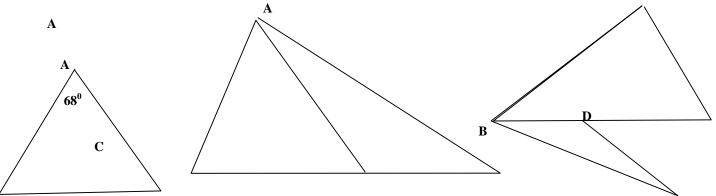

Class : IX


Subject : Mathematics

1. In fig (i) AB = FE, BC = ED, AB \perp BE, FE \perp BE. Prove that \angle ADB = \angle FCE.

- 2. In fig (ii) BC = EC, $\angle 1 = \angle 2$, prove that $\triangle GBC = \triangle DEC$.
- 3. In fig (iii) AB = AC and BE = CD. Prove that AE = AD
- 4. In fig (iv) AD = AC, $\angle BAC = \angle EAD$. Prove that AB = AE
- 5. In fig (v) $\angle ABC$ is an angle in a semi-circle. Prove that $\angle ABC = 90^{\circ}$. (hint: Join OB)
- 6. In fig (vi) ABCD is a square. X & Y are points on AD and BC respectively, such that ABX. Prove that $\angle BAY = \angle ABX$.
- 7. In fig (vii) AB = AC. Is AB > BC?

	fig (ix)	65 ⁰		30 ⁰	
В		C B		С	D
	Fig (vii) E		fig (viii)		

- 8. In fig (viii), AB = AC. Arrange BC, CA, CD in ascending order of magnitude.
 9. In fig (ix) D is a point on the side BC of a ΔABC and E is a point such that ED = CD. Show that AB + AC > BE.