Chapter 6 Lines and Angles

Exercise No. 6.1

Multiple Choice Questions:

Write the correct answer in each of the following:

1. In Fig., if AB || CD || EF, PQ || RS, \angle RQD = 25° and \angle CQP = 60°, then \angle QRS is equal to

(A) 85°

(B) 135°

(C) 145°

(D) 110°

Solution:

As $\angle ARQ = \angle RQD = 25^{\circ}$ [alt. $\angle s$] Also, $\angle RQC = 180^{\circ} - 60^{\circ} = 120^{\circ}$ (linear pair) And, $\angle SRA = 120^{\circ}$ (Corresponding angle)

Now, $\angle SRQ = 120^{\circ} + 25^{\circ}$ $\angle SRQ = 145^{\circ}$ Hence, the correct option is (C).

2. If one angle of a triangle is equal to the sum of the other two angles, then the triangle is
(A) an isosceles triangle
(B) an obtuse triangle
(C) an equilateral triangle
(D) a right triangle

Solution: Given

Let angle of triangle ABC be $\angle A, \angle B$ and $\angle C$ Given that: $\angle A = \angle B + \angle C$

We know that in any triangle $\angle A + \angle B + \angle C = 180^{\circ}$... (II) From equation (I) and (II), get: $\angle A + \angle A = 180^{\circ}$

$$2\angle A = 180^{\circ}$$
$$\angle A = \frac{180^{\circ}}{2}$$
$$\angle A = 90^{\circ}$$

Hence, the triangle is a right triangle. Therefore, the correct option is (D).

3. An exterior angle of a triangle is 105° and its two interior opposite angles are equal. Each of these equal angles is

... (I)

(A) $37\frac{1}{2}^{\circ}$ (B) $52\frac{1}{2}^{\circ}$ (C) $72\frac{1}{2}^{\circ}$ (D) 75°

Solution:

Given: An exterior angle of triangle is 150° . Let each of the two interior opposite angle be x.

The sum of two interior opposite angle is equal to exterior angle of a triangle. So,

 $105^{\circ} = x + x$ $2x = 105^{\circ}$

$$x = 52\frac{1}{2}$$

Hence, the correct option is (B).

4. The angles of a triangle are in the ratio 5 : 3 : 7. The triangle is

- (A) an acute angled triangle
- (B) an obtuse angled triangle
- (C) a right triangle
- (D) an isosceles triangle

Solution:

Let the angle of the triangle are 5x, 3x and 7x. As we know that sum of all angle of triangle is 180°. Now,

$$5x + 3x + 7x = 180^{\circ}$$
$$15x = 180^{\circ}$$
$$x = \frac{180^{\circ}}{15}$$
$$x = 12^{\circ}$$

Hence, the angle of the triangle are:

 $5 \times 12^\circ = 60^\circ$

 $3 \times 12^{\circ} = 36^{\circ}$

 $7 \times 12^{\circ} = 84^{\circ}$

All the angle of this triangle is less than 90 degree. Hence,, the triangle is an acute angled triangle.

5. If one of the angles of a triangle is 130°, then the angle between the bisectors of the other two angles can be

(A) 50°
(B) 65°
(C) 145°
(D) 155°

Solution:

In triangle ABC, Let $\angle A = 130^{\circ}$. The bisector of the angle B and C are OB and OC. Let $\angle OBC = \angle OBA = x$ and $\angle OCB = \angle OCA = y$

In triangle ABC, $\angle A + \angle B + \angle C = 180^{\circ}$ $130^{\circ} + 2x + 2y = 180^{\circ}$ $2x + 2y = 180^{\circ} - 130^{\circ}$ $2x + 2y = 50^{\circ}$ $x + y = 25^{\circ}$ That is $\angle OBC + \angle OCA = 25^{\circ}$ Now, in triangle BOC: $\angle BOC = 180^{\circ} - (\angle OBC + \angle OCB)$ $= 180^{\circ} - 25^{\circ}$ $= 155^{\circ}$

Hence, the correct option is (D).

6. In Fig., POQ is a line. The value of x is

- (A) 20°
- **(B) 25°**
- (C) 30°
- (D) 35°

Solution:

See the given figure in the question: $40^{\circ} + 4x + 3x = 180^{\circ}$ (Angles on the straight line) $4x + 3x = 180^{\circ} - 40^{\circ}$ $7x = 140^{\circ}$ $x = \frac{140^{\circ}}{7}$ $x = 20^{\circ}$

Hence, the correct option is (A).

7. In Fig., if OP||RS, \angle OPQ = 110° and \angle QRS = 130°, then \angle PQR is equal to

(A) 40° (B) 50°

- (C) 60°
- (D) 70°

Solution:

See the given figure, producing OP, to intersect RQ at X. Given: OP||RS and RX is a transversal. So, $\angle RXP = \angle XRS$ (alternative angle)

 $\angle RXP = 130^{\circ}$ [Given: $\angle QRS = 130^{\circ}$] RQ is a line segment. So, $\angle PXQ + \angle RXV = 180^{\circ}$ [linear pair axiom] $\angle PXQ = 180^{\circ} - \angle RXP = 180^{\circ} - 130^{\circ}$ $\angle PXQ = 50^{\circ}$ In triangle PQX, $\angle OPQ$ is an exterior angle,

```
Therefore, \angle OPQ = \angle PXQ + \angle PQX [exterior angle = sum of two opposite interior angles]

110^\circ = 50^\circ + \angle PQX

\angle PQX = 110^\circ - 50^\circ

\angle PQR = 60^\circ

Hence, the correct option is (
```

8. Angles of a triangle are in the ratio 2 : 4 : 3. The smallest angle of the triangle is

(A) 60° (B) 40° (C) 80°

(D) 20°

Solution:

Given, the ratio of angles of a triangle is 2:4:3. Let the angles of a triangle be $\angle A$, $\angle B$ and $\angle C$. $\angle A = 2x$, $\angle B = 4x \angle C = 3x$, $\angle A + \angle B + \angle C = 180^{\circ}$ [sum of all the angles of a triangle is 180°] $2x + 4x + 3x = 180^{\circ}$ $9x = 180^{\circ}$ $x = 180^{\circ}/9$ $= 20^{\circ}$ $\angle A = 2x = 2 \times 20^{\circ} = 40^{\circ}$ $\angle B = 4x = 4 \times 20^{\circ} = 80^{\circ}$

 $\angle B = 4x = 4 \times 20^\circ = 80^\circ$ $\angle C = 3x = 3 \times 20^\circ = 60^\circ$ So, the smallest angle of a triangle is 40°. Hence, the correct option is (B).

Short Answer Questions with Reasoning:

1. For what value of x + y in Fig. will ABC be a line? Justify your answer.

Solution:

See the figure, x and y are two adjacent angles. For ABC to be a straight line, the sum of two adjacent angle must be 180°.

2. Can a triangle have all angles less than 60°? Give reason for your answer.

Solution:

We know that in a triangle, sum of all the angles is always 180° . So, a triangle can't have all angles less than 60° .

3. Can a triangle have two obtuse angles? Give reason for your answer.

Solution:

If an angle whose measure is more than 90° but less than 180° is called an obtuse angle. We know that a triangle can't have two obtuse angle because the sum of all the angles of it can't be more than 180° . It is always equal to 180° .

4. How many triangles can be drawn having its angles as 45°, 64° and 72°? Give reason for your answer.

Solution:

We know that sum of all the angles in a triangle is 180°.

The sum of all the angles is $45^\circ + 64^\circ + 72^\circ = 181^\circ$. So, we can't draw any triangle having sum of all the angle 181°.

5. How many triangles can be drawn having its angles as 53°, 64° and 63°? Give reason for your answer.

Solution:

We know that sum of all the angles in a triangle is 180°.

Sum of these angles = $53^{\circ} + 64^{\circ} + 63^{\circ} = 180^{\circ}$. So, we can draw infinitely many triangles having its angles as 53° , 64° and 63° .

6. In Fig., find the value of x for which the lines *l* and *m* are parallel.

Solution:

See the given figure, 1 || m and if a transversal intersects two parallel lines, then sum of interior angles on the same side of a transversal is supplementary. $x + 44^\circ = 180^\circ$

 $x = 180^{\circ} - 44^{\circ}$ $x = 136^{\circ}$

7. Two adjacent angles are equal. Is it necessary that each of these angles will be a right angle? Justify your answer.

Solution:

No, because if it will be a right angle only when they form a linear pair.

8. If one of the angles formed by two intersecting lines is a right angle, what can you say about the other three angles? Give reason for your answer.

Solution:

If two intersecting line are formed right then by using linear pair axiom aniom, other three angles will be a right angle.

9. In Fig., which of the two lines are parallel and why?

Solution:

In the first figure, sum of two interior angle is:

 $132^{\circ} + 48^{\circ} = 180^{\circ}$ [Equal to 180°]

Hence, we know that, if sum of two interior angle are equal on the same side of n is 180°, then they are the parallel lines.

In the second figure, sum of two interior angle is:

 $73^{\circ} + 106^{\circ} = 179^{\circ} \neq 180^{\circ}.$

Hence, we know that, if sum of two interior angle are equal on the same side of r is not equal to 180°, then they are not the parallel lines.

10. Two lines l and m are perpendicular to the same line n. Are l and m perpendicular to each other? Give reason for your answer.

Solution:

If two lines l and m are perpendicular to the same line n, then each of the two corresponding angles formed by these lines l and m with the line n are equal to 90°. Hence the line l and m are not perpendicular but parallel.

Short Answer Questions:

1. In Fig., OD is the bisector of $\angle AOC$, OE is the bisector of $\angle BOC$ and OD \perp OE. Show that the points A, O and B are collinear.

Solution:

Given: OD is the bisector of $\angle AOC$, OE is the bisector of $\angle BOC$ and OD \perp OE To prove that point A, O and B are collinear that is AOB are straight line. $\angle AOC = 2\angle DOC$... (I) $\angle COB = 2\angle COE$... (II)

Now, adding equations (I) and (II), get: $\angle AOC + \angle COB = 2\angle DOC + \angle COE$ $\angle AOC + \angle COB = 2(\angle DOC + \angle COE)$ $\angle AOC + \angle COB = 2\angle DOC$ $\angle AOC + \angle COB = 2 \times 90^{\circ}$ $\angle AOC + \angle COB = 180^{\circ}$

 $\angle AOC = 180^{\circ}$

So, $\angle AOC + \angle COB$ are forming linear pair or we can say that AOB is a straight line. Hence, point A, O and B are collinear.

2. In Fig., $\angle 1 = 60^{\circ}$ and $\angle 6 = 120^{\circ}$. Show that the lines *m* and *n* are parallel.

See the given figure, $\angle 5 + \angle 6 = 180^{\circ}$ (Linear pair angle) $\angle 5 + 120^{\circ} = 180^{\circ}$ $\angle 5 = 180^{\circ} - 120^{\circ}$ $\angle 5 = 60^{\circ}$ Then, $\angle 1 = \angle 5$ [Each = 60°] Since, these are corresponding angles.

Hence, the line m and n are parallel.

3. AP and BQ are the bisectors of the two alternate interior angles formed by the intersection of a transversal t with parallel lines l and m. Show that AP || BQ.

Solution:

According to the question, Line 1 || m and t is the transversal. $\angle MAB = \angle SBA$ [Alt. $\angle s$] $\frac{1}{2} \angle MAB = \frac{1}{2} \angle SBA$ $\angle PAB = \angle QBA$ But, $\angle PAB$ and $\angle QBA$ are alternate angles. Hence, AP||BQ.

4. If in Fig., bisectors AP and BQ of the alternate interior angles are parallel, then show that $l \parallel m$.

See the given figure, AP||BQ, AP and BQ are the bisectors of alternate interior angles $\angle CAB$ and $\angle ABF$. To show that l||m.

Now, prove that AP||BQ are t is transversal, therefore: $\angle PAB = \angle ABQ$ [Alternate interior angle] ... (I) $2\angle PAB = 2\angle ABQ$ [Multiplying both sides by 2 in equation (I)]

Since, alternate interior angle are equal. So, if two alternate interior angle are equal then lines are parallel. Hence, l||m.

5. In Fig., BA || ED and BC || EF. Show that $\angle ABC = \angle DEF$. [Hint: Produce DE to intersect BC at P (say)].

According to the question: Given: Producing DE to intersect BC at P. EF||BC and DP is the transversal,

 $\angle DEF = \angle DPC$

... (I) [Corresponding $\angle s$]

See the above figure, AB||DP and BC is the transversal, $\angle DPC = \angle ABC$... (II) [Corresponding $\angle s$]

Now, from equation (I) and (II), get: $\angle ABC = \angle DEF$ Hence, proved.

6. In Fig., BA || ED and BC || EF. Show that $\angle ABC + \angle DEF = 180^{\circ}$.

See in the figure, BA || ED and BC || EF. Show that $\angle ABC + \angle DEF = 180^{\circ}$. Produce a ray PE opposite to ray EF.

Prove: BC||EF Now, $\angle EPB + \angle PBC = 180^{\circ}$

[sum of co interior is 180°] ...(I)

Now, AB||ED and PE is transversal line, $\angle EPB = \angle DEF$ [Corresponding angles] ...(II)

Now, from equation (I) and (II), $\angle DEF + \angle PBC = 180^{\circ}$ $\angle ABC + \angle DEF = 180^{\circ}$ [Because $\angle PBC = \angle ABC$] Hence, proved.

7. In Fig., DE || QR and AP and BP are bisectors of \angle EAB and \angle RBA, respectively. Find \angle APB.

Solution:

See in the given figure, DE||QR and the line n is the transversal line. $\angle EAB + \angle RBA = 180^{\circ}$...(I) [The interior angles on the same side of transversal are supplementary.]

Now, $\angle PAB + \angle PBA = 90^{\circ}$ Then, from triangle APB, given: $\angle APB = 180^{\circ} - (\angle PAB + \angle PBA)$ So, $\angle APB = 180^{\circ} - 90^{\circ} = 90^{\circ}$

8. The angles of a triangle are in the ratio 2 : 3 : 4. Find the angles of the triangle.

Solution:

Given in the question, ratio of angles is: 2 : 3 : 4. Let the angles of the triangle be 2x, 3x and 4x. So, $2x + 3x + 4x = 180^{\circ}$ [sum of angles of triangle is 180°] $9x = 180^{\circ}$ $x = \frac{180^{\circ}}{9}$ $x = 20^{\circ}$ Therefore, $2x = 2 \times 20^{\circ} = 40^{\circ}$ $3x = 2 \times 20^{\circ} = 60^{\circ}$

And, $4x = 4 \times 20^\circ = 80^\circ$ Hence, the angle of the triangles are 40° , 60° and 80° .

9. A triangle ABC is right angled at A. L is a point on BC such that $AL \perp BC$. Prove that $\angle BAL = \angle ACB$.

Solution:

Given: In triangle ABC, $\angle A = 90^{\circ}$ and $AL \perp BC$ To prove: $\angle BAL = \angle ACB$

Proof: Let $\angle ABC = x$ $\angle BAL = 90^{\circ} - x$ As, $\angle A = x$ $\angle CAL = x$ $\angle ABC = \angle CAL$ $\angle ABC = \angle ACB$ Hence, proved.

10. Two lines are respectively perpendicular to two parallel lines. Show that they are parallel to each other.

Solution:

According to the question:

Two line p and n are respectively perpendicular to two parallel line l and m, that is $P \perp l$ and $n \perp m$.

To prove that p is parallel to n. Given: $n \perp m$ So, $\angle 1 = 90^{\circ}$... (I) Now, $P \perp l$ So, $\angle 2 = 90^{\circ}$

Since, l is parallel to m. So, $\angle 2 = \angle 3$ [Corresponding $\angle s$] So, $\angle 2 = 90^{\circ}$... (II) From equation (I) and (II), get: $\angle 1 = \angle 3$ [each 90°] But these are corresponding angles. Hence, p||n.

Long Answer Questions:

1. If two lines intersect, prove that the vertically opposite angles are equal.

Solution:

Two lines AB and CD intersect at point O. To prove: (i) $\angle AOC = \angle BOD$ (ii) $\angle AOD = \angle BOC$

Proof: (i) Ray on stands on line CD. So, $\angle AOC + \angle AOD = 180^{\circ} \dots (I)$ [linear pair axiom]

Similarly, ray OD stands on line AB. So, $\angle AOD + \angle BOD = 180^{\circ} \dots$ (II) Now, from equation (I) and (II), get: $\angle AOC + \angle AOD = \angle AOD + \angle BOD$

 $\angle AOC = \angle BOD$

Hence, proved.

(ii) Ray OD stands on line AB. $\angle AOD + \angle BOD = 180^{\circ}$

... (III) [Linear pair axiom]

Similarly, ray OB stands on line CD. So, $\angle DOB + \angle BOC = 180^{\circ}$... (IV) From equations (III) and (IV), get: $\angle AOD + \angle BOD = \angle DOB + \angle BOC$ $\angle AOD = \angle BOC$ Hence, proved.

2. Bisectors of interior $\angle B$ and exterior $\angle ACD$ of a $\triangle ABC$ intersect at the point T. Prove that

$$\angle BTC = \frac{1}{2} \angle BAC$$

Solution:

Given: in triangle ABC, produce BC to D and the bisectors of $\angle ABC$ and $\angle ACD$ meet at point T.

To prove that $\angle BTC = \frac{1}{2} \angle BAC$

Proof: In triangle ABC, $\angle ACD$ is an exterior angle.

 $\angle ACD = \angle ABC + \angle CAB$ [We know that exterior angle of a triangle is equal to the sum of two opposite angle]

$$\frac{1}{2} \angle ACD = \frac{1}{2} \angle CAB + \frac{1}{2} \angle ABC$$
 [Dividing both sides by 2 in the above equation]
$$\angle TCD = \frac{1}{2} \angle CAB + \frac{1}{2} \angle ABC$$
 ...(I) [Since, CT is the bisector of
$$\angle ACD$$
 that is $\frac{1}{2} \angle ACD = \angle TCD$]

Now, in triangle BTC,

 $\angle TCD = \angle BTC + \angle CBT$ [We know that exterior angle of the triangle is equal to the sum of two opposite angles]

 $\angle TCD = \angle BTC + \frac{1}{2} \angle ABC$...(II) [Since, BT is the bisector of triangle ABC $\angle CBT = \frac{1}{2} \angle ABC$]

Now, from equation (I) and (II), get:

$$\frac{1}{2} \angle CAB + \frac{1}{2} \angle ABC = \angle BTC + \frac{1}{2} \angle ABC$$
$$\frac{1}{2} \angle CAB = \angle BTC$$
$$\frac{1}{2} \angle BAC = \angle BTC$$

Hence, proved.

3. A transversal intersects two parallel lines. Prove that the bisectors of any pair of corresponding angles so formed are parallel.

Solution:

Given: Lines DE||QR and the line DE intersected by transversal at A and the line QR intersected by transversal at B. Also, BP and AF are the bisector of angle $\angle ABR$ and $\angle CAE$ respectively.

To prove: BP||FA

Proof: DE||QR $\angle CAE = \angle ABR$ [Corresponding angles] $\frac{1}{2} \angle CAE = \frac{1}{2} \angle ABR$ [Dividing both side by 2 in the above equation] $\angle CAF = \angle ABP$ [Since, bisector of angle $\angle ABR$ and $\angle CAE$ are BP and AF respectively] Because these are the corresponding angles on transversal line n and are equal. Hence, BP||FA.

4. Prove that through a given point, we can draw only one perpendicular to a given line.

[Hint: Use proof by contradiction].

Solution:

Drawn a perpendicular line from the point p as PM \perp AB. So, $\angle PMB = 90^{\circ}$

Let if possible, drown another perpendicular line PN \perp AB. So, $\angle PMB = 90^{\circ}$ Since, $\angle PMB = \angle PNB$ it will be possible when PM and PN coincide with each other.

Therefore, at a given point we can draw only one perpendicular to a given line.

5. Prove that two lines that are respectively perpendicular to two intersecting lines intersect each other.

[Hint: Use proof by contradiction].

Solution:

Given:

Let lines *l* and m are two intersecting lines. Again, let $n \perp p$ to the intersecting lines meet at point D.

To prove that two lines n and p intersecting at a point.

Proof:

Let consider that line n and p are intersecting each other it means lines n and p are parallel to each other.

n||p(I)

Therefore, lines n and p are perpendicular to m and *l* respectively. Now, by using equation (I), n||p, it means that *l* and m. it is a contradiction. Since, our assumption is wrong. Hence, line *n* and p are intersect at a point.

6. Prove that a triangle must have at least two acute angles.

Solution:

If triangle is an acute triangle then all the angle will be acute angle and sum of the all angle will be 180° .

If a triangle is a right angle triangle then one angle will be equal to 90° and remaining two angle will be acute angles and sum of all the angles will be 180° . Hence, a triangle must have at least two acute angles.

7. In Fig., $\angle Q > \angle R$, PA is the bisector of $\angle QPR$ and PM $\perp QR$. Prove that $\angle APM = \frac{1}{2}(\angle Q - \angle R)$

Given in triangle PQR, $\angle Q > \angle R$, PA is the bisector of $\angle QPR$ and PM \perp QR. To prove that $\angle APM = \frac{1}{2}(\angle Q - \angle R)$ Proof: PA is the bisector of $\angle QPR$. So, $\angle QPA = \angle APR$

In angle PQM, $\angle Q + \angle PMQ + \angle QPM = 180^{\circ}$... (I) [Angle sum property of a triangle] $\angle Q + 90^{\circ} + \angle QPM = 180^{\circ}$ [$\angle PMR = 90^{\circ}$] $\angle Q = 90^{\circ} - \angle QPM$... (II) In triangle PMR, $\angle PMR + \angle R + \angle RPM = 180^{\circ}$ [Angle sum property of a triangle] $90^{\circ} + \angle R + \angle RPM = 180^{\circ}$ [$\angle PMR = 90^{\circ}$] $\angle R = 180^{\circ} - 90^{\circ} - \angle RPM$ $\angle R = 90^{\circ} - \angle RPM$... (III)

Subtracting equation (III) from equation (II), get: $\angle Q - \angle R = (90^{\circ} - \angle APM) - (90^{\circ} - \angle RPM)$ $\angle Q - \angle R = \angle RPM - \angle QPM$ $\angle Q - \angle R = (\angle RPA + \angle APM) - (\angle QPA - \angle APM) \quad \dots \text{(IV)}$ $\angle Q - \angle R = \angle QPA + \angle APM - \angle QPA + \angle APM \text{ [As, } \angle RPA = \angle QPA \text{]}$ $\angle Q - \angle R = 2\angle APM$ $\angle APM = \frac{1}{2}(\angle Q - \angle R)$ Hence, proved.