Appendix 1

INFINITE SERIES

A.1.1 Introduction

As discussed in the Chapter 9 on Sequences and Series, asequence a,, &, ..., @, ...
having infinite number of termsis called infinite sequence and itsindicated sum, i.e.,
a +a,+a,+..+a +..iscaled aninfinte series associated with infinite sequence.
This series can a so be expressed in abbreviated form using the sigma notation, i.e.,

a+tatat. .. +an+...=zak
k=1

In this Chapter, we shall study about some special types of series which may be
required in different problem situations.
A.1.2 Binomial Theorem for any I ndex

In Chapter 8, we discussed the Binomial Theorem in which the index was a positive
integer. In this Section, we state a more general form of the theorem in which the
index isnot necessarily awhole number. It gives usaparticular type of infinite series,
called Binomial Series. We illustrate few applications, by examples.

We know the formula

(L+x)"="C, +"C, x+... +"C, X
Here, nis non-negative integer. Observe that if we replace index n by negative
integer or afraction, then the combinations "C, do not make any sense.

We now state (without proof), the Binomial Theorem, giving aninfinite seriesin
which the index is negative or afraction and not a whole number.

Theorem The formula
m(m-1) 2y m(m-1)(m-2) B
1.2.3

(1+ %)™ =1+ mx+

holds whenever |x| <1.
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Remark 1. Note carefully the condition | x | < 1, i.e., — 1< x < 1 is necessary when m
is negative integer or a fraction. For example, if wetakex= —2and m= -2, we
obtain

(1-2)? =1+ (-2)(-2) +%(_2)2 ;..

or 1=1+4+12+...
Thisisnot possible

2. Notethat there areinfinite number of termsin the expansion of (1+ x)™, when m
isanegative integer or afraction

Consider (a+b)"
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Thisexpansion isvalid when a <1 or equivalently when |b | <] a].

The general term in the expansion of (a+ b)™is

m(m-1)(m-2)...(m-r +1)a™ b’
123.r
We give below certain particular cases of Binomial Theorem, when we assume

x| <1, these are left to students as exercises:
1L L+X)t=1-x+x-=x3+...
2. (1-X)1=1+x+xX2+x3+...
3 (A+X)72=1-2x+3x — &3C+...
4, (1 — X)2=1+22X+32+43C+ ...

Example 1 Expand (1—2) i ,when | x| < 2.
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Solution We have

_ 1+@(_x)+@(zy+...

TN
T
N | X
|
N~
|

1 2 1.2 2
2
= 1+§+31+...
4 32
A.1.3 Infinite Geometric Series
From Chapter 9, Section 9.5, a sequence a,, a,, a,, ..., a,is called GP, if
% =r (constant) for k = 1, 2, 3, ..., n=L. Particularly, if we take a, = a, then the

resulting sequence a, ar, ar?, ..., ar! istaken asthe standard form of GP, whereais
first term and r, the common ratio of G.P.

Earlier, we have discussed the formula to find the sum of finite series
a+ar+ar?+ ... +ar"-*whichisgiven by

a(l—r”)
ST

In this section, we state the formula to find the sum of infinite geometric series
at+ar+ar?+..+a" 1+ .. andillustrate the same by examples.

Let us consider the GP. 1, E il
3 9
2
Herea=1,r = E.Wehave
n
1—@ 2)"
S, =1_—2:3[1—(§) ] .. (1)

2 n
Let us study the behaviour of (Ej as n becomes larger and larger.
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n 1 5 10 20
2 n
(5) 0.6667 0.1316872428 0.01734152992 0.00030072866

n
We observe that as n becomes larger and larger, (E] becomes closer and closer to

2 n
zero. Mathematically, we say that as n becomes sufficiently large, (5] becomes

2 n
sufficiently small. In other words, as N — oo, (5] — 0. Consequently, we find that

the sum of infinitely many termsisgivenby S=3.
Thus, for infinite geometric progression a, ar, ar?, ..., if numerical vaue of common
ratior islessthan 1, then

a(l—r”) a ar”
Sh= 1-r :1—r_1—r

n

— 0. Therefore,

: . ar
Inthiscase, 1" _s 0 @ n— oo since |r [<1 and then 1

a
S“_)E aS N—oow.

Symboalically, sumto infinity of infinite geometric seriesis denoted by S. Thus,

a
we have  S=——
1-r
For example
1 1
(|) 1+2+ 2+?+ —j=2
1 1 1 1 1 2
(i) 1-=+5-—S+.= = =3
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Example 2 Find the sum to infinity of the GP. ;
-5 5 -5

416" 64"
. -5 1
Solution Here a=7 and F=—Z.AISO [r|<1.

D3
Hence, the sum to infinity is —4— =4 - 1.
1 5
1+~
4 4
A.1.4 Exponential Series

Leonhard Euler (1707 — 1783), the great Swiss mathematician introduced the number

einhiscaculustextin 1748. Thenumber eisuseful incalculusas n inthe study of the
circle.

Consider thefollowing infinite series of numbers

1+1+i+£+i+
a2 3 4 - (D)
The sum of the series given in (1) is denoted by the number e
Let us estimate the value of the number e.

Sinceevery term of the series (1) ispositive, itisclear that itssumisalso positive.

Consider the two sums
i+i+i+ +i+
3 4 5 T - @
1 1 1 1
and ?+F+?+""+F+m .. (3
Observe that
1 1 di_g hich i 1 1
3!_6an 2 4,ch glves3! 72
1_1 42 1 hichaives = <=
2= o2 an 7 8’W ic glV%m >3
11 Ll ichaives t< X
5!—120an » 16,W|c glveﬁs! >
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Therefore, by analogy, we can say that
1.1
n 2mte
We observe that each term in (2) is less than the corresponding termin (3),

whenn> 2

N O Y i S I
Therefore | 5% "y Tt S\ 2 TR T T T e T - (4)

1 1
Adding (1+ I 5) on both sides of (4), we get,

( 1 1) [1 1 1 1 j

I+ —+— [+ o+ —+—+.+—+..

o2 3 4 5 n!

<{(1+1+1j+(i2+i3+i4+...+ 1_1+...j} - (9)
2 22 2 2 2"

1 1 1 1 1
=<1+ 1+E+?+§+?+...+2H+...

1-=

Left hand side of (5) representsthe series (1). Thereforee< 3 and aso e> 2 and
hence2<e<3.

Remark The exponential seriesinvolving variable x can be expressed as

Example 3 Find the coefficient of x2 in the expansion of e**3 as a series in
powers of X.

Solution In the exponential series

x X X
e =l —+—+—+..
r 2 3

replacing x by (2x + 3), we get



418 MATHEMATICS

2
3= 14 (2x+3) .\ (2x+3) .
i 2!

(2x+3)" _ (3+2%)"
=

Here, the general termis '
n!

. This can be expanded by the

Binomial Theorem as
e o3 (2947 6,320+t (24)'

n n—-2~2
Here, the coefficient of x?is ZT . Therefore, the coefficient of X2 in the whole
seriesis

nC 3!’1—222 0 n n— 1 3” 2

n; 2n! - ZZ

n=2
0 3n—2
- 2;( “) lwsingni =n(n-1) (0 - 2]
— 2{1+§+3—2+§+..1
TPTRE

2e® .
Thus 2€? is the coefficient of x? in the expansion of 3,
Alternatively e+ = @ . e~

{1+ 2x (ZX) (ZX)3+..}
= 1 2! 3!

3 22 3
Thus, the coefficient of x? in the expansion of €2*3is € 5= 2e

Example 4 Find the value of €, rounded off to one decimal place.

Solution Using the formula of exponential series involving x, we have

X X2 X3 n

=l
21 3 n!
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Putting x = 2, we get

, . 2 22 28 2% 5 6
=lt—+—F+—+—+—+—+...
1 20 3 4 5 6

=1+2+2+ﬂ+2+i+i+...
3 3 15 45

> the sum of first seven terms > 7.355.

On the other hand, we have

) 2 22 2 22\ 25( 2 22 28
€<t —+—+_—F+— [+ | I+ + o+ +..
o2 3 4 5! 6 6° 6

2
4 1 (1 41 1 2
=l+—|l+=+| |+ | =T+—| — | = T7+==
15[ 3 (3) J 15/, 1 7+5 4
Thus, € lies between 7.355 and 7.4. Therefore, the value of €, rounded off to one
decimal place, is7.4.

A.15 Logarithmic Series

Another very important seriesislogarithmic serieswhich isalsointheform of infinite
series. We state the following result without proof and illustrate its application with an
example.

Theorem If | x| <1, then

2 3
log, (1+ X) = x—X?+X§—...

The series on the right hand side of the above is called the logarithmic series.

The expansion of log, (1+X) is valid for x = 1. Substituting x = 1 in the
expansion of log, (1+x), we get
1

11
log.2=1—-—+=—"——+...
De 2 3 4
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Example5If o, B arethe roots of the equation x* — px+q=0, prove that

2 2 3 3
o+ o+
B2 o, 00 4B s

Ioge(1+ px+qx2)=(cx+B)x— 5 3

a’x? o’ B2 B3
Solution Right hand side = {GX— 5 3 —---}{ﬁX—T*-T—---
= log, (1+ a.x)+log(1+ px)
= Ioge(1+(oc+[3)x+oc[3x2)
= log, (1+ px+ax°) = Left hand side.
Here, we have used the facts a+B=p and aff=q . We know this from the

given roots of the quadratic equation. We have also assumed that both |ax|< 1 and
IBx[<1.



