\int e^x x^{-2} dx - 2 \int e^x x^{-3} dx$ Integrating by parts $$= x^{-2} \int e^x dx - \int \frac{d}{dx} x^{-2} \int e^x dx - 2 \int e^x x^{-3} dx$$ We know that, $$\begin{split} & \int x^n dx = \frac{x^{n+1}}{n+1} \\ & = e^x x^{-2} + 2 \int e^x x^{-3} dx - 2 \int e^x x^{-3} dx \\ & = \frac{e^x}{x^2} + c \end{split}$$ ## 3. Question Evaluate the following integrals: $$\int e^{x} \left(\frac{1 + \sin x}{1 + \cos x} \right) dx$$ ### **Answer** Let $$I = \int e^x \left(\frac{1+\sin x}{1+\cos x}\right) dx$$ We know that, $\sin^2 x + \cos^2 x = 1$ and $\sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2}$ $$=e^x \Biggl(\frac{\sin^2\frac{x}{2}+\cos^2\frac{x}{2}+2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\frac{x}{2}}\Biggr)$$ $$=\frac{e^{x}\left(\sin\frac{x}{2}+\cos\frac{x}{2}\right)^{2}}{2\cos^{2}\frac{x}{2}}$$ $$= \frac{1}{2} e^{x} \left(\frac{\sin \frac{x}{2} + \cos \frac{x}{2}}{2 \cos \frac{x}{2}} \right)^{2}$$ $$\begin{split} &= \frac{1}{2} e^{x} \left[\tan \frac{x}{2} + 1 \right]^{2} \\ &= \frac{1}{2} e^{x} \left[1 + \tan \frac{x}{2} \right]^{2} \\ &= \frac{1}{2} e^{x} \left[1 + \tan^{2} \frac{x}{2} + 2 \tan \frac{x}{2} \right] \\ &= \frac{1}{2} e^{x} \left[\sec^{2} \frac{x}{2} + 2 \tan \frac{x}{2} \right] \\ &= e^{x} \left[\frac{1}{2} \sec^{2} \frac{x}{2} + \tan \frac{x}{2} \right] \dots \dots (1) \end{split}$$ Let $$\tan \frac{x}{2} = f(x)$$ $$f'(x) = \frac{1}{2} \sec^2 \frac{x}{2}$$ We know that, $$\int e^{x} \{f(x) + f'(x)\} dx = e^{x} f(x) + c$$ From equation(1), we obtain $$\int e^{x} \left(\frac{1 + \sin x}{1 + \cos x} \right) dx = e^{x} \tan \frac{x}{2} + c$$ ## 4. Question Evaluate the following integrals: $$\int e^{x} (\cot x - \csc^{2} x) dx$$ ## Answer Let $$I = \int e^x (\cot x - \csc^2 x) dx$$ $$= \int e^x \cot x dx - \int e^x \csc^2 x dx$$ Integrating by parts, $$= cotx \int e^x dx - \int \frac{d}{dx} cotx \int e^x dx - \int e^x cosec^2 x dx$$ $$=\cot x \, e^x + \int e^x \csc^2 x dx - \int e^x \csc^2 x dx$$ $$= e^x \cot x + c$$ # 5. Question Evaluate the following integrals: $$\int e^{x} \left(\frac{x-1}{2x^{2}} \right) dx$$ $$\int e^x \left(\frac{x-1}{2x^2}\right) dx$$ Let $$I = \int e^x \frac{1}{2x} dx - \int e^x \frac{1}{2x^2} dx$$ Integrating by parts, $$\begin{split} &=\frac{e^x}{2x}-\int e^x\bigg(\frac{d}{dx}\bigg(\frac{1}{2x}\bigg)\bigg)dx-\int \frac{e^x}{2x^2}\,dx\\ &=\frac{e^x}{2x}+\int \frac{e^x}{2x^2}\,dx-\int \frac{e^x}{2x^2}\,dx\\ &=\frac{e^x}{2x}+c \end{split}$$ ### 6. Question Evaluate the following integrals: $$\int e^x \sec x (1 + \tan x) dx$$ ## **Answer** Let $$I = \int e^x \sec x(1 + \tan x) dx$$ = $\int e^x \sec x dx + \int e^x \sec x \tan x dx$ Integrating by parts, $$= e^{x} \operatorname{secxdx} - \int e^{x} \frac{d}{dx} \operatorname{secxdx} + \int e^{x} \operatorname{secx} \tan x dx$$ $$= e^{x} \operatorname{secxdx} - \int e^{x} \operatorname{secx} \tan x dx + \int e^{x} \operatorname{secx} \tan x dx$$ $$= e^{x} \operatorname{secxdx} + c$$ ## 7. Question Evaluate the following integrals: $$\int e^{x}$$ (tan x – log cos x) dx ### **Answer** Let $$I = \int e^{x}(\tan x - \log \cos x)dx$$ $$I = \int e^{x} \tan x dx - \int e^{x} \log \cos x dx$$ Integrating by parts, $$\begin{split} &= \int e^x tan \, x dx - \{e^x \log cos \, x - \int e^x \Big(\frac{d}{dx} \log cos x\Big) dx \\ &= \int e^x tan \, x dx - e^x \log cos \, x dx - \int e^x tan \, x dx \\ &= -e^x \log cos \, x dx + c \\ &= e^x \log sec \, x + c \end{split}$$ ## 8. Question Evaluate the following integrals: $$\int e^x [\sec x + \log (\sec x + \tan x)] dx$$ Let $$I = \int e^x [secx + log(secx + tan x)] dx$$ $$I = \int e^x sec x dx + \int lo g(sec x + tan x) dx$$ Integrating by parts $$= \int e^x \sec x \, dx + e^x \log(\sec x + \tan x) - \int e^x \sec x \, dx$$ $$= e^{x} \log(\sec x + \tan x) + c$$ ## 9. Question Evaluate the following integrals: $$\int e^{x} (\cot x + \log \sin x) dx$$ ## **Answer** Let $$I = \int e^x (\cot x + \log \sin x) dx$$ $$= \int e^x \cot x \, dx + \int e^x l \, og \sin x \, dx$$ Integrating by parts $$= \int e^x \log \sin x \, dx + \int e^x \cot x \, dx$$ $$= (log sin x)e^x - \int e^x \frac{d}{dx} log sin x dx + \int e^x cot x \ dx + c$$ $$= (\log \sin x)e^x - \int e^x \cot x \, dx + \int e^x \cot x \, dx + c$$ $$= (\log \sin x)e^x + c$$ ## 10. Question Evaluate the following integrals: $$\int e^{x} \frac{x-1}{(x+1)^{3}} dx$$ ### **Answer** Let $$I = \int e^x \frac{x+1-2}{(x+1)^3} dx$$ $$= \int e^{x} \left\{ \frac{1}{(x+1)^{2}} + \frac{-2}{(x+1)^{2}} \right\} dx$$ $$= \int e^{x} \frac{1}{(x+1)^{2}} dx + \int e^{x} \frac{-2}{(x+1)^{2}} dx$$ Integrating by parts $$= e^{x} \frac{1}{(x+1)^{2}} - \int e^{x} \frac{-2}{(x+1)^{2}} + \int e^{x} \frac{-2}{(x+1)^{2}}$$ $$=e^{x}\frac{1}{(x+1)^{2}}+c$$ ## 11. Question Evaluate the following integrals: $$\int e^{x} \left(\frac{\sin 4x - 4}{1 - \cos 4x} \right) dx$$ #### **Answer** $$\begin{split} & \text{Let I} = \int e^x \Big(\frac{\sin 4x - 4}{1 - \cos 4x}\Big) dx \\ & = \int e^x \Big\{\frac{2 \sin 2x \cos 2x}{2 \sin^2 x} - \frac{4}{2
\sin^2 x}\Big\} dx \\ & = \int e^x \{\cot 2x - 2 \csc^2 2x\} dx \\ & = \int e^x \cot 2x dx - \int e^x 2 \csc^2 2x\} dx \end{split}$$ Integrating by parts, $$= e^{x} \cot 2x - \int e^{x} \frac{d}{dx} \cot 2x \, dx - 2 \int e^{x} \csc^{2} 2x \, dx$$ $$= e^{x} \cot 2x + 2 \int e^{x} \csc^{2} 2x - 2 \int e^{x} \csc^{2} 2x$$ $$= e^{x} \cot 2x + c$$ ## 12. Question Evaluate the following integrals: $$\int \frac{2-x}{(1-x)^2} e^x dx$$ # Answer Let $$I = \int \frac{2-x}{(1-x)^2} e^x dx$$ $$= \int e^x \left\{ \frac{(1-x)+1}{(1-x)^2} \right\} dx$$ $$= \int e^x \left\{ \frac{1}{1-x} + \frac{1}{(1-x)^2} \right\}$$ $$\frac{1}{1-x} = f(x) \frac{1}{(1-x)^2} = f'(x)$$ We know that, $\int e^x \{f(x) + f'(x)\} = e^x f(x) + c$ $$=e^{x}\frac{1}{1-x}+c$$ ### 13. Question Evaluate the following integrals: $$\int e^{x} \frac{1+x}{\left(2+x\right)^{2}} dx$$ Let $$I = \int \frac{1+x}{(2+x)^2} e^x dx$$ $$\begin{split} &= \int e^{x} \left\{ \frac{(x+2)-1}{(x+2)^{2}} \right\} dx \\ &= \int e^{x} \left\{ \frac{1}{x+2} - \frac{1}{(x+2)^{2}} \right\} \\ &= \int e^{x} \frac{1}{x+2} dx - \int e^{x} \frac{1}{(x+2)^{2}} dx \end{split}$$ $$= \frac{e^{x}}{x+2} + \int e^{x} \frac{1}{(x+2)^{2}} dx - \int e^{x} \frac{1}{(x+2)^{2}} dx$$ $$= e^{x} \frac{1}{x+2} + c$$ ## 14. Question Evaluate the following integrals: $$\int \frac{\sqrt{1-\sin x}}{1+\cos x} e^{-x/2} dx$$ #### **Answer** Let $$I = \int \frac{\sqrt{1-\sin x}}{1+\cos x} e^{-x/2} dx$$ put $\frac{x}{2} = t \Rightarrow x = 2t \Rightarrow dx = 2dt$ $$\int \frac{\sqrt{1-\sin x}}{1+\cos x} e^{-x/2} dx = 2 \int \frac{\sqrt{1-\sin 2t}}{1+\cos 2t} e^{-t} dt$$ $$= 2 \int \frac{\sqrt{\sin^2 t + \cos^2 t - 2\sin t \cos t}}{1+\cos 2t} e^{-t} dt$$ $$= 2 \int \frac{\sqrt{(\cos t - \sin t)^2}}{2\cos^2 t} e^{-t} dt$$ $$= \int (\sec t - \tan t \sec t) e^{-t} dt$$ $$= \int \sec t e^{-t} dt - \int \tan t \sec t e^{-t} dt$$ Integrating by parts $$\begin{split} &= e^{-t} \sec t + \int \tan t \sec t \, e^{-t} \, dt - \int \tan t \sec t \, e^{-t} \, dt \\ &= e^{-t} \sec t + c \\ &= e^{-\frac{x}{2}} \sec \frac{x}{2} + c \end{split}$$ ## 15. Question Evaluate the following integrals: $$\int e^x \left(\log x + \frac{1}{x} \right) dx$$ Let $$I = \int e^x \left(\log x + \frac{1}{x} \right) dx$$ We know that $$\int e^{x} \{f(x) + f'(x)\} = e^{x} f(x) + c$$ Here, $$f(x) = \log x; f'(x) = \frac{1}{x}$$ $$\int e^{x} \left(\log x + \frac{1}{x} \right) dx = e^{x} \log x + c$$ ## 16. Question Evaluate the following integrals: $$\int e^x \left(\log x + \frac{1}{x^2} \right) dx$$ ## Answer Let $$I = \int e^x \left(\log x + \frac{1}{x^2} \right) dx$$ $$= \int e^x \left(\log x + \frac{1}{x} - \frac{1}{x} + \frac{1}{x^2} \right) dx$$ $$= \int e^{x} \left(\log x - \frac{1}{x} \right) dx + \int e^{x} \left(\frac{1}{x} + \frac{1}{x^{2}} \right) dx$$ Using integration by parts, $$= e^{x} \left(\log x - \frac{1}{y} \right) - \int e^{x} \frac{d}{dy} \left(\log x - \frac{1}{y} \right) dx + \int e^{x} \left(\frac{1}{y} + \frac{1}{y^{2}} \right) dx$$ $$=e^x \left(log x - \frac{1}{x} \right) - \int e^x \left(\frac{1}{x} + \frac{1}{x^2} \right) dx + \int e^x \left(\frac{1}{x} + \frac{1}{x^2} \right) dx$$ $$= e^{x} \left(\log x - \frac{1}{x} \right) + c$$ # 17. Question Evaluate the following integrals: $$\int\!\frac{e^x}{x}\Bigl\{x(\log x)^2+2\log x\Bigr\}dx$$ ## Answer Let $$I = \int \frac{e^x}{x} \{x(\log x)^2 + 2\log x\} dx$$ $$= \int e^{x} (\log x)^{2} dx + 2 \int \frac{e^{x}}{x} \log x dx$$ Using integration by parts, $$= e^{x}(\log x)^{2} - \int e^{x} \frac{d}{dx}(\log x)^{2} + 2 \int \frac{e^{x}}{x} \log x \, dx$$ $$= e^{x}(\log x)^{2} - 2 \int \frac{e^{x}}{x} \log x \, dx + 2 \int \frac{e^{x}}{x} \log x \, dx$$ $$= e^{x}(\log x)^{2} + c$$ Evaluate the following integrals: $$\int e^{x} \cdot \frac{\sqrt{1-x^{2}} \sin^{-1} x + 1}{\sqrt{1-x^{2}}} dx$$ #### **Answer** Let $$I = \int e^{x} \frac{\sqrt{1-x^2}\sin^{-1}x+1}{\sqrt{1-x^2}} dx$$ $$I = \int e^x sin^{-1}x + \int e^x \frac{1}{\sqrt{1-x^2}} dx$$ Integrating by parts $$=e^xsin^{-1}x-\int e^x\bigg(\frac{d}{dx}(sin^{-1}x)\bigg)dx+\int e^x\frac{1}{\sqrt{1-x^2}}dx$$ $$= e^{x} sin^{-1}x - \int e^{x} \frac{1}{\sqrt{1-x^{2}}} dx + \int e^{x} \frac{1}{\sqrt{1-x^{2}}} dx$$ $$= e^x \sin^{-1} x + c$$ ### 19. Question Evaluate the following integrals: $$\int e^{2x} (-\sin x + 2\cos x) dx$$ ## **Answer** Let $$I = \int e^{2x} (-\sin x + 2\cos x) dx$$ $$I = \int e^{2x} - \sin x dx + 2 \int e^{2x} \cos x \, dx$$ Applying by parts in the second integral, $$I = -\int e^{2x} \sin x \, dx + 2 \left\{ \frac{1}{2} e^{2x} \cos x + \int \frac{1}{2} e^{2x} \sin x \, dx \right\}$$ $$= - \int e^{2x} sinx dx + e^{2x} cos x + \int e^{2x} sinx dx + c$$ $$=e^{2x}\cos x+c$$ # 20. Question Evaluate the following integrals: $$\int e^{x} \left(\tan^{-1} x + \frac{1}{1+x^{2}} \right) dx$$ ## **Answer** Let $$I = \int e^x \left(\tan^{-1} x + \frac{1}{1+x^2} \right) dx$$ here, $$f(x) = \tan^{-1}x$$ and $f'(x) = \frac{1}{1 + x^2}$ and we know that, $$\int e^x \{f(x) + f'(x)\} = e^x f(x) + c$$ $$\int e^{x} \left(\tan^{-1} x + \frac{1}{1 + x^{2}} \right) dx = e^{x} \tan^{-1} x + c$$ Evaluate the following integrals: $$\int e^{x} \left(\frac{\sin x \cos x - 1}{\sin^{2} x} \right) dx$$ ### **Answer** Let $$I = \int e^x \left(\frac{\sin x \cos x - 1}{\sin^2 x} \right) dx$$ $$= \int e^x(\cot x - \csc^2 x) dx$$ $$= \int e^{x}(\cot x + -\csc^{2}x)dx$$ We know that, $$\int e^x \{f(x) + f'(x)\} = e^x f(x) + c$$ $$let f(x) = cotx; f'(x) = -cosec^2x$$ $$\int e^{x} \left(\frac{\sin x \cos x - 1}{\sin^{2} x} \right) dx = e^{x} \cot x + c$$ ## 22. Question Evaluate the following integrals: $$\int \{ \tan (\log x) + \sec^2 (\log x) \} dx$$ ## **Answer** Let $$I = \int [\tan(\log x) + \sec^2(\log x)] dx$$ $$log x = z \implies x = e^z \implies dx = e^z dz$$ $$I = \int (\tan z + sec^2 z)e^z dz$$ $$f(z) = \tan z$$; $f'(z) = \sec^2 z$ We know that, $$\int e^x \{f(x) + f'(x)\} = e^x f(x) + c$$ $$I = xtan(log x) + c$$ ## 23. Question Evaluate the following integrals: $$\int e^{x} \frac{(x-4)}{(x-2)^{3}} dx$$ Let $$I = \int e^x \frac{(x-4)}{(x-2)^3} dx$$ $$= \int e^{x} \frac{(x-2)-2)}{(x-2)^{3}} dx$$ $$= \int e^x \Bigl\{ \frac{1}{(x-2)^2} - \frac{2}{(x-2)^2} \Bigr\} dx$$ Let $$f(x) = \frac{1}{(x-2)^2}$$ and $f'(x) = \frac{2}{(x-2)^2}$ We know that, $\int e^x \{f(x) + f'(x)\} = e^x f(x) + c$ $$I = \frac{e^x}{(x-2)^2} + c$$ ## 24. Question Evaluate the following integrals: $$\int e^{2x} \left(\frac{1 - \sin 2x}{1 - \cos 2x} \right) dx$$ ## **Answer** Let $$I = \int e^{2x} \left(\frac{1-\sin 2x}{1-\cos 2x} \right) dx$$ We have, $$\cos 2x = 1 - 2\sin^2 x$$ $$I = e^{2x} \left(\frac{1 - \sin 2x}{1 - (1 - 2\sin^2 x)} \right) dx$$ $$= \int e^{2x} \left(\frac{1 - \sin 2x}{2 \sin^2 x} \right) dx$$ $$= \int e^{2x} \Biggl(\frac{cosec^2x}{2} - \frac{2sinxcosx}{2sin^2x} \Biggr) dx$$ $$= \int e^{2x} \left(\frac{cosec^2x}{2} - \frac{cosx}{sin \, x} \right) dx$$ $$= \int e^{2x} \left(\frac{cosec^2x}{2} - cotx \right) dx$$ Using integration by parts, $$=\frac{1}{2}\int e^{2x}cosec^2xdx-\int e^{2x}cotxdx$$ That is, $$|=|_1+|_2$$ $$I_1 = \frac{1}{2} \int e^{2x} cosec^2 x dx$$ $$I_2 = \int e^{2x} \cot x dx$$ Consider $$I_1 = \frac{1}{2} \int e^{2x} cosec^2 x dx$$ take e^{2x} as first function and cosec²x as second function $$u = e^{2x}$$: $du = 2e^{2x}dx$ $$\int \csc^2 x \, dx = \int dv$$ Let $\mathbf{v} = -\cot \mathbf{x}$ $$I_1 = \frac{1}{2} \left[e^{2x} (-\cot x) - \int (-\cot x) 2e^{2x} dx \right]$$ $$I_1 = \frac{1}{2} \left[e^{2x} (-\cot x) - 2 \int \cot x e^{2x} dx \right]$$ $$I_1 = \frac{1}{2} (e^{2x}(-\cot x)) + \int \cot x e^{2x} dx$$ Thus $$I = \frac{1}{2} \left(e^{2x} (-\cot x) \right) + \int \cot x e^{2x} dx - \int e^{2x} \cot x dx$$ $$I = \frac{1}{2} [e^{2x}(-\cot x)] + c$$ ## Exercise 19.27 # 1. Question Evaluate the following integrals: ## **Answer** Let $I = e^{ax} \cos bx dx$ Integrating by parts, $$I = e^{ax} \frac{\sin bx}{b} - a \int e^{ax} \frac{\sin bx}{b} dx$$ $$= \frac{1}{b} e^{ax} \sin bx - \frac{a}{b} \int e^{ax} \sin bx \, dx$$ $$= \frac{1}{b}e^{ax}\sin bx - \frac{a}{b}\left[-e^{ax}\frac{\cos bx}{b} - a\int e^{ax}\frac{\cos bx}{b}\ dx\right]$$ $$=\frac{1}{b}e^{ax}\sin bx - \frac{a}{b^2}e^{ax}\cos bx - \frac{a^2}{b^2}\int e^{ax}\cos bx \, dx$$ $$I = \frac{e^{ax}}{b^2} \left[b \sin bx + a \cos bx \right] - \frac{a^2}{b^2} I + c$$ $$= \frac{e^{ax}}{a^2 + b^2} [b \cos bx + a \cos bx] + c$$ ## 2. Question Evaluate the following integrals: $$\int e^{ax} \sin(bx + c) dx$$ Let $$I = \int e^{ax} \sin(bx + c) dx$$ $$= -e^{ax} \frac{\cos(bx+c)}{b} + \int ae^{ax} \frac{\cos(bx+c)}{b} dx$$ $$= -\frac{1}{b}e^{ax}\cos(bx+c) + \frac{a}{b}\int e^{ax}\cos(bx+c)$$ $$I = \frac{e^{ax}}{b^2} \{ a \sin(bx + c) - b \cos(bx + c) \} - \frac{a^2}{b^2} I + c_1$$ $$I = \left\{ \frac{a^2 + b^2}{b^2} \right\} - \frac{e^{ax}}{b^2} \{ a \sin(bx + c) - b \cos(bx + c) \} + c_1$$ $$= \frac{e^{ax}}{a^2 + b^2} \{ a \sin(bx + c) - b \cos(bx + c) \}$$ Evaluate the following integrals: ### **Answer** Let $$I = \int \cos(\log x) dx$$ $$\frac{1}{v}dx = dt$$ dx = xdt $$= \int e^t \cos t \, dt$$ We know that, $\int \cos(\log x) dx = \frac{e^{ax}}{a^2 + b^2} \{a \sin(bx + c) - b \cos(bx + c)\}$ Hence, a=1, b=1 So $$I = \frac{e^t}{2} [\cos t + \sin t] + c$$ Hence $$\int \cos(\log x) \, dx = \frac{e^{\log x}}{2} \{\cos(\log x) + \sin(\log x)\} + c$$ $$I = \frac{x}{2} \{ \cos(\log x) + \sin(\log x) \} + c$$ ### 4. Question Evaluate the following integrals: $$\int e^{2x} \cos (3x + 4) dx$$ # **Answer** Let $$I = \int e^{2x} \cos(3x + 4) dx$$ Integrating by parts $$I = e^{2x} \frac{\sin(3x+4)}{3} - \int 2e^{2x} \frac{\sin(3x+4)}{3} dx$$ $$= \frac{1}{3}e^{2x}\sin(3x+4) - \frac{2}{3}\int e^{2x}\sin(3x+4) dx$$ $$=\frac{1}{3}e^{2x}\sin(3x+4)-\frac{2}{3}\Bigl\{-e^{2x}\frac{\cos(3x+4)}{3}+\int 2e^{2x}\frac{\cos(3x+4)}{3}\,dx\Bigr\}$$ $$I = \frac{e^{2x}}{9} [2\cos(3x+4) + 3\sin(3x+4)] + c$$ Hence, $$I = \frac{e^{2x}}{9} [2\cos(3x+4) + 3\sin(3x+4)] + c$$ ## 5. Question Evaluate the following integrals: $$\int e^{2x} \sin x \cos x dx$$ ### **Answer** Let $I =
\int e^{2x} \sin x \cos x dx$ $$=\frac{1}{2}\int\,e^{2x}\,2\,sinx\,cos\,xdx$$ $$= \frac{1}{2} \int e^{2x} \sin 2x \, dx$$ We know that, $$\int e^{ax} \sinh x dx = \frac{e^{ax}}{a^2 + b^2} \{a \sin bx - b \cos bx\} + c$$ $$= \frac{e^{2x}}{8} \{ 2\sin 2x - 2\cos 2x \} + c$$ $$I = \frac{1}{2} \frac{e^{2x}}{8} \{ 2 \sin 2x - 2 \cos 2x \} + c$$ $$I = \frac{e^{2x}}{8} \{ \sin 2x - \cos 2x \} + c$$ ### 6. Question Evaluate the following integrals: $$e^{2x} \sin x dx$$ # Answer Let $$I = \int e^{2x} \sin x \, dx$$ Integrating by parts, $$I = \sin x \int e^{2x} \ dx - \int \frac{d}{dx} sinx \int e^{2x} dx$$ $$I = \sin x \frac{e^{2x}}{2} - \int \cos x \frac{e^{2x}}{2} dx$$ $$I = \sin x \frac{e^{2x}}{2} - \frac{1}{2} \int e^{2x} \cos x dx$$ Again integrating by parts, $$I=\sin x\frac{e^{2x}}{2}-\frac{1}{2}\Bigl\{\cos x\int e^{2x}dx-\int\frac{d}{dx}\cos x\int\,e^{2x}dx\Bigr\}$$ $$I = \sin x \frac{e^{2x}}{2} - \frac{1}{2} \left[\cos x \frac{e^{2x}}{2} - \int (-\sin x) \frac{e^{2x}}{2} dx \right]$$ $$I=sin\,x\frac{e^{2x}}{2}-\frac{1}{2}\Bigg[cosx\frac{e^{2x}}{2}+\frac{1}{2}\int\,sin\,xe^{2x}dx\Bigg]$$ $$I = \sin x \frac{e^{2x}}{2} - \frac{1}{2} \cos x \frac{e^{2x}}{2} - \frac{1}{4}I$$ $$I + \frac{I}{4} = \sin x \frac{e^{2x}}{2} - \frac{1}{2} \cos x \frac{e^{2x}}{2}$$ $$\frac{5}{4}I = \frac{e^{2x}\sin x}{2} - \frac{e^{2x}\cos x}{4}$$ $$I = \frac{4}{5} \left[\frac{e^{2x} \sin x}{2} - \frac{e^{2x} \cos x}{4} \right] + c$$ $$I = \frac{e^{2x}}{5} [2\sin x - \cos x] + c$$ Evaluate the following integrals: $$\int e^{2x} \sin(3x + 1) dx$$ #### **Answer** Let $$I = \int e^{2x} \sin(3x + 1) dx$$ Now Integrating by parts choosing $\sin (3x + 1)$ as first function and e^{2x} as second function we get, $$I = \sin(3x+1) \int e^{2x} dx - \int (\frac{d}{dx} \sin(3x+1) \int e^{2x} dx) dx$$ $$I = \frac{e^{2x}}{2}\sin(3x+1) - \int \frac{3e^{2x}}{2}\cos(3x+1) dx$$ Now again integrating by parts by taking $\cos(3x + 1)$ as first function and e^{2x} as second function we get, $$I = \frac{e^{2x}}{2} \sin(3x+1) - \left[\cos(3x+1) \int \frac{3e^{2x}}{2} dx - \int \frac{3}{2} (\frac{d}{dx} \cos(3x+1) \int e^{2x} dx \right) dx$$ $$I = \frac{e^{2x}}{2}\sin(3x+1) - \frac{3}{4}e^{2x}\cos(3x+1) - \frac{9}{4}\int e^{2x}\sin(3x+1)\,dx$$ $$\int e^{2x} \sin(3x+1) \, dx = I$$ Therefore. $$I = \frac{e^{2x}}{2}\sin(3x+1) - \frac{3}{4}e^{2x}\cos(3x+1) - \frac{9}{4}I$$ $$I + \frac{9}{4}I = \frac{e^{2x}}{2}\sin(3x+1) - \frac{3}{4}e^{2x}\cos(3x+1)$$ $$\frac{13I}{4} = \frac{e^{2x}}{2}\sin(3x+1) - \frac{3}{4}e^{2x}\cos(3x+1)$$ $$I = \frac{e^{2x}}{13} \{ 2\sin(3x+1) - 3\cos(3x+1) \} + c$$ ### 8. Question Evaluate the following integrals: ### **Answer** Let $$I = \int e^x \sin^2 x \, dx$$ $$I = \frac{1}{2} \int e^x 2 sin^2 x \, dx$$ $$=\frac{1}{2}\int e^{x}(1-\cos 2x)dx$$ Using integration by parts, $$=\frac{1}{2}\int e^{x}dx-\frac{1}{2}\int e^{x}\cos 2xdx$$ We know that, $\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} \{a \cos bx - b \sin bx\} + c$ $$I = \frac{1}{2} \left[e^{x} - \frac{e^{x}}{5} \left(\cos 2x + 2 \sin 2x \right) \right] + c$$ $$= \frac{e^{x}}{2} - \frac{e^{x}}{10} (\cos 2x + 2 \sin 2x) + c$$ ### 9. Question Evaluate the following integrals: $$\int \frac{1}{x^3} \sin(\log x) \, dx$$ ## **Answer** Let $$I = \int \frac{1}{x^3} \sin(\log x) dx$$ $$letlog x = t \Rightarrow \frac{1}{x} dx = dt \Rightarrow dx = e^{x} dt$$ We know that $$\int e^{ax} sinbx dx = \frac{e^{ax}}{a^2 + b^2} \{a sin bx - b cos bx\} + c$$ $$\int e^{-2t} sint \, dt = \frac{e^{-2t}}{5} \{-2 \, sint - cos \, t\} + c$$ $$I = \frac{x^{-2}}{5} \{-2\sin(\log x) - \cos(\log x)\} + c$$ $$= \frac{-1}{5x^2} \{ 2 \sin(\log x) + \cos(\log x) \} + c$$ ## 10. Question Evaluate the following integrals: $$\int e^{2x} \cos^2 x \, dx$$ Let $$I = \int e^{2x} \cos^2 x \, dx$$ $$= \frac{1}{2} \int e^{2x} 2\cos^2 x \, dx$$ $$= \frac{1}{2} \int e^{2x} (1 + \cos 2x) \, dx$$ $$=\frac{1}{2}\int e^{2x}dx + \frac{1}{2}\int e^{2x}\cos 2xdx$$ We know that, $\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} \{a \cos bx - b \sin bx\} + c$ $$I = \frac{1}{2} \left[\frac{e^{2x}}{2} - \frac{e^{2x}}{8} (2\cos 2x + 2\sin 2x) \right] + c$$ $$= \frac{e^{2x}}{4} + \frac{e^{2x}}{16}(2\cos 2x + 2\sin 2x) + c$$ $$= \frac{e^{2x}}{4} + \frac{e^{2x}}{8}(\cos 2x + \sin 2x) + c$$ ## 11. Question Evaluate the following integrals: $$\int e^{-2x} \sin x dx$$ ### **Answer** Let $$I = \int e^{-2x} \sin x \, dx$$ We know that, $\int e^{ax} \sinh x dx = \frac{e^{ax}}{a^2 + b^2} \{a \sin bx - b \cos bx\} + c$ $$= \frac{e^{-2x}}{5} \{-2\sin x - \cos x\} + c$$ ## 12. Question Evaluate the following integrals: $$\int x^2 e^{x^3} \cos x^3 dx$$ ## **Answer** Let $$I = \int x^2 e^{x^3} \cos x^3 dx$$ $$x^3 = t$$ $$3x^2dx = dt$$ $$I = \frac{1}{3} \int e^t \cos t \, dt$$ We know that, $\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} \{a \cos bx - b \sin bx\} + c$ $$I = \frac{1}{3} \left[\frac{e^t}{2} \left(cost + sin \, t \right) \right] + c$$ $$I = \frac{1}{3} \left[\frac{e^{x^3}}{2} (\cos x^3 + \sin x^3) \right] + c$$ # Exercise 19.28 # 1. Question Evaluate the integral: $$\int \sqrt{3 + 2x - x^2} \, dx$$ #### **Answer** Key points to solve the problem: - Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} \, dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $$I = \int \sqrt{3 + 2x - x^2} dx$$ $$| \cdot | = \int \sqrt{3 - (x^2 - 2(1)x)} dx = \int \sqrt{3 - (x^2 - 2(1)x + 1) + 1} dx$$ Using $$a^2 - 2ab + b^2 = (a - b)^2$$ We have: $$I = \int \sqrt{4 - (x - 1)^2} dx = \int \sqrt{2^2 - (x - 1)^2} dx$$ As I match with the form: $$\int \sqrt{a^2-x^2} \ dx = \frac{x}{2} \sqrt{a^2-x^2} \ + \frac{a^2}{2} sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\therefore I = \frac{x-1}{2} \sqrt{4 - (x-1)^2} + \frac{4}{2} \sin^{-1}(\frac{x-1}{2}) + C$$ $$\Rightarrow 1 = \frac{1}{2}(x-1)\sqrt{3+2x-x^2} + 2\sin^{-1}\left(\frac{x-1}{2}\right) + C$$ ### 2. Question Evaluate the integral: $$\int \sqrt{x^2 + x + 1} \, dx$$ ### **Answer** Key points to solve the problem: - Such problems require the use of the method of substitution along with a method of integration by parts. By the method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} \, dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $$I = \int \sqrt{(x^2 + x + 1)} dx$$ Using $a^2 + 2ab + b^2 = (a + b)^2$ We have: $$I = \int \sqrt{\left(x + \frac{1}{2}\right)^2 + 1 - \frac{1}{4}} dx = \int \sqrt{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} dx$$ As I match with the form: $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ $$\therefore I = \frac{\left(x + \frac{1}{2}\right)}{2} \sqrt{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} + \frac{\left(\frac{\sqrt{3}}{2}\right)^2}{2} \log \left| \left(x + \frac{1}{2}\right) + \sqrt{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \right| + C$$ $$\Rightarrow I = \frac{1}{4} (2x + 1) \sqrt{x^2 + x + 1} + \frac{3}{8} \log \left| \left(x + \frac{1}{2}\right) + \sqrt{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \right| + C$$ $$\Rightarrow I = \frac{1}{4} (2x + 1) \sqrt{x^2 + x + 1} + \frac{3}{8} \log \left| \left(x + \frac{1}{2}\right) + \sqrt{x^2 + x + 1} \right| + C$$ ### 3. Question Evaluate the integral: $$\int \sqrt{x-x^2} dx$$ ### **Answer** Key points to solve the problem: - Such problems require the use of the method of substitution along with a method of integration by parts. By the method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} \, dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $I = \int \sqrt{x - x^2} \, dx$ Using $$a^2 - 2ab + b^2 = (a - b)^2$$ We have: $$I = \int \sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^2} dx = \int \sqrt{\left(\frac{1}{2}\right)^2 - \left(x - \frac{1}{2}\right)^2} dx$$ As I match with the form: $\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$ $$\therefore I = \frac{x - \frac{1}{2}}{2} \sqrt{\left(\frac{1}{2}\right)^2 - \left(x - \frac{1}{2}\right)^2} + \frac{\frac{1}{4}}{2} \sin^{-1}\left(\frac{x - \frac{1}{2}}{\frac{1}{2}}\right) + C$$ $$\Rightarrow I = \frac{1}{4}(2x-1)\sqrt{x-x^2} + \frac{1}{8}\sin^{-1}(2x-1) + C$$ ## 4. Question Evaluate the integral: $$\int \sqrt{1+x-2x^2} \, dx$$ #### **Answer** Key points to
solve the problem: - Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} \, dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $$I = \int \sqrt{1 + x - 2x^2} \, dx$$ Using $$a^2 - 2ab + b^2 = (a - b)^2$$ We have: $$I = \int \sqrt{\frac{9}{8} - 2\left(x - \frac{1}{4}\right)^2} \, dx = \int \sqrt{2} \sqrt{\left(\frac{3}{4}\right)^2 - \left(x - \frac{1}{4}\right)^2} \, dx$$ As I match with the form: $\int \sqrt{a^2-x^2} \ dx = \frac{x}{2} \sqrt{a^2-x^2} \ + \frac{a^2}{2} sin^{-1} \left(\frac{x}{a}\right) + C$ $$\therefore I = \sqrt{2} \left\{ \frac{x - \frac{1}{4}}{2} \sqrt{\left(\frac{3}{4}\right)^2 - \left(x - \frac{1}{4}\right)^2} + \frac{\frac{9}{16}}{2} \sin^{-1}\left(\frac{x - \frac{1}{4}}{\frac{3}{4}}\right) \right\} + C$$ $$\Rightarrow 1 = \frac{1}{8}(4x - 1)\sqrt{2\left\{\left(\frac{3}{4}\right)^2 - \left(x - \frac{1}{4}\right)^2\right\}} + \frac{9\sqrt{2}}{32}\sin^{-1}\left(\frac{4x - 1}{3}\right) + C$$ $$\Rightarrow 1 = \frac{1}{8} (4x - 1)\sqrt{1 + x - 2x^2} + \frac{9\sqrt{2}}{32} \sin^{-1} \left(\frac{4x - 1}{3} \right) + C$$ #### 5. Question Evaluate the integral: $$\int \cos x \sqrt{4 - \sin^2 x} \, dx$$ Key points to solve the problem: - Such problems require the use of the method of substitution along with a method of integration by parts. By the method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} \, dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $$I = \int \cos x \sqrt{4 - \sin^2 x} \, dx$$ Let, $\sin x = t$ Differentiating both sides: $$\Rightarrow$$ cos x dx = dt Substituting sin x with t, we have: $$| \cdot | = \int \sqrt{4 - t^2} dt = \int \sqrt{2^2 - t^2} dt$$ As I match with the form: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\therefore I = \frac{t}{2} \sqrt{4 - (t)^2} + \frac{4}{2} \sin^{-1}(\frac{t}{2}) + C$$ Putting the value of t i.e. $t = \sin x$ $$\Rightarrow 1 = \frac{1}{2}\sin x \sqrt{4 - \sin^2 x} + 2\sin^{-1}\left(\frac{\sin x}{2}\right) + C$$ ## 6. Question Evaluate the integral: $$\int e^x \sqrt{e^{2x} + 1} dx$$ #### **Answer** Key points to solve the problem: - Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} \, dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, I = $$\int e^x \sqrt{e^{2x} + 1} dx$$ Let, $$e^{x} = t$$ Differentiating both sides: $$\Rightarrow$$ e^X dx = dt Substituting e^x with t, we have: We have: $$I = \int \sqrt{t^2 + 1} dt = \int \sqrt{t^2 + 1^2} dt$$ As I match with the form: $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ $$| \cdot | = \frac{t}{2} \sqrt{t^2 + 1} + \frac{1}{2} \log |t + \sqrt{t^2 + 1}|$$ $$\Rightarrow I = \frac{t}{2} \sqrt{t^2 + 1} + \frac{1}{2} \log|t + \sqrt{t^2 + 1}| + C$$ Putting the value of t back: $$\Rightarrow 1 = \frac{e^{x}}{2} \sqrt{e^{2x} + 1} + \frac{1}{2} \log |e^{x} + \sqrt{e^{2x} + 1}| + C$$ ### 7. Ouestion Evaluate the integral: $$\int \sqrt{9 - x^2} \, dx$$ #### **Answer** Key points to solve the problem: - Such problems require the use of the method of substitution along with a method of integration by parts. By the method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $$I = \int \sqrt{9 - x^2} dx$$ $$\therefore I = \int \sqrt{9 - x^2} dx = \int \sqrt{3^2 - x^2} dx$$ As I match with the form: $\int \sqrt{a^2-x^2} \ dx = \frac{x}{2} \sqrt{a^2-x^2} \ + \frac{a^2}{2} sin^{-1} \left(\frac{x}{a}\right) + C$ $$\therefore 1 = \frac{x}{2} \sqrt{9 - (x)^2} + \frac{9}{2} \sin^{-1}(\frac{x}{3}) + C$$ ## 8. Ouestion Evaluate the integral: $$\int \sqrt{16x^2 + 25} \, dx$$ #### **Answer** Key points to solve the problem: - Such problems require the use of the method of substitution along with a method of integration by parts. By the method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} \, dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $I = \int \sqrt{16x^2 + 25} \, dx$ We have: $$I = \int \sqrt{16x^2 + 25} \, dx = \int \sqrt{(4x)^2 + 5^2} \, dx$$ $$\Rightarrow I = \int 4 \sqrt{x^2 + \left(\frac{5}{5}\right)^2} \, dx$$ As I match with the form: $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ $$\therefore I = 4 \left\{ \frac{x}{2} \sqrt{x^2 + \left(\frac{5}{4}\right)^2} + \frac{\frac{25}{16}}{2} \log \left| x + \sqrt{x^2 + \left(\frac{5}{4}\right)^2} \right| \right\}$$ $$\Rightarrow I = \frac{x}{2} \sqrt{16x^2 + 25} + \frac{25}{8} \log \left| x + \sqrt{x^2 + \frac{25}{16}} \right| + C$$ ### 9. Question Evaluate the integral: $$\int \sqrt{4x^2-5} \, dx$$ #### **Answer** Key points to solve the problem: - Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $$I = \int \sqrt{4x^2 - 5} \, dx$$ We have: $$I = \int \sqrt{4x^2 - 5} \, dx = \int 2\sqrt{x^2 - \frac{5}{4}} \, dx$$ $$\Rightarrow I = 2 \int \sqrt{x^2 - \left(\frac{\sqrt{5}}{2}\right)^2} dx$$ As I match with the form: $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\Rightarrow 1 = x \sqrt{x^2 - \frac{5}{4}} - \frac{5}{4} \log \left| x + \sqrt{x^2 - \frac{5}{4}} \right| + C$$ ### 10. Question Evaluate the integral: $$\int \sqrt{2x^2 + 3x + 4} \, dx$$ #### **Answer** Key points to solve the problem: - Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} \, dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \ dx = \frac{x}{2} \sqrt{a^2 - x^2} \ + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $$I = \int \sqrt{(2x^2 + 3x + 4)} \, dx$$ $$\therefore 1 = \int \sqrt{2 \left\{ x^2 + 2 \left(\frac{3}{4} \right) x + \left(\frac{3}{4} \right)^2 + 2 - \left(\frac{3}{4} \right)^2 \right\}} \, dx$$ Using $$a^2 + 2ab + b^2 = (a + b)^2$$ We have: $$I = \sqrt{2} \int \sqrt{\left(x + \frac{3}{4}\right)^2 + 2 - \frac{9}{16}} \, dx = \int \sqrt{\left(x + \frac{3}{4}\right)^2
+ \left(\frac{\sqrt{23}}{4}\right)^2} \, dx$$ As I match with the form: $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ $$\Rightarrow 1 = \frac{1}{8}(4x + 3)\sqrt{2\left\{\left(x + \frac{3}{4}\right)^2 + \left(\frac{\sqrt{23}}{4}\right)^2\right\}} + \frac{23\sqrt{2}}{32}\log\left|\left(x + \frac{3}{4}\right) + \sqrt{\left(x + \frac{3}{4}\right)^2 + \left(\frac{\sqrt{23}}{4}\right)^2}\right| + C$$ $$\Rightarrow I = \frac{1}{8}(4x+3)\sqrt{2x^2+3x+4} + \frac{23\sqrt{2}}{32}\log\left|\left(x+\frac{3}{4}\right) + \sqrt{x^2+\frac{3}{2}x+2}\right| + C$$ Evaluate the integral: $$\int \sqrt{3-2x-2x^2} \ dx$$ #### **Answer** Key points to solve the problem: - Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} \, dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $$I = \int \sqrt{3 - 2x - 2x^2} \, dx$$ Using $$a^2 + 2ab + b^2 = (a + b)^2$$ We have: $$I = \int \sqrt{\frac{7}{4} - 2\left(x + \frac{1}{2}\right)^2} dx = \int \sqrt{2} \sqrt{\left(\frac{\sqrt{7}}{2}\right)^2 - \left(x + \frac{1}{2}\right)^2} dx$$ As I match with the form: $\int \sqrt{a^2-x^2} \ dx = \frac{x}{2} \sqrt{a^2-x^2} \ + \frac{a^2}{2} sin^{-1} \left(\frac{x}{a}\right) + C$ $$\therefore I = \sqrt{2} \left\{ \frac{x + \frac{1}{2}}{2} \sqrt{\left(\frac{\sqrt{7}}{2}\right)^2 - \left(x + \frac{1}{2}\right)^2} + \frac{\frac{7}{4}}{2} \sin^{-1}\left(\frac{x + \frac{1}{2}}{\frac{\sqrt{7}}{2}}\right) \right\} + C$$ $$\Rightarrow 1 = \frac{1}{4}(2x+1)\sqrt{2\left\{\left(\frac{\sqrt{7}}{2}\right)^2 - \left(x + \frac{1}{2}\right)^2\right\}} + \frac{7\sqrt{2}}{8}\sin^{-1}\left(\frac{2x+1}{\sqrt{7}}\right) + C$$ $$\Rightarrow I = \frac{1}{4}(2x+1)\sqrt{3-2x-2x^2} + \frac{7\sqrt{2}}{8}\sin^{-1}\left(\frac{2x+1}{\sqrt{7}}\right) + C$$ # 12. Question Evaluate the integral: $$\int x \sqrt{x^4 + 1} dx$$ #### **Answer** Key points to solve the problem: - Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} \, dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $$I = \int x\sqrt{x^4 + 1} dx = \int x\sqrt{(x^2)^2 + 1} dx$$ Let, $$x^2 = t$$ Differentiating both sides: $$\Rightarrow$$ 2x dx = dt \Rightarrow x dx = 1/2 dt Substituting x^2 with t, we have: We have: $$I = \frac{1}{2} \int \sqrt{t^2 + 1} dt = \frac{1}{2} \int \sqrt{t^2 + 1^2} dt$$ As I match with the form: $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ $$\Rightarrow I = \frac{t}{4} \sqrt{t^2 + 1} + \frac{1}{4} \log|t + \sqrt{t^2 + 1}| + C$$ Putting the value of t back: $$\Rightarrow I = \frac{x^2}{4} \sqrt{(x^2)^2 + 1} + \frac{1}{4} \log |x^2 + \sqrt{(x^2)^2 + 1}| + C$$ $$\Rightarrow 1 = \frac{x^2}{4} \sqrt{x^4 + 1} + \frac{1}{4} \log |x^2 + \sqrt{x^4 + 1}| + C$$ ## 13. Question Evaluate the integral: $$\int x^2 \sqrt{a^6 - x^6} \, dx$$ #### **Answer** Key points to solve the problem: • Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx - \int f'(x)(\int g(x)dx) dx$ • To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} \, dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $$I = \int x^2 \sqrt{a^6 - x^6} dx = \int x^2 \sqrt{a^6 - (x^3)^2} dx$$ Let, $$x^3 = t$$ Differentiating both sides: $$\Rightarrow$$ 3x² dx = dt $$\Rightarrow$$ x² dx = 1/3 dt Substituting x^3 with t, we have: $$\therefore I = \frac{1}{3} \int \sqrt{(a^3)^2 - t^2} dt = \int \sqrt{(a^3)^2 - t^2} dt$$ As I match with the form: $\int \sqrt{a^2-x^2} \ dx = \frac{x}{2} \sqrt{a^2-x^2} \ + \frac{a^2}{2} sin^{-1} \left(\frac{x}{a}\right) + C$ $$\ \, : I = \frac{1}{3} \Big\{ \! \frac{t}{2} \, \sqrt{a^6 - (t)^2} + \frac{a^6}{2} sin^{-1} \big(\frac{t}{a^3} \big) \, + C \! \Big\}$$ Putting the value of t i.e. $t = x^3$ $$\Rightarrow 1 = \frac{x^3}{6} \sqrt{a^6 - x^6} + \frac{a^6}{6} \sin^{-1} \left(\frac{x^3}{a^3} \right) + C$$ ## 14. Question Evaluate the integral: $$\int \frac{\sqrt{16 + (\log x)^2}}{x} dx$$ ## **Answer** Key points to solve the problem: - Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} \, dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $$I = \int \frac{1}{x} \sqrt{16 + (\log x)^2} dx$$ Let, $\log x = t$ Differentiating both sides: $$\Rightarrow \frac{1}{x} dx = dt$$ Substituting (log x) with t, we have: We have: $$I = \int \sqrt{t^2 + 16} dt = \int \sqrt{t^2 + 4^2} dt$$ As I match with the form: $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Putting the value of t back: $$\Rightarrow I = \frac{\log x}{2} \sqrt{(\log x)^2 + 16} + 8 \log \left| \log x + \sqrt{(\log x)^2 + 16} \right| + C$$ # 15. Question Evaluate the integral: $$\int \sqrt{2ax-x^2} dx$$ ## **Answer** Key points to solve the problem: - Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} \, dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $$I = \int \sqrt{2ax - x^2} dx$$ $$=\int \sqrt{-(x^2-2(a)x)} dx = \int \sqrt{a^2-(x^2-2(a)x+(a)^2)} dx$$ Using $$a^2 - 2ab + b^2 = (a - b)^2$$ We have: $$I = \int \sqrt{a^2 - (x - a)^2} dx = \int \sqrt{(a)^2 - (x - a)^2} dx$$ As I match with the form: $\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$ $$\therefore I = \frac{x-a}{2} \sqrt{(a)^2 - (x-a)^2} + \frac{a^2}{2} \sin^{-1}(\frac{x-a}{a}) + C$$ $$\Rightarrow I = \frac{1}{2}(x-a)\sqrt{2ax-x^2} + \frac{a^2}{2}\sin^{-1}\left(\frac{x-a}{a}\right) + C$$ # 16. Question Evaluate the integral: $$\int \sqrt{3-x^2} dx$$ ## **Answer** Key points to solve the problem: - Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} \, dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $$I = \int \sqrt{3-x^2} dx$$ $$| \cdot | = \int \sqrt{3 - x^2} dx = \int \sqrt{(\sqrt{3})^2 - x^2} dx$$ As I match with the form: $\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$ $$\therefore I = \frac{x}{2} \sqrt{3 - x^2} + \frac{3}{2} \sin^{-1}(\frac{x}{\sqrt{3}}) + C$$ # 17. Question Evaluate the integral: $$\int \sqrt{x^2 - 2x} dx$$ ## **Answer** Key points to solve the problem: - Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx
\int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $I = \int \sqrt{x^2 - 2x} \, dx$ We have: $$I = \int \sqrt{x^2 - 2x} \, dx = \int \sqrt{x^2 - 2(1)x + 1^2 - 1^2} \, dx$$ Using $$a^2 - 2ab + b^2 = (a-b)^2$$ $$I = \int \sqrt{(x-1)^2 - 1^2} dx$$ As I match with the form: $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\Rightarrow 1 = \frac{x-1}{2} \sqrt{x^2 - 2x} - \frac{1}{2} \log |x - 1| + \sqrt{x^2 - 2x} + C$$ # 18. Question Evaluate the integral: $$\int \sqrt{2x-x^2} \ dx$$ #### **Answer** Key points to solve the problem: - Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int f(x)g(x)dx = f(x)\int g(x)dx \int f'(x)(\int g(x)dx) dx$ - To solve the integrals of the form: $\int \sqrt{ax^2 + bx + c} \, dx$ after applying substitution and integration by parts we have direct formulae as described below: $$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$ $$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ $$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$ Let, $$I = \int \sqrt{2x-x^2} dx$$ $$| \cdot | = \int \sqrt{-(x^2 - 2(1)x)} dx = \int \sqrt{1^2 - (x^2 - 2(1)x + (1)^2)} dx$$ Using $$a^2 - 2ab + b^2 = (a - b)^2$$ We have: $$I = \int \sqrt{1^2 - (x - a)^2} dx = \int \sqrt{(1)^2 - (x - 1)^2} dx$$ As I match with the form: $\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$ $$\Rightarrow I = \frac{1}{2}(x-1)\sqrt{2x-x^2} + \frac{1}{2}\sin^{-1}(x-1) + C$$ # Exercise 19.29 # 1. Question Evaluate the following integrals - $$\int (x+1)\sqrt{x^2-x+1} \, dx$$ # **Answer** Let $$I = \int (x+1)\sqrt{x^2 - x + 1} dx$$ Let us assume $x + 1 = \lambda \frac{d}{dx}(x^2 - x + 1) + \mu$ $$\Rightarrow x+1 = \lambda \left[\frac{d}{dx}(x^2) - \frac{d}{dx}(x) + \frac{d}{dx}(1) \right] + \mu$$ We know $\frac{d}{dx}(x^n) = nx^{n-1}$ and derivative of a constant is 0. $$\Rightarrow x + 1 = \lambda(2x^{2-1} - 1 + 0) + \mu$$ $$\Rightarrow x + 1 = \lambda(2x - 1) + \mu$$ $$\Rightarrow$$ x + 1 = 2 λ x + μ - λ Comparing the coefficient of x on both sides, we get $$2\lambda = 1 \Rightarrow \lambda = \frac{1}{2}$$ Comparing the constant on both sides, we get $$\mu - \lambda = 1$$ $$\Rightarrow \mu - \frac{1}{2} = 1$$ $$\therefore \mu = \frac{3}{2}$$ Hence, we have $x + 1 = \frac{1}{2}(2x - 1) + \frac{3}{2}$ Substituting this value in I, we can write the integral as $$I = \int \left[\frac{1}{2} (2x - 1) + \frac{3}{2} \right] \sqrt{x^2 - x + 1} dx$$ $$\Rightarrow I = \int \left[\frac{1}{2} (2x - 1) \sqrt{x^2 - x + 1} + \frac{3}{2} \sqrt{x^2 - x + 1} \right] dx$$ $$\Rightarrow I = \int \frac{1}{2} (2x - 1) \sqrt{x^2 - x + 1} dx + \int \frac{3}{2} \sqrt{x^2 - x + 1} dx$$ $$\Rightarrow I = \frac{1}{2} \int (2x - 1)\sqrt{x^2 - x + 1} dx + \frac{3}{2} \int \sqrt{x^2 - x + 1} dx$$ Let $$I_1 = \frac{1}{2} \int (2x-1)\sqrt{x^2-x+1} dx$$ Now, put $$x^2 - x + 1 = t$$ $$\Rightarrow$$ (2x - 1)dx = dt (Differentiating both sides) Substituting this value in I_1 , we can write $$I_1 = \frac{1}{2} \int \sqrt{t} dt$$ $$\Rightarrow I_1 = \frac{1}{2} \int t^{\frac{1}{2}} dt$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I_1 = \frac{1}{2} \left(\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right) + c$$ $$\Rightarrow I_1 = \frac{1}{2} \left(\frac{\frac{3}{2}}{\frac{3}{2}} \right) + c$$ $$\Rightarrow I_1 = \frac{1}{2} \times \frac{2}{3} t^{\frac{3}{2}} + c$$ $$\Rightarrow I_1 = \frac{1}{3}t^{\frac{3}{2}} + c$$ $$\therefore I_1 = \frac{1}{3}(x^2 - x + 1)^{\frac{3}{2}} + c$$ Let $$I_2 = \frac{3}{2} \int \sqrt{x^2 - x + 1} dx$$ We can write $$x^2 - x + 1 = x^2 - 2(x)(\frac{1}{2}) + (\frac{1}{2})^2 - (\frac{1}{2})^2 + 1$$ $$\Rightarrow x^2 - x + 1 = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4} + 1$$ $$\Rightarrow x^2 - x + 1 = \left(x - \frac{1}{2}\right)^2 + \frac{3}{4}$$ $$\Rightarrow x^2 - x + 1 = \left(x - \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2$$ Hence, we can write I₂ as $$I_2 = \frac{3}{2} \int \sqrt{\left(x - \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} dx$$ Recall $$\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln |x + \sqrt{x^2 + a^2}| + c$$ $$\Rightarrow I_{2} = \frac{3}{2} \left[\frac{\left(x - \frac{1}{2}\right)}{2} \sqrt{\left(x - \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}} + \frac{\left(\frac{\sqrt{3}}{2}\right)^{2}}{2} \ln \left| \left(x - \frac{1}{2}\right) + \sqrt{\left(x - \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}} \right| \right| + c$$ $$\Rightarrow I_2 = \frac{3}{2} \left[\frac{2x-1}{4} \sqrt{x^2-x+1} + \frac{3}{8} \ln \left| x - \frac{1}{2} + \sqrt{x^2-x+1} \right| \right] + c$$ $$\therefore I_2 = \frac{3}{8}(2x-1)\sqrt{x^2-x+1} + \frac{9}{16} ln \left| x - \frac{1}{2} + \sqrt{x^2-x+1} \right| + c$$ Substituting I_1 and I_2 in I, we get $$I = \frac{1}{3}(x^2 - x + 1)^{\frac{3}{2}} + \frac{3}{8}(2x - 1)\sqrt{x^2 - x + 1} + \frac{9}{16}\ln\left|x - \frac{1}{2} + \sqrt{x^2 - x + 1}\right| + c$$ Thus, $$\int\limits_{\frac{9}{16}} (x+1) \sqrt{x^2-x+1} dx = \frac{1}{3} (x^2-x+1)^{\frac{3}{2}} + \frac{3}{8} (2x-1) \sqrt{x^2-x+1} + \frac{9}{16} \ln \left| x - \frac{1}{2} + \sqrt{x^2-x+1} \right| + c$$ ## 2. Question Evaluate the following integrals - $$\int (x+1)\sqrt{2x^2+3} \, dx$$ ## **Answer** Let $$I = \int (x+1)\sqrt{2x^2+3} dx$$ Let us assume $\chi + 1 = \lambda \frac{d}{dx} (2x^2 + 3) + \mu$ $$\Rightarrow x + 1 = \lambda \left[\frac{d}{dx} (2x^2) + \frac{d}{dx} (1) \right] + \mu$$ $$\Rightarrow x + 1 = \lambda \left[2 \frac{d}{dx}(x^2) + \frac{d}{dx}(1) \right] + \mu$$ We know $\frac{d}{dx}(x^n) = nx^{n-1}$ and derivative of a constant is 0. $$\Rightarrow x + 1 = \lambda(2 \times 2x^{2-1} + 0) + \mu$$ $$\Rightarrow$$ x + 1 = $\lambda(4x)$ + μ $$\Rightarrow x + 1 = 4\lambda x + \mu$$ Comparing the coefficient of x on both sides, we get $$4\lambda = 1 \Rightarrow \lambda = \frac{1}{4}$$ Comparing the constant on both sides, we get $$u = 1$$ Hence, we have $$x + 1 = \frac{1}{4}(4x) + 1$$ Substituting this value in I, we can write the integral as $$I = \int \left[\frac{1}{4} (4x) + 1 \right] \sqrt{2x^2 + 3} dx$$ $$\Rightarrow I = \int \left[\frac{1}{2} (4x) \sqrt{2x^2 + 3} + \sqrt{2x^2 + 3} \right] dx$$ $$\Rightarrow I = \int \frac{1}{4} (4x) \sqrt{2x^2 + 3} dx + \int \sqrt{2x^2 + 3} dx$$ $$\Rightarrow I = \frac{1}{4} \int (4x)\sqrt{2x^2 + 3} dx + \int \sqrt{2x^2 + 3} dx$$ Let $$I_1 = \frac{1}{4} \int (4x) \sqrt{2x^2 + 3} dx$$ Now, put $$2x^2 + 3 = t$$ $$\Rightarrow$$ (4x)dx = dt (Differentiating both sides) Substituting this value in I_1 , we can write $$I_1 = \frac{1}{4} \int \sqrt{t} dt$$ $$\Rightarrow I_1 = \frac{1}{4} \int t^{\frac{1}{2}} dt$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I_1 = \frac{1}{4} \left(\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right) + c$$ $$\Rightarrow I_1 = \frac{1}{4} \left(\frac{\frac{3}{2}}{\frac{3}{2}} \right) + c$$ $$\Rightarrow I_1 = \frac{1}{4} \times \frac{2}{3} t^{\frac{3}{2}} + c$$ $$\Rightarrow I_1 = \frac{1}{6}t^{\frac{3}{2}} + c$$ $$\therefore I_1 = \frac{1}{6}(2x^2 + 3)^{\frac{3}{2}} + c$$ Let $$I_2 = \int \sqrt{2x^2 + 3} dx$$ We can write $2x^2 + 3 = 2\left(x^2 + \frac{3}{2}\right)$ $$\Rightarrow 2x^2 + 3 = 2\left[x^2 + \left(\sqrt{\frac{3}{2}}\right)^2\right]$$ Hence, we can write I_2 as $$I_2 = \int \sqrt{2\left[x^2 + \left(\sqrt{\frac{3}{2}}\right)^2\right]} dx$$ $$\Rightarrow I_2 = \sqrt{2} \int \sqrt{x^2 + \left(\sqrt{\frac{3}{2}}\right)^2} dx$$ Recall $$\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln |x + \sqrt{x^2 + a^2}| + c$$ $$\Rightarrow I_2 = \sqrt{2} \left[\frac{x}{2} \sqrt{x^2 + \left(\sqrt{\frac{3}{2}}\right)^2} + \frac{\left(\sqrt{\frac{3}{2}}\right)^2}{2} \ln \left| x + \sqrt{x^2 + \left(\sqrt{\frac{3}{2}}\right)^2} \right| \right] + c$$ $$\Rightarrow I_{2} = \sqrt{2} \left[\frac{x}{2} \sqrt{x^{2} + \frac{3}{2}} + \frac{3}{4} \ln \left| x + \sqrt{x^{2} + \frac{3}{2}} \right| \right] + c$$ $$\Rightarrow I_2 = \sqrt{2} \left[\frac{x}{2\sqrt{2}} \sqrt{2x^2 + 3} + \frac{3}{2 \times 2} \ln \left| x + \sqrt{x^2 + \frac{3}{2}} \right| \right] + c$$ $$\therefore I_2 = \frac{x}{2}\sqrt{2x^2 + 3} + \frac{3}{2\sqrt{2}}\ln\left|x + \sqrt{x^2 + \frac{3}{2}}\right| + c$$ Substituting I_1 and I_2 in I, we get $$I = \frac{1}{6}(2x^2 + 3)^{\frac{3}{2}} + \frac{x}{2}\sqrt{2x^2 + 3} + \frac{3}{2\sqrt{2}}\ln\left|x + \sqrt{x^2 + \frac{3}{2}}\right| + c$$ Thus, $$\int (x+1)\sqrt{2x^2+3}dx = \frac{1}{6}(2x^2+3)^{\frac{3}{2}} + \frac{x}{2}\sqrt{2x^2+3} + \frac{3}{2\sqrt{2}}\ln\left|x+\sqrt{x^2+\frac{3}{2}}\right| + c$$ ## 3. Question Evaluate the following integrals - $$\int (2x-5)\sqrt{2+3x-x^2} \, dx$$ # **Answer** Let $$I = \int (2x-5)\sqrt{2+3x-x^2} dx$$ Let us assume $2x - 5 = \lambda \frac{d}{dx}(2 + 3x - x^2) + \mu$ $$\Rightarrow 2x - 5 = \lambda \left[\frac{d}{dx}(2) + \frac{d}{dx}(3x) - \frac{d}{dx}(x^2) \right] + \mu$$ $$\Rightarrow 2x - 5 = \lambda \left[\frac{d}{dx}(2) + 3\frac{d}{dx}(x) - \frac{d}{dx}(x^2) \right] + \mu$$ We know $\frac{d}{dx}(x^n) = nx^{n-1}$ and derivative of a constant is 0. $$\Rightarrow 2x - 5 = \lambda(0 + 3 - 2x^{2-1}) +
\mu$$ $$\Rightarrow$$ 2x - 5 = λ (3 - 2x) + μ $$\Rightarrow 2x - 5 = -2\lambda x + 3\lambda + \mu$$ Comparing the coefficient of x on both sides, we get $$-2\lambda = 2 \Rightarrow \lambda = -1$$ Comparing the constant on both sides, we get $$3\lambda + \mu = -5$$ $$\Rightarrow$$ 3(-1) + μ = -5 $$\Rightarrow$$ -3 + μ = -5 $$\therefore \mu = -2$$ Hence, we have 2x - 5 = -(3 - 2x) - 2 Substituting this value in I, we can write the integral as $$I = \int [-(3-2x)-2]\sqrt{2+3x-x^2} dx$$ $$\Rightarrow I = \int \left[-(3-2x)\sqrt{2+3x-x^2} - 2\sqrt{2+3x-x^2} \right] dx$$ $$\Rightarrow I = -\int (3-2x)\sqrt{2+3x-x^2}dx - \int 2\sqrt{2+3x-x^2}dx$$ $$\Rightarrow I = -\int (3 - 2x)\sqrt{2 + 3x - x^2} dx - 2\int \sqrt{2 + 3x - x^2} dx$$ Let $$I_1 = -\int (3-2x)\sqrt{2+3x-x^2} dx$$ Now, put $$2 + 3x - x^2 = t$$ $$\Rightarrow$$ (3 - 2x)dx = dt (Differentiating both sides) Substituting this value in I_1 , we can write $$I_1 = -\int \sqrt{t}dt$$ $$\Rightarrow I_1 = -\int t^{\frac{1}{2}} dt$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I_1 = -\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1} + c$$ $$\Rightarrow I_1 = -\frac{t^{\frac{3}{2}}}{\frac{3}{2}} + c$$ $$\Rightarrow I_1 = -\frac{2}{3}t^{\frac{3}{2}} + c$$ $$\Rightarrow I_1 = -\frac{2}{2}t^{\frac{3}{2}} + c$$ $$\therefore I_1 = -\frac{2}{3}(2 + 3x - x^2)^{\frac{3}{2}} + c$$ Let $$I_2 = -2 \int \sqrt{2 + 3x - x^2} dx$$ We can write $2 + 3x - x^2 = -(x^2 - 3x - 2)$ $$\Rightarrow 2 + 3x - x^2 = -\left[x^2 - 2(x)\left(\frac{3}{2}\right) + \left(\frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^2 - 2\right]$$ $$\Rightarrow 2 + 3x - x^2 = -\left[\left(x - \frac{3}{2}\right)^2 - \frac{9}{4} - 2\right]$$ $$\Rightarrow 2 + 3x - x^2 = -\left[\left(x - \frac{3}{2}\right)^2 - \frac{17}{4}\right]$$ $$\Rightarrow 2 + 3x - x^2 = \frac{17}{4} - \left(x - \frac{3}{2}\right)^2$$ $$\Rightarrow 2 + 3x - x^2 = \left(\frac{\sqrt{17}}{2}\right)^2 - \left(x - \frac{3}{2}\right)^2$$ Hence, we can write I₂ as $$I_2 = -2 \int \sqrt{\left(\frac{\sqrt{17}}{2}\right)^2 - \left(x - \frac{3}{2}\right)^2} dx$$ Recall $$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c$$ $$\Rightarrow I_2 = -2 \left[\frac{\left(x - \frac{3}{2}\right)}{2} \sqrt{\left(\frac{\sqrt{17}}{2}\right)^2 - \left(x - \frac{3}{2}\right)^2} + \frac{\left(\frac{\sqrt{17}}{2}\right)^2}{2} \sin^{-1} \left(\frac{x - \frac{3}{2}}{\frac{\sqrt{17}}{2}}\right) \right] + c$$ $$\Rightarrow I_2 = -2 \left[\frac{2x-3}{4} \sqrt{2+3x-x^2} + \frac{17}{8} \sin^{-1} \left(\frac{2x-3}{\sqrt{17}} \right) \right] + c$$ $$\therefore I_2 = -\frac{1}{2}(2x-3)\sqrt{2+3x-x^2} - \frac{17}{4}\sin^{-1}\left(\frac{2x-3}{\sqrt{17}}\right) + c$$ Substituting I_1 and I_2 in I, we get $$I = -\frac{2}{3}(2+3x-x^2)^{\frac{3}{2}} - \frac{1}{2}(2x-3)\sqrt{2+3x-x^2} - \frac{17}{4}\sin^{-1}\left(\frac{2x-3}{\sqrt{17}}\right) + c$$ Thus, $$\int\limits_{17}^{\int} (2x-5)\sqrt{2+3x-x^2} dx = -\frac{2}{3}(2+3x-x^2)^{\frac{3}{2}} - \frac{1}{2}(2x-3)\sqrt{2+3x-x^2} - \frac{1}{4}\sin^{-1}\left(\frac{2x-3}{\sqrt{17}}\right) + c$$ # 4. Question Evaluate the following integrals - $$\int (x+2)\sqrt{x^2+x+1} \, dx$$ #### **Answer** Let $$I = \int (x+2)\sqrt{x^2+x+1}dx$$ Let us assume $x + 2 = \lambda \frac{d}{dx}(x^2 + x + 1) + \mu$ $$\Rightarrow x + 2 = \lambda \left[\frac{d}{dx}(x^2) + \frac{d}{dx}(x) + \frac{d}{dx}(1) \right] + \mu$$ We know $\frac{d}{dx}(x^n) = nx^{n-1}$ and derivative of a constant is 0. $$\Rightarrow$$ x + 2 = $\lambda(2x^{2-1} + 1 + 0) + \mu$ $$\Rightarrow x + 2 = \lambda(2x + 1) + \mu$$ $$\Rightarrow x + 2 = 2\lambda x + \lambda + \mu$$ Comparing the coefficient of x on both sides, we get $$2\lambda = 1 \Rightarrow \lambda = \frac{1}{2}$$ Comparing the constant on both sides, we get $$\lambda + \mu = 2$$ $$\Rightarrow \frac{1}{2} + \mu = 2$$ $$\therefore \mu = \frac{3}{2}$$ Hence, we have $x + 2 = \frac{1}{2}(2x + 1) + \frac{3}{2}$ Substituting this value in I, we can write the integral as $$I = \int \left[\frac{1}{2} (2x+1) + \frac{3}{2} \right] \sqrt{x^2 + x + 1} dx$$ $$\Rightarrow I = \int \left[\frac{1}{2} (2x+1) \sqrt{x^2 + x + 1} + \frac{3}{2} \sqrt{x^2 + x + 1} \right] dx$$ $$\Rightarrow I = \int \frac{1}{2} (2x+1) \sqrt{x^2 + x + 1} dx + \int \frac{3}{2} \sqrt{x^2 + x + 1} dx$$ $$\Rightarrow I = \frac{1}{2} \int (2x+1)\sqrt{x^2+x+1} dx + \frac{3}{2} \int \sqrt{x^2+x+1} dx$$ Let $$I_1 = \frac{1}{2} \int (2x+1)\sqrt{x^2-x+1} dx$$ Now, put $x^2 + x + 1 = t$ $$\Rightarrow$$ (2x + 1)dx = dt (Differentiating both sides) Substituting this value in I₁, we can write $$I_1 = \frac{1}{2} \int \sqrt{t} dt$$ $$\Rightarrow I_1 = \frac{1}{2} \int t^{\frac{1}{2}} dt$$ $$\text{Recall } \int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I_1 = \frac{1}{2} \left(\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right) + c$$ $$\Rightarrow I_1 = \frac{1}{2} \left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right) + c$$ $$\Rightarrow I_1 = \frac{1}{2} \times \frac{2}{3} t^{\frac{3}{2}} + c$$ $$\Rightarrow I_1 = \frac{1}{3}t^{\frac{3}{2}} + c$$ $$\therefore I_1 = \frac{1}{3}(x^2 + x + 1)^{\frac{3}{2}} + c$$ Let $$I_2 = \frac{3}{2} \int \sqrt{x^2 + x + 1} dx$$ We can write $x^2 + x + 1 = x^2 + 2(x)(\frac{1}{2}) + (\frac{1}{2})^2 - (\frac{1}{2})^2 + 1$ $$\Rightarrow x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 - \frac{1}{4} + 1$$ $$\Rightarrow x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$$ $$\Rightarrow x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2$$ Hence, we can write I₂ as $$I_2 = \frac{3}{2} \int \sqrt{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} dx$$ Recall $$\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln |x + \sqrt{x^2 + a^2}| + c$$ $$\Rightarrow I_2 = \frac{3}{2} \left| \frac{\left(x + \frac{1}{2}\right)}{2} \sqrt{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \right| + \frac{\left(\frac{\sqrt{3}}{2}\right)^2}{2} \ln \left| \left(x + \frac{1}{2}\right) + \sqrt{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \right| \right| + c$$ $$\Rightarrow I_2 = \frac{3}{2} \left[\frac{2x + 1}{4} \sqrt{x^2 + x + 1} + \frac{3}{8} \ln \left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| \right] + c$$ $$\therefore I_2 = \frac{3}{8} (2x + 1) \sqrt{x^2 + x + 1} + \frac{9}{16} \ln \left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + c$$ Substituting I_1 and I_2 in I, we get $$I = \frac{1}{3}(x^2 + x + 1)^{\frac{3}{2}} + \frac{3}{8}(2x + 1)\sqrt{x^2 + x + 1} + \frac{9}{16}\ln\left|x + \frac{1}{2} + \sqrt{x^2 + x + 1}\right| + c$$ Thus, $$\int\limits_{\frac{9}{16}} (x+2) \sqrt{x^2+x+1} dx = \frac{1}{3} (x^2+x+1)^{\frac{3}{2}} + \frac{3}{8} (2x+1) \sqrt{x^2+x+1} + \frac{9}{16} \ln \left| x + \frac{1}{2} + \sqrt{x^2+x+1} \right| + c$$ ## 5. Question Evaluate the following integrals - $$\int (4x+1)\sqrt{x^2-x-2x} \ dx$$ ## **Answer** Let $$I = \int (4x+1)\sqrt{x^2-x-2} dx$$ Let us assume $4x + 1 = \lambda \frac{d}{dx}(x^2 - x - 2) + \mu$ $$\Rightarrow 4x + 1 = \lambda \left[\frac{d}{dx}(x^2) - \frac{d}{dx}(x) - \frac{d}{dx}(2) \right] + \mu$$ We know $\frac{d}{dx}(x^n) = nx^{n-1}$ and derivative of a constant is 0. $$\Rightarrow 4x + 1 = \lambda(2x^{2-1} - 1 - 0) + \mu$$ $$\Rightarrow 4x + 1 = \lambda(2x - 1) + \mu$$ $$\Rightarrow 4x + 1 = 2\lambda x + \mu - \lambda$$ Comparing the coefficient of x on both sides, we get $$2\lambda = 4 \Rightarrow \lambda = \frac{4}{2} = 2$$ Comparing the constant on both sides, we get $$\mu - \lambda = 1$$ $$\Rightarrow \mu - 2 = 1$$ $$\therefore u = 3$$ Hence, we have 4x + 1 = 2(2x - 1) + 3 Substituting this value in I, we can write the integral as $$I = \int [2(2x-1) + 3]\sqrt{x^2 - x - 2} dx$$ $$\Rightarrow I = \int \left[2(2x-1)\sqrt{x^2 - x - 2} + 3\sqrt{x^2 - x - 2} \right] dx$$ $$\Rightarrow I = \int 2(2x-1)\sqrt{x^2-x-2}dx + \int 3\sqrt{x^2-x-2}dx$$ $$\Rightarrow I = 2 \int (2x-1)\sqrt{x^2-x-2}dx + 3 \int \sqrt{x^2-x-2}dx$$ Let $$I_1 = 2 \int (2x-1)\sqrt{x^2-x-2} dx$$ Now, put $x^2 - x - 2 = t$ $$\Rightarrow$$ (2x - 1)dx = dt (Differentiating both sides) Substituting this value in I₁, we can write $$I_1 = 2 \int \sqrt{t} dt$$ $$\Rightarrow I_1 = 2 \int t^{\frac{1}{2}} dt$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I_1 = 2\left(\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right) + c$$ $$\Rightarrow I_1 = 2\left(\frac{\frac{3}{2}}{\frac{3}{2}}\right) + c$$ $$\Rightarrow I_1 = 2 \times \frac{2}{3} t^{\frac{3}{2}} + c$$ $$\Rightarrow I_1 = \frac{4}{3}t^{\frac{3}{2}} + c$$ $$\therefore I_1 = \frac{4}{3}(x^2 - x - 2)^{\frac{3}{2}} + c$$ Let $$I_2 = 3 \int \sqrt{x^2 - x - 2} dx$$ We can write $x^2 - x - 2 = x^2 - 2(x)(\frac{1}{2}) + (\frac{1}{2})^2 - (\frac{1}{2})^2 - 2$ $$\Rightarrow x^2 - x - 2 = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4} - 2$$ $$\Rightarrow x^2 - x - 2 = \left(x - \frac{1}{2}\right)^2 - \frac{9}{4}$$ $$\Rightarrow x^2 - x - 2 = \left(x - \frac{1}{2}\right)^2 - \left(\frac{3}{2}\right)^2$$ Hence, we can write I_2 as $$I_2 = 3 \int \sqrt{\left(x - \frac{1}{2}\right)^2 - \left(\frac{3}{2}\right)^2} dx$$ Recall $$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln |x + \sqrt{x^2 - a^2}| + c$$ $$\Rightarrow I_2 = 3 \left[\frac{\left(x - \frac{1}{2}\right)}{2} \sqrt{\left(x - \frac{1}{2}\right)^2 - \left(\frac{3}{2}\right)^2} - \frac{\left(\frac{3}{2}\right)^2}{2} \ln \left| \left(x - \frac{1}{2}\right) + \sqrt{\left(x - \frac{1}{2}\right)^2 - \left(\frac{3}{2}\right)^2} \right| \right] + c$$ $$\Rightarrow I_2 = 3 \left[\frac{2x-1}{4} \sqrt{x^2 - x - 2} - \frac{9}{8} \ln \left| x - \frac{1}{2} + \sqrt{x^2 - x - 2} \right| \right] + c$$ $$\therefore I_2 = \frac{3}{4}(2x-1)\sqrt{x^2-x-2} - \frac{27}{8}\ln\left|x - \frac{1}{2} + \sqrt{x^2-x-2}\right| + c$$ Substituting I_1 and I_2 in I, we get $$I = \frac{4}{3}(x^2 - x - 2)^{\frac{3}{2}} + \frac{3}{4}(2x - 1)\sqrt{x^2 - x - 2} - \frac{27}{8}\ln\left|x - \frac{1}{2} + \sqrt{x^2 - x - 2}\right| + c$$ Thus,
$$\int\limits_{\frac{27}{8}} (4x+1) \sqrt{x^2-x-2} dx = \frac{4}{3} (x^2-x-2)^{\frac{3}{2}} + \frac{3}{4} (2x-1) \sqrt{x^2-x-2} - \frac{27}{8} \ln \left| x - \frac{1}{2} + \sqrt{x^2-x-2} \right| + c$$ ## 6. Question Evaluate the following integrals - $$\int (x-2)\sqrt{2x^2-6x+5} \, dx$$ # **Answer** Let $$I = \int (x-2)\sqrt{2x^2-6x+5}dx$$ Let us assume $$x-2=\lambda \frac{d}{dx}(2x^2-6x+5)+\mu$$ $$\Rightarrow x - 2 = \lambda \left[\frac{d}{dx} (2x^2) - \frac{d}{dx} (6x) - \frac{d}{dx} (5) \right] + \mu$$ $$\Rightarrow x-2 = \lambda \left[2\frac{d}{dx}(x^2) - 6\frac{d}{dx}(x) - \frac{d}{dx}(5) \right] + \mu$$ We know $\frac{d}{dx}(x^n) = nx^{n-1}$ and derivative of a constant is 0. $$\Rightarrow$$ x - 2 = λ (2 × 2x²⁻¹ - 6 - 0) + μ $$\Rightarrow$$ x - 2 = $\lambda(4x - 6) + \mu$ $$\Rightarrow$$ x - 2 = 4 λ x + μ - 6 λ Comparing the coefficient of x on both sides, we get $$4\lambda = 1 \Rightarrow \lambda = \frac{1}{4}$$ Comparing the constant on both sides, we get $$\mu$$ – 6λ = –2 $$\Rightarrow \mu - 6\left(\frac{1}{4}\right) = -2$$ $$\Rightarrow \mu - \frac{3}{2} = -2$$ $$\therefore \mu = -\frac{1}{2}$$ Hence, we have $x - 2 = \frac{1}{4}(4x - 6) - \frac{1}{2}$ Substituting this value in I, we can write the integral as $$\begin{split} &I = \int \left[\frac{1}{4}(4x-6) - \frac{1}{2}\right] \sqrt{2x^2 - 6x + 5} dx \\ \Rightarrow &I = \int \left[\frac{1}{4}(4x-6)\sqrt{2x^2 - 6x + 5} - \frac{1}{2}\sqrt{2x^2 - 6x + 5}\right] dx \\ \Rightarrow &I = \int \frac{1}{4}(4x-6)\sqrt{2x^2 - 6x + 5} dx - \int \frac{1}{2}\sqrt{2x^2 - 6x + 5} dx \\ \Rightarrow &I = \frac{1}{4}\int (4x-6)\sqrt{2x^2 - 6x + 5} dx - \frac{1}{2}\int \sqrt{2x^2 - 6x + 5} dx \\ \text{Let } I_1 = \frac{1}{4}\int (4x-6)\sqrt{2x^2 - 6x + 5} dx \end{split}$$ Now, put $2x^2 - 6x + 5 = t$ $$\Rightarrow$$ (4x - 6)dx = dt (Differentiating both sides) Substituting this value in I₁, we can write $$I_1 = \frac{1}{4} \int \sqrt{t} dt$$ $$\Rightarrow I_1 = \frac{1}{4} \int t^{\frac{1}{2}} dt$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I_1 = \frac{1}{4} \left(\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right) + c$$ $$\Rightarrow I_1 = \frac{1}{4} \left(\frac{\frac{3}{2}}{\frac{3}{2}} \right) + c$$ $$\Rightarrow I_1 = \frac{1}{4} \times \frac{2}{3} t^{\frac{3}{2}} + c$$ $$\Rightarrow I_1 = \frac{1}{6}t^{\frac{3}{2}} + c$$ $$\therefore I_1 = \frac{1}{6}(2x^2 - 6x + 5)^{\frac{3}{2}} + c$$ Let $$I_2 = -\frac{1}{2} \int \sqrt{2x^2 - 6x + 5} dx$$ We can write $2x^2 - 6x + 5 = 2\left(x^2 - 3x + \frac{5}{2}\right)$ $$\Rightarrow 2x^2 - 6x + 5 = 2\left[x^2 - 2(x)\left(\frac{3}{2}\right) + \left(\frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^2 + \frac{5}{2}\right]$$ $$\Rightarrow 2x^2 - 6x + 5 = 2\left[\left(x - \frac{3}{2}\right)^2 - \frac{9}{4} + \frac{5}{2}\right]$$ $$\Rightarrow 2x^2 - 6x + 5 = 2\left[\left(x - \frac{3}{2}\right)^2 + \frac{1}{4}\right]$$ $$\Rightarrow 2x^2 - 6x + 5 = 2\left[\left(x - \frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2\right]$$ Hence, we can write I₂ as $$I_2 = -\frac{1}{2} \int \sqrt{2 \left[\left(x - \frac{3}{2} \right)^2 + \left(\frac{1}{2} \right)^2 \right]} dx$$ $$\Rightarrow I_2 = -\frac{\sqrt{2}}{2} \int \sqrt{\left(x - \frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2} dx$$ $$\Rightarrow I_2 = -\frac{1}{\sqrt{2}} \int \sqrt{\left(x - \frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2} dx$$ Recall $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln |x + \sqrt{x^2 + a^2}| + c$ $$\Rightarrow I_{2} = -\frac{1}{\sqrt{2}} \left[\frac{\left(x - \frac{3}{2}\right)}{2} \sqrt{\left(x - \frac{3}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2}} + \frac{\left(\frac{1}{2}\right)^{2}}{2} \ln \left[\left(x - \frac{3}{2}\right) + \sqrt{\left(x - \frac{3}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2}} \right] \right] + c$$ $$\Rightarrow I_2 = -\frac{1}{\sqrt{2}} \left[\frac{2x-3}{4} \sqrt{x^2 - 3x + \frac{5}{2}} + \frac{1}{8} \ln \left| x - \frac{3}{2} + \sqrt{x^2 - 3x + \frac{5}{2}} \right| \right] + c$$ $$\Rightarrow I_2 = -\frac{1}{\sqrt{2}} \left[\frac{2x - 3}{4\sqrt{2}} \sqrt{2x^2 - 6x + 5} + \frac{1}{8} \ln \left| x - \frac{3}{2} + \sqrt{x^2 - 3x + \frac{5}{2}} \right| \right] + c$$ Substituting I_1 and I_2 in I, we get $$I = \frac{1}{6} (2x^2 - 6x + 5)^{\frac{3}{2}} - \frac{1}{8} (2x - 3)\sqrt{2x^2 - 6x + 5}$$ $$-\frac{1}{8\sqrt{2}} \ln \left| x - \frac{3}{2} + \sqrt{x^2 - 3x + \frac{5}{2}} \right| + c$$ $$\int (x-2)\sqrt{2x^2-6x+5}dx = \frac{1}{6}(2x^2-6x+5)^{\frac{3}{2}} - \frac{1}{8}(2x-3)\sqrt{2x^2-6x+5} - \text{Thus,}$$ $$\frac{1}{8\sqrt{2}}\ln\left|x-\frac{3}{2}+\sqrt{x^2-3x+\frac{5}{2}}\right| + c$$ ## 7. Question Evaluate the following integrals - $$\int (x+1)\sqrt{x^2+x+1} \, dx$$ ## **Answer** Let $$I = \int (x+1)\sqrt{x^2 + x + 1} dx$$ Let us assume $$x + 1 = \lambda \frac{d}{dx}(x^2 + x + 1) + \mu$$ $$\Rightarrow x + 1 = \lambda \left[\frac{d}{dx}(x^2) + \frac{d}{dx}(x) + \frac{d}{dx}(1) \right] + \mu$$ We know $\frac{d}{dx}(x^n) = nx^{n-1}$ and derivative of a constant is 0. $$\Rightarrow$$ x + 1 = $\lambda(2x^{2-1} + 1 + 0) + \mu$ $$\Rightarrow x + 1 = \lambda(2x + 1) + \mu$$ $$\Rightarrow$$ x + 1 = $2\lambda x + \lambda + \mu$ Comparing the coefficient of x on both sides, we get $$2\lambda = 1 \Rightarrow \lambda = \frac{1}{2}$$ Comparing the constant on both sides, we get $$\lambda + \mu = 1$$ $$\Rightarrow \frac{1}{2} + \mu = 1$$ $$\therefore \mu = \frac{1}{2}$$ Hence, we have $$x + 1 = \frac{1}{2}(2x + 1) + \frac{1}{2}$$ Substituting this value in I, we can write the integral as $$I = \int \left[\frac{1}{2} (2x+1) + \frac{1}{2} \right] \sqrt{x^2 + x + 1} dx$$ $$\Rightarrow I = \int \left[\frac{1}{2} (2x+1) \sqrt{x^2 + x + 1} + \frac{1}{2} \sqrt{x^2 + x + 1} \right] dx$$ $$\Rightarrow I = \int \frac{1}{2} (2x+1) \sqrt{x^2 + x + 1} dx + \int \frac{1}{2} \sqrt{x^2 + x + 1} dx$$ $$\Rightarrow I = \frac{1}{2} \int (2x+1)\sqrt{x^2+x+1} dx + \frac{1}{2} \int \sqrt{x^2+x+1} dx$$ Let $$I_1 = \frac{1}{2} \int (2x+1)\sqrt{x^2+x+1} dx$$ Now, put $$x^2 + x + 1 = t$$ $$\Rightarrow$$ (2x + 1)dx = dt (Differentiating both sides) Substituting this value in I_1 , we can write $$I_1 = \frac{1}{2} \int \sqrt{t} dt$$ $$\Rightarrow I_1 = \frac{1}{2} \int t^{\frac{1}{2}} dt$$ $$\text{Recall} \int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I_1 = \frac{1}{2} \left(\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right) + c$$ $$\Rightarrow I_1 = \frac{1}{2} \left(\frac{\frac{3}{2}}{\frac{3}{2}} \right) + c$$ $$\Rightarrow I_1 = \frac{1}{2} \times \frac{2}{3} t^{\frac{3}{2}} + c$$ $$\Rightarrow I_1 = \frac{1}{3}t^{\frac{3}{2}} + c$$ $$\therefore I_1 = \frac{1}{3}(x^2 + x + 1)^{\frac{3}{2}} + c$$ Let $$I_2 = \frac{1}{2} \int \sqrt{x^2 + x + 1} dx$$ We can write $x^2 + x + 1 = x^2 + 2(x)(\frac{1}{2}) + (\frac{1}{2})^2 - (\frac{1}{2})^2 + 1$ $$\Rightarrow x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 - \frac{1}{4} + 1$$ $$\Rightarrow x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$$ $$\Rightarrow x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2$$ Hence, we can write I₂ as $$I_2 = \frac{1}{2} \int \sqrt{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} dx$$ Recall $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln |x + \sqrt{x^2 + a^2}| + c$ $$\Rightarrow I_{2} = \frac{1}{2} \left| \frac{\left(x + \frac{1}{2}\right)}{2} \sqrt{\left(x + \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}} + \frac{\left(\frac{\sqrt{3}}{2}\right)^{2}}{2} \ln \left| \left(x + \frac{1}{2}\right) + \sqrt{\left(x + \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}} \right| \right| + c$$ $$\Rightarrow I_2 = \frac{1}{2} \left[\frac{2x+1}{4} \sqrt{x^2+x+1} + \frac{3}{8} \ln \left| x + \frac{1}{2} + \sqrt{x^2+x+1} \right| \right] + c$$ $$\therefore I_2 = \frac{1}{8}(2x+1)\sqrt{x^2+x+1} + \frac{3}{16} ln \left| x + \frac{1}{2} + \sqrt{x^2+x+1} \right| + c$$ Substituting I₁ and I₂ in I, we get $$I = \frac{1}{3}(x^2 + x + 1)^{\frac{3}{2}} + \frac{1}{8}(2x + 1)\sqrt{x^2 + x + 1} + \frac{3}{16}\ln\left|x + \frac{1}{2} + \sqrt{x^2 + x + 1}\right| + c$$ Thus, $$\int (x+1)\sqrt{x^2+x+1}dx = \frac{1}{3}(x^2+x+1)^{\frac{3}{2}} + \frac{1}{8}(2x+1)\sqrt{x^2+x+1} + \frac{3}{16}\ln\left|x+\frac{1}{2}+\sqrt{x^2+x+1}\right| + c$$ # 8. Question Evaluate the following integrals - $$\int (2x+3)\sqrt{x^2+4x+3} \, dx$$ Answer Let $$I = \int (2x+3)\sqrt{x^2+4x+3}dx$$ Let us assume $2x + 3 = \lambda \frac{d}{dx}(x^2 + 4x + 3) + \mu$ $$\Rightarrow 2x+3 = \lambda \left[\frac{d}{dx}(x^2) + \frac{d}{dx}(4x) + \frac{d}{dx}(3)\right] + \mu$$ $$\Rightarrow 2x+3=\lambda \left[\frac{d}{dx}(x^2)+4\frac{d}{dx}(x)+\frac{d}{dx}(3)\right]+\mu$$ We know $\frac{d}{dx}\big(x^n\big)=nx^{n-1}$ and derivative of a constant is 0. $$\Rightarrow 2x + 3 = \lambda(2x^{2-1} + 4 + 0) + \mu$$ $$\Rightarrow 2x + 3 = \lambda(2x + 4) + \mu$$ $$\Rightarrow 2x + 3 = 2\lambda x + 4\lambda + \mu$$ Comparing the coefficient of x on both sides, we get $$2\lambda = 2 \Rightarrow \lambda = 1$$ Comparing the constant on both sides, we get $$4\lambda + \mu = 3$$ $$\Rightarrow$$ 4(1) + μ = 3 $$\Rightarrow$$ 4 + μ = 3 $$\therefore \mu = -1$$ Hence, we have 2x + 3 = (2x + 4) - 1 Substituting this value in I, we can write the integral as $$I = \int [(2x+4)-1]\sqrt{x^2+4x+3} dx$$ $$\Rightarrow I = \int \left[(2x+4)\sqrt{x^2+4x+3} - \sqrt{x^2+4x+3} \right] dx$$ $$\Rightarrow I = \int (2x+4)\sqrt{x^2+4x+3}dx - \int \sqrt{x^2+4x+3}dx$$ Let $$I_1 = \int (2x+4)\sqrt{x^2+4x+3} dx$$ Now, put $$x^2 + 4x + 3 = t$$ $$\Rightarrow$$ (2x + 4)dx = dt (Differentiating both sides) Substituting this value in I_1 , we can write $$I_1 = \int \sqrt{t} dt$$ $$\Rightarrow I_1 = \int t^{\frac{1}{2}} dt$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I_1 = \frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1} + c$$ $$\Rightarrow I_1 = \frac{t^{\frac{3}{2}}}{\frac{3}{2}} + c$$ $$\Rightarrow I_1 = \frac{2}{3}t^{\frac{3}{2}} + c$$ $$\therefore I_1 =
\frac{2}{3}(x^2 + 4x + 3)^{\frac{3}{2}} + c$$ Let $$I_2 = -\int \sqrt{x^2 + 4x + 3} dx$$ We can write $x^2 + 4x + 3 = x^2 + 2(x)(2) + 2^2 - 2^2 + 3$ $$\Rightarrow$$ x² + 4x + 3 = (x + 2)² - 4 + 3 $$\Rightarrow$$ x² + 4x + 3 = (x + 2)² - 1 $$\Rightarrow$$ x² + 4x + 3 = (x + 2)² - 1² Hence, we can write I₂ as $$I_2 = -\int \sqrt{(x+2)^2 - 1^2} dx$$ Recall $$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln|x + \sqrt{x^2 - a^2}| + c$$ $$\Rightarrow I_2 = - \left\lceil \frac{(x+2)}{2} \sqrt{(x+2)^2 - 1^2} - \frac{1^2}{2} \ln \left| (x+2) + \sqrt{(x+2)^2 - 1^2} \right| \right\rceil + c$$ $$\Rightarrow I_2 = -\left[\frac{(x+2)}{2}\sqrt{x^2+4x+3} - \frac{1}{2}\ln\left|x+2+\sqrt{x^2+4x+3}\right|\right] + c$$ $$\therefore I_2 = -\frac{1}{2}(x+2)\sqrt{x^2+4x+3} + \frac{1}{2}\ln\left|x+2+\sqrt{x^2+4x+3}\right| + c$$ Substituting I_1 and I_2 in I, we get $$I = \frac{2}{3}(x^2 + 4x + 3)^{\frac{3}{2}} - \frac{1}{2}(x + 2)\sqrt{x^2 + 4x + 3} + \frac{1}{2}\ln\left|x + 2 + \sqrt{x^2 + 4x + 3}\right|$$ Thus, $$\int\limits_{\frac{1}{2}} (2x+3)\sqrt{x^2+4x+3} dx = \frac{2}{3}(x^2+4x+3)^{\frac{3}{2}} - \frac{1}{2}(x+2)\sqrt{x^2+4x+3} + \frac{1}{2}\ln \left|x+2+\sqrt{x^2+4x+3}\right| + c$$ # 9. Question Evaluate the following integrals - $$\int (2x-4)\sqrt{x^2-4x+3} \, dx$$ # **Answer** Let $$I = \int (2x - 5)\sqrt{x^2 - 4x + 3} dx$$ Let us assume $2x-5=\lambda\frac{d}{dx}(x^2-4x+3)+\mu$ $$\Rightarrow 2x - 5 = \lambda \left[\frac{d}{dx}(x^2) - \frac{d}{dx}(4x) + \frac{d}{dx}(3) \right] + \mu$$ $$\Rightarrow 2x - 5 = \lambda \left[\frac{d}{dx}(x^2) - 4\frac{d}{dx}(x) + \frac{d}{dx}(3) \right] + \mu$$ We know $\frac{d}{dx}(x^n) = nx^{n-1}$ and derivative of a constant is 0. $$\Rightarrow 2x - 5 = \lambda(2x^{2-1} - 4 + 0) + \mu$$ $$\Rightarrow 2x - 5 = \lambda(2x - 4) + \mu$$ $$\Rightarrow 2x - 5 = 2\lambda x + \mu - 4\lambda$$ Comparing the coefficient of x on both sides, we get $$2\lambda = 2 \Rightarrow \lambda = 1$$ Comparing the constant on both sides, we get $$\mu$$ – 4λ = –5 $$\Rightarrow \mu - 4(1) = -5$$ $$\Rightarrow \mu - 4 = -5$$ $$\therefore \mu = -1$$ Hence, we have 2x - 5 = (2x - 4) - 1 Substituting this value in I, we can write the integral as $$I = \int [(2x-4)-1]\sqrt{x^2-4x+3} dx$$ $$\Rightarrow I = \int \left[(2x - 4)\sqrt{x^2 - 4x + 3} - \sqrt{x^2 - 4x + 3} \right] dx$$ $$\Rightarrow I = \int (2x-4)\sqrt{x^2-4x+3}dx - \int \sqrt{x^2-4x+3}dx$$ Let $$I_1 = \int (2x - 4)\sqrt{x^2 - 4x + 3} dx$$ Now, put $$x^2 - 4x + 3 = t$$ $$\Rightarrow$$ (2x - 4)dx = dt (Differentiating both sides) Substituting this value in I₁, we can write $$I_1 = \int \sqrt{t} dt$$ $$\Rightarrow I_1 = \int t^{\frac{1}{2}} dt$$ $$\text{Recall } \int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I_1 = \frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1} + c$$ $$\Rightarrow I_1 = \frac{t^{\frac{3}{2}}}{\frac{3}{2}} + c$$ $$\Rightarrow I_1 = \frac{2}{3}t^{\frac{3}{2}} + c$$ $$\therefore I_1 = \frac{2}{3}(x^2 - 4x + 3)^{\frac{3}{2}} + c$$ Let $$I_2 = -\int \sqrt{x^2 - 4x + 3} dx$$ We can write $x^2 - 4x + 3 = x^2 - 2(x)(2) + 2^2 - 2^2 + 3$ $$\Rightarrow$$ $x^2 - 4x + 3 = (x - 2)^2 - 4 + 3$ $$\Rightarrow$$ x² - 4x + 3 = (x - 2)² - 1 $$\Rightarrow$$ $x^2 - 4x + 3 = (x - 2)^2 - 1^2$ Hence, we can write I₂ as $$I_2 = -\int \sqrt{(x-2)^2 - 1^2} dx$$ Recall $$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln |x + \sqrt{x^2 - a^2}| + c$$ $$\Rightarrow I_2 = -\left[\frac{(x-2)}{2}\sqrt{(x-2)^2 - 1^2} - \frac{1^2}{2}\ln\left|(x-2) + \sqrt{(x-2)^2 - 1^2}\right|\right] + c$$ $$\Rightarrow I_2 = - \left[\frac{(x-2)}{2} \sqrt{x^2 - 4x + 3} - \frac{1}{2} \ln \left| x - 2 + \sqrt{x^2 - 4x + 3} \right| \right] + c$$ $$\therefore I_2 = -\frac{1}{2}(x-2)\sqrt{x^2-4x+3} + \frac{1}{2}\ln\left|x-2+\sqrt{x^2-4x+3}\right| + c$$ Substituting I_1 and I_2 in I, we get $$I = \frac{2}{3}(x^2 - 4x + 3)^{\frac{3}{2}} - \frac{1}{2}(x - 2)\sqrt{x^2 - 4x + 3} + \frac{1}{2}\ln\left|x - 2 + \sqrt{x^2 - 4x + 3}\right| + c$$ Thus, $$\int (2x-5)\sqrt{x^2-4x+3} dx = \frac{2}{3}(x^2-4x+3)^{\frac{3}{2}} - \frac{1}{2}(x-2)\sqrt{x^2-4x+3} + \frac{1}{2}\ln \left|x-2+\sqrt{x^2-4x+3}\right| + c$$ ## 10. Question Evaluate the following integrals - $$\int x \sqrt{x^2 + x} dx$$ # **Answer** Let $$I = \int x\sqrt{x^2 + x}dx$$ Let us assume $$x = \lambda \frac{d}{dx}(x^2 + x) + \mu$$ $$\Rightarrow x = \lambda \left[\frac{d}{dx}(x^2) + \frac{d}{dx}(x) \right] + \mu$$ We know $$\frac{d}{dx}(x^n) = nx^{n-1}$$ $$\Rightarrow x = \lambda(2x^{2-1} + 1) + \mu$$ $$\Rightarrow x = \lambda(2x + 1) + \mu$$ $$\Rightarrow x = 2\lambda x + \lambda + \mu$$ Comparing the coefficient of x on both sides, we get $$2\lambda = 1 \Rightarrow \lambda = \frac{1}{2}$$ Comparing the constant on both sides, we get $$\lambda + \mu = 0$$ $$\Rightarrow \frac{1}{2} + \mu = 0$$ $$\therefore \mu = -\frac{1}{2}$$ Hence, we have $x = \frac{1}{2}(2x + 1) - \frac{1}{2}$ Substituting this value in I, we can write the integral as $$I = \int \left[\frac{1}{2}(2x+1) - \frac{1}{2}\right] \sqrt{x^2 + x} dx$$ $$\Rightarrow I = \int \left[\frac{1}{2} (2x+1) \sqrt{x^2 + x} - \frac{1}{2} \sqrt{x^2 + x} \right] dx$$ $$\Rightarrow I = \int \frac{1}{2} (2x+1) \sqrt{x^2 + x} dx - \int \frac{1}{2} \sqrt{x^2 + x} dx$$ $$\Rightarrow I = \frac{1}{2} \int (2x+1)\sqrt{x^2+x} dx - \frac{1}{2} \int \sqrt{x^2+x} dx$$ Let $$I_1 = \frac{1}{2} \int (2x+1)\sqrt{x^2+x} dx$$ Now, put $x^2 + x = t$ $$\Rightarrow$$ (2x + 1)dx = dt (Differentiating both sides) Substituting this value in I_1 , we can write $$I_1 = \frac{1}{2} \int \sqrt{t} dt$$ $$\Rightarrow I_1 = \frac{1}{2} \int t^{\frac{1}{2}} dt$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I_1 = \frac{1}{2} \left(\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right) + c$$ $$\Rightarrow I_1 = \frac{1}{2} \left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right) + c$$ $$\Rightarrow I_1 = \frac{1}{2} \times \frac{2}{3} t^{\frac{3}{2}} + c$$ $$\Rightarrow I_1 = \frac{1}{3}t^{\frac{3}{2}} + c$$ $$\therefore I_1 = \frac{1}{3}(x^2 + x)^{\frac{3}{2}} + c$$ Let $$I_2 = -\frac{1}{2} \int \sqrt{x^2 + x} dx$$ We can write $$x^2 + x = x^2 + 2(x)(\frac{1}{2}) + (\frac{1}{2})^2 - (\frac{1}{2})^2$$ $$\Rightarrow x^2 + x = \left(x + \frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2$$ Hence, we can write I₂ as $$I_2 = -\frac{1}{2} \int \sqrt{\left(x + \frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2} dx$$ Recall $$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln |x + \sqrt{x^2 - a^2}| + c$$ $$\Rightarrow I_{2} = -\frac{1}{2} \left[\frac{\left(x + \frac{1}{2}\right)}{2} \sqrt{\left(x + \frac{1}{2}\right)^{2} - \left(\frac{1}{2}\right)^{2}} - \frac{\left(\frac{1}{2}\right)^{2}}{2} \ln \left[\left(x + \frac{1}{2}\right) + \sqrt{\left(x + \frac{1}{2}\right)^{2} - \left(\frac{1}{2}\right)^{2}} \right] \right] + c$$ $$\Rightarrow I_2 = -\frac{1}{2} \left[\frac{2x+1}{4} \sqrt{x^2+x} - \frac{1}{8} \ln \left| x + \frac{1}{2} + \sqrt{x^2+x} \right| \right] + c$$ $$\therefore I_2 = -\frac{1}{8}(2x+1)\sqrt{x^2+x} + \frac{1}{16}\ln\left|x + \frac{1}{2} + \sqrt{x^2+x}\right| + c$$ Substituting I₁ and I₂ in I, we get $$I = \frac{1}{3}(x^2 + x)^{\frac{3}{2}} - \frac{1}{8}(2x + 1)\sqrt{x^2 + x} + \frac{1}{16}\ln\left|x + \frac{1}{2} + \sqrt{x^2 + x}\right| + c$$ Thus, $$\int x \sqrt{x^2 + x} dx = \frac{1}{3} (x^2 + x)^{\frac{3}{2}} - \frac{1}{8} (2x + 1) \sqrt{x^2 + x} + \frac{1}{16} \ln \left| x + \frac{1}{2} + \sqrt{x^2 + x} \right| + c$$ # 11. Question Evaluate the following integrals - $$\int (x-3)\sqrt{x^2+3x-18} \, dx$$ # **Answer** Let $$I = \int (x-3)\sqrt{x^2+3x-18} dx$$ Let us assume $$_X-3=\lambda \frac{d}{dx}(x^2+3x-18)+\mu$$ $$\Rightarrow x - 3 = \lambda \left[\frac{d}{dx}(x^2) + \frac{d}{dx}(3x) - \frac{d}{dx}(18) \right] + \mu$$ $$\Rightarrow x-3 = \lambda \left[\frac{d}{dx}(x^2) + 3\frac{d}{dx}(x) - \frac{d}{dx}(18)\right] + \mu$$ We know $\frac{d}{dx}\big(x^n\big)=nx^{n-1}$ and derivative of a constant is 0. $$\Rightarrow$$ x - 3 = $\lambda(2x^{2-1} + 3 + 0) + \mu$ $$\Rightarrow x - 3 = \lambda(2x + 3) + \mu$$ $$\Rightarrow$$ x - 3 = $2\lambda x + 3\lambda + \mu$ Comparing the coefficient of x on both sides, we get $$2\lambda = 1 \Rightarrow \lambda = \frac{1}{2}$$ Comparing the constant on both sides, we get $$3\lambda + \mu = -3$$ $$\Rightarrow 3\left(\frac{1}{2}\right) + \mu = -3$$ $$\Rightarrow \frac{3}{2} + \mu = -3$$ $$\therefore \mu = -\frac{9}{2}$$ Hence, we have $x - 3 = \frac{1}{2}(2x + 3) - \frac{9}{2}$ Substituting this value in I, we can write the integral as $$I = \int \left[\frac{1}{2} (2x+3) - \frac{9}{2} \right] \sqrt{x^2 + 3x - 18} dx$$ $$\Rightarrow I = \int \left[\frac{1}{2} (2x+3) \sqrt{x^2 + 3x - 18} - \frac{9}{2} \sqrt{x^2 + 3x - 18} \right] dx$$ $$\Rightarrow I = \int \frac{1}{2} (2x+3) \sqrt{x^2+3x-18} dx - \int \frac{9}{2} \sqrt{x^2+3x-18} dx$$ $$\Rightarrow I = \frac{1}{2} \int (2x+3)\sqrt{x^2+3x-18} dx - \frac{9}{2} \int \sqrt{x^2+3x-18} dx$$ Let $$I_1 = \frac{1}{2} \int (2x+3)\sqrt{x^2+3x-18} dx$$ Now, put $$x^2 + 3x - 18 = t$$ $$\Rightarrow$$ (2x + 3)dx = dt (Differentiating both sides) Substituting this value in I_1 , we can write $$I_1 = \frac{1}{2} \int \sqrt{t} dt$$ $$\Rightarrow I_1 = \frac{1}{2} \int t^{\frac{1}{2}} dt$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I_1 = \frac{1}{2} \left(\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right) + c$$ $$\Rightarrow I_1 = \frac{1}{2} \left(\frac{\frac{3}{2}}{\frac{3}{2}} \right) + c$$ $$\Rightarrow I_1 = \frac{1}{2} \times \frac{2}{3} t^{\frac{3}{2}} + c$$ $$\Rightarrow I_1 = \frac{1}{3}t^{\frac{3}{2}} +$$ $$\therefore I_1 = \frac{1}{3}(x^2 + 3x - 18)^{\frac{3}{2}} + c$$ Let $$I_2 = -\frac{9}{2} \int \sqrt{x^2 + 3x - 18} dx$$ We can write $$x^2 + 3x - 18 = x^2 + 2(x)(\frac{3}{2}) + (\frac{3}{2})^2 - (\frac{3}{2})^2 - 18$$ $$\Rightarrow x^2 + 3x - 18 = \left(x + \frac{3}{2}\right)^2 - \frac{9}{4} - 18$$ $$\Rightarrow x^2 + 3x - 18 = \left(x + \frac{3}{2}\right)^2 - \frac{81}{4}$$ $$\Rightarrow x^2 + 3x - 18 = \left(x +
\frac{3}{2}\right)^2 - \left(\frac{9}{2}\right)^2$$ Hence, we can write I₂ as $$I_2 = -\frac{9}{2} \int \sqrt{\left(x + \frac{3}{2}\right)^2 - \left(\frac{9}{2}\right)^2} dx$$ Recall $$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln |x + \sqrt{x^2 - a^2}| + c$$ $$\Rightarrow I_{2} = -\frac{9}{2} \left[\frac{\left(x + \frac{3}{2}\right)}{2} \sqrt{\left(x + \frac{3}{2}\right)^{2} - \left(\frac{9}{2}\right)^{2}} - \frac{\left(\frac{9}{2}\right)^{2}}{2} \ln \left[\left(x + \frac{3}{2}\right) + \sqrt{\left(x + \frac{3}{2}\right)^{2} - \left(\frac{9}{2}\right)^{2}} \right] \right] + c$$ $$= 9 \left[(2x + 3) \sqrt{3 + 3 + 3} + \frac{3}{2} \frac{3}{2}$$ $$\Rightarrow I_2 = -\frac{9}{2} \left[\frac{(2x+3)}{4} \sqrt{x^2 + 3x - 18} - \frac{81}{8} \ln \left| x + \frac{3}{2} + \sqrt{x^2 + 3x - 18} \right| \right] + c$$ $$\therefore I_2 = -\frac{9}{8}(2x+3)\sqrt{x^2+3x-18} + \frac{729}{16}\ln\left|x + \frac{3}{2} + \sqrt{x^2+3x-18}\right| + c$$ Substituting I₁ and I₂ in I, we get $$I = \frac{1}{3}(x^2 + 3x - 18)^{\frac{3}{2}} - \frac{9}{8}(2x + 3)\sqrt{x^2 + 3x - 18} + \frac{729}{16}\ln\left|x + \frac{3}{2} + \sqrt{x^2 + 3x - 18}\right| + c$$ Thus, $$\int\limits_{\frac{729}{16}} (x-3) \sqrt{x^2+3x-18} dx = \frac{1}{3} (x^2+3x-18)^{\frac{3}{2}} - \frac{9}{8} (2x+3) \sqrt{x^2+3x-18} + \frac{729}{16} \ln \left| x + \frac{3}{2} + \sqrt{x^2+3x-18} \right| + c$$ # 12. Question Evaluate the following integrals - $$\int (x+3)\sqrt{3-4x-x^2} \, dx$$ # **Answer** Let $$I = \int (x+3)\sqrt{3-4x-x^2} dx$$ Let us assume $_X+3=\lambda \frac{d}{dx}(3-4x-x^2)+\mu$ $$\Rightarrow x + 3 = \lambda \left[\frac{d}{dx}(3) - \frac{d}{dx}(4x) - \frac{d}{dx}(x^2) \right] + \mu$$ $$\Rightarrow x+3 = \lambda \Big[\frac{d}{dx}(3) - 4\frac{d}{dx}(x) - \frac{d}{dx}(x^2)\Big] + \mu$$ We know $\frac{d}{dx}\big(x^n\big)=nx^{n-1}$ and derivative of a constant is 0. $$\Rightarrow$$ x + 3 = λ (0 - 4 - 2 x^{2-1}) + μ $$\Rightarrow x + 3 = \lambda(-4 - 2x) + \mu$$ $$\Rightarrow x + 3 = -2\lambda x + \mu - 4\lambda$$ Comparing the coefficient of x on both sides, we get $$-2\lambda = 1 \Rightarrow \lambda = -\frac{1}{2}$$ Comparing the constant on both sides, we get $$\mu - 4\lambda = 3$$ $$\Rightarrow \mu - 4\left(-\frac{1}{2}\right) = 3$$ $$\Rightarrow \mu + 2 = 3$$ $$\therefore \mu = 1$$ Hence, we have $x + 3 = -\frac{1}{2}(-4 - 2x) + 1$ Substituting this value in I, we can write the integral as $$\begin{split} I &= \int \left[-\frac{1}{2} (-4 - 2x) + 1 \right] \sqrt{3 - 4x - x^2} dx \\ \Rightarrow I &= \int \left[-\frac{1}{2} (-4 - 2x) \sqrt{3 - 4x - x^2} + \sqrt{3 - 4x - x^2} \right] dx \\ \Rightarrow I &= -\int \frac{1}{2} (-4 - 2x) \sqrt{3 - 4x - x^2} dx + \int \sqrt{3 - 4x - x^2} dx \end{split}$$ $$\Rightarrow I = -\frac{1}{2} \int (-4 - 2x) \sqrt{3 - 4x - x^2} dx + \int \sqrt{3 - 4x - x^2} dx$$ Let $$I_1 = -\frac{1}{2} \int (-4 - 2x) \sqrt{3 - 4x - x^2} dx$$ Now, put $$3 - 4x - x^2 = t$$ $$\Rightarrow$$ (-4 - 2x)dx = dt (Differentiating both sides) Substituting this value in I₁, we can write $$I_1 = -\frac{1}{2} \int \sqrt{t} dt$$ $$\Rightarrow I_1 = -\frac{1}{2} \int t^{\frac{1}{2}} dt$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I_1 = -\frac{1}{2} \left(\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right) + c$$ $$\Rightarrow I_1 = -\frac{1}{2} \left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right) + c$$ $$\Rightarrow I_1 = -\frac{1}{2} \times \frac{2}{3} t^{\frac{3}{2}} + c$$ $$\Rightarrow I_1 = -\frac{1}{3}t^{\frac{3}{2}} + c$$ $$\therefore I_1 = -\frac{1}{3}(3 - 4x - x^2)^{\frac{3}{2}} + c$$ Let $$I_2 = \int \sqrt{3 - 4x - x^2} dx$$ We can write $$3 - 4x - x^2 = -(x^2 + 4x - 3)$$ $$\Rightarrow$$ 3 - 4x - x² = -[x² + 2(x)(2) + 2² - 2² - 3] $$\Rightarrow$$ 3 - 4x - x² = -[(x + 2)² - 4 - 3] $$\Rightarrow$$ 3 - 4x - x² = -[(x + 2)² - 7] $$\Rightarrow$$ 3 - 4x - x² = 7 - (x + 2)² $$\Rightarrow 3 - 4x - x^2 = (\sqrt{7})^2 - (x+2)^2$$ Hence, we can write I₂ as $$I_2 = \int \sqrt{(\sqrt{7})^2 - (x+2)^2} dx$$ Recall $$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c$$ $$\Rightarrow I_2 = \frac{(x+2)}{2} \sqrt{\left(\sqrt{7}\right)^2 - (x+2)^2} + \frac{\left(\sqrt{7}\right)^2}{2} \sin^{-1}\left(\frac{x+2}{\sqrt{7}}\right) + c$$ $$\therefore I_2 = \frac{1}{2}(x+2)\sqrt{3-4x-x^2} + \frac{7}{2}sin^{-1}\left(\frac{x+2}{\sqrt{7}}\right) + c$$ Substituting I_1 and I_2 in I, we get $$I = -\frac{1}{3}(3 - 4x - x^2)^{\frac{3}{2}} + \frac{1}{2}(x + 2)\sqrt{3 - 4x - x^2} + \frac{7}{2}\sin^{-1}\left(\frac{x + 2}{\sqrt{7}}\right) + c^{-1}\left(\frac{x 2}{\sqrt{7}}$$ Thus, $$\int (x+3)\sqrt{3-4x-x^2} dx = -\frac{1}{3}(3-4x-x^2)^{\frac{3}{2}} + \frac{1}{2}(x+2)\sqrt{3-4x-x^2} + \frac{7}{2}\sin^{-1}\left(\frac{x+2}{\sqrt{7}}\right) + c$$ ## 13. Question Evaluate the following integrals - $$\int (3x+1)\sqrt{4-3x-2x^2} \, dx$$ ## **Answer** Let $$I = \int (3x+1)\sqrt{4-3x-2x^2} dx$$ Let us assume $3x + 1 = \lambda \frac{d}{dx} (4 - 3x - 2x^2) + \mu$ $$\Rightarrow 3x + 1 = \lambda \left[\frac{d}{dx}(4) - \frac{d}{dx}(3x) - \frac{d}{dx}(2x^2) \right] + \mu$$ $$\Rightarrow 3x + 1 = \lambda \left[\frac{d}{dx}(4) - 3\frac{d}{dx}(x) - 2\frac{d}{dx}(x^2) \right] + \mu$$ We know $\frac{d}{dx}(x^n) = nx^{n-1}$ and derivative of a constant is 0. $$\Rightarrow 3x + 1 = \lambda(0 - 3 - 2 \times 2x^{2-1}) + \mu$$ $$\Rightarrow 3x + 1 = \lambda(-3 - 4x) + \mu$$ $$\Rightarrow 3x + 1 = -4\lambda x + \mu - 3\lambda$$ Comparing the coefficient of x on both sides, we get $$-4\lambda = 3 \Rightarrow \lambda = -\frac{3}{4}$$ Comparing the constant on both sides, we get $$\mu$$ – 3 λ = 1 $$\Rightarrow \mu - 3\left(-\frac{3}{4}\right) = 1$$ $$\Rightarrow \mu + \frac{9}{4} = 1$$ $$\therefore \mu = -\frac{5}{4}$$ Hence, we have $$3x + 1 = -\frac{3}{4}(-3 - 4x) - \frac{5}{4}$$ Substituting this value in I, we can write the integral as $$\begin{split} I &= \int \left[-\frac{3}{4} (-3 - 4x) - \frac{5}{4} \right] \sqrt{4 - 3x - 2x^2} dx \\ \Rightarrow I &= \int \left[-\frac{3}{4} (-3 - 4x) \sqrt{4 - 3x - 2x^2} - \frac{5}{4} \sqrt{4 - 3x - 2x^2} \right] dx \end{split}$$ $$\Rightarrow I = -\int \frac{3}{4} (-3 - 4x) \sqrt{4 - 3x - 2x^2} dx - \int \frac{5}{4} \sqrt{4 - 3x - 2x^2} dx$$ $$\Rightarrow I = -\frac{3}{4} \int (-3 - 4x) \sqrt{4 - 3x - 2x^2} dx - \frac{5}{4} \int \sqrt{4 - 3x - 2x^2} dx$$ Let $$I_1 = -\frac{3}{4} \int (-3 - 4x) \sqrt{4 - 3x - 2x^2} dx$$ Now, put $$4 - 3x - 2x^2 = t$$ $$\Rightarrow$$ (-3 - 4x)dx = dt (Differentiating both sides) Substituting this value in I_1 , we can write $$I_1 = -\frac{3}{4} \int \sqrt{t} dt$$ $$\Rightarrow I_1 = -\frac{3}{4} \int t^{\frac{1}{2}} dt$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I_1 = -\frac{3}{4} \left(\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right) + c$$ $$\Rightarrow I_1 = -\frac{3}{4} \left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right) + c$$ $$\Rightarrow I_1 = -\frac{3}{4} \times \frac{2}{3} t^{\frac{3}{2}} + c$$ $$\Rightarrow I_1 = -\frac{1}{2}t^{\frac{3}{2}} + c$$ $$\therefore I_1 = -\frac{1}{2}(4 - 3x - 2x^2)^{\frac{3}{2}} + c$$ Let $$I_2 = -\frac{5}{4} \int \sqrt{4 - 3x - 2x^2} dx$$ We can write $4 - 3x - 2x^2 = -(2x^2 + 3x - 4)$ $$\Rightarrow 4 - 3x - 2x^2 = -2\left[x^2 + \frac{3}{2}x - 2\right]$$ $$\Rightarrow 4 - 3x - 2x^2 = -2\left[x^2 + 2(x)\left(\frac{3}{4}\right) + \left(\frac{3}{4}\right)^2 - \left(\frac{3}{4}\right)^2 - 2\right]$$ $$\Rightarrow 4 - 3x - 2x^{2} = -2\left[\left(x + \frac{3}{4}\right)^{2} - \frac{9}{16} - 2\right]$$ $$\Rightarrow 4 - 3x - 2x^{2} = -2\left[\left(x + \frac{3}{4}\right)^{2} - \frac{41}{16}\right]$$ $$\Rightarrow 4 - 3x - 2x^{2} = 2\left[\frac{41}{16} - \left(x + \frac{3}{4}\right)^{2}\right]$$ $$\Rightarrow 4 - 3x - 2x^{2} = 2\left[\left(\frac{\sqrt{41}}{4}\right)^{2} - \left(x + \frac{3}{4}\right)^{2}\right]$$ Hence, we can write I₂ as $$I_2=-\frac{5}{4}\int\sqrt{2\left[\left(\frac{\sqrt{41}}{4}\right)^2-\left(x+\frac{3}{4}\right)^2\right]}dx$$ $$\Rightarrow I_2 = -\frac{5\sqrt{2}}{4} \int \sqrt{\left(\frac{\sqrt{41}}{4}\right)^2 - \left(x + \frac{3}{4}\right)^2} dx$$ Recall $$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c$$ $$\Rightarrow I_2 = -\frac{5\sqrt{2}}{4} \left[\frac{\left(x + \frac{3}{4}\right)}{2} \sqrt{\left(\frac{\sqrt{41}}{4}\right)^2 - \left(x + \frac{3}{4}\right)^2} + \frac{\left(\frac{\sqrt{41}}{4}\right)^2}{2} \sin^{-1} \left(\frac{x + \frac{3}{4}}{\frac{\sqrt{41}}{4}}\right) \right] + c$$ $$\Rightarrow I_2 = -\frac{5\sqrt{2}}{4} \left[\frac{(4x+3)}{8} \sqrt{2 - \frac{3}{2}x - x^2} + \frac{41}{32} \sin^{-1} \left(\frac{4x+3}{\sqrt{41}} \right) \right] + c$$ $$\Rightarrow I_2 = -\frac{5\sqrt{2}}{32}(4x+3)\sqrt{2-\frac{3}{2}x-x^2} - \frac{205\sqrt{2}}{128}\sin^{-1}\left(\frac{4x+3}{\sqrt{41}}\right) + c$$ $$\therefore I_2 = -\frac{5}{32}(4x+3)\sqrt{4-3x-2x^2} - \frac{205\sqrt{2}}{128}sin^{-1}\Big(\frac{4x+3}{\sqrt{41}}\Big) + c$$ Substituting I_1 and I_2 in I, we get $$I = -\frac{1}{2}(4 - 3x - 2x^2)^{\frac{3}{2}} - \frac{5}{32}(4x + 3)\sqrt{4 - 3x - 2x^2} - \frac{205\sqrt{2}}{128}\sin^{-1}\left(\frac{4x + 3}{\sqrt{41}}\right)$$ Thus, $$\int (3x+1)\sqrt{4-3x-2x^2} dx = -\frac{1}{2}(4-3x-2x^2)^{\frac{3}{2}} - \frac{5}{32}(4x+3)\sqrt{4-3x-2x^2} - \frac{205\sqrt{2}}{128} sin^{-1} \left(\frac{4x+3}{\sqrt{41}}\right) + c$$ ## 14. Question Evaluate the following integrals - $$\int (2x+5)\sqrt{10-4x-3x^2} \, dx$$ ## Answer Let $$I = \int (2x+5)\sqrt{10-4x-3x^2} dx$$ Let us assume, $2x + 5 = \lambda \frac{d}{dx} (10 - 4x - 3x^2) + \mu$ $$\Rightarrow 2x + 5 = \lambda \left[\frac{d}{dx} (10) - \frac{d}{dx} (4x) - \frac{d}{dx} (3x^2) \right] + \mu$$ $$\Rightarrow 2x+5 = \lambda \left[\frac{d}{dx}(10) - 4\frac{d}{dx}(x) - 3\frac{d}{dx}(x^2) \right] + \mu$$ We know $\frac{\text{d}}{\text{d}x}\big(x^n\big)=nx^{n-1}$ and derivative of a constant is 0. $$\Rightarrow 2x + 5 = \lambda(0 - 4 - 3 \times 2x^{2-1}) + \mu$$ $$\Rightarrow 2x + 5 = \lambda(-4 - 6x) + \mu$$ $$\Rightarrow 2x + 5 = -6\lambda
x + \mu - 4\lambda$$ Comparing the coefficient of x on both sides, we get $$-6\lambda = 2 \Rightarrow \lambda = -\frac{2}{6} = -\frac{1}{3}$$ Comparing the constant on both sides, we get $$\mu$$ – 4λ = 5 $$\Rightarrow \mu - 4\left(-\frac{1}{3}\right) = 5$$ $$\Rightarrow \mu + \frac{4}{3} = 5$$ $$\therefore \mu = \frac{11}{3}$$ Hence, we have $2x + 5 = -\frac{1}{2}(-4 - 6x) + \frac{11}{2}$ Substituting this value in I, we can write the integral as $$I = \int \left[-\frac{1}{3}(-4 - 6x) + \frac{11}{3} \right] \sqrt{10 - 4x - 3x^2} dx$$ $$\Rightarrow I = \int \left[-\frac{1}{3} (-4 - 6x) \sqrt{10 - 4x - 3x^2} + \frac{11}{3} \sqrt{10 - 4x - 3x^2} \right] dx$$ $$\Rightarrow I = -\int \frac{1}{3} (-4 - 6x) \sqrt{10 - 4x - 3x^2} dx + \int \frac{11}{3} \sqrt{10 - 4x - 3x^2} dx$$ $$\Rightarrow I = -\frac{1}{3} \int (-4 - 6x) \sqrt{10 - 4x - 3x^2} dx + \frac{11}{3} \int \sqrt{10 - 4x - 3x^2} dx$$ Let $$I_1 = -\frac{1}{3} \int (-4 - 6x) \sqrt{10 - 4x - 3x^2} dx$$ Now, put $$10 - 4x - 3x^2 = t$$ $$\Rightarrow$$ (-4 - 6x)dx = dt (Differentiating both sides) Substituting this value in I_1 , we can write $$I_1 = -\frac{1}{3} \int \sqrt{t} dt$$ $$\Rightarrow I_1 = -\frac{1}{3} \int t^{\frac{1}{2}} dt$$ Recall $$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$ $$\Rightarrow I_1 = -\frac{1}{3} \left(\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right) + c$$ $$\Rightarrow I_1 = -\frac{1}{3} \left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right) + c$$ $$\Rightarrow I_1 = -\frac{1}{3} \times \frac{2}{3} t^{\frac{3}{2}} + c$$ $$\Rightarrow I_1 = -\frac{2}{9}t^{\frac{3}{2}} + c$$ $$\therefore I_1 = -\frac{2}{9}(10 - 4x - 3x^2)^{\frac{3}{2}} + c$$ Let $$I_2 = \frac{11}{3} \int \sqrt{10 - 4x - 3x^2} dx$$ We can write $10 - 4x - 3x^2 = -(3x^2 + 4x - 10)$ $$\Rightarrow 10 - 4x - 3x^2 = -3\left[x^2 + \frac{4}{3}x - \frac{10}{3}\right]$$ $$\Rightarrow 10 - 4x - 3x^2 = -3\left[x^2 + 2(x)\left(\frac{2}{3}\right) + \left(\frac{2}{3}\right)^2 - \left(\frac{2}{3}\right)^2 - \frac{10}{3}\right]$$ $$\Rightarrow 10 - 4x - 3x^2 = -3\left[\left(x + \frac{2}{3}\right)^2 - \frac{4}{9} - \frac{10}{3}\right]$$ $$\Rightarrow 10 - 4x - 3x^2 = -3\left[\left(x + \frac{2}{3}\right)^2 - \frac{34}{9}\right]$$ $$\Rightarrow 10 - 4x - 3x^2 = 3\left[\frac{34}{9} - \left(x + \frac{2}{3}\right)^2\right]$$ $$\Rightarrow 10 - 4x - 3x^2 = 3\left[\left(\frac{\sqrt{34}}{3}\right)^2 - \left(x + \frac{2}{3}\right)^2\right]$$ Hence, we can write I₂ as $$I_2 = \frac{11}{3} \int \sqrt{3 \left[\left(\frac{\sqrt{34}}{3} \right)^2 - \left(x + \frac{2}{3} \right)^2 \right]} dx$$ $$\Rightarrow I_2 = \frac{11\sqrt{3}}{3} \int \sqrt{\left(\frac{\sqrt{34}}{3}\right)^2 - \left(x + \frac{2}{3}\right)^2} dx$$ Recall $$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c$$ $$\Rightarrow I_2 = \frac{11\sqrt{3}}{3} \left[\frac{\left(x + \frac{2}{3}\right)}{2} \sqrt{\left(\frac{\sqrt{34}}{3}\right)^2 - \left(x + \frac{2}{3}\right)^2} + \frac{\left(\frac{\sqrt{34}}{3}\right)^2}{2} \sin^{-1} \left(\frac{x + \frac{2}{3}}{\frac{\sqrt{34}}{3}}\right) \right] + c$$ $$\Rightarrow I_2 = \frac{11\sqrt{3}}{3} \left[\frac{(3x+2)}{6} \sqrt{\frac{10}{3} - \frac{4}{3}x - x^2} + \frac{34}{18} \sin^{-1} \left(\frac{3x+2}{\sqrt{34}} \right) \right] + c$$ $$\Rightarrow I_2 = -\frac{11\sqrt{3}}{18}(3x+2)\sqrt{\frac{10}{3} - \frac{4}{3}x - x^2} - \frac{374\sqrt{3}}{54}\sin^{-1}\left(\frac{3x+2}{\sqrt{34}}\right) + c$$ $$\therefore I_2 = -\frac{11}{18}(3x+2)\sqrt{10-4x-3x^2} - \frac{187\sqrt{3}}{27}\sin^{-1}\left(\frac{3x+2}{\sqrt{34}}\right) + c$$ Substituting I_1 and I_2 in I, we get $$\begin{split} I &= -\frac{2}{9} (10 - 4x - 3x^2)^{\frac{3}{2}} - \frac{11}{18} (3x + 2) \sqrt{10 - 4x - 3x^2} \\ &- \frac{187 \sqrt{3}}{27} \sin^{-1} \left(\frac{3x + 2}{\sqrt{34}} \right) + c \end{split}$$ Thus, $$\frac{\int (2x+5)\sqrt{10-4x-3x^2} dx = -\frac{2}{9}(10-4x-3x^2)^{\frac{3}{2}} - \frac{11}{18}(3x+2)\sqrt{10-4x-3x^2} - \frac{187\sqrt{3}}{27} \sin^{-1}\left(\frac{3x+2}{\sqrt{34}}\right) + c$$ # Exercise 19.30 #### 1. Ouestion Evaluate the following integral: $$\int \frac{2x+1}{(x+1)(x-2)} \, \mathrm{d}x$$ #### **Answer** Here the denominator is already factored. So let $$\frac{2x+1}{(x+1)(x-2)} = \frac{A}{x+1} + \frac{B}{x-2} \dots \dots (i)$$ $$\Rightarrow \frac{2x+1}{(x+1)(x-2)} = \frac{A(x-2) + B(x+1)}{(x+1)(x-2)}$$ $$\Rightarrow$$ 2x + 1 = A(x - 2) + B(x + 1).....(ii) We need to solve for A and B. One way to do this is to pick values for x which will cancel each variable. Put x = 2 in the above equation, we get $$\Rightarrow$$ 2(2) + 1 = A(2 - 2) + B(2 + 1) $$\Rightarrow B = \frac{5}{3}$$ Now put x = -1 in equation (ii), we get $$\Rightarrow$$ 2(-1) + 1 = A((-1) - 2) + B((-1) + 1) $$\Rightarrow$$ - 3A = -1 $$\Rightarrow A = \frac{1}{3}$$ We put the values of A and B values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[\frac{A}{x+1} + \frac{B}{x-2} \right] dx$$ $$\Rightarrow \int \left[\frac{\frac{1}{3}}{x+1} + \frac{\frac{5}{3}}{x-2} \right] dx$$ Split up the integral, $$\Rightarrow \frac{1}{3} \int \left[\frac{1}{x+1} \right] dx + \frac{5}{3} \int \left[\frac{1}{x-2} \right] dx$$ Let substitute $u = x + 1 \Rightarrow du = dx$ and $z = x - 2 \Rightarrow dz = dx$, so the above equation becomes, $$\Rightarrow \frac{1}{3} \int \left[\frac{1}{u} \right] du + \frac{5}{3} \int \left[\frac{1}{z} \right] dz$$ On integrating we get $$\Rightarrow \frac{1}{3}log|u| + \frac{5}{3}log|z| + C$$ Substituting back, we get $$\Rightarrow \frac{1}{3}\log|x+1| + \frac{5}{3}\log|x-2| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{2x+1}{(x+1)(x-2)} dx = \frac{1}{3} \log|x+1| + \frac{5}{3} \log|x-2| + C$$ ## 2. Question Evaluate the following integral: $$\int \frac{1}{x(x-2)(x-4)} dx$$ # **Answer** Here the denominator is already factored. So let $$\frac{1}{x(x-2)(x-4)} = \frac{A}{x} + \frac{B}{x-2} + \frac{C}{x-4} \dots \dots (i)$$ $$\Rightarrow \frac{1}{x(x-2)(x-4)} = \frac{A(x-2)(x-4) + Bx(x-4) + Cx(x-2)}{x(x-2)(x-4)}$$ $$\Rightarrow 1 = A(x-2)(x-4) + Bx(x-4) + Cx(x-2).....(ii)$$ We need to solve for A, B and C. One way to do this is to pick values for x which will cancel each variable. Put x = 0 in the above equation, we get $$\Rightarrow 1 = A(0-2)(0-4) + B(0)(0-4) + C(0)(0-2)$$ $$\Rightarrow 1 = 8A + 0 + 0$$ $$\Rightarrow A = \frac{1}{8}$$ Now put x = 2 in equation (ii), we get $$\Rightarrow 1 = A(2-2)(2-4) + B(2)(2-4) + C(2)(2-2)$$ $$\Rightarrow 1 = 0 - 4B + 0$$ $$\Rightarrow B = -\frac{1}{4}$$ Now put x = 4 in equation (ii), we get $$\Rightarrow$$ 1 = A(4 - 2)(4 - 4) + B(4)(4 - 4) + C(4)(4 - 2) $$\Rightarrow 1 = 0 + 0 + 8C$$ $$\Rightarrow C = \frac{1}{8}$$ We put the values of A, B, and C values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[\frac{A}{x} + \frac{B}{x-2} + \frac{C}{x-4} \right] dx$$ $$\Rightarrow \int \left[\frac{1}{8} + \frac{-\frac{1}{4}}{x-2} + \frac{\frac{1}{8}}{x-4} \right] dx$$ Split up the integral, $$\Rightarrow \frac{1}{8} \int \left[\frac{1}{x} \right] dx - \frac{1}{4} \int \left[\frac{1}{x-2} \right] dx + \frac{1}{8} \int \left[\frac{1}{x-4} \right] dx$$ Let substitute $u = x - 4 \Rightarrow du = dx$ and $z = x - 2 \Rightarrow dz = dx$, so the above equation becomes, $$\Rightarrow \frac{1}{8} \int \left[\frac{1}{x} \right] dx - \frac{1}{4} \int \left[\frac{1}{z} \right] dz + \frac{1}{8} \int \left[\frac{1}{u} \right] du$$ On integrating we get $$\Rightarrow \frac{1}{8}\log|\mathbf{x}| - \frac{1}{4}\log|\mathbf{z}| + \frac{1}{8}\log|\mathbf{u}| + C$$ Substituting back, we get $$\Rightarrow \frac{1}{8}\log|x| - \frac{1}{4}\log|x - 2| + \frac{1}{8}\log|x - 4| + C$$ We will take $\frac{1}{g}$ common, we get $$\Rightarrow \frac{1}{8}[\log|x| - 2\log|x - 2| + \log|x - 4| + C]$$ Applying the logarithm rule we can rewrite the above equation as $$\Rightarrow \frac{1}{8} \left[\log \left| \frac{x}{(x-2)^2} \right| + \log |x-4| + C \right]$$ $$\Rightarrow \frac{1}{8} \left[\log \left| \frac{x(x-4)}{(x-2)^2} \right| \right] + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{1}{x(x-2)(x-4)} dx = \frac{1}{8} \left[\log \left| \frac{x(x-4)}{(x-2)^2} \right| \right] + C$$ # 3. Question Evaluate the following integral: $$\int \frac{x^2 + x - 1}{x^2 + x - 6} dx$$ ## **Answer** First we simplify numerator, we get $$\frac{x^2 + x - 1}{x^2 + x - 6}$$ $$= \frac{x^2 + x - 6 + 5}{x^2 + x - 6}$$ $$= \frac{x^2 + x - 6}{x^2 + x - 6} + \frac{5}{x^2 + x - 6}$$ $$= 1 + \frac{5}{x^2 + x - 6}$$ Now we will factorize denominator by splitting the middle term, we get $$1 + \frac{5}{x^2 + x - 6}$$ $$= 1 + \frac{5}{x^2 + 3x - 2x - 6}$$ $$= 1 + \frac{5}{x(x+3) - 2(x+3)}$$ $$= 1 + \frac{5}{(x+3)(x-2)}$$ Now the denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{5}{(x+3)(x-2)} = \frac{A}{x+3} + \frac{B}{x-2} \dots \dots (i)$$ $$\Rightarrow \frac{5}{(x+3)(x-2)} = \frac{A(x-2) + B(x+3)}{(x+3)(x-2)}$$ $$\Rightarrow 5 = A(x-2) + B(x+3) \dots \dots (ii)$$ We need to solve for A and B. One way to do this is to pick values for x which will cancel each variable. Put x = 2 in the above equation, we get $$\Rightarrow 5 = A(2-2) + B(2+3)$$ $$\Rightarrow 5 = 0 + 5B$$ $$\Rightarrow B = 1$$ Now put x = -3 in equation (ii), we get ⇒ $$5 = A((-3) - 2) + B((-3) + 3)$$ ⇒ $5 = -5A$ ⇒ $A = -1$ We put the values of A and B values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[1 + \frac{A}{x+3} + \frac{B}{x-2}\right] dx$$ $$\Rightarrow \int \left[1 + \frac{-1}{x+3} + \frac{1}{x-2}\right] dx$$ Split up the integral, $$\Rightarrow \int 1 dx - \int \left[\frac{1}{x+3} \right] dx + \int \left[\frac{1}{x-2} \right] dx$$ Let substitute $u = x + 3 \Rightarrow du = dx$ and $z = x - 2 \Rightarrow dz = dx$, so the above equation becomes, $$\Rightarrow
\int 1 dx - \int \left[\frac{1}{u} \right] du \ + \int \left[\frac{1}{z} \right] dz$$ On integrating we get $$\Rightarrow$$ x - log|u| + log|z| + C Substituting back, we get $$\Rightarrow$$ x - log|x + 3| + log|x - 2| + C Applying the logarithm rule, we can rewrite the above equation as $$\Rightarrow$$ x + log $\left| \frac{x-2}{x+3} \right|$ + C Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{x^2 + x - 1}{x^2 + x - 6} dx = x + \log \left| \frac{x - 2}{x + 3} \right| + C$$ ## 4. Question Evaluate the following integral: $$\int \frac{3 + 4x - x^2}{(x+2)(x-1)} \, dx$$ #### **Answer** First we simplify numerator, we get $$\frac{3 + 4x - x^{2}}{(x + 2)(x - 1)}$$ $$= \frac{-(x^{2} - 4x - 3)}{x^{2} + x - 2}$$ $$= \frac{-(x^{2} + x - 5x - 2 - 1)}{x^{2} + x - 2}$$ $$= \frac{-(x^{2} + x - 2)}{x^{2} + x - 2} + \frac{5x + 1}{x^{2} + x - 2}$$ $$= -1 + \frac{5x + 1}{(x + 2)(x - 1)}$$ Now the denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{5x+1}{(x+2)(x-1)} = \frac{A}{x+2} + \frac{B}{x-1} \dots \dots (i)$$ $$\Rightarrow \frac{5x+1}{(x+2)(x-1)} = \frac{A(x-1) + B(x+2)}{(x+2)(x-1)}$$ $$\Rightarrow 5x + 1 = A(x - 1) + B(x + 2).....(ii)$$ We need to solve for A and B. One way to do this is to pick values for x which will cancel each variable. Put x = 1 in the above equation, we get $$\Rightarrow$$ 5(1) + 1 = A(1 - 1) + B(1 + 2) $$\Rightarrow$$ 6 = 0 + 3B $$\Rightarrow B = 2$$ Now put x = -2 in equation (ii), we get $$\Rightarrow$$ 5(-2) + 1 = A((-2) - 1) + B((-2) + 2) $$\Rightarrow$$ - 9 = - 3A + 0 $$\Rightarrow A = 3$$ We put the values of A and B values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[-1 + \frac{5x + 1}{(x + 2)(x - 1)} \right] dx$$ $$\Rightarrow \int \left[-1 + \frac{A}{x+2} + \frac{B}{x-1} \right] dx$$ $$\Rightarrow \int \left[-1 + \frac{3}{x+2} + \frac{2}{x-1} \right] dx$$ Split up the integral, $$\Rightarrow -\int 1 dx + 3 \int \left[\frac{1}{x+2} \right] dx + 2 \int \left[\frac{1}{x-1} \right] dx$$ Let substitute $u = x + 2 \Rightarrow du = dx$ and $z = x - 1 \Rightarrow dz = dx$, so the above equation becomes, $$\Rightarrow -\int 1 dx + 3 \int \left[\frac{1}{u}\right] du + 2 \int \left[\frac{1}{z}\right] dz$$ On integrating we get $$\Rightarrow$$ -x + 3 log|u| + 2 log|z| + C Substituting back, we get $$\Rightarrow$$ -x + 3 log|x + 2| + 2log|x - 1| + C Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{3 + 4x - x^2}{(x + 2)(x - 1)} dx = -x + 3\log|x + 2| + 2\log|x - 1| + C$$ ## 5. Question Evaluate the following integral: $$\int \frac{x^2 + 1}{x^2 - 1} dx$$ ### **Answer** First we simplify numerator, we get $$\frac{x^2 + 1}{x^2 - 1}$$ $$= \frac{x^2 - 1 + 2}{x^2 - 1}$$ $$= \frac{x^2 - 1}{x^2 - 1} + \frac{2}{x^2 - 1}$$ $$= 1 + \frac{2}{(x - 1)(x + 1)}$$ Now the denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{2}{(x+1)(x-1)} = \frac{A}{x+1} + \frac{B}{x-1} \dots (i)$$ $$\Rightarrow \frac{2}{(x+2)(x-1)} = \frac{A(x-1) + B(x+1)}{(x+2)(x-1)}$$ $$\Rightarrow$$ 2 = A(x-1) + B(x + 1) (ii) We need to solve for A and B. One way to do this is to pick values for x which will cancel each variable. Put x = 1 in the above equation, we get $$\Rightarrow$$ 2 = A(1 - 1) + B(1 + 1) $$\Rightarrow$$ 2 = 0 + 2B $$\Rightarrow B = 1$$ Now put x = -1 in equation (ii), we get $$\Rightarrow$$ 2 = A((-1)-1) + B((-1)+1) $$\Rightarrow$$ 2 = -2A + 0 $$\Rightarrow A = -1$$ We put the values of A and B values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[1 + \frac{2}{(x-1)(x+1)}\right] dx$$ $$\Rightarrow \int \left[1 + \frac{A}{x+1} + \frac{B}{x-1}\right] dx$$ $$\Rightarrow \int \left[1 + \frac{-1}{x+1} + \frac{1}{x-1}\right] dx$$ Split up the integral, $$\Rightarrow \int 1 dx - \int \left[\frac{1}{x+1} \right] dx + \int \left[\frac{1}{x-1} \right] dx$$ Let substitute $u = x + 1 \Rightarrow du = dx$ and $z = x - 1 \Rightarrow dz = dx$, so the above equation becomes, $$\Rightarrow \int 1 dx - \int \left[\frac{1}{u}\right] du + \int \left[\frac{1}{z}\right] dz$$ On integrating we get $$\Rightarrow$$ x - log|u| + log|z| + C Substituting back, we get $$\Rightarrow x - \log|x + 1| + \log|x - 1| + C$$ Applying the logarithm rule we get $$\Rightarrow$$ x + log $\left| \frac{x-1}{x+1} \right|$ + C Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{x^2 + 1}{x^2 - 1} dx = x + \log \left| \frac{x - 1}{x + 1} \right| + C$$ ### 6. Question Evaluate the following integral: $$\int \frac{x^2}{(x-1)(x-2)(x-3)} \, \mathrm{d}x$$ #### **Answer** Denominator is already factorized, so let $$\frac{x^2}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3} \dots (i)$$ $$\Rightarrow \frac{x^2}{(x-1)(x-2)(x-3)} = \frac{A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2)}{(x-1)(x-2)(x-3)}$$ $$\Rightarrow x^2 = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2) \dots (ii)$$ We need to solve for A, B and C. One way to do this is to pick values for x which will cancel each variable. Put x = 1 in the above equation, we get $$\Rightarrow$$ 1² = A(1 - 2)(1 - 3) + B(1 - 1)(1 - 3) + C(1 - 1)(1 - 2) $$\Rightarrow 1 = 2A + 0 + 0$$ $$\Rightarrow A = \frac{1}{2}$$ Now put x = 2 in equation (ii), we get $$\Rightarrow$$ 2² = A(2 - 2)(2 - 3) + B(2 - 1)(2 - 3) + C(2 - 1)(2 - 2) $$\Rightarrow 4 = 0 - B + 0$$ $$\Rightarrow B = -4$$ Now put x = 3 in equation (ii), we get $$\Rightarrow$$ 3² = A(3 - 2)(3 - 3) + B(3 - 1)(3 - 3) + C(3 - 1)(3 - 2) $$\Rightarrow 9 = 0 + 0 + 2C$$ $$\Rightarrow C = \frac{9}{2}$$ We put the values of A, B, and C values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[\frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3} \right] dx$$ $$\Rightarrow \int \left[\frac{\frac{1}{2}}{x-1} + \frac{-4}{x-2} + \frac{\frac{9}{2}}{x-3} \right] dx$$ Split up the integral, $$\Rightarrow \frac{1}{2} \int \left[\frac{1}{x-1} \right] dx - 4 \int \left[\frac{1}{x-2} \right] dx + \frac{9}{2} \int \left[\frac{1}{x-3} \right] dx$$ Let substitute $u = x - 1 \Rightarrow du = dx$, $y = x - 2 \Rightarrow dy = dx$ and $z = x - 3 \Rightarrow dz = dx$, so the above equation becomes. $$\Rightarrow \frac{1}{2} \int \left[\frac{1}{u} \right] du - 4 \int \left[\frac{1}{v} \right] dy \, + \, \frac{9}{2} \int \left[\frac{1}{z} \right] dz$$ On integrating we get $$\Rightarrow \frac{1}{2}log|u| - 4log|y| + \frac{9}{2}log|z| + C$$ Substituting back, we get $$\Rightarrow \frac{1}{2}\log|x-1| - 4\log|x-2| + \frac{9}{2}\log|x-3| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{x^2}{(x-1)(x-2)(x-3)} dx = \frac{1}{2} \log|x-1| - 4 \log|x-2| + \frac{9}{2} \log|x-3| + C$$ ## 7. Question Evaluate the following integral: $$\int \frac{5x}{(x+1)(x^2-4)} \, \mathrm{d}x$$ ### **Answer** $$\frac{5x}{(x+1)(x^2-4)} = \frac{5x}{(x+1)(x-2)(x+2)}$$ The denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{5x}{(x+1)(x-2)(x+2)} = \frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{x+2} \dots \dots (i)$$ $$\Rightarrow \frac{5x}{(x+1)(x-2)(x+2)} = \frac{A(x-2)(x+2) + B(x+1)(x+2) + C(x+1)(x-2)}{(x+1)(x-2)(x+2)}$$ $$\Rightarrow 5x = A(x-2)(x+2) + B(x+1)(x+2) + C(x+1)(x-2).....(ii)$$ We need to solve for A, B and C. One way to do this is to pick values for x which will cancel each variable. Put x = -1 in the above equation, we get $$\Rightarrow 5(-1) = A((-1)-2)((-1)+2) + B((-1)+1)((-1)+2) + C((-1)+1)((-1)-2)$$ $$\Rightarrow$$ - 5 = - 3A + 0 + 0 $$\Rightarrow A = \frac{5}{3}$$ Now put x = -2 in equation (ii), we get $$\Rightarrow 5(-2) = A((-2)-2)((-2)+2) + B((-2)+1)((-2)+2) + C((-2)+1)((-2)-2)$$ $$\Rightarrow$$ - 10 = 0 + 0 + 4C $$\Rightarrow$$ C = $-\frac{10}{4}$ = $-\frac{5}{2}$ Now put x = 2 in equation (ii), we get $$\Rightarrow$$ 5(2) = A((2) - 2)((2) + 2) + B((2) + 1)((2) + 2) + C((2) + 1)((2) - 2) $$\Rightarrow 10 = 0 + 12B + 0$$ $$\Rightarrow B = \frac{10}{12} = \frac{5}{6}$$ We put the values of A, B, and C values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[\frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{x+2} \right] dx$$ $$\Rightarrow \int \left[\frac{\frac{5}{3}}{x+1} + \frac{-\frac{5}{2}}{x-2} + \frac{\frac{5}{6}}{x+2} \right] dx$$ Split up the integral, $$\Rightarrow \frac{5}{3} \int \left[\frac{1}{x+1} \right] dx - \frac{5}{2} \int \left[\frac{1}{x-2} \right] dx + \frac{5}{6} \int \left[\frac{1}{x+2} \right] dx$$ Let substitute $u = x + 1 \Rightarrow du = dx$, $y = x - 2 \Rightarrow dy = dx$ and $z = x + 2 \Rightarrow dz = dx$, so the above equation becomes, $$\Rightarrow \frac{5}{3} \int \left[\frac{1}{u} \right] du - \frac{5}{2} \int \left[\frac{1}{v} \right] dy + \frac{5}{6} \int \left[\frac{1}{z} \right] dz$$ On integrating we get $$\Rightarrow \frac{5}{3}\log|\mathbf{u}| - \frac{5}{2}\log|\mathbf{y}| + \frac{5}{6}\log|\mathbf{z}| + C$$ Substituting back, we get $$\Rightarrow \frac{5}{3}\log|x+1| - \frac{5}{2}\log|x-2| + \frac{5}{6}\log|x+2| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{5x}{(x+1)(x^2-4)} dx = \frac{5}{3} \log|x+1| - \frac{5}{2} \log|x-2| + \frac{5}{6} \log|x+2| + C$$ ### 8. Ouestion Evaluate the following integral: $$\int \frac{x^2 + 1}{x(x^2 - 1)} \, \mathrm{d}x$$ ### **Answer** $$\frac{x^2+1}{x(x^2-1)} = \frac{x^2+1}{x(x-1)(x+1)}$$ The denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{x^2+1}{x(x-1)(x+1)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1} \dots \dots (i)$$ $$\Rightarrow \frac{x^2+1}{x(x-1)(x+1)} = \frac{A(x-1)(x+1) + Bx(x+1) + Cx(x-1)}{x(x-1)(x+1)}$$ $$\Rightarrow x^2 + 1 = A(x-1)(x+1) + Bx(x+1) + Cx(x-1)....(ii)$$ We need to solve for A, B and C. One
way to do this is to pick values for x which will cancel each variable. Put x = 0 in the above equation, we get $$\Rightarrow 0^2 + 1 = A(0 - 1)(0 + 1) + B(0)(0 + 1) + C(0)(0 - 1)$$ $$\Rightarrow 1 = -A + 0 + 0$$ $$\Rightarrow A = -1$$ Now put x = -1 in equation (ii), we get $$\Rightarrow (-1)^2 + 1 = A((-1) - 1)((-1) + 1) + B(-1)((-1) + 1) + C(-1)((-1) - 1)$$ $$\Rightarrow$$ 2 = 0 + 0 + C $$\Rightarrow C = 1$$ Now put x = 1 in equation (ii), we get $$\Rightarrow 1^2 + 1 = A(1-1)(1+1) + B(1)(1+1) + C(1)(1-1)$$ $$\Rightarrow 2 = 0 + 2B + 0$$ $$\Rightarrow B = 1$$ We put the values of A, B, and C values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[\frac{x^2 + 1}{x(x-1)(x+1)} \right] dx$$ $$\Rightarrow \int \left[\frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1} \right] dx$$ $$\Rightarrow \int \left[\frac{-1}{x} + \frac{1}{x-1} + \frac{1}{x+1} \right] dx$$ Split up the integral, $$\Rightarrow -\int \left[\frac{1}{x}\right] dx + \int \left[\frac{1}{x-1}\right] dx + \int \left[\frac{1}{x+1}\right] dx$$ Let substitute $u = x + 1 \Rightarrow du = dx$, $y = x - 1 \Rightarrow dy = dx$, so the above equation becomes, $$\Rightarrow -\int \begin{bmatrix} \frac{1}{x} \end{bmatrix} dx + \int \begin{bmatrix} \frac{1}{y} \end{bmatrix} dy + \int \begin{bmatrix} \frac{1}{u} \end{bmatrix} du$$ On integrating we get $$\Rightarrow -\log|x| + \log|y| + \log|u| + C$$ Substituting back, we get $$\Rightarrow$$ $-\log|x| + \log|x - 1| + \log|x + 1| + C$ Applying the rules of logarithm we get $$\Rightarrow$$ $-\log|x| + \log|(x-1)(x+1)| + C$ $$\Rightarrow \log \left| \frac{x^2 - 1}{x} \right| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{x^2 + 1}{x(x^2 - 1)} dx = \log \left| \frac{x^2 - 1}{x} \right| + C$$ ### 9. Question Evaluate the following integral: $$\int \frac{2x-3}{(x^2-1)(2x+3)} \, dx$$ #### **Answer** $$\frac{2x-3}{(x^2-1)(2x+3)} = \frac{2x-3}{(x-1)(x+1)(2x+3)}$$ The denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{2x-3}{(x-1)(x+1)(2x+3)} = \frac{A}{(x-1)} + \frac{B}{x+1} + \frac{C}{2x+3} \dots \dots (i)$$ $$\Rightarrow \frac{2x-3}{(x-1)(x+1)(2x+3)} = \frac{A(x+1)(2x+3) + B(x-1)(2x+3) + C(x-1)(x+1)}{(x-1)(x+1)(2x+3)}$$ $$\Rightarrow 2x-3 = A(x+1)(2x+3) + B(x-1)(2x+3) + C(x-1)(x+1).....(ii)$$ $$\Rightarrow$$ 2x - 3 = A(x + 1)(2x + 3) + B(x - 1)(2x + 3) + C(x - 1)(x + 1).....(ii) We need to solve for A, B and C. One way to do this is to pick values for x which will cancel each variable. Put x = -1 in the above equation, we get $$\Rightarrow 2(-1) - 3 = A((-1) + 1)(2(-1) + 3) + B((-1) - 1)(2(-1) + 3) + C((-1) - 1)((-1) + 1)$$ $$\Rightarrow$$ - 5 = 0 - 2B + 0 $$\Rightarrow B = \frac{5}{2}$$ Now put x = 1 in equation (ii), we get $$\Rightarrow$$ 2(1) - 3 = A((1) + 1)(2(1) + 3) + B((1) - 1)(2(1) + 3) + C((1) - 1)((1) + 1) $$\Rightarrow -1 = 10A + 0 + 0$$ $$\Rightarrow A = -\frac{1}{10}$$ Now put $x = -\frac{3}{2}$ in equation (ii), we get $$\Rightarrow 2\left(-\frac{3}{2}\right) - 3$$ $$= A\left(\left(-\frac{3}{2}\right) + 1\right)\left(2\left(-\frac{3}{2}\right) + 3\right)$$ $$+ B\left(\left(-\frac{3}{2}\right) - 1\right)\left(2\left(-\frac{3}{2}\right) + 3\right) + C\left(\left(-\frac{3}{2}\right) - 1\right)\left(\left(-\frac{3}{2}\right) + 1\right)$$ $$\Rightarrow 2\left(-\frac{3}{2}\right) - 3$$ $$\Rightarrow -6 = 0 + 0 + \frac{5}{4}C$$ $$\Rightarrow$$ C = $-\frac{24}{5}$ We put the values of A, B, and C values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[\frac{2x-3}{(x-1)(x+1)(2x+3)} \right] dx$$ $$\Rightarrow \int \left[\frac{A}{(x-1)} + \frac{B}{x+1} + \frac{C}{2x+3} \right] dx$$ $$\Rightarrow \int \left[\frac{-\frac{1}{10}}{(x-1)} + \frac{\frac{5}{2}}{x+1} + \frac{-\frac{24}{5}}{2x+3} \right] dx$$ Split up the integral, $$\Rightarrow -\frac{1}{10} \int \left[\frac{1}{x-1} \right] dx + \frac{5}{2} \int \left[\frac{1}{x+1} \right] dx - \frac{24}{5} \int \left[\frac{1}{2x+3} \right] dx$$ Let substitute $$u = x + 1 \Rightarrow du = dx$$ $$y = x - 1 \Rightarrow dy = dx$$ and $$z = 2x + 3 \Rightarrow dz = 2dx \Rightarrow dx = \frac{dz}{2}$$ so the above equation becomes, $$\Rightarrow -\frac{1}{10} \int \left[\frac{1}{v}\right] dy + \frac{5}{2} \int \left[\frac{1}{u}\right] du - \frac{24}{5} \int \frac{\left[\frac{1}{z}\right] dz}{2}$$ On integrating we get $$\Rightarrow -\frac{1}{10}\log|y| + \frac{5}{2}\log|u| - \frac{12}{5}\log|z| + C$$ Substituting back, we get $$\Rightarrow -\frac{1}{10}\log|x-1| + \frac{5}{2}\log|x+1| - \frac{12}{5}\log|2x+3| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\begin{split} \int \frac{2x-3}{(x^2-1)(2x+3)} dx \\ &= -\frac{1}{10} log |x-1| + \frac{5}{2} log |x+1| - \frac{12}{5} log |2x+3| + C \end{split}$$ ### 10. Question Evaluate the following integral: $$\int \frac{x^3}{(x-1)(x-2)(x-3)} dx$$ #### **Answer** First we simplify numerator, we will rewrite denominator as shown below $$\frac{x^3}{(x-1)(x-2)(x-3)} = \frac{x^3}{x^3 - 6x^2 + 11x - 6}$$ Add and subtract numerator with ($-6x^2 + 11x - 6$), we get $$\frac{x^3 - 6x^2 + 11x - 6 + (6x^2 - 11x + 6)}{x^3 - 6x^2 + 11x - 6}$$ $$\Rightarrow = 1 + \frac{6x^2 - 11x + 6}{x^3 - 6x^2 + 11x - 6}$$ $$\Rightarrow = 1 + \frac{6x^2 - 11x + 6}{(x-1)(x-2)(x-3)}$$ The denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{6x^2-11x+6}{(x-1)(x-2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{x-2}+\frac{C}{x-3}......(i)$$ $$\Rightarrow \frac{6x^2 - 11x + 6}{(x-1)(x-2)(x-3)} = \frac{A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2)}{(x-1)(x-2)(x-3)}$$ $$\Rightarrow$$ 6x² - 11x + 6 = A(x - 2)(x - 3) + B(x - 1)(x - 3) + C(x - 1)(x - 2).....(ii) We need to solve for A, B and C. One way to do this is to pick values for x which will cancel each variable. Put x = 1 in the above equation, we get $$\Rightarrow 6(1)^2 - 11(1) + 6 = A(1-2)(1-3) + B(1-1)(1-3) + C(1-1)(1-2)$$ $$\Rightarrow 1 = 2A + 0 + 0$$ $$\Rightarrow A = \frac{1}{2}$$ Now put x = 2 in equation (ii), we get $$6(2)^2 - 11(2) + 6 = A(2-2)(2-3) + B(2-1)(2-3) + C(2-1)(2-2)$$ $$\Rightarrow$$ 8 = 0 - B + 0 $$\Rightarrow$$ B = -8 Now put x = 3 in equation (ii), we get $$\Rightarrow$$ 6(3)² - 11(3) + 6 = A(3 - 2)(3 - 3) + B(3 - 1)(3 - 3) + C(3 - 1)(3 - 2) $$\Rightarrow 27 = 0 + 0 + 2C$$ $$\Rightarrow$$ C = $\frac{27}{2}$ We put the values of A, B, and C values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[1 + \frac{6x^2 - 11x + 6}{(x - 1)(x - 2)(x - 3)}\right] dx$$ $$\Rightarrow \int \left[1 + \frac{A}{(x-1)} + \frac{B}{x-2} + \frac{C}{x-3}\right] dx$$ $$\Rightarrow \int \left[1 + \frac{\frac{1}{2}}{(x-1)} + \frac{-8}{x-2} + \frac{\frac{27}{2}}{x-3} \right] dx$$ Split up the integral, $$\Rightarrow \int 1 dx + \frac{1}{2} \int \left[\frac{1}{x-1} \right] dx - 8 \int \left[\frac{1}{x-2} \right] dx + \frac{27}{2} \int \left[\frac{1}{x-3} \right] dx$$ Let substitute $$u = x - 1 \Rightarrow du = dx$$ $$y = x - 2 \Rightarrow dy = dx$$ and $z = x - 3 \Rightarrow dz = dx$, so the above equation becomes, $$\Rightarrow \int 1 dx + \frac{1}{2} \int \left[\frac{1}{u} \right] du - 8 \int \left[\frac{1}{v} \right] dy + \frac{27}{2} \int \left[\frac{1}{z} \right] dz$$ On integrating we get $$\Rightarrow x + \frac{1}{2}\log|u| - 8\log|y| + \frac{27}{2}\log|z| + C$$ Substituting back, we get $$\Rightarrow x + \frac{1}{2}\log|x - 1| - 8\log|x - 2| + \frac{27}{2}\log|x - 3| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\begin{split} \int \frac{x^3}{(x-1)(x-2)(x-3)} dx \\ &= x + \frac{1}{2} \log|x-1| - 8\log|x-2| + \frac{27}{2} \log|x-3| + C \end{split}$$ ## 11. Question Evaluate the following integral: $$\int \frac{\sin 2x}{(1+\sin x)(2+\sin x)} dx$$ ### **Answer** The denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{\sin 2x}{(1 + \sin x)(2 + \sin x)} = \frac{A}{(1 + \sin x)} + \frac{B}{2 + \sin x} \dots \dots (i)$$ $$\Rightarrow \frac{\sin 2x}{(1+\sin x)(2+\sin x)} = \frac{A(2+\sin x) + B(1+\sin x)}{(1+\sin x)(2+\sin x)}$$ $$\Rightarrow \sin 2x = A(2 + \sin x) + B(1 + \sin x) = 2A + A\sin x + B + B\sin x$$ $$\Rightarrow$$ 2 sinx cosx = sinx (A + B) + (2A + B) (ii) We need to solve for A and B. We will equate similar terms, we get. $$2A + B = 0 \Rightarrow B = -2A$$ And $A + B = 2 \cos x$ Substituting the value of B, we get $$A - 2A = 2 \cos x \Rightarrow A = -2 \cos x$$ Hence $$B = -2A = -2(-2 \cos x)$$ $$\Rightarrow$$ B = 4cos x We put the values of A and B values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[\frac{\sin 2x}{(1 + \sin x)(2 + \sin x)} \right] dx$$ $$\Rightarrow \int \left[\frac{A}{(1 + \sin x)} + \frac{B}{2 + \sin x} \right] dx$$ $$\Rightarrow \int \left[\frac{-2\cos x}{(1+\sin x)} + \frac{4\cos x}{2+\sin x} \right] dx$$ Split up the integral, $$\Rightarrow -\int \frac{2\cos x}{(1+\sin x)} dx + \int \frac{4\cos x}{2+\sin x} dx$$ Let substitute $$u = \sin x \Rightarrow du = \cos x dx$$ so the above equation becomes, $$\Rightarrow -2 \int \frac{1}{(1+u)} du + 4 \int \frac{1}{2+u} du$$ Now substitute $$v = 1 + u \Rightarrow dv = du$$ $$z = 2 + u \Rightarrow dz = du$$ So above equation becomes, $$\Rightarrow -2 \int \frac{1}{(v)} dv + 4 \int \frac{1}{z} dz$$ On integrating we get $$\Rightarrow$$ $-2 \log |v| + 4 \log |z| + C$ Substituting back, we get $$\Rightarrow$$ 4log|2 + u| - 2log|1 + u| + C $$\Rightarrow$$ 4log|2 + sinx| - 2log|1 + sinx| + C Applying logarithm rule, we get $$\Rightarrow \log |(2 + \sin x)^4| - \log |(1 + \sin x)^2| + C$$ $$\Rightarrow \log \left| \frac{(2 + \sin x)^4}{(1 + \sin x)^2} \right| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{\sin 2x}{(1 + \sin x)(2 + \sin x)} dx =
\log \left| \frac{(2 + \sin x)^4}{(1 + \sin x)^2} \right| + C$$ ## 12. Question Evaluate the following integral: $$\int \frac{2x}{(x^2 + 1)(x^2 + 3)} \, dx$$ ### **Answer** Denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{2x}{(x^2+1)(x^2+3)} = \frac{Ax+B}{(x^2+1)} + \frac{Cx+D}{x^2+3} \dots (i)$$ $$\Rightarrow \frac{2x}{(x^2+1)(x^2+3)} = \frac{(Ax+B)(x^2+3) + (Cx+D)(x^2+1)}{(x^2+1)(x^2+3)}$$ $$\Rightarrow 2x = (Ax+B)(x^2+3) + (Cx+D)(x^2+1)$$ $$\Rightarrow 2x = Ax^3 + 3Ax + Bx^2 + 3B + Cx^3 + Cx + Dx^2 + D$$ $$\Rightarrow 2x = (A+C)x^3 + (B+D)x^2 + (3A+C)x + (3B+D) \dots (ii)$$ By equating similar terms, we get $$A + C = 0 \Rightarrow A = -C \dots (iii)$$ $$B + D = 0 \Rightarrow B = -D$$(iv) $$3A + C = 2$$ $$\Rightarrow$$ 3(- C) + C = 2 (from equation(iii)) So equation(iii) becomes A = 1 And also 3B + D = 0 (from equation (ii)) $$\Rightarrow$$ 3(- D) + D = 0 (from equation (iv)) $$\Rightarrow$$ D = 0 So equation (iv) becomes, B = 0 We put the values of A, B, C and D values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[\frac{2x}{(x^2 + 1)(x^2 + 3)} \right] dx$$ $$\Rightarrow \int \left[\frac{Ax + B}{(x^2 + 1)} + \frac{Cx + D}{x^2 + 3} \right] dx$$ $$\Rightarrow \int \left[\frac{(1)x + 0}{(x^2 + 1)} + \frac{(-1)x + 0}{x^2 + 3} \right] dx$$ Split up the integral, $$\Rightarrow \int \frac{x}{(x^2+1)} dx - \int \left[\frac{x}{x^2+3} \right] dx$$ Let substitute $$u = x^2 + 1 \Rightarrow du = 2xdx \Rightarrow dx = \frac{1}{2x}du$$ $$v = x^2 + 3 \Rightarrow dv = 2xdx \Rightarrow dx = \frac{1}{2x}dv$$ so the above equation becomes, $$\Rightarrow \frac{1}{2} \int \frac{1}{(u)} du - \frac{1}{2} \int \left[\frac{1}{v} \right] dv$$ On integrating we get $$\Rightarrow \frac{1}{2}\log|\mathbf{u}| - \frac{1}{2}\log|\mathbf{v}| + C$$ Substituting back, we get $$\Rightarrow \frac{1}{2}\log|x^2 + 1| - \frac{1}{2}\log|x^2 + 3| + C$$ $$\Rightarrow \frac{1}{2}[\log|x^2 + 1| - \log|x^2 + 3|] + C$$ Applying the logarithm rule we get $$\Rightarrow \frac{1}{2} \left[\log \left| \frac{(x^2 + 1)}{x^2 + 3} \right| \right] + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{2x}{(x^2+1)(x^2+3)} dx = \frac{1}{2} \left[\log \left| \frac{(x^2+1)}{x^2+3} \right| \right] + C$$ ## 13. Question Evaluate the following integral: $$\int \frac{1}{x \log x (2 + \log x)} dx$$ ## **Answer** Let substitute $u = \log x \Rightarrow du = \frac{1}{x}dx$, so the given equation becomes $$\int \frac{1}{x \log x (2 + \log x)} dx = \int \frac{1}{u(2 + u)} du \dots (i)$$ Denominator is factorised, so let separate the fraction through partial fraction, hence let $$\frac{1}{u(2+u)} = \frac{A}{u} + \frac{B}{(2+u)} \dots (ii)$$ $$\Rightarrow \frac{1}{u(2+u)} = \frac{A(2+u) + Bu}{u(2+u)}$$ $$\Rightarrow 1 = A(2 + u) + Bu.....(ii)$$ We need to solve for A and B. One way to do this is to pick values for x which will cancel each variable. Put u = -2 in above equation, we get $$\Rightarrow 1 = A(2 + (-2)) + B(-2)$$ $$\Rightarrow 1 = -2B$$ $$\Rightarrow B = -\frac{1}{2}$$ Now put u = 0 in equation (ii), we get $$\Rightarrow 1 = A(2 + 0) + B(0)$$ $$\Rightarrow 1 = 2A + 0$$ $$\Rightarrow A = \frac{1}{2}$$ We put the values of A and B values back into our partial fractions in equation (ii) and replace this as the integrand. We get $$\int \left[\frac{1}{u(2+u)} \right] du$$ $$\Rightarrow \int \left[\frac{A}{u} + \frac{B}{(2+u)} \right] du$$ $$\Rightarrow \int \left[\frac{\frac{1}{2}}{u} + \frac{-\frac{1}{2}}{(2+u)}\right] du$$ Split up the integral, $$\Rightarrow \frac{1}{2} \int \frac{1}{u} du - \frac{1}{2} \int \left[\frac{1}{2+u} \right] du$$ Let substitute $z = 2 + u \Rightarrow dz = du$, so the above equation becomes, $$\Rightarrow \frac{1}{2} \int \frac{1}{u} du - \frac{1}{2} \int \left[\frac{1}{z}\right] dz$$ On integrating we get $$\Rightarrow \frac{1}{2}\log|\mathbf{u}| - \frac{1}{2}\log|\mathbf{z}| + C$$ Substituting back the value of z, we get $$\Rightarrow \frac{1}{2}\log|\mathbf{u}| - \frac{1}{2}\log|2 + \mathbf{u}| + C$$ Now substitute back the value of u, we get $$\Rightarrow \frac{1}{2}[\log|\log x| - \log|2 + \log x|] + C$$ Applying the rules of logarithm we get $$\Rightarrow \frac{1}{2} \log \left| \frac{\log x}{2 + \log x} \right| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence. $$\int \frac{1}{x \log x (2 + \log x)} dx = \frac{1}{2} \log \left| \frac{\log x}{2 + \log x} \right| + C$$ ## 14. Question Evaluate the following integral: $$\int \frac{x^2 + x + 1}{(x^2 + 1)(x + 2)} \, \mathrm{d}x$$ ### **Answer** Denominator is factorised, so let separate the fraction through partial fraction, hence let $$\frac{x^2 + x + 1}{(x^2 + 1)(x + 2)} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{x + 2} \dots (i)$$ $$\Rightarrow \frac{x^2 + x + 1}{(x^2 + 1)(x + 2)} = \frac{(Ax + B)(x + 2) + (Cx + D)(x^2 + 1)}{(x^2 + 1)(x + 2)}$$ $$\Rightarrow x^2 + x + 1 = (Ax + B)(x + 2) + (Cx + D)(x^2 + 1)$$ $$\Rightarrow x^2 + x + 1 = Ax^2 + 2Ax + Bx + 2B + Cx^3 + Cx + Dx^2 + D$$ $$\Rightarrow x^2 + x + 1$$ $$= Cx^3 + (A + D)x^2 + (2A + B + C)x + (2B + D) \dots (ii)$$ We need to solve for A, B, C and D. We will equate the like terms we get, C = 0......(iii) A + D = 1 $$\Rightarrow$$ A = 1 - D......(iv) 2A + B + C = 1 \Rightarrow 2(1 - D) + B + 0 = 1 (from equation (iii) and (iv)) \Rightarrow B = 2D - 1.....(v) 2B + D = 1 \Rightarrow 2(2D = 1) + D = 1 (from equation (v)) we get $$\Rightarrow$$ 2(2D - 1) + D = 1 (from equation (v), we get $$\Rightarrow 4D - 2 + D = 1$$ $$\Rightarrow$$ 5D = 3 $$\Rightarrow$$ D = $\frac{3}{5}$(vi) Equation (vi) in (v) and (iv), we get $$B = 2\left(\frac{3}{5}\right) - 1 = \frac{1}{5}$$ $$A = 1 - \frac{3}{5} = \frac{2}{5}$$ We put the values of A, B, C, and D values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[\frac{x^2 + x + 1}{(x^2 + 1)(x + 2)} \right] dx$$ $$\Rightarrow \int \left[\frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{x + 2} \right] dx$$ $$\Rightarrow \int \left[\frac{\left(\frac{2}{5}\right)x + \frac{1}{5}}{x^2 + 1} + \frac{(0)x + \frac{3}{5}}{x + 2} \right] dx$$ Split up the integral, $$\Rightarrow \frac{1}{5} \int \frac{2x}{x^2 + 1} dx + \frac{1}{5} \int \frac{1}{x^2 + 1} dx + \frac{3}{5} \int \left[\frac{1}{x + 2} \right] dx$$ Let substitute $$u = x^2 + 1 \Rightarrow du = 2xdx$$. $y = x + 2 \Rightarrow dy = dx$, so the above equation becomes, $$\Rightarrow \frac{1}{5} \int \frac{1}{u} du + \frac{1}{5} \int \frac{1}{x^2 + 1} dx + \frac{3}{5} \int \left[\frac{1}{y} \right] dy$$ On integrating we get $$\Rightarrow \frac{1}{5}log|u| + \frac{1}{5}tan^{-1}x + \frac{3}{5}log|y| + C$$ (the standard integral of $\frac{1}{x^2 + 1} = \tan^{-1} x$) Substituting back, we get $$\Rightarrow \frac{1}{5}\log|x^2 + 1| + \frac{1}{5}\tan^{-1}x + \frac{3}{5}\log|x + 2| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{x^2 + x + 1}{(x^2 + 1)(x + 2)} dx = \frac{1}{5} log|x^2 + 1| + \frac{1}{5} tan^{-1}x + \frac{3}{5} log|x + 2| + C$$ ### 15. Question Evaluate the following integral: $$\int \frac{ax^2 + bx + c}{(x - a)(x - b)(x - c)} dx$$, where a, b, c are distinct. ## **Answer** Denominator is factorised, so let separate the fraction through partial fraction, hence let $$\frac{ax^{2} + bx + c}{(x-a)(x-b)(x-c)} = \frac{A}{(x-a)} + \frac{B}{x-b} + \frac{C}{x-c} \dots (i)$$ $$\Rightarrow \frac{ax^{2} + bx + c}{(x-a)(x-b)(x-c)}$$ $$= \frac{A(x-b)(x-c) + B(x-a)(x-c) + C(x-a)(x-b)}{(x-a)(x-b)(x-c)}$$ $$\Rightarrow ax^2 + bx + c = A(x - b)(x - c) + B(x - a)(x - c) + C(x - a)(x - b).....(ii)$$ We need to solve for A, B and C. One way to do this is to pick values for x which will cancel each variable. Put x = a in the above equation, we get $$\Rightarrow a(a)^{2} + b(a) + c = A(a - b)(a - c) + B(a - a)(a - c) + C(a - a)(a - b)$$ $$\Rightarrow a^{3} + ab + c = (a - b)(a - c)A + 0 + 0$$ $$\Rightarrow A = \frac{a^3 + ab + c}{(a-b)(a-c)}$$ Now put x = b in equation (ii), we get $$\Rightarrow$$ a(b)² + b(b) + c = A(b - b)(b - c) + B(b - a)(b - c) + C(b - a)(b - b) $$\Rightarrow ab^2 + b^2 + c = 0 + (b - a)(b - c)B + 0$$ $$\Rightarrow B = \frac{a^3 + ab + c}{(a - b)(a - c)}$$ Now put x = c in equation (ii), we get $$\Rightarrow a(c)^{2} + b(c) + c = A(c-b)(c-c) + B(c-a)(c-c) + C(c-a)(c-b)$$ $$\Rightarrow$$ ac² + bc + c = 0 + 0 + (c-a)(c-b)C $$\Rightarrow C = \frac{ac^2 + bc + c}{(c-a)(c-b)}$$ We put the values of A, B, and C values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[\frac{ax^2 + bx + c}{(x-a)(x-b)(x-c)} \right] dx$$ $$\Rightarrow \int \left[\frac{A}{(x-a)} + \frac{B}{x-b} + \frac{C}{x-c} \right] dx$$ $$\Rightarrow \int \left[\frac{a^3 + ab + c}{(a-b)(a-c)} + \frac{a^3 + ab + c}{(a-b)(a-c)} + \frac{ac^2 + bc + c}{(c-a)(c-b)} \right] dx$$ Split up the integral, $$\Rightarrow \frac{a^3 + ab + c}{(a-b)(a-c)} \int \frac{1}{x-a} dx + \frac{a^3 + ab + c}{(a-b)(a-c)} \int \left[\frac{1}{x-b}\right] dx + \frac{ac^2 + bc + c}{(c-a)(c-b)} \int \left[\frac{1}{x-c}\right] dx$$ Let substitute $$u = x - a \Rightarrow du = dx$$ $$y = x - b \Rightarrow dy = dx$$ and $z = x - c \Rightarrow dz = dx$, so the above equation becomes, $$\Rightarrow \frac{a^3+ab+c}{(a-b)(a-c)} \int \frac{1}{u} du + \frac{a^3+ab+c}{(a-b)(a-c)} \int \left[\frac{1}{y}\right] dy + \frac{ac^2+bc+c}{(c-a)(c-b)} \int \left[\frac{1}{z}\right] dz$$ On integrating we get $$\Rightarrow \frac{a^3 + ab + c}{(a - b)(a - c)} \log|u| + \frac{a^3 + ab + c}{(a - b)(a - c)} \log|y| + \frac{ac^2 + bc + c}{(c - a)(c - b)} \log|z| + C$$ Substituting back, we get $$\Rightarrow \frac{a^{3} + ab + c}{(a-b)(a-c)} \log|x-a| + \frac{a^{3} + ab + c}{(a-b)(a-c)} \log|x-b| + \frac{ac^{2} + bc + c}{(c-a)(c-b)} \log|x-c| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0).
Hence, $$\int \frac{ax^2 + bx + c}{(x-a)(x-b)(x-c)} dx$$ $$= \frac{a^3 + ab + c}{(a-b)(a-c)} \log|x-a| + \frac{a^3 + ab + c}{(a-b)(a-c)} \log|x-b| + \frac{ac^2 + bc + c}{(c-a)(c-b)} \log|x-c| + C$$ ### 16. Question Evaluate the following integral: $$\int \frac{x}{(x^2+1)(x-1)} dx$$ #### Answer Denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{x}{(x^2+1)(x-1)} = \frac{Ax+B}{(x^2+1)} + \frac{Cx+D}{x-1} \dots (i)$$ $$\Rightarrow \frac{x}{(x^2+1)(x-1)} = \frac{(Ax+B)(x-1) + (Cx+D)(x^2+1)}{(x^2+1)(x-1)}$$ $$\Rightarrow x = (Ax+B)(x-1) + (Cx+D)(x^2+1)$$ $$\Rightarrow x = (Ax+B)(x-1) + (Cx+D)(x^2+1)$$ $$\Rightarrow x = Ax^2 - Ax + Bx - B + Cx^2 + Cx + Dx^2 + D$$ $$\Rightarrow x = (C) x^2 + (A+D) x^2 + (B-A+C)x + (D-B) \dots (ii)$$ By equating similar terms, we get $$C = 0$$(iii) $A + D = 0 \Rightarrow A = -D$(iv) $B - A + C = 1$ $\Rightarrow B - (-D) + 0 = 2$ (from equation(iii) and (iv)) $\Rightarrow B = 2 - D$(v) $D - B = 0 \Rightarrow D - (2 - D) = 0 \Rightarrow 2D = 2 \Rightarrow D = 1$ So equation(iv) becomes A = -1 So equation (v) becomes, B = 2 - 1 = 1 We put the values of A, B, C, and D values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\begin{split} & \int \left[\frac{x}{(x^2 + 1)(x - 1)} \right] dx \\ \Rightarrow & \int \frac{Ax + B}{(x^2 + 1)} + \frac{Cx + D}{x - 1} dx \\ \Rightarrow & \int \left[\frac{(-1)x + 1}{(x^2 + 1)} + \frac{(0)x + 1}{x - 1} \right] dx \end{split}$$ Split up the integral, $$\Rightarrow \int \frac{1}{(x^2+1)} dx - \int \frac{x}{(x^2+1)} dx + \int \left[\frac{1}{x-1}\right] dx$$ Let substitute $$u = x^2 + 1 \Rightarrow du = 2xdx \Rightarrow xdx = \frac{1}{2}du$$ $$v = x - 1 \Rightarrow dv = dx$$ so the above equation becomes, $$\Rightarrow \int \frac{1}{(x^2+1)} dx - \frac{1}{2} \int \frac{1}{(u)} du + \int \left[\frac{1}{v}\right] dv$$ On integrating we get $$\Rightarrow \tan^{-1} x - \frac{1}{2} \log|u| + \log|v| + C$$ (the standard integral of $\frac{1}{x^2 + 1} = \tan^{-1} x$) Substituting back, we get $$\Rightarrow \tan^{-1} x - \frac{1}{2} \log|x^2 + 1| + \log|x - 1| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{x}{(x^2+1)(x-1)} dx = \tan^{-1} x - \frac{1}{2} \log|x^2+1| + \log|x-1| + C$$ ## 17. Question Evaluate the following integral: $$\int \frac{1}{(x-1)(x+1)(x+2)} dx$$ ### **Answer** Denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{1}{(x-1)(x+1)(x+2)} = \frac{A}{(x-1)} + \frac{B}{x+1} + \frac{C}{x+2} \dots \dots (i)$$ $$\Rightarrow \frac{1}{(x-1)(x+1)(x+2)}$$ $$= \frac{A(x+1)(x+2) + B(x-1)(x+2) + C(x-1)(x+1)}{(x-1)(x+1)(x+2)}$$ $$\Rightarrow 1 = A(x+1)(x+2) + B(x-1)(x+2) + C(x-1)(x+1) \dots \dots (ii)$$ $$\Rightarrow 1 = A(x+1)(x+2) + B(x-1)(x+2) + C(x-1)(x+1).....(ii)$$ We need to solve for A, B and C. One way to do this is to pick values for x which will cancel each variable. Put x = 1 in the above equation, we get $$\Rightarrow 1 = A(1+1)(1+2) + B(1-1)(1+2) + C(1-1)(1+1)$$ $$\Rightarrow 1 = 6A + 0 + 0$$ $$\Rightarrow A = \frac{1}{6}$$ Now put x = -1 in equation (ii), we get $$\Rightarrow 1 = A(-1+1)(-1+2) + B(-1-1)(-1+2) + C(-1-1)(-1+1)$$ $$\Rightarrow 1 = 0 - 2B + 0$$ $$\Rightarrow B = -\frac{1}{2}$$ Now put x = -2 in equation (ii), we get $$\Rightarrow 1 = A(-2+1)(-2+2) + B(-2-1)(-2+2) + C(-2-1)(-2+1)$$ $$\Rightarrow 1 = 0 + 0 + 3C$$ $$\Rightarrow$$ C = $\frac{1}{3}$ We put the values of A, B, and C values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[\frac{1}{(x-1)(x+1)(x+2)} \right] dx$$ $$\Rightarrow \int \left[\frac{A}{(x-1)} + \frac{B}{x+1} + \frac{C}{x+2} \right] dx$$ $$\Rightarrow \int \left[\frac{\frac{1}{6}}{(x-1)} + \frac{-\frac{1}{2}}{x+1} + \frac{\frac{1}{3}}{x+2} \right] dx$$ Split up the integral, $$\Rightarrow \frac{1}{6} \int \left[\frac{1}{(x-1)} \right] dx - \frac{1}{2} \int \left[\frac{1}{x+1} \right] dx \ + \frac{1}{3} \int \left[\frac{1}{x+2} \right] dx$$ Let substitute $$u = x - 1 \Rightarrow du = dx$$ $$y = x + 1 \Rightarrow dy = dx$$ and $z = x + 2 \Rightarrow dz = dx$, so the above equation becomes, $$\Rightarrow \frac{1}{6} \int \left[\frac{1}{u} \right] du - \frac{1}{2} \int \left[\frac{1}{v} \right] dy + \frac{1}{3} \int \left[\frac{1}{z} \right] dz$$ On integrating we get $$\Rightarrow \frac{1}{6}\log|\mathbf{u}| - \frac{1}{2}\log|\mathbf{y}| + \frac{1}{3}\log|\mathbf{z}| + C$$ Substituting back, we get $$\Rightarrow \frac{1}{6}\log|x-1| - \frac{1}{2}\log|x+1| + \frac{1}{3}\log|x+2| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\begin{split} \int \frac{1}{(x-1)(x+1)(x+2)} dx \\ &= \frac{1}{6} \log|x-1| - \frac{1}{2} \log|x+1| + \frac{1}{3} \log|x+2| + C \end{split}$$ ## 18. Question Evaluate the following integral: $$\int \frac{x^2}{(x^2 + 4)(x^2 + 9)} \, dx$$ #### **Answer** Denominator is factorised, so let separate the fraction through partial fraction, hence let $$\frac{x^2}{(x^2+4)(x^2+9)} = \frac{Ax+B}{(x^2+4)} + \frac{Cx+D}{x^2+9} \dots (i)$$ $$\Rightarrow \frac{x^2}{(x^2+4)(x^2+9)} = \frac{(Ax+B)(x^2+9) + (Cx+D)(x^2+4)}{(x^2+4)(x^2+9)}$$ $$\Rightarrow x^2 = (Ax+B)(x^2+9) + (Cx+D)(x^2+4)$$ $$\Rightarrow x^2 = Ax^3 + 9Ax + Bx^2 + 9B + Cx^3 + 4Cx + Dx^2 + 4D$$ $$\Rightarrow x^2 = (A+C)x^3 + (B+D)x^2 + (9A+4C)x + (9B+4D) \dots (ii)$$ By equating similar terms, we get $$A + C = 0 \Rightarrow A = -C \dots(iii)$$ $$B + D = 1 \Rightarrow B = 1 - D....(iv)$$ $$9A + 4C = 0$$ $$\Rightarrow$$ 9(- C) + 4C = 0 (from equation(iii)) $$\Rightarrow C = 0....(v)$$ $$9B + 4D = 0 \Rightarrow 9(1-D) + 4D = 0 \Rightarrow 5D = 9 \Rightarrow D = \frac{9}{5}$$ So equation(iv) becomes $B = 1 - \frac{9}{5} = -\frac{4}{5}$ So equation (iii) becomes, A = 0 We put the values of A, B, C, and D values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \frac{x^2}{(x^2 + 4)(x^2 + 9)} dx$$ $$\Rightarrow \int \left[\frac{Ax + B}{(x^2 + 4)} + \frac{Cx + D}{x^2 + 9} \right] dx$$ $$\Rightarrow \int \left[\frac{(0)x - \frac{4}{5}}{(x^2 + 4)} + \frac{(0)x + \frac{9}{5}}{x^2 + 9} \right] dx$$ Split up the integral, $$\Rightarrow -\frac{4}{5} \int \frac{1}{(x^2+4)} dx + \frac{9}{5} \int \frac{1}{(x^2+9)} dx$$ Let substitute $$u = \frac{x}{2} \Rightarrow du = \frac{1}{2}dx \Rightarrow dx = 2du \text{ in first partthe}$$ $$v = \frac{x}{3} \Rightarrow dv = \frac{1}{3}dx \Rightarrow dx = 3dv$$ in second parthe t so the above equation becomes, $$\Rightarrow \frac{9}{5} \int \frac{3}{((3v)^2 + 9)} dv - \frac{4}{5} \int \frac{2}{((2u)^2 + 4)} du$$ $$\Rightarrow \frac{9}{5} \int \frac{3}{(9v^2 + 9)} dv - \frac{4}{5} \int \frac{2}{(4u^2 + 4)} du$$ $$\Rightarrow \frac{3}{5} \int \frac{1}{v^2 + 1} dv - \frac{2}{5} \int \frac{1}{u^2 + 1} du$$ On integrating we get $$\Rightarrow \frac{3}{5} tan^{-1}v - \frac{2}{5} tan^{-1}u + C$$ (the standard integral of $\frac{1}{x^2+1} = \tan^{-1} x$) Substituting back, we get $$\Rightarrow \frac{3}{5} \tan^{-1} \left(\frac{x}{3} \right) - \frac{2}{5} \tan^{-1} \left(\frac{x}{2} \right) + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{x^2}{(x^2+4)(x^2+9)} dx = \frac{3}{5} \tan^{-1} \left(\frac{x}{3}\right) - \frac{2}{5} \tan^{-1} \left(\frac{x}{2}\right) + C$$ ### 19. Question Evaluate the following integral: $$\int \frac{5x^2 - 1}{x(x-1)(x+1)} dx$$ #### **Answer** Denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{5x^2-1}{x(x-1)(x+1)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1} \dots (i)$$ $$\Rightarrow \frac{5x^2 - 1}{x(x - 1)(x + 1)} = \frac{A(x - 1)(x + 1) + Bx(x + 1) + Cx(x - 1)}{x(x - 1)(x + 1)}$$ $$\Rightarrow 5x^2 - 1 = A(x - 1)(x + 1) + Bx(x + 1) + Cx(x - 1).....(ii)$$ We need to solve for A, B and C. One way to do this is to pick values for x which will cancel each variable. Put x = 0 in the above equation, we get $$\Rightarrow 5(0)^2 - 1 = A(0 - 1)(0 + 1) + B(0)(0 + 1) + C(0)(0 - 1)$$ $$\Rightarrow A = 1$$ Now put x = 1 in equation (ii), we get $$\Rightarrow 5(1)^2 - 1 = A(1-1)(1+1) + B(1)(1+1) + C(1)(1-1)$$ $$\Rightarrow 4 = 0 + 2B + 0$$ $$\Rightarrow B = 2$$ Now put x = -1 in equation (ii), we get $$\Rightarrow$$ 5(-1)²-1 = A(-1-1)(-1+1) + B(-1)(-1+1) + C(-1)(-1-1) $$\Rightarrow$$ 4 = 0 + 0 + 2C We put the values of A, B, and C values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[\frac{5x^2 - 1}{x(x-1)(x+1)} \right] dx$$ $$\Rightarrow \int \left[\frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1} \right] dx$$ $$\Rightarrow \int \left[\frac{1}{x} + \frac{2}{x-1} + \frac{2}{x+1} \right] dx$$ Split up the integral, $$\Rightarrow \int \left[\frac{1}{x}\right] dx + 2 \int \left[\frac{1}{x-1}\right] dx + 2 \int \left[\frac{1}{x+1}\right] dx$$ Let substitute $$u = x - 1 \Rightarrow du = dx$$ $y = x + 1 \Rightarrow dy = dx$, so the above equation becomes, $$\Rightarrow \int \left[\frac{1}{x}\right] dx + 2 \int \left[\frac{1}{u}\right] du + 2 \int \left[\frac{1}{y}\right] dy$$ On integrating we get $$\Rightarrow \log |x| + 2\log |u| + 2\log |y| + C$$ Substituting back, we get $$\Rightarrow \log |x| + 2\log |x-1| + 2\log |x+1| + C$$ Applying logarithm rule, we get $$\Rightarrow \log |x| + \log |(x-1)^2| + \log |(x+1)^2| + C$$ $$\Rightarrow \log |x(x^2-1)^2| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{5x^2 - 1}{x(x - 1)(x + 1)} dx = \log|x(x^2 - 1)^2| + C$$ ## 20. Question Evaluate the following integral: $$\int \frac{x^2 + 6x - 8}{x^3 - 4x} dx$$ ## Answer Denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{x^2 + 6x - 8}{x^3 - 4x}$$ $$= \frac{x^2 + 6x - 8}{x(x^2 - 4)}$$ $$\frac{x^2 + 6x - 8}{x(x - 2)(x + 2)} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{x
+ 2} \dots \dots (i)$$ $$\Rightarrow \frac{x^2 + 6x - 8}{x(x - 2)(x + 2)} = \frac{A(x - 2)(x + 2) + Bx(x + 2) + Cx(x - 2)}{x(x - 2)(x + 2)}$$ $$\Rightarrow x^2 + 6x - 8 = A(x - 2)(x + 2) + Bx(x + 2) + Cx(x - 2).....(ii)$$ We need to solve for A, B and C. One way to do this is to pick values for x which will cancel each variable. Put x = 0 in the above equation, we get $$\Rightarrow 0^2 + 6(0) - 8 = A(0 - 2)(0 + 2) + B(0)(0 + 2) + C(0)(0 - 2)$$ $$\Rightarrow$$ - 8 = -4A + 0 + 0 $$\Rightarrow A = 2$$ Now put x = 2 in equation (ii), we get $$\Rightarrow$$ 2² + 6(2) - 8 = A(2 - 2)(2 + 2) + B(2)(2 + 2) + C(2)(2 - 2) $$\Rightarrow$$ 8 = 0 + 8B + 0 $$\Rightarrow B = 1$$ Now put x = -2 in equation (ii), we get $$\Rightarrow (-2)^2 + 6(-2) - 8 = A((-2) - 2)((-2) + 2) + B(-2)((-2) + 2) + C(-2)((-2) - 2)$$ $$\Rightarrow$$ - 16 = 0 + 0 + 8C $$\Rightarrow$$ C = -2 We put the values of A, B, and C values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[\frac{x^2 + 6x - 8}{x(x - 2)(x + 2)} \right] dx$$ $$\Rightarrow \int \left[\frac{A}{x} + \frac{B}{x-2} + \frac{C}{x+2} \right] dx$$ $$\Rightarrow \int \left[\frac{2}{x} + \frac{1}{x-2} + \frac{-2}{x+2} \right] dx$$ Split up the integral, $$\Rightarrow 2 \int \left[\frac{1}{x}\right] dx + \int \left[\frac{1}{x-2}\right] dx - 2 \int \left[\frac{1}{x+2}\right] dx$$ Let substitute $$u = x - 2 \Rightarrow du = dx$$ $y = x + 2 \Rightarrow dy = dx$, so the above equation becomes, $$\Rightarrow 2 \int \left[\frac{1}{x}\right] dx + \int \left[\frac{1}{u}\right] du - 2 \int \left[\frac{1}{v}\right] dy$$ On integrating we get $$\Rightarrow 2 \log |x| + \log |u| - 2 \log |y| + C$$ Substituting back, we get $$\Rightarrow \log |x| + \log |x-2| - 2\log |x+2| + C$$ Applying logarithm rule, we get $$\Rightarrow \log |x(x-2)| - \log |(x+2)^2| + C$$ $$\Rightarrow \log \left| \frac{x(x-2)}{(x+2)^2} \right| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{x^2 + 6x - 8}{x(x - 2)(x + 2)} dx = \log \left| \frac{x(x - 2)}{(x + 2)^2} \right| + C$$ ### 21. Question Evaluate the following integral: $$\int \frac{x^2 + 1}{(2x + 1)(x^2 - 1)} \, \mathrm{d}x$$ #### **Answer** Denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{x^2 + 1}{(2x + 1)(x^2 - 1)}$$ $$= \frac{x^2 + 1}{(2x + 1)(x - 1)(x + 1)}$$ $$\frac{x^2 + 1}{(2x + 1)(x - 1)(x + 1)} = \frac{A}{2x + 1} + \frac{B}{x - 1} + \frac{C}{x + 1} \dots \dots (i)$$ $$\Rightarrow \frac{x^2 + 1}{(2x + 1)(x - 1)(x + 1)}$$ $$= \frac{A(x - 1)(x + 1) + B(2x + 1)(x + 1) + C(2x + 1)(x - 1)}{(2x + 1)(x - 1)(x + 1)}$$ $$\Rightarrow x^2 + 1 = A(x - 1)(x + 1) + B(2x + 1)(x + 1) + C(2x + 1)(x - 1).....(ii)$$ We need to solve for A, B and C. One way to do this is to pick values for x which will cancel each variable. Put x = 1 in the above equation, we get $$\Rightarrow 1^{2} + 1 = A(1 - 1)(1 + 1) + B(2(1) + 1)(1 + 1) + C(2(1) + 1)(1 - 1)$$ $$\Rightarrow 2 = 0 + 6B + 0$$ $$\Rightarrow B = \frac{1}{3}$$ Now put $x = -\frac{1}{2}$ in equation (ii), we get $$\Rightarrow \left(-\frac{1}{2}\right)^{2} + 1$$ $$= A\left(\left(-\frac{1}{2}\right) - 1\right)\left(-\frac{1}{2} + 1\right) + B\left(2\left(-\frac{1}{2}\right) + 1\right)\left(-\frac{1}{2} + 1\right) + C\left(2\left(-\frac{1}{2}\right) + 1\right)\left(-\frac{1}{2} - 1\right)$$ $$\Rightarrow \frac{5}{4} = -\frac{3}{4}A + 0 + 0$$ $$\Rightarrow A = -\frac{5}{3}$$ Now put x = -1 in equation (ii), we get $$\Rightarrow (-1)^2 + 1 = A(-1-1)(-1+1) + B(2(-1)+1)(-1+1) + C(2(-1)+1)(-1-1)$$ $$\Rightarrow$$ 2 = 0 + 0 + 2C We put the values of A, B, and C values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \left[\frac{x^2 + 1}{(2x + 1)(x - 1)(x + 1)} \right] dx$$ $$\Rightarrow \int \left[\frac{A}{2x+1} + \frac{B}{x-1} + \frac{C}{x+1} \right] dx$$ $$\Rightarrow \int \left[\frac{-\frac{5}{3}}{2x+1} + \frac{\frac{1}{3}}{x-1} + \frac{1}{x+1} \right] dx$$ Split up the integral, $$\Rightarrow -\frac{5}{3} \int \left[\frac{1}{2x+1} \right] dx + \frac{1}{3} \int \left[\frac{1}{x-1} \right] dx + \int \left[\frac{1}{x+1} \right] dx$$ Let substitute $$u = x - 1 \Rightarrow du = dx$$ $$y = x + 1 \Rightarrow dy = dx$$ and $z = 2x + 1 \Rightarrow dz = 2dx$ so the above equation becomes, $$\Rightarrow -\frac{5}{3} \int \frac{\left[\frac{1}{z}\right] dz}{2} + \frac{1}{3} \int \left[\frac{1}{u}\right] du + \int \left[\frac{1}{y}\right] dy$$ On integrating we get $$\Rightarrow -\frac{5}{6}\log|z| + \frac{1}{3}\log|u| + \log|y| + C$$ Substituting back, we get $$\Rightarrow -\frac{5}{6}\log|2x + 1| + \frac{1}{3}\log|x - 1| + \log|x + 1| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{x^2 + 1}{(2x + 1)(x^2 - 1)} dx$$ $$= -\frac{5}{6} \log|2x + 1| + \frac{1}{3} \log|x - 1| + \log|x + 1| + C$$ ### 22. Question Evaluate the following integral: $$\int \frac{1}{x \left\{ 6 \left(\log x \right)^2 + 7 \log x + 2 \right\}} \, dx$$ ## Answer Let substitute $u = \log x \Rightarrow du = \frac{1}{x} dx$, so the given equation becomes $$\int \frac{1}{x\{6(\log x)^2 + 7\log x + 2\}} dx = \int \frac{1}{\{6u^2 + 7u + 2\}} du \dots (i)$$ Factorizing the denominator, we get $$\int \frac{1}{(2u+1)(3u+2)} du$$ The denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{1}{(2u+1)(3u+2)} = \frac{A}{2u+1} + \frac{B}{(3u+2)} \dots \dots (ii)$$ $$\Rightarrow \frac{1}{(2u+1)(3u+2)} = \frac{A(3u+2) + B(2u+1)}{(2u+1)(3u+2)}$$ $$\Rightarrow 1 = A(3u + 2) + B(2u + 1).....(ii)$$ We need to solve for A and B. One way to do this is to pick values for x which will cancel each variable. Put $u = -\frac{2}{3}$ in the above equation, we get $$\Rightarrow 1 = A\left(3\left(-\frac{2}{3}\right) + 2\right) + B\left(2\left(-\frac{2}{3}\right) + 1\right)$$ $$\Rightarrow 1 = -\frac{1}{3}B$$ $$\Rightarrow$$ B = -3 Now put $u = -\frac{1}{2}$ in equation (ii), we get $$\Rightarrow 1 = A\left(3\left(-\frac{1}{2}\right) + 2\right) + B\left(2\left(-\frac{1}{2}\right) + 1\right)$$ $$\Rightarrow 1 = \frac{1}{2}A$$ $$\Rightarrow A = 2$$ We put the values of A and B values back into our partial fractions in equation (ii) and replace this as the integrand. We get $$\int \left[\frac{1}{(2u+1)(3u+2)} \right] du$$ $$\Rightarrow \int \left[\frac{A}{2u+1} + \frac{B}{(3u+2)} \right] du$$ $$\Rightarrow \int \left[\frac{2}{2u+1} + \frac{-3}{(3u+2)} \right] du$$ Split up the integral, $$\Rightarrow 2 \int \frac{1}{2u+1} du - 3 \int \left[\frac{1}{3u+2} \right] du$$ Let substitute $z = 2u + 1 \Rightarrow dz = 2du$ and $y = 3u + 2 \Rightarrow dy = 3du$ so the above equation becomes, $$\Rightarrow \int \frac{1}{z} dz - \int \left[\frac{1}{v}\right] dy$$ On integrating we get $$\Rightarrow \log|z| - \log|y| + C$$ Substituting back the value of z, we get $$\Rightarrow \log|2u + 1| - \log|3u + 2| + C$$ Now substitute back the value of u, we get $$\Rightarrow \log |2(\log x) + 1| - \log |3(\log x) + 2| + C$$ Applying the rules of logarithm we get $$\Rightarrow \log \left| \frac{2(\log x) + 1}{3(\log x) + 2} \right| + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence. $$\int \frac{1}{x\{6(\log x)^2 + 7\log x + 2\}} dx = \log \left| \frac{2(\log x) + 1}{3(\log x) + 2} \right| + C + C$$ ## 23. Question Evaluate the following integral: $$\int\!\!\frac{1}{x\left(x^n+1\right)}\,dx$$ ### **Answer** $$\frac{1}{v(v^{ll}+1)}$$ Multiply numerator and denominator by x^{n-1} , we get $$\int \frac{1}{x(x^n+1)} dx \Rightarrow \int \frac{x^{n-1}}{x(x^n+1)x^{n-1}} dx \Rightarrow \int \frac{x^{n-1}}{x^n(x^n+1)} dx$$ Let $$x^n = t \Rightarrow nx^{n-1}dx = dt$$ So the above equation becomes, $$\int \frac{x^{n-1}}{x^n(x^n+1)} dx \Rightarrow \frac{1}{n} \int \frac{1}{t(t+1)} dt$$ The denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{1}{t(t+1)} = \frac{A}{t} + \frac{B}{t+1} \dots (i)$$ $$\Rightarrow \frac{1}{t(t+1)} = \frac{A(t+1) + Bt}{t(t+1)}$$ $$\Rightarrow$$ 1 = A(t + 1) + Bt.....(ii) Put t = 0 in above equations we get $$1 = A(0 + 1) + B(0)$$ $$\Rightarrow A = 1$$ Now put t = -1 in equation (ii) we get $$1 = A(-1+1) + B(-1)$$ $$\Rightarrow$$ B = -1 We put the values of A and B values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \frac{x^{n-1}}{x^n(x^n+1)} dx \Rightarrow \frac{1}{n} \int \frac{1}{t(t+1)} dt$$ $$\Rightarrow \frac{1}{n} \int \left[\frac{A}{t} + \frac{B}{t+1} \right] dt$$ $$\Rightarrow \frac{1}{n} \int \left[\frac{1}{t} + \frac{-1}{t+1} \right] dt$$ Split up the integral, $$\Rightarrow \frac{1}{n} \left[\int \frac{1}{t} dt - \int \frac{1}{t+1} dt \right]$$ Let substitute $u = t + 1 \Rightarrow du = dt$, so the above equation becomes, $$\Rightarrow \frac{1}{n} \left[\int \frac{1}{t} dt - \int \frac{1}{u} du \right]$$ On integrating we get $$\Rightarrow \frac{1}{n}[\log t - \log u] + C$$ Substituting back the values of u, we get $$\Rightarrow \frac{1}{n}[\log|t| - \log(|t+1|)] + C$$ Substituting back the values of t, we get $$\Rightarrow \frac{1}{n}[\log|x^n| - \log|x^n + 1|] + C$$ Applying the logarithm rules, we get $$\Rightarrow \frac{1}{n} \left[\log \left| \frac{x^n}{x^n + 1} \right| \right] + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{1}{x(x^n+1)} dx = \frac{1}{n} \left[\log \left| \frac{x^n}{x^n+1} \right| \right] + C$$ ## 24. Question Evaluate the following integral: $$\int \frac{x}{\left(x^2 - a^2\right)\left(x^2 - b^2\right)} dx$$ ## **Answer** Denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{x}{(x^2-a^2)(x^2-b^2)} = \frac{Ax+B}{(x^2-a^2)} + \frac{Cx+D}{(x^2-b^2)} \dots \dots (i)$$ $$\Rightarrow \frac{x}{(x^2 - a^2)(x^2 - b^2)} = \frac{(Ax + B)(x^2 - b^2) + (Cx + D)(x^2 - a^2)}{(x^2 - a^2)(x^2 - b^2)}$$
$$\Rightarrow x = (Ax + B)(x^2 - b^2) + (Cx + D)(x^2 - a^2)$$ $$\Rightarrow x = Ax^3 - Ab^2x + Bx^2 - b^2B + Cx^3 - a^2Cx + Dx^2 - a^2D$$ $$\Rightarrow x = (A + C)x^3 + (B + D)x^2 + (-Ab^2 - Ca^2)x + (-b^2B - a^2D).....(ii)$$ By equating similar terms, we get $$A + C = 0 \Rightarrow A = -C \dots(iii)$$ $$B + D = 0 \Rightarrow B = -D....(iv)$$ $$- Ab^2 - Ca^2 = 1$$ $$\Rightarrow$$ - (- C)b² - Ca² = 1 (from equation(iii)) $$\Rightarrow$$ C = $\frac{1}{b^2-a^2}$(v) $$-b^{2}B - a^{2}D = 0$$ $$\Rightarrow$$ - b²(- D) - a²D = 0 $$\Rightarrow D = 0$$ So equation(iv) becomes B = 0 So equation (iii) becomes, $$A = -\frac{1}{b^2-a^2}$$ We put the values of A, B, C, and D values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \frac{x}{(x^2-a^2)(x^2-b^2)} dx$$ $$\Rightarrow \int \left[\frac{Ax + B}{(x^2 - a^2)} + \frac{Cx + D}{(x^2 - b^2)} \right] dx$$ $$\Rightarrow \int \left[\frac{\left(-\frac{1}{b^2 - a^2} \right) x + 0}{(x^2 - a^2)} + \frac{\left(\frac{1}{b^2 - a^2} \right) x + 0}{(x^2 - b^2)} \right] dx$$ Split up the integral, $$\Rightarrow \ -\frac{1}{b^2-a^2}\!\int\!\frac{1}{(x^2-a^2)}dx \ + \frac{1}{b^2-a^2}\!\int\!\frac{1}{(x^2-b^2)}dx$$ Let substitute $$u = x^2 - a^2 \Rightarrow du = 2dx$$ $v = x^2 - b^2 \Rightarrow dv = 2dx$, so the above equation becomes, $$\Rightarrow -\frac{1}{b^2 - a^2} \int \frac{\frac{1}{u} du}{2} + \frac{1}{b^2 - a^2} \int \frac{\frac{1}{v} dv}{2}$$ $$\Rightarrow -\frac{1}{2(b^2 - a^2)} \int \frac{1}{u} du + \frac{1}{2(b^2 - a^2)} \int \frac{1}{v} dv$$ On integrating we get $$\Rightarrow -\frac{1}{2(b^2 - a^2)} \log|u| + \frac{1}{2(b^2 - a^2)} \log|v| + C$$ Substituting back, we get $$\Rightarrow \frac{1}{2(b^2 - a^2)} [\log |x^2 - b^2| - \log |x^2 - a^2|] + C$$ Applying the logarithm rule we get $$\Rightarrow \frac{1}{2(b^2 - a^2)} \left[\log \left| \frac{x^2 - b^2}{x^2 - a^2} \right| \right] + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence, $$\int \frac{x}{(x^2-a^2)(x^2-b^2)} dx \, = \, \frac{1}{2(b^2-a^2)} \bigg[log \bigg| \frac{x^2-b^2}{x^2-a^2} \bigg| \bigg] \, + \, C$$ ## 25. Question Evaluate the following integral: $$\int \frac{x^2 + 1}{(x^2 + 4)(x^2 + 25)} \, dx$$ #### **Answer** Denominator is factorized, so let separate the fraction through partial fraction, hence let $$\frac{x^{2} + 1}{(x^{2} + 4)(x^{2} + 25)} = \frac{Ax + B}{(x^{2} + 4)} + \frac{Cx + D}{x^{2} + 25} \dots (i)$$ $$\Rightarrow \frac{x^{2} + 1}{(x^{2} + 4)(x^{2} + 25)} = \frac{(Ax + B)(x^{2} + 25) + (Cx + D)(x^{2} + 4)}{(x^{2} + 4)(x^{2} + 25)}$$ $$\Rightarrow x^{2} + 1 = (Ax + B)(x^{2} + 25) + (Cx + D)(x^{2} + 4)$$ $$\Rightarrow x^{2} + 1 = Ax^{3} + 25Ax + Bx^{2} + 25B + Cx^{3} + 4Cx + Dx^{2} + 4D$$ $$\Rightarrow x^{2} + 1 = (A + C)x^{3} + (B + D)x^{2} + (25A + 4C)x + (25B + 4D) \dots (ii)$$ By equating similar terms, we get $$A + C = 0 \Rightarrow A = -C \dots (iii)$$ $$B + D = 1 \Rightarrow B = 1 - D....(iv)$$ $$25A + 4C = 0$$ $$\Rightarrow$$ 25(- C) + 4C = 0 (from equation(iii)) $$\Rightarrow$$ C = 0....(v) $$25B + 4D = 1 \Rightarrow 25(1-D) + 4D = 1 \Rightarrow 21D = 24 \Rightarrow D = \frac{24}{21} = \frac{8}{7}$$ So equation(iv) becomes $B=1-\frac{8}{7}=-\frac{1}{7}$ So equation (iii) becomes, A = 0 We put the values of A, B, C, and D values back into our partial fractions in equation (i) and replace this as the integrand. We get $$\int \frac{x^2 + 1}{(x^2 + 4)(x^2 + 25)} dx$$ $$\Rightarrow \int \left[\frac{Ax + B}{(x^2 + 4)} + \frac{Cx + D}{x^2 + 25} \right] dx$$ $$\Rightarrow \int \left[\frac{(0)x - \frac{1}{7}}{(x^2 + 4)} + \frac{(0)x + \frac{8}{7}}{x^2 + 25} \right] dx$$ Split up the integral, $$\Rightarrow -\frac{1}{7} \int \frac{1}{(x^2 + 4)} dx + \frac{8}{7} \int \frac{1}{(x^2 + 25)} dx$$ Let substitute $$u = \frac{x}{2} \Rightarrow du = \frac{1}{2}dx \Rightarrow dx = 2du \text{ in first partthe}$$ $$v = \frac{x}{5} \Rightarrow dv = \frac{1}{5}dx \Rightarrow dx = 5dv$$ in second parthe t so the above equation becomes, $$\Rightarrow \frac{8}{7} \int \frac{5}{((5v)^2 + 25)} dv - \frac{1}{7} \int \frac{2}{((2u)^2 + 4)} du$$ $$\Rightarrow \frac{8}{7} \int \frac{5}{(25v^2 + 25)} dv - \frac{1}{7} \int \frac{2}{(4u^2 + 4)} du$$ $$\Rightarrow \frac{8}{35} \int \frac{1}{v^2 + 1} dv - \frac{1}{14} \int \frac{1}{u^2 + 1} du$$ On integrating we get $$\Rightarrow \frac{8}{35} \tan^{-1} v - \frac{1}{14} \tan^{-1} u + C$$ (the standard integral of $\frac{1}{x^2 + 1} = \tan^{-1} x$) Substituting back, we get $$\Rightarrow \frac{8}{35} \tan^{-1} \left(\frac{x}{5} \right) - \frac{1}{14} \tan^{-1} \left(\frac{x}{2} \right) + C$$ Note: the absolute value signs account for the domain of the natural log function (x>0). Hence. $$\int \frac{x^2 + 1}{(x^2 + 4)(x^2 + 25)} dx = \frac{8}{35} \tan^{-1} \left(\frac{x}{5}\right) - \frac{1}{14} \tan^{-1} \left(\frac{x}{2}\right) + C$$ ## 26. Question Evaluate the following integral: $$\int \frac{x^3 + x + 1}{x^2 - 1}$$ ## Answer Let $$I = \int \frac{x^3 + x + 1}{x^2 - 1} dx = \int \left(x + \frac{2x + 1}{x^2 - 1}\right) dx$$ Now, Let $$\frac{2x+1}{x^2-1} = \frac{A}{x+1} + \frac{B}{x-1}$$ $$2x + 1 = A(x - 1) + B(x + 1)$$ Put $$x = 1$$ $$2 + 1 = A \times 0 + B \times 2$$ $$3 = 2B$$ $$B = \frac{3}{2}$$ Put $$x = -1$$ $$-2 + 1 = -2A + B \times 0$$ $$-1 = -2A$$ $$A = \frac{1}{2}$$ $$I = \int x dx + \frac{1}{2} \int \frac{dx}{x+1} + \frac{3}{2} \int \frac{dx}{x-1}$$ $$\int \frac{dx}{x} = \log|x| \text{ and } \int x dx = \frac{x^2}{2}$$ Therefore, $$I = \frac{x^2}{2} + \frac{1}{2}log|x + 1| + \frac{3}{2}log|x - 1| + c$$ ## 27. Question Evaluate the following integral: $$\int \frac{3x-2}{(x+1)^2(x+3)}$$ ## Answer $$I = \int \frac{3x - 2}{(x + 1)^2 (x + 3)} dx$$ $$\frac{3x-2}{(x+1)^2(x+3)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{c}{x+3}$$ $$3x - 2 = A(x + 1)(x + 3) + B(x + 3) + C(x + 1)^{2}$$ Put $$x = -1$$ $$-3-2 = A \times 0 + B \times (-1+3) + C \times 0$$ $$-5 = 2B$$ $$B = -\frac{5}{2}$$ Put $$x = -3$$ $$-9-2 = C \times (-2)(-2)$$ $$-11 = 4C$$ $$C = -\frac{11}{4}$$ Equating coefficients of constants $$-2 = 3A + 3B + C$$ $$-2 = 3A + 3 \times \frac{-5}{2} - \frac{11}{4}$$ $$A = \frac{11}{4}$$ Thus, $$I = \frac{11}{4} \int \frac{dx}{x+1} - \frac{5}{2} \int \frac{dx}{(x+1)^2} - \frac{11}{4} \int \frac{dx}{x+3}$$ $$I = \frac{11}{4} \log|x + 1| - \frac{5}{2(x + 1)} - \frac{11}{4} \log|x + 3| + C$$ ## 28. Question Evaluate the following integral: $$\int \frac{2x+1}{(x+2)(x-3)^2}$$ ### **Answer** $$I = \int \frac{2x + 1}{(x + 2)(x - 3)^2} dx$$ $$\frac{2x+1}{(x+2)(x-3)^2} = \frac{A}{x+2} + \frac{B}{x-3} + \frac{c}{(x-3)^2}$$ $$2x + 1 = A(x - 3)^2 + B(x + 2)(x - 3) + C(x + 2)$$ $$2x + 1 = Ax^2 - 3Ax + 9A + Bx^2 - 5Bx - 6B + Cx + 2C$$ Put $$x = 3$$ $$7 = 5C$$ $$C = \frac{7}{5}$$ Put $$x = -2$$ $$-3 = 0A$$ $$-11 = 4C$$ $$C = -\frac{11}{4}$$ Equating coefficients of constants $$-2 = 3A + 3B + C$$ $$-2 = 3A + 3 \times \frac{-5}{2} - \frac{11}{4}$$ $$A = \frac{11}{4}$$ Thus, $$I \, = \, \frac{11}{4} \int \frac{dx}{x \, + \, 1} - \frac{5}{2} \int \frac{dx}{(x \, + \, 1)^2} - \frac{11}{4} \int \frac{dx}{x \, + \, 3}$$ $$I = \frac{11}{4} \log|x + 1| - \frac{5}{2(x + 1)} - \frac{11}{4} \log|x + 3| + C$$ ## 29. Question Evaluate the following integral: $$\int \frac{x^2 + 1}{\left(x - 2\right)^2 \left(x + 3\right)} \, dx$$ ## **Answer** $$I = \int \frac{x^2 + 2}{(x-2)^2(x+3)} \, dx$$ $$\frac{x^2+2}{(x-2)^2(x+3)} = \frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{c}{x+3}$$ $$X^{2} + 1 = A(x - 2)(x + 3) + B(x + 3) + C(x - 2)^{2}$$ Put $$x = 2$$ $$4 + 1 = B \times 5$$ $$5 = 5B$$ $$B = \frac{5}{5} = 1$$ Put $$x = -3$$ $$10 = C \times 25$$ $$C = \frac{10}{25} = \frac{2}{5}$$ Equating coefficients of constants $$1 = -6A + 3B + 4C$$ $$1 = -6A + 3 + \frac{8}{5}$$ $$A = \frac{3}{5}$$ Thus $$I = \frac{3}{5} \int \frac{dx}{x-2} - \int \frac{dx}{(x-2)^2} - \frac{2}{5} \int \frac{dx}{x+3}$$ $$I = \frac{3}{5}\log|x-2| - \frac{1}{(x-2)} + \frac{2}{5}\log|x+3| + C$$ ### 30. Question Evaluate the following integral: $$\int \frac{x}{(x-1)^2(x+2)} dx$$ # **Answer** $$I = \int \frac{x}{(x-1)^2(x+2)} dx$$ $$\frac{x}{(x-1)^2(x+2)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{c}{x+2}$$ $$x = A(x-1)(x+2) + B(x+2) + C(x-1)^{2}$$ Put $$x = -2$$ $$-2 = 9C$$ $$C = -\frac{2}{9}$$ Put $$x = 1$$ $$1 = 3B$$ $$B = \frac{1}{3}$$ Equating coefficients of constants $$0 = -2A + 2B + C$$ $$0 = -2A + 2 * \frac{1}{3} - \frac{2}{9}$$ $$A = \frac{2}{9}$$ Thus, $$I = \frac{2}{9} \int \frac{dx}{x-1} + \frac{1}{3} \int \frac{dx}{(x-1)^2} - \frac{2}{9} \int \frac{dx}{x+2}$$ $$I = \frac{2}{9}\log|x-1| + \frac{1}{3}\left(\frac{-1}{(x-1)}\right) - \frac{2}{9}\log|x+2| + C$$ $$= \frac{2}{9} \log \left| \frac{x-1}{x+2} \right| - \frac{1}{3(x-1)} + C$$ ## 31. Question Evaluate the following integral: $$\int \frac{x^2}{(x-1)(x+1)^2} dx$$ ## Answer $$I = \int \frac{x^2}{(x-1)(x+1)^2} \, dx$$ $$\frac{x^2}{(x-1)(x+1)^2} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$$ $$x^2 = A(x + 1)^2 + B(x-1)(x + 1) + C(x-1)$$ Put $$x = 1$$ $$1 = 4A$$ $$A = \frac{1}{4}$$ Put $$x = -1$$ $$1 = -2C$$ $$C = -\frac{1}{2}$$ Equating coefficients of x^2 $$1 = A + B$$ $$1 = \frac{1}{4} + B$$ $$B = \frac{3}{4}$$ Thus, $$I = \frac{1}{4} \int \frac{dx}{x-1} + \frac{3}{4} \int \frac{dx}{x+1} - \frac{1}{2} \int \frac{dx}{(x+1)^2}$$ $$I = \frac{1}{4}\log|x-1| + \frac{3}{4}\log|x+1| + \frac{1}{2(x+1)} + C$$ ## 32. Question Evaluate the following integral: $$\int \frac{x^2 + x - 1}{\left(x + 1\right)^2 \left(x + 2\right)} \, dx$$ #### **Answer** $$I = \int \frac{x^2 + x - 1}{(x + 1)^2 (x + 2)} dx$$ $$\frac{x^2 + x - 1}{(x + 1)^2(x + 2)} = \frac{A}{x + 1} + \frac{B}{(x + 1)^2} + \frac{c}{x + 2}$$ $$X^2 + x - 1 = A(x + 1)(x + 2) + B(x + 2) + C(x + 1)^2$$ Put $$x = -2$$ $$C = 1$$ Put $$x = -1$$ $$-1 = B$$ $$B = -1$$ Equating coefficients of constants $$-1 = 2A + 2B + C$$ $$-1 = 2A - 2 + 1$$ $$A = 0$$ Thus, $$I = 0 \times \int \frac{dx}{x+1} + (-1) \int \frac{dx}{(x+1)^2} + \int \frac{dx}{x+2}$$ $$I = -\left(\frac{-1}{(x+1)}\right) + \log|x+2| + C$$ $$=
\left(\frac{1}{(x+1)}\right) + \log|x+2| + C$$ Evaluate the following integral: $$\int \frac{2x^2 + 7x - 3}{x^2 (2x + 1)} dx$$ #### **Answer** $$I = \int \frac{2x^2 + 7x - 3}{x^2(2x + 1)} dx$$ $$\frac{2x^2 + 7x - 3}{x^2(2x + 1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{2x + 1}$$ $$2x^2 + 7x - 3 = Ax(2x + 1) + B(2x + 1) + Cx^2$$ **Equating constants** $$-3 = B$$ Equating coefficients of x $$7 = A + 2B$$ $$7 = A - 6$$ $$A = 13$$ Equating coefficients of x^2 $$2 = 2A + C$$ $$2 = 26 + C$$ $$C = -24$$ Thus, $$I = \int \frac{13 dx}{x} - \int \frac{3 dx}{x^2} - 24 \int \frac{dx}{2x + 1}$$ $$I = 13 \log|x| + \frac{3}{x} - 12 \log|2x + 1| + C$$ ## 34. Question Evaluate the following integral: $$\int \frac{5x^2 + 20x + 6}{x^3 + 2x^2 + x} dx$$ #### **Answer** $$I = \int \frac{5x^2 + 20x + 6}{x^3 + 2x^2 + x} = \int \frac{5x^2 + 20x + 6}{x(x+1)^2}$$ $$\frac{5x^2 + 20x + 6}{x(x+1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$$ $$5x^2 + 20x + 6 = A(x + 1)^2 + Bx(x + 1) + Cx$$ **Equating constants** $$6 = A$$ Equating coefficients of x^2 $$5 = A + B$$ $$B = -1$$ Equating coefficients of x $$20 = 2A + B + C$$ $$20 = 12 - 1 + C$$ $$C = 9$$ $$I = \int \frac{6dx}{x} - \int \frac{dx}{x+1} + 9 \int \frac{dx}{(x+1)^2}$$ $$I = 6 \log |x| - \log |x + 1| - \frac{9}{x + 1} + C$$ ## 35. Question Evaluate the following integral: $$\int \frac{18}{(x+2)(x^2+4)} dx$$ #### **Answer** $$I = \int \frac{18}{(x+2)(x^2+4)}$$ $$\frac{18}{(x+2)(x^2+4)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+4}$$ $$18 = A(x^2 + 4) + (Bx + C)(x + 2)$$ **Equating constants** $$18 = 4A + 2C$$ Equating coefficients of x $$0 = 2B + C$$ Equating coefficients of x^2 $$0 = A + B$$ Solving, we get $$A = \frac{9}{4}$$, $B = -\frac{9}{4}$, $C = \frac{9}{2}$ Thus, $$I = \frac{9}{4} \int \frac{dx}{x+2} + (-\frac{9}{4}) \int \frac{xdx}{x^2+4} + \frac{9}{2} \int \frac{dx}{x^2+4}$$ $$I = \frac{9}{4} \log|x + 2| - \frac{9}{8} \log|x^2 + 4| + \frac{9}{4} \tan^{-1} \left(\frac{x}{2}\right) + C$$ ## 36. Question Evaluate the following integral: $$\int \frac{5}{\left(x^2+1\right)\left(x+2\right)} dx$$ #### **Answer** $$I = \int \frac{5}{(x^2 + 1)(x + 2)}$$ $$\frac{5}{(x^2+1)(x+2)} = \frac{Ax+B}{x^2+1} + \frac{C}{x+2}$$ $$5 = (Ax + B)(x + 2) + C(x^2 + 1)$$ **Equating constants** $$5 = 2B + C$$ Equating coefficients of x $$0 = 2A + B$$ Equating coefficients of x² $$0 = A + C$$ Solving, we get $$A = -1, B = 2, C = 1$$ Thus $$I = \int \frac{-x + 2}{x^2 + 1} dx + \int \frac{dx}{x + 2}$$ $$=\int \frac{-xdx}{x^2+1} + 2\int \frac{dx}{x^2+1} + \int \frac{dx}{x+2}$$ $$I = -\frac{1}{2}\log|x^2 + 1| + 2\tan^{-1}x + \log|x + 2| + C$$ ## 37. Question Evaluate the following integral: $$\int \frac{x}{(x+1)(x^2+1)} dx$$ ## Answer $$I = \int \frac{x}{(x+1)(x^2+1)}$$ $$\frac{x}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1}$$ $$x = A(x^2 + 1) + (Bx + C)(x + 1)$$ **Equating constants** $$0 = A + C$$ Equating coefficients of x $$1 = B + C$$ Equating coefficients of x^2 $$0 = A + B$$ Solving, we get $$A = -\frac{1}{2} B = \frac{1}{2} C = \frac{1}{2}$$ Thus $$I = -\frac{1}{2} \int \frac{dx}{x+1} + \frac{1}{2} \int \frac{xdx}{x^2+1} + \frac{1}{2} \int \frac{dx}{x^2+1}$$ $$I = -\frac{1}{2}\log|x + 1| + \frac{1}{4}\log|x^2 + 1| + \frac{1}{2}\tan^{-1}x + C$$ ## 38. Question Evaluate the following integral: $$\int \frac{1}{1+x+x^2+x^3} \, \mathrm{d}x$$ #### **Answer** $$I = \int \frac{1}{1 + x + x^2 + x^3} = \int \frac{dx}{(x^2 + 1)(x + 1)}$$ $$\frac{1}{(x^2+1)(x+1)} = \frac{Ax+B}{x^2+1} + \frac{C}{x+1}$$ $$1 = (Ax + B)(x + 1) + C(x^2 + 1)$$ **Equating constants** $$1 = B + C$$ Equating coefficients of x $$0 = A + B$$ Equating coefficients of x^2 $$0 = A + C$$ Solving, we get $$A = -\frac{1}{2}B = \frac{1}{2}C = \frac{1}{2}$$ Thus $$I \, = \, -\frac{1}{2} \! \int \! \frac{x dx}{x^2 \, + \, 1} \, + \, \frac{1}{2} \! \int \! \frac{dx}{x^2 \, + \, 1} \, + \, \frac{1}{2} \! \int \! \frac{dx}{x \, + \, 1}$$ $$I = -\frac{1}{4}log|x^{2} + 1| + \frac{1}{2}tan^{-1}x + \frac{1}{2}log|x + 1| + C$$ ## 39. Question Evaluate the following integral: $$\int \frac{1}{\left(x+1\right)^{2} \left(x^{2}+1\right)} dx$$ ## **Answer** $$I = \frac{1}{(x+1)^2(x^2+1)}$$ $$\frac{1}{(x+1)^2(x^2+1)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2+1}$$ $$1 = A(x + 1)(x^2 + 1) + B(x^2 + 1) + (Cx + D)(x + 1)^2$$ $$= Ax^3 + Ax^2 + Ax + A + Bx^2 + B + Cx^3 + 2Cx^2 + Cx + Dx^2 + 2D + D$$ $$= (A + C)x^3 + (A + B + 2C + D)x^2 + (A + C + 2D)x + (A + B + D)$$ Equating constants $$1 = A + B + D$$ Equating coefficients of x^3 $$0 = A + C$$ Equating coefficients of x^2 $$0 = A + B + 2C + D$$ Equating coefficients of x $$0 = A + C + 2D$$ Solving we get $$A = \frac{1}{2}B = \frac{1}{2}C = -\frac{1}{2}D = 0$$ Thus, $$I = \frac{1}{2} \int \frac{dx}{x+1} + \frac{1}{2} \int \frac{dx}{(x+1)^2} - \frac{1}{2} \int \frac{dx}{x^2+1}$$ $$I = \frac{1}{2}log|x + 1| - \frac{1}{2(x + 1)} - \frac{1}{4}log|x^{2} + 1| + C$$ ### 40. Question Evaluate the following integral: $$\int \frac{2x}{x^3-1} dx$$ ## Answer $$I = \int \frac{2x}{x^3 - 1} dx = \int \frac{2x}{(x - 1)(x^2 + x + 1)} dx$$ $$\frac{2x}{(x-1)(x^2+x+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$$ $$2x = A(x^2 + x + 1) + (Bx + C)(x - 1)$$ $$= (A + B)x^2 + (A - B + C)x + (A - C)$$ Equating constants, $$A - C = 0$$ Equating coefficients of x $$2 = A - B + C$$ Equating coefficients of x^2 $$0 = A + B$$ On solving, We get $$A = \frac{2}{3}B = -\frac{2}{3}C = \frac{2}{3}$$ $$I = \frac{2}{3}\int \frac{dx}{x-1} - \frac{2}{3}\int \frac{(x-1)dx}{x^2 + x + 1}$$ $$= \frac{2}{3}\int \frac{dx}{x-1} - \frac{2}{3} \cdot \frac{1}{2}\int \frac{(2x-2)dx}{x^2 + x + 1}$$ $$= \frac{2}{3}\int \frac{dx}{x-1} - \frac{1}{3}\int \frac{(2x+1)dx}{x^2 + x + 1} + \int \frac{dx}{x^2 + x + 1}$$ $$= \frac{2}{3}\int \frac{dx}{x-1} - \frac{1}{3}\int \frac{(2x+1)dx}{x^2 + x + 1} + \int \frac{dx}{(x+\frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2}$$ $= \frac{2}{3}\log|x-1| - \frac{1}{3}\log|x^2 + x + 1| + \frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{2x+1}{\sqrt{3}}\right) + C$ # 41. Question Evaluate the following integral: $$\int \frac{1}{\left(x^2+1\right)\left(x^2+4\right)} dx$$ ## **Answer** $$I = \int \frac{1}{(x^2 + 1)(x^2 + 4)} dx$$ $$\frac{1}{(x^2 + 1)(x^2 + 4)} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{x^2 + 4}$$ $$1 = (Ax + B)(x^2 + 4) + (Cx + D)(x^2 + 1)$$ $$= (A + C) x^3 + (B + D)x^2 + (4A + C)x + 4B + D$$ Equating similar terms $$A + C = 0$$ $$B + D = 0$$ $$4A + C = 0$$ $$4B + D = 1$$ We get, $$A = 0 B = \frac{1}{3} C = 0 D = -\frac{1}{3}$$ Thus, $$I = \int \frac{\frac{1}{3} dx}{x^2 + 1} - \int \frac{\frac{1}{3} dx}{x^2 + 4}$$ $$= \frac{1}{3} \tan^{-1} x - \frac{1}{6} \tan^{-1} \frac{x}{2} + C$$ Evaluate the following integral: $$\int \frac{x^2}{\left(x^2+1\right)\left(3x^2+4\right)} dx$$ #### **Answer** $$I = \int \frac{x^2}{(x^2 + 1)(3x^2 + 4)} dx$$ $$\frac{x^2}{(x^2+1)(3x^2+4)} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{3x^2+4}$$ $$x^2 = (Ax + B)(3x^2 + 4) + (Cx + D)(x^2 + 1)$$ $$= (3A + C) x^3 + (3B + D)x^2 + (4A + C)x + 4B + D$$ Equating similar terms $$3A + C = 0$$ $$3B + D = 1$$ $$4A + C = 0$$ $$4B + D = 0$$ Solving we get, $$A = 0$$, $B = -1$, $C = 0$, $D = 4$ Thus, $$I = \int \frac{-dx}{x^2 + 1} - \int \frac{4dx}{3x^2 + 4}$$ $$I = -\tan^{-1}x + \frac{4}{3} \int \frac{dx}{x^2 + \left(\frac{2}{\sqrt{3}}\right)^2}$$ $$I = -\tan^{-1}x + \frac{4}{3} \cdot \frac{\sqrt{3}}{2} \tan^{-1} \frac{\sqrt{3}x}{2} + C$$ $$I \ = \frac{2}{\sqrt{3}} tan^{-1} \frac{\sqrt{3}x}{2} - tan^{-1}x \ + \ C$$ ## 43. Question Evaluate the following integral: $$\int \frac{3x+5}{x^3-x^2-x+1} dx$$ ### **Answer** $$I = \int \frac{3x + 5}{x^3 - x^2 - x + 1} dx = \int \frac{3x + 5}{(x - 1)^2 (x + 1)}$$ $$\frac{3x+5}{(x-1)^2(x+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1}$$ $$3x + 5 = A(x - 1)(x + 1) + B(x + 1) + C(x - 1)^{2}$$ Put $$x = 1$$ $$8 = 2B$$ $$B = 4$$ Put $$x = -1$$ $$-3 + 5 = 4C$$ $$2 = 4C$$ $$C = \frac{1}{2}$$ Put $$x = 0$$ $$5 = -A + B + C$$ $$A = \frac{1}{2}$$ $$\int \frac{3x+5}{(x-1)^2(x+1)} dx = \frac{1}{2} \int \frac{dx}{x-1} + 4 \int \frac{dx}{(x-1)^2} + \frac{1}{2} \int \frac{dx}{x+1}$$ $$= -\frac{1}{2}\ln|x-1| - \frac{4}{(x-1)} + \frac{1}{2}\ln|x+1| + C$$ $$= \frac{1}{2} \ln \left| \frac{x+1}{x-1} \right| - \frac{4}{(x-1)} + C$$ Evaluate the following integral: $$\int \frac{x^3 - 1}{x^3 + x} dx$$ # Answer $$I = \int \frac{x^3 - 1}{x^3 + x} dx = \int 1 - \frac{x + 1}{x^3 + x} dx$$ $$= \int 1 dx - \int \frac{x+1}{x^3+x} dx$$ $$\frac{x+1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{x^2+1}$$ $$X + 1 = A(x^2 + 1) + (Bx + C)(x)$$ **Equating constants** $$A = 1$$ Equating coefficients of x $$1 = C$$ Equating coefficients of x² $$0 = A + B$$ $$B = -1$$ $$I = -\int \frac{dx}{x} - \int \frac{-x + 1dx}{x^2 + 1} + \int dx$$ $$\begin{split} I &= -\int \frac{dx}{x} + \int \frac{xdx}{x^2 + 1} - \int \frac{dx}{x^2 + 1} + \int dx \\ &= -\log|x| + \frac{1}{2}\log|x^2 + 1| - \tan^{-1}x + x + c \\ I &= x - \log|x| + \frac{1}{2}\log|x^2 + 1| - \tan^{-1}x + c \end{split}$$ Evaluate the following integral: $$\int \frac{x^2 + x + 1}{\left(x + 1\right)^2 \left(x + 2\right)} dx$$ #### **Answer** $$I = \int \frac{x^2 + x + 1}{(x + 1)^2 (x + 2)} dx$$ $$\frac{x^2 + x + 1}{(x+1)^2(x+2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{c}{x+2}$$ $$X^2 + x + 1 = A(x + 1)(x + 2) + B(x + 2) + C(x + 1)^2$$ Put $$x = -2$$ $$3 = C$$ $$C = 3$$ Put $$x = -1$$ $$1 = B$$ $$B = 1$$ Equating coefficients of constants $$1 = 2A + 2B + C$$ $$1 = 2A + 2 + 3$$ $$A = -2$$ Thus, $$I = 2 * \int \frac{dx}{x+1} + (1) \int \frac{dx}{(x+1)^2} + 3 \int \frac{dx}{x+2}$$ $$I = -2 \ln |x + 1| - \left(\frac{1}{(x + 1)}\right) + 3 \ln |x + 2| + C$$ ## 46. Question Evaluate the following integral: $$\int \frac{1}{x(x^4+1)} dx$$ #### **Answer** Let $$I = \int \frac{1}{x(x^4 + 1)} dx$$ $$\frac{1}{x(x^4+1)} = \frac{A}{x} + \frac{Bx^3 + Cx^2 + Dx + E}{x^4+1}$$ $$1 = A(x^4 + 1) + (Bx^3 + Cx^2 + Dx + E)(x)$$ **Equating constants** $$A = 1$$ Equating coefficients of x^4 $$0 = A + B$$ $$0 = 1 + B$$ $$B = -1$$ Equating coefficients of x^2 $$D = 0$$ Equating coefficients of x $$E = 0$$ Thus, $$I = \int
\frac{\mathrm{dx}}{x} + \int -\frac{x^2 \mathrm{dx}}{x^4 + 1}$$ $$= \log |x| - \frac{1}{4} \log |x^4 + 1| + C$$ $$= \frac{4}{4} \log |x| - \frac{1}{4} \log |x^4 + 1| + C$$ $$= \frac{1}{4} \log |x^4| - \frac{1}{4} \log |x^4 + 1| + C$$ $$\frac{1}{4} log \left| \frac{x^4}{x^4 + 1} \right| + C$$ ### 47. Question Evaluate the following integral: $$\int \frac{1}{x(x^3+8)} dx$$ #### **Answer** Consider the integral, $$I = \int \frac{1}{x(x^3 + 8)} dx$$ Rewriting the above integral, we have $$I = \int \frac{x^2}{x^3(x^3 + 8)} dx$$ $$I = \frac{1}{3} \int \frac{3x^2}{x^3(x^3 + 8)} dx$$ Substitute $x^3 = t$ $$3x^2dx = dt$$ $$I = \frac{1}{3} \int \frac{dt}{t(t+8)}$$ $$\frac{1}{t(t+8)} = \frac{A}{t} + \frac{B}{t+8}$$ $$1 = A(t + 8) + Bt$$ **Equating constants** $$1 = 8A$$ $$A = \frac{1}{8}$$ Equating coefficients of t $$0 = A + B$$ $$B = -\frac{1}{8}$$ $$I = \frac{1}{3} \int \frac{dt}{t(t+8)}$$ $$=\frac{1}{3}\!\int\!\left(\!\frac{\frac{1}{8}}{t}\!-\!\frac{\frac{1}{8}}{t+8}\!\right)\!dt$$ $$=\frac{1}{3}\times\frac{1}{8}\int\frac{dt}{t}-\frac{1}{3}\times\frac{1}{8}\int\frac{dt}{t+8}$$ $$= \frac{1}{24} log t - \frac{1}{24} log |t + 8| + C$$ $$= \frac{1}{24} \log x^3 - \frac{1}{24} \log |x^3 + 8| + C$$ $$= \frac{3}{24} \log x - \frac{1}{24} \log |x^3| + 8| + C$$ $$= \frac{1}{8} \log x - \frac{1}{24} \log |x^3 + 8| + C$$ # 48. Question Evaluate the following integral: $$\int \frac{3}{(1-x)(1+x^2)} dx$$ ### **Answer** $$I = \int \frac{3}{(1-x)(1+x^2)} dx$$ $$\frac{3}{(1-x)(1+x^2)} = \frac{A}{1-x} + \frac{Bx + C}{1+x^2}$$ $$3 = A(1 + x^2) + (Bx + C)(1 - x)$$ Equating similar terms $$A - B = 0$$ $$B - C = 0$$ $$A + C = 3$$ Solving $$A = \frac{3}{2}, B = \frac{3}{2}, C = \frac{3}{2}$$ Thus, $$I = \frac{3}{2} \int \frac{dx}{1-x} + \frac{3}{2} \int \frac{xdx}{1+x^2} + \frac{3}{2} \int \frac{dx}{1+x^2}$$ $$= -\frac{3}{2} \log|1-x| + \frac{3}{2} \log|1+x^2| + \frac{3}{2} \tan^{-1}x + C$$ $$I = \frac{3}{4} \left[\log \left| \frac{1+x^2}{(1-x)^2} \right| + 2 \tan^{-1}x \right] + C$$ ## 49. Question Evaluate the following integral: $$\int \frac{\cos x}{\left(1-\sin x\right)^3 \left(2+\sin x\right)} \, dx$$ ### **Answer** Let $$Sin x = t$$ Cos x dx = dt $$I = \int \frac{\cos x}{(1 - \sin x)^3 (2 + \sin x)} dx$$ $$= \int \frac{dt}{(1-t)^3(2+t)}$$ $$\frac{1}{(1-t)^3(2+t)} = \frac{A}{1-t} + \frac{B}{(1-t)^2} + \frac{C}{(1-t)^3} + \frac{D}{2+t}$$ $$1 = A(1-t)^{2}(2+t) + B(1-t)(2+t) + C(2+t) + D(1-t)^{3}$$ Put t = 1 $$1 = 3C$$ $$C = \frac{1}{3}$$ Put $$t = -2$$ $$1 = 27D$$ $$D = \frac{1}{27}$$ $$A = -\frac{1}{27} B = \frac{1}{9}$$ $$\begin{split} \int \frac{dt}{(1-t)^3(2+t)} \\ &= -\frac{1}{27} \int \frac{1}{1-t} dt + \frac{1}{9} \int \frac{dt}{(1-t)^2} + \frac{1}{3} \int \frac{dt}{(1-t)^3} + \frac{1}{27} \int \frac{dt}{2+t} \\ &= -\frac{1}{27} log |1-t| + \frac{1}{9(1-t)} + \frac{1}{6(1-t)^2} + \frac{1}{27} log |2+t| + C \end{split}$$ Put $t = \sin x$ $$= -\frac{1}{27}\log|1 - \sin x| + \frac{1}{9(1 - \sin x)} + \frac{1}{6(1 - \sin x)^2} + \frac{1}{27}\log|2 + \sin x| + C$$ ## 50. Question Evaluate the following integral: $$\int \frac{2x^2+1}{x^2(x^2+4)} dx$$ #### **Answer** $$I = \int \frac{2x^2 + 1}{x^2(x^2 + 4)} dx$$ Put $$x^2 = t$$ $$2xdx = dt$$ $$\frac{2t+1}{t(t+4)} = \frac{A}{t} + \frac{B}{t+4}$$ $$2t + 1 = A(t + 4) + Bt$$ **Equating constants** $$1 = 4A$$ $$A = \frac{1}{4}$$ Equating coefficients of t $$2 = A + B$$ $$B = 2 - \frac{1}{4} = \frac{7}{4}$$ $$\frac{2x^2+1}{x^2(x^2+4)} = \frac{1}{4x^2} + \frac{7}{4(x^2+4)}$$ Thus we have $$\int \frac{2x^2 + 1}{x^2(x^2 + 4)} dx = \frac{1}{4} \int \frac{dx}{x^2} + \frac{7}{4} \int \frac{dx}{x^2 + 4}$$ $$= -\frac{1}{4x} + \frac{7}{8} \tan^{-1} \left(\frac{x}{2}\right) + C$$ ## 51. Ouestion Evaluate the following integral: $$\int \frac{\cos x}{(1-\sin x)(2-\sin x)} \, dx$$ # **Answer** We have, $$I = \int \frac{\cos x}{(1 - \sin x)(2 - \sin x)} dx$$ Let $$1 - \sin x = t$$ $$\Rightarrow$$ - cos x dx = dt $$\therefore I = -\int \frac{dt}{t(1+t)}$$ $$\Rightarrow I = -\int \frac{(1+t)-t}{t(1+t)} dt$$ $$\Rightarrow I = -\int \left(\frac{1}{t} - \frac{1}{1+t}\right) dt$$ $$\Rightarrow$$ I= - (In t - In(1 + t)) + c $$\Rightarrow$$ I= In (1 + t) - In t + c $$\Rightarrow I = \frac{\ln(1+t)}{\ln t} + c$$ $$\Rightarrow I = \frac{\ln(2 - \sin x)}{\ln(1 - \sin x)} + c$$ Therefore, $$\int \frac{\cos x}{(1-\sin x)(2-\sin x)} \, dx = \frac{\ln(2-\sin x)}{\ln(1-\sin x)} \, + \, c$$ ## 52. Question Evaluate the following integral: $$\int \frac{2x+1}{(x-2)(x-3)} \, \mathrm{d}x$$ ## Answer Let, $$I = \int \frac{2x + 1}{(x - 2)(x - 3)} dx$$ Now, let $$\frac{2x + 1}{(x-2)(x-3)} = \frac{A}{x-2} + \frac{B}{x-3}$$ $$\Rightarrow$$ 2x + 1=A(x - 3) + B(x - 2) $$\Rightarrow$$ 2x + 1=(A + B)x - 3A - 2B Equating similar terms, we get, $$A + B = 2$$ and $3A + 2B = -1$ So, $$A = -5$$, $B = 7$ $$\therefore I = -5 \int \frac{dx}{x-2} + 7 \int \frac{dx}{x-3}$$ $$\Rightarrow 1 = -5 \log |x - 2| + 7 \log |x - 3| + c$$ $$\Rightarrow$$ I = log |x - 2| - 5 + log |x - 3| + c $$\Rightarrow I = \log \left| \frac{(x-3)^7}{(x-2)^5} \right| + c$$ Hence, $$\int \frac{2x+1}{(x-2)(x-3)} dx = \log \left| \frac{(x-3)^7}{(x-2)^5} \right| + c$$ Evaluate the following integral: $$\int \frac{1}{\left(x^2+1\right)\left(x^2+2\right)} \, \mathrm{d}x$$ ## **Answer** Let, $$I = \int \frac{1}{(x^2 + 1)(x^2 + 2)} dx$$ Let, $$x^2 = y$$ Then, $$\frac{1}{(y+1)(y+2)} = \frac{A}{y+1} + \frac{B}{y+2}$$ $$\Rightarrow$$ 1=A(y + 2) + B(y + 1) $$\Rightarrow$$ 1=(A + B)v + 2A + B On equating similar terms, we get, $$A + B=0$$, and $2A + B=1$ $$\therefore I = \int \frac{dx}{x^2 + 1} - \int \frac{dx}{x^2 + 2}$$ $$\Rightarrow I = \tan^{-1} x - \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x}{\sqrt{2}} \right) + c$$ So, $$\int \frac{1}{(x^2 + 1)(x^2 + 2)} dx = \tan^{-1} x - \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x}{\sqrt{2}}\right) + c$$ ### 54. Question Evaluate the following integral: $$\int \frac{1}{x(x^4 - 1)} \, dx$$ #### Answer Let, $$I = \int \frac{1}{x(x^4 - 1)} dx$$ Let, $$\frac{1}{x(x^4-1)} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-1} + \frac{D}{x^2+1}$$ $$\Rightarrow 1 = A(x+1)(x-1)(x^2+1) + Bx(x-1)(x^2+1) + cx(x+1)(x^2+1) + Dx(x+1)(x-1)$$ For, $$x=0$$, $A=-1$ For, $$x = 1$$, $C = \frac{1}{4}$ For, $$x = -1$$, $B = \frac{1}{4}$ For, $$x = 2$$, $D = \frac{1}{4}$ $$\therefore I = -\int \frac{dx}{x} + \frac{1}{4} \int \frac{dx}{x+1} + \frac{1}{4} \int \frac{dx}{x-1} + \frac{1}{4} \int \frac{dx}{x^2+1}$$ $$\Rightarrow I = -\ln|x| + \frac{1}{4}\ln|(x+1)| + \frac{1}{4}\ln|x-1| + \frac{1}{4}\tan^{-1}x + c$$ $$\Rightarrow I = -\ln|x| + \frac{1}{4}(\ln|x^2 - 1|) + \frac{1}{4}\tan^{-1}x + c$$ $$\Rightarrow I = -\frac{1}{4}\ln|x^4| + \frac{1}{4}\ln(x^2 - 1) + \frac{1}{4}\tan^{-1}x + c$$ $$\Rightarrow I = \frac{1}{4} \ln \left| \frac{x^2 - 1}{x^4} \right| + + \frac{1}{4} \tan^{-1} x + c$$ Thus, $$\int \frac{1}{x(x^4-1)} dx = \frac{1}{4} \ln \left| \frac{x^4-1}{x^4} \right| + c$$ Evaluate the following integral: $$\int \frac{1}{x^4 - 1} \, dx$$ #### **Answer** $$Let, I = \int \frac{1}{(x^4 - 1)} dx$$ Let, $$\frac{1}{(x^4-1)} = \frac{A}{x+1} + \frac{B}{x-1} + \frac{C}{x^2+1}$$ $$\Rightarrow 1 = A(x-1)(x^2+1) + B(x+1)(x^2+1) + c(x+1)(x-1)$$ For, $$x = 1$$, $B = \frac{1}{4}$ For, $$x = -1$$, $A = \frac{1}{4}$ For, $$x = 0$$, $A = -\frac{1}{2}$ $$\therefore I = -\frac{1}{4} \int \frac{dx}{x+1} + \frac{1}{4} \int \frac{dx}{x-1} - \frac{1}{2} \int \frac{dx}{x^2+1}$$ $$\Rightarrow I = -\frac{1}{4}\ln|(x+1)| + \frac{1}{4}\ln|x-1| - \frac{1}{2}\tan^{-1}x + c$$ $$\Rightarrow I = \frac{1}{4} \ln \left| \frac{x-1}{x+1} \right| - \frac{1}{2} \tan^{-1} x + c$$ So, $$\int \frac{1}{(x^4-1)} dx = \frac{1}{4} \ln \left| \frac{x-1}{x+1} \right| - \frac{1}{2} \tan^{-1} x + c$$ ### 56. Question Evaluate the following integral: $$\int \frac{2x}{\left(x^2+1\right)\left(x^2+2\right)^2} \, dx$$ ### Answer Let, $$I = \int \frac{2x}{(x^2 + 1)(x^2 + 2)^2} dx$$ Let $$x^2 + 2 = t \Rightarrow 2x dx = dt$$ $$\therefore I = \int \frac{dt}{(t-1)t^2}$$ Now, let, $$\frac{1}{(t-1)t^2} = \frac{A}{t-1} + \frac{B}{t} + \frac{C}{t^2}$$ $$\Rightarrow$$ 1 = At^{2 +} B t (t - 1) + C(t - 1) For $$t=0$$, $C=-1$ $$\therefore I = \int \frac{dt}{t-1} - \int \frac{dt}{t} - \int \frac{dt}{t^2}$$ $$\Rightarrow I = \log|t - 1| - \log|t| + \frac{1}{t} + c$$ So, $$\int \frac{2x}{(x^2+1)(x^2+2)^2} dx = \log|t-1| - \log|t| + \frac{1}{t} + c$$ ## 57. Question Evaluate the following integral: $$\int \frac{x^2}{(x-1)(x^2+1)} \, \mathrm{d}x$$ ### **Answer** Let, $$I = \int \frac{x^2}{(x-1)(x^2+1)} dx$$ Let $$\frac{x^2}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{B}{x^2+1}$$ $$\Rightarrow x^2 = A(x^2 + 1) + B(x - 1)$$ For, $$x = 1$$, $A = \frac{1}{2}$ For, $$x = 0$$, $B = \frac{1}{2}$ $$\therefore I = \frac{1}{2} \int\! \frac{dx}{x-1} \,+\, \frac{1}{2} \int\! \frac{dx}{x^2\,+\,1}$$ $$\Rightarrow I = \frac{1}{2}\log|x - 1| + \frac{1}{2}\tan^{-1}x + c$$ Hence, $$\int \frac{x^2}{(x-1)(x^2+1)} dx = \frac{1}{2} \log|x-1| + \frac{1}{2} \tan^{-1} x + c$$ Evaluate the following integral: $$\int \frac{x^2}{\left(x^2 + a^2\right)\left(x^2 + b^2\right)} \, dx$$ #### **Answer** Let, $$I = \int \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx$$ Let $$x^2 = y$$ Thus, $$\frac{x^2}{(x^2 + a^2)(x^2 + b^2)} = \frac{y}{(y + a^2)(y + b^2)}$$ Now, let $$\frac{y}{(y + a^2)(y + b^2)} = \frac{A}{y + a^2} + \frac{B}{y + b^2}$$ $$\Rightarrow y = A(y + b^2) + B(y + a^2)$$ $$\Rightarrow y = y(A + B) + (Ab^2 + Ba^2)$$ Equating the coefficients, we get, $$A + B=1$$, and $Ab^2 + Ba^2 = 0$ On solving we get, $$A=-\frac{a^2}{b^2-a^2}, \qquad B=\frac{b^2}{b^2-a^2}$$ $$\therefore I = -\frac{a^2}{b^2 - a^2} \int\! \frac{dx}{x^2 \, + \, a^2} \, + \, \frac{b^2}{b^2 - a^2} \int\! \frac{dx}{x^2 \, + \, b^2}$$ $$\Rightarrow I = \frac{b}{b^2 - a^2} \tan^{-1} \left(\frac{x}{b} \right) - \frac{a}{b^2 - a^2} \tan^{-1} \left(\frac{x}{a} \right) + c$$ Thus, $$\int \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{b}{b^2 - a^2} tan^{-1} \left(\frac{x}{b}\right) - \frac{a}{b^2 - a^2} tan^{-1} \left(\frac{x}{a}\right) + c$$ ## 59. Question Evaluate the following integral: $$\int
\frac{1}{\cos x \left(5 - 4\sin x\right)} \, \mathrm{d}x$$ ## **Answer** $$Let, I = \int \frac{dx}{\cos x (5 - 4 \sin x)}$$ Multiplying and dividing by cos x Let, $$I = \int \frac{\cos x \, dx}{\cos^2 x \, (5 - 4 \sin x)}$$ $$\Rightarrow I = \int \frac{\cos x \, dx}{(1 - \sin^2 x)(5 - 4 \sin x)}$$ Let, $\sin x = t$, $\cos x dx = dt$ $$\therefore I = \int \frac{dt}{(1-t^2)(5-4t)}$$ Now, let $$\frac{1}{(1-t^2)(5-4t)} = \frac{A}{1-t} + \frac{B}{1+t} + \frac{C}{5-4t}$$ $$\Rightarrow$$ 1 = A(1 + t)(5-4t) + B(1-t)(5-4t) + C(1-t²) For $$t = 1$$, $A = \frac{1}{2}$ For $$t = -1$$, $B = \frac{1}{18}$ For $$t = \frac{5}{4}$$, $C = -\frac{16}{9}$ $$\therefore I = \frac{1}{2} \int \frac{dt}{1-t} + \frac{1}{18} \int \frac{dt}{1+t} - \frac{16}{9} \int \frac{dt}{5-4t}$$ $$\Rightarrow I = -\frac{1}{2}\log|1 - t| + \frac{1}{18}\log|1 + t| + \frac{4}{9}\log|5 - 4t| + c$$ So, I = $$-\frac{1}{2}\log|1 - \sin x| + \frac{1}{18}\log|1 + \sin x| + \frac{4}{9}\log|5 - 4\sin x| + c$$ Evaluate the following integral: $$\int \frac{1}{\sin x \left(3 + 2\cos x\right)} \, dx$$ ### **Answer** Let, $$I = \int \frac{1}{\sin x (3 + 2\cos x)} dx$$ Multiplying and dividing by sin x $$\therefore I = \int \frac{\sin x}{\sin^2 x (3 + 2\cos x)} dx$$ $$\therefore I = \int \frac{\sin x}{(1 - \cos^2 x)(3 + 2\cos x)} dx$$ Let $\cos x = t$, $-\sin x dx = dt$ So, I = $$\int \frac{dt}{(t^2 - 1)(3 + 2t)}$$ Now, let $$\frac{1}{(t^2-1)(3+2t)} = \frac{A}{t-1} + \frac{B}{t+1} + \frac{C}{3+2t}$$ $$\Rightarrow 1 = A(t + 1)(3 + 2t) + B(t - 1)(3 + 2t) + C(t^2 - 1)$$ For, $$t = 1$$, $A = \frac{1}{10}$ For, $$t = -1$$, $B = -\frac{1}{2}$ For, $$t = -\frac{3}{2}$$, $C = \frac{4}{5}$ $$\begin{split} & \therefore I = \frac{1}{10} \int \frac{dt}{t-1} - \frac{1}{2} \int \frac{dt}{t+1} + \frac{4}{5} \int \frac{dt}{3+2t} \\ & \Rightarrow I = \frac{1}{10} log|t-1| - \frac{1}{2} log|t+1| + \frac{2}{5} log|3+2t| + c \end{split}$$ Evaluate the following integral: $$\int \frac{1}{\sin x + \sin 2x} \, dx$$ #### **Answer** Let, $$I = \int \frac{1}{\sin x + \sin 2x} dx$$ $$\Rightarrow I = \int \frac{1}{\sin x + 2 \sin x \cos x} dx$$ Multiplying and dividing by sin x $$\Rightarrow I = \int \frac{\sin x}{\sin^2 x + 2\sin^2 x \cdot \cos x} dx$$ $$\Rightarrow I = \int \frac{\sin x}{1 - \cos^2 x + 2(1 - \cos^2 x)\cos x} dx$$ Let $\cos x = t$, $-\sin x dx = dt$ $$\therefore I = \int \frac{dt}{(t^2-1)\,+\,2(t^2-1)t}$$ $$\Rightarrow I = \int \frac{dt}{(t^2 - 1)(1 + 2t)}$$ Let, $$\frac{1}{(t^2-1)(1+2t)} = \frac{A}{t-1} + \frac{B}{1+t} + \frac{C}{1+2t}$$ $$\Rightarrow 1 = A(1+t)(1+2t) + B(t-1)(1+2t) + C(t^2-1)$$ For $$t = 1$$, $A = \frac{1}{6}$ For $$t = -1$$, $B = \frac{1}{2}$ For $$t = -\frac{1}{2}$$, $C = -\frac{4}{3}$ $$\text{So,I} = \frac{1}{6} \int \frac{dt}{t-1} \, + \, \frac{1}{2} \int \frac{dt}{t+1} - \frac{4}{3} \int \frac{dt}{1\,+\,2t}$$ $$\Rightarrow I = \frac{1}{6}\log|t - 1| + \frac{1}{2}\log|1 + t| - \frac{2}{3}\log|1 + 2t| + c$$ So, I = $$\frac{1}{6}$$ log|cosx - 1| + $\frac{1}{2}$ log|1 + cosx| - $\frac{2}{3}$ log|1 + 2cosx| + c #### 62. Question Evaluate the following integral: $$\int \frac{x+1}{x(1+xe^x)} dx$$ #### **Answer** Let, $$I = \int \frac{x+1}{x(1+xe^x)} dx$$ $$\Rightarrow$$, $I = \int \frac{(x + 1)(1 + xe^x - xe^x)}{x(1 + xe^x)} dx$ $$\Rightarrow , \qquad I = \int \frac{(x + 1)(1 + xe^x)}{x(1 + xe^x)} dx - \int \frac{(x + 1)(xe^x)}{x(1 + xe^x)} dx$$ $$\Rightarrow, \qquad I = \int \frac{(x+1)}{x} dx - \int \frac{(x+1)(e^x)}{(1+xe^x)} dx$$ $$\Rightarrow$$, $I = log|xe^x| - log|1 + xe^x| + c$ $$\Rightarrow$$, $I = log \left| \frac{xe^x}{1 + xe^x} \right| + c$ Hence, $$\int \frac{x+1}{x(1+xe^x)} dx = \log \left| \frac{xe^x}{1+xe^x} \right| + c$$ ### 63. Question Evaluate the following integral: $$\int \frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)} dx$$ # Answer $$\frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)} = \frac{x^4+3x^2+2}{x^4+7x^2+12}$$ $$=\frac{(x^4+7x^2+12)-4x^2-10}{x^4+7x^2+12}$$ $$=1-\frac{4x^2+10}{x^4+7x^2+12}$$ Now, $$\frac{4x^2 + 10}{x^4 + 7x^2 + 12} = \frac{4x^2 + 10}{(x^2 + 3)(x^2 + 4)}$$ Let, $$\frac{4x^2 + 10}{(x^2 + 3)(x^2 + 4)} = \frac{Ax + B}{x^2 + 3} + \frac{CX + D}{x^2 + 4}$$ $$\Rightarrow$$ 4x² + 10 = (Ax + B)(x² + 4) + (Cx + D)(x² + 3) For, $$x=0$$, $10 = 4B + 3D$ (i) For, $$x=1$$, $14 = 5A + 5B + 4C + 4D (ii)$ For, $$x = -1.14 = -5A + 5B - 4C + 4D (iii)$$ Also, by comparing coefficient of x^3 we get, 0=A+C (iv) On solving, (i), (ii), (iii), (iv) we get, $$A=0$$, $B=-2$, $C=0$, $D=6$ So, $$\frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)} = 1 + \frac{2}{x^2+3} - \frac{6}{x^2+4}$$ $$\therefore \int \frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)} dx = \int \left(1 + \frac{2}{x^2+3} - \frac{6}{x^2+4}\right) dx$$ $$= x + \frac{2}{\sqrt{3}} \tan^{-1} x - 3 \tan^{-1} \frac{x}{2} + c$$ Therefore, $$\int \frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)} dx = x + \frac{2}{\sqrt{3}} tan^{-1}x - 3 tan^{-1}\frac{x}{2} + c$$ Evaluate the following integral: $$\int \frac{4x^4 + 3}{(x^2 + 2)(x^2 + 3)(x^2 + 4)} \, dx$$ #### **Answer** Let I = $$\int \frac{4x^4 + 3}{(x^2 + 2)(x^2 + 3)(x^2 + 4)} dx$$ Let $$x^2 = y$$ $$\therefore \frac{4x^4 + 3}{(x^2 + 2)(x^2 + 3)(x^2 + 4)} = \frac{4y^2 + 3}{(y + 2)(y + 3)(y + 4)}$$ Let, $$\frac{4y^2 + 3}{(y + 2)(y + 3)(y + 4)} = \frac{A}{y + 2} + \frac{B}{y + 3} + \frac{C}{y + 4}$$ $$\Rightarrow 4y^2 + 3 = A(y + 3)(y + 4) + B(y + 2)(y + 4) + C(y + 2)(y + 3)$$ For $$y = -2$$, $A = \frac{19}{2}$ For $$y = -3$$, $B = -39$ For y = $$-4$$, C = $\frac{67}{2}$ Thus, $$I = \frac{19}{2} \int \frac{dx}{x^2 + 2} - 39 \int \frac{dx}{x^2 + 3} + \frac{67}{2} \int \frac{dx}{x^2 + 4}$$ $$\Rightarrow I = \frac{19}{2\sqrt{2}} \tan^{-1} \left(\frac{x}{\sqrt{2}} \right) - \frac{39}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3}} \right) + \frac{67}{4} \tan^{-1} \left(\frac{x}{2} \right) + c$$ ## 65. Question Evaluate the following integral: $$\int \frac{x^4}{(x-1)(x^2+1)} \, \mathrm{d}x$$ #### Answer $$\frac{x^4}{(x-1)(x^2+1)} = \frac{x^4}{x^3 - x^2 + x - 1}$$ $$= \frac{x(x^3 - x^2 + x - 1) + 1(x^3 - x^2 + x - 1) + 1}{x^3 - x^2 + x - 1}$$ $$=x + 1 + \frac{1}{(x-1)(x^2 + 1)}$$ Now, let $$\frac{1}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}$$ $$\Rightarrow$$ 1 = A(x² + 1) + (Bx + C)(x-1) For, $$x = 1$$, $A = \frac{1}{2}$ For, $$x = 0$$, $C = A - 1 = -\frac{1}{2}$ For, $$x = -1$$, $B = -\frac{1}{2}$ $$\therefore \int \frac{x^4}{(x-1)(x^2+1)} \, dx = \int x dx \, + \, \int dx \, + \, \frac{1}{2} \int \frac{1}{x-1} \, dx - \frac{1}{2} \int \frac{x+1}{x^2+1} \, dx$$ $$= \frac{x^2}{2} + x + \frac{1}{2}\log|x - 1| - \frac{1}{4}\log(x^2 + 1) - \frac{1}{2}\tan^{-1}x + c$$ Evaluate the following integral: $$\int \frac{x^2}{x^4 - x^2 - 12} \, dx$$ #### **Answer** $$\frac{x^2}{x^4 - x^2 - 12} = \frac{x^2}{(x^2 - 4)(x^2 + 3)}$$ Let, $$\frac{x^2}{(x^2-4)(x^2+3)} = \frac{A}{x-2} + \frac{B}{x+2} + \frac{C}{x^2+3}$$ $$\Rightarrow x^2 = A(x+2)(x^2+3) + B(x-2)(x^2+3) + C(x-2)(x+2)$$ For, $$x = 2$$, $A = \frac{1}{7}$ For, $$x = -2$$, $B = -\frac{1}{7}$ For, $$x = 0$$, $C = \frac{3}{7}$ $$\therefore \int \frac{x^2}{x^4 - x^2 - 12} dx = \frac{1}{7} \int \frac{dx}{x - 2} - \frac{1}{7} \int \frac{dx}{x + 2} + \frac{3}{7} \int \frac{dx}{x^2 + 3}$$ $$= \frac{1}{7}\log|x-2| - \frac{1}{7}\log|x+2| + \frac{3}{7\sqrt{3}}\tan^{-1}\frac{x}{\sqrt{3}} + c$$ ### 67. Question Evaluate the following integral: $$\int \frac{x^2}{1-x^4} dx$$ **Answer** Let, $$I = \int \frac{x^2}{1 - x^4} dx$$ Let, $$\frac{x^2}{1-x^4} = \frac{A}{1-x} + \frac{B}{1+x} + \frac{C}{1+x^2}$$ $$\Rightarrow$$ x²= A(1 + x)(x² + 1) + B(1 - x)(x² + 1) + c(x + 1)(1 - x) For, $$x = 1$$, $A = \frac{1}{4}$ For, $$x = -1$$, $B = \frac{1}{4}$ For, $$x = 0$$, $C = -\frac{1}{2}$ $$\therefore I = \frac{1}{4} \int \frac{dx}{1 - x} + \frac{1}{4} \int \frac{dx}{1 + x} - \frac{1}{2} \int \frac{dx}{1 + x^2}$$ $$\Rightarrow I = -\frac{1}{4}\log|1 - x| + \frac{1}{4}\log|1 + x| - \frac{1}{2}\tan^{-1}x + c$$ $$\Rightarrow I = \frac{1}{4} \log \left| \frac{1+x}{1-x} \right| - \frac{1}{2} \tan^{-1} x + c$$ Hence, $$\int \frac{x^2}{1-x^4} dx = \frac{1}{4} \log \left| \frac{1+x}{1-x} \right| - \frac{1}{2} \tan^{-1} x + c$$ Evaluate the following integral: $$\int \frac{x^2}{x^4 + x^2 - 2} \, dx$$ ## Answer Let, $$I = \int \frac{x^2}{x^4 + x^2 - 2} dx$$ Let, $$\frac{x^2}{x^4 + x^2 - 2} = \frac{A}{x + 1} + \frac{B}{x - 1} + \frac{C}{x^2 + 2}$$ $$\Rightarrow$$ x²=A(x - 1)(x² + 2) + B(x + 1)(x² + 2) + C(x² - 1) For, $$x = 1$$, $A = \frac{1}{6}$ For, $$x = -1$$, $B = -\frac{1}{6}$ For, $$x = 0$$, $C = -\frac{2}{3}$ $$\therefore I = \frac{1}{6} \int \frac{dx}{x+1} - \frac{1}{6} \int \frac{dx}{x-1} - \frac{2}{3} \int \frac{dx}{x^2+2}$$ $$\Rightarrow I = \frac{1}{6}\log|x + 1| - \frac{1}{6}\log|x - 1| - \frac{2}{3\sqrt{2}}\tan^{-1}\left(\frac{x}{\sqrt{2}}\right) + c$$ #### 69. Question Evaluate the following integral: $$\int \frac{(x^2+1)(x^2+4)}{(x^2+3)(x^2-5)} \, dx$$ #### **Answer** $$\frac{(x^2+1)(x^2+4)}{(x^2+3)(x^2-5)} = \frac{x^4+5x^2+4}{x^4-2x^2-15}$$ $$=\frac{(x^4-2x^2-15)+7x^2+19}{x^4-2x^2-15}$$ $$=1+\frac{7x^2+19}{x^4-2x^2-15}$$ Now, $$\frac{7x^2 + 19}{x^4 - 2x^2 - 15} = \frac{7x^2 + 19}{(x^2 + 3)(x^2 - 5)}$$ Let, $$\frac{7x^2 + 19}{x^4 - 2x^2 - 15} = \frac{Ax + B}{x^2 + 3} + \frac{CX + D}{x^2 - 5}$$ $$\Rightarrow$$ 7x² + 19 = (Ax + B)(x² - 5) + (Cx + D)(x² + 3) For, $$x=0$$, $19 = -5B + 3D (i)$ For, $$x=1$$, $26 = -4A - 4B + 4C + 4D (ii)$ For, $$x = -1.14 = 4A - 4B - 4C + 4D (iii)$$ Also, by comparing coefficient of x^3 we get, 0=A+C (iv) On solving, (i), (ii), (iii), (iv) we get, $$A = 0, B = -\frac{11}{8}, C = 0, D = \frac{69}{8}$$ So, $$\frac{(x^2+1)(x^2+4)}{(x^2+3)(x^2-5)} = 1 - \frac{11}{8} \frac{1}{x^2+3} + \frac{69}{8} \frac{1}{x^2-5}$$ $$\therefore \int \frac{(x^2+1)(x^2+4)}{(x^2+3)(x^2-5)} dx = \int \left(1 - \frac{11}{8} \frac{1}{x^2+3} + \frac{69}{8} \frac{1}{x^2-5}\right) dx$$ $$= x - \frac{11}{8\sqrt{3}} \tan^{-1} x + \frac{69}{16\sqrt{5}} \log \left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| + c$$ Thus, $$I = x - \frac{11}{8\sqrt{3}} \tan^{-1} x + \frac{69}{16\sqrt{5}} \log \left| \frac{x -
\sqrt{5}}{x + \sqrt{5}} \right| + c$$ ### Exercise 19.31 ## 1. Question Evaluate the following integral: $$\int \frac{x^2 + 1}{x^4 + x^2 + 1} \, \mathrm{d}x$$ # Answer re-writing the given equation as $$\int \frac{1 + \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} dx$$ $$\int \frac{1 + \frac{1}{x^2}}{\left(x - \frac{1}{x}\right)^2 + 3} \, \mathrm{d}x$$ Let $$x - \frac{1}{x}$$ as t $$\left(1+\frac{1}{x^2}\right) = dt$$ $$\int \frac{1}{t^2 + 3} dt$$ Using identity $\int \frac{1}{x^2+1} dx = \arctan(x)$ $$\frac{1}{\sqrt{3}}\arctan\Bigl(\frac{t}{\sqrt{3}}\Bigr)+c$$ Substituting t as $x - \frac{1}{x}$ $$\frac{1}{\sqrt{3}} \arctan\left(\frac{\left(x - \frac{1}{x}\right)}{\sqrt{3}}\right) + c$$ ## 2. Question Evaluate the following integral: $$\int \sqrt{\cot \theta} \ d\theta$$ # **Answer** let cot θ as x² $-cosec^2\theta d\theta = 2xdx$ $$d\theta = -\frac{2x}{1+cot^2\theta}dx$$ $$d\theta = -\frac{2x}{1 + x^4} dx$$ $$\int -\frac{2x^2}{1+x^4} dx$$ re-writing the given equation as $$\int \frac{1 + \frac{1}{x^2} + 1 - \frac{1}{x^2}}{\frac{1}{x^2} + x^2} dx$$ $$-\int \frac{1 + \frac{1}{x^2}}{\left(x - \frac{1}{x}\right)^2 + 2} dx - \int \frac{1 - \frac{1}{x^2}}{\left(x + \frac{1}{x}\right)^2 - 2} dx$$ Let $$x - \frac{1}{x} = t$$ and $x + \frac{1}{x} = z$ So $$\left(1 + \frac{1}{x^2}\right) dx = dt$$ and $\left(1 - \frac{1}{x^2}\right) dx = dz$ $$-\int \frac{dt}{(t)^2+2} - \int \frac{dz}{(z)^2-2}$$ Using identity $\int \frac{1}{x^2+1} dx = \arctan(x)$ and $\int \frac{dz}{(z)^2-1} = \frac{1}{2} log \left| \frac{z-1}{z+1} \right| + c$ $$-\frac{1}{2}\arctan\left(\frac{t}{\sqrt{2}}\right) - \frac{1}{2\sqrt{2}}\log\left|\frac{z-\sqrt{2}}{z+\sqrt{2}}\right| + c$$ Substituting t as $x - \frac{1}{x}$ and z as $x + \frac{1}{x}$ $$-\frac{1}{2}\arctan\left(\frac{x-\frac{1}{x}}{\sqrt{2}}\right) - \frac{1}{2\sqrt{2}}\log\left|\frac{x+\frac{1}{x}-\sqrt{2}}{x+\frac{1}{x}+\sqrt{2}}\right| + c$$ ## 3. Question Evaluate the following integral: $$\int \frac{x^2 + 9}{x^4 + 81} dx$$ ## **Answer** re-writing the given equation as $$\int \frac{1 + \frac{9}{x^2}}{x^2 + \frac{81}{x^2}} dx$$ $$\int \frac{1 + \frac{9}{x^2}}{\left(x - \frac{9}{x}\right)^2 + 18} dx$$ Let $$x - \frac{9}{y} = t$$ $$\left(1 + \frac{9}{x^2}\right) dx = dt$$ $$\int \frac{dt}{t^2 + 18}$$ Using identity $\int \frac{1}{x^2+1} dx = \arctan(x)$ $$\frac{1}{3\sqrt{2}}\arctan\left(\frac{t}{3\sqrt{2}}\right) + c$$ Substituting t as $x - \frac{1}{x}$ $$\frac{1}{3\sqrt{2}}\arctan\left(\frac{x-\frac{1}{x}}{3\sqrt{2}}\right)+c$$ ### 4. Question Evaluate the following integral: $$\int \frac{1}{x^4 + x^2 + 1} \, dx$$ #### **Answer** re-writing the given equation as $$\int \frac{\frac{1}{x^2}}{x^2+1+\frac{1}{x^2}} dx$$ $$\frac{1}{2} \int \frac{1 + \frac{1}{x^2} + \frac{1}{x^2} - 1}{x^2 + 1 + \frac{1}{x^2}} dx$$ $$\frac{1}{2} \left[\int \frac{1 + \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} dx + \int \frac{-1 + \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} dx \right]$$ $$\frac{1}{2} \left[\int \frac{1 + \frac{1}{x^2}}{\left(x - \frac{1}{x}\right)^2 + 3} dx + \int \frac{-1 + \frac{1}{x^2}}{\left(x + \frac{1}{x}\right)^2 - 1} dx \right]$$ Let $$x - \frac{1}{x} = t$$ and $x + \frac{1}{x} = z$ $$\left(1 + \frac{1}{x^2}\right) dx = dt$$ and $\left(1 - \frac{1}{x^2}\right) dx = dz$ $$\frac{1}{2} \bigg[\int \frac{dt}{(t)^2 + 3} - \int \frac{dz}{(z)^2 - 1} \bigg]$$ Using identity $\int \frac{1}{x^2+1} dx = \arctan(x)$ and $\int \frac{dz}{(z)^2-1} = \frac{1}{2} log \left| \frac{z-1}{z+1} \right| + c$ $$\frac{1}{2} \left[\frac{1}{\sqrt{3}} \left(\arctan \left(\frac{t}{\sqrt{3}} \right) - \frac{1}{2} \log \left| \frac{z-1}{z+1} \right| \right]$$ Substituting t as $x - \frac{1}{x}$ and z as $x + \frac{1}{x}$ $$\frac{1}{2} \left[\frac{1}{\sqrt{3}} \left(\arctan\left(\frac{x - \frac{1}{x}}{\sqrt{3}} \right) - \frac{1}{2} \log \left| \frac{x + \frac{1}{x} - 1}{x + \frac{1}{x} + 1} \right| \right]$$ ## 5. Question Evaluate the following integral: $$\int \frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \, dx$$ #### **Answer** re-writing the given equation as $$\int \frac{1 - \frac{3}{x} + \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} dx$$ $$\int \frac{1 + \frac{1}{x^2}}{\left(x - \frac{1}{y}\right)^2 + 3} dx - \int \frac{3x}{x^4 + x^2 + 1} dx$$ Substituting t as $x - \frac{1}{x}$ and z as x^2 $$\left(1 + \frac{1}{x^2}\right) dx = dt$$ and $2xdx = dz$ $$\int \frac{dt}{(t)^2+3} - \frac{3}{2} \int \frac{dz}{z^2+z+1}$$ $$\int \frac{dt}{(t)^2 + 3} - \frac{3}{2} \int \frac{dz}{\left(z + \frac{1}{2}\right)^2 + \frac{3}{4}}$$ Using identity $\int \frac{1}{x^2+1} dx = \arctan(x)$ $$\frac{1}{\sqrt{3}}\arctan\left(\frac{t}{\sqrt{3}}\right)-\sqrt{3}\arctan\left(\frac{2z+1}{\sqrt{3}}\right)+c$$ Substituting t as $x - \frac{1}{x}$ and z as x^2 $$\frac{1}{\sqrt{3}}\arctan\left(\frac{x-\frac{1}{x}}{\sqrt{3}}\right)-\sqrt{3}\arctan\left(\frac{2x^2+1}{\sqrt{3}}\right)+c$$ ### 6. Question Evaluate the following integral: $$\int \frac{x^2 + 1}{x^4 - x^2 + 1} \, dx$$ #### **Answer** re-writing the given equation as $$\int \frac{1 + \frac{1}{x^2}}{x^2 - 1 + \frac{1}{x^2}} dx$$ $$\int \frac{1 + \frac{1}{x^2}}{\left(x - \frac{1}{x}\right)^2 + 1} dx$$ Substituting t as $x - \frac{1}{x}$ $$\left(1 + \frac{1}{x^2}\right) dx = dt$$ $$\int \frac{dt}{t^2 + 1}$$ Using identity $\int \frac{1}{x^2+1} dx = \arctan(x)$ arctan t + c Substituting t as $x - \frac{1}{x}$ $$\arctan\left(x-\frac{1}{x}\right)+c$$ ### 7. Question Evaluate the following integral: $$\int \frac{x^2 - 1}{x^4 + 1} \, dx$$ #### **Answer** re-writing the given equation as $$\int \frac{1-\frac{1}{x^2}}{x^2-\frac{1}{x^2}} dx$$ $$\int \frac{1 - \frac{1}{x^2}}{\left(x + \frac{1}{x}\right)^2 - 2} dx$$ Assume $t = x + \frac{1}{x}$ $$dt = \left(1 - \frac{1}{x^2}\right) dx$$ $$\int \frac{dt}{t^2 - 2}$$ Using identity $\int \frac{dz}{(z)^2 - 1} = \frac{1}{2} log \left| \frac{z - 1}{z + 1} \right| + c$ $$\frac{1}{2\sqrt{2}}log\frac{t-\sqrt{2}}{t+\sqrt{2}}+c$$ Substituting t as $x + \frac{1}{x}$ $$\frac{1}{2\sqrt{2}}\log \frac{x + \frac{1}{x} - \sqrt{2}}{x + \frac{1}{x} + \sqrt{2}} + c$$ ### 8. Question Evaluate the following integral: $$\int \frac{x^2 + 1}{x^4 + 7x^2 + 1} \, \mathrm{d}x$$ ## **Answer** re-writing the given equation as $$\int \frac{1 + \frac{1}{x^2}}{x^2 + 7 + \frac{1}{x^2}} dx$$ $$\int \frac{1 + \frac{1}{x^2}}{\left(x - \frac{1}{x}\right)^2 + 9} dx$$ Assume $$t = x - \frac{1}{x}$$ $$dt = \left(1 + \frac{1}{x^2}\right) dx$$ $$\int \frac{dt}{(t)^2 + 9}$$ Using identity $\int \frac{1}{x^2+1} dx = \arctan(x)$ $$\frac{1}{3}\arctan\left(\frac{t}{3}\right) + c$$ Substituting t as $x - \frac{1}{x}$ $$\frac{1}{3}\arctan\left(\frac{x-\frac{1}{x}}{3}\right)+c$$ ## 9. Question Evaluate the following integral: $$\int \frac{\left(x-1\right)^2}{x^4+x^2+1} \, dx$$ #### **Answer** re-writing the given equation as $$\int \frac{x^2 - 2x + 1}{x^4 + x^2 + 1} dx$$ $$\int \frac{1 - \frac{2}{x} + \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} dx$$ $$\int \frac{1 + \frac{1}{x^2}}{\left(x - \frac{1}{x}\right)^2 + 3} dx - \int \frac{2x}{x^4 + x^2 + 1} dx$$ Substituting t as $x - \frac{1}{x}$ and z as x^2 $$\left(1 + \frac{1}{x^2}\right) dx = dt$$ and $2xdx = dz$ $$\int \frac{dt}{(t)^2+3} - \frac{3}{2} \int \frac{dz}{z^2+z+1}$$ $$\int \frac{dt}{(t)^2+3} - \int \frac{dz}{\left(z+\frac{1}{2}\right)^2+\frac{3}{4}}$$ Using identity $\int \frac{1}{x^2+1} dx = \arctan(x)$ $$\frac{1}{\sqrt{3}}\arctan\Bigl(\frac{t}{\sqrt{3}}\Bigr) - \frac{2}{\sqrt{3}}\arctan\Bigl(\frac{2z+1}{\sqrt{3}}\Bigr) + c$$ Substituting t as $x - \frac{1}{x}$ and z as x^2 $$\frac{1}{\sqrt{3}}\arctan\!\left(\!\frac{x-\!\frac{1}{x}}{\sqrt{3}}\!\right)\!-\!\frac{2}{\sqrt{3}}\arctan\!\left(\!\frac{2x^2+1}{\sqrt{3}}\!\right)\!+c$$ ### 10. Question Evaluate the following integral: $$\int \frac{1}{x^4 + 3x^2 + 1} \, \mathrm{d}x$$ ### **Answer** re-writing the given equation as $$\int \frac{\frac{1}{x^2}}{x^2+3+\frac{1}{x^2}} dx$$ $$\frac{1}{2} \int \frac{\left(1 + \frac{1}{x^2}\right) - \left(1 - \frac{1}{x^2}\right)}{x^2 + 3 + \frac{1}{x^2}} dx$$ $$\frac{1}{2} \left[\int \frac{1 + \frac{1}{x^2}}{\left(x - \frac{1}{x}\right)^2 + 5} \, dx - \int \frac{1 - \frac{1}{x^2}}{\left(x + \frac{1}{x}\right)^2 + 1} \, dx \right]$$ Assume $$t = x - \frac{1}{x}$$ and $z = x + \frac{1}{x}$ $$dt = \left(1 + \frac{1}{x^2}\right) dx$$ and $dz = \left(1 - \frac{1}{x^2}\right) dx$ $$\frac{1}{2} \left[\int \frac{dt}{(t)^2 + 5} - \int \frac{dz}{(z)^2 + 1} \right]$$ Using identity $\int \frac{1}{x^2+1} dx = \arctan(x)$ $$\frac{1}{2\sqrt{5}} \arctan\left(\frac{t}{\sqrt{5}}\right) - \frac{1}{2} \arctan(z) + c$$ Substituting t as $x - \frac{1}{x}$ and z as $x + \frac{1}{x}$ $$\frac{1}{2\sqrt{5}}\arctan\left(\frac{x-\frac{1}{x}}{\sqrt{5}}\right) - \frac{1}{2}\arctan\left(x+\frac{1}{x}\right) + c$$ ## 11. Question Evaluate the following integral: $$\int \frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x} \, \mathrm{d}x$$ ### **Answer** Re-writing the given equation as Multiplying $\sec^4 x$ in both numerator and denominator $$\int \frac{\sec^4 x}{\tan^4 x + \tan^2 x + 1} dx$$ $$= \int \frac{(\tan^2 x + 1)\sec^2 x}{\tan^4 x + \tan^2 x + 1} dx$$ Assume tanx = t $sec^2xdx=dt$ $$= \int \frac{(t^2 + 1)dt}{t^4 + t^2 + 1}$$ $$= \int \frac{1 + \frac{1}{t^2}}{t^2 + 1 + \frac{1}{t^2}} dt$$ $$= \int \frac{1 + \frac{1}{t^2}}{\left(t - \frac{1}{t}\right)^2 + 3} dt$$ Assume $$z = t - \frac{1}{t}$$ $$\Rightarrow dz = 1 + \frac{1}{t^2}$$ $$=\int \frac{dz}{z^2+3}$$ Using identity $\int \frac{1}{x^2+1} dx = \arctan(x)$ $$=\frac{1}{\sqrt{3}}\arctan\left(\frac{z}{\sqrt{3}}\right)+c$$ $$= \frac{1}{\sqrt{3}} \arctan\left(\frac{t - \frac{1}{t}}{\sqrt{3}}\right) + c$$ $$= \frac{1}{\sqrt{3}} \arctan\left(\frac{\tan x - \frac{1}{\tan x}}{\sqrt{3}}\right) + c$$ # Exercise 19.32 # 1. Question Evaluate the following integral: $$\int \frac{1}{(x-1)\sqrt{x+2}} dx$$ #### **Answer** assume $x+2=t^2$ $$dx=2tdt$$ $$\int \frac{2dt}{(t^2-3)}$$ Using identity $\int \frac{dz}{(z)^2 - 1} = \frac{1}{2} \log \left| \frac{z - 1}{z + 1} \right| + c$ $$\frac{1}{\sqrt{3}}\log\left|\frac{t-\sqrt{3}}{t+\sqrt{3}}\right|+c$$
$$\frac{1}{\sqrt{3}}\log\left|\frac{\sqrt{(x+2)}-\sqrt{3}}{\sqrt{x+2}+\sqrt{3}}\right|+c$$ # 2. Question Evaluate the following integral: $$\int \frac{1}{(x-1)\sqrt{2x+3}} \, dx$$ ### **Answer** assume $2x+3=t^2$ dx=tdt $$\int \frac{dt}{\frac{t^2-3}{2}-1}$$ $$\int \frac{2dt}{(t^2-5)}$$ Using identity $\int \frac{dz}{(z)^2 - 1} = \frac{1}{2} \log \left| \frac{z - 1}{z + 1} \right| + c$ $$\frac{1}{\sqrt{5}}log\left|\frac{t-\sqrt{5}}{t+\sqrt{5}}\right|+c$$ $$\frac{1}{\sqrt{5}}log\left|\frac{\sqrt{(2x+3)}-\sqrt{5}}{\sqrt{2x+3}+\sqrt{5}}\right|+c$$ ## 3. Question Evaluate the following integral: $$\int \frac{x+1}{(x-1)\sqrt{x+2}} dx$$ #### **Answer** re-writing the given equation as $$\int \frac{(x-1)+2}{(x-1)\sqrt{x+2}} dx$$ Now splitting the integral in two parts $$\int \frac{(x-1)}{(x-1)\sqrt{x+2}} dx + \int \frac{2}{(x-1)\sqrt{x+2}} dx$$ For the first part using identity $\int x^n dx = \frac{x^{n+1}}{n+1}$ $$2\sqrt{x+2}$$ For the second part assume $x+2=t^2$ dx=2tdt $$\int \frac{4dt}{(t^2-3)}$$ Using identity $\int \frac{dz}{(z)^2 - 1} = \frac{1}{2} \log \left| \frac{z - 1}{z + 1} \right| + c$ $$\frac{2}{\sqrt{3}}\log\left|\frac{t-\sqrt{3}}{t+\sqrt{3}}\right|+c$$ $$\frac{2}{\sqrt{3}}\log\left|\frac{\sqrt{(x+2)}-\sqrt{3}}{\sqrt{x+2}+\sqrt{3}}\right|+c$$ Hence integral is $$2\sqrt{x+2} + \frac{2}{\sqrt{3}}\log\left|\frac{\sqrt{(x+2)} - \sqrt{3}}{\sqrt{x+2} + \sqrt{3}}\right| + c$$ ## 4. Question Evaluate the following integral: $$\int \frac{x^2}{(x-1)\sqrt{x+2}} \, \mathrm{d}x$$ #### **Answer** re-writing the given equation as $$\int \frac{(x^2-1)+1}{(x-1)\sqrt{x+2}} dx$$ $$\int \frac{(x^2-1)}{(x-1)\sqrt{x+2}} dx + \int \frac{1}{(x-1)\sqrt{x+2}} dx$$ $$\int \frac{(x+1)}{\sqrt{x+2}} dx + \int \frac{1}{(x-1)\sqrt{x+2}} dx$$ $$\int \frac{(1)}{\sqrt{x+2}} \, dx + \int \sqrt{x+2} \, dx + \int \frac{1}{(x-1)\sqrt{x+2}} \, dx$$ For the first- and second-part using identity $\int x^n dx = \frac{x^{n+1}}{n+1}$ $$\frac{2}{3}(x+2)^{\frac{3}{2}}+2\sqrt{x+2}$$ For the second part assume $x+2=t^2$ dx=2tdt $$\int \frac{4dt}{(t^2-3)}$$ Using identity $\int \frac{dz}{(z)^2-1} = \frac{1}{2} \log \left| \frac{z-1}{z+1} \right| + c$ $$\frac{2}{\sqrt{3}}\log\left|\frac{t-\sqrt{3}}{t+\sqrt{3}}\right|+c$$ $$\frac{2}{\sqrt{3}} \log \left| \frac{\sqrt{(x+2)} - \sqrt{3}}{\sqrt{x+2} + \sqrt{3}} \right| + c$$ Hence integral is $$\frac{2}{3}(x+2)^{\frac{3}{2}} + 2\sqrt{x+2} + \frac{2}{\sqrt{3}}\log\left|\frac{\sqrt{(x+2)} - \sqrt{3}}{\sqrt{x+2} + \sqrt{3}}\right| + c$$ ## 5. Question Evaluate the following integral: $$\int \frac{x}{(x-3)\sqrt{x+1}} \ dx$$ #### **Answer** re-writing the given equation as $$\int \frac{(x-3)+3}{(x-3)\sqrt{x+1}} dx$$ $$\int \frac{(x-3)}{(x-3)\sqrt{x+1}} dx + \int \frac{3}{(x-3)\sqrt{x+1}} dx$$ For the first part using identity $\int x^n dx = \frac{x^{n+1}}{n+1}$ $$2\sqrt{x+1}+c$$ For the second part assume $x+1=t^2$ dx=2tdt $$\int \frac{2dt}{(t^2-4)}$$ Using identity $\int \frac{dz}{(z)^2 - 1} = \frac{1}{2} \log \left| \frac{z - 1}{z + 1} \right| + c$ $$\frac{1}{2}\log\left|\frac{t-2}{t+2}\right|+c$$ $$\frac{1}{2} \log \left| \frac{\sqrt{(x+2)} - 2}{\sqrt{x+2} + 2} \right| + c$$ Hence integral is $$\frac{1}{2} \log \left| \frac{\sqrt{(x+2)} - 2}{\sqrt{x+2} + 2} \right| + c + 2\sqrt{x+1}$$ ### 6. Question Evaluate the following integral: $$\int \frac{1}{\left(x^2 + 1\right)\sqrt{x}} \, \mathrm{d}x$$ ### **Answer** let $$x=t^2$$ $$dx=2tdt$$ $$\int \frac{2dt}{t^4 + 1}$$ Dividing by t² in both numerator and denominator $$\int \frac{\left[\left(1+\frac{1}{t^2}\right)-\left(1-\frac{1}{t^2}\right)\right]dt}{t^2+\frac{1}{t^2}}$$ $$\int \frac{\left[\left(1+\frac{1}{t^2}\right)\right]dt}{\left(t-\frac{1}{t}\right)^2+2} - \int \frac{\left(1-\frac{1}{t^2}\right)dt}{\left(t+\frac{1}{t}\right)^2-2}$$ Let $$t - \frac{1}{t} = z$$ and $t + \frac{1}{t} = y$ $$\left(1+\frac{1}{t^2}\right)\!dt=dz$$ and $\left(1-\frac{1}{t^2}\right)\!dt=dy$ $$\int \frac{dz}{z^2+2} - \int \frac{dy}{y^2-2}$$ Using identity $\int \frac{1}{x^2+1} dx = \arctan(x)$ and $\int \frac{dz}{(z)^2-1} = \frac{1}{2} log \left| \frac{z-1}{z+1} \right| + c$ $$\frac{1}{\sqrt{2}}\arctan\left(\frac{z}{\sqrt{2}}\right) - \frac{1}{2\sqrt{2}}\log\left|\frac{y-\sqrt{2}}{y+\sqrt{2}}\right| + c$$ Substituting $$t - \frac{1}{t} = z$$ and $t + \frac{1}{t} = y$ $$\frac{1}{\sqrt{2}}\arctan\!\left(\!\frac{t-\frac{1}{t}}{\sqrt{2}}\!\right)\!-\!\frac{1}{2\sqrt{2}}\!\log\!\left|\!\frac{t+\frac{1}{t}-\sqrt{2}}{t+\frac{1}{t}+\sqrt{2}}\!\right|+c$$ $$\frac{1}{\sqrt{2}}\arctan\left(\frac{\sqrt{x}-\frac{1}{\sqrt{x}}}{\sqrt{2}}\right) - \frac{1}{2\sqrt{2}}\log\left|\frac{\sqrt{x}+\frac{1}{\sqrt{x}}-\sqrt{2}}{\sqrt{x}+\frac{1}{\sqrt{x}}+\sqrt{2}}\right| + c$$ ### 7. Question Evaluate the following integral: $$\int \frac{x}{\left(x^2 + 2x + 2\right)\sqrt{x + 1}} \, dx$$ #### **Answer** assume $x+1=t^2$ dx=2tdt $$\int \frac{2(t^2-1)dt}{t^4+1}$$ Dividing by t² in both numerator and denominator $$\int \frac{2\left(1-\frac{1}{t^2}\right)dt}{t^2+\frac{1}{t^2}}$$ $$\int \frac{2\left(1-\frac{1}{t^2}\right)dt}{\left(t+\frac{1}{t}\right)^2-2}$$ Let $$\left(t + \frac{1}{t}\right) = z$$ $$\left(1 - \frac{1}{t^2}\right) dt = dz$$ $$\int \frac{2dz}{z^2-2}$$ Using identity $\int \frac{dz}{(z)^2 - 1} = \frac{1}{2} \log \left| \frac{z - 1}{z + 1} \right| + c$ $$\frac{1}{\sqrt{2}}log\left|\frac{z-\sqrt{2}}{z+\sqrt{2}}\right|+c$$ Substituting $\left(t + \frac{1}{t}\right) = z$ $$\frac{1}{\sqrt{2}}\log\left|\frac{t+\frac{1}{t}-\sqrt{2}}{t+\frac{1}{t}+\sqrt{2}}\right|+c$$ Substituting $t = \sqrt{x+1}$ $$\frac{1}{\sqrt{2}} \log \left| \frac{\sqrt{x+1} + \frac{1}{\sqrt{x+1}} - \sqrt{2}}{\sqrt{x+1} + \frac{1}{\sqrt{x+1}} + \sqrt{2}} \right| + c$$ ### 8. Question Evaluate the following integral: $$\int \frac{1}{(x-1)\sqrt{x^2+1}} \, dx$$ #### **Answer** assume $x - 1 = \frac{1}{t}$ $$dx = -\frac{1}{t^2}dt$$ $$-\int \frac{dt}{\sqrt{2t^2+2t+1}}$$ $$-\frac{1}{\sqrt{2}}\int \frac{dt}{\sqrt{\left(t+\frac{1}{2}\right)^2+\frac{1}{4}}}$$ Using identity $\int \frac{dx}{\sqrt{x^2+a^2}} = \log(x + \sqrt{x^2+a^2}) + c$ $$-\frac{1}{\sqrt{2}}log\left(t+\frac{1}{2}+\sqrt{\left(t+\frac{1}{2}\right)^2+\frac{1}{4}}\right)+c$$ Substituting $t = \frac{1}{x-1}$ $$-\frac{1}{\sqrt{2}} log \left(\frac{1}{x-1} + \frac{1}{2} + \sqrt{\left(\frac{1}{x-1} + \frac{1}{2} \right)^2 + \frac{1}{4}} \right) + c$$ ## 9. Question Evaluate the following integral: $$\int \frac{1}{(x+1)\sqrt{x^2+x+1}} \, dx$$ ### **Answer** assume $$x + 1 = \frac{1}{t}$$ $$dx=-\frac{1}{t^2}dt \\$$ $$-\int \frac{dt}{\sqrt{1+t-t^2}}$$ $$-\int \frac{dt}{\sqrt{\frac{5}{4} - \left(t - \frac{1}{2}\right)^2}}$$ Using identity $$\int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin\left(\frac{x}{a}\right) + c$$ $$-\arcsin\!\left(\!\frac{\left(t\!-\!\frac{1}{2}\right)}{\frac{\sqrt{5}}{2}}\!\right)\!+c$$ Substituting $$t = \frac{1}{x+1}$$ $$-\arcsin\left(\frac{\left(\frac{1}{x+1}-\frac{1}{2}\right)}{\frac{\sqrt{5}}{2}}\right)+c$$ # 10. Question Evaluate the following integral: $$\int \frac{1}{\left(x^2 - 1\right)\sqrt{x^2 + 1}} \, \mathrm{d}x$$ assume $$x = \frac{1}{t}$$ $$dx = -\frac{1}{t^2}dt$$ $$-\int \frac{tdt}{(1-t^2)(\sqrt{1+t^2}}$$ Let $$1+t^2=u^2$$ $$\int \frac{u du}{(u^2 - 2)u}$$ $$\int \frac{du}{(u^2-2)}$$ Using identity $$\int \frac{dz}{(z)^2 - 1} = \frac{1}{2} \log \left| \frac{z - 1}{z + 1} \right| + c$$ $$\frac{1}{2\sqrt{2}}\log\left|\frac{u-\sqrt{2}}{u+\sqrt{2}}\right|+c$$ Substituting $u = \sqrt{1 + t^2}$ $$\frac{1}{2\sqrt{2}} log \left| \frac{\sqrt{1+t^2} - \sqrt{2}}{\sqrt{1+t^2} + \sqrt{2}} \right| + c$$ Substituting $t = \frac{1}{x}$ $$\frac{1}{2\sqrt{2}} log \left| \frac{\sqrt{1 + \frac{1}{x^2}} - \sqrt{2}}{\sqrt{1 + \frac{1}{x^2}} + \sqrt{2}} \right| + c$$ ### 11. Question Evaluate the following integral: $$\int \frac{x}{\left(x^2+4\right)\sqrt{x^2+1}} \ dx$$ ## **Answer** assume $x^2+1=u^2$ xdx=udu $$\int \frac{udu}{(u^2+3)u}$$ $$\int \frac{du}{(u^2+3)}$$ Using identity $\int \frac{1}{x^2+1} dx = \arctan(x)$ $$\frac{1}{\sqrt{3}}\arctan\left(\frac{u}{\sqrt{3}}\right) + c$$ Substituting $u = \sqrt{1 + x^2}$ $$\frac{1}{\sqrt{3}}\arctan\left(\frac{\sqrt{1+x^2}}{\sqrt{3}}\right)+c$$ ## 12. Question Evaluate the following integral: $$\int \frac{1}{\left(1+x^2\right)\sqrt{1-x^2}} \, dx$$ assume $$x = \frac{1}{t}$$ $$dx = -\frac{1}{t^2}dt$$ $$-\int \frac{tdt}{(t^2+1)(\sqrt{t^2-1}}$$ Let $$t^2 - 1 = u^2$$ tdt=udu $$-\int \frac{udu}{(u^2+2)u}$$ $$-\int \frac{du}{(u^2+2)}$$ Using identity $\int \frac{1}{x^2+1} dx = \arctan(x)$ $$-\frac{1}{\sqrt{2}}\arctan\left(\frac{u}{\sqrt{2}}\right)+c$$ Substituting $u = \sqrt{t^2 - 1}$ $$-\frac{1}{\sqrt{2}}\arctan\left(\frac{\sqrt{t^2-1}}{\sqrt{2}}\right)+c$$ Substituting $t = \frac{1}{x}$ $$-\frac{1}{\sqrt{2}}\arctan\!\left(\!\frac{\sqrt{\frac{1}{x^2}-1}}{\sqrt{2}}\!\right)\!+c$$ # 13. Question Evaluate the following integral: $$\int \frac{1}{\left(2x^2+3\right)\sqrt{x^2-4}} \, \mathrm{d}x$$ ### **Answer** assume $$x = \frac{1}{t}$$ $$dx = -\frac{1}{t^2}dt$$ $$-\int \frac{tdt}{(3t^2+2)(\sqrt{1-4t^2})}$$ Assume $1-4t^2=u^2$ -4tdt=udu $$-\frac{1}{4}\int\frac{udu}{\left(\frac{11-3u^2}{4}\right)u}$$ $$-\frac{1}{3}\int \frac{du}{\left(\frac{11}{3}-u^2\right)}$$ Using identity $$\int \frac{dz}{(z)^2 - 1} = \frac{1}{2} \log \left| \frac{z - 1}{z + 1} \right| + c$$ $$\frac{1}{2\sqrt{33}}log\left|\frac{u-\sqrt{\frac{11}{3}}}{u+\sqrt{\frac{11}{3}}}\right|+c$$ Substituting $u = \sqrt{1 - 4t^2}$ $$\frac{1}{2\sqrt{33}}log\left|\frac{\sqrt{1-4t^2}-\sqrt{\frac{11}{3}}}{\sqrt{1-4t^2}+\sqrt{\frac{11}{3}}}\right|+c$$ Substituting $t = \frac{1}{x}$ $$\frac{1}{2\sqrt{33}}\log\left|\frac{\sqrt{1-\frac{4}{x^2}}-\sqrt{\frac{11}{3}}}{\sqrt{1-\frac{4}{x^2}}+\sqrt{\frac{11}{3}}}\right|+c$$ # 14. Question Evaluate the following integral: $$\int \frac{x}{\left(x^2+4\right)\sqrt{x^2+9}} \, dx$$ #### **Answer** assume $x^2+9=u^2$ xdx=udu $$\int \frac{udu}{(u^2-5)u}$$ $$\int \frac{du}{(u^2-5)}$$ Using identity $\int \frac{dz}{(z)^2 - 1} = \frac{1}{2} \log \left| \frac{z - 1}{z + 1} \right| + c$ $$\frac{1}{2\sqrt{5}}\log\left|\frac{u-\sqrt{5}}{u+\sqrt{5}}\right|+c$$
Substituting $u = \sqrt{9 + x^2}$ $$\frac{1}{2\sqrt{5}}\log\left|\frac{\sqrt{9+x^2}-\sqrt{5}}{\sqrt{9+x^2}+\sqrt{5}}\right|+c$$ # Very short answer # 16. Question Write a value of $\int \frac{1}{1+2e^x} dx$ #### **Answer** Take e^x out from the denominator. $$y = \int \frac{1}{e^x(e^{-x} + 2)} dx$$ $$y = \int \frac{e^{-x}}{(e^{-x}+2)} dx$$ Let, $$e^{-x} + 2 = t$$ Differentiating both sides with respect to x $$\frac{dt}{dx} = -e^{-x}$$ $$\Rightarrow$$ -dt = e^{-x} dx $$y = \int \frac{-dt}{t}$$ Use formula $\int \frac{1}{t} dt = \ln t$ $$Y = -ln t + c$$ Again, put $e^{-x} + 2 = t$ $$Y = -ln(e^{-X} + 2) + c$$ Note: Don't forget to replace t with the function of x at the end of solution. Always put constant c with indefinite integral. ### 17. Question Write a value of $\int \frac{(\tan^{-1} x)^3}{1+x^2} dx$ #### **Answer** Let, $tan^{-1}x = t$ Differentiating both sides with respect to x $$\frac{dt}{dx} = \frac{1}{1+x^2}$$ $$\Rightarrow dt = \frac{dx}{1+x^2}$$ $$y = \int t^3 dt$$ Use formula $\int t^n dt = \frac{t^{n+1}}{n+1}$ $$y = \frac{t^4}{4} + c$$ Again, put $t = tan^{-1}x$ $$y = \frac{(\tan^{-1} x)^4}{4} + c$$ ## 18. Question Write a value of $\int \frac{\sec^2 x}{(5 + \tan x)^4} dx$ #### **Answer** Let, tan x = t Differentiating both side with respect to x $$\frac{dt}{dx} = (\sec x)^2 \Rightarrow dt = \sec^2 x dx$$ $$y = \int \frac{dt}{(5+t)^4}$$ Use formula $$\int \frac{1}{(a+t)^n} dt = \frac{(a+t)^{-n+1}}{-n+1}$$ $$y = \frac{(5+t)^{-3}}{-3} + c$$ Again, put t = tan x $$y = -\frac{1}{3(5 + \tan x)^3} + c$$ ## 19. Question Write a value of $$\int \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx$$ #### **Answer** We know that $$1 + \sin 2x = \sin^2 x + \cos^2 x + 2\sin x \cos x = (\sin x + \cos x)^2$$ $$y = \int \frac{\sin x + \cos x}{\sqrt{(\sin x + \cos x)^2}} dx$$ $$y = \int \frac{(\sin x + \cos x)}{(\sin x + \cos x)} dx$$ Use formula $\int c dx = cx$, where c is constant $$y = x + c$$ ### 20. Question Write a value of $\int log_a x dx$ #### **Answer** $$y = \int 1 \times \log_e x \, dx$$ By using integration by parts Let, $\log_e x$ as Ist function and 1 as IInd function Use formula $\int I \times II \, dx = I \int II \, dx - \int \left(\frac{d}{dx}I\right) \left(\int II \, dx\right) dx$ $$y = \log_e x \int dx - \int \left(\frac{d}{dx} \log_e x\right) (\int dx) dx$$ $$y = (\log_e x)x - \int \left(\frac{1}{x}\right)(x)dx$$ $$y=x log_e x -x + c$$ ### 21. Question #### **Answer** We know that a and e are constant so, $a^x e^x = (ae)^x$ $$y = \int (ae)^x dx$$ Use formula $\int c^x = \frac{c^x}{\log c}$ where c is constant $$y = \frac{(ae)^x}{\log(ae)} + c$$ $$y = \frac{a^x e^x}{\log a + 1} + c$$ ## 22. Question Write a value of $\int e^{2x^2+\ln x} dx$ #### **Answer** We know that $e^{a+b} = e^a e^b$ $$y = \int e^{2x^2} e^{\ln x} dx$$ $$y = \int e^{2x^2} x \, dx$$ Let, $$x^2 = t$$ Differentiating both sides with respect to x $$\frac{dt}{dx} = 2x$$ $$\Rightarrow \frac{1}{2}dt = x dx$$ $$y = \int \frac{1}{2} e^{2t} dt$$ Use formula $\int e^{a+bt} = \frac{e^{a+bt}}{b}$ $$y = \frac{1}{2} \frac{e^{2t}}{2} + c$$ Again, put $t = x^2$ $$y = \frac{e^{2x^2}}{4} + c$$ ## 23. Question Write a value of $\int \! \left(e^{x \log_e a} + e^{a \log_e x} \right) \! dx$ # Answer We know that by using property of logarithm $$e^{x \log_e a} = e^{\log_e a^x} = a^x$$ and $e^{a \log_e x} = e^{\log_e x^a} = x^a$ $$y = \int a^x + x^a dx$$ $$y = \int a^x dx + \int x^a dx$$ Use formula $$\int a^x dx = \frac{a^x}{\log a}$$ and $\int x^a dx = \frac{x^{a+1}}{a+1}$ $$y = \frac{a^x}{\log a} + \frac{x^{a+1}}{a+1} + c$$ Write a value of $$\int \frac{\cos x}{\sin x \log \sin x} dx$$ #### **Answer** Let log(sin x) = t Differentiating both sides with respect to x $$\frac{dt}{dx} = \frac{\cos x}{\sin x} \Rightarrow dt = \frac{\cos x}{\sin x} dx$$ $$y = \int \frac{1}{t} dt$$ Use formula $\int \frac{1}{t} dt = \log t$ $$y = log t + c$$ Again, put t = log(sin x) $$y = \log(\log(\sin x)) + c$$ ## 25. Question Write a value of $$\int \frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} dx$$ ### **Answer** We know that $\cos^2 x = 1 - \sin^2 x$ $$(a^2\sin^2 x + b^2\cos^2 x) = a^2\sin^2 x + b^2(1 - \sin^2 x)$$ $$= (a^2 - b^2)\sin^2 x + b^2$$ $$y = \int \frac{\sin 2x}{(a^2 - b^2)(\sin x)^2 + b^2} dx$$ Let, $$\sin^2 x = t$$ Differentiating both sides with respect to x $$\frac{dt}{dx} = 2\sin x \cos x$$ $$= \sin 2x$$ $$\Rightarrow$$ dt = sin2x dx $$y = \int \frac{dt}{(a^2 - b^2)t + b^2}$$ Use formula $$\int \frac{1}{ct+d} dt = \frac{\log(ct+d)}{c}$$ $$y = \frac{\log[(a^2 - b^2)t + b^2]}{(a^2 - b^2)} + c$$ Again, put $t = \sin^2 x$ $$y = \frac{\log[(a^2 - b^2)(\sin x)^2 + b^2]}{(a^2 - b^2)} + c$$ # 26. Question Write a value of $$\int \frac{a^x}{3+a^x} dx$$ #### **Answer** Let, $$3 + a^{x} = t$$ Differentiating both sides with respect to x $$\frac{dt}{dx} = a^x \log a$$ $$\Rightarrow \frac{dt}{\log a} = a^x dx$$ $$y = \int \frac{1}{(\log a)t} dt$$ Use formula $\int \frac{1}{t} dt = \log t$ $$y = \frac{\log t}{\log a} + c$$ Again, put $t = 3 + a^x$ $$y = \frac{\log(3 + a^x)}{\log a} + c$$ ## 27. Question Write a value of $$\int \frac{1 + \log x}{3 + x \log x} dx$$ #### **Answer** Let, $$x(\log x) = t$$ Differentiating both sides with respect to x $$\frac{dt}{dx} = x\frac{1}{x} + \log x = 1 + \log x$$ $$\Rightarrow$$ dt = (1 + log x)dx $$y = \int \frac{1}{3+t} dt$$ Use formula $\int \frac{1}{a+t} dt = \log(a+t)$ $$y = \log(3 + t) + c$$ Again, put $$t = x(\log x)$$ $$y = \log(3 + x(\log x)) + c$$ Write a value of $\int \frac{\sin x}{\cos^3 x} dx$ #### **Answer** Let, $\cos x = t$ Differentiating both sides with respect to x $$\frac{dt}{dx} = -\sin x$$ $$\Rightarrow$$ -dt = sin x dx $$y = \int \frac{-1}{t^3} dt$$ Use formula $\int \frac{1}{t^n} dt = \frac{t^{-n+1}}{-n+1}$ $$y = -\frac{t^{-2}}{-2} + c$$ Again, put $t = \cos x$ $$y = \frac{1}{2(\cos x)^2} + c$$ ## 29. Question Write a value of $\int \frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} dx$ ### **Answer** We know that $$1 + \sin 2x = \sin^2 x + \cos^2 x + 2\sin x \cos x$$ $$= (\sin x + \cos x)^2$$ $$y = \int \frac{\sin x - \cos x}{\sqrt{(\sin x + \cos x)^2}} dx$$ $$y = \int \frac{(\sin x - \cos x)}{(\sin x + \cos x)} dx$$ Let, $\sin x + \cos x = t$ Differentiating both sides with respect to x $$\frac{dt}{dx} = \cos x - \sin x$$ $$\Rightarrow$$ -dt = (sin x - cos x)dx $$y = \int \frac{-1}{t} dt$$ Use formula $\int \frac{1}{t} = \log t$ $$y = -log t + c$$ Again, put $t = \sin x + \cos x$ $$y = -log(sin x + cos x) + c$$ Write a value of $\int \frac{1}{x (\log x)^n} dx$ #### **Answer** Let, $\log x = t$ Differentiating both sides with respect to x $$\frac{dt}{dx} = \frac{1}{x}$$ $$\Rightarrow dt = \frac{1}{x}dx$$ $$y = \int \frac{1}{t^n} dt$$ Use formula $\int \frac{1}{t^n} dt = \frac{t^{-n+1}}{-n+1}$ $$y = \frac{t^{-n+1}}{-n+1} + c$$ Again, put t = log x $$y = \frac{(\log x)^{-n+1}}{-n+1} + c$$ #### 31. Question Write a value of $\int e^{ax} \sin bx dx$ ### **Answer** we know $\int f(x)g(x) = f(x) \int g(x) - \int f'(x) \int g(x)$ Let $$\int e^{ax} \sin bx \, dx = i$$ Given that $\int e^{ax} \sin bx \, dx$ $$i = \sin bx \int e^{ax} - \int b \cos bx \int e^{ax}$$ $$i = \sin bx \frac{e^{ax}}{a} - \int b \cos bx \frac{e^{ax}}{a}$$ $$i = \sin bx \frac{e^{ax}}{a} - \frac{1}{a} \left[b \cos bx \frac{e^{ax}}{a} - \frac{b^2}{a} \int e^{ax} \sin bx \, dx \right]$$ $$i = \sin bx \frac{e^{ax}}{a} - \frac{b}{a^2} \cos bx e^{ax} + \frac{b^2}{a^2} i$$ $$i\left(1 - \frac{b^2}{a^2}\right) = \frac{a\sin bx \ e^{ax} - b\cos bx \ e^{ax}}{a^2}$$ $$i = \frac{a \sin bx \ e^{ax} - b \cos bx \ e^{ax}}{a^2} \left(\frac{a^2}{a^2 - b^2}\right)$$ $$\int e^{ax} \sin bx \, dx = \frac{e^{ax} (a \sin bx - b \cos bx)}{a^2 - b^2}$$ Write a value of $\int e^{ax} \cos bx \, dx$.s #### **Answer** we know $\int f(x)g(x) = f(x) \int g(x) - \int f'(x) \int g(x)$ Let $$\int e^{ax} \cos bx \, dx = i$$ Given that $\int e^{ax} \cos bx \, dx$ $$i = \cos bx \int e^{ax} - \int -b\sin bx \int e^{ax}$$ $$i = \cos bx \frac{e^{ax}}{a} + \int b \sin bx \frac{e^{ax}}{a}$$ $$i = \cos bx \frac{e^{ax}}{a} + \frac{1}{a} \left[b \sin bx \frac{e^{ax}}{a} - \frac{b^2}{a} \int e^{ax} \cos bx \, dx \right]$$ $$\mathbf{i} = \cos bx \frac{e^{ax}}{a} + \frac{b}{a^2} \sin bx e^{ax} - \frac{b^2}{a^2} \mathbf{i}$$ $$i\left(1+\frac{b^2}{a^2}\right) = \frac{a\cos bx\ e^{ax} + b\sin bx\ e^{ax}}{a^2}$$ $$i = \frac{a\cos bx \ e^{ax} + b\sin bx \ e^{ax}}{a^2} \left(\frac{a^2}{a^2 + b^2}\right)$$ $$\int e^{ax} \cos bx \, dx = \frac{e^{ax} (a \sin bx + b \cos bx)}{a^2 + b^2}$$ ## 33. Question Write a value of $\int e^x \left(\frac{1}{x} - \frac{1}{x^2}\right) dx$. #### **Answer** given $$\int e^x \left(\frac{1}{x} - \frac{1}{x^2}\right) dx$$ $$= \int \frac{e^x}{x} dx - \int \frac{e^x}{x^2} dx$$ $$= \int \frac{e^x}{x} dx - \left[\frac{e^x}{x^2} - \int -\frac{e^x}{x} \right] + c$$ $$=-\frac{e^x}{x^2}+c$$ ### 34. Question Write a value of $\int e^{ax} \mid a \, f(x) + f'(x) \mid dx$. given $$\int e^{ax} |af(x) + f'(x)| dx$$ $$= a \int e^{ax} f(x) dx + \int e^{ax} f'(x) dx$$ $$= a \left[f(x) \frac{e^{ax}}{a} - \int f'(x) \frac{e^{ax}}{a} dx \right] + \int e^{ax} f'(x) dx$$ $$= f(x) e^{ax} + c$$ Write a value of $\int \sqrt{4-x^2} dx$. ### **Answer** we know that $$\int \sqrt{a^2 - x^2} dx = \frac{x\sqrt{a^2 - x^2}}{2} + \frac{x^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + c$$ Given $$\int \sqrt{4-\chi^2}$$ $$= \int \sqrt{2^2 - x^2}$$ $$= \frac{x\sqrt{2^2 - x^2}}{2} + \frac{x^2}{2}\sin^{-1}\left(\frac{x}{2}\right)$$ $$= \frac{x\sqrt{4-x^2}}{2} + \frac{x^2}{2}\sin^{-1}\left(\frac{x}{2}\right) + c$$ ## 36. Question Write a value of $\int \sqrt{9 + x^2} dx$. ### **Answer** we know that $$\int \sqrt{x^2 + a^2} dx = \frac{x\sqrt{x^2 - a^2}}{2} + \frac{a^2}{2} \log |x + \sqrt{x^2 + a^2}| + c|$$ Given $$\int x^2 + 9$$ $$=\int x^2 + 3^2$$ $$= \frac{x\sqrt{x^2 + 3^2}}{2} + \frac{3^2}{2} \log \left| x + \sqrt{x^2 + 3^2} \right|$$ $$= \frac{x\sqrt{x^2 + 9}}{2} + \frac{9}{2}\log\left|x + \sqrt{x^2 + 9}\right| + c$$ ### 37. Question Write a value of $$\int \sqrt{x^2 - 9} dx$$ we know that $$\int
\sqrt{x^2 - a^2} dx = \frac{x\sqrt{x^2 - a^2}}{2} - \frac{a^2}{2} \log |x + \sqrt{x^2 - a^2}| + c$$ Given $$\int \sqrt{x^2 - 9} \, dx$$ $$= \int \sqrt{x^2 - 3^2} \, dx$$ $$= \frac{x\sqrt{x^2 - 3^2}}{2} - \frac{3^2}{2} \log \left| x + \sqrt{x^2 - 3^2} \right|$$ $$= \frac{x\sqrt{x^2 - 9}}{2} - \frac{9}{2}\log\left|x + \sqrt{x^2 - 9}\right| + c$$ Evaluate: $$\int \frac{x^2}{1+x^3}$$ #### **Answer** let $$1 + x^3 = t$$ Differentiating on both sides we get, $$3x^2dx = dt$$ $$x^2 dx = \frac{1}{3} dt$$ substituting it in $\int \frac{x^2}{1+x^3} dx$ we get, $$=\int \frac{1}{3t}dt$$ $$= \frac{1}{3} \log t + c$$ $$=\frac{1}{3}\log(1+x^3)+c$$ # 39. Question Evaluate: $$\int \frac{x^2 + 4x}{x^3 + 6x^2 + 5} dx$$ ### **Answer** let $$x^3 + 6x^2 + 5 = t$$ Differentiating on both sides we get, $$(3x^2 + 12x)dx = dt$$ $$3(x^2 + 4x)dx = dt$$ $$(x^2 + 4x)dx = \frac{1}{3}dt$$ Substituting it in $\int \frac{x^2+4x}{x^3+6x^2+5} dx$ we get, $$=\int \frac{1}{3t}dt$$ $$=\frac{1}{3\log(x^3+6x^2+5)}+c$$ ## 40. Question Evaluate: $$\int \frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx$$ ### **Answer** let $$\sqrt{x} = t$$ Differentiating on both sides we get, $$\frac{1}{2\sqrt{x}}dx = dt$$ $$\frac{1}{\sqrt{x}}dx = 2dt$$ substituting it in $\int \frac{sec^2\sqrt{x}}{\sqrt{x}}dx$ we get, $$=\int 2sec^2t\,dt$$ $$=2 tan t+c$$ $$= 2 \tan \sqrt{x} + c$$ # 41. Question Evaluate: $$\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$$. ### **Answer** let $$\sqrt{x} = t$$ Differentiating on both sides we get, $$\frac{1}{2\sqrt{x}}dx = dt$$ $$\frac{1}{\sqrt{x}}dx = 2dt$$ substituting it in $\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$ we get, $$=-2\cos\sqrt{x}+c$$ # 42. Question Evaluate: $$\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx$$. # Answer let $$\sqrt{x} = t$$ Differentiating on both sides we get, $$\frac{1}{2\sqrt{x}}dx = dt$$ $$\frac{1}{\sqrt{x}}dx = 2dt$$ substituting it in $\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx$ we get, $$=2 \sin t + c$$ $$= 2 \sin \sqrt{x} + c$$ Evaluate: $$\int \frac{\left(1 + \log x\right)^2}{x} \, dx.$$ ### **Answer** $$let 1 + log x = t$$ Differentiating on both sides we get, $$\frac{1}{x}dx = dt$$ Substituting it in $\int \frac{(1+\log x)^2}{x}$ we get, $$=\int t^2 dt$$ $$=\frac{t^3}{3}+c$$ $$=\frac{(1+\log x)^3}{3}+c$$ ## 44. Question Evaluate: $\int sec^{2} (7-4x) dx$. ## **Answer** let $$7 - 4x = t$$ Differentiating on both sides we get, $$-4 dx = dt$$ $$dx = -\frac{1}{4}dt$$ substituting it in $\int sec^2(7-4x)dx$ we get, $$= \int -\frac{1}{4} sec^2t \, dt$$ $$= tan (7-4x)+c$$ # 45. Question Evaluate: $$\int \frac{\log x^x}{x} dx$$. given $$\int \frac{\log x^x}{x} dx$$ $$= \int \frac{x \log x}{x} dx$$ $$= \int \log x$$ $$=x \log x - x + c$$ Write a value of $\int\!\!\frac{1+\cot x}{x+\log\sin x}\,dx.$ ### **Answer** let $x + \log \sin x = t$ Differentiating it on both sides we get, $$(1+\cot x) dx=dt - i$$ Given that $$\int \frac{1+\cot x}{x+\log \sin x} dx$$ Substituting i in above equation we get, $$=\int \frac{dt}{t}$$ $$=\log t + c$$ $$= \log(x + \log \sin x) + c$$ ## 2. Question Write a value of $\int e^{3\log x} x^4 dx$. #### **Answer** Consider $\int e^{3 \log x} x^4$ $$e^{3\log x} = e^{\log x^3}$$ $$= x^3$$ $$\int e^{3 \log x} x^4 = \int x^3 x^4 dx$$ $$= \int x^7 dx$$ $$=\frac{x^8}{8}+c$$ # 3. Question Write a value of $\int x^2 \sin x^3 dx$. # Answer let $$x^3 = t$$ Differentiating on both sides we get, $$3 x^2 dx = dt$$ $$x^2 dx = \frac{1}{3} dt$$ substituting above equation in $\int x^2 \sin x^3 dx$ we get, $$=\int \frac{1}{3}\sin t\,dt$$ $$= -\frac{1}{3}\cos t + c$$ $$= -\frac{1}{3}\cos x^3 + c$$ Write a value of $\int \tan^3 x \sec^2 x \, dx$. ## **Answer** let tan x = t Differentiating on both sides we get, $$sec^2 x dx = dt$$ Substituting above equation in $\int \tan^3 x \sec^2 x \, dx$ we get, $$= \int t^3 dt$$ $$=\frac{t^4}{4}+c$$ $$=\frac{tan^4x}{4}+c$$ ### 5. Question Write a value of $\int e^{x} (\sin x + \cos x) dx$. ### **Answer** we know $\int e^{x} (f(x) + f'(x))dx = e^{x} f(x) + c$ Given, $$\int e^x (\sin x + \cos x) dx$$ Here $$f(x) = \sin x$$ and $f'(x) = \cos x$ Therefore $\int e^x (\sin x + \cos x) dx = e^x \sin x + c$ ## 6. Question Write a value of $\int tan^6 x sec^2 x dx$. #### **Answer** let tan x=t Differentiating on both sides we get, $$sec^2x dx = dt$$ Substituting above equation in $\int \tan^3 x \sec^2 x \, dx$ we get, $$=\int t^6 dt$$ $$=\frac{t^7}{7}+c$$ $$=\frac{\tan^7 x}{7}+c$$ # 7. Question Write a value of $$\int \frac{\cos x}{3 + 2\sin x} dx$$. ### Answer let $3+2\sin x=t$ Differentiating on both sides we get, $2\cos x dx = dt$ $$\cos x \, dx = \frac{1}{2} dt$$ Substituting above equation in $\int \frac{\cos x}{3+2\sin x} dx$ we get, $$\int \frac{1}{2t} dt$$ $$= \frac{1}{2} \log t + c$$ $$= \frac{1}{2} \log(3 + 2\sin x) + c$$ # 8. Question Write a value of $\int e^x \sec x (1 + \tan x) dx$. ### **Answer** given, $$\int e^{x} \sec x(1 + \tan x) dx = \int e^{x} (\sec x + \sec x \tan x) dx$$ $$= e^{x} \sec x + c$$ $$\therefore \int e^{x} (f(x) + f'(x)) dx = e^{x} f(x) + c$$ ## 9. Question Write a value of $$\int\!\frac{\log x^n}{x}\,dx.$$ #### **Answer** let $\log x^n = t$ Differentiating on both sides we get, $$\frac{1}{x^n}nx^{n-1}dx=dt$$ $$\frac{n}{x}dx = dt$$ $$\frac{1}{x}dx = \frac{1}{n}dt$$ Substituting above equations in $\int \frac{\log x^n}{x} dx$ we get, $$\int \frac{1}{n}t \, dt$$ $$= \frac{1}{n} \frac{t^2}{2} + c$$ $$= \frac{(\log x^n)^2}{2n} + c$$ Write a value of $\int\!\!\frac{\left(\log x\right)^n}{x}dx.$ #### **Answer** let log x=t Differentiating on both sides we get, $$\frac{1}{x}dx = dt$$ Substituting above equations in $\int \frac{(\log x)^n}{x} dx$ we get, $$\int t^n dt$$ $$= \frac{t^{n+1}}{n+1} + c$$ $$= \frac{(\log x)^{n+1}}{n+1} + c$$ # 11. Question Write a value of $\int e^{\log \sin x} \cos x \ dx$. #### **Answer** given $\int e^{\log \sin x} \cos x \, dx$ $$= \int \sin x \cos x \, dx \, (\because e^{\log x} = x)$$ Let $\sin x = t$ Differentiating on both sides we get, Cos x dx=dt Substituting above equations in given equation we get, $$=\frac{t^2}{2}+c$$ $$=\frac{\sin^2 x}{2}+c$$ ## 12. Question Write a value of $\int \sin^3 x \cos x \, dx$. #### **Answer** let sin x=t Differentiating on both sides we get, Cos x dx=dt Substituting above equation in $\int \sin^3 x \cos x \, dx$ we get, $$=\int t^3 dt$$ $$=\frac{t^4}{4}+c$$ $$=\frac{\sin^4 x}{4}+c$$ Write a value of $\int \cos^4 x \sin x \, dx$. ### **Answer** let cos x=t Differentiating on both sides we get, $-\sin x dx = dt$ Substituting above equation in $\int \cos^4 x \sin x \, dx$ we get, $$=\int -t^4 dt$$ $$=-\frac{t^5}{5}+c$$ $$= -\frac{\cos^5 x}{5} + c$$ # 14. Question Write a value of $\int \tan x \sec^3 x \, dx$. ### **Answer** given \int tan x sec³ x dx = $$\int (\tan x \sec x) \sec^2 x dx$$ Let sec x=t Differentiating on both sides we get, tan x sec x dx=dt Substituting above equation in $\int \tan x \sec^3 x dx$ we get, $$=\int t^2 dt$$ $$=\frac{t^3}{3}+c$$ $$=\frac{sec^3x}{3}+c$$ # 15. Question Write a value of $\int \frac{1}{1+e^x} dx$. given $$\int \frac{1}{1+e^x} dx$$ $$= \int \left(1 - \frac{e^x}{1 + e^x}\right) dx$$ Let $$1+e^{x} = t$$ Differentiating on both sides we get, $$E^{x} dx = dt$$ Substituting above equation in given equation we get, $$= \int \left(1 - \frac{1}{t}\right) dt$$ $$=t-\log t+c$$ $$=1+e^{x} - \log(1+e^{x}) + c$$ # 46. Question Evaluate: $\int 2^x dx$. ### **Answer** Given, $\int 2^x dx$. $$=\frac{2^x}{\log 2}+c$$ [since, $\int a^x dx=\frac{a^x}{\log a}$] ## 47. Question Evaluate: $$\int \frac{1-\sin x}{\cos^2 x} dx.$$ ### **Answer** Given, $$\int \frac{1-\sin x}{\cos^2 x} dx$$. $$= \int \frac{1}{\cos^2 x} - \frac{\sin x}{\cos^2 x} \ dx$$ = $$\int \sec^2 x$$ -tanx.sec x dx [since, $\cos x = \frac{1}{\sec x}$] $$= tan x-sec x + c$$ ## 48. Question Evaluate: $$\int \frac{x^3 - 1}{x^2} dx$$. Given, $$\int \frac{x^2-1}{x^2} dx$$. $$= \int \frac{x^3}{x^2} - \frac{1}{x^2} \ dx$$ $$= \int x - \frac{1}{x^2} \, dx$$ [since, $$\int x^n dx = \frac{x^{n+1}}{n+1}$$] $$=\frac{x^2}{2}-\frac{x^{-2+1}}{-2+1}+c$$ $$=\frac{x^2}{2} - \frac{x^{-1}}{-1} + c$$ $$=\frac{x^2}{2}+\frac{1}{x}+c$$ Evaluate: $$\int \frac{x^3 - x^2 + x - 1}{x - 1} dx.$$ #### **Answer** Given, $$\int \frac{x^3 - x^2 + x - 1}{x - 1} dx$$. $$= \int \frac{x^2(x-1) + x - 1}{x - 1} \, dx$$ $$= \int \frac{(x-1)[x^2+1]}{x-1} \, dx$$ $$=\int (x^2 + 1)dx$$ [since, $\int x^n dx = \frac{x^{n+1}}{n+1}$] $$=\frac{x^3}{3}+x+c$$ # 50. Question Evaluate: $$\int \frac{e^{\tan^{-1}}}{1+x^2} dx.$$ # Answer Given, $$\int \frac{e^{tan^{-1}}}{1+x^2} dx$$. Let $$tan^{-1}x=t$$ $$\delta \frac{dy}{dx} (Tan^{-1}x) = dt$$ $$\delta \, \frac{1}{1+x^2} \, dx = dt$$ Now, $$\int \frac{e^{\tan^{-1}}}{1+x^2} dx$$. $$=\int e^t dt$$ $$=e^t+c$$ $$=e^{\tan^{-1}x}+c$$ ## 51. Question Evaluate: $$\int \frac{1}{\sqrt{1-x^2}} dx.$$ ## **Answer** Given, $$\int \frac{1}{\sqrt{1-x^2}} \ dx.$$ $$=\sin^{-1}x + c$$ (It is a standard formula). ## 52. Question Evaluate: $\int \sec x \left(\sec x + \tan x \right) dx$. ### **Answer** Given, $\int \sec x (\sec x + \tan x) dx$ $$=\int (\sec^2 x + \sec x \cdot \tan x) dx$$ $$= \tan x + \sec x + c$$ ### 53. Question Evaluate: $\int \frac{1}{x^2 + 16} dx$. ## **Answer** Given, $$\int \frac{1}{x^2+16} dx$$. We know that, $$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}$$ By comparison, a=4 $$=\frac{1}{4}tan^{-1}\frac{x}{4}+c$$ ## 54. Question Evaluate: $\int (1-x)\sqrt{x} dx$. ### **Answer** Given, $$\int (1-x)\sqrt{x} dx$$ $$= \int (\sqrt{x} - x\sqrt{x}) \, dx$$ $$=\int (x^{\frac{1}{2}}-x.x^{\frac{1}{2}})dx$$ $$=\int x^{\frac{1}{2}}-x^{\frac{3}{2}} dx$$ $$= \frac{\frac{\frac{1}{x^2+1}}{\frac{1}{x^2+1}} - \frac{\frac{\frac{3}{x^2+1}}{x^2+1}}{\frac{3}{x^2+1}} + c \text{ [since, } \int x^n \ dx = \frac{x^{n+1}}{n+1} \text{]}$$ $$=\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{\frac{5}{2}}}{\frac{5}{2}}+c$$ $$= \frac{2}{3} x^{\frac{3}{2}} - \frac{2}{5} x^{\frac{5}{2}} + c$$ # 55. Question Evaluate: $$\int \frac{x + \cos 6x}{3x^2 + \sin 6x} dx.$$ #### **Answer** Given, $$\int \frac{x + \cos
6x}{3x^2 + \sin 6x} \, dx.$$ Let $$3x^2 + \sin 6x = t$$ $$\Rightarrow \frac{d}{dx}(3x^2 + \sin 6x) = dt$$ $$\Rightarrow$$ 6x + cos 6x. 6=dt $$\Rightarrow x + \cos 6x = \frac{dt}{6}$$ Substituting the values, $$=\int \frac{1}{6t} dt$$ $$=\frac{1}{6}\log t + c$$ $$=\frac{1}{6}\log(3x^2+\sin 6x)+c$$ # 56. Question If $$\int \left(\frac{x-1}{x^2}\right) e^x dx = f(x)e^x + C$$, then write the value of f(x). # Answer Consider, $\int \frac{x-1}{x^2} e^x dx$ $$\int = \int \frac{x}{x^2} - \frac{1}{x^2} e^{x} dx$$ $$=\int \frac{1}{x}-\frac{1}{x^2}e^{x} dx$$ It is clearly of the form, $$\int e^x [f(x) + f^I(x)] dx = e^x f(x) + c$$ By comparison, $f(x) = \frac{1}{x}$; $f^{I}(x) = -\frac{1}{x^{2}}$ $$=e^x\frac{1}{x}+c$$ Therefore, the value of $f(x) = \frac{1}{x}$ ### 57. Question If $\int e^x (\tan x + 1) \sec x \, dx = e^x f(x) + C$, then write the value f(x). Given, $$\int e^x (tanx + 1) secx dx$$ It is clearly of the form, $$\int e^x [f(x) + f^I(x)] dx = e^x f(x) + c$$ By comparison, $f(x)=1+\tan x$; $f^{I}(x)=\sec x$ $$= e^x (1+tanx) + C$$ Therefore, the value of f(x)=1+tanx ## 58. Question Evaluate: $$\int \frac{2}{1-\cos 2x} dx$$ ### Answer Given, $$\int \frac{2}{1-\cos 2x} dx$$ We Know that, $\cos 2x = 1-2\sin^2 X$ $$\Rightarrow$$ 1-cos2x=2sin²x Substitute this in the given, $$= \int \frac{2}{2\sin^2 x} \, \mathrm{d}x$$ $$=\int \frac{1}{\sin^2 x} dx$$ $$= \int cosec^2 x dx$$ $$= -\cot x + c$$ ### 59. Question Write the anti-derivative of $\left(3\sqrt{x} + \frac{1}{\sqrt{x}}\right)$. ### **Answer** Anti-derivative is nothing but integration Therefore its Anti-derivative can be found by integrating the above given equation. $$= \int 3\sqrt{x} + \frac{1}{\sqrt{x}} dx$$ $$= \int 3x^{\frac{1}{2}} + x^{-\frac{1}{2}} dx$$ $$= 3 \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + \frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + c \left[since, \int x^n \, dx = \frac{x^{n+1}}{n+1} \right]$$ $$= 3 \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + c$$ $$=2x^{\frac{3}{2}}+2x^{\frac{1}{2}}+c$$ $$= 2(x^{\frac{3}{2}} + x^{\frac{1}{2}}) + c$$ Evaluate: $\int \cos^{-1} (\sin x) dx$ #### **Answer** Given, $\int \cos^{-1}(\sin x) dx$ Let us consider, $\int \cos^{-1} dx$ We know that, $\int f(x).g(x) dx = f(x) \int g(x) dx - \int [f^{l}(x) \int g(x)] dx$ By comparison, $f(x) = \cos^{-1}x$; g(x)=1 $$= \cos^{-1} x \, x \int 1 \, dx - \int -\frac{1}{\sqrt{1-x^2}} \, x \, dx$$ $$= x \cos^{-1} x - \frac{1}{2} \int \frac{1}{\sqrt{1 - x^2}} (-2x) dx$$ $$= x \cos^{-1} x - \frac{1}{2} \int (1 - x^2)^{-\frac{1}{2}} (-2x) dx$$ = $$x \cos^{-1} x - \frac{1}{2} \frac{\left(1 - x^2\right)^{-\frac{1}{2} + 1}}{\frac{-1}{2} + 1} + c$$ (since, $\int [f(x)^n . f^I(x)] dx = \frac{f(x)^{n+1}}{n+1}$) $$=x \cos^{-1}x - (1-x^2)^{1/2} + c$$ $$= x \cos^{-1} x - \sqrt{1 - x^2} + c$$ Therefore, $\int \cos^{-1} x \ dx = x \cos^{-1} x - \sqrt{1 - x^2} + c$ Replace 'x' with $'\sin x'$:- $$\delta \int \cos^{-1}(\sin x) \ dx = \sin x. \cos^{-1}(\sin x) - \sqrt{1 - (\sin x)^2} + c$$ $$= sinx.cos^{-1}x(sinx) - \sqrt{cos^2x} + c$$ $$=$$ sinx.cos⁻¹x (sinx) -cosx+c ## 61. Question Evaluate: $$\int \frac{1}{\sin^2 x \cos^2 x} dx$$ Given, $$\int \frac{1}{\sin^2 x \cos^2 x} dx$$ $$= \int \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} dx$$ [since, $\sin^2 x + \cos^2 x = 1$] $$= \int \frac{\sin^2 x}{\sin^2 x \cos^2 x} + \frac{\cos^2 x}{\sin^2 x \cos^2 x} dx$$ $$= \int \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x} \, \mathrm{d}x$$ $$= \int (\sec^2 x + \csc^2 x) dx$$ $$= \tan x - \cot x + c$$ Evaluate: $$\int \frac{1}{x (1 + \log x)} dx$$ ## **Answer** Given, $$\int \frac{1}{x(1+logx)} dx$$ $$\Rightarrow \frac{d}{dx}(1 + \log x) = dt$$ $$\Rightarrow \frac{1}{x} dx = dt$$ $$=\int \frac{1}{t}dt$$ $$=\log (1+\log x)+c$$ # **MCQ** ### 18. Question Mark the correct alternative in each of the following: Evaluate $$\int \frac{x+3}{(x+4)^2} e^x dx =$$ A. $$\frac{e^x}{x+4} + C$$ B. $$\frac{e^x}{x+3}$$ + C c. $$\frac{1}{(x+4)^2}$$ + C D. $$\frac{e^x}{(x+4)^2} + C$$ $$\int \frac{x+3}{(x+4)^2} e^x dx$$ $$= \int \frac{x+4}{(x+4)^2} e^x dx - \int \frac{1}{(x+4)^2} e^x dx$$ $$= \int e^x \left(\frac{1}{x+4} dx - \frac{1}{(x+4)^2} dx\right)$$ $$\left[:: f(x) = \frac{1}{x+4} ; f'(x) = -\frac{1}{(x+4)^2} \right]$$ $$=e^{x}\left(\frac{1}{x+4}\right)+c$$ $$: \{ \int e^x f(x) + f'x \} = e^x f(x) \}$$ Mark the correct alternative in each of the following: Evaluate $$\int \frac{x+3}{(x+4)^2} e^x dx =$$ A. $$\frac{e^x}{x+4} + C$$ B. $$\frac{e^x}{x+3}$$ + C c. $$\frac{1}{(x+4)^2}$$ + C D. $$\frac{e^x}{\left(x+4\right)^2} + C$$ #### Answer $$\int \frac{x+3}{(x+4)^2} e^x dx$$ $$= \int \frac{x+4}{(x+4)^2} e^x dx \cdot \int \frac{1}{(x+4)^2} e^x dx$$ $$= \int e^x \left(\frac{1}{x+4} dx - \frac{1}{(x+4)^2} dx \right)$$ $$\[\because f(x) = \frac{1}{x+4} ; f'(x) = -\frac{1}{(x+4)^2} \]$$ $$= e^x \left(\frac{1}{x+4} \right) + c$$ ### 19. Question Mark the correct alternative in each of the following: Evaluate $$\int \frac{\sin x}{3 + 4\cos^2 x} dx$$ A. $$\log(3+4\cos^x x) + C$$ B. $$\frac{1}{2\sqrt{3}} \tan^{-1} \left(\frac{\cos x}{\sqrt{3}} \right) + C$$ $$C. -\frac{1}{2\sqrt{3}} \tan^{-1} \left(\frac{2\cos x}{\sqrt{3}} \right) + C$$ D. $$\frac{1}{2\sqrt{3}} \tan^{-1} \left(\frac{2\cos x}{\sqrt{3}} \right) + C$$ $$\int \frac{\sin x}{3 + 4(\cos x)^2} dx$$ \Rightarrow cos x=t then; $$\Rightarrow$$ -sin (x)dx=dt $$= -\int \frac{dt}{3+4t^2} \left(\int \frac{dt}{a+bt^2} = \frac{1}{\sqrt{ab}} \tan^{-1} \sqrt{\frac{b}{a}} \right)$$ $$=-\frac{1}{2\sqrt{3}}\tan^{-1}\sqrt{\frac{4}{3}}t$$ put $(\cos x = t)$ $$\Rightarrow -\frac{1}{2\sqrt{3}}tan^{-1}\left(\frac{2\cos x}{\sqrt{3}}\right) + C$$ ### 19. Question Mark the correct alternative in each of the following: Evaluate $$\int \frac{\sin x}{3 + 4\cos^2 x} dx$$ A. $$\log(3+4\cos^x x) + C$$ B. $$\frac{1}{2\sqrt{3}} \tan^{-1} \left(\frac{\cos x}{\sqrt{3}} \right) + C$$ $$C. -\frac{1}{2\sqrt{3}} \tan^{-1} \left(\frac{2\cos x}{\sqrt{3}} \right) + C$$ D. $$\frac{1}{2\sqrt{3}} \tan^{-1} \left(\frac{2\cos x}{\sqrt{3}} \right) + C$$ # Answer $$\int \frac{\sin x}{3 + 4(\cos x)^2} dx$$ \Rightarrow cos x=t then ; $$\Rightarrow$$ -sin (x)dx=dt $$= -\int \frac{dt}{3+4t^2} \left(\int \frac{dt}{a+bt^2} = \frac{1}{\sqrt{ab}} \tan^{-1} \sqrt{\frac{b}{a}} \right)$$ $$=-\frac{1}{2\sqrt{3}}\tan^{-1}\sqrt{\frac{4}{3}}t$$ put $(\cos x = t)$ $$\Rightarrow -\frac{1}{2\sqrt{3}}tan^{-1}\left(\frac{2\cos x}{\sqrt{3}}\right) + C$$ ### 20. Question Mark the correct alternative in each of the following: Evaluate $$\int e^x \left(\frac{1-\sin x}{1-\cos x} \right) dx$$ A. $$-e^x \tan \frac{x}{2} + C$$ B. $$-e^x \cot \frac{x}{2} + C$$ $$C. -\frac{1}{2}e^x \tan \frac{x}{2} + C$$ D. $$-\frac{1}{2}e^{x}\cot\frac{x}{2} + C$$ ### **Answer** Given, $$\int e^x \left(\frac{1-\sin x}{1-\cos x}\right) dx$$ $$= -\int e^x \left(\frac{\sin x}{1-\cos x} - \frac{1}{1-\cos x}\right) dx \left\{ \int e^x [f(x) + f'(x)] = e^x f(x) \right\}$$ $$\Rightarrow f(x) = \frac{\sin x}{1-\cos x}; f'(x) = -\frac{1}{1-\cos x}$$ $$= -e^x \left(\frac{\sin x}{1-\cos x}\right)$$ $$\therefore \left[\frac{\sin x}{1-\cos x} = \cot \frac{x}{2}\right]$$ $$= -e^x \cot \frac{x}{2} + c$$ ## 20. Question Mark the correct alternative in each of the following: Evaluate $$\int e^{x} \left(\frac{1-\sin x}{1-\cos x} \right) dx$$ A. $$-e^x \tan \frac{x}{2} + C$$ B. $$-e^x \cot \frac{x}{2} + C$$ $$C. -\frac{1}{2}e^x \tan \frac{x}{2} + C$$ D. $$-\frac{1}{2}e^{x}\cot\frac{x}{2} + C$$ Given, $$\int e^{x} \left(\frac{1-\sin x}{1-\cos x}\right) dx$$ $$= -\int e^{x} \left(\frac{\sin x}{1-\cos x} - \frac{1}{1-\cos x}\right) dx \left\{ \int e^{x} [f(x) + f'(x)] = e^{x} f(x) \right\}$$ $$\Rightarrow f(x) = \frac{\sin x}{1-\cos x}; f'(x) = -\frac{1}{1-\cos x}$$ $$= -e^{x} \left(\frac{\sin x}{1-\cos x}\right)$$ $$\because \left[\frac{\sin x}{1-\cos x} = \cot \frac{x}{2}\right]$$ $$= -e^x \cot \frac{x}{2} + c$$ Mark the correct alternative in each of the following: $$\mathsf{Evaluate} \int \frac{2}{\left(\,e^x\,+e^{-x}\,\right)^2} \, dx$$ $$\mathsf{A.}\ \frac{-e^{-x}}{e^x + e^{-x}} + C$$ B. $$-\frac{1}{e^x + e^{-x}} + C$$ $$c. \frac{-1}{\left(e^x + 1\right)^2} + C$$ D. $$\frac{1}{e^x - e^{-x}} + C$$ ### **Answer** Given $$\int \frac{2}{(e^x + e^{-x})^2} dx$$ $$= \int \frac{2e^{2x}}{(e^{2x}+1)^2} dx$$ if $$t=e^{2x} + 1$$; then $$\frac{dt}{dx} = 2e^{2x}$$ $$\Rightarrow \int \frac{dt}{t^2} = -\frac{1}{t} + c$$ $$\Rightarrow -\frac{1}{e^{2x}+1}+c$$ $$=\frac{-e^{-x}}{e^x+e^{-x}}+C$$ ## 21. Question Mark the correct alternative in each of the following: Evaluate $$\int \frac{2}{\left(e^x + e^{-x}\right)^2} dx$$ A. $$\frac{-e^{-x}}{e^x + e^{-x}} + C$$ B. $$-\frac{1}{e^x + e^{-x}} + C$$ $$C. \frac{-1}{\left(e^x + 1\right)^2} + C$$ D. $$\frac{1}{e^{x} - e^{-x}} + C$$ ## **Answer** Given $$\int \frac{2}{(e^x + e^{-x})^2} dx$$ $$= \int \frac{2e^{2x}}{(e^{2x}+1)^2} dx$$ if $$t=e^{2x}+1$$;then $$\frac{dt}{dx} = 2e^{2x}$$ $$\Rightarrow \int \frac{dt}{t^2} = -\frac{1}{t} + c$$ $$\Rightarrow -\frac{1}{e^{2x}+1}+c$$ $$=\frac{-e^{-x}}{e^x+e^{-x}}+C$$ ### 22. Question Mark the correct alternative in each of the following: $$\text{Evaluate} \int \frac{e^x \left(1+x\right)}{\cos^2 \left(xe^x\right)} dx =$$ A. $$2 \log_e \cos (xe^x) + C$$ B. $$sec(xe^x) + C$$ C. $$tan(xe^x) + C$$ D. $$tan(x + e^x) + C$$ #### **Answer** let (t)= $$x_e^x$$; $$\frac{dt}{dx} = e^x (1+x)$$ $$\Rightarrow \int \frac{dt}{(\cos t)^2} = \int (\sec t)^2 dt$$ (put (t)= $$x_e^x$$) $$= tan (xe^{x}) + c$$ ### 22. Question Mark the correct alternative in each of the following: $$\text{Evaluate} \int\! \frac{e^x \left(1+x\right)}{\cos^2\left(xe^x\right)} dx =$$ A. $$2 \log_e \cos (xe^x) + C$$ B. $$sec(xe^{x}) + C$$ C. $$tan(xe^x) + C$$ D. $$tan(x + e^x) + C$$ ### **Answer** let (t)= $$x_e^x$$; $$\frac{dt}{dx} = e^x (1+x)$$ $$\Rightarrow \int \frac{dt}{(\cos t)^2} = \int (\sec t)^2 dt$$ (put (t)= $$x_e^x$$) $$= tan (xe^x) + c$$ # 23. Question Mark the correct alternative in each of the following: Evaluate $$\int \frac{\sin^2 x}{\cos^4 x} dx =$$ A. $$\frac{1}{3}\tan^2 x + C$$ B.
$$\frac{1}{2} \tan^2 x + C$$ $$\text{C. } \frac{1}{3} \tan^3 x + C$$ D. none of these # **Answer** $$I = \int (\tan x)^2 (\sec x)^2 dx$$ $$\Rightarrow$$ tanx =t $\left[\frac{dt}{dx} = (\sec x)^2\right]$ $$\Rightarrow \int t^2 dt = \frac{t^3}{3} + c$$ $$\Rightarrow I = \frac{1}{3} (\tan x)^3 + C$$ ### 23. Question Mark the correct alternative in each of the following: Evaluate $$\int \frac{\sin^2 x}{\cos^4 x} dx =$$ A. $$\frac{1}{3}tan^2x + C$$ $$B. \frac{1}{2} \tan^2 x + C$$ C. $$\frac{1}{3} \tan^3 x + C$$ D. none of these ### **Answer** $$I = \int (\tan x)^2 (\sec x)^2 dx$$ $$\Rightarrow$$ tanx =t $\left[\frac{dt}{dx} = (\sec x)^2\right]$ $$\Rightarrow \int t^2 dt = \frac{t^3}{3} + c$$ $$\Rightarrow I = \frac{1}{3} (\tan x)^3 + c$$ ## 24. Question Mark the correct alternative in each of the following: The primitive of the function $f(x) = \left(1 - \frac{1}{x^2}\right) a^{x + \frac{1}{x}}, a > 0$ is A. $$\frac{a^{x+\frac{1}{x}}}{\log_e a}$$ B. $$\log_e a \cdot a^{x + \frac{1}{x}}$$ C. $$\frac{a^{x+\frac{1}{x}}}{x} \log_e a$$ D. $$x \frac{a^{x+\frac{1}{x}}}{\log_a a}$$ $$I = \int \left(1 - \frac{1}{x^2}\right) a^{x + \frac{1}{x}} dx$$ $$\Rightarrow let x + \frac{1}{x} = t;$$ $$1 - \frac{1}{x^2} = \frac{dt}{dx}$$ $$\Rightarrow I = \frac{a^t}{\log_e a} \left(put \ t = x + \frac{1}{x} \right)$$ $$\Rightarrow I = \frac{a^{x + \frac{1}{x}}}{\log g_{\alpha} a} + C$$ Mark the correct alternative in each of the following: The primitive of the function $f(x) = \left(1 - \frac{1}{x^2}\right)a^{x + \frac{1}{x}}, a > 0$ is A. $$\frac{a^{x+\frac{1}{x}}}{\log_e a}$$ B. $$\log_e a \cdot a^{x + \frac{1}{x}}$$ C. $$\frac{a^{x+\frac{1}{x}}}{x} \log_e a$$ D. $$x \frac{a^{x+\frac{1}{x}}}{\log_e a}$$ ### **Answer** $$I = \int \left(1 - \frac{1}{x^2}\right) a^{x + \frac{1}{x}} dx$$ $$\Rightarrow let x + \frac{1}{x} = t;$$ $$1 - \frac{1}{x^2} = \frac{dt}{dx}$$ $$\Rightarrow I = \frac{a^t}{\log_e a} \left(put \ t = x + \frac{1}{x} \right)$$ $$\Rightarrow I = \frac{a^{x + \frac{1}{x}}}{\log a_0 a} + C$$ # 25. Question Mark the correct alternative in each of the following: The value of $$\int \frac{1}{x + x \log x} dx$$ is $$A. 1 + logx$$ $$B. x + log x$$ C. $$x \log(1 + \log x)$$ D. $$log(1 + logx)$$ $$I = \int \frac{1}{x(1 + \log_e x)} \, \mathrm{d}\chi$$ $$\Rightarrow$$ let(1+log_e x)=t $\left[\frac{dt}{dx} = \frac{1}{x}\right]$ $$\Rightarrow \int \frac{1}{t} dt = \log_e t$$ $$\Rightarrow I = log(1 + log x) + C$$ Mark the correct alternative in each of the following: The value of $$\int \frac{1}{x + x \log x} dx$$ is $$B. x + log x$$ $$C. \times log(1 + logx)$$ D. $$log(1 + logx)$$ ## Answer $$I = \int \frac{1}{x(1 + \log_{\theta} x)} \, \mathrm{d}\chi$$ $$\Rightarrow$$ let(1+log_e x)=t $\left[\frac{dt}{dx} = \frac{1}{x}\right]$ $$\Rightarrow \int \frac{1}{t} dt = \log_e t$$ $$\Rightarrow I = log(1 + log x) + C$$ ### 26. Question Mark the correct alternative in each of the following: $$\int \sqrt{\frac{x}{1-x}} dx$$ is equal to A. $$\sin^{-1}\sqrt{x} + C$$ B. $$\sin^{-1}\left(\sqrt{x} - \sqrt{x(1-x)}\right) + C$$ $$\text{C. } \sin^{-1}\!\left\{\sqrt{x\left(1\!-\!x\right)}\right\}\!+C$$ D. $$\sin^{-1}\sqrt{x} - \sqrt{x(1-x)} + C$$ let $$x=(\sin t)^2$$; $(dx=2\sin t\cos t dt)$ $$I = \int \sqrt{\frac{(\sin t)^2}{1 - (\sin t)^2}} \times 2 \sin t \cos t \, dt$$ $$I = \int (\sin t)^2 dt$$ $$I = \int (1-\cos 2t)dt$$ $$I = t - \frac{\sin 2t}{2} + c \left[t = \sin^{-1} \sqrt{x} \right] \left(\cos t = \sqrt{1 - x} \right)$$ $$I = \sin^{-1}(\sqrt{x}) - (\sqrt{x}\sqrt{1-x}) + c$$ Mark the correct alternative in each of the following: $$\int\!\!\sqrt{\frac{x}{1-x}}\;dx \text{ is equal to}$$ A. $$\sin^{-1} \sqrt{x} + C$$ B. $$\sin^{-1}\left(\sqrt{x} - \sqrt{x(1-x)}\right) + C$$ C. $$\sin^{-1}\left\{\sqrt{x(1-x)}\right\} + C$$ D. $$\sin^{-1}\sqrt{x} - \sqrt{x(1-x)} + C$$ #### **Answer** let $x=(\sin t)^2$; $(dx=2\sin t \cos t dt)$ $$I = \int \sqrt{\frac{(\sin t)^2}{1 - (\sin t)^2}} \times 2 \sin t \cos t \, dt$$ $$I = \int (\sin t)^2 dt$$ $$I = \int (1-\cos 2t)dt$$ $$I = t - \frac{\sin 2t}{2} + c \left[t = \sin^{-1} \sqrt{x} \right] \left(\cos t = \sqrt{1 - x} \right)$$ $$I = \sin^{-1}(\sqrt{x}) - (\sqrt{x}\sqrt{1-x}) + c$$ ### 27. Question Mark the correct alternative in each of the following: $$\int e^{x} \left\{ f(x) + f'(x) \right\} dx =$$ A. $$e^x f(x) + C$$ B. $$e^{x} + f(x) + C$$ C. $$2e^{x} f(x) + C$$ D. $$e^x - f(x) + C$$ ### **Answer** let $$I = \int e^x (f(x) + f'(x)) dx$$ Open the brackets, we get $$I = \{ \int e^x f(x) dx + \int e^x f'(x) dx \}$$ $$=U+\int e^{x} f'(x) dx$$ $$U = \int e^{x} f(x) dx$$ To solve U using integration by parts $$U = f(x) \int e^{x} dx - \int [f'(x) \int e^{x}]$$ $$= f(x) e^{x} - \int f'(x) e^{x}$$ $$= U + \int e^{x} f'(x) dx$$ $$I = e^{x} f(x) + \int f'(x) e^{x} dx - \int e^{x} f'(x) dx$$ $$I=e^{x} f(x)+c$$ ### 27. Question Mark the correct alternative in each of the following: $$\int e^{x} \left\{ f(x) + f'(x) \right\} dx =$$ A. $$e^x f(x) + C$$ B. $$e^x + f(x) + C$$ C. $$2e^{x} f(x) + C$$ D. $$e^x - f(x) + C$$ #### **Answer** let $$I = \int e^x (f(x) + f'(x)) dx$$ Open the brackets, we get $$I = \{ \int e^x f(x) dx + \int e^x f'(x) dx \}$$ $$=U+\int e^{x} f'(x) dx$$ $$U = \int e^{x} f(x) dx$$ To solve U using integration by parts $$U = f(x) [e^{x} dx - [f'(x)]]e^{x}]$$ $$= f(x) e^{x} - \int f'(x) e^{x}$$ $$= U + \int e^{x} f'(x) dx$$ $$I = e^{x} f(x) + \int f'(x) e^{x} dx - \int e^{x} f'(x) dx$$ $$I=e^{x} f(x)+c$$ ## 28. Question Mark the correct alternative in each of the following: The value of $$\int \frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx$$ is equal to A. $$\sqrt{\sin 2x} + C$$ B. $$\sqrt{\cos 2x} + C$$ $$C. \pm (sinx - cosx) + C$$ D. $$\pm \log (\sin x - \cos x) + C$$ $$I = \int \frac{\sin x + \cos x}{\sin x - \cos x} dx \left(\sqrt{1 - \sin 2x} = \pm \{ \sin x - \cos x \} \right)$$ Let t=sin x-cos x $$\left(\frac{dt}{dx} = \sin x + \cos x\right)$$ $$I = \int \frac{dt}{t}$$ $I=\pm \log(\sin x - \cos x) + c$ ### 28. Question Mark the correct alternative in each of the following: The value of $\int \frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx$ is equal to A. $$\sqrt{\sin 2x} + C$$ B. $$\sqrt{\cos 2x} + C$$ $$C. \pm (sinx - cosx) + C$$ D. $$\pm \log (\sin x - \cos x) + C$$ #### **Answer** $$I = \int \frac{\sin x + \cos x}{\sin x - \cos x} dx \left(\sqrt{1 - \sin 2x} = \pm \{ \sin x - \cos x \} \right)$$ Let t=sin x-cos x $$\left(\frac{dt}{dx} = \sin x + \cos x\right)$$ $$I = \int \frac{dt}{t}$$ $I=\pm \log(\sin x - \cos x) + c$ ## 29. Question Mark the correct alternative in each of the following: If $$\int x \sin x \ dx = -x cosx + \alpha$$, then α is equal to A. $$\sin x + C$$ B. $$\cos x + C$$ C. C D. none of these ## **Answer** using integration by parts $$= x \int \sin x \, dx - \int \frac{dx}{dx} (x) \int \sin x$$ $$I = x \cos x + \int \cos x \, dx$$ $$(:: sin x = -cos x)$$ $$= x \cos x + \sin x + \cos x$$ # 29. Question Mark the correct alternative in each of the following: If $\int_X \sin x \ dx = -x\cos x + \alpha$, then α is equal to A. $\sin x + C$ B. $\cos x + C$ C. C D. none of these #### **Answer** using integration by parts I=∫x sin x d∏ $$= x \int \sin x \, dx - \int \frac{dx}{dx} (x) \int \sin x$$ $I = x \cos x + \int \cos x \, dx$ (:: sin x = -cos x) $= x \cos x + \sin x + c$ ## 30. Question Mark the correct alternative in each of the following: $$\int \frac{\cos 2x - 1}{\cos 2x + 1} dx =$$ A. tan x - x + C B. x + tan x + C C. x - tan x + C D. $-x - \cot x + C$ ### **Answer** $$I = \int \frac{1 - 2(\sin x)^2 - 1}{2(\cos x)^2 - 1 + 1}$$ $$I = -\int \frac{(\sin x)^2}{(\cos x)^2} dx$$ $$I = - \int (\tan x)^2 dx$$ $$I = - \int (-1 + (\sec x)^2 dx$$ $$= (x-tan x) + c$$ ## 30. Question Mark the correct alternative in each of the following: $$\int \frac{\cos 2x - 1}{\cos 2x + 1} dx =$$ A. tan x - x + C B. x + tan x + C C. x - tan x + C D. $-x - \cot x + C$ $$I = \int \frac{1 - 2(\sin x)^2 - 1}{2(\cos x)^2 - 1 + 1}$$ $$I = -\int \frac{(\sin x)^2}{(\cos x)^2} dx$$ $$I = - \int (\tan x)^2 dx$$ $$I = - \int (-1 + (\sec x)^2 dx$$ $$= (x-tan x) + c$$ Mark the correct alternative in each of the following: $$\int\!\frac{\cos2x-\cos2\theta}{\cos x-\cos\theta}dx \text{ is equal to}$$ A. $$2(\sin x + x \cos \theta) + C$$ B. $$2(\sin x - x \cos \theta) + C$$ C. $$2(\sin x + 2x \cos \theta) + C$$ D. $$2(\sin x - 2x \cos \theta) + C$$ #### **Answer** $$I = \int \frac{\{2(\cos x)^2 - 1\} - \{2(\cos \theta)^2 - 1\}}{\cos x - \cos \theta} d\chi$$ $$I = 2 \int \frac{(\cos x)^2 - (\cos \theta)^2}{\cos x - \cos \theta} dx$$ $$I = 2 \int \frac{(\cos x - \cos \theta)(\cos x + \cos \theta)}{\cos x - \cos \theta} dx$$ $$I=2\int(\cos x + \cos \theta) dx$$ $$I = 2(\sin x + x \cos \theta) + c$$ ### 31. Question Mark the correct alternative in each of the following: $$\int \frac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta} dx \text{ is equal to}$$ A. $$2(\sin x + x \cos \theta) + C$$ B. $$2(\sin x - x \cos \theta) + C$$ C. $$2(\sin x + 2x \cos \theta) + C$$ D. $$2(\sin x - 2x \cos \theta) + C$$ $$I = \int \frac{\{2(\cos x)^2 - 1\} - \{2(\cos \theta)^2 - 1\}}{\cos x - \cos \theta} d\chi$$ $$I = 2 \int \frac{(\cos x)^2 - (\cos \theta)^2}{\cos x - \cos \theta} dx$$ $$I = 2 \int \frac{(\cos x - \cos \theta)(\cos x + \cos \theta)}{\cos x - \cos \theta} dx$$ $$I=2\int (\cos x + \cos \theta) dx$$ $$I = 2(\sin x + x \cos \theta) + c$$ Mark the correct alternative in each of the following: $$\int \frac{x^9}{\left(4x^2+1\right)^6} dx$$ is equal to A. $$\frac{1}{5x} \left(4 + \frac{1}{x^2} \right)^{-5} + C$$ B. $$\frac{1}{5} \left(4 + \frac{1}{x^2} \right)^{-5} + C$$ $$C \cdot \frac{1}{10x} \left(\frac{1}{x^2} + 4 \right)^{-5} + C$$ D. $$\frac{1}{10} \left(\frac{1}{x^2} + 4 \right)^{-5} + C$$ #### **Answer** $$I = \int \frac{x^9}{(4x^2 + 1)^6} dx$$ $$I = \int \frac{x^9}{x^{12} (4 + \frac{1}{x^2})^6} dx$$ $$I = \int \frac{1}{x^3 (4 + \frac{1}{x^2})^6} dx$$ Let $$\left(4+\frac{1}{x^2}\right)=t$$; $\frac{-2}{x^3}dx=dt$ $$I = \int \frac{dt}{-2t^6}$$ $$I = \frac{1}{10} \left[\frac{1}{t^5}
\right]$$ $$I = \frac{1}{10} \left(\left[4 + \frac{1}{x^2} \right]^{-5} \right) + c$$ #### 32. Question Mark the correct alternative in each of the following: $$\int \frac{x^9}{\left(4x^2+1\right)^6} dx$$ is equal to A. $$\frac{1}{5x} \left(4 + \frac{1}{x^2} \right)^{-5} + C$$ B. $$\frac{1}{5} \left(4 + \frac{1}{x^2} \right)^{-5} + C$$ C. $$\frac{1}{10x} \left(\frac{1}{x^2} + 4 \right)^{-5} + C$$ D. $$\frac{1}{10} \left(\frac{1}{x^2} + 4 \right)^{-5} + C$$ #### **Answer** $$I = \int \frac{x^9}{(4x^2 + 1)^6} dx$$ $$I = \int \frac{x^9}{x^{12} (4 + \frac{1}{x^2})^6} dx$$ $$I = \int \frac{1}{x^3 \left(4 + \frac{1}{x^2}\right)^6} dx$$ Let $$\left(4+\frac{1}{x^2}\right)=t$$; $\frac{-2}{x^2}dx=dt$ $$I = \int \frac{dt}{-2t^6}$$ $$I = \frac{1}{10} \left[\frac{1}{t^5} \right]$$ $$I = \frac{1}{10} \left(\left[4 + \frac{1}{x^2} \right]^{-5} \right) + c$$ ## 33. Question Mark the correct alternative in each of the following: $$\int \frac{x^3}{\sqrt{1+x^2}} dx = a \left(1+x^2\right)^{3/2} + b \sqrt{1+x^2} + C, \text{then}$$ A. $$a = \frac{1}{3}, b = 1$$ B. $$a = -\frac{1}{3}, b = 1$$ C. $$a = -\frac{1}{3}, b = -1$$ D. $$a = \frac{1}{3}, b = -1$$ let $$(\sqrt{1+x^2})$$ =t $$\frac{x}{\sqrt{1+x^2}}dx = dt;$$ $$I = \int \frac{x^3}{\sqrt{1+x^2}} dx = \int x^2 dt = \int (t^2 - 1) dt$$ $$I = \frac{t^3}{3} - t [put(t) = \sqrt{1 + x^2}]$$ $$I = \frac{(1+x^2)^{\frac{3}{2}}}{3} - \sqrt{1+x^2} + C$$ $$[a=\frac{1}{3}]; [b=-1]$$ Mark the correct alternative in each of the following: $$\int \frac{x^3}{\sqrt{1+x^2}} \, dx = a \left(1+x^2\right)^{3/2} + b \sqrt{1+x^2} + C, \text{then}$$ A. $$a = \frac{1}{3}, b = 1$$ B. $$a = -\frac{1}{3}, b = 1$$ C. $$a = -\frac{1}{3}, b = -1$$ D. $$a = \frac{1}{3}, b = -1$$ ### **Answer** let $$(\sqrt{1+x^2})$$ =t $$\frac{x}{\sqrt{1+x^2}}dx = dt;$$ $$I = \int \frac{x^3}{\sqrt{1+x^2}} dx = \int x^2 dt = \int (t^2 - 1) dt$$ $$I = \frac{t^3}{3} - t [put(t) = \sqrt{1 + x^2}]$$ $$I = \frac{(1+x^2)^{\frac{3}{2}}}{3} - \sqrt{1+x^2} + C$$ $$[a=\frac{1}{3}]; [b=-1]$$ ### 34. Question Mark the correct alternative in each of the following: $$\int \frac{x^3}{x+1} dx$$ A. $$x + \frac{x^2}{2} + \frac{x^3}{3} - \log|1 - x| + C$$ B. $$x + \frac{x^2}{2} - \frac{x^3}{3} - \log|1 - x| + C$$ C. $$x - \frac{x^2}{2} - \frac{x^3}{3} - \log|1 + x| + C$$ D. $$x - \frac{x^2}{2} + \frac{x^3}{3} - \log|1 + x| + C$$ #### **Answer** $$= \int \frac{x^3 + 1}{x + 1} dx - \int \frac{1}{x + 1} dx$$ $$= \int \frac{(x + 1)(x^2 - x + 1)}{x + 1} dx - \int \frac{1}{x + 1} dx$$ $$= \int (x^2 - x + 1) dx - \int \frac{1}{x + 1} dx$$ $$= \frac{x^3}{3} - \frac{x^2}{2} + x - \log(1 + x) + c$$ ## 34. Question Mark the correct alternative in each of the following: $$\int \frac{x^3}{x+1} dx$$ A. $$x + \frac{x^2}{2} + \frac{x^3}{3} - \log|1 - x| + C$$ B. $$x + \frac{x^2}{2} - \frac{x^3}{3} - \log|1 - x| + C$$ C. $$x - \frac{x^2}{2} - \frac{x^3}{3} - \log|1 + x| + C$$ D. $$x - \frac{x^2}{2} + \frac{x^3}{3} - \log|1 + x| + C$$ #### Answer $$= \int \frac{x^3 + 1}{x + 1} dx - \int \frac{1}{x + 1} dx$$ $$= \int \frac{(x + 1)(x^2 - x + 1)}{x + 1} dx - \int \frac{1}{x + 1} dx$$ $$= \int (x^2 - x + 1) dx - \int \frac{1}{x + 1} dx$$ $$= \frac{x^3}{3} - \frac{x^2}{2} + x - \log(1 + x) + c$$ # 35. Question Mark the correct alternative in each of the following: If $$\int \frac{1}{(x+2)(x^2+1)} dx$$ a log $|1 + x^2 + b \tan^{-1} x|$ $$x + \frac{1}{5} log | x + 2 | + C$$, then A. $$a = -\frac{1}{10}$$, $b = -\frac{2}{5}$ B. $$a = \frac{1}{10}, b = -\frac{2}{5}$$ C. $$a = -\frac{1}{10}$$, $b = \frac{2}{5}$ D. $$a = \frac{1}{10}, b = \frac{2}{5}$$ #### Answer $$U = \int \frac{1}{(x+2)(x^2+1)} dx$$ $$U = \int \frac{A}{x+2} dx + \int \frac{Bx+c}{x^2+1} dx$$ $$\frac{1}{(x+2)(x^2+1)} = \frac{A}{x+2} + \frac{Bx+c}{x^2+1}$$ (compare coefficient of χ^2 , and χ both side) $$\left[A = \frac{1}{5}; B = -\frac{1}{5}; C = \frac{2}{5}\right]$$ put the value of A,B,C in U $$U = \int \frac{\frac{1}{5}}{x+2} dx + \int \frac{-\frac{1}{5}x + \frac{2}{5}}{x^2 + 1} dx$$ $$U = \frac{1}{5} \left[\int \frac{1}{x+2} dx + \int \frac{-x}{x^2+1} dx + \int \frac{2}{x^2+1} dx \right]$$ $$U = \frac{1}{5} \left[log(X+2) - \frac{1}{2} log(x^2+1) + 2 tan^{-1} X \right] + C$$ # 35. Question Mark the correct alternative in each of the following: If $$\int \frac{1}{(x+2)(x^2+1)} dx$$ a log $|1 + x^2 + b \tan^{-1} x|$ $$x + \frac{1}{5} \log |x + 2| + C$$, then A. $$a = -\frac{1}{10}$$, $b = -\frac{2}{5}$ B. $$a = \frac{1}{10}, b = -\frac{2}{5}$$ C. $$a = -\frac{1}{10}$$, $b = \frac{2}{5}$ D. $$a = \frac{1}{10}, b = \frac{2}{5}$$ $$U = \int \frac{1}{(x+2)(x^2+1)} dx$$ $$U = \int \frac{A}{x+2} dx + \int \frac{Bx + c}{x^2 + 1} dx$$ $$\frac{1}{(x+2)(x^2+1)} = \frac{A}{x+2} + \frac{Bx+c}{x^2+1}$$ (compare coefficient of x^2 , and x both side) $$\left[A = \frac{1}{5}; B = -\frac{1}{5}; C = \frac{2}{5}\right]$$ put the value of A,B,C in U $$U = \int \frac{\frac{1}{5}}{x+2} dx + \int \frac{-\frac{1}{5}x + \frac{2}{5}}{x^2 + 1} dx$$ $$U = \frac{1}{5} \left[\int \frac{1}{x+2} dx + \int \frac{-x}{x^2+1} dx + \int \frac{2}{x^2+1} dx \right]$$ $$U = \frac{1}{5} \left[log(X+2) - \frac{1}{2} log(x^2+1) + 2 tan^{-1} X \right] + C$$ # **Revision exercise** ### 106. Question $$\int \frac{1}{x\sqrt{1+x^2}} dx$$ #### **Answer** Let $$x = sin^{\frac{2}{3}}t$$ Differentiate both side with respect to t $$\frac{dx}{dt} = \frac{2}{3}\sin^{-\frac{1}{2}}t\cos t \Rightarrow dx = \frac{2}{3}\sin^{-\frac{1}{2}}t\cos t \ dt$$ $$y = \int \frac{1}{\sin^{\frac{2}{3}} t \sqrt{1 + \sin^{2} t}} \frac{2}{3} \sin^{-\frac{1}{3}} t \cos t \ dt$$ $$y = \frac{2}{3} \int cosec t \ dt$$ $$y = \frac{2}{3}\ln(\csc t - \cot t) + c$$ Again, put $$t = \sin^{-1} x^{\frac{3}{2}}$$ $$y = \frac{2}{3}\ln(\csc\sin^{-1}x^{\frac{3}{2}} - \cot\sin^{-1}x^{\frac{3}{2}}) + c$$ $$y = \frac{2}{3} \ln \left(x^{\frac{-3}{2}} - \frac{\sqrt{1 - x^3}}{x_{\frac{3}{2}}^2} \right) + c$$ $$y = -\ln x + \frac{2}{3}\ln(1 - \sqrt{1 - x^3}) + c$$ ### 107. Question Evaluate $$\int \frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} dx$$ $$\int \frac{(\sin x + \cos x)}{\sin^4 x + \cos^4 x} dx$$ $$= \int \frac{(\sin x + \cos x)}{(\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x} dx$$ $$= \int \frac{(\sin x + \cos x)}{1 - 2\sin^2 x \cos^2 x} dx$$ $$= \int \frac{2(\sin x + \cos x)}{2 - 4\sin^2 x \cos^2 x} dx$$ $$= \int \frac{2(\sin x + \cos x)}{2 - \sin^2 2x} dx$$ Let sinx - cosx=t, (cosx+sinx)dx=dt $$\begin{split} &= \int \frac{2}{2 - (1 - t^2)^2} dt \\ &= \int \frac{2}{\left(\sqrt{2} - 1 + t^2\right)\left(\sqrt{2} + 1 - t^2\right)} dt \\ &= \frac{1}{\sqrt{2}} \int \left(\frac{1}{\left(\sqrt{2} + 1 + t^2\right)} - \frac{1}{\left(\sqrt{2} - 1 - t^2\right)}\right) dt \\ &= \frac{1}{\sqrt{2}} \int \left(\frac{1}{\left(\sqrt{2} + 1 + t^2\right)}\right) dt - \frac{1}{\sqrt{2}} \int \left(\frac{1}{\left(\sqrt{2} - 1 - t^2\right)}\right) dt \\ &= \frac{1}{\sqrt{2}} \int \left(\frac{1}{\left(\left(\sqrt{\sqrt{2} + 1}\right)\right)^2 + t^2\right)}\right) dt - \frac{1}{\sqrt{2}} \int \left(\frac{1}{\left(\left(\sqrt{\sqrt{2} - 1}\right)\right)^2 - t^2\right)} dt \\ &= \frac{1}{\sqrt{2}} \left[\frac{1}{2\sqrt{\sqrt{2} + 1}} \log \left| \frac{t - \sqrt{\sqrt{2} + 1}}{t + \sqrt{\sqrt{2} + 1}} \right| \right] - \frac{1}{\sqrt{2}} \left[\frac{1}{\sqrt{\sqrt{2} - 1}} tan^{-1} \left(\frac{t}{\sqrt{\sqrt{2} - 1}}\right)\right] + c \end{split}$$ ### 108. Question Evaluate $\int x^2 \tan^{-1} x dx$ ### **Answer** $$\int x^2 \tan^{-1} x \, dx$$ Here we will use integration by parts, $$\int u.\,dv = uv - \int vdu$$ Choose u in these oder LIATE(L-LOGS,I-INVERSE,A-ALGEBRAIC,T-TRIG,E-EXPONENTIAL) So here,u=tan⁻¹x $$= \tan^{-1} x \int x^{2} dx - \frac{1}{3} \int x^{3} (d(\tan^{-1} x)) / dx + c$$ $$\int x^{2} dx = \left(\frac{x^{3}}{3}\right) + c$$ $$= \left(\frac{x^{3}}{3}\right) \tan^{-1} x - \frac{1}{3} \int \frac{x^{3}}{1 + x^{2}} dx$$ Putting $1+x^2=t$, 2xdx=dt $$x dx = \frac{dt}{2}$$ $$= \left(\frac{x^3}{3}\right) \tan^{-1} x - \frac{1}{3} \int \frac{xx^2}{1+x^2} dx$$ $$= \left(\frac{x^3}{3}\right) \tan^{-1} x - \frac{1}{3} \int \frac{(t-1)}{t} \frac{dt}{2}$$ $$= \left(\frac{x^3}{3}\right) \tan^{-1} x - \frac{1}{6} \int \frac{(t-1)}{t} dt$$ $$= \left(\frac{x^3}{3}\right) \tan^{-1} x - \frac{1}{6} \left[\int 1 dt - \int \frac{1}{t} dt\right]$$ $$= \left(\frac{x^3}{3}\right) \tan^{-1} x - \frac{1}{6} \left[\int 1 dt - \int \frac{1}{t} dt\right]$$ $$= \left(\frac{x^3}{3}\right) \tan^{-1} x - \frac{1}{6} [-logt + t] + c$$ Resubstituting t $$= \left(\frac{x^3}{3}\right) \tan^{-1} x - \frac{1}{6} \left[-\log(1+x^2) + (1+x^2)\right] + c$$ ## 109. Question Evaluate $$\int \tan^{-1} \sqrt{x} \ dx$$ ### **Answer** $$\int \tan^{-1} \sqrt{x} \ dx$$ Choose u in these odder LIATE(L-LOGS,I-INVERSE,A-ALGEBRAIC,T-TRIG,E-EXPONENTIAL) Here $u=tan^{-1}\sqrt{\chi}$ and v=1. $$\therefore \int \tan^{-1} \sqrt{x} \ dx$$ $$\therefore x \tan^{-1} \sqrt{x} - \int x \cdot \frac{d(\tan^{-1} \sqrt{x})}{dx}$$ $$= x \tan^{-1} \sqrt{x} - \frac{1}{2} \int \frac{\sqrt{x}}{1+x} dx$$ Put $$\sqrt{x} = t$$; $$\frac{1}{2\sqrt{x}}dx=dt;$$ $$dx=2tdt$$ and $$x=t^2$$ $$= x \tan^{-1} \sqrt{x} - \int \frac{t^2}{1 + t^2} dt$$ $$= x \tan^{-1} \sqrt{x} - \left[\int \frac{1+t^2}{1+t^2} dt - \int \frac{1}{1+t^2} dt \right]$$ $$= x \tan^{-1} \sqrt{x} - [\sqrt{x} - \tan^{-1} \sqrt{x}] + c$$ Evaluate $\int \sin^{-1} \sqrt{x} \ dx$ #### **Answer** $$\int \sin^{-1} \sqrt{x} \, dx$$ $$\int u.\,dv = uv - \int vdu$$ Choose u in these order LIATE(L-LOGS,I-INVERSE,A-ALGEBRAIC,T-TRIG,E-EXPONENTIAL) $$u=\sin^{-1}\sqrt{x} v=1$$ $$\therefore \int \sin^{-1} \sqrt{x} = x. \sin^{-1} \sqrt{x} - \frac{1}{2} \int \frac{\sqrt{x}}{\sqrt{1 - x}} dx$$ Put $$\sqrt{x} = t$$; dx=2tdt $$= x. \sin^{-1} \sqrt{x} - \int \frac{t^2}{\sqrt{1 - t^2}} dt$$ Now put t=sinu; dt=cos u du; $$\sqrt{1-t^2} = \sqrt{1-\sin^2 u}$$ =cos u $$= x. \sin^{-1} \sqrt{x} - \int \frac{\sin^2 u \cos u \, du}{\sqrt{1 - \sin^2 u}}$$ $$= x. \sin^{-1} \sqrt{x} - \int \frac{\sin^2 u \cos u \, du}{\cos u}$$ = $$x \cdot \sin^{-1} \sqrt{x} - \int \sin^2 u du$$...(Here we can substitute
$\sin^2 x = (1 - \cos^2 u)/2$) $$= x. \sin^{-1} \sqrt{x} - \int \frac{1 - \cos 2u}{2} du$$ $$= x. \sin^{-1} \sqrt{x} - \left[\int \frac{1 - \cos 2u}{2} du \right]$$ $$= x. \sin^{-1} \sqrt{x} - \left[\frac{u}{2} - \frac{1}{4} \sin 2u \right] + c$$ Put $$u = \sin^{-1} \sqrt{x}$$, $$I = x. \sin^{-1} \sqrt{x} - \left[\frac{\sin^{-1} \sqrt{x}}{2} - \frac{\sqrt{x} \sqrt{(1-x)}}{2} \right] + c$$ # 111. Question Evaluate $$\int sec^{-1} \sqrt{x} \ dx$$ $$\int \sec^{-1} \sqrt{x} dx$$ $$\int u.\,dv = uv - \int vdu$$ Choose u in these order LIATE(L-LOGS,I-INVERSE,A-ALGEBRAIC,T-TRIG,E-EXPONENTIAL) Here $u = SeC^{-1}\sqrt{\chi}$ and v = 1. $$\int \sec^{-1}\sqrt{x} dx = x \sec^{-1}x - \int \frac{x dx}{2x\sqrt{x-1}}$$ $$= x \sec^{-1}x - \int \frac{dx}{2\sqrt{x-1}}$$ $$= xsec^{-1}x - \int \frac{dt}{2\sqrt{t}}$$ $$= xsec^{-1}x - \frac{2}{2}(\sqrt{t}) + c$$ $$= xsec^{-1}x - \left(\sqrt{x-1}\right) + c$$ # 112. Question Evaluate $$\int tan^{-1} \sqrt{\frac{1-x}{1+x}} \ dx$$ #### **Answer** Put x=cos2t;dx=-2sin2t $$= \int \tan^{-1} \sqrt{\frac{1-x}{1+x}} dx = \int \tan^{-1} \sqrt{\frac{1-\cos 2t}{1+\cos 2t}} (-2\sin 2t) dt$$ $$= \int \tan^{-1} \sqrt{\frac{1 - \cos 2t}{1 + \cos 2t}} \ (-2\sin 2t)dt$$ $$=-2\int \tan^{-1}tant \sin 2t dt$$ $$=-2\int tsin2t dt$$ $$=-2\left[-\frac{tcos2t}{2}+\frac{1}{2}\int cos2t\ dt\right]$$ $$= t\cos 2t - \frac{\sin 2t}{2} + c$$ $$=\frac{x\cos^{-1}x}{2}-\frac{\sqrt{1-x^2}}{2}+c$$ ### 113. Question Evaluate $$\int \sin^{-1} \sqrt{\frac{x}{a+x}} dx$$ #### **Answer** $$\int \sin^{-1} \sqrt{\frac{x}{a+x}} dx$$ Put x=atan²t;dx=2a.tant.sec²t dt $$= \int \sin^{-1} \sqrt{\frac{x}{a+x}} dx = \int \sin^{-1} \sqrt{\frac{a \tan^2 t}{a+a \tan^2 t}} 2a. \tan t. \sec^2 t dt = \int t. 2a. \tan t. \sec^2 t dt$$ $$= 2a \int t. \tan t. \sec^2 t dt$$ $$= 2a \left[\frac{t (\tan^2 t)}{2} - \int \frac{\tan^2 t}{2} dt \right] + c$$ $$= 2a \left[\frac{t (\tan^2 t)}{2} - \frac{tant}{2} + \frac{t}{2} \right] + c$$ $$= a \left[t (\tan^2 t) - tant + t \right] + c$$ $$= x \tan^{-1} \sqrt{\frac{x}{a}} - \sqrt{ax} + \tan^{-1} \sqrt{\frac{x}{a}} + c.$$ Evaluate $$\int \sin^{-1} (3x - 4x^3) dx$$ #### **Answer** Put x=sint ;dx=costdt $$\int \sin^{-1}(3x - 4x^3) dx = \int \sin^{-1}(3sint - 4\sin^3 t) cost dt \dots \dots (3sint - 4\sin^3 t) = sin3t.$$ $$= \int \sin^{-1}(sin3t) cost dt = \int 3t cost dt$$ $$= 3 \int t cost dt$$ By by parts, $$=3[t \sin t + \cos t]+c$$ $$= 3 x \sin^{-1} x + 3\sqrt{1 - x^2} + c.$$ # 115. Question Evaluate $$\int (\sin^{-1} x)^3 dx$$ ### **Answer** $$\int \left(\sin^{-1} x\right)^3 dx$$ Put x=sin t; dx=cos t dt $$\int (\sin^{-1} x)^{3} dx = \int (\sin^{-1} (\sin t))^{3} \cos t \, dt$$ $$\int t^{3} \cos t \, d = [t^{3} \sin t - 3 \int t^{2} \sin t \, dt] = [t^{3} \sin t - 3[-t^{2} \cos t + 2 \int t \cos t \, dt]]$$ $$= \left[t^{3} \sin t + 3t^{2} \cos t - 6 \int t \cos t \, dt\right] = \left[t^{3} \sin t + 3t^{2} \cos t - 6[t \sin t + \cos t]\right] + c$$ $$= [t^3 sint + 3t^2 cost - 6t cost - 6c ost] + c$$ $$= [(\sin^{-1}x)^3x + 3(\sin^{-1}x)^2\sqrt{1-x^2} - 6x\sin^{-1}x - 6\sqrt{1-x^2}] + c$$ Evaluate $$\int \cos^{-1} \left(1 - 2x^2\right) dx$$ #### **Answer** Put x=sin t ;dx=cos t dt; $$\int \cos^{-1}(1 - 2x^2) \, dx = \int \cos^{-1}(1 - 2\sin^2 t) \cos t \, dt = \int \cos^{-1}(1 - \sin^2 t - \sin^2 t) \cos t \, dt$$ $$\int \cos^{-1}(\cos^2 t - \sin^2 t) \cos t \, dt = \int \cos^{-1}(\cos 2t) \cos t \, dt$$ $$2 \int t cost dt = 2[t sint + cost] + c$$ $$Ans = 2x\sin^{-1}x + 2\sqrt{1 - x^2} + c$$ ### 117. Question Evaluate $$\int \frac{x \sin^{-1} x}{\left(1 - x^2\right)^{3/2}} dx$$ #### **Answer** $$\int \frac{x \sin^{-1} x}{(1-x^2)\sqrt{1-x^2}} dx$$ we can put $\sin^{-1}x = t; dx/(1-x^2)^{1/2} = dt; (1-x^2) = \cos^2t$ and $x = \sin t$. $$\int \frac{t \sin t}{\cos^2 t} dt = \int t \tan t \sec t dt$$ By by parts, $\int t \tan t \sec t dt = t \sec t - \int \sec t dt \cdots$ $$\because \int sect \ tant \ dt = \int \frac{sint}{\cos^2 t} dt$$ =t sec t-log (tan t + sec t) + C' Put cost=u; -sin t dt=du $$= \sin^{-1} x \sec(\sin^{-1} x) - \log(\tan(\sin^{-1} x) + \sec(\sin^{-1} x)) + c' \int -u^{-2} du$$ $$=-(-u^{-1})+c$$ $$=$$ sec t + C # 118. Question Evaluate $$\int e^{2x} \left(\frac{1 + \sin 2x}{1 + \cos 2x} \right) dx$$ Put 2x=t dx=dt/2 $$\begin{split} &\frac{1}{2} \int e^t \left(\frac{1 + \sin t}{1 + \cos t} \right) dt = \frac{1}{2} \int (e^t \tan \frac{t}{2} + \frac{1}{2} e^t \sec^2 \frac{t}{2}) dt \\ &= \frac{1}{2} \int (e^t \tan \frac{t}{2}) dt + \frac{1}{4} \int e^t \sec^2 \frac{t}{2} dt \\ &= \frac{1}{2} \int (e^t \tan \frac{t}{2}) dt + \frac{1}{4} [2e^t \tan \frac{t}{2} - \int 2e^t \tan \frac{t}{2}] = e^t \frac{\tan \frac{t}{2}}{2} + c \end{split}$$ # 119. Question Evaluate $$\int \frac{\sqrt{1-\sin x}}{1+\cos x} e^{-x/2} dx$$ ## **Answer** $$\begin{split} &= \int e^{-\frac{x}{2}} \frac{\sqrt{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} - 2\sin^2 \frac{x}{2}\cos^2 \frac{x}{2}}}{2\cos^2 \frac{x}{2}} = \\ &\int e^{-\frac{x}{2}} \frac{(\sin^2 \frac{x}{2} - \cos^2 \frac{x}{2})}{2\cos^2 \frac{x}{2}} dx \\ &= \int e^{-\frac{x}{2}} (\frac{\sin^2 \frac{x}{2}}{2\cos^2 \frac{x}{2}} - \frac{\cos^2 \frac{x}{2}}{2\cos^2 \frac{x}{2}}) dx \\ &= \int \left[\frac{1}{2} \tan \frac{x}{2} \sec \frac{x}{2} e^{-\frac{x}{2}} - \frac{1}{2} \sec \frac{x}{2} e^{-\frac{x}{2}} \right] dx \\ &= \frac{1}{2} \int \tan \frac{x}{2} \sec \frac{x}{2} e^{-\frac{x}{2}} dx - \frac{1}{2} \int \sec \frac{x}{2} e^{-\frac{x}{2}} dx \\ &= \frac{1}{2} \int \tan \frac{x}{2} \sec \frac{x}{2} e^{-\frac{x}{2}} dx - \frac{1}{2} \left[\sec \frac{x}{2} \int e^{-\frac{x}{2}} dx - \int \frac{d}{dx} (\sec^2 \frac{x}{2}) \int (e^{-\frac{x}{2}} dx) dx \\ &= \frac{1}{2} \int \tan \frac{x}{2} \sec \frac{x}{2} e^{-\frac{x}{2}} dx + e^{-\frac{x}{2}} \sec \frac{x}{2} + \frac{1}{2} \int \frac{1}{2} \tan \frac{x}{2} \sec \frac{x}{2} \left(\frac{e^{-\frac{x}{2}}}{-\frac{1}{2}} \right) \\ &= \sec \frac{x}{2} \left(e^{-\frac{x}{2}} \right) + c \end{split}$$ ## 120. Question Evaluate $$\int e^{x} \frac{\left(1-x\right)^{2}}{\left(1+x^{2}\right)^{2}} dx$$ $$= \int e^{x} \frac{(1+x^{2}-2x)}{(1+x^{2})^{2}}$$ $$= \int e^{x} \frac{dx}{1+x^{2}} - \int \frac{2xe^{x}dx}{(1+x^{2})^{2}}$$ $$= \int e^{x} \left[\frac{1}{1+x^{2}} - \frac{2x}{(1+x^{2})^{2}}\right] dx \cdot \dots \cdot \left(\int e^{x} \left(f(x) + f'(x)\right) = e^{x} f(x) + c\right)$$ $$= e^{x} \frac{1}{1+x^{2}} + c$$ Evaluate $$\int \frac{e^{m \tan^{-1} x}}{\left(1 + x^2\right)^{3/2}} dx$$ #### **Answer** $$= e^m \int \frac{\tan^{-1} x}{(1+x^2)\sqrt{1+x^2}} dx$$ Put $\tan^{-1}x = t, dx/(1+x^2) = dt, 1+x^2 = \sec^2x;$ $$=e^m\int\frac{tdt}{sect}=e^m\int tcostdt$$ $$=e^{m}\Big[tsint-\int sintdt\Big]$$ $$=e^m[tsint + cost] + c$$ $$= e^m \left[\frac{x t a n^{-1} x}{\sqrt{1 + x^2}} + \frac{1}{\sqrt{1 + x^2}} \right] + c$$ # 122. Question Evaluate $$\int \frac{x^2}{(x-1)^3(x+1)} dx$$ #### **Answer** $$= \int \frac{x^2}{(x-1)^3(x+1)} \, \mathrm{d}x$$ By using partial differentiation, $$= \frac{x^2}{(x-1)^3(x+1)} = \frac{A}{(x+1)} + \frac{B}{(x-1)} + \frac{C}{(x-1)^2} + \frac{D}{(x-1)^3}$$ $$x^{2} = A(x-1)^{3} + B(x-1)^{2}(x+1) + C(x-1)^{1}(x+1) + D(x+1)$$ By substituting the x^2 coefficients and other coefficients we can get, $$A=-1/8; B=1/8; C=3/4; D=1/2;$$ $$= \int \frac{-dx}{8(x+1)} + \int \frac{dx}{8(x-1)} + \int \frac{3dx}{4(x-1)^2} + \int \frac{dx}{2(x-1)^3}$$ $$= -\frac{1}{8}\log(1+x) + \frac{1}{8}\log(x-1) - \frac{3}{4(x-1)} - \frac{1}{4}\left(\frac{1}{1-x^2}\right) + c$$ # 123. Question Evaluate $$\int \frac{x}{x^3 - 1} dx$$ $$= \int \frac{x}{(x^3 - 1)} dx = \int \frac{x}{(x - 1)(x^2 + x + 1)} dx$$ $$= \int (\frac{1}{3(x-1)} - \frac{x-1}{3(x^2+x+1)})$$ $$= \frac{1}{3} \int \frac{1}{x-1} dx - \frac{1}{3} \int \frac{x-1}{x^2 + x + 1} dx$$ $$= \frac{1}{3} \log(x-1) - \frac{1}{3} \left[\int \frac{(2x+1)}{2(x^2 + x + 1)} dx - \int \frac{3}{2((x^2 + x + 1))} dx \right]$$ $$= \frac{1}{3} \log(x-1) - \frac{1}{3} [I1 + I2]$$ $$I_1 = \frac{1}{2} \int \frac{(2x+1)}{(x^2+x+1)} dx$$ put $$x^2 + x + 1 = t$$; $$(2x+1)dx=dt$$ $$I_1 = \frac{1}{2} \int \frac{dt}{t} = \frac{1}{2} logt + c = \frac{1}{2} log(x^2 + x + 1) + +$$ Now, $$I_2 = \frac{3}{2} \int \frac{dx}{x^2 + x + 1} = \frac{3}{2} \int \frac{dx}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}}$$ put $$(2x+1)/\sqrt{3} = u$$; $$2dx/\sqrt{3}=dt;$$ $$dx = \sqrt{3}dt/2$$ $$=\frac{3}{2}\cdot\frac{2}{\sqrt{3}}\int\frac{du}{u^2+1}=\frac{3}{2}\cdot\frac{2}{\sqrt{3}}\tan^{-1}u+c=\sqrt{3}\tan^{-1}\frac{2x+1}{\sqrt{3}}+c$$ So, answer is $$= \frac{1}{3} \log(x-1) - \frac{1}{3} \left[\frac{1}{2} \log(x^2 + x + 1) - \frac{1}{3} \log(x^2 + x + 1) \right]$$ Evaluate $$\int \frac{1}{1+x+x^2+x^3} dx$$ #### Answer $$= \int \frac{dx}{1+x+x^2+x^3} = \int \frac{dx}{(1+x)(1+x^2)}$$ We can write the integral as follows, $$= \int \left[\frac{dx}{2(x+1)}\right] - \int \left[\frac{x-1}{2(x^2+1)}dx\right] = \frac{1}{2}\log(x+1) - \frac{1}{2}\left[\int \frac{xdx}{x^2+1} - \int \frac{dx}{x^2+1}\right]$$ $$= \frac{1}{2}\log(x+1) - \frac{1}{2}\left[\log\frac{(x^2+1)}{2} - \tan^{-1}x\right] + c$$ 1+c ### 125. Question Evaluate $$\int \frac{1}{(x^2 + 2)(x^2 + 5)} dx$$ $$\int \frac{dx}{(x^2+5)(x^2+2)}$$ By partial fractions, $$\frac{1}{(x^2+5)(x^2+2)} = \frac{A}{x^2+5} + \frac{B}{x^2+2}$$ Solving these two equations, 2A+5B=1 and A+B=0 We get A=-1/3 and B=1/3 $$= -\frac{1}{3} \int \frac{dx}{(x^2 + 5)} + \frac{1}{3} \int \frac{dx}{(x^2 + 2)} = -\frac{1}{3} \cdot \frac{1}{\sqrt{5}} \tan^{-1} \frac{x}{\sqrt{5}} + \frac{1}{3} \cdot \frac{1}{\sqrt{2}} \tan^{-1} \frac{x}{\sqrt{2}} + c$$ #### 126. Question $$\int \frac{x^2 - 2}{x^5 - x} \, dx$$ #### **Answer** By partial fractions, $$=\frac{x^2-2}{x^2-5}=\frac{x^2-2}{(x-1)x(x+1)(x^2+1)}=\frac{A}{x-1}+\frac{B}{x}+\frac{C}{x+1}+\frac{D}{x^2+1}$$ So by solving, A=- $$\hat{\Phi}$$;B=2; C=- $\hat{\Phi}$;D = -3/2 $$= \int -\frac{dx}{4(x-1)} + \int \frac{2}{x} dx - \frac{1}{4} \int \frac{dx}{x+1} - \frac{3}{2} \int \frac{x dx}{x^2 + 1}$$ $$= -\frac{1}{4}\log(x-1) + 2\log x - \frac{1}{4}\log(x+1) - \frac{3}{4}\log(x^2+1) + c$$ ## 127. Question Evaluate
$$\int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} \ dx$$ #### **Answer** Let, $$x = \sin^2 t$$ Differentiating both side with respect to t $$\frac{dx}{dt} = 2\sin t \cos t \implies dx = 2\sin t \cos t \, dt$$ $$y = \int \sqrt{\frac{1 - \sin t}{1 + \sin t}} 2 \sin t \cos t \, dt$$ $$y = \int \sqrt{\frac{(1-\sin t)}{(1+\sin t)} \times \frac{(1-\sin t)}{(1-\sin t)}} 2\sin t \cos t \, dt$$ $$y = 2 \int (1 - \sin t) \sin t \, dt$$ $$y = 2 \int \sin t - \frac{1 - \cos 2t}{2} dt$$ $$y = 2\left(-\cos t - \frac{t}{2} + \frac{\sin 2t}{4}\right) + c$$ Again, put $t = \sin \sqrt{x}$ $$y = 2\left(-\cos\sin\sqrt{x} - \frac{\sin\sqrt{x}}{2} + \frac{\sin(2\sin\sqrt{x})}{4}\right) + c$$ $$y = 2\left(-\sqrt{1-x} - \frac{\sin\sqrt{x}}{2} + \frac{1}{2}\sqrt{x-x^2}\right) + c$$ $$\int \frac{x^2 + x + 1}{\left(x + 1\right)^2 \left(x + 2\right)} \, \mathrm{d}x$$ #### **Answer** $$= \int \frac{x^2 + x + 1}{(x+1)^2(x+2)} dx$$ by partial fraction, $$\frac{x^2 + x + 1}{(x+1)^2(x+2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x+2}$$ So we get these three equations , $$2A + 2B + C = 1$$ $$3A + B + 2C = 1$$ $$A+C=1$$ So the values are A=-2;C=3;B=1 $$\int \frac{x^2 + x + 1}{(x+1)^2 (x+2)} dx = \int \left(-\frac{2dx}{x+1} \right) + \int \frac{dx}{(x+1)^2} + \int \frac{3dx}{x+2}$$ $$= -2\log(x+1) + 3\log(x+2) - \frac{1}{x+1} + c$$ # 129. Question $$\int \frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} dx$$ ### **Answer** Put 2x=t; $$2dx=dt;dx=dt/2$$ $$\begin{split} &=-\int \frac{\sin 4x-2}{\cos 4x-1} dx = -\frac{1}{2} \int \frac{e^t(\sin 2t-2)}{\cos 2t-1} dt = \frac{1}{4} \int \frac{e^t(2\sin t \cos t-2)}{\cos^2 t} dt \\ &= \frac{2}{4} \int e^t \cot t dt - \frac{2}{4} \int e^t \csc^2 t dt = \frac{1}{2} [\int e^t \cot t dt - \int e^t \csc^2 t dt] \\ &= \frac{1}{2} [e^t \cot t + \int e^t \csc^2 t dt - \int e^t \csc^2 t dt] \\ &= \frac{1}{2} \left[\frac{e^{2x} \cot 2x}{2} \right] + c \end{split}$$ ### 130. Question Evaluate $$\int \frac{\left\{\cot x + \cot^3\right\} x}{1 + \cot^3 x} \, dx$$ $$= \int \frac{\cot x (1 + \cot^2 x)}{1 + \cot^3 x} dx = \int \frac{\cot x \csc^2 x}{1 + \cot^3 x} dx$$ Put cot x=t, $-cosec^2x dx = dt$; $$= -\int \frac{tdt}{t^3 + 1} = -\int \frac{tdt}{(t+1)(t^2 - t + 1)}$$ By partial fractions it's a remembering thing That if you see the above integral just apply the below return result, $$\begin{split} &= -\int [\frac{(t+1)}{3(t^2-t+1)} - \frac{1}{3(t+1)}] \, dt \\ &= \frac{1}{3} \log(t+1) - \frac{1}{3} \int [\frac{2t-1}{2(t^2-t+1)} + \frac{3}{2(t^2-t+1)}] \, dt \\ &= \frac{1}{3} \log(t+1) - \frac{1}{6} \log(t^2-t+1) - \frac{1}{2} \int \frac{dt}{\left(t-\frac{1}{2}\right)^2 + \frac{3}{4}} \\ &= \frac{1}{3} \log(t+1) - \frac{1}{6} \log(t^2-t+1) - \frac{1}{2} \left[\frac{2}{\sqrt{3}} \tan^{-1} \frac{(2t-1)}{\sqrt{3}}\right] + c \\ &= \frac{1}{3} \log(\cot x + 1) - \frac{1}{6} \log(\cot^2 x - \cot x + 1) - \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{2\cot x - 1}{\sqrt{3}}\right) + c \end{split}$$ ### 16. Ouestion Evaluate $$\int \frac{1}{e^x + 1} dx$$ #### **Answer** $$\int \frac{1}{a^{x}+1} dx$$ We can write above integral as $$\Rightarrow \int \frac{1 + e^x - e^x}{e^x + 1} dx$$ $$\Rightarrow \int \frac{1 + e^x}{e^x + 1} dx + \int \frac{-e^x}{e^x + 1} dx$$ (1) (2) Considering first integral: $$\int \frac{1+e^x}{1+e^x} dx$$ Since the numerator and denominator are exactly same, our integrand simplifies to 1 and integrand becomes: $$\Rightarrow \int dx$$ $$\therefore \int \frac{1+e^x}{1+e^x} dx = x - (3)$$ Considering second integral: $$\int \frac{-e^x}{e^x + 1} dx$$ Let $u = 1 + e^x$, $du = e^x dx$ Apply u - substitution: $$\int \frac{1}{u} (-du) = -ln|u|$$ Replacing the value of u we get, $$\int \frac{-e^x}{e^{x}+1} dx = -\ln|1 + e^x| + C - (4)$$ From (3) and (4) we get, $$\Rightarrow \int \frac{1 + e^x}{e^x + 1} dx + \int \frac{-e^x}{e^x + 1} dx = x - \ln|1 + e^x| + C$$ $$\therefore \int \frac{1}{e^x + 1} dx = x - \ln|1 + e^x| + C$$ ## 17. Question Evaluate $$\int \frac{e^x - 1}{e^x + 1} dx$$ ### **Answer** $$\int \frac{e^{x}-1}{e^{x}+1} dx$$ We can write above integrand as: $$\int \left(\frac{e^x}{e^x+1} - \frac{1}{e^x+1}\right) dx$$ $$\Rightarrow \int \frac{e^{x}}{e^{x}+1} dx - \int \frac{1}{e^{x}+1} dx$$ (A) (B) Considering integrand (A) $$A = \int \frac{e^x}{e^x + 1} dx$$ Put $$e^x + 1 = t$$ Differentiating w.r.t x we get, $$e^{x}dx = dt$$ Substituting values we get $$A = \int \frac{e^x}{e^x + 1} dx = \int \frac{dt}{t} dx = \ln|t| + C$$ Substituting the value of t we get, $$A = \ln|e^x + 1| + C$$ $$A = \int \frac{e^x}{e^{x+1}} dx = \ln|e^x + 1| + C$$ --(i) Considering integrand (B) $$B = \int \frac{1}{e^x + 1} dx$$ We can write above integral as $$\Rightarrow \int \frac{1 + e^x - e^x}{e^x + 1} dx$$ $$\Rightarrow \int \frac{1+e^x}{e^x+1} dx + \int \frac{-e^x}{e^x+1} dx$$ (1)(2) Considering first integral: $$\int \frac{1+e^x}{1+e^x} dx$$ Since the numerator and denominator are exactly same, our integrand simplifies to 1 and integrand becomes: $$\Rightarrow \int dx$$ **⇒** X $$\therefore \int \frac{1+e^x}{1+e^x} dx = x - (3)$$ Considering second integral: $$\int \frac{-e^x}{e^x + 1} dx$$ Let $u = 1 + e^{x}$, $du = e^{x}dx$ Apply u - substitution: $$\int \frac{1}{u} (-du) = -ln|u|$$ Replacing the value of u we get, $$\int \frac{-e^x}{e^x + 1} dx = -\ln|1 + e^x| + C - (4)$$ From (3) and (4) we get, $$\Rightarrow \int \frac{1 + e^x}{e^x + 1} dx + \int \frac{-e^x}{e^x + 1} dx = x - \ln|1 + e^x| + C$$: $$B = \int \frac{1}{e^x + 1} dx = x - \ln|1 + e^x| + C$$ --(ii) From (i) and (ii) we get, $$\int \frac{e^x}{e^x + 1} dx - \int \frac{1}{e^x + 1} dx = (\ln|e^x + 1| - (|x - \ln|1 + e^x|)) + C$$ $$= 2 \ln |e^x + 1| - x + C$$ $$\therefore \int \frac{e^x - 1}{e^x + 1} dx = 2 \ln|e^x + 1| - x + C$$ ### 18. Question Evaluate $$\int \frac{1}{e^x + e^{-x}} dx$$ $$\int \frac{1}{e^x + e^{-x}} dx$$ We can write above integral as: $$= \int \frac{1}{e^x + \frac{1}{e^x}} dx$$ $$= \int \frac{e^x}{e^{2x}+1} dx - (1)$$ Let $$e^{x} = t$$ Differentiating w.r.t x we get, $$e^{x} dx = dt$$ ∴ integral (1) becomes, $$= \int \frac{1}{t^2 + 1} dt$$ = $$\tan^{-1}(t) + C\left(: \int \frac{1}{x^2+1} dx = \tan^{-1}(x)\right)$$ Putting value of t we get, $$= tan^{-1}(e^{x}) + C$$ $$\therefore \int \frac{1}{e^x + e^{-x}} dx = \tan^{-1}(e^x) + C$$ # 19. Question Evaluate $$\int \frac{\cos^7 x}{\sin x} dx$$ ## **Answer** $$\int \frac{\cos^7 x}{\sin x} dx$$ We can write above integral as: $$\int \frac{(\cos^2 x)^3 \cdot \cos x}{\sin x} dx - -(1)$$ Put Sinx = t Differentiting w.r.t x we get, Cosx.dx = dt ∴ integral (1) becomes, $$= \int \frac{(\cos^2 x)^3}{t} dt$$ $$= \int \frac{(1-\sin^2 x)^3}{t} dt - (\because \sin^2(x) + \cos^2(x) = 1)$$ $$= \int \frac{(1-\mathsf{t}^2)^3}{t} dt$$ $$= \int \frac{(1)^3 - (t^2)^3 - 3(1)(t^2)(1 - t^2)}{t} dt = \int \frac{1 - t^6 - 3t^2 + 3t^4}{t} dt$$ $$=\int\frac{1}{t}dt-\int\frac{t^6}{t}dt-\int\frac{3t^2}{t}dt+\int\frac{3t^4}{t}dt$$ $$= \log|t| - \frac{t^6}{6} - \frac{3t^2}{2} + \frac{3t^4}{4} + C$$ Putting value of t = Sin(x) we get, $$= \log|\sin x| - \frac{\sin^6 x}{6} - \frac{3\sin^2 x}{2} + \frac{3\sin^4 x}{4} + C$$ $$\therefore \int \frac{\cos^7 x}{\sin x} dx = \log|\sin x| - \frac{\sin^6 x}{6} - \frac{3\sin^2 x}{2} + \frac{3\sin^4 x}{4} + C$$ ### 20. Question Evaluate $\int \sin x \sin 2x \sin 3x \, dx$ #### **Answer** $\int \sin x \sin 2x \sin 3x \, dx$ We can write above integral as: $$= \frac{1}{2} \int (2 \sin x \sin 2x) \sin 3x \, dx - (1)$$ We know that, $$2 \sin A \cdot \sin B = \cos(A-B) - \cos(A+B)$$ Now, considering A as x and B as 2x we get, $$= 2 \sin x \cdot \sin 2x = \cos(x-2x) - \cos(x+2x)$$ $$= 2 \sin x \cdot \sin 2x = \cos(-x) - \cos(3x)$$ = $$2 \sin x \cdot \sin 2x = \cos(x) - \cos(3x)$$ [: $\cos(-x) = \cos(x)$] ∴ integral (1) becomes, $$= \frac{1}{2} \int (\cos x - \cos 3x) \sin 3x \, dx$$ $$= \frac{1}{2} \int (\cos x \cdot \sin 3x - \cos 3x \cdot \sin 3x) dx$$ $$= \frac{1}{2} \left[\int (\cos x \cdot \sin 3x) \, dx - \int (\cos 3x \cdot \sin 3x) \, dx \right]$$ $$= \frac{1}{4} \left[\int 2(\cos x \cdot \sin 3x) \, dx - \int 2(\cos 3x \cdot \sin 3x) \, dx \right]$$ Cosidering $\int 2(\cos x \cdot \sin 3x) dx$ We know, $$2 \sin A.\cos B = \sin(A+B) + \sin(A-B)$$ Now, considering A as 3x and B as x we get, $$2 \sin 3x.\cos x = \sin(4x) + \sin(2x)$$ $$\therefore \int 2(\cos x \cdot \sin 3x) dx = \int \sin 4x + \sin 2x dx \quad --(2)$$ Again, Cosidering $\int 2(\cos 3x. \sin 3x) dx$ We know, $$2 \sin A.\cos B = \sin(A+B) + \sin(A-B)$$ Now, considering A as 3x and B as 3x we get, $$2 \sin 3x.\cos 3x = \sin(6x) + \sin(0)$$ $$= sin(6x)$$ $$\therefore \int 2(\cos 3x.\sin 3x) dx = \int \sin 6x dx \quad --(3)$$: integral becomes, $$= \frac{1}{4} \left[\int 2(\cos x \cdot \sin 3x) \, dx - \int 2(\cos 3x \cdot \sin 3x) \, dx \, \right]$$ $$=\frac{1}{4}[\int (\sin 4x + \sin 2x) dx - \int \sin 6x dx]$$ [From (2) and (3)] $$= \frac{1}{4} \left[\int \sin 4x \, dx + \int \sin 2x \, dx - \int \sin 6x \, dx \right]$$ $$=\frac{1}{4}\left[\frac{-\cos 4x}{4}+\left(\frac{-\cos 2x}{2}\right)-\left(\frac{-\cos 6x}{6}\right)\right]+C$$ $$\left[\because \int \sin(ax+b) \, dx = -\frac{\cos(ax+b)}{a} + C\right]$$ $$=\frac{1}{4}\left[\frac{\cos 6x}{6} - \frac{\cos 4x}{4} - \frac{\cos 2x}{2}\right] + C$$ $$\therefore \int \sin x \sin 2x \sin 3x \, dx = \frac{1}{4} \left[\frac{\cos 6x}{6} - \frac{\cos 4x}{4} - \frac{\cos 2x}{2} \right] + C$$ ### 21. Question Evaluate $\int \cos x \cos 2x \cos 3x \, dx$ #### **Answer** $\int \cos x \cos 2x \cos 3x \, dx$ We can write above integral as: $$= \frac{1}{2} \int (2 \cos x \cos 2x) \cos 3x \, dx - (1)$$ We know that, $$2 \cos A.\cos B = \cos(A+B) + \cos(A-B)$$ Now, considering A as x and B as 2x we get, $$= 2 \cos x \cdot \cos 2x = \cos(x+2x) + \cos(x-2x)$$ $$= 2 \cos x \cdot \cos 2x = \cos(3x) + \cos(-x)$$ = $$2 \cos x \cdot \cos 2x = \cos(3x) + \cos(x)$$ [: $\cos(-x) = \cos(x)$] ∴ integral (1) becomes, $$=\frac{1}{2}\int (\cos 3x + \cos x)\cos 3x \, dx$$ $$= \frac{1}{2} \int (\cos 3x \cdot \cos 3x + \cos x \cdot \cos 3x) dx$$ $$= \frac{1}{2} \left[\int (\cos^2 3x) \, dx + \int (\cos x
\cdot \cos 3x) \, dx \, \right]$$ $$=\frac{1}{4}\left[\int 2(\cos^2 3x) + \int 2(\cos x \cdot \cos 3x) dx\right]$$ Cosidering $\int 2(\cos x.\cos 3x) dx$ We know. $2 \cos A.\cos B = \cos(A+B) + \cos(A-B)$ Now, considering A as x and B as 3x we get, $2\cos x.\cos 3x = \cos(4x) + \cos(-2x)$ $2 \cos x \cdot \cos 3x = \cos(4x) + \cos(2x)$ [: $\cos(-x) = \cos(x)$] $\therefore \int 2(\cos x \cdot \cos 3x) dx = \int (\cos 4x + \cos 2x) dx \quad -(2)$ Cosidering ∫ 2cos²3x We know, $$cos2A = 2cos^2A - 1$$ $$2\cos^2 A = 1 + \cos^2 A$$ Now, considering A as 3x we get, $$\int 2\cos^2 3x = \int 1 + \cos 2(3x) = \int 1 + \cos(6x)$$ $$\therefore \int 2(\cos^2 3x)dx = \int 1 + \cos 6x \, dx \quad --(3)$$ ∴ integral becomes, $$= \frac{1}{4} \left[\int 2(\cos^2 3x) + \int 2(\cos x \cdot \cos 3x) \, dx \right]$$ $$= \frac{1}{4} [\int (1 + \cos 6x) dx + \int (\cos 4x + \cos 2x) dx] [From (2) and (3)]$$ $$= \frac{1}{4} \left[\int (1 + \cos 6x) \, dx + \int \cos 4x \, dx + \int \cos 2x \, dx \right]$$ $$= \frac{1}{4} \left[x + \frac{\sin 6x}{6} \right] + \frac{1}{4} \left[\frac{\sin 4x}{4} \right] + \frac{1}{4} \left[\frac{\sin 2x}{2} \right] + C$$ $$= \frac{1}{4} \left[x + \frac{\sin 6x}{6} + \frac{\sin 4x}{4} + \frac{\sin 2x}{2} \right] + C$$ $$\therefore \int \cos x \cos 2x \cos 3x \, dx = \frac{1}{4} \left[x + \frac{\sin 6x}{6} + \frac{\sin 4x}{4} + \frac{\sin 2x}{2} \right] + C$$ ### 22. Question $$\int \frac{\sin x + \cos x}{\sqrt{\sin 2x}} \, \mathrm{d}x$$ #### Answer $$\int \frac{\sin x + \cos x}{\sqrt{\sin 2x}} dx$$ We can write above integral as $$= \int \frac{\sin x + \cos x}{\sqrt{1 - 1 + \sin 2x}} dx$$ [Adding and subtracting 1 in denominator] $$= \int \frac{\sin x + \cos x}{\sqrt{1 - (1 - \sin 2x)}} dx$$ $$= \int \frac{\sin x + \cos x}{\sqrt{1 - (\sin^2 x + \cos^2 x - 2\sin x \cos x)}} dx : \sin^2 x + \cos^2 x = 1 \text{ and}$$ $\sin 2x = 2 \sin x \cos x$ $$= \int \frac{(\sin x + \cos x)}{\sqrt{1 - (\sin x - \cos x)^2}} dx : \sin^2 x + \cos^2 x - 2 \sin x \cos x = (\sin x - \cos x)^2$$ Put sinx - cosx = t Differentiating w.r.t x we get, $(\cos x + \sin x)dx = dt$ Putting values we get, $$= \int \frac{(\sin x + \cos x)}{\sqrt{1 - (\sin x - \cos x)^2}} dx = \int \frac{dt}{\sqrt{1 - t^2}}$$ $$= \int \frac{dt}{\sqrt{1 - t^2}} = \sin^{-1} t + C$$ Putting value of t we get, $$\therefore \int \frac{\sin x + \cos x}{\sqrt{\sin 2x}} dx = \sin^{-1} (\sin x - \cos x) + C$$ ### 23. Question $$\int \frac{\sin x - \cos x}{\sqrt{\sin 2x}} \, dx$$ #### **Answer** $$\int \frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx$$ We can write above integral as $$= \int \frac{\sin x - \cos x}{\sqrt{1 + \sin 2x - 1}} dx$$ [Adding and subtracting 1 in denominator] $$= \int \frac{\sin x - \cos x}{\sqrt{(1 + \sin 2x) - 1}} dx$$ $$= \int \frac{\sin x - \cos x}{\sqrt{(\sin^2 x + \cos^2 x + 2\sin x \cos x) - 1}} dx : \sin^2 x + \cos^2 x = 1 \text{ and}$$ $\sin 2x = 2 \sin x \cos x$ $$= \int \frac{(\sin x - \cos x)}{\sqrt{(\sin x + \cos x)^2 - 1}} dx : \sin^2 x + \cos^2 x + 2 \sin x \cos x = (\sin x + \cos x)^2$$ Taking minus (-) common from numerator we get, $$= -\int \frac{(-\sin x + \cos x)}{\sqrt{(\sin x + \cos x)^2 - 1}} dx$$ Put sinx + cosx = t Differentiating w.r.t x we get, $$(\cos x - \sin x)dx = dt$$ Putting values we get, $$= -\int \frac{(\cos x - \sin x)}{\sqrt{(\sin x + \cos x)^2 - 1}} dx = -\int \frac{dt}{\sqrt{t^2 - 1}}$$ We know that, $$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left| x + \sqrt{x^2 - a^2} \right| + C$$ Here x = t and a = 1 $$\therefore -\int \frac{dt}{\sqrt{t^2 - 1}} = -\log\left|t + \sqrt{t^2 - 1}\right| + C$$ Putting value of t we get, $$\int \frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx = -\log \left| \sin x + \cos x + \sqrt{(\sin x + \cos x)^2 - 1} \right| + C$$ ∴ from (1) we get, $$\therefore \int \frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx = -\log |\sin x + \cos x + \sqrt{\sin 2x}| + C$$ #### 24. Question Evaluate $$\int \frac{1}{\sin(x-a)\sin(x-b)} dx$$ #### **Answer** Let $$I = \int \frac{1}{\sin(x-a)\sin(x-b)} dx$$ Multiply and divide $\frac{1}{\sin(a-b)}$ in R.H.S we get, $$I = \frac{1}{\sin(a-b)} \int \frac{\sin(a-b)}{\sin(x-a)\sin(x-b)} dx$$ We can write above integral as: $$= \frac{1}{\sin(a-b)} \int \frac{\sin(a-b+x-x)}{\sin(x-a)\sin(x-b)} dx$$ $$= \frac{1}{\sin(a-b)} \int \frac{\sin[(x-b)-(x-a)]}{\sin(x-a)\sin(x-b)} dx$$ $$= \frac{1}{\sin(a-b)} \int \left[\frac{\sin(x-b)\cos(x-a)-\cos(x-b)\sin(x-a)}{\sin(x-a)\sin(x-b)} \right] dx$$ $[\because sin(A+B) = sinA.cosB - cosA.sinB]$ $$= \frac{1}{\sin(a-b)} \int \left[\frac{\sin(x-b)\cos(x-a)}{\sin(x-a)\sin(x-b)} - \frac{\cos(x-b)\sin(x-a)}{\sin(x-a)\sin(x-b)} \right] dx$$ By simplifying we get, $$= \frac{1}{\sin(a-b)} \int \left[\frac{\cos(x-a)}{\sin(x-a)} - \frac{\cos(x-b)}{\sin(x-b)} \right] dx$$ $$= \frac{1}{\sin(a-b)} \int \left[\cot(x-a) - \cot(x-b) \right] dx$$ $$= \frac{1}{\sin(a-b)} \left[\log|\sin(x-a)| - \log|\sin(x-b)| \right] + C$$ $$[:: \int \cot x \, dx = \log|\sin x| + C]$$ $$= \frac{1}{\sin(a-b)} \left[\log \left| \frac{\sin(x-a)}{\sin(x-b)} \right| \right] + C$$ $$\therefore I = \int \frac{1}{\sin(x-a)\sin(x-b)} dx = \frac{1}{\sin(a-b)} \left[\log \left| \frac{\sin(x-a)}{\sin(x-b)} \right| \right] + C$$ ### 25. Question Evaluate $$\int \frac{1}{\cos(x-a)\cos(x-b)} dx$$ Let $$I = \int \frac{1}{\cos(x-a)\cos(x-b)} dx$$ Multiply and divide $\frac{1}{\sin(a-b)}$ in R.H.S we get, $$I = \frac{1}{\sin(a-b)} \int \frac{\sin(a-b)}{\cos(x-a)\cos(x-b)} dx$$ We can write above integral as $$= \frac{1}{\sin(a-b)} \int \frac{\sin(a-b+x-x)}{\cos(x-a)\cos(x-b)} dx$$ $$= \frac{1}{\sin(a-b)} \int \frac{\sin[(x-b)-(x-a)]}{\cos(x-a)\cos(x-b)} dx$$ $$= \frac{1}{\sin(a-b)} \int \left[\frac{\sin(x-b)\cos(x-a)-\cos(x-b)\sin(x-a)}{\cos(x-a)\cos(x-b)} \right] dx$$ $[\because sin(A+B) = sinA.cosB - cosA.sinB]$ $$= \frac{1}{\sin(a-b)} \int \left[\frac{\sin(x-b)\cos(x-a)}{\cos(x-a)\cos(x-b)} - \frac{\cos(x-b)\sin(x-a)}{\cos(x-a)\cos(x-b)} \right] dx$$ By simplifying we get, $$= \frac{1}{\sin(a-b)} \int \left[\frac{\sin(x-b)}{\cos(x-b)} - \frac{\sin(x-a)}{\cos(x-a)} \right] dx$$ $$= \frac{1}{\sin(a-b)} \int \left[\tan(x-b) - \tan(x-a) \right] dx$$ $$= \frac{1}{\sin(a-b)} \left[-\log|\cos(x-b)| + \log|\cos(x-a)| \right]$$ [: $$\int tanx dx = -log|cosx| + C$$] $$= \frac{1}{\sin(a-b)} [\log|\cos(x-a)| - \log|\cos(x-b)|]$$ $$= \frac{1}{\sin(a-b)} \left[\log \left| \frac{\cos(x-a)}{\cos(x-b)} \right| \right] + C$$ $$\therefore I = \int \frac{1}{\cos(x-a)\cos(x-b)} dx = \frac{1}{\sin(a-b)} \left[\log \left| \frac{\cos(x-a)}{\cos(x-b)} \right| \right] + C$$ ### 26. Question Evaluate $$\int \frac{\sin x}{\sqrt{1+\sin x}} dx$$ ## **Answer** $$\int \frac{\sin x}{\sqrt{1+\sin x}} dx$$ We can write above integral as: $$=\int \frac{1+\sin x-1}{\sqrt{1+\sin x}} dx$$ (Adding and subtracting 1 in numerator) $$= \int \frac{1+\sin x}{\sqrt{1+\sin x}} dx - \int \frac{1}{\sqrt{1+\sin x}} dx$$ $$= \int \sqrt{1+\sin x} dx - \int \frac{1}{\sqrt{1+\sin x}} dx$$ Consider $$\sqrt{1 + \sin x} = \sqrt{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}} = \sqrt{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2}$$ $(\because \sin^2 x + \cos^2 x = 1 \text{ and } \sin^2 x = 2 \sin x \cdot \cos x)$ $$\therefore \sqrt{1 + \sin x} = \sin \frac{x}{2} + \cos \frac{x}{2} - (1)$$ $$\therefore \int \sqrt{1+\sin x} \, dx - \int \frac{1}{\sqrt{1+\sin x}} \, dx$$ $$= \int \left(\sin \frac{x}{2} + \cos \frac{x}{2}\right) dx - \int \frac{1}{\sin \frac{x}{2} + \cos \frac{x}{2}} \, dx$$ [From (1)] Considering, $$\int \left(\sin\frac{x}{2} + \cos\frac{x}{2}\right) dx - \int \frac{1}{\sin\frac{x}{2} + \cos\frac{x}{2}} dx$$ $$= -2\cos\frac{x}{2} + 2\sin\frac{x}{2} - \int \frac{1}{\frac{2\tan\frac{x}{4}}{1 + \tan^2\frac{x}{4}} + \frac{1 - \tan^2\frac{x}{4}}{1 + \tan^2\frac{x}{4}}} dx$$ $$\because \sin\frac{x}{2} = \frac{2\tan\frac{x}{4}}{1 + \tan^2\frac{x}{4}} \text{ and } \cos\frac{x}{2} = \frac{1 - \tan^2\frac{x}{4}}{1 + \tan^2\frac{x}{4}}$$ $$= -2\cos\frac{x}{2} + 2\sin\frac{x}{2} - \int \frac{1 + \tan^2\frac{x}{4}}{\left(2\tan\frac{x}{4} + 1 - \tan^2\frac{x}{4}\right) + (1 - 1)} dx$$ (Adding and subtracting 1 in denominator) $$= -2\cos\frac{x}{2} + 2\sin\frac{x}{2} + \int \frac{1 + \tan^2\frac{x}{4}}{-\left[\left(-2\tan\frac{x}{4} + 1 + \tan^2\frac{x}{4}\right) - 2\right]} dx$$ $$= -2\cos\frac{x}{2} + 2\sin\frac{x}{2} - \int \frac{\sec^2\frac{x}{4}}{\left(\tan\frac{x}{4} - 1\right)^2 - 2} dx - (2)$$ $$\therefore -2\tan\frac{x}{4} + 1 + \tan^2\frac{x}{4} = \left(\tan\frac{x}{4} - 1\right)^2$$ $$Put \tan\frac{x}{4} - 1 = u$$ $$Put \tan \frac{\pi}{4} - 1 = u$$ $$\sec^2\frac{x}{4}dx = 4du$$ Putting values in (2) we get, $$= -2\cos\frac{x}{2} + 2\sin\frac{x}{2} - 4\int \frac{du}{(u)^2 - (\sqrt{2})^2}$$ We know $$\int \frac{du}{(x)^2 - (a)^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$ $$= -2\cos\frac{x}{2} + 2\sin\frac{x}{2} - 4\frac{1}{2\sqrt{2}}\log\left|\frac{u - \sqrt{2}}{u + \sqrt{2}}\right| + C$$ Substituting value of u we get, $$= -2\cos\frac{x}{2} + 2\sin\frac{x}{2} - \sqrt{2}\log\left|\frac{\tan\frac{x}{4} - 1 - \sqrt{2}}{\tan\frac{x}{4} - 1 + \sqrt{2}}\right| + C$$ $$\therefore \int \frac{\sin x}{\sqrt{1 + \sin x}} dx = -2 \cos \frac{x}{2} + 2 \sin \frac{x}{2} - \sqrt{2} \log \left| \frac{\tan \frac{x}{4} - 1 - \sqrt{2}}{\tan \frac{x}{4} - 1 + \sqrt{2}} \right| + C$$ # 27. Question Evaluate $$\int \frac{\sin x}{\cos 2x} dx$$ ### **Answer** Let $$I = \int \frac{\sin x}{\cos 2x} dx$$ We know $\cos 2x = 2\cos^2 x - 1$ Putting values in I we get, $$I = \int \frac{\sin x}{\cos 2x} dx = \int \frac{\sin x}{2\cos^2 x - 1} dx$$ Put cosx = t Differentiating w.r.t to x we get, $$sinx dx = -dt$$ Putting values in integral we get, $$I = -\int \frac{dt}{2t^2 - 1} = -\int \frac{dt}{(\sqrt{2}t)^2 - (1)^2}$$ Again put $\sqrt{2} \times t = u$ Differentiating w.r.t to t we get, $$dt = \frac{du}{\sqrt{2}}$$ Putting values in integral we get, $$I = \frac{1}{\sqrt{2}} \int \frac{du}{(1)^2 - (u)^2}$$ We know $$\int \frac{dx}{(1)^2 - (x)^2} = \sin^{-1} x + C$$ $$I =
\frac{1}{\sqrt{2}}\sin^{-1}u + C$$ Substituting value of u we get, $$I = \frac{1}{\sqrt{2}} \sin^{-1} \sqrt{2} t + C$$ Substituting value of t we get, $$I = \frac{1}{\sqrt{2}} \sin^{-1}(\sqrt{2}\cos x) + C$$ $$\therefore I = \int \frac{\sin x}{\cos 2x} dx = \frac{1}{\sqrt{2}} \sin^{-1}(\sqrt{2}\cos x) + C$$ ## 28. Question Evaluate $\int tan^3 x dx$ #### **Answer** $$\int \tan^3 x \, dx$$ We can write above integral as: $$\int \tan^3 x \, dx = \int (\tan^2 x)(\tan x) \, dx ---- (Splitting \tan^3 x)$$ $$= \int (\sec^2 x - 1)(\tan x) dx \text{ (Using } \tan^2 x = \sec^2 x - 1)$$ Considering integral (1) Let u = tanx $$du = sec^2x dx$$ Substituting values we get, $$\int \sec^2 x \, (\tan x) \, dx = \int u \, du = \frac{u^2}{2} + C$$ Substituting value of u we get, $$\int \sec^2 x (\tan x) dx = \frac{\tan^2 x}{2} + C$$ ∴ integral becomes, $$\int \sec^2 x (\tan x) dx - \int (\tan x) dx = \frac{\tan^2 x}{2} - \int (\tan x) dx$$ $$= \frac{\tan^2 x}{2} - (-\log|\cos x|) + C \quad [\because \int \tan x \, dx = -\log|\cos x| + C]$$ $$\therefore \int \tan^3 x \, dx = \frac{\tan^2 x}{2} + \log|\cos x| + C$$ # 29. Question ### **Answer** $$\int \tan^4 x \, dx$$ We can write above integral as: $$\int \tan^4 x \, dx = \int (\tan^2 x) (\tan^2 x) dx - --- (Splitting \tan^4 x)$$ $$= \int (\sec^2 x - 1) \tan^2 x \, dx \text{ (Using } \tan^2 x = \sec^2 x - 1)$$ $$= \int \sec^2 x \, (\tan^2 x) \, dx - \int (\tan^2 x) \, dx$$ (1) (2) Considering integral (1) Let u = tanx $$du = sec^2x dx$$ Substituting values we get, $$\int \sec^2 x \, (\tan^2 x) \, dx = \int u^2 \, du = \frac{u^3}{3} + C$$ Substituting value of u we get, $$\int \sec^2 x \, (\tan^2 x) \, dx = \frac{\tan^3 x}{3} + C$$ Considering integral (2) $$\int (\tan^2 x) \, dx = \int (\sec^2 x - 1) dx$$ $$= \int (\sec^2 x) dx - \int 1 dx$$ $$= \tan x - x + C$$ ∴ integral becomes, $$\int \sec^2 x \left(\tan^2 x\right) dx - \int (\tan^2 x) dx = \frac{\tan^3 x}{3} + C - (\tan x - x + C)$$ $$= \frac{\tan^3 x}{3} - \tan x + x + C \quad [\because C + C \text{ is a constant}]$$ $$\therefore \int \tan^4 x \, dx = \frac{\tan^3 x}{3} - \tan x + x + C$$ #### 30. Ouestion # **Answer** $$\int \tan^5 x \, dx$$ We can write above integral as: $$\int \tan^5 x \, dx = \int (\tan^3 x) (\tan^2 x) dx ---- (Splitting \tan^5 x)$$ $$= \int \tan^3 x (\sec^2 x - 1) dx (Using \tan^2 x = \sec^2 x - 1)$$ $$= \int \sec^2 x (\tan^3 x) \, dx - \int (\tan^3 x) \, dx$$ $$= \int \sec^2 x (\tan^3 x) \, dx - \int (\tan^2 x) (\tan x) \, dx ---- (Splitting \tan^3 x)$$ $$= \int \sec^2 x (\tan^3 x) \, dx - \int (\sec^2 x - 1) (\tan x) \, dx$$ (Using $tan^2x = sec^2x - 1$) $$= \int \sec^2 x (\tan^3 x) dx - \int \sec^2 x (\tan x) dx - \int (\tan x) dx$$ (1) (2) (3) Considering integral (1) Let u = tanx $du = sec^2x dx$ Substituting values we get, $$\int \sec^2 x \, (\tan^3 x) \, dx = \int u^3 \, du = \frac{u^4}{4} + C$$ Substituting value of u we get, $$\int \sec^2 x \, (\tan^3 x) \, dx = \frac{\tan^4 x}{4} + C$$ Considering integral (2) Let t = tanx $dt = sec^2x dx$ Substituting values we get, $$\int \sec^2 x (\tan x) dx = \int t dt = \frac{t^2}{2} + C$$ Substituting value of t we get, $$\int \sec^2 x (\tan x) dx = \frac{\tan^2 x}{2} + C$$ Considering integral (3) $$\int (\tan x) \, dx = -\log|\cos x| \, [\because \int \tan x \, dx = -\log|\cos x| + C]$$ ∴ integral becomes, $$\int \sec^2 x \left(\tan^3 x \right) dx - \int \sec^2 x \left(\tan x \right) dx - \int \left(\tan x \right) dx$$ $$= \frac{\tan^4 x}{4} + C - \left(\frac{\tan^2 x}{2} + C \right) - \left(-\log|\cos x| \right)$$ $$= \left(\frac{\tan^4 x}{4} \right) + \left(\frac{\tan^2 x}{2} \right) + \left(\log|\cos x| \right) + C \left[\because C + C + C \text{ is a constant} \right]$$ $$\therefore \int \tan^5 x \, dx = \left(\frac{\tan^4 x}{4} \right) + \left(\frac{\tan^2 x}{2} \right) + \left(\log|\cos x| \right) + C$$ ## 86. Question Evaluate $$\int \sqrt{a^2 - x^2} dx$$ #### **Answer** Let, $x = a \sin t$ Differentiate both side with respect to t $$\frac{dx}{dt} = a \cos t \Rightarrow dx = a \cos t dt$$ $$y = \int \sqrt{a^2 - (a\sin t)^2} \ a\cos t \ dt$$ $$y = \int (a\cos t)(a\cos t)dt$$ $$y = \int a^2 \cos^2 t dt$$ $$y = \int a^2 \left(\frac{1 + \cos 2t}{2} \right) dt$$ $$y = \frac{a^2}{2} \int 1 + \cos 2t \ dt$$ $$y = \frac{a^2}{2} \left(t + \frac{\sin 2t}{2} \right) + c$$ Again, put $$t = \sin^{-1} \frac{x}{a}$$ $$y = \frac{a^2}{2} \left(\sin^{-1} \frac{x}{a} + \frac{\sin\left(2\sin^{-1} \frac{x}{a}\right)}{2} \right) + c$$ $$y = \frac{a^2}{2} \left(\sin^{-1} \frac{x}{a} + \frac{2 \times \frac{x}{a} \times \sqrt{1 - \frac{x^2}{a^2}}}{2} \right) + c$$ $$y = \frac{a^2}{2}\sin^{-1}\frac{x}{a} + \frac{x}{2}\sqrt{a^2 - x^2} + c$$ Evaluate $$\int \sqrt{3x^2 + 4x + 1} \, dx$$ #### **Answer** Make perfect square of quadratic equation $$3x^2 + 4x + 1 = 3\left(x^2 + \frac{4}{3}x + \frac{1}{3}\right)$$ $$= 3\left(x^2 + 2\left(\frac{2}{3}\right)(x) + \left(\frac{2}{3}\right)^2 - \frac{1}{9}\right)$$ $$=3\left[\left(x+\frac{2}{3}\right)^2-\frac{1}{9}\right]$$ $$y = \int \sqrt{3\left[\left(x + \frac{2}{3}\right)^2 - \frac{1}{9}\right]} dx$$ $$y = \sqrt{3} \int \sqrt{\left[\left(x + \frac{2}{3}\right)^2 - \frac{1}{9}\right]} dx$$ Using formula, $\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln(x + \sqrt{x^2 - a^2})$ $$y = \sqrt{3} \frac{\left(x + \frac{2}{3}\right)}{2} \sqrt{\left(x + \frac{2}{3}\right)^2 - \frac{1}{9}} - \frac{\sqrt{3}}{18} \ln \left(\left(x + \frac{2}{3}\right) + \sqrt{\left(x + \frac{2}{3}\right)^2 - \frac{1}{9}}\right) + c$$ $$y = \frac{3x+2}{6}\sqrt{3x^2+4x+1} - \frac{\sqrt{3}}{18}\ln\left(\left(x+\frac{2}{3}\right) + \sqrt{x^2+\frac{4x}{3}+\frac{1}{3}}\right) + c$$ Evaluate $$\int \sqrt{1+2x-3x^2} dx$$ ### **Answer** Make perfect square of quadratic equation $$1 + 2x - 3x^{2} = 3\left[-\left(x^{2} - \frac{2}{3}x - \frac{1}{3}\right)\right]$$ $$= 3\left[\frac{4}{9} - \left(x^2 - 2\left(\frac{1}{3}\right)(x) + \left(\frac{1}{3}\right)^2\right)\right]$$ $$=3\left[\left(\frac{2}{3}\right)^2-\left(x-\frac{1}{3}\right)^2\right]$$ $$y = \sqrt{3} \int \left[\left(\frac{2}{3} \right)^2 - \left(x - \frac{1}{3} \right)^2 \right] dx$$ Using formula, $$\int \sqrt{a^2 - x^2} \, dx = \frac{a^2}{2} \sin^{-1} \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2}$$ $$y = \sqrt{3} \left(\frac{\left(\frac{2}{3}\right)^2}{2} \sin^{-1} \frac{\left(x - \frac{1}{3}\right)}{\left(\frac{2}{3}\right)} + \frac{\left(x - \frac{1}{3}\right)}{2} \sqrt{\left(\frac{2}{3}\right)^2 - \left(x - \frac{1}{3}\right)^2} \right) + c$$ $$y = \frac{2\sqrt{3}}{9}\sin^{-1}\frac{(3x-1)}{2} + \frac{(3x-1)}{6}\sqrt{1+2x-3x^2} + c$$ # 89. Question Evaluate $$\int x \sqrt{1+x-x^2} \ dx$$ # **Answer** Make perfect square of quadratic equation $$1 + x - x^2 = \frac{5}{4} - \left(x^2 - 2\left(\frac{1}{2}\right)(x) + \left(\frac{1}{2}\right)^2\right)$$ $$= \left(\frac{\sqrt{5}}{2}\right)^2 - \left(x - \frac{1}{2}\right)^2$$ $$y = \int x \sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - \left(x - \frac{1}{2}\right)^2} dx$$ Let, $$x - \frac{1}{2} = t \Rightarrow x = t + \frac{1}{2}$$ Differentiate both side with respect to t $$\frac{dx}{dt} = 1 \Rightarrow dx = dt$$ $$y = \int \left(t + \frac{1}{2}\right) \sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - t^2} dt$$ $$y = \int t \sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - t^2} + \frac{1}{2} \sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - t^2} dt$$ $$A = \int t \sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - t^2} dt$$ Let, $t^2 = z$ Differentiate both side with respect to z $$2t\frac{dt}{dz} = 1 \implies tdt = \frac{1}{2}dz$$ $$A = \frac{1}{2} \int \sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - z} \ dz$$ $$A = \frac{1}{4} \int \sqrt{5 - 4z} \ dz$$ $$A = \frac{-1}{24} (5 - 4z)^{\frac{3}{2}} + c_1$$ Put $$z = t^2$$ and $t = x - \frac{1}{2}$ $$A = \frac{-1}{24} \left(5 - 4 \left(x - \frac{1}{2} \right)^2 \right)^{\frac{3}{2}} + c_1$$ $$A = \frac{-1}{3}(1+x-x^2)^{\frac{3}{2}} + c_1$$ $$B = \int \frac{1}{2} \sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - t^2} \, dt$$ $$B = \frac{1}{2} \left(\frac{\left(\frac{\sqrt{5}}{2} \right)^2}{2} \sin^{-1} \frac{t}{\left(\frac{\sqrt{5}}{2} \right)} + \frac{t}{2} \sqrt{\left(\frac{\sqrt{5}}{2} \right)^2 - t^2} \right) + c_2$$ $$B = \frac{5}{16}\sin^{-1}\left(\frac{2t}{\sqrt{5}}\right) + \frac{t}{8}\sqrt{5 - 4t^2} + c_2$$ Put $$t = x - \frac{1}{2}$$ $$B = \frac{5}{16} \sin^{-1} \left(\frac{2x - 1}{\sqrt{5}} \right) + \frac{\left(x - \frac{1}{2} \right)}{8} \sqrt{5 - 4 \left(x - \frac{1}{2} \right)^2} + c_2$$ $$B = \frac{5}{16} \sin^{-1} \left(\frac{2x-1}{\sqrt{5}} \right) + \frac{(2x-1)}{8} \sqrt{1+x-x^2} + c_2$$ The final answer is y = A + B $$y = \frac{-1}{3} (1 + x - x^2)^{\frac{3}{2}} + \frac{5}{16} \sin^{-1} \left(\frac{2x - 1}{\sqrt{5}} \right) + \frac{(2x - 1)}{8} \sqrt{1 + x - x^2} + c$$ $$y = \frac{1}{24} (8x^2 - 2x - 11)\sqrt{1 + x - x^2} + \frac{5}{16} \sin^{-1} \left(\frac{2x - 1}{\sqrt{5}}\right) + c$$ Evaluate $$\int (2x+3)\sqrt{4x^2+5x+6} \ dx$$ Make perfect square of quadratic equation $$4x^2 + 5x + 6 = 4\left[\left(x + \frac{5}{8}\right)^2 + \frac{71}{64}\right]$$ $$y = 2 \int (2x+3) \sqrt{\left[\left(x+\frac{5}{8}\right)^2 + \left(\frac{\sqrt{71}}{8}\right)^2\right]} dx$$ Let, $$\chi + \frac{5}{8} = t \implies \chi = t - \frac{5}{8}$$ Differentiate both side with respect to t $$\frac{dx}{dt} = 1 \Rightarrow dx = dt$$ $$y = 2 \int \left(2t + \frac{7}{4}\right) \sqrt{\left[t^2 + \left(\frac{\sqrt{71}}{8}\right)^2\right]} dt$$ $$A = 4 \int t \sqrt{\left(\frac{\sqrt{71}}{8}\right)^2 + t^2} dt$$ Let, $$t^2 = z$$ Differentiate both side with respect to z $$2t\frac{dt}{dz} = 1 \implies tdt = \frac{1}{2}dz$$ $$A = 2 \int \sqrt{\left(\frac{\sqrt{71}}{8}\right)^2 + z} \ dz$$ $$A = \frac{1}{4} \int \sqrt{71 + 64z} \ dz$$ $$A = \frac{1}{384} (71 + 64z)^{\frac{3}{2}} + c_1$$ Put $$z = t^2$$ and $t = x + \frac{5}{8}$ $$A = \frac{1}{384} \left(71 + 64 \left(x + \frac{5}{8} \right)^2 \right)^{\frac{3}{2}} + c_1$$ $$A = \frac{1}{6}(4x^2 + 5x + 6)^{\frac{3}{2}} + c_1$$ $$B = \int \frac{7}{2}
\sqrt{\left(\frac{\sqrt{71}}{8}\right)^2 + t^2} \, dt$$ $$B = \frac{7}{2} \left(\frac{t}{2} \sqrt{\left(\frac{\sqrt{71}}{8}\right)^2 + t^2} + \frac{\left(\frac{\sqrt{71}}{8}\right)^2}{2} \ln\left(t + \sqrt{\left(\frac{\sqrt{71}}{8}\right)^2 + t^2}\right) \right) + c_2$$ Put $$t = x + \frac{5}{9}$$ $$B = \frac{7}{2} \left(\frac{\left(x + \frac{5}{8}\right)}{2} \sqrt{\left(\frac{\sqrt{71}}{8}\right)^2 + \left(x + \frac{5}{8}\right)^2} \right) +$$ $$\frac{7\left(\frac{\sqrt{71}}{8}\right)^{2}}{4}\ln\left(\left(x+\frac{5}{8}\right)+\sqrt{\left(\frac{\sqrt{71}}{8}\right)^{2}+\left(x+\frac{5}{8}\right)^{2}}\right)+c_{2}$$ $$B = \frac{7}{2} \left(\frac{(8x+5)}{32} \sqrt{4x^2 + 5x + 6} \right) +$$ $$\frac{497}{256} \ln \left(\left(x + \frac{5}{8} \right) + \sqrt{\left(\frac{\sqrt{71}}{8} \right)^2 + \left(x + \frac{5}{8} \right)^2} \right) + \ c_2$$ The final answer is y = A + B $$y = \frac{1}{6} (4x^2 + 5x + 6)^{\frac{3}{2}} + \frac{7}{2} \left(\frac{(8x+5)}{32} \sqrt{4x^2 + 5x + 6} \right) +$$ $$\frac{497}{256} \ln \left(\left(x + \frac{5}{8} \right) + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right) + c$$ $$y = \frac{1}{192}(128x^2 + 328x + 297)\sqrt{4x^2 + 5x + 6} +$$ $$\frac{497}{256} \ln \left(\left(x + \frac{5}{8} \right) + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right) + c$$ ### 91. Question Evaluate $$\int (1+x^2)\cos 2x \ dx$$ # Answer $$y = \int \cos 2x + x^2 \cos 2x \, dx$$ $$A = \int \cos 2x \, dx$$ $$A = \frac{\sin 2x}{2} + c_1$$ $$B = \int x^2 \cos 2x \, dx$$ Use the method of integration by parts $$B = x^2 \int \cos 2x \, dx - \int \frac{d}{dx} (x^2) \left(\int \cos 2x \, dx \right) dx$$ $$B = x^2 \frac{\sin 2x}{2} - \int x \sin 2x \, dx$$ $$B = x^2 \frac{\sin 2x}{2} - (x \int \sin 2x \ dx - \int \frac{d}{dx}(x) \left(\int \sin 2x \ dx \right)$$ $$B = x^2 \frac{\sin 2x}{2} + x \frac{\cos 2x}{2} - \frac{\sin 2x}{4} + c_2$$ The final answer is y = A + B $$y = \frac{\sin 2x}{2} + x^2 \frac{\sin 2x}{2} + x \frac{\cos 2x}{2} - \frac{\sin 2x}{4} + c$$ $$y = \frac{(1+x^2)}{2}\sin 2x + \frac{x}{2}\cos 2x - \frac{1}{4}\sin 2x + c$$ # 92. Question Evaluate $$\int log_{10} x dx$$ #### **Answer** Use the method of integration by parts $$y = \int 1 \times \log_{10} x \ dx$$ $$y = \log_{10} x \int dx - \int \frac{d}{dx} \log_{10} x \left(\int dx \right) dx$$ $$y = x \log_{10} x - \int x \frac{1}{x \log_e 10} dx$$ $$y = x \log_{10} x - \frac{x}{\log_e 10} + c$$ $$y = x(\log_e x - 1)\log_{10} e + c$$ #### 93. Question Evaluate $$\int \frac{\log(\log x)}{x} dx$$ ### **Answer** Let, $$\log x = t$$ Differentiating both side with respect to t $$\frac{1}{x}\frac{dx}{dt} = 1 \implies \frac{dx}{x} = dt$$ Note:- Always use direct formula for ∫log x dx $$y = t \log t - t + c$$ Again, put $$t = log x$$ $$y = (\log x)\log(\log x) - \log x + c$$ #### 94. Question Evaluate $$\int x \sec^2 2x \ dx$$ ### **Answer** Use method of integration by parts $$y = x \int \sec^2 2x \, dx - \int \frac{d}{dx} x \left(\int \sec^2 2x \, dx \right) dx$$ $$y = x \frac{\tan 2x}{2} - \int \frac{\tan 2x}{2} dx$$ Use formula $\int \tan x \, dx = \log \sec x$ $$y = \frac{x}{2} \tan 2x - \frac{\log(\sec 2x)}{4} + c$$ #### 95. Question Evaluate $\int x \sin^3 x \, dx$ #### **Answer** We know that $\sin^3 x = \frac{3 \sin x - \sin 3x}{4}$ $$y = \int x \left(\frac{3\sin x - \sin 3x}{4} \right) dx$$ $$y = \frac{3}{4} \int x \sin x \, dx - \frac{1}{4} \int x \sin 3x \, dx$$ Use method of integration by parts $$y = \frac{3}{4} \left(x \int \sin x \, dx - \int \frac{d}{dx} x \left(\int \sin x \, dx \right) dx \right)$$ $$-\frac{1}{4}\left(x\int\sin 3x\,dx - \int\frac{d}{dx}x\left(\int\sin 3x\,dx\right)dx\right)y$$ $$= \frac{3}{4}\left(-x\cos x + \int\cos x\,dx\right) - \frac{1}{4}\left(-x\frac{\cos 3x}{3} + \int\frac{\cos 3x}{3}\,dx\right)$$ $$y = \frac{3}{4}(-x\cos x + \sin x) - \frac{1}{4}\left(-x\frac{\cos 3x}{3} + \frac{\sin 3x}{9}\right) + c$$ $$y = \frac{1}{4} \left(-3x \cos x + 3 \sin x + \frac{x}{3} \cos 3x - \frac{\sin 3x}{9} \right) + c$$ ### 96. Question Evaluate $$\int (x+1)^2 e^x dx$$ #### **Answer** $$y = \int (x^2 + 2x + 1) e^x dx$$ $$y = \int (x^2 + 2x)e^x dx + \int e^x dx$$ We know that $\int (f(x) + f'(x))e^x dx = f(x) e^x$ Here, $$f(x) = x^2$$ then $f'(x) = 2x$ $$v = x^2 e^x + e^x + c$$ $$y = (x^2 + 1)e^x + c$$ # 97. Question Evaluate $$\int log \left(x + \sqrt{x^2 + a^2}\right) dx$$ ## **Answer** Use method of integration by parts $$y = \log(x + \sqrt{x^2 + a^2}) \int dx - \int \frac{d}{dx} \log\left(x + \sqrt{x^2 + a^2}\right) \left(\int dx\right) dx$$ $$y = x \log \left(x + \sqrt{x^2 + a^2} \right) - \int \frac{1 + \frac{2x}{2\sqrt{x^2 + a^2}}}{x + \sqrt{x^2 + a^2}} x \, dx$$ $$y = x \log\left(x + \sqrt{x^2 + a^2}\right) - \int \frac{x}{\sqrt{x^2 + a^2}} dx$$ Let, $$x^2 + a^2 = t$$ Differentiating both side with respect to t $$2x\frac{dx}{dt} = 1 \Rightarrow x dx = \frac{dt}{2}$$ $$y = x \log\left(x + \sqrt{x^2 + a^2}\right) - \frac{1}{2} \int \frac{1}{\sqrt{t}} dt$$ $$y = x \log(x + \sqrt{x^2 + a^2}) - \sqrt{t} + c$$ Again, put $$t = x^2 + a^2$$ $$y = x \log(x + \sqrt{x^2 + a^2}) - \sqrt{x^2 + a^2} + c$$ # 98. Question Evaluate $$\int \frac{\log x}{x^3} dx$$ #### **Answer** Use method of integration by parts $$y = \log x \int \frac{1}{x^3} dx - \int \frac{d}{dx} \log x \left(\int \frac{1}{x^3} dx \right) dx$$ $$y = -\log x \frac{1}{2x^2} + \int \frac{1}{2x^3} dx$$ $$y = -\frac{1}{2x^2}\log x - \frac{1}{4x^2} + c$$ $$y = -\frac{1}{4x^2}(2\log x + 1) + c$$ ## 99. Question Evaluate $$\int \frac{\log(1-x)}{x^2} dx$$ ### **Answer** Use method of integration by parts $$y = \log(1 - x) \int \frac{1}{x^2} dx - \int \frac{d}{dx} \log(1 - x) \left(\int \frac{1}{x^2} dx \right) dx$$ $$y = -\log(1-x)\frac{1}{x} - \int \frac{1}{(1-x)x} dx$$ $$y = -\frac{1}{x}\log(1-x) - \int \frac{x + (1-x)}{(1-x)x} dx$$ $$y = -\frac{1}{x}\log(1-x) - \int \frac{1}{(1-x)} + \frac{1}{x}dx$$ $$y = -\frac{1}{x}\log(1-x) + \log(1-x) - \log x + c$$ $$y = \left(1 - \frac{1}{x}\right)\log(1 - x) - \log x + c$$ $$\mathsf{Evaluate} \int x^3 \left(\log x\right)^2 \, dx$$ #### **Answer** Use method of integration by parts $$y = log^{2}x \int x^{3} dx - \int \frac{d}{dx} log^{2}x \left(\int x^{3} dx \right) dx$$ $$y = log^2 x \frac{x^4}{4} - \int \frac{2 \log x}{x} \frac{x^4}{4} dx$$ $$y = \frac{x^4}{4}log^2x - \frac{1}{2}(logx \int x^3 dx - \int \frac{d}{dx}logx \left(\int x^3 dx\right) dx$$ $$y = \frac{x^4}{4} log^2 x - \frac{1}{2} \left(log x \frac{x^4}{4} - \int \frac{1}{x} \frac{x^4}{4} dx \right)$$ $$y = \frac{x^4}{4} \log^2 x - \frac{x^4}{8} \log x + \frac{x^4}{32} + c$$ #### 101. Question Evaluate $$\int \frac{1}{x\sqrt{1+x^n}} dx$$ ### **Answer** Let, $$\sqrt{1+x^n}=t$$ Differentiate both side with respect to t $$\frac{nx^{n-1}}{2\sqrt{1+x^n}}\frac{dx}{dt}=1 \Rightarrow \frac{dx}{x\sqrt{1+x^n}}=\frac{2dt}{n(t^2-1)}$$ $$y = \int \frac{2}{n(t^2 - 1)} dt$$ Use formula $$\int \frac{1}{t^2 - a^2} dt = \frac{1}{2a} \ln \left(\frac{t - a}{t + a} \right)$$ $$y = \frac{1}{n} \ln \left(\frac{t-1}{t+1} \right) + c$$ Again put $$t = \sqrt{1 + x^n}$$ $$y = \frac{1}{n} \ln \left(\frac{\sqrt{1 + x^n} - 1}{\sqrt{1 + x^n} + 1} \right) + c$$ Evaluate $$\int \frac{x^2}{\sqrt{1-x}} dx$$ Let, $$x = \sin^2 t$$ Differentiate both side with respect to t $$\frac{dx}{dt} = 2 \sin t \cos t \ dt \Rightarrow dx = 2 \sin t \cos t \ dt$$ $$y = \int \frac{\sin^4 t}{\cos t} 2 \sin t \cos t \, dt$$ $$y = 2 \int \sin^5 t \, dt$$ $$y = 2 \int (1 - \cos^2 t)^2 \sin t \, dt$$ Let, $$\cos t = z$$ Differentiate both side with respect to z $$-\sin t \frac{dt}{dz} = 1 \Rightarrow \sin t dt = -dz$$ $$y = -2 \int (1-z^2)^2 dz$$ $$y = -2 \int 1 + z^4 - 2z^2 dz$$ $$y = -2\left(z + \frac{z^5}{5} - 2\frac{z^3}{3}\right) + c$$ Again put z = cos t and $t = \sin^{-1} \sqrt{x}$ $$y = -2\left(\cos(\sin^{-1}\sqrt{x}) + \frac{\cos^{5}(\sin^{-1}\sqrt{x})}{5} - 2\frac{\cos^{3}(\sin^{-1}\sqrt{x})}{3}\right) + c$$ $$y = -2\left(\sqrt{1-x} + \frac{(1-x)^2\sqrt{1-x}}{5} - \frac{2(1-x)\sqrt{1-x}}{3}\right) + c$$ $$y = \frac{-2}{15}\sqrt{1-x}(3x^2 + 4x + 8) + c$$ ### 103. Question Evaluate $$\int \frac{x^5}{\sqrt{1+x^3}} dx$$ ### **Answer** Let, $$1 + x^3 = t$$ Differentiate both side with respect to t $$3x^2 \frac{dx}{dt} = 1 \implies x^2 dx = \frac{dt}{3}$$ $$y = \frac{1}{3} \int \frac{(t-1)}{\sqrt{t}} dt$$ $$y = \frac{1}{3} \int \sqrt{t} - \frac{1}{\sqrt{t}} dt$$ $$y = \frac{1}{3} \left(\frac{2}{3} t^{\frac{3}{2}} - 2\sqrt{t} \right) + c$$ Again, put $$t = 1 + x^3$$ $$y = \frac{1}{3} \left(\frac{2}{3} \left(1 + x^3 \right)^{\frac{3}{2}} - 2\sqrt{1 + x^3} \right) + c$$ $$y = \frac{2}{9}\sqrt{1+x^3}(x^3-2) + c$$ Evaluate $$\int \frac{1+x^2}{\sqrt{1+x^2}} dx$$ #### **Answer** $$y = \int \sqrt{1 + x^2} \, dx$$ Use formula $$\sqrt{a^2 + x^2} = \frac{x}{2}\sqrt{x^2 + a^2} + \frac{a^2}{2}\ln(x + \sqrt{x^2 + a^2})$$ $$y = \frac{x}{2}\sqrt{x^2 + 1} + \frac{1}{2}\ln(x + \sqrt{x^2 + 1}) + c$$ ## 105. Question Evaluate $$\int x \sqrt{\frac{1-x}{1+x}} dx$$ #### **Answer** Let, $x = \sin t$ Differentiate both side with respect to t $$\frac{dx}{dt} = \cos t \Rightarrow dx = \cos t dt$$ $$y = \int \sin t \sqrt{\frac{1 - \sin t}{1 + \sin t}} \cos t \, dt$$ $$y = \int \sin t \sqrt{\frac{(1 - \sin t)(1 - \sin t)}{(1 + \sin t)(1 - \sin t)}} \cos t \, dt$$ $$y = \int \sin t \, (1 - \sin t) dt$$ $$y = \int \sin t \, dt \, - \int \sin^2 t \, dt$$ $$y = -\cos t - \int \frac{1 - \cos 2t}{2} dt$$ $$y = -\cos t - \left(\frac{t}{2} - \frac{\sin 2t}{4}\right) + c$$ Again put $t = \sin^{-1}x$ $$y = -\cos(\sin^{-1}x) - \left(\frac{(\sin^{-1}x)}{2} - \frac{\sin 2(\sin^{-1}x)}{4}\right) + c$$ $$y = -\sqrt{1-x^2} - \frac{\sin^{-1}x}{2} + \frac{x\sqrt{1-x^2}}{2} + c$$ $$y = \left(\frac{x}{2} - 1\right)\sqrt{1 - x^2} - \frac{1}{2}\sin^{-1}x + c$$ Evaluate $$\int \frac{1}{\sin x (2 + 3\cos x)} dx$$ #### **Answer** To solve this type of solution, we are going to substitute the value of sinx and cosx in terms of tan(x/2) $$\sin x = \frac{2\left[\tan\frac{x}{2}\right]}{1+\tan^2\frac{x}{2}}$$ $$\cos x = \frac{\left(1 - \frac{\tan^2
x}{2}\right)}{1 + \frac{\tan^2 x}{2}}$$ $$I = \int \frac{1}{\frac{2\tan\frac{x}{2}}{1 + tan^2\frac{x}{2}} \left(2 + 3.\frac{1 - tan^2\frac{x}{2}}{1 + tan^2\frac{x}{2}}\right)} dx$$ $$I = \int \frac{\sec^2 \frac{x}{2}}{2\tan \frac{x}{2}(2 + 2\tan^2 \frac{x}{2} + 3 - 3\tan^2 \frac{x}{2})} dx$$ In this type of equations, we apply substitution method so that equation may be solve in simple way Let $$tan\left(\frac{x}{2}\right) = t$$ $$\frac{1}{2}.\sec^2\frac{x}{2}dx = dt$$ Put these terms in above equation,we get $I = \int \frac{dt}{t(5-t^2)}$ $$I = \int \frac{t^{-3}dt}{(5t^{-2} - 1)}$$ Let us now again apply the substitution method in above equation Let $$t^{-2} = k$$ $$-2.t^{-3}dt = dk$$ Substitute these terms in above equation gives- $$I = -\frac{1}{10} \int \frac{dk}{k}$$ $$I = \frac{1}{10k^2} = \frac{1}{10} \cdot \left(\frac{5 - t^2}{t^2}\right)^2$$ $$=\frac{1}{10}\cdot\left(\frac{5}{t^2}-1\right)^2$$ Now put the value of t, t=tan(x/2) in above equation gives us the finally solution $$I = \frac{1}{10} \cdot \left(\frac{5}{\tan^2 \frac{x}{2}} - 1 \right)^2$$ Evaluate $$\int \frac{1}{\sin x + \sin 2x} dx$$ To solve this type of solution ,we are going to substitute the value of sinx and cosx in terms of tan(x/2) $$\sin x = \frac{2\left[\tan\frac{x}{2}\right]}{1 + \tan^2\frac{x}{2}}$$ $$\cos x = \frac{\left(1 - \frac{\tan^2 x}{2}\right)}{1 + \frac{\tan^2 x}{2}}$$ $$I = \int \frac{1}{\frac{2\tan x/2}{1+tan^2\frac{x}{2}} \left(1+2.\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}\right)} dx$$ $$I = \int \frac{sec^{2}\frac{x}{2}}{2\tan\frac{x}{2}(3 - tan^{2}\frac{x}{2})} dx$$ In this type of equations we apply substitution method so that equation may be solve in simple way Let $$tan\left(\frac{x}{2}\right) = t$$ $$\frac{1}{2}.\sec^2\frac{x}{2}dx = dt$$ Put these terms in above equation,we get $I=\int \frac{dt}{t(3-t^2)}$ $$I = \int \frac{t^{-3}dt}{(3t^{-2} - 1)}$$ Let us now again apply the substitution method in above equation Let $$t^{-2} = k$$ $$-2.t^{-3}dt = dk$$ Substitute these terms in above equation gives- $$I = -\frac{1}{6} \int \frac{dk}{k}$$ $$I = \frac{1}{6k^2}$$ $$=\frac{1}{6}\cdot\left(\frac{3-t^2}{t^2}\right)^2$$ $$=\frac{1}{6}\cdot(\frac{3}{t^2}-1)^2$$ Now put the value of t, t=tan(x/2) in above equation gives us the finally solution $$I = \frac{1}{6} \cdot (\frac{3}{\tan^2 \frac{x}{2}} - 1)^2$$ Evaluate $$\int \frac{1}{\sin^4 x + \cos^4 x} \, dx$$ Consider $$\int \frac{1}{\sin^4 x + \cos^4 x} dx$$, Divide num and denominator by cos⁴x to get, $$\int \frac{1}{\sin^4 x + \cos^4 x} \, dx = \int \frac{\frac{1}{\cos^4 x}}{\frac{\sin^4 x}{\cos^4 x} + \frac{\cos^4 x}{\cos^4 x}} \, dx$$ $$= \int \frac{\sec^4 x}{\tan^4 x + 1} \, dx$$ $$= \int \frac{\sec^2 x \cdot \sec^2 x}{\tan^4 x + 1} \, dx$$ $$= \int \frac{\sec^2 x (1 + \tan^2 x)}{\tan^4 x + 1} \, dx$$ Let tan x = t $$sec^2x dx = dt$$ $$= \int \frac{(1+t^2)}{t^4+1} \ dt$$ Now divide both numerator and denominator by $\frac{1}{t^2}$ to get, $$= \int \frac{\left(\frac{1}{t^2} + 1\right)}{\left(t^2 + \frac{1}{t^2}\right) + 2 - 2} dt$$ $$= \int \frac{\left(\frac{1}{t^2} + 1\right)}{\left(1 - \frac{1}{t}\right)^2 + 2} dt$$ Let $$1 - \frac{1}{t} = u$$ $$\left(1+\frac{1}{t^2}\right)dt=du$$ $$=\int \frac{du}{u^2+2}$$ $$= \int \frac{du}{u^2 + \left(\sqrt{2}\right)^2}$$ $$= \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{u}{\sqrt{2}} \right) + c$$ $$= \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{1 - \frac{1}{t}}{\sqrt{2}} \right) + c$$ $$=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{1-\frac{1}{\tan x}}{\sqrt{2}}\right)+c$$ Evaluate $$\int \frac{1}{5 - 4\sin x} dx$$ in this integral we are going to put the value of $\sin(x)$ in terms of $\tan(x/2)$ - $$I = \int \frac{2dt}{5 + 5t^2 - 8t}$$ $$I = \frac{2}{5} \int \frac{1}{\left(t - \frac{4}{5}\right)^2 + \left(\frac{3}{5}\right)^2} dt$$ By applying the formula of $1/(x^2+a^2)$ in above equation yields the integral- $$I = \frac{2}{5} \cdot \frac{1}{\frac{3}{5}} \cdot \tan^{-1} \frac{\left(t - \frac{4}{5}\right)}{\binom{3}{5}}$$ $$I = \frac{2}{3} \cdot \tan^{-1} \frac{5t - 4}{3}$$ By putting the value of t in above equation, $$I = \frac{2}{3} \cdot \tan^{-1}(\frac{5}{3} \tan \frac{x}{2} - \frac{4}{3})$$ ### 70. Question Evaluate $\int \sec^4 x \, dx$ ## **Answer** above equation can be solve by using one formula that is $(i + tan^2x = sec^2x)$ $$I = \int sec^4 x dx$$ $$= \int \sec^2 x \sec^2 x dx$$ $$= \int \sec^2 x (1 + \tan^2 x) dx$$ $$= \int \sec^2 x \, dx + \int \sec^2 x \, \tan^2 x \, dx$$ Put tanx=t in above equation so that $sec^2xdx=dt$ $$I = tanx + \int t^2 dt = tanx + \frac{t^3}{3}$$ $$= tanx + \frac{tan^3x}{3}$$ # 71. Question Evaluate $$\int cosec^4 2x \ dx$$ #### **Answer** above equation can we solve by the formula of $(1+\cot^2 x=\csc^2 x)$ $$I = \int cosec^4 2x dx$$ = $$\int \csc^2 2x (1 + \cot^2 2x) dx$$ $$= \int \csc^2 2x \, dx + \int \csc^2 2x \cot^2 2x \, dx$$ Let us consider that cot2x=t then $-2.cosec^22xdx=dt$ $$I = -\frac{\cot(2x)}{2} - \frac{1}{2}.(t^2 dt)$$ $$I = -\frac{\cot(2x)}{2} - \frac{1}{6}.(\cot 2x)^3$$ Evaluate $$\int \frac{1 + \sin x}{\sin x (1 + \cos x)} dx$$ #### **Answer** first divide nominator by denominator - $$I = \int \frac{1}{\sin x (1 + \cos x)} dx + \int \frac{1}{1 + \cos x} dx$$ $$= \int \frac{1}{\sin x (1 + \cos x)} dx + \int \frac{1}{1 + 2\cos^2 x - 1} dx$$: To solve this type of solution ,we are going to substitute the value of sinx and cosx in terms of tan(x/2) $$\sin x = \frac{2\left[\tan\frac{x}{2}\right]}{1 + \tan^2\frac{x}{2}}$$ $$\cos x = \frac{\left(1 - \frac{\tan^2 x}{2}\right)}{1 + \frac{\tan^2 x}{2}}$$ $$I = \int \frac{1}{\frac{2\tan x/2}{1 + \tan^2 \frac{x}{2}} \left(1 + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right)} dx$$ $$I = \int \frac{sec^2x/2}{2tanx/2(1+tan^2\frac{x}{2}+1-tan^2\frac{x}{2})}dx$$ In this type of equations we apply substitution method so that equation may be solve in simple way Let tan(x/2)=t $1/2.sec^2(x/2)dx=dt$ Put these terms in above equation, we get $I = \int \frac{dt}{2t}$ Substitute these terms in above equation gives- $$I = \frac{1}{2} \int \frac{dt}{t}$$ $$I = \frac{-1}{2t^2}$$ Now put the value of t, t=tan(x/2) in above equation gives us the finally solution $$I = \frac{-1}{2} \cdot \left(\frac{1}{\tan^2 \frac{x}{2}} \right)$$ Evaluate $$\int \frac{1}{2 + \cos x} dx$$ To solve this type of solution ,we are going to substitute the value of sinx and cosx in terms of tan(x/2) $$\sin x = \frac{2\left[\tan\frac{x}{2}\right]}{1 + \tan^2\frac{x}{2}}$$ $$\cos x = \frac{\left(1 - \frac{\tan^2 x}{2}\right)}{1 + \frac{\tan^2 x}{2}}$$ $$I = \int \frac{1}{\left(2 + \frac{1 - tan^2 \frac{x}{2}}{1 + tan^2 \frac{x}{2}}\right)} dx$$ $$I = \int \frac{\sec^2 \frac{x}{2}}{(2 + 2\tan^2 \frac{x}{2} + 1 - \tan^2 \frac{x}{2})} dx$$ In this type of equations we apply substitution method so that equation may be solve in simple way Let tan(x/2)=t $1/2.sec^2(x/2)dx=dt$ Put these terms in above equation, we get $I=2\int \frac{dt}{(3+t^2)}$ $$I = \frac{2.1}{(\sqrt{3})} \tan^{-1} \frac{t}{\sqrt{3}}$$ $$= \frac{2}{\sqrt{3}} \cdot \tan^{-1} \left(\frac{x}{2\sqrt{3}} \right)$$ ### 74. Question Evaluate $$\int \sqrt{\frac{a+x}{x}} \ dx$$ ### **Answer** to solve this integral we have to apply substitution method for which we are going to put $x=a.tan^2k$. This means $dx = 2.a.tank.sec^2k.dk$, then I will be, $$I = \int \sqrt{\frac{asec^2k}{atan^2k}} \cdot 2a \cdot \tan k \cdot sec^2 k \cdot dk = 2a \cdot cosec k \cdot \tan k \cdot sec^2k \cdot dk$$ In this above integral let tank =t then $sec^2kdk=dt$, put in above equation- $$I=2a\int\sqrt{(t^2+1)}.dt$$ Apply the formula of $sqrt(x^2+a^2)=x/2.sqrt(a^2+x^2)+a^2/2ln|x+sqrt(a^2+x^2)|$ $$I = 2a \left[\frac{t}{2} \cdot \sqrt{1 + t^2} + \frac{1}{2} \cdot \ln \left| t + \sqrt{1 + t^2} \right| \right]$$ Now put the value of t in above integral t=tank, then finally integral will be- $$I = 2a\left[\frac{tank}{2} \cdot \sqrt{1 + tan^2k} + \frac{1}{2} \cdot \ln|tank| + \sqrt{1 + tan^2k}\right]$$ Now put the value of k in terms of x that is $tan^2k=x/a$ in above integral – $$I = 2a \left[\frac{1}{2} \sqrt{\frac{x}{a}} \cdot \sqrt{1 + \frac{x}{a}} + \frac{1}{2} \cdot \ln \left| \frac{1}{2} \sqrt{\frac{x}{a}} + \sqrt{1 + \frac{x}{a}} \right| \right]$$ Evaluate $$\int \frac{6x+5}{\sqrt{6+x-2x^2}} dx$$ #### **Answer** $$y = 6 \int \frac{x + \frac{5}{6}}{\sqrt{6 + x - 2x^2}} dx$$ $$y = \frac{6}{-4} \int \frac{-4\left(x + \frac{5}{6}\right)}{\sqrt{6 + x - 2x^2}} dx$$ $$y = -\frac{3}{2} \int \frac{-4x - \frac{10}{3} + 1 - 1}{\sqrt{6 + x - 2x^2}} dx$$ $$y = -\frac{3}{2} \int \frac{-4x+1}{\sqrt{6+x-2x^2}} dx - \frac{3}{2} \int \frac{-\frac{10}{3}-1}{\sqrt{6+x-2x^2}} dx$$ $$A = -\frac{3}{2} \int \frac{-4x+1}{\sqrt{6+x-2x^2}} dx$$ Let, $$6 + x - 2x^2 = t$$ Differentiating both side with respect to t $$(1-4x)\frac{dx}{dt} = 1 \Rightarrow (1-4x)dx = dt$$ $$A = -\frac{3}{2} \int \frac{1}{\sqrt{t}} dt$$ $$A = -\frac{3}{2}2\sqrt{t} + c_1$$ Again, put $$t = 6 + x - 2x^2$$ $$A = -3\sqrt{6 + x - 2x^2} + c_1$$ $$B = -\frac{3}{2} \int \frac{-\frac{10}{3} - 1}{\sqrt{6 + x - 2x^2}} dx$$ $$B = \frac{13}{2} \int \frac{1}{\sqrt{6 + x - 2x^2}} dx$$ Make perfect square of quadratic equation 6 + x - 2x²= $$2\left(\left(\frac{7}{4}\right)^2 - \left(x - \frac{1}{4}\right)^2\right)$$ $$B = \frac{13}{2\sqrt{2}} \int \frac{1}{\sqrt{\left(\frac{7}{4}\right)^2 - \left(x - \frac{1}{4}\right)^2}} dx$$ Use formula $\int \frac{1}{\sqrt{a^2-x^2}} dx = \sin^{-1} \frac{x}{a}$ $$B = \frac{13}{2\sqrt{2}}\sin^{-1}\frac{\left(x - \frac{1}{4}\right)}{\binom{7}{4}} + c_2$$ $$B = \frac{13}{2\sqrt{2}}\sin^{-1}\frac{4x-1}{7} + c_2$$ The final solution of the question is y = A + B $$y = -3\sqrt{6 + x - 2x^2} + \frac{13}{2\sqrt{2}}\sin^{-1}\left(\frac{4x - 1}{7}\right) + C$$ #### 76. Question Evaluate $$\int \frac{\sin^5 x}{\cos^4 x} dx$$ #### **Answer** to solve this type of integration we have to let cosx either sinx =t then manuplate them Let $\cos x = t$ then $-\sin x dx = dt$ Also apply the formula of $(\sin^2 t + \cos^2 t = 1)$ $$I = \int \frac{\sin^5 x}{\cos^4 x} dx
= -\int \frac{(1 - t^2)^2}{t^4} dt$$ $$= -\int \frac{1 + t^4 - 2t^2}{t^4} dt$$ $$= -\left[\int t^{-4} dt + \int 1 dt - \int \frac{2}{t^2} dt\right]$$ $$I = \frac{t^{-3}}{3} - t - \frac{2}{t}$$ Now put the value of t in above integral $$I = \frac{1}{3\cos^3 x} - \cos x - \frac{2}{\cos x}$$ #### 77. Question Evaluate $$\int \frac{\cos^5 x}{\sin x} dx$$ #### **Answer** to solve this type of integration we have to let cosx either sinx =t then manuplate them Let $\sin x = t$ then $\cos x \, dx = dt$ Also apply the formula of $(\sin^2 t + \cos^2 t = 1)$ $$I = \int \frac{\cos^5 x}{\sin x} dx$$ $$= \int \frac{(1 - t^2)^2}{t} dt = \int \frac{1 + t^4 - 2t^2}{t} dt = \int \frac{1}{t} dt + \int t^3 dt - \int 2t dt$$ $$I = -\frac{1}{t^2} + \frac{t^4}{4} - t^2$$ Now put the value of t in above integral $$I = \frac{-1}{\sin^2 x} + (\sin^4 x)/4 - \sin^2 x$$ Evaluate $$\int \frac{\sin^6 x}{\cos x} dx$$ $$y = \int \left(\frac{\sin^4 x (1 - \cos^2 x)}{\cos x}\right) dx$$ $$y = \int \left(\frac{\sin^4 x}{\cos x} - \frac{\sin^4 x \cos^2 x}{\cos x}\right) dx$$ $$y = \int \left(\frac{\sin^2 x (1 - \cos^2 x)}{\cos x} - \sin^4 x \cos x\right) dx$$ $$y = \int \left(\frac{\sin^2 x}{\cos x} - \frac{\sin^2 x \cos^2 x}{\cos x} - \sin^4 x \cos x\right) dx$$ $$y = \int \left(\frac{\sin^2 x}{\cos x} - \sin^2 x \cos x - \sin^4 x \cos x\right) dx$$ $$y = \int \left(\frac{\sin^2 x}{\cos x} - \sin^2 x \cos x - \sin^4 x \cos x\right) dx$$ $$y = \int \left(\frac{1 - \cos^2 x}{\cos x}\right) dx - \int (\sin^2 x \cos x + \sin^4 x \cos x) dx$$ Let, $\sin x = t$ Differentiating both side with respect to t $$\cos x \frac{dx}{dt} = 1 \Rightarrow \cos x \, dx = dt$$ $$y = \int \left(\frac{1}{\cos x} - \cos x\right) dx - \int t^2 + t^4 dt$$ $$y = \ln(\sec x + \tan x) - \sin x - \frac{t^3}{3} - \frac{t^5}{5} + c$$ Again put $t = \sin x$ $$y = \ln(\sec x + \tan x) - \sin x - \frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + c$$ $$y = \frac{1}{2} \ln \left(\frac{1 + \sin x}{1 - \sin x} \right) - \sin x - \frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + c$$ # 79. Question Evaluate $$\int \frac{\sin^2 x}{\cos^6 x} dx$$ ### Answer dividing by cos⁶x yields- Let us consider tanx=t Then $sec^2xdx=dt$, put in above equation- $$I = \int t^2 (1+t^2) dt = \int (t^2 + t^4) dt = \int t^2 dt + \int t^4 dt = \frac{t^3}{3} + \frac{t^5}{5}$$ Now reput the value of t, which is t=tanx $$I = \frac{(\tan^3 x)}{3} + \frac{\tan^5 x}{5}$$ Evaluate $\int \sec^6 x \, dx$ #### **Answer** in this integral we will use the formula $1+\tan^2 x = \sec^2 x$, $$I = \int sec^2 x sec^4 x dx$$ $$= \int \sec^2 x (1 + \tan^2 x)^2 dx$$ Now put tan x=t which means $sec^2xdx=dt$, $$I = \int (1+t^2)^2 dt$$ $$= \int (1+t^4+2t^2) dt$$ Now put the value of t, which is $t=tan \times in$ above integral- $$I = tanx + \frac{tan^5x}{5} + 2.\frac{tan^3x}{3}$$ ### 81. Question Evaluate $$\int tan^5 x sec^3 x dx$$ #### **Answer** in this integral we will use the formula $1+\tan^2 x = \sec^2 x$, Then equation will be transform in below form- $$I = \int \tan^5 x \sec^2 x \sec x \, dx$$ $$= \int \sec x \tan^5 x \sec^2 x dx$$ Now put tan x=t which means $sec^2xdx=dt$, $$I = \int t^5 . \sqrt{1 + t^2} \, dt$$ In this above integral put $1+t^2=k^2$ that is mean tdt=kdk $$I = \int (k^4 + 1 - 2k) k^2 dk$$ $$= \int (k^6 + k^2 - 2k^3)dk$$ $$=\frac{k^7}{7}+\frac{k^3}{3}-\frac{k^4}{2}$$ Now put the value of $k=(1+t^2)=\sec^2x$ in above equation- $$I = \frac{sec^{14}x}{7} + \frac{sec^{6}x}{3} - \frac{sec^{8}x}{2}$$ ### 82. Question Evaluate $$\int \tan^3 x \sec^4 x \, dx$$ # Answer in this integral we will use the formula $1+\tan^2 x = \sec^2 x$, Then equation will be transform in below form- $$I = \int \tan^3 x \, \sec^2 x \, \sec^2 x \, dx$$ $$= \int \tan^3 x (1 + \tan^2 x) \sec^2 x dx$$ Now put tanx=t which means $sec^2xdx=dt$, $$I = \int t^3 (1+t^2) \, dt = \int (t^4 + t^5) dt$$ $$I = \frac{t^5}{5} + \frac{t^6}{6}$$ Now put the value of t, which is t=tanx in above integral- $$I = \frac{\tan^5 x}{5} + \frac{\tan^6 x}{6}$$ ### 83. Question Evaluate $$\int \frac{1}{\sec x + \csc x} dx$$ #### **Answer** $$y = \int \frac{\sin x \cos x}{\sin x + \cos x} dx$$ $$y = \frac{1}{2} \int \frac{1 + 2\sin x \cos x - 1}{\sin x + \cos x} dx$$ Use $$1 = \sin^2 x + \cos^2 x$$ $$y = \frac{1}{2} \int \frac{\sin^2 x + \cos^2 x + 2\sin x \cos x}{\sin x + \cos x} dx - \frac{1}{2} \int \frac{1}{\sin x + \cos x} dx$$ Use $$\sin x + \cos x = \sqrt{2} \left(\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x \right)$$ $$= \sqrt{2} \left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} \right)$$ $$=\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)$$ $$y = \frac{1}{2} \int \frac{(\sin x + \cos x)^2}{\sin x + \cos x} dx - \frac{1}{2} \int \frac{1}{\sqrt{2} \sin \left(x + \frac{\pi}{4}\right)} dx$$ $$y = \frac{1}{2} \int \sin x + \cos x \, dx - \frac{1}{2\sqrt{2}} \int \csc\left(x + \frac{\pi}{4}\right) dx$$ $$y = \frac{1}{2}(-\cos x + \sin x) - \frac{1}{2\sqrt{2}}\ln\left(\tan\left(\frac{x}{2} + \frac{\pi}{8}\right)\right) + c$$ ### 84. Question Evaluate $$\int \sqrt{a^2 + x^2} dx$$ #### **Answer** in these type of problems we put the value of x=a tank That is mean that $dx=a sec^2k dk$ $$I = \int \sqrt{a^2 + a^2 \tan^2 k} \ a. \sec^2 k. dk$$ $$= \int a. \sec k. a. \sec^2 k dk$$ $$=\int a^2 \sec^3 k \, dk$$ By upper solve questions we can find out the value of integration of sec^3x , which is equal to $$i = \int sec^3x dx = \frac{1 + secx. tanx}{2}$$ Put the value of integration of sec^3x in above equation we get our finally integral which is – $$I = \alpha^2. \frac{1 + seck. tank}{2}$$ Now put the value of k which is $tan^{-1}(x/a)$ in above equation- $$I = a^2 \cdot \left(\frac{1 + \frac{x}{a} \cdot \sec(tan^{-1}\frac{x}{a})}{2}\right)$$ # 85. Question Evaluate $$\int \sqrt{x^2 - a^2} \ dx$$ ### **Answer** Consider $$\int \sqrt{x^2 - a^2} \ dx$$ Let $$I = \sqrt{\chi^2 - a^2}$$ and $II = 1$ As $$\int I.II dx = I.\int II dx - \int [d/dx(I). \int II dx]$$ So, $$= \sqrt{x^2 - a^2} \int 1 \, dx - \int \frac{d}{dx} \left(\sqrt{x^2 - a^2} \, \right) \cdot \int 1 \, dx$$ $$=x\sqrt{x^2-a^2}-\int \frac{1}{2\sqrt{x^2-a^2}}.2x.x\,dx$$ $$= x\sqrt{x^2 - a^2} - \int \frac{x^2}{\sqrt{x^2 - a^2}} dx$$ $$=x\sqrt{x^2-a^2}-\int \frac{x^2-a^2+a^2}{\sqrt{x^2-a^2}}dx$$ $$= x\sqrt{x^2 - a^2} - \int \frac{x^2 - a^2}{\sqrt{x^2 - a^2}} dx - \int \frac{a^2}{\sqrt{x^2 - a^2}} dx$$ $$I = x\sqrt{x^2 - a^2} - \int \sqrt{x^2 - a^2} dx - \int \frac{a^2}{\sqrt{x^2 - a^2}} dx$$ $$I = x\sqrt{x^2 - a^2} - I - \int \frac{a^2}{\sqrt{x^2 - a^2}} dx$$ $$2I = x\sqrt{x^2 - a^2} - \int \frac{a^2}{\sqrt{x^2 - a^2}} dx$$ $$2I = x\sqrt{x^2 - a^2} - a^2 \log |x + \sqrt{x^2 - a^2}| + c$$ $$I = \frac{1}{2} \left(x \sqrt{x^2 - a^2} - a^2 \log \left| x + \sqrt{x^2 - a^2} \right| + c \right)$$ Evaluate $$\int \frac{1}{1-x-4x^2} dx$$ Given, $$\int \frac{1}{(1-x-4x^2)} dx$$ $$= -\int \frac{1}{4x^2 + x - 1} dx$$ $$= -\int \frac{1}{4x^2 + x + \frac{1}{16} - \frac{17}{16}} dx$$ $$= -\int \frac{1}{\left(2x + \frac{1}{4}\right)^2 - \frac{17}{16}} dx$$ $$= -\int \frac{1}{\left(2x + \frac{1}{4}\right)^2 - \left(\frac{\sqrt{17}}{4}\right)^2} dx$$ It is clearly of the form, $\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \frac{x - a}{x + a} + c$ Where $$\chi=2\chi+\frac{1}{4}$$; $\alpha=\frac{\sqrt{17}}{4}$ $$= -\frac{1}{2(\frac{\sqrt{17}}{4})} \log \frac{2x + \frac{1}{4} - \frac{\sqrt{17}}{4}}{2x + \frac{1}{4} + \frac{\sqrt{17}}{4}} + c$$ $$= -\frac{2}{\sqrt{17}} \log \frac{2x + \frac{1}{4} - \frac{\sqrt{17}}{4}}{2x + \frac{1}{4} + \frac{\sqrt{17}}{4}} + c$$ # 47. Question Evaluate $$\int \frac{1}{3x^2 + 13x - 10} dx$$ ### **Answer** Given, $$\int \frac{1}{3x^2+13x-10} dx$$ Now, $$3x^2+13x-10$$ $$= 3x^2 + 15x - 2x - 10$$ $$= 3x(x+5)-2(x-5)$$ $$= (x-5) (3x-2)$$ $$\frac{1}{3x^2 + 13x - 10} \cong \frac{A}{x+5} + \frac{B}{3x-2}$$ $$1 \cong A (3x-2) + B(x+5)$$ Equating 'x' coeff: - $$0 = 3A + B$$ $$B=-3A$$ Equating constant:- $$1 = -2A + 5(-3A)$$ $$A=-\frac{1}{17}$$ $$B = -3(-\frac{1}{17})$$ $$B = \frac{3}{17}$$ $$\frac{1}{3x^2 + 13x - 10} \cong -\frac{1}{17(x+5)} + \frac{3}{17(3x-2)}$$ $$\int \frac{1}{3x^2 + 13x - 10} dx = \int -\frac{1}{17(x+5)} + \frac{3}{17(3x-2)} dx$$ $$= -\frac{1}{17} \int \frac{1}{x+5} dx + \frac{3}{17} \int \frac{1}{3x-2} dx$$ $$= -\frac{1}{17}\log(x+5) + \frac{3}{17}\log(3x-2) + c$$ Evaluate $$\int \frac{\sin x}{\cos^2 x - 2\cos x - 3} \, dx$$ ### **Answer** Given, $$\int \frac{\sin x}{\cos^2 x - 2\cos x - 3} dx$$ Let cosx=t -sinx dx=dt $$=\int \frac{dt}{t^2-2t-3}$$ Now, t²-2t-3 $$= t^2-3t+t-3$$ $$= t(t-3)+t-3$$ $$= (t-3)(t+1)$$ $$\frac{1}{t^2 - 2t - 3} \cong \frac{A}{t - 3} + \frac{B}{t + 1}$$ $$1 \cong A(t-1) + B(t-3)$$ Equating 't' coeff:- $$0=A+B$$ $$A=-B$$ Equating constant:- $$1 = -2B$$ $$B=\frac{-1}{2}$$ $$A=-\left(\frac{-1}{2}\right)$$ $$A=\frac{1}{2}$$ $$\frac{1}{t^2 - 2t - 3} \cong \frac{1}{2(t - 3)} + \frac{-1}{2(t + 1)}$$ $$\int \frac{1}{t^2 - 2t - 3} dt = \frac{1}{2} \int \frac{1}{t - 3} dt - \frac{1}{2} \int \frac{1}{t - 1} dt$$ $$= \frac{1}{2} log(t-3) - \frac{1}{2} log(t-1) + c$$ $$= \frac{1}{2} [\log (\cos x - 3) - \log (\cos x - 1)] + c$$ Evaluate $$\int \sqrt{\csc x - 1} \ dx$$ ### **Answer** Given, $$\int \sqrt{cosec \ x - 1} \ dx$$ $$= \int \sqrt{\frac{1}{\sin x} - 1} \ dx$$ $$= \int \sqrt{\frac{1 - \sin x}{\sin x}} \ dx$$ Rationalising the denominator:- $$= \int \sqrt{\frac{(1-\sin x)(1+\sin x)}{(\sin x)(1+\sin x)}} \ dx$$ $$= \int \sqrt{\frac{(1-\sin^2 x)}{\sin x (1+\sin x)}} \ dx$$ $$= \int \sqrt{\frac{\cos^2 x}{\sin x (1 + \sin x)}} \, dx$$ $$= \int \frac{\cos x}{\sqrt{\sin x(1+\sin x)}} \ dx$$ Let $$\sin x = t$$ $$\cos x \, dx = dt$$ $$= \int \frac{dt}{\sqrt{t(t+1)}}$$ $$= \int \frac{dt}{\sqrt{t^2+t}}$$ $$\begin{split} &= \int \frac{dt}{\sqrt{t^2 + t - \frac{1}{4} + \frac{1}{4}}} \\ &= \int \frac{dt}{\sqrt{\left(t + \frac{1}{2}\right)^2 - \frac{1}{4}}} \\ &= \int \frac{dt}{\sqrt{\left(t + \frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2}} \end{split}$$ Clearly, it is of the form $\int \frac{1}{\sqrt{x^2-a^2}} dx = \cos^{-1}\left(\frac{x}{a}\right)$ Where $$x = t
+ \frac{1}{2}$$; $a = \frac{1}{2}$ $$= \cos^{-1}\left(\frac{t+\frac{1}{2}}{\frac{1}{2}}\right) + c$$ $$= cos^{-1}[2(sinx + \frac{1}{2})] + c$$ # 50. Question Evaluate $$\int \frac{1}{\sqrt{3-2x-x^2}} \, dx$$ #### **Answer** Given, $$\int \frac{1}{\sqrt{3-2x-x^2}} dx$$ $$=\int \frac{1}{\sqrt{4-1-2y-y^2}} dx$$ $$=\int \frac{1}{\sqrt{4-(x^2+2x+1)}} dx$$ $$=\int \frac{1}{\sqrt{4-(x+1)^2}} dx$$ $$= \int \frac{1}{\sqrt{(2)^2 - (x+1)^2}} dx$$ It is clearly of the form, $\int \frac{1}{\sqrt{a^2-x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c$ Where, $$a=2$$; $x=x+1$ $$= sin^{-1}\left(\frac{x+1}{2}\right) + c$$ # 51. Question Evaluate $$\int \frac{x+1}{x^2+4x+5} dx$$ # Answer Given, $$\int \frac{x+1}{x^2+4x+5} dx$$ Consider, $$x+1 \cong A \frac{dy}{dx}(x^2 + 4x + 5) + B$$ $$x+1 \cong A(2x+4)+B$$ Equating 'x'coeff:- $$1 = 2A$$ $$A=\frac{1}{2}$$ equating constant:- $$1 = 4A + B$$ $$1 = 4\left(\frac{1}{2}\right) + B$$ $$B = -1$$ $$x+1 \cong 1/2 (2x+4)-1$$ Now, $$\int \frac{x+1}{x^2+4x+5} dx$$ $$= \int \frac{\frac{1}{2}(2x+4) - 1}{x^2 + 4x + 5} dx$$ $$= \frac{1}{2} \int \frac{2x+4}{x^2+4x+5} dx - \int \frac{1}{x^2+4x+5} dx$$ [Since, $$\int \frac{f^I(x)}{f(x)} dx = log[f(x)] + c$$] $$= \frac{1}{2}log(x^2 + 4x + 5) - \int \frac{1}{x^2 + 4x + 4 + 1}dx$$ $$= \frac{1}{2} \log (x^2 + 4x + 5) - \int \frac{1}{(x+2)^2 + (1)^2} dx$$ $$= \frac{1}{2}log(x^2 + 4x + 5) - \frac{1}{1}tan^{-1}(\frac{x+2}{1}) dx$$ $$[Since, \int \frac{1}{x^2 + a^2} dx = \frac{1}{a} tan^{-1} (\frac{x}{a}) + c]$$ $$= \frac{1}{2}log(x^2 + 4x + 5) - tan^{-1}(x + 2) + c$$ # 52. Question Evaluate $$\int \frac{5x+7}{\sqrt{(x-5)(x-4)}} dx$$ ### **Answer** Given, $$\int \frac{5x+7}{\sqrt{(x-5)(x-4)}} dx$$ $$= \int \frac{5x+7}{\sqrt{x^2-9x+20}} dx$$ Now, $$5x + 7 \cong A \frac{dy}{dx}(x^2 - 9x + 20) + B$$ $$5x+7 \cong A (2x-9)+B$$ Equating'x' coeff:- $$A=\frac{5}{3}$$ Equating constant:- $$7 = -9A + B$$ $7 = -9\left(\frac{5}{2}\right) + B$ $$B = 7 + \frac{45}{2}$$ $$B=\frac{59}{2}$$ $$5x + 7 \cong \frac{5}{2}(2x - 9) + \frac{59}{2}$$ $$=\int \frac{5x-7}{\sqrt{x^2-9x+20}} dx$$ $$= \int \frac{\frac{5}{2}(2x-9) + \frac{59}{2}}{\sqrt{x^2 - 9x + 20}} dx$$ $$=\frac{5}{2}\int \frac{2x-9}{\sqrt{x^2-9x+20}}\,dx+\frac{59}{2}\int \frac{1}{\sqrt{x^2-9x+20}}\,dx$$ [Since, $$\int \frac{f^I(x)}{\sqrt{f(x)}} dx = 2\sqrt{f(x)} + c$$] $$= \frac{5}{2} \cdot 2(\sqrt{x^2 - 9x + 20}) + \frac{59}{2} \int \frac{1}{\sqrt{\left(x + \frac{9}{2}\right)^2 - \left(\frac{1}{2}\right)^2}} dx$$ $$= 5\sqrt{x^2 - 9x + 20} + \frac{59}{2} \cdot \frac{1}{2(\frac{1}{2})} \cdot \cosh^{-1}\left[\frac{x + \frac{9}{2}}{\frac{1}{2}}\right] + c \left[since, \int \frac{1}{\sqrt{x^2 - \alpha^2}} dx \right]$$ $$= \cosh^{-1}\left[\frac{x}{\alpha}\right] + c$$ $$=5\sqrt{x^{2}-9x+20}+\frac{59}{2}cosh^{-1}2\left[x+\frac{9}{2}\right]+c$$ # 53. Question Evaluate $$\int \sqrt{\frac{1+x}{x}} \ dx$$ # **Answer** Given, $$\int \sqrt{\frac{1+x}{x}} \ dx$$ Let $$\sqrt{x+1} = u$$ $$\Rightarrow u^2 = x+1$$ $$\Rightarrow u^2 -1 = x$$ $$\frac{1}{2\sqrt{x+1}}dx = du$$ $$2 du = dx$$ $$\int \sqrt{\frac{1+x}{x}} \, dx = \int \frac{u}{u^2 - 1} 2u \, du$$ $$= 2\int \frac{u^2}{u^2 - 1} \, du$$ $$= 2\int \frac{u^2 - 1 + 1}{u^2 - 1} \, du$$ $$= 2\left[\int \frac{u^2 - 1}{u^2 - 1} \, du + \int \frac{1}{u^2 - 1} \, du\right]$$ $$= 2\left[\int 1 \, du + \int \frac{1}{u^2 - 1} \, du\right]$$ As we know, $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c$$ $$= 2 \left[u + \frac{1}{2} \log \left| \frac{u - 1}{u + 1} \right| \right] + c$$ Now substitute back the value of u. $$= 2\sqrt{x+1} + \frac{1}{2}\log\left|\frac{\sqrt{x+1}-1}{\sqrt{x+1}+1}\right| + c$$ # 54. Question Evaluate $$\int \sqrt{\frac{1-x}{x}} \ dx$$ # **Answer** Given, $$\sqrt{\frac{1-x}{x}} dx$$ Let, $$\sqrt{x} = t$$ $$\frac{d}{dx}(\sqrt{x}) = dt$$ $$\frac{1}{2\sqrt{x}}dx = dt$$ $$dx = 2t dt$$ Now, $$\int \frac{\sqrt{1-t^2}}{t} 2t \ dt$$ $$= 2 \int \sqrt{1-t^2} dt$$ Consider, t=sin k dt=cos k dk $$=2\int\sqrt{1-\sin^2k}\ .cosk\ dk$$ $$=2\int\sqrt{\cos^2k}\,.\cos k\;dk$$ $$=\int 2 \cos^2 k \, dk$$ = $$\int \cos 2k-1 \, dk \, [since, \cos 2x=2\cos^2 x-1]$$ $$=\frac{\sin 2k}{2}-k+c$$ $$=\frac{2sink\ cosk}{2}-k+c$$ $$= t \cos(\sin^{-1} t) - 2\sin^{-1} t + 2c$$ $$=\sqrt{x} \cos(\sin^{-1}\sqrt{x})-2 \sin^{-1}\sqrt{x}+2c$$ Evaluate $$\int \frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}} dx$$ #### **Answer** Given, $$\int \frac{\sqrt{a}-\sqrt{x}}{1-\sqrt{ax}} dx$$ Let $$1 - \sqrt{ax} = t$$ $$-\frac{1}{2\sqrt{ax}}a\ dx = dt$$ $$dx = -\frac{2\sqrt{ax}}{a} dt$$ Now, $$\sqrt{ax} = 1 + t$$ $$ax = (1+t)^2$$ $$x = \frac{(1+t)^2}{a}$$ $$= \int \frac{\sqrt{a} - \sqrt{\frac{(1+t)^2}{a}}}{t} \times \frac{-2\sqrt{a}(1+t)}{a} dt$$ $$= \int \frac{\sqrt{a} - \left(\frac{1+t}{\sqrt{a}}\right)}{t} \times \frac{-2\sqrt{a}(1+t)}{a} dt$$ $$= \int \frac{a-1-t}{t} \times \frac{-2\sqrt{a}(1+t)}{a\sqrt{a}} \ dt$$ $$= \int \frac{(a-1-t)}{t} \times \frac{-2(1+t)}{a} \ dt$$ $$=2\int \frac{(a-1-t)}{t} \times \frac{(-1-t)}{a} dt$$ $$=2\int \frac{(-a-at+1+t+t^2)}{at} dt$$ $$=2\int\frac{\left(-a-at+1+2t+t^2\right)}{at}\;dt$$ $$=2\int\left(-\frac{1}{t}-1+\frac{1}{at}+\frac{2}{a}+\frac{t}{a}\right)dt$$ $$= 2\left[-\log t - t + \frac{1}{a}\log t + \frac{2}{a}t + \frac{t^2}{2a}\right] + c$$ $$= \left[-2\log t - 2t + \frac{2}{a}\log t + \frac{4}{a}t + \frac{t^2}{a}\right] + c$$ Put back the value of t to get, $$= \left[-2\log(1 - \sqrt{ax}) - 2(1 - \sqrt{ax}) + \frac{2}{a}\log(1 - \sqrt{ax}) + \frac{4}{a}(1 - \sqrt{ax}) + \frac{(1 - \sqrt{ax})^2}{a} \right] + c$$ ### 56. Question Evaluate $$\int \frac{1}{(\sin x - 2\cos x)(2\sin x + \cos x)} dx$$ #### **Answer** Given, $$\int \frac{1}{(sinx-2cosx)(2sinx+cosx)} dx$$ $$= \int \frac{1}{2 sin^2 x + sinxcosx - 4cosxsinx - 2cos^2 x} dx$$ $$= \int \frac{1}{2 sin^2 x - 3 cosx sinx - 2cos^2 x} dx$$ $$= \int \frac{1}{cos^2 x [2 tan^2 x - 3tanx - 2]} dx$$ $$= \int \frac{sec^2 x}{2 tan^2 x - 3tanx - 2} dx$$ Let tanx=t $$\frac{d}{dx}(tanx) = dt$$ $Sec^2x dx=dt$ Now, $$\int \frac{dt}{2t^2 - 3t - 2}$$ $$=\int\frac{dt}{(2t+1)(t-2)}$$ Now, $$\frac{1}{(2t+1)(t-2)} \cong \frac{A}{2t+1} + \frac{B}{t-2}$$ $$1 \cong A(t-2) + B(2t+1)$$ Equating 't' coeff: - $$0 = A + 2B$$ Equating constant: - $$1 = -2A + B$$ $$1=-2(-2B) + B$$ 1=5B $$B = \frac{1}{5}$$ $$A = \frac{-2}{5}$$ $$\frac{1}{(2t+1)(t-2)} = \frac{-2}{5(2t+1)} + \frac{1}{5(t-2)}$$ Now, $$\int \frac{1}{(2t+1)(t-2)} dt = \frac{-2}{5} \int \frac{1}{2t+1} dt + \frac{1}{5} \int \frac{1}{t-2} dt$$ $$= \frac{-2}{5} \log(2t+1) + \frac{1}{5} \log(t-2) + c$$ $= \frac{-2}{5}\log(2tanx + 1) + \frac{1}{5}\log(tanx - 2) + c$ # 57. Question Evaluate $$\int \frac{1}{4\sin^2 x + 4\sin x \cos x + 5\cos^2 x} dx$$ #### **Answer** Given, $$\int \frac{1}{4\sin^2 x + 4\sin x \cos x + 5\cos^2 x} dx$$ $$= \int \frac{1}{\cos^2 x [4\tan^2 x + 4\tan x + 5]} dx$$ $$= \int \frac{\sec^2 x}{4\tan^2 x + 4\tan x + 5} dx$$ $$\frac{d}{dx}(\tan x) = dt$$ $$\sec^2 x \, dx = dt$$ $$= \int \frac{dt}{4t^2 + 4t + 5}$$ $$= \int \frac{dt}{4t^2 + 4t + 1 + 4}$$ $$= \int \frac{dt}{(2t+1)^2 + (2)^2}$$ $$= \frac{1}{2}tan^{-1}[\frac{2t+1}{2}] + c$$ $$= \frac{1}{2}tan^{-1}[\frac{2tanx+1}{2}] + c$$ ## 58. Question Evaluate $$\int \frac{1}{a + b \tan x} dx$$ # **Answer** Given, $$\int \frac{1}{a+b \tan x} dx$$ $$=\int \frac{1}{1+\tan x} dx$$ $$= \int \frac{1}{1 + \frac{\sin x}{\cos x}} dx$$ $$=\int \frac{\cos x}{\cos x + \sin x} dx$$ Now, cosx=A (cosx+sinx) +B $\frac{d}{dx}$ (cosx+sinx) =A (cosx+sinx) +B (-sinx+cosx) Equating 'cosx' coeff:- Equating 'sinx' coeff:- A=B 1=A+A 2A = 1 A=1/2 B=1/2 $$\cos x = \frac{1}{2}(\cos x + \sin x) + \frac{1}{2}(-\sin x + \cos x)$$ $$= \int \frac{\cos x}{\cos x + \sin x} dx$$ $$= \int \frac{\frac{1}{2}(\cos x + \sin x) + \frac{1}{2}(-\sin x + \cos x)}{\cos x + \sin x} dx$$ $$= \int \frac{\frac{1}{2}(\cos x + \sin x)}{\cos x + \sin x} dx + \int \frac{\frac{1}{2}(-\sin x + \cos x)}{\cos x + \sin x} dx$$ $$= \frac{1}{2} \int 1 dx + \frac{1}{2} \int \frac{-\sin x + \cos x}{\cos x + \sin x} dx$$ [since, $$\int \frac{f^I(x)}{f(x)} dx = \log[f(x)] + c$$] $$=\frac{1}{2}(x)+\frac{1}{2}\log(\cos x + \sin x) + c$$ ### 59. Question Evaluate $$\int \frac{1}{\sin^2 x + \sin 2x} dx$$ #### **Answer** Given, $$\int \frac{1}{\sin^2 x + \sin 2x} dx$$ $$= \int \frac{1}{\sin^2 x + 2\sin x \cos x} dx$$ $$= \int \frac{1}{\sin^2 x (1 + 2 \cot x)} dx$$ $$= \int \frac{\cos e^2 x}{1 + \cot x} dx$$ Let $\cot x = t$ $$\frac{d}{dx}(\cot x) = dt$$ $-\cos e^2 x dx = dt$ Now, $$-\int \frac{dt}{1+t}$$ $$= -\log(1+t) + c$$ $$= -\log(1 + \cot x) + c$$ Evaluate $$\int \frac{\sin x + 2\cos x}{2\sin x + \cos x} dx$$ ## **Answer** Given, $$\int \frac{\sin x + 2\cos x}{2\sin x + \cos x} dx$$ $$\sin x + 2\cos x = A(2\sin x + \cos x) + B\frac{d}{dx}(2\sin x - \cos x)$$ $$= A(2\sin x + \cos x) + B(2\cos x - \sin x)$$ Equating 'sin x' coeff: - $$B = 2A - 1$$ Equating 'cos x' coeff:- $$2 = A + 2(2A-1)$$ $$2 = A + 4A - 2$$ $$A = \frac{4}{5}$$ $$B=2\left(\frac{4}{5}\right)-1$$ $$B = \frac{8}{5} - 1$$ $$B = \frac{3}{5}$$ Now, $\sin x + 2\cos x = \frac{4}{5}(2\sin x + \cos x) + \frac{3}{5}(2\cos x - \sin x)$ $$= \int \frac{\frac{4}{5}(2\sin x + \cos x) + \frac{3}{5}(2\cos x - \sin x)}{2\sin x + \cos x} dx$$ $$= \frac{4}{5} \int 1 dx + \frac{3}{5} \int \frac{2 \cos x - \sin x}{2 \sin x + \cos x} dx$$ $$= \frac{4}{5}(x) + \frac{3}{5}\log(2\sin x + \cos x) + c$$ # 61. Question Evaluate $$\int \frac{x^3}{\sqrt{x^8+4}} dx$$ #### **Answer** Given, $$\int \frac{x^3}{\sqrt{x^2+4}} dx$$ Put, $$x^4=t$$ $$4x^3dx=dt$$ $$x^3 dx = \frac{1}{4} dt$$ $$= \int \frac{x^3}{\sqrt{(x^4)^2 + 4}} dx$$ $$= \int \frac{\frac{1}{4}dt}{\sqrt{t^2 + 4}}$$ $$= \frac{1}{4} \int \frac{1}{\sqrt{t^2 + 2^2}} \, dx$$ $$=\frac{1}{4}sinh^{-1}[\frac{t}{2}]+c$$ $$=\frac{1}{4}sinh^{-1}\left[\frac{x^4}{2}\right]+c$$ Evaluate $$\int \frac{1}{2-3\cos 2x} dx$$ # **Answer** Given, $$\int \frac{1}{2-3\cos 2x} dx$$ Put tanx=t $$\frac{d}{dx}(\tan x) = dt$$ $$sec^2x dx=dt$$ $$dx = \frac{dt}{1+t^2}$$ and $$\cos 2x = \frac{1-t^2}{1+t^2}$$ Now, $$\int \frac{1}{2-3[\frac{1-t^2}{1+t^2}]} \cdot \frac{dt}{1+t^2}$$ $$=\int
\frac{1+t^2}{2(1+t^2)-3(1-t^2)}\,\frac{dt}{1+t^2}$$ $$= \int \frac{1}{2+2t^2-3+3t^2} dt$$ $$= \int \frac{1}{5t^2 - 1} dt$$ $$=\frac{1}{5}\int\frac{1}{t^2-\frac{1}{5}}dt$$ $$= \frac{1}{5} \int \frac{1}{t^2 - \left(\frac{1}{\sqrt{5}}\right)^2} dt \ [since, \int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c]$$ $$= \frac{1}{5} \cdot \frac{1}{2(\frac{1}{\sqrt{5}})} log \left| \frac{t - \frac{1}{\sqrt{5}}}{t + \frac{1}{\sqrt{5}}} \right| + c$$ $$=\frac{1}{2\sqrt{5}}\log\left|\frac{tanx-\frac{1}{\sqrt{5}}}{tanx+\frac{1}{\sqrt{5}}}\right|+c$$ Evaluate $$\int \frac{\cos x}{\frac{1}{4} - \cos^2 x} dx$$ ### **Answer** Given, $$\int \frac{\cos x}{\frac{1}{4}-\cos^2 x} dx$$ $$=\int \frac{\cos x}{\frac{1}{4}-\left(1-\sin^2 x\right)}dx$$ Let $$\sin x = t$$ $$\cos x dx = dt$$ $$=\int \frac{dt}{\frac{1}{4}-\left(1-t^{2}\right)}$$ $$= \int \frac{dt}{1 - 4 + 4t^2}$$ $$= \int \frac{4 dt}{4t^2 - 3}$$ $$=4\int \frac{1}{(2t)^2-(\sqrt{3})^2}dt$$ [since, $$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c$$] $$= \ 4.\frac{1}{2\sqrt{3}} log \left| \frac{2t - \sqrt{3}}{2t + \sqrt{3}} \right| + c$$ $$= \frac{2}{\sqrt{3}}log\left|\frac{2\sin x - \sqrt{3}}{2\sin x + \sqrt{3}}\right| + c$$ # 64. Question Evaluate $$\int \frac{1}{1 + 2\cos x} \, dx$$ #### **Answer** Given, $$\int \frac{1}{1+2\cos x} dx$$ Put $$\tan \frac{x}{2} = t$$ $$dx = \frac{2}{1+t^2} dt \text{ and } \cos x = \frac{1-t^2}{1+t^2}$$ $$\begin{split} &= \int \frac{1}{1+2\left[\frac{1-t^2}{1+t^2}\right]} \cdot \frac{2}{1+t^2} dt \\ &= \int \frac{1+t^2}{1+t^2+2-2t^2} \cdot \frac{2}{1+t^2} dt \\ &= \int \frac{2}{3-t^2} dt \\ &= \int \frac{2}{\left(\sqrt{3}\right)^2 - (t)^2} dt \left[since, \int \frac{1}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a+x}{a-x} \right| + c \right] \\ &= \frac{1}{2a} \log \left| \frac{\sqrt{3} + t}{\sqrt{3} - t} \right| + c \\ &= \frac{1}{2a} \log \left| \frac{\sqrt{3} + tan\frac{x}{2}}{\sqrt{3} - tan\frac{x}{2}} \right| + c \end{split}$$ Evaluate $$\int \frac{1}{1-2\sin x} dx$$ #### **Answer** Given, $$\int \frac{1}{1-2\sin x} dx$$ Let $$\tan \frac{x}{2} = t$$ $$dx = \frac{2}{1+t^2} dt \text{ and } \sin x = \frac{2t}{1+t^2}$$ $$= \int \frac{1}{1 - 2\left(\frac{2t}{1 + t^2}\right)} \cdot \frac{2}{1 + t^2} dt$$ $$= \int \frac{1+t^2}{1+t^2-4t} \cdot \frac{2}{1+t^2} dt$$ $$=\int\!\frac{2}{t^2-4t+1}\,dt$$ $$=\int \frac{2}{t^2-4t+4-3} dt$$ $$= \int \frac{2}{(t-2)^2 - (\sqrt{3})^2} dt$$ $$= \frac{2}{2\sqrt{3}} \log \left| \frac{t - 2 - \sqrt{3}}{t - 2 + \sqrt{3}} \right| + c \left[since, \int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c \right]$$ $$=\frac{1}{\sqrt{3}}log\;|\frac{tan\frac{x}{2}-2-\sqrt{3}}{tan\frac{x}{2}-2+\sqrt{3}}|+c$$ # 31. Question Evaluate ∫∞t⁴ x dx #### **Answer** In this question, first of all we expand cot⁴x as $$\cot^4 x = (\csc^2 x - 1)^2$$ $$= cosec^4x - 2cosec^2x + 1 ...(1)$$ Now, write cosec⁴x as $$cosec^4x = cosec^2xcosec^2x$$ $$= cosec^2x(1 + cot^2x)$$ $$= cosec^2x + cosec^2xcot^2x$$ Putting the value of $cosec^4x$ in eq(1) $$\cot^4 x = \csc^2 x + \csc^2 x \cot^2 x - 2\csc^2 x + 1$$ $$= cosec^2xcot^2x - cosec^2x + 1$$ $$y = \int \cot^4 x \, dx$$ = $$\int \csc^2 x \cot^2 x dx + \int -\csc^2 x + 1 dx$$ $$A = \int \csc^2 x \cot^2 x \, dx$$ Let, $$\cot x = t$$ Differentiating both side with respect to x $$\frac{dt}{dx} = -cosec^2x$$ $$\Rightarrow$$ -dt = cosec²x dx $$A = \int -t^2 dt$$ Using formula $$\int t^n dt = \frac{t^{n+1}}{n+1}$$ $$A = -\frac{t^3}{3} + c_1$$ Again, put $t = \cot x$ $$A = -\frac{\cot^3 x}{3} + c_1$$ Now, $$B = \int -\csc^2 x + 1 dx$$ Using formula $\int \csc^2 x \, dx = -\cot x$ and $\int \cot x = \cot x$ $$B = \cot x + x + c_2$$ Now, the complete solution is $$y = A + B$$ $$y = -\frac{\cot^3 x}{3} + \cot x + x + c$$ # 32. Question Evaluate ∫oct5 x dx ### **Answer** $$y = \int \frac{\cos^5 x}{\sin^5 x} dx$$ $$y = \int \frac{\cos^4 x \cos x}{\sin^5 x} \ dx$$ $$y = \int \frac{(1 - \sin^2 x)^2 \cos x}{\sin^5 x} \ dx$$ Let, $\sin x = t$ Differentiating both sides with respect to x $$\frac{dt}{dx} = \cos x \Rightarrow dt = \cos x dx$$ $$y = \int \frac{(1 - t^2)^2}{t^5} \, dt$$ $$y = \int \frac{1 - 2t^2 + t^4}{t^5} \ dt$$ $$y = \int t^{-5} - 2t^{-3} + \frac{1}{t} dt$$ Using formula $\int t^n dt = \frac{t^{n+1}}{n+1}$ and $\int \frac{1}{t} dt = \ln t$ $$y = \frac{t^{-4}}{-4} - 2\frac{t^{-2}}{-2} + \ln t + c$$ Again, put $t = \sin x$ $$y = -\frac{\sin^{-4}x}{4} + \sin^{-2}x + \ln t + c$$ ### 33. Question Evaluate $$\int \frac{x^2}{(x-1)^3} dx$$ #### **Answer** $$y = \int \frac{(x-1+1)^2}{(x-1)^3} dx$$ $$y = \int \frac{(x-1)^2 + 2(x-1) + 1}{(x-1)^3} dx$$ $$y = \int \frac{1}{(x-1)} + 2\frac{1}{(x-1)^2} + \frac{1}{(x-1)^3} dx$$ Using formula $\int \frac{1}{x} dx = \ln x$ and $\int x^n dx = \frac{x^{n+1}}{n+1}$ $$y = \ln(x-1) + 2\frac{(x-1)^{-1}}{-1} + \frac{(x-1)^{-2}}{-2} + c$$ $$y = \ln(x-1) - 2(x-1)^{-1} - \frac{(x-1)^{-2}}{2} + c$$ # 34. Question Evaluate $\int x\sqrt{2x+3} dx$ ### Answer In this question we write $x\sqrt{2x+3}$ as $$x\sqrt{2x+3} = \frac{2x\sqrt{2x+3}}{2}$$ $$=\frac{(2x+3-3)\sqrt{2x+3}}{2}$$ $$=\frac{(2x+3)\sqrt{2x+3}-3\sqrt{2x+3}}{2}$$ $$=\frac{(2x+3)^{\frac{3}{2}}-3\sqrt{2x+3}}{2}$$ $$y = \int x\sqrt{2x+3} \ dx$$ $$y = \int \frac{(2x+3)^{\frac{3}{2}} - 3\sqrt{2x+3}}{2} dx$$ Using formula $$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)}$$ $$y = \frac{(2x+3)^{\frac{5}{2}}}{2 \times 2 \times \frac{5}{2}} - \frac{3(2x+3)^{\frac{3}{2}}}{2 \times 2 \times \frac{3}{2}} + c$$ $$y = \frac{(2x+3)^{\frac{5}{2}}}{10} - \frac{(2x+3)^{\frac{3}{2}}}{2} + c$$ Evaluate $$\int \frac{x^3}{(1+x^2)^2} dx$$ #### **Answer** Let, x = tan t Differentiating both side with respect to t $$\frac{dx}{dt} = \sec^2 t \Rightarrow dx = \sec^2 t dt$$ $$y = \int \frac{tan^3t}{sec^4t} sec^2tdt$$ $$y = \int \frac{\sin^3 t}{\cos t} dt$$ $$y = \int \frac{(1 - \cos^2 t) \sin t}{\cos t} \ dt$$ Again, let $\cos t = z$ Differentiating both side with respect to t $$\frac{dz}{dt} = -\sin t \Rightarrow -dz = \sin t dt$$ $$y = -\int \frac{(1-z^2)}{z} dz$$ $$y = -\int \frac{1}{z} - z \, dz$$ Using formula $\int \frac{1}{z} dz = \ln z$ and $\int z^n dz = \frac{z^{n+1}}{n+1}$ $$y = -\ln z + \frac{z^2}{2} + c$$ Again, put $z = \cos t = \cos(\tan^{-1}x)$ $$y = -\ln\cos(\tan^{-1}x) + \frac{\cos^2(\tan^{-1}x)}{2} + c$$ # 36. Question Evaluate ∫xsin⁵ x² ∞sx² dx ### **Answer** Let, $\sin x^2 = t$ Differentiating both sides with respect to x $$\frac{dt}{dx} = \cos x^2 \times 2x \implies \frac{dt}{2} = x\cos x^2 dx$$ $$y = \int \frac{t^5}{2} dt$$ Using formula $\int t^n dt = \frac{t^{n+1}}{n+1}$ $$y = \frac{t^6}{2 \times 6} + c$$ Again, put $t = \sin x^2$ $$y = \frac{\sin^6 x^2}{12} + c$$ ### 37. Question Evaluate ∫sin3 x cos4 x dx ### **Answer** $$y = \int (1 - \cos^2 x) \cos^4 x \sin x \, dx$$ Let, $$\cos x = t$$ Differentiating both side with respect to x $$\frac{dt}{dx} = -\sin x \Rightarrow -dt = \sin x \, dx$$ $$y = \int -(1-t^2)t^4 dt$$ $$y = -\int t^4 - t^6 dt$$ Using formula $\int t^n dt = \frac{t^{n+1}}{n+1}$ $$y = -\left(\frac{t^5}{5} - \frac{t^7}{7}\right) + c$$ Again, put $t = \cos x$ $$y = \frac{\cos^7 x}{7} - \frac{\cos^5 x}{5} + c$$ Evaluate ∫sin⁵ x dx ### **Answer** $$y = \int (1 - \cos^2 x)^2 \sin x \ dx$$ Let, $\cos x = t$ Differentiating both side with respect to x $$\frac{dt}{dx} = -\sin x \Rightarrow -dt = \sin x dx$$ $$y = -\int (1-t^2)^2 dt$$ $$y = -\int 1 + t^4 - 2t^2 dt$$ Using formula $\int t^n dt = \frac{t^{n+1}}{n+1}$ and $\int c dt = ct$ $$y = -\left(t + \frac{t^5}{5} - 2\frac{t^3}{3}\right) + c$$ Again, put $t = \cos x$ $$y = -\left(\cos x + \frac{\cos^5 x}{5} - 2\frac{\cos^3 x}{3}\right) + c$$ ### 39. Question Evaluate ∫cos⁵ x dx. ### **Answer** $$y = \int (1 - \sin^2 x)^2 \cos x \ dx$$ Let, $\sin x = t$ Differentiating both side with respect to x $$\frac{dt}{dx} = \cos x \Rightarrow dt = \cos x \, dx$$ $$y = \int (1 - t^2)^2 dt$$ $$y = \int 1 + t^4 - 2t^2 dt$$ Using formula $\int t^n dt = \frac{t^{n+1}}{n+1}$ and $\int c \, dt = ct$ $$y = \left(t + \frac{t^5}{5} - 2\frac{t^3}{3}\right) + c$$ Again, put $t = \sin x$ $$y = \left(\sin x + \frac{\sin^5 x}{5} - 2\frac{\sin^3 x}{3}\right) + c$$ ### 40. Question ## **Answer** $$y = \int \sqrt{\sin x} (1 - \sin^2 x) \cos x \, dx$$ Let, $$\sin x = t$$ Differentiating both side with respect to x $$\frac{dt}{dx} = \cos x \Rightarrow dt = \cos x dx$$ $$y = \int \sqrt{t} (1 - t^2) \, dt$$ $$y = \int t^{\frac{1}{2}} - t^{\frac{5}{2}} dt$$ Using formula $\int t^n dt = \frac{t^{n+1}}{n+1}$ $$y = \frac{t^{\frac{3}{2}}}{\frac{3}{2}} - \frac{t^{\frac{7}{2}}}{\frac{7}{2}} + c$$ Again, put $t = \sin x$ $$y = \frac{\sin x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{\sin x^{\frac{7}{2}}}{\frac{7}{2}} + c$$ ## 41. Question Evaluate $$\int \frac{\sin 2x}{\sin^4 x + \cos^4 x} dx$$ # **Answer** $$y = \int \frac{\sin 2x}{(\sin^2 x)^2 + (1 - \sin^2 x)^2} dx$$ Let, $$\sin^2 x = t$$ Differentiating both side with respect to x $$\frac{dt}{dx} = 2\sin x \cos x \Rightarrow dt = \sin 2x dx$$ $$y = \int \frac{dt}{t^2 + (1-t)^2}$$ $$y = \int \frac{dt}{2t^2 - 2t + 1}$$ Try to make perfect square in denominator $$y = \int \frac{dt}{2t^2 - 2t + \frac{1}{2} + \frac{1}{2}}$$ $$y = \int \frac{dt}{(\sqrt{2}t)^2 - 2(\sqrt{2}t)(\frac{1}{\sqrt{2}}) + (\frac{1}{\sqrt{2}})^2 + \frac{1}{2}}$$ $$y = \int \frac{dt}{\left(\sqrt{2}t - \frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2}$$ Using formula $\int \frac{dt}{t^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{t}{a}$ $$y = \frac{1}{\sqrt{2} \times \frac{1}{\sqrt{2}}} \tan^{-1} \frac{\left(\sqrt{2}t - \frac{1}{\sqrt{2}}\right)}{\frac{1}{\sqrt{2}}} + c$$ $$y = \sqrt{2} \tan^{-1} \left(\sqrt{2}t - \frac{1}{\sqrt{2}} \right) + c$$ Again, put $t = \sin^2 x$ $$y = \sqrt{2} \tan^{-1} \left(\sqrt{2} \sin^2 x - \frac{1}{\sqrt{2}} \right) + c$$ # 42. Question Evaluate $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ #### **Answer** Let, $x = a \sec t$ Differentiating both side with respect to t $$\frac{dx}{dt} = a \sec t \tan t \Rightarrow dx = a \sec t \tan t dt$$ $$y = \int
\frac{a \sec t \tan t}{\sqrt{a^2 \sec^2 t - a^2}} dt$$ $$y = \int \frac{\sec t \tan t}{\tan t} dt$$ $$y = \int \sec t \, dt$$ Using formula $\int \sec t \, dt = \ln(\tan t + \sec t)$ $$y = \ln(\tan t + \sec t) + c_1$$ Again, put $$t = \sec^{-1} \frac{x}{a}$$ $$y = \ln\left(\tan\sec^{-1}\frac{x}{a} + \sec\sec^{-1}\frac{x}{a}\right) + c_1$$ $$y = \ln\left(\sqrt{\left(\frac{x}{a}\right)^2 - 1} + \frac{x}{a}\right) + c_1$$ $$y = \ln(x + \sqrt{x^2 - a^2}) - \ln a + c_1$$ $$y = \ln(x + \sqrt{x^2 - a^2}) + c$$ # 43. Question Evaluate $$\int \frac{1}{\sqrt{x^2 + a^2}} dx$$ ### **Answer** Let, x = a tan t Differentiating both side with respect to t $$\frac{dx}{dt} = a \sec^2 t \Rightarrow dx = a \sec^2 t dt$$ $$y = \int \frac{a \sec^2 t}{\sqrt{a^2 \tan^2 t + a^2}} dt$$ $$y = \int \frac{sec^2t}{\sec t} dt$$ $$y = \int \sec t \, dt$$ Tip: This is very important formula. It is use directly in the question. So, learn it by heart. Using formula $\int \sec t \, dt = \ln(\tan t + \sec t)$ $$y = In(tan t + sec t) + c_1$$ Again, put $$t = \tan^{-1} \frac{x}{a}$$ $$y = \ln\left(\tan\tan^{-1}\frac{x}{a} + \sec\tan^{-1}\frac{x}{a}\right) + c_1$$ $$y = \ln\left(\sqrt{\left(\frac{x}{a}\right)^2 + 1} + \frac{x}{a}\right) + c_1$$ $$y = \ln(x + \sqrt{x^2 + a^2}) - \ln a + c_1$$ $$y = \ln(x + \sqrt{x^2 + a^2}) + c$$ ## 44. Question Evaluate $$\int \frac{1}{4x^2 + 4x + 5} dx$$ ## **Answer** In this question we can try to make perfect square in denominator $$y = \int \frac{1}{(2x)^2 + 2(2x)(1) + 1 + 4} \ dx$$ $$y = \int \frac{1}{(2x+1)^2 + (2)^2} \, dx$$ Using formula $\int \frac{dt}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a}$ $$y = \frac{1}{2 \times 2} \tan^{-1} \frac{(2x+1)}{2} + c$$ $$y = \frac{1}{4} \tan^{-1} \frac{(2x+1)}{2} + c$$ # 45. Question Evaluate $$\int \frac{1}{x^2 + 4x - 5} dx$$ ### **Answer** In this question we can try to make perfect square in denominator $$y = \int \frac{1}{x^2 + 2(x)(2) + 4 - (3)^2} \, dx$$ $$y = \int \frac{1}{(x+2)^2 - (3)^2} \, dx$$ Using formula $$\int \frac{dt}{x^2 - a^2} = \frac{1}{2a} \log \left(\frac{x - a}{x + a} \right) + c$$ $$y = \frac{1}{2 \times 3} \log \left(\frac{x+2-3}{x+2+3} \right) + c$$ $$y = \frac{1}{6} \log \left(\frac{x-1}{x+5} \right) + c$$ Evaluate $$\int \frac{1}{\sqrt{x} + \sqrt{x+1}} dx$$ #### **Answer** Rationalising denominator We get, $$\int \frac{\sqrt{x}-\sqrt{x+1}}{x-(x+1)} dx$$ It becomes $$\int \frac{\sqrt{x}-\sqrt{x+1}}{-1} dx$$ $$=-\int \sqrt{x} dx - \int \sqrt{x+1} dx$$ $$= -\frac{x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{(x+1)^{\frac{3}{2}}}{\frac{3}{2}} + c$$ # 1. Question Evaluate $$\int \frac{1}{\sqrt{x} + \sqrt{x+1}} dx$$ ### **Answer** Rationalising denominator We get, $$\int \frac{\sqrt{x}-\sqrt{x+1}}{x-(x+1)} dx$$ It becomes $$\int \frac{\sqrt{x}-\sqrt{x+1}}{-1} dx$$ $$=-\int \sqrt{x} dx - \int \sqrt{x+1} dx$$ $$= -\frac{x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{(x+1)^{\frac{3}{2}}}{\frac{3}{2}} + c$$ # 2. Question Evaluate $$\int \frac{1-x^4}{1-x} dx$$ # **Answer** Factorising the equation $$= \int \frac{(1-x^2)(1+x^2)}{1-x} dx$$ $$= \int \frac{(1-x)(1+x)(1+x^2)}{1-x} dx$$ On cancelling we get $$=\int (1+x)(1+x^2)dx$$ $$=\int (1+x+x^2+x^3)dx$$ $$= x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + c$$ ### 2. Question Evaluate $$\int \frac{1-x^4}{1-x} dx$$ #### **Answer** Factorising the equation $$= \int \frac{(1-x^2)(1+x^2)}{1-x} dx$$ $$= \int \frac{(1-x)(1+x)(1+x^2)}{1-x} dx$$ On cancelling we get $$= \int (1+x)(1+x^2)dx$$ $$=\int (1+x+x^2+x^3)dx$$ $$=x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+c$$ # 3. Question Evaluate $$\int \frac{x+2}{(x+1)^3} dx$$ #### **Answer** On simplifying we get, $$\int \frac{(x+1)+1}{(x+1)^3} dx$$ $$= \int \frac{1}{(x+1)^2} dx + \int \frac{1}{(x+1)^3} dx$$ On solving we get $$=-\frac{1}{x+1}-\frac{1}{2(x+1)^2}+c$$ # 3. Question Evaluate $$\int \frac{x+2}{(x+1)^3} dx$$ **Answer** On simplifying we get, $$\int \frac{(x+1)+1}{(x+1)^3} dx$$ $$= \int \frac{1}{(x+1)^2} dx + \int \frac{1}{(x+1)^3} dx$$ On solving we get $$= -\frac{1}{x+1} - \frac{1}{2(x+1)^2} + c$$ # 4. Question Evaluate $$\int \frac{8x+13}{\sqrt{4x+7}} dx$$ ### **Answer** On simplifying we get, $$= \int \frac{4x+7}{\sqrt{4x+7}} dx + \int \frac{4x+7}{\sqrt{4x+7}} dx - \int \frac{1}{\sqrt{4x+7}} dx$$ $$= 2 \int \frac{4x+7}{\sqrt{4x+7}} dx - \int \frac{1}{\sqrt{4x+7}} dx$$ $$= 2 \int \sqrt{4x+7} dx - \int \frac{1}{\sqrt{4x+7}} dx$$ $$= 2 \int \frac{(4x+7)^{3/2}}{\frac{3}{2}} x \times \frac{1}{4} - \frac{(4x+7)^{\frac{1}{2}}}{\frac{1}{2}} x \times \frac{1}{4} + c$$ $$= \frac{(4x+7)^{3/2}}{\frac{3}{2}} - \frac{(4x+7)^{\frac{1}{2}}}{\frac{3}{2}} + c$$ #### 4. Question Evaluate $$\int \frac{8x + 13}{\sqrt{4x + 7}} dx$$ ## Answer On simplifying we get, $$= \int \frac{4x+7}{\sqrt{4x+7}} dx + \int \frac{4x+7}{\sqrt{4x+7}} dx - \int \frac{1}{\sqrt{4x+7}} dx$$ $$= 2 \int \frac{4x+7}{\sqrt{4x+7}} dx - \int \frac{1}{\sqrt{4x+7}} dx$$ $$= 2 \int \sqrt{4x+7} dx - \int \frac{1}{\sqrt{4x+7}} dx$$ $$= 2 \int \frac{(4x+7)^{3/2}}{\frac{3}{2}} x \times \frac{1}{4} - \frac{(4x+7)^{\frac{1}{2}}}{\frac{1}{2}} x \times \frac{1}{4} + c$$ $$= \frac{(4x+7)^{3/2}}{3} - \frac{(4x+7)^{\frac{1}{2}}}{2} + c$$ #### 5. Question Evaluate $$\int \frac{1+x+x^2}{x^2(1+x)} dx$$ #### **Answer** On simplifying we get $$\int \frac{1+x}{x^2(1+x)} dx + \int \frac{x^2}{x^2(1+x)} dx$$ $$= \int \frac{1}{x^2} dx + \int \frac{1}{1+x} dx$$ $$= -x^1 + \ln(1+x) + c$$ # 5. Question Evaluate $$\int \frac{1+x+x^2}{x^2(1+x)} dx$$ #### **Answer** On simplifying we get $$\int \frac{1+x}{x^2(1+x)} dx + \int \frac{x^2}{x^2(1+x)} dx$$ $$= \int \frac{1}{x^2} dx + \int \frac{1}{1+x} dx$$ $$= -x^2 + \ln(1+x) + c$$ ### 6. Question Evaluate $$\int \frac{\left(2^x + 3^x\right)^2}{6^x} dx$$ ### **Answer** On squaring numerator we get $$= \int \frac{2^{2x} + 2 \cdot 2^x \cdot 3^x + 3^{2x}}{2^x \cdot 3^x} dx$$ $$= \int \left(\frac{2}{3}\right)^x + 2 + \left(\frac{3}{2}\right)^x dx$$ Formula for $$\int a^x dx = \frac{a^x}{\ln(a)}$$ Solving above equation we get, $$= \frac{\left(\frac{2}{3}\right)^{x}}{\ln\left(\frac{2}{3}\right)} + 2x + \frac{\left(\frac{3}{2}\right)^{x}}{\ln\left(\frac{3}{2}\right)} + c$$ ### 6. Question Evaluate $$\int \frac{\left(2^x + 3^x\right)^2}{6^x} dx$$ ## Answer On squaring numerator we get $$= \int \frac{2^{2x} + 2 \cdot 2^x \cdot 3^x + 3^{2x}}{2^x \cdot 3^x} dx$$ $$= \int \left(\frac{2}{3}\right)^x + 2 + \left(\frac{3}{2}\right)^x dx$$ Formula for $$\int a^x dx = \frac{a^x}{\ln(a)}$$ Solving above equation we get, $$=\frac{\left(\frac{2}{3}\right)^x}{\ln\left(\frac{2}{3}\right)} + 2x + \frac{\left(\frac{3}{2}\right)^x}{\ln\left(\frac{3}{2}\right)} + c$$ ### 7. Question Evaluate $$\int \frac{\sin x}{1 + \sin x} dx$$ #### **Answer** Multiplying numerator and denominator with 1-sinx We get $$\int \frac{\sin x(1-\sin x)}{1-\sin^2 x} dx$$ $$= \int \frac{\sin x (1 - \sin x)}{\cos^2 x} dx$$ $$= \int \frac{\sin x - \sin^2 x}{\cos^2 x} dx$$ $$= \int \frac{\sin x}{\cos^2 x} dx - \int \frac{\sin^2 x}{\cos^2 x} dx$$ Taking $$\int \frac{\sin x}{\cos^2 x} dx = A$$ and $\int \frac{\sin^2 x}{\cos^2 x} dx = B$ Solving for A Taking $\cos x = t$ On differentiating both sides we get $$-sin x dx = dt$$ Putting values in A we get our equation as $$=\int \frac{-dt}{t^2}$$ $$= t^{-1} + c$$ Substituting value of t, $$=$$ sec $x + c$ Solving for B $$\int \frac{1 - \cos^2 x}{\cos^2 x} dx$$ $$= \int \sec^2 x - \int 1 dx$$ $$= tan x - x + c$$ Final answer is A+B $$= \sec x + \tan x - x + c$$ # 7. Question Evaluate $$\int \frac{\sin x}{1+\sin x} dx$$ #### **Answer** Multiplying numerator and denominator with 1-sinx We get $$\int \frac{\sin x(1-\sin x)}{1-\sin^2 x} dx$$ $$= \int \frac{\sin x (1 - \sin x)}{\cos^2 x} dx$$ $$= \int \frac{\sin x - \sin^2 x}{\cos^2 x} dx$$ $$= \int \frac{\sin x}{\cos^2 x} dx - \int \frac{\sin^2 x}{\cos^2 x} dx$$ Taking $$\int \frac{sinx}{cos^2x} dx = A$$ and $\int \frac{sin^2x}{cos^2x} dx = B$ Solving for A Taking $\cos x = t$ On differentiating both sides we get $$-\sin x dx = dt$$ Putting values in A we get our equation as $$=\int \frac{-dt}{t^2}$$ $$= t^{-1} + c$$ Substituting value of t, $$=$$ sec $x + c$ Solving for B $$\int \frac{1 - \cos^2 x}{\cos^2 x} dx$$ $$= \int \sec^2 x - \int 1 \, dx$$ $$= tan x - x + c$$ Final answer is A+B $$= \sec x + \tan x - x + c$$ # 8. Question Evaluate $$\int \frac{x^4 + x^2 - 1}{x^2 + 1} dx$$ #### **Answer** On simplifying we get $$\int \frac{x^2(x^2+1)}{(x^2+1)} - \frac{1}{(x^2+1)} dx$$ $$= \int x^2 dx - \int \frac{1}{x^2+1} dx$$ $$= \frac{x^3}{3} - \tan^{-1} x + c$$ Evaluate $$\int \frac{x^4 + x^2 - 1}{x^2 + 1} dx$$ ### **Answer** On simplifying we get $$\int \frac{x^2(x^2+1)}{(x^2+1)} - \frac{1}{(x^2+1)} dx$$ $$= \int x^2 dx - \int \frac{1}{x^2+1} dx$$ $$= \frac{x^3}{3} - \tan^{-1} x + c$$ # 9. Question Evaluate $\int \sec^2 x \cos^2 2x \, dx$ #### **Answer** $$\int \sec^2 x (\cos^2 x - \sin^2 x)^2 dx$$ Opening the square $$= \int \frac{\cos^4 x - 2 \cdot \cos^2 x \cdot \sin^2 x + \sin^4 x}{\cos^2 x} dx$$ $$= \int (\cos^2 x - 2\sin^2 x + \frac{\sin^2 x \cdot \sin^2 x}{\cos^2 x}) dx$$ $$= \int (\cos^2 x - 2\sin^2 x + \frac{(1 - \cos^2 x) \cdot (1 - \cos^2 x)}{\cos^2 x}) dx$$ On multiplying $(1 - cos^2x) \cdot (1 - cos^2x)$ equation reduces to $$=\int (\cos^2 x - 2\sin^2 x + \sec^2 x - 2 + \cos^2 x) dx$$ $$=\int (2\cos^2 x - 2\sin^2 x + \sec^2 x - 2)dx$$ $$=\int (2(\cos^2 x - \sin^2 x) + \sec^2 x - 2) dx$$ $$=\int (2\cos 2x + \sec^2 x - 2)dx$$ On solving this we get our answer i.e $$=\frac{2sin2x}{2} + tanx - 2x + c$$ =sin2x+tanx-2x+c ### 9. Question Evaluate $$\int \sec^2 x \cos^2 2x \ dx$$ #### **Answer** $$\int \sec^2 x (\cos^2 x - \sin^2 x)^2 dx$$ Opening the square $$=\int\frac{\cos^4x-2.\cos^2x.\sin^2x+\sin^4x}{\cos^2x}dx$$ $$= \int (\cos^2 x - 2\sin^2 x + \frac{\sin^2 x \cdot \sin^2 x}{\cos^2 x}) dx$$ $$= \int (\cos^2 x - 2\sin^2 x + \frac{(1 - \cos^2 x) \cdot (1 - \cos^2 x)}{\cos^2 x}) dx$$ On multiplying $(1 - cos^2x) \cdot (1 - cos^2x)$ equation reduces to $$= \int (\cos^2 x - 2\sin^2 x + \sec^2 x - 2 + \cos^2 x) dx$$ $$= \int (2\cos^2 x - 2\sin^2 x + \sec^2
x - 2) dx$$ $$= \int (2(\cos^2 x - \sin^2 x) + \sec^2 x - 2) dx$$ $$=\int (2\cos 2x + \sec^2 x - 2)dx$$ On solving this we get our answer i.e $$=\frac{2sin2x}{2} + tanx - 2x + c$$ $$=\sin 2x + \tan x - 2x + c$$ # 10. Question Evaluate $\int \cos ec^2 x \cos^2 2x \, dx$ ### **Answer** $$\int \csc^2 x (\cos^2 x - \sin^2 x)^2 dx$$ Opening the square $$= \int \frac{\cos^4 x - 2 \cdot \cos^2 x \cdot \sin^2 x + \sin^4 x}{\sin^2 x} dx$$ $$= \int \left(\frac{\cos^2 x \cdot \cos^2 x}{\sin^2 x} - 2\cos^2 x + \sin^2 x\right) dx$$ $$= \int \left(\frac{(1 - \sin^2 x) \cdot (1 - \sin^2 x)}{\sin^2 x} - 2\cos^2 x + \sin^2 x \right) dx$$ On multiplying $(1-\sin^2 x)(1-\sin^2 x)$ equation reduces to $$= \int (\csc^2 x - 2 + \sin^2 x - 2\cos^2 x + \sin^2 x) dx$$ $$= \int (\csc^2 x - 2 + 2\sin^2 x - 2\cos^2 x) dx$$ $$= \int (-2(\cos^2 x - \sin^2 x) + \csc^2 x - 2) dx$$ $$=\int (-2\cos 2x + \csc^2 x - 2)dx$$ On solving this we get our answer i.e $$=\frac{-2\sin 2x}{2}-\cot x-2x+c$$ Evaluate $\int \cos ec^2 x \cos^2 2x \, dx$ #### **Answer** $\int \cos e^2 x (\cos^2 x - \sin^2 x)^2 dx$ Opening the square $$= \int \frac{\cos^4 x - 2 \cdot \cos^2 x \cdot \sin^2 x + \sin^4 x}{\sin^2 x} dx$$ $$= \int \left(\frac{\cos^2 x \cdot \cos^2 x}{\sin^2 x} - 2\cos^2 x + \sin^2 x\right) dx$$ $$= \int \left(\frac{(1 - \sin^2 x) \cdot (1 - \sin^2 x)}{\sin^2 x} - 2\cos^2 x + \sin^2 x\right) dx$$ On multiplying $(1-\sin^2 x)(1-\sin^2 x)$ equation reduces to $$= \int (\csc^2 x - 2 + \sin^2 x - 2\cos^2 x + \sin^2 x) dx$$ $$=\int (\cos e^2x-2+2\sin^2x-2\cos^2x)dx$$ $$=\int (-2(\cos^2 x - \sin^2 x) + \csc^2 x - 2) dx$$ $$= \int (-2\cos 2x + \csc^2 x - 2) dx$$ On solving this we get our answer i.e $$=\frac{-2sin2x}{2}-cotx-2x+c$$ $$=-\sin 2x - \cot x - 2x + \cot x$$ # 11. Question Evaluate $\int \sin^4 2x \, dx$ ### **Answer** Replacing 2x by t We get dx=dt/2 by differentiating both sides Our equation has become $$\begin{split} &\frac{1}{2}\int sin^4t\ dt\\ &=\frac{1}{2}\int sin^2t.\ sin^2t\ dt = \frac{1}{2}\int sin^2t.\ (1-\cos^2t)\ dt\\ &=\frac{1}{2}\int sin^2tdt - \frac{1}{2}\int sin^2t.\ cos^2tdt \end{split}$$ simplifying sin²t.cos²t on multiplying and dividing by 4 we get sin²t.cos²tdt as sin²2t $$=\frac{1}{2}\int \frac{1-\cos 2t}{2} dt - \frac{1}{2}\int \frac{\sin^2 2t}{4}$$ $$\begin{split} &= \frac{1}{2} \int \frac{1 - \cos 2t}{2} \, dt - \frac{1}{2} \int \frac{1 - \cos 4t}{4.2} \\ &= \frac{1}{4} \int 1 - \cos 2t \, dt - \frac{1}{16} \int 1 - \cos 4t \, dt \\ &= \frac{t}{4} - \frac{\sin 2t}{8} - \frac{t}{8} + \frac{\sin 4t}{64} + c \end{split}$$ Hence our final answer is $$=\frac{t}{8}-\frac{\sin 2t}{8}+\frac{\sin 4t}{64}+c$$ ### 11. Question Evaluate $\int \sin^4 2x \, dx$ #### **Answer** Replacing 2x by t We get dx=dt/2 by differentiating both sides Our equation has become $$\begin{split} &\frac{1}{2}\int sin^4t \, dt \\ &= \frac{1}{2}\int sin^2t . \, sin^2t \, dt = \frac{1}{2}\int sin^2t . \, (1-cos^2t) \, dt \\ &= \frac{1}{2}\int sin^2t dt - \frac{1}{2}\int sin^2t . \, cos^2t dt \end{split}$$ simplifying sin²t.cos²t on multiplying and dividing by 4 we get $\sin^2 t . \cos^2 t dt$ as $\sin^2 2t$ $$\begin{split} &= \frac{1}{2} \int \frac{1 - \cos 2t}{2} dt - \frac{1}{2} \int \frac{\sin^2 2t}{4} \\ &= \frac{1}{2} \int \frac{1 - \cos 2t}{2} dt - \frac{1}{2} \int \frac{1 - \cos 4t}{4 \cdot 2} \\ &= \frac{1}{4} \int 1 - \cos 2t dt - \frac{1}{16} \int 1 - \cos 4t dt \\ &= \frac{t}{4} - \frac{\sin 2t}{8} - \frac{t}{8} + \frac{\sin 4t}{64} + c \end{split}$$ Hence our final answer is $$=\frac{t}{8}-\frac{\sin 2t}{8}+\frac{\sin 4t}{64}+c$$ ### 12. Question Evaluate $\int \cos^3 3x \, dx$ ### **Answer** We can write ∫cos³3xdx as: $\int cos3x(cos3x)^2 dx \int cos3x(cos^23x) dx$ and further as: $$=\cos 3x(1-\sin^2 3x)dx$$ $$= \int \cos 3x dx - \int \cos 3x (\sin^2 3x) dx$$ Taking A=∫cos3xdx Solving for A $$A = \frac{\sin 3x}{3}$$ Taking $B = \int \cos 3x (\sin^2 3x) dx$ In this taking sin3x=t Differentiating on both sides we get 3cos3xdx=dt Solving by putting these values we get $$B = \int \frac{t^2}{3} dt$$ $$=\frac{t^3}{9}+c$$ Substituting values we get $$\mathsf{B} = \frac{\sin^3 3x}{9} + c$$ Our final answer is A+B i.e $$=\frac{\sin\!3x}{3}+\frac{\sin\!3x}{3}+c$$ # 12. Question Evaluate $$\int \cos^3 3x \ dx$$ #### **Answer** We can write ∫cos³3xdx as: $\int cos3x(cos3x)^2dx$ $\int cos3x(cos^23x)dx$ and further as: $$=\cos 3x(1-\sin^2 3x)dx$$ $$= \int \cos 3x dx - \int \cos 3x (\sin^2 3x) dx$$ Taking A=∫cos3xdx Solving for A $$A = \frac{\sin 3x}{3}$$ Taking $B = \int \cos 3x (\sin^2 3x) dx$ In this taking sin3x=t Differentiating on both sides we get $3\cos 3xdx=dt$ Solving by putting these values we get $$B = \int \frac{t^2}{3} dt$$ $$=\frac{t^3}{9}+c$$ Substituting values we get $$\mathsf{B} = \frac{\sin^3 3x}{9} + c$$ Our final answer is A+B i.e $$=\frac{\sin 3x}{3}+\frac{\sin 3x}{3}+c$$ ## 13. Question Evaluate $$\int \frac{\sin 2x}{a^2 + b^2 \sin^2 x}$$ ## Answer Taking b² common, we get, $$\int \frac{\sin 2x}{b^2(\frac{a^2}{b^2} + \sin^2 x)} dx$$ taking $$\frac{a^2}{b^2} + \sin^2 x = t$$ on differentiating both sides we get 2sinxcosxdx=dt Means sin2xdx=dt putting $\frac{a^2}{b^2} + \sin^2 x = t$ and $\sin 2x dx = dt$ in equation we get our equation as $$\int \frac{dt}{b^2(t)}$$ On solving this we get $$=\frac{\ln(t)}{b^2}+c$$ Substituting value of t we get our answer as $$=\frac{\ln(\frac{a^2}{b^2}+\sin^2x)}{b^2}+c$$ # 13. Question Evaluate $$\int \frac{\sin 2x}{a^2 + b^2 \sin^2 x}$$ ### **Answer** Taking b² common, we get, $$\int \frac{\sin 2x}{b^2(\frac{a^2}{b^2} + \sin^2 x)} dx$$ $$taking \frac{a^2}{b^2} + sin^2 x = t$$ on differentiating both sides we get 2sinxcosxdx=dt Means sin2xdx=dt putting $\frac{a^2}{b^2} + \sin^2 x = t$ and $\sin 2x dx = dt$ in equation we get our equation as $$\int \frac{dt}{b^2(t)}$$ On solving this we get $$= \frac{\ln(t)}{b^2} + c$$ Substituting value of t we get our answer as $$=\frac{\ln(\frac{a^2}{b^2}+\sin^2x)}{b^2}+c$$ # 14. Question Evaluate $$\int \frac{1}{\left(\sin^{-1}x\right)\sqrt{1-x^2}} dx$$ #### **Answer** Taking $\sin^{-1}x = t$ Differentiating both sides, We get $$\frac{1}{\sqrt{1-x^2}}dx = dt$$ Our new equation has become $$\int \frac{dt}{t}$$ On solving this we get $$\int \frac{dt}{t} = \ln(t) + c$$ Substituting value of $t = \sin^{-1}x$ We get our answer as $$=\ln(\sin^{-1}x)+c$$ # 14. Question Evaluate $$\int \frac{1}{\left(\sin^{-1}x\right)\sqrt{1-x^2}} dx$$ ## **Answer** Taking $\sin^{-1}x = t$ Differentiating both sides, We get $$\frac{1}{\sqrt{1-x^2}}dx = dt$$ Our new equation has become $$\int \frac{dt}{t}$$ On solving this we get $$\int \frac{dt}{t} = \ln(t) + c$$ Substituting value of $t = \sin^{-1}x$ We get our answer as $$=In(sin^{-1}x)+c$$ # 15. Question Evaluate $$\int \frac{\left(\sin^{-1}x\right)^3}{\sqrt{1-x^2}} dx$$ ### **Answer** Taking $sin^{-1}x=t$ Differentiating both sides, We get $$\frac{1}{\sqrt{1-x^2}}dx = dt$$ Our new equation has become On solving this we get $$\int t^3 dt = \frac{t^4}{4} + c$$ Substituting value of $t = \sin^{-1}x$ We get our answer as $$=\frac{(sin^{-1}x)^4}{4}+c$$ ### 15. Question Evaluate $$\int \frac{\left(\sin^{-1}x\right)^3}{\sqrt{1-x^2}} dx$$ # Answer Taking $sin^{-1}x=t$ Differentiating both sides, We get $$\frac{1}{\sqrt{1-x^2}}dx = dt$$ Our new equation has become On solving this we get $$\int t^3 dt = \frac{t^4}{4} + c$$ Substituting value of $t = \sin^{-1}x$ We get our answer as $$=\frac{(sin^{-1}x)^4}{4}+c$$