EXERCISE- 5 (A)

Question 1:

Solve each of the following equations by factorization:

$$X^2 - 10x - 24 = 0$$

Solution 1:

$$X^2 - 10x - 24 = 0$$

$$\Rightarrow$$
 x² - 12x + 2x - 24 = 0

$$\Rightarrow$$
 x (x - 12) + 2 (x - 12) = 0

$$\Rightarrow$$
 (x - 12) (x+2) = 0

Since
$$x - 12 = 0$$
 Or $x + 2 = 0$

Then
$$x = 12 \text{ Or } x = -2$$

Question 3:

$$2x^2 - \frac{1}{2}x = 0$$

Solution 3:

$$2x^2 - \frac{1}{2}x = 0$$

$$\Rightarrow x(2x - \frac{1}{2}) = 0$$

Since
$$x = 0$$
 Or $2x - \frac{1}{2} = 0$

Then
$$x = 0$$
 Or $x = \frac{1}{4}$

Question 4:

$$x(x - 5) = 24$$

Solution 4:

$$x(x - 5) = 24$$

$$\Rightarrow$$
 $x^2 - 5x - 24 = 0$

$$\Rightarrow x^2 - 8x + 3x - 24 = 0$$

$$\Rightarrow$$
 x (x - 8) + 3 (x - 8) = 0

$$\Rightarrow$$
(x - 8) (x + 3) = 0

Since
$$x - 8 = 0$$
 Or $x + 3 = 0$

Then
$$x = 8$$
 Or $x = -3$

```
Question 5:

\frac{9}{2} x = 5 + x^2

Solution 5:

\frac{9}{2} x = 5 + x^2

\Rightarrow 9x = 10 + 2x^2

\Rightarrow 2x^2 - 9x + 10 = 0

\Rightarrow 2x^2 - 5x - 4x + 10 = 0

\Rightarrow x(2x - 5) - 2(2x - 5) = 0

\Rightarrow (2x - 5) (x - 2) = 0

Since 2x - 5 = 0 Or x - 2 = 0

Then x = \frac{5}{2} Or x = 2
```

Question 6: $\frac{6}{x} = 1 + x$ Solution 6: $\frac{6}{x} = 1 + x$ $\Rightarrow 6 = x + x^2$ $\Rightarrow x^2 + x - 6 = 0$ $\Rightarrow x^2 + 3x - 2x - 6 = 0$ $\Rightarrow x (x+3) - 2 (x+3) = 0$ $\Rightarrow (x+3) (x-2) = 0$ Since x + 3 = 0 Or x - 2 = 0Then x = -3 Or x = 2

```
Question 7:

x = \frac{3x+1}{4x}

Solution 7:

x = \frac{3x+1}{4x}

\Rightarrow 4x^2 = 3x + 1

\Rightarrow 4x^2 - 3x - 1 = 0

\Rightarrow 4x^2 - 4x + x - 1 = 0

\Rightarrow 4x(x - 1) + 1(x - 1) = 0

\Rightarrow (x - 1)(4x + 1) = 0

Since x - 1 = 0 Or 4x + 1 = 0
```

Then x = 1 Or $x = -\frac{1}{4}$

Question 8:

$$x + \frac{1}{x} = 2.5$$

Solution 8:

$$x + \frac{1}{x} = 2.5$$

$$\Rightarrow \frac{x^2 + 1}{x} = \frac{5}{2}$$
$$\Rightarrow 2x^2 + 2 = 5x$$

$$\Rightarrow 2x^2 + 2 = 5x$$

$$\Rightarrow 2x^2 - 5x + 2 = 0$$

$$\Rightarrow 2x^2 - 4x - x + 2 = 0$$

$$\implies$$
 2x (x - 2) - 1 (x - 2) = 0

$$\Rightarrow (x-2)(2x-1)=0$$

Since
$$x - 2 = 0$$
 Or $2x - 1 = 0$

Then x = 2 Or $x = \frac{1}{2}$

Question 9:

$$(2x-3)^2 = 49$$

Solution 9:

$$(2x-3)^2 = 49$$

Taking square root on both sides

$$2x - 3 = \pm 7$$

When
$$2x - 3 = 7 \Rightarrow 2x = 10 \Rightarrow x = 5$$

And, when $2x - 3 = -7 \implies 2x = -4 \implies x = -2$

Question 10:

$$2(x^2-6)=3(x-4)$$

Solution 10:

$$2(x^2-6)=3(x-4)$$

$$\Rightarrow$$
 2x² $-$ 12 = 13x $-$ 12

$$\implies 2x^2 - 3x = 0$$

$$\Rightarrow x(2x-3)=0$$

Since
$$x = 0$$
 Or $2x - 3 = 0$

Then
$$x = 0$$
 Or $x = \frac{3}{2}$

Question 11:

$$(x + 1) (2x + 8) = (x+7) (x+3)$$

Solution 11:

$$(x + 1) (2x + 8) = (x+7) (x+3)$$

$$\Rightarrow$$
 2x² + 8x + 2x + 8 = x² + 3x + 7x + 21

$$\Rightarrow$$
 2x² + 10x + 8 = x² + 10x + 21

$$\Rightarrow$$
 x² - 13 = 0

$$\Rightarrow$$
 $x^2 - (\sqrt{13})^2 = 0$

$$\Rightarrow$$
 (x + $\sqrt{13}$) (x - $\sqrt{13}$) = 0

If
$$x + \sqrt{13} = 0$$
 Or $x - \sqrt{13} = 0$

$$\Rightarrow$$
 x= $-\sqrt{13}$ Or x = $\sqrt{13}$

Question 12:

$$x^{2}$$
 - (a + b) x + ab = 0

Solution 12:

$$x^2 - (a + b) x + ab = 0$$

$$\Rightarrow$$
 X² - ax - bx + ab = 0

$$\Rightarrow$$
 x(x - a) - b (x - a) = 0

$$\Rightarrow$$
 x(x - a) (x - b) = 0

Since
$$x - a = 0$$
 Or $x - b = 0$

Then
$$x = a$$
 Or $x = b$

Question 13:

$$(x + 3)^2 - 4(x + 3) - 5 = 0$$

Solution 13:

$$(x + 3)^2 - 4(x + 3) - 5 = 0$$

Let
$$x + 3 = y$$

Then
$$y^2 - 4y - 5 = 0$$

$$\Rightarrow$$
 $v^2 - 5v + v - 5 = 0$

$$\Rightarrow$$
 y (y - 5) + 1 (y - 5) = 0

$$\Rightarrow$$
 (y - 5) (y + 1) = 0

If
$$y - 5 = 0$$
 Or $y + 1 = 0$

Then
$$y = 5$$
 Or $y = -1$

$$\Rightarrow$$
 x + 3 = 5 or x + 3 = -1

$$\Rightarrow$$
 x = 2 or x = -4

Ouestion 14:

$$4(2x-3)^2 - (2x-3) - 14 = 0$$

Solution 14:

$$4(2x-3)^2 - (2x-3) - 14 = 0$$

Let
$$2x - 3 = y$$

Then
$$4y^2 - y - 14 = 0$$

$$\Rightarrow 4y^2 - 8y + 7y - 14 = 0$$

$$\implies$$
 4y(y - 2) + 7 (y - 2) = 0

$$\Rightarrow (y-2)(4y+7)=0$$

If
$$y-2=0$$
 Or

$$\Rightarrow$$
y = 2

or
$$y = \frac{-x}{4}$$

If
$$y-2=0$$
 Or $4y+7=0$
 $\Rightarrow y=2$ or $y=\frac{-7}{4}$
 $\Rightarrow 2x-3=2$ Or $2x-3=\frac{-7}{4}$
 $\Rightarrow 2x=5$ Or $2x=\frac{5}{4}$
 $\Rightarrow x=\frac{5}{2}$ Or $x=\frac{5}{8}$

$$2x - 3 = \frac{1}{4}$$

4y + 7 = 0

$$\Rightarrow$$
 2x = 5

$$2x = \frac{3}{4}$$

$$\Rightarrow$$
 X = $\frac{5}{2}$

Ouestion 15:

$$\frac{3x-2}{2x-3} = \frac{3x-8}{x+4}$$

$$2x - 3 - x + 4$$
 Solution 15:

$$\frac{3x-2}{3x-3} = \frac{3x-8}{3x-3}$$

$$\frac{3x-2}{2x-3} = \frac{3x-8}{x+4}$$

$$\Rightarrow (3x-2)(x+4) = (2x-3)(3x-8)$$

$$\Rightarrow$$
 $3x^2 + 12x - 2x - 8 = 6x^2 - 16x - 9x + 24$

$$\Rightarrow$$
 3x² + 10x - 8 = 6x² - 25x + 24

$$\Rightarrow 3x^2 - 35x + 32 = 0$$

$$\Rightarrow$$
 3x² - 32x - 3x + 32 = 0

$$\Rightarrow$$
 x(3x - 32) - 1(3x - 32) = 0

$$\implies$$
 (x - 1) (3x - 32) = 0

If
$$x - 1 = 0$$
 Or $3x - 32 = 0$

$$\Rightarrow$$
 x = 1 Or $x = \frac{32}{3} = 10^{\frac{2}{3}}$

$$\frac{100}{x} - \frac{100}{x+5} = 1$$

Solution 16:

$$\frac{100}{x} - \frac{100}{x+5} = 1$$

$$\Rightarrow \frac{100 (x+5) - 100x}{x (x+5)} = 1$$

$$\Rightarrow \frac{500}{x^2 + 5x} = 1$$

$$\Rightarrow x^2 + 5x = 500$$

$$\Rightarrow x^2 + 5x - 500 = 0$$

$$\Rightarrow x^2 + 25x - 20(x+25) = 0$$

$$\Rightarrow x(x+25) (x-20) = 0$$
If $x + 25 = 0$ Or $x - 20 = 0$
Then $x = -25$ Or $x = 20$

Question 17:

$$\frac{x-3}{x+3} + \frac{x+3}{x-3} = 2\frac{1}{2}$$
Solution 17:
$$\frac{x-3}{x+3} + \frac{x+3}{x-3} = 2\frac{1}{2}$$

$$\Rightarrow \frac{(x-3)^2 + (x+3)^2}{(x+3)(x-3)} = \frac{5}{2}$$

$$\Rightarrow \frac{x^2 - 6x + 9 + x^2 + 6x + 9}{(x^2 - 9)} = \frac{5}{2}$$

$$\Rightarrow 2(2x^2 + 18) = 5(x^2 - 9)$$

$$\Rightarrow 4x^2 + 36 = 5x^2 - 45$$

$$\Rightarrow x^2 - 81 = 0$$

$$\Rightarrow x^2 - 9^2 = 0$$

$$\Rightarrow (x+9)(x-9) = 0$$
If $x+9=0$ Or $x-9=0$
Then $x=-9$ Or $x=9$

Question 18:

$$\frac{4}{x+2} - \frac{1}{x+3} = \frac{4}{2x+1}$$

Solution 18:

$$\frac{4}{x+2} - \frac{1}{x+3} = \frac{4}{2x+1}$$

$$\Rightarrow \frac{4(x+3)-1(x+2)}{(x+2)(x+3)} = \frac{4}{2x+1}$$

$$\Rightarrow \frac{4x+12-x-2}{x^2+2x+3x+6} = \frac{4}{2x+1}$$

$$\Rightarrow \frac{3x+10}{x^2+5x+6} = \frac{4}{2x+1}$$

$$\Rightarrow (3x+10)(2x+1) = 4(x^2+5x+6)$$

⇒
$$6x^2 + 3x + 20x + 10 = 4x^2 + 20x + 24$$

⇒ $2x^2 + 3x - 14 = 0$
⇒ $2x^2 + 7x - 4x - 14 = 0$
⇒ $x(2x + 7) - 2(2x + 7) = 0$
⇒ $(2x + 7)(x - 2) = 0$
If $2x + 7 = 0$ Or $x - 2 = 0$
Then $x = \frac{-7}{2}$ Or $x = 2$

Question 19: $\frac{5}{x-2} - \frac{3}{x+6} = \frac{4}{x}$ Solution 19: $\frac{5}{x-2} - \frac{3}{x+6} = \frac{4}{x}$ $\Rightarrow \frac{5(x+6)-3(x-2)}{(x-2)(x+6)} = \frac{4}{x}$ $\Rightarrow \frac{5x+30-3x+6}{x^2+6x-2x-12} = \frac{4}{x}$ $\Rightarrow \frac{2x+36}{x^2+4x-12} = \frac{4}{x}$ $\Rightarrow 4x^2+16x-48=2x^2+36x$ $\Rightarrow 2x^2-20x-48=0$ $\Rightarrow x^2-10x-24=0$ $\Rightarrow x^2-12x+2x-24=0$ $\Rightarrow x(x-12)+2(x-12)=0$ If x-12=0 Or x+2=0Then x=12 Or x=-2

Question 20: $\left(1 + \frac{1}{x+1}\right) \left(1 - \frac{1}{x-1}\right) = \frac{7}{8}$ Solution 20: $\left(1 + \frac{1}{x+1}\right) \left(1 - \frac{1}{x-1}\right) = \frac{7}{8}$ $\Rightarrow \left(\frac{x+1+1}{x+1}\right) \left(\frac{x-1-1}{x-1}\right) = \frac{7}{8}$ $\Rightarrow \left(\frac{x+2}{x+1}\right) \left(\frac{x-2}{x-1}\right) = \frac{7}{8}$ $\Rightarrow \frac{x^2-4}{x^2-1} = \frac{7}{8}$

$$\Rightarrow 8x^2 - 32 = 7x^2 - 7$$

$$\Rightarrow$$
 x² = 25

$$\Rightarrow$$
 x = ± 5

Question 21:

Find the quadratic equation, whose solution set is:

- (i) {3,5}
- (ii) $\{-2, 3\}$
- (iii) $\{5, -4,\}$
- (iv) $\{-3, \frac{-2}{5}\}$

Solution 21:

(i) Since solution set is {3,5}

$$\Rightarrow$$
 x = 3 Or x = 5

$$\Rightarrow$$
 x - 3 = 0 Or x - 5 = 0

$$\Rightarrow$$
 (x - 3) (x - 5) = 0

$$\Rightarrow x^2 - 5x - 3x + 15 = 0$$

$$\Rightarrow$$
 x² - 8x + 15 = 0 Which is the required equation.

(ii) Since solution set is $\{-2, 3\}$

$$\Rightarrow$$
 x = -2 Or x = 3

$$\Rightarrow$$
 x + 2 = 0 Or x - 3 = 0

$$\Rightarrow$$
 (x + 2) (x - 3) = 0

$$\Rightarrow$$
 $x^2 - 3x + 2x - 6 = 0$

$$\Rightarrow$$
 x² - x - 6 = 0 Which is the required equation.

(iii) Since solution set is $\{5,-4,\}$

$$\Rightarrow$$
 x = 5 Or x = -4

$$\Rightarrow$$
 x - 5 = 0 Or x + 4 = 0

$$\Rightarrow$$
 (x - 5) (x + 4) = 0

$$\Rightarrow$$
 x² - 5x + 4x - 20 = 0

$$\Rightarrow$$
 $x^2 - x - 20 = 0$ Which is the required equation.

(iv) Since solution set is $\{-3, \frac{-2}{5}\}$

$$\Rightarrow$$
 x = -3 Or x = $\frac{-2}{5}$

$$\Rightarrow$$
 x + 3 = 0 Or 5x + 2 = 0

$$\Rightarrow$$
 (x + 3) (5x + 2) = 0

$$\Rightarrow$$
 5x² + 2x + 15x + 6 = 0

$$\Rightarrow$$
 5x² + 17x + 6 = 0 Which is the required equation.

Ouestion 22:

Find the value of x, if a+1=0 and $x^2 + ax - 6 = 0$

Solution 22:

If a + 1 = 0, then a = -1

Put this value in the given equation $x^2 + ax - 6 = 0$

$$x^2 - x - 6 = 0$$

$$\Rightarrow$$
 x² - 3x + 2x - 6 = 0

$$\Rightarrow$$
 x(x - 3) + 2 (x - 3) = 0

$$\Rightarrow$$
 (x - 3) (x + 2) = 0

If
$$x - 3 = 0$$
 Or $x + 2 = 0$

Then x = 3 Or x = -2.

Ouestion 23:

Find the value of x, if a + 1 = 0 and $x^2 + ax - 6 = 0$

Solution 23:

If a + 7 = 0, then a = -7

and b + 10 = 0, then b = -10

Put these values of a and b in the given equation

$$12x^2 = (-7)x - (-10)$$

$$\Rightarrow$$
 12x² + 7x - 10 = 0

$$\Rightarrow$$
 12x² + 15x - 8x - 10 = 0

$$\Rightarrow$$
 3x (4x + 5) - 2(4x + 5) = 0

$$\implies$$
 (4x + 5) (3x - 2) = 0

If
$$4x + 5 = 0$$
 Or $3x - 2 = 0$

Then
$$x = \frac{-5}{4}$$
 Or $x = \frac{2}{3}$

Ouestion 24:

Use the substitution y = 2x + 3 to solve for x, if $4(2x + 3)^2 - (2x + 3) - 14 = 0$

Solution 24:

$$4(2x+3)^2 - (2x+3) - 14 = 0$$

Put
$$2x + 3 = y$$

$$4y^2 - y - 14 = 0$$

$$\Rightarrow 4v^2 - 8v + 7v - 14 = 0$$

$$\Rightarrow$$
 4y (y - 2) + 7 (y - 2) = 0

$$\Rightarrow$$
 $(y-2)(4y+7)=0$

If
$$y - 2 = 0$$
 Or $4y + 7 = 0$

Then
$$2x + 3 - 2 = 0$$
 Or $4(2x + 3) + 7 = 0$

$$\Rightarrow$$
 2x = -1 Or 8x = -19

$$\implies x = \frac{-1}{2} \qquad \text{Or} \quad x = \frac{-19}{8}$$

Question 25:

Without solving the quadratic equation $6x^2 - x - 2 = 0$, find whether $x = \frac{2}{3}$ is a solution of this equation or not.

Solution 25:

Consider the equation, $6x^2 - x - 2 = 0$

Put
$$x = \frac{2}{3}$$
 in L.H.S

L.H.S =
$$6\left(\frac{2}{3}\right)^2 - \left(\frac{2}{3}\right) - 2$$

= $\frac{24}{9} - \frac{2}{3} - 2$
= $\frac{24 - 6 - 18}{9} = 0 = R.H.S.$

Since L.H.S = R.H.S, then $x = \frac{2}{3}$ is a solution of the given equation.

Ouestion 26:

Determine whether x = -1 is a root of the equation $x^2 - 3x + 2 = 0$ or not.

Solution 26:

$$x^2 - 3x + 2 = 0$$

Put
$$x = -1$$
 in L.H.S.

L.H.S. =
$$(-1)^2 - 3(-1) + 2$$

$$= 1 + 3 + 2 = 6 \neq R.H.S.$$

Then x = -1 is not the solution of the given equation.

Question 27:

If $x = \frac{2}{3}$ is a solution of the quadratic equation $7x^2 + mx - 3 = 0$; find the value of m.

Solution 27:

$$7x^2 + mx - 3 = 0$$

Given $x = \frac{2}{3}$ is the solution of the given equation.

Put given value of x in the given equation

$$7\left(\frac{2}{3}\right)^2 + m\left(\frac{2}{3}\right) - 3 = 0$$

$$\Rightarrow \frac{28}{9} + \frac{2m}{3} - 3 = 0$$

$$\Rightarrow 28 + 6m - 27 = 0$$

$$\Rightarrow 6m = -1$$

$$\Rightarrow$$
 m = $\frac{-1}{6}$

Question 28:

If x = -3 and $x = \frac{2}{3}$ are solution of quadratic equation $mx^2 + 7x + n = 0$, find the values of m and n.

Solution 28:

$$mx^2 + 7x + n = 0$$

Put x = -3 in given equation

$$m(-3)^2 + 7(-3) + n = 0$$

$$\Rightarrow$$
 9m - 21 + n = 0

$$9m + n = 21$$
 ----- (1)

Put $x = \frac{2}{3}$ in given equation

$$m\left(\frac{2}{3}\right)^2 + 7\left(\frac{2}{3}\right) + n = 0$$

$$\Rightarrow \frac{4m}{9} + \frac{14}{3} + n = 0$$

$$\Rightarrow$$
 4m + 9n = -42 ----(2)

Solving these equations we get

$$m = 3$$
 and $n = -6$

Question 29:

If quadratic equation $x^2 - (m + 1) x + 6 = 0$ has one root as x = 3; find the value of m and the other root of the equation.

Solution 29:

$$x^2 - (m + 1)x + 6 = 0$$

Put x = 3 in the given equation

$$(3)^2 - (m + 1)(3) + 6 = 0$$

$$\Rightarrow$$
 9 - 3m - 3 + 6 = 0

$$\Rightarrow$$
 - 3m = -12

$$\Rightarrow$$
 m = 4

Put this value of m in the given equation, we get

$$x^2 - 5x + 6 = 0$$

$$\Rightarrow$$
 $x^2 - 3x - 2x + 6 = 0$

$$\Rightarrow$$
 x(x-3) - 2(x-3) = 0

$$\Rightarrow$$
 $(x-3)(x-2)=0$

If
$$x - 3 = 0$$
 Or $x - 2 = 0$

Then
$$x = 3$$
 Or $x = 2$

∴ 2 is the other root of the given equation

EXERCISE 7 (B)

Question 1:

Solve each of the following equations using the formula:

(i)
$$x^2 - 6x = 27$$

$$(ii)$$
 $x^2 - 10x + 21 = 0$

(iii)
$$x^2 + 6x - 10 = 0$$

(iv)
$$x^2 + 2x - 6 = 0$$

$$(v)$$
 $3x^2 + 2x - 1 = 0$

(vi)
$$2x^2 + 7x + 5 = 0$$

(vii)
$$\frac{2}{3}x = -\frac{1}{6}x^2 - \frac{1}{3}$$

(viii)
$$\frac{1}{15} x^2 + \frac{5}{3} = \frac{2}{3} x$$

(ix)
$$x^2 - 6 = 2\sqrt{2x}$$

(x)
$$\frac{4}{x} - 3 = \frac{5}{2x + 3}$$

(xi)
$$\frac{2x+3}{x+3} = \frac{x+4}{x+3}$$

(xii)
$$\sqrt{6x^2} - 4x - 2\sqrt{6} = 0$$

(v)
$$3x^2 + 2x - 1 = 0$$

(vi) $2x^2 + 7x + 5 = 0$
(vii) $\frac{2}{3}x = -\frac{1}{6}x^2 - \frac{1}{3}$
(viii) $\frac{1}{15}x^2 + \frac{5}{3} = \frac{2}{3}x$
(ix) $x^2 - 6 = 2\sqrt{2x}$
(x) $\frac{4}{x} - 3 = \frac{5}{2x + 3}$
(xi) $\frac{2x + 3}{x + 3} = \frac{x + 4}{x + 2}$
(xii) $\sqrt{6x^2} - 4x - 2\sqrt{6} = 0$
(xiii) $\frac{2x}{x - 4} + \frac{2x - 5}{x - 3} = 8\frac{1}{3}$
(xiv) $\frac{x - 1}{x - 2} + \frac{x - 3}{x - 4} = 3\frac{1}{3}$

(xiv)
$$\frac{x-1}{x-2} + \frac{x-3}{x-4} = 3\frac{1}{3}$$

Solution 1:

(i)
$$x^2 - 6x = 27$$

$$\Rightarrow x^2 - 6x - 27 = 0$$

Here
$$a = 1$$
, $b = -6$ and $c = -27$

Then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-27)}}{2(1)}$$

$$= \frac{6 \pm 12}{2} = \frac{6 + 12}{2} \text{ and } \frac{6 - 12}{2} = 9 \text{ and } -3$$

(ii)
$$x^2 - 10x + 21 = 0$$

Here
$$a = 1$$
, $b = -10$ and $c = 21$

Then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(21)}}{2(1)}$$

$$= \frac{10 \pm 4}{2} = \frac{10 + 4}{2} \text{ and } \frac{10 - 4}{2} = 7 \text{ and } 3$$

(iii)
$$x^2 + 6x - 10 = 0$$

Here
$$a = 1$$
, $b = 6$ and $c = -10$

Then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(6) \pm \sqrt{(-6)^2 - 4(1)(-10)}}{2(1)}$$

$$= \frac{-6 \pm \sqrt{76}}{2} = \frac{-6 \pm 2\sqrt{19}}{2} \text{ and } \frac{-6 - 2\sqrt{19}}{2} = -3 + \sqrt{19} \text{ and } -3 - \sqrt{19}$$

(iv) $x^2 + 2x - 6 = 0$

Here
$$a = 1$$
, $b = 2$ and $c = -6$

Then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

= $\frac{-(2) \pm \sqrt{(2)^2 - 4(1)(-6)}}{2(1)}$
= $\frac{-2 \pm \sqrt{28}}{2} = \frac{-2 \pm 2\sqrt{7}}{2} = -1 \pm \sqrt{7}$

(v) $3x^2 + 2x - 1 = 0$

Here
$$a = 3$$
, $b = 2$ and $c = -1$

Then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(2) \pm \sqrt{(2)^2 - 4(3)(-1)}}{2(3)}$$

$$= \frac{-2 \pm 4}{6} = \frac{-2 \pm 4}{6} \text{ and } \frac{-2 - 4}{6} = \frac{1}{3} \text{ and } -1$$

(vi) $2x^2 + 7x + 5 = 0$

Here
$$a = 2$$
, $b = 7$ and $c = 5$

Then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(7) \pm \sqrt{(7)^2 - 4(2)(5)}}{2(2)}$$

$$= \frac{-7 \pm 3}{4} = \frac{-7 + 3}{4} \text{ and } \frac{-7 - 3}{4} = -1 \text{ and } -\frac{5}{2}$$

(vii)
$$\frac{2}{3}x = -\frac{1}{6}x^2 - \frac{1}{3}$$

 $\Rightarrow 4x = -x^2 - 2$
 $\Rightarrow x^2 + 4x + 2 = 0$

Here
$$a = 1$$
, $b = 4$ and $c = 2$

Then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(4) \pm \sqrt{(4)^2 - 4(1)(2)}}{2(1)}$$

$$= \frac{-4 \pm \sqrt{8}}{2} = \frac{-4 \pm 2\sqrt{2}}{2} = -2 \pm \sqrt{2}$$

(viii)
$$\frac{1}{15} x^2 + \frac{5}{3} = \frac{2}{3} x$$

 $\Rightarrow x^2 + 25 = 10x$
 $\Rightarrow x^2 - 10x + 25 = 0$
Here $a = 1$, $b = -10$ and $c = 25$

Then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(25)}}{2(11)}$$

$$= \frac{10 \pm \sqrt{0}}{2} = 5$$
(ix) $x^2 - 6 = 2\sqrt{2}x$

$$\Rightarrow x^2 - 2\sqrt{2}x - 6 = 0$$
Here $a = 1$, $b = -2\sqrt{2}$ and $c = -6$
Then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$= \frac{-(-2\sqrt{2}) \pm \sqrt{(-2\sqrt{2})^2 - 4(1)(-6)}}{2(1)}$$

$$= \frac{2\sqrt{2} \pm \sqrt{32}}{2} = \frac{2\sqrt{2} \pm 4\sqrt{2}}{2} = \frac{2\sqrt{2} \pm 4\sqrt{2}}{2} \text{ and } \frac{2\sqrt{2} - 4\sqrt{2}}{2}$$

$$= \frac{6\sqrt{2}}{2} \text{ and } \frac{-2\sqrt{2}}{2} = 3\sqrt{2} \text{ and } -\sqrt{2}$$
(x) $\frac{4}{x} - 3 = \frac{5}{2x + 3}$

$$\Rightarrow \frac{4 - 3x}{x} = \frac{5}{2x + 3}$$

$$\Rightarrow (4 - 3x)(2x + 3) = 5x$$

$$\Rightarrow 8x + 12 - 6x^2 - 9x = 5x$$

$$\Rightarrow 6x^2 + 6x - 12 = 0$$

$$\Rightarrow x^2 + x - 2 = 0$$
Here $a = 1$, $b = 1$ and $c = -2$
Then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$= \frac{-(1) \pm \sqrt{(1)^2 - 4(1)(-2)}}{2(1)}$$

$$= \frac{1 \pm \sqrt{9}}{2} = \frac{-1 \pm 3}{2} = \frac{-1 + 3}{2} \text{ and } \frac{-1 - 3}{2} = 1 \text{ and } -2$$
(xi) $\frac{2x + 3}{x + 3} = \frac{x + 4}{x + 2}$

$$\Rightarrow (2x + 3)(x + 2) = (x + 3)(x + 4)$$

$$\Rightarrow 2x^2 + 4x + 3x + 6 = x^2 + 4x + 3x + 12$$

$$\Rightarrow x^2 - 6 = 0$$
Here $a = 1$, $b = 0$ and $c = -6$
Then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$= \frac{-(0) \pm \sqrt{(0)^2 - 4(1)(-6)}}{2(1)}$$

$$= \frac{0 \pm \sqrt{24}}{2} = \frac{0 \pm 2\sqrt{6}}{2} = -\sqrt{6} \text{ and } \sqrt{6}$$

(xii)
$$\sqrt{6} x^2 - 4x - 2\sqrt{6} = 0$$

Here $a = \sqrt{6}$, $b = -4$ and $c = -2\sqrt{6}$
Then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $= \frac{-(-4) \pm \sqrt{(-4))^2 - 4} (\sqrt{6}) (-2\sqrt{6})}{2(\sqrt{6})}$
 $= \frac{4 \pm \sqrt{64}}{2\sqrt{6}} = \frac{4 \pm 8}{2\sqrt{6}} = \frac{4 + 8}{2\sqrt{6}}$ and $\frac{4 - 8}{2\sqrt{6}}$
 $= \frac{6}{\sqrt{6}}$ and $\frac{-2}{\sqrt{6}} = \sqrt{6}$ and $\frac{-\sqrt{6}}{3}$
(xiii) $\frac{2x}{x - 4} + \frac{2x - 5}{x - 3} = 8\frac{1}{3}$
 $\Rightarrow \frac{2x(x - 3) + (x - 4)(2x - 5)}{(x - 4)(x - 3)} = \frac{25}{3}$
 $\Rightarrow \frac{2x^2 - 6x + 2x^2 - 5x - 8x + 20}{x^2 - 3x + 4x + 12} = \frac{25}{3}$
 $\Rightarrow 25x^2 - 175x + 300 = 12x^2 - 57x + 60$
 $\Rightarrow 13x^2 - 118x + 240 = 0$
Here $a = 13$, $b = -118$ and $c = 240$
Then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $= \frac{-(-118) \pm \sqrt{(-118))^2 - 4(\sqrt{13})(240)}}{2(13)}$
 $= \frac{118 \pm 38}{26}$ and $\frac{118 - 38}{26}$ and $\frac{40}{13}$
(xiv) $\frac{x - 1}{x - 2} + \frac{x - 3}{x - 4} = 3\frac{1}{3}$
 $\Rightarrow \frac{(x - 1)(x - 4) + (x - 2)(x - 3)}{(x - 2)(x - 4)} = \frac{10}{3}$
 $\Rightarrow \frac{x^2 - 4x - x + 4 + x^2 - 3x - 2x + 6}{x^2 - 4x - 2x + 8} = \frac{10}{3}$
 $\Rightarrow \frac{2x^2 - 10x + 10}{x^2 - 60x + 80} = \frac{10}{3}$
 $\Rightarrow 10x^2 - 60x + 80 = 6x^2 - 30x + 30$
 $\Rightarrow 4x^2 - 30x + 50 = 0$
 $\Rightarrow 2x^2 - 15x + 25 = 0$
Here $a = 2$, $b = -15$ and $c = 25$

Then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-15) \pm \sqrt{(-15)^2 - 4(2)(25)}}{2(2)}$$

$$= \frac{15 \pm \sqrt{25}}{4} = \frac{15 \pm 5}{4}$$

$$= \frac{15 + 5}{4} \text{ and } \frac{15 - 5}{4} = 5 \text{ and } \frac{5}{2}$$

Question 2:

Without solving comment upon the nature of roots of each of the following equations:

(i)
$$7x^2 - 9x + 2 = 0$$

(ii)
$$6x^2 - 13x + 4 = 0$$

$$(iii)$$
 25x² - 10x + 1 = 0

(iv)
$$x^2 - ax - b^2 = 0$$

(v)
$$x^2 + 2\sqrt{3x} - 9 = 0$$

$$(vi) 2x^2 + 8x + 9 = 0$$

Solution 2:

(i)
$$7x^2 - 9x + 2 = 0$$

$$a = 7$$
, $b = -9$ and $c = 2$

∴ Discriminant =
$$b^2$$
 – 4ac

$$= (-9)^2 - 4(7)(2)$$

$$= 81 - 56 = 25$$

Since D >0, then equation has two real and unequal roots.

(ii)
$$6x^2 - 13x + 4 = 0$$

$$a = 6$$
, $b = -13$ and $c = 4$

$$\therefore$$
 Discriminant = $b^2 - 4ac$

$$= (-13)^2 - 4(6)(4)$$

$$= 169 - 96 = 73$$

Since 73 is not a perfect square, roots are irrational

Since D >0, then equation has two real and unequal roots.

(iii)
$$25x^2 - 10x + 1 = 0$$

$$a = 25$$
, $b = -10$ and $c = 1$

$$\therefore$$
 Discriminant = $b^2 - 4ac$

$$= (-10)^2 - 4(25)(1)$$

$$= 100 - 100 = 0$$

Since D = 0, then equation has two real and unequal roots.

(iv)
$$x^2 + 2\sqrt{3}x - 9 = 0$$

$$a = 1$$
, $b = 2\sqrt{3}$ and $c = -9$

$$\therefore$$
 Discriminant = $b^2 - 4ac$

$$= (2\sqrt{3})^2 - 4(1) (-9)$$

= 12 + 36 = 48

Since 48 is not a perfect square, roots are irrational Since D >0, then equation has two real and unequal roots.

(v)
$$x^2 - ax - b^2 = 0$$

 $a = 1, b = -a \text{ and } c = -b^2$
 $\therefore \text{ Discriminant} = b^2 - 4ac$
 $= (-a)^2 - 4(1) (-b)^2$
 $= a^2 + 4b^2 = a \text{ positive value}$

Since $a^2 + 4b^2$ is not a perfect square, roots are irrational Since D >0, then equation has two real and unequal roots.

(vi)
$$2x^2 + 8x + 9 = 0$$

 $a = 2$, $b = 8$ and $c = 9$
 \therefore Discriminant = $b^2 - 4ac$
 $= (8)^2 - 4(2)(9)$
 $= 64 - 72 = -18 = a$ negative value
Since D >0, then equation has no real roots.

Question 3:

Find the value of 'p', if the following quadratic equations have equal roots:

$$4x^2 - (p-2)x + 1 = 0$$

Solution 3:

$$4x^2 - (p-2)x + 1 = 0$$

Here a = 4, b = - (p - 2) and c = 1

Given: equation has equal roots

Then
$$d=0$$

 $\Rightarrow b^2 - 4ac = 0$
 $\Rightarrow [-(p-2)]^2 - 4(4) (1) = 0$
 $\Rightarrow p^2 + 4 - 4p - 16 = 0$
 $\Rightarrow p^2 - 4p - 12 = 0$
 $\Rightarrow p^2 - 6p + 2p - 12 = 0$
 $\Rightarrow p(p-6) (p-6) = 0$
 $\Rightarrow (p-6) (p+2) = 0$
Then $p-6 = 0$ Or $p+2 = 0$
 $\Rightarrow p = 6$ Or $p = -2$.

Ouestion 4:

The equation $3x^2 - 12x + (n - 5) = 0$ has equal roots. Find the value of n.

Solution 4:

$$3x^2 - 12x + (n - 5) = 0$$

Here $a = 3$, $b = -12$ and $c = n - 5$
Given: equation has equal roots
Then $D = 0$
 $\Rightarrow b^2 - 4ac = 0$
 $\Rightarrow [-12]^2 - 4(3)(n - 5) = 0$
 $\Rightarrow 144 - 12n + 60 = 0$
 $\Rightarrow -12n = -204$
 $\Rightarrow n = \frac{-204}{-12} = 17$

Question 5:

Find the value of 'm', if the following equation has equal roots:

$$(m-2)x^2 - (5+m)x + 16 = 0$$

Solution 5:

$$(m-2)x^2 - (5+m)x + 16 = 0$$

Here a = m - 2, b = - (5 + m) and c = 16

Given: equation has equal roots

Then D = 0

$$\Rightarrow$$
 b² - 4ac = 0

$$\Rightarrow$$
 [- (5 + m)]² - 4(m - 2)(16) = 0

$$\Rightarrow$$
 25 + m² + 10m - 64m + 128 = 0

$$\Rightarrow$$
 m² - 54m + 153 = 0

$$\Rightarrow m^2 - 51m - 3m + 153 = 0$$

$$\Rightarrow$$
 m (m - 51) - 3 (m - 51) = 0

$$\Rightarrow (m-51) (m-3) = 0$$

Then
$$m - 51 = 0$$
 Or $m - 3 = 0$

$$\Rightarrow$$
 m = 51 Or m = 3

EXERCISE 7 (C)

Question 1:

Solve each of the following equations for x and give, in each case, your answer correct to one decimal place:

(i)
$$x^2 - 8x + 5 = 0$$

$$(ii)$$
 $5x^2 + 10x - 3 = 0$

Solution 1:

(i)
$$x^2 - 8x + 5 = 0$$

Here a = 1, b = -8 and c = 5

$$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(5)}}{2(1)}$$

$$= \frac{8 \pm \sqrt{44}}{2} = \frac{8 \pm 2\sqrt{11}}{4} = 4 \pm \sqrt{11} = 4 \pm 3.3 = 7.3 \text{ and } 0.7$$

(ii)
$$5x^2 + 10x - 3 = 0$$

Here $a = 5$, $b = 10$ and $c = -3$

$$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-10) \pm \sqrt{(10)^2 - 4(5)(-3)}}{2(5)}$$

$$= \frac{-10 \pm \sqrt{160}}{10} = \frac{-10 \pm 12.6}{10}$$

$$=\frac{-10+12.6}{10}$$
 and $\frac{-10-12.6}{10}=0.26$ and $-2.26=0.3$ and -2.3

Question 2:

Solve each of the following equations for x and give, in each case your answer correct to 2 decimal places:

(i)
$$2x^2 - 10x + 5 = 0$$

(ii)
$$4x + \frac{6}{x} + 13 = 0$$

(iii)
$$x^2 - 3x - 9 = 0$$

$$(iv)$$
 $x^2 - 5x - 10 = 0$

Solution 2:

(i)
$$2x^2 - 10x + 5 = 0$$

Here a = 2, b = -10 and c = 5

$$\therefore X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-10) \pm \sqrt{(10)^2 - 4(2)(5)}}{2(2)}$$

$$= \frac{10 \pm \sqrt{60}}{4} = \frac{10 \pm 7.75}{4}$$

$$= \frac{10 + 7.75}{4} \text{ and } \frac{10 - 7.75}{4} = 4.44 \text{ and } 0.56$$

(ii)
$$4x + \frac{6}{x} + 13 = 0$$

 $\Rightarrow 4x^2 + 6 + 13x = 0$
 $\Rightarrow 4x^2 + 13x + 6 = 0$
 \Rightarrow Here a = 4, b = 13 and c = 6

$$\therefore X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(13) \pm \sqrt{(13)^2 - 4(4)(6)}}{2(4)}$$

$$= \frac{-13 \pm \sqrt{73}}{8} = \frac{-13 \pm 8.54}{8}$$

$$= \frac{-13 + 8.54}{8} \text{ and } \frac{-13 - 8.54}{8} = -0.56 \text{ and } -2.69$$

(iii)
$$x^2 - 3x - 9 = 0$$

 \Rightarrow Here $a = 1$, $b = -3$ and $c = -9$
 $\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $= \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-9)}}{2(1)}$
 $= \frac{3 \pm \sqrt{45}}{2} = \frac{3 \pm 6.70}{2}$
 $= \frac{3 + 6.70}{2}$ and $\frac{3 - 6.70}{2} = 4.85$ and -1.85

Question 3:

Solve each of the following equations for x, giving your answer correct to 3 decimal places:

(i)
$$3x^2 - 12x - 1 = 0$$

(ii)
$$x^2 - 16x + 6 = 0$$

(iii)
$$2x^2 + 11x + 4 = 0$$

Solution 3:

(i)
$$3x^2 - 12x - 1 = 0$$

 \Rightarrow Here $a = 3$, $b = -12$ and $c = -1$
 $\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $= \frac{-(-12) \pm \sqrt{(-12)^2 - 4(3)(-1)}}{2(3)}$
 $= \frac{12 \pm \sqrt{156}}{6} = \frac{12 \pm 12.489}{6}$

 $=\frac{12+12.489}{6}$ and $\frac{12-12.489}{6}=4.082$ and -0.082

(ii)
$$x^2 - 16x + 6 = 0$$

 \Rightarrow Here $a = 1, b = -16$ and $c = -1$
 $\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$= \frac{-(-16) \pm \sqrt{(-16)^2 - 4(1)(6)}}{2(1)}$$

$$= \frac{16 \pm \sqrt{232}}{2} = \frac{16 \pm 15.231}{2}$$

$$= \frac{16 + 15.231}{2} \text{ and } \frac{16 - 15.231}{2} = 15.616 \text{ and } 0.384$$
(iii) $2x^2 + 11x + 4 = 0$

$$\Rightarrow \text{ Here } a = 2, b = 11 \text{ and } c = 4$$

$$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{(-11) \pm \sqrt{(11)^2 - 4(2)(4)}}{2(2)}$$

$$= \frac{-11 \pm \sqrt{89}}{4} = \frac{-11 \pm 9.433}{4}$$

$$= \frac{-11 + 9.433}{4} \text{ and } \frac{-11 - 9.433}{4} = -0.392 \text{ and } -5.108$$

Question 4:

Solve:

(i)
$$x^4 - 2x^2 - 3 = 0$$

(ii)
$$x^4 - 10x^2 + 9 = 0$$

Solution 4:

(i)
$$x^4 - 2x^2 - 3 = 0$$

 $\Rightarrow x^4 - 3x^2 + x^2 - 3 = 0$
 $\Rightarrow x^2 (x^2 - 3) + 1 (x^2 - 3) = 0$
 $\Rightarrow (x^2 - 3) (x^2 + 3) = 0$
If $x^2 - 3 = 0$ Or $x^2 + 1 = 0$
 $\Rightarrow x^2 = 3$ Or $x^2 = -1$ (reject)
 $\Rightarrow x = \pm \sqrt{3}$

(ii)
$$x^4 - 10x^2 + 9 = 0$$

 $\Rightarrow x^4 - 9x^2 - x^2 + 9 = 0$
 $\Rightarrow x^2 (x^2 - 9) - 1 (x^2 - 9) = 0$
 $\Rightarrow (x^2 - 9) (x^2 - 1) = 0$
If $x^2 - 9 = 0$ Or $x^2 - 1 = 0$
 $\Rightarrow x^2 = 9$ Or $x^2 = 1$
 $\Rightarrow x = \pm 3$ Or $x = \pm 1$

Question 5:

Solve:

(i)
$$(x^2-x)^2 + 5(x^2-x) + 4 = 0$$

(ii) $(x^2-3x)^2 - 16(x^2-3x) - 36 = 0$

Solution 5:

(i)
$$(x^2-x)^2 + 5(x^2-x) + 4 = 0$$

Let
$$x^2 - x = y$$

Then
$$y^2 + 5y + 4 = 0$$

$$\Rightarrow$$
 $v^2 + 4v + v + 4 = 0$

$$\implies$$
 y (y + 4) + 1 (y + 4) = 0

$$\implies$$
 (y + 4) (y + 1) = 0

If
$$y + 4 = 0$$
 Or $y + 1 = 0$

$$\Rightarrow$$
 x² - x + 4 = 0 Or x² - x + 1 = 0

$$\Rightarrow X = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(4)}}{2(1)} \text{ Or } \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(1)}}{2(1)}$$

$$\Rightarrow$$
 1 = $\frac{1 \pm \sqrt{-15}}{2}$ (reject) Or x = $\frac{1 \pm \sqrt{-3}}{2}$ (reject)

: Given equation has no real solution

(ii)
$$(x^2-3x)^2 - 16(x^2-3x) - 36 = 0$$

$$Let x^2 - 3x = y$$

Then
$$y^2 - 16y - 36 = 0$$

$$\Rightarrow$$
y² - 18y + 2y - 36 = 0

$$\Rightarrow$$
 y (y - 18) + 2 (y - 18) = 0

$$\Rightarrow$$
 (y - 18) (y + 2) = 0

$$\Rightarrow$$
 $(y - 18)(y + 2) = 0$
If $y - 18 = 0$ Or $y + 2 = 0$

$$\rightarrow v^2 - 3v - 18 = 0$$
 Or $v^2 - 3v - 3v = 0$

$$\Rightarrow$$
 $x^2 - 3x - 18 = 0$ Or $x^2 - 3x + 2 = 0$

$$\Rightarrow$$
 $x^2 - 6x + 3x - 18 = 0$ Or $x^2 - 2x - x + 2 = 0$

$$\Rightarrow$$
 x(x-6) + 3(x-6) = 0 Or x (x-2) - 1 (x-2) = 0

$$\Rightarrow$$
 (x - 6) (x + 3) = 0 Or (x - 2) (x - 1) = 0

If
$$x - 6 = 0$$
 Or $x + 3 = 0$ Or $x - 2 = 0$ Or $x - 1 = 0$

Then
$$x = 6$$
 Or $x = -3$ Or $x = 2$ Or $x = 1$

Question 6:

(i)
$$\sqrt{\frac{x}{x-3}} + \sqrt{\frac{x-3}{x}} = \frac{5}{2}$$

(ii)
$$\left(\frac{2x-3}{x-1}\right) - 4\left(\frac{x-1}{2x-3}\right) = 3$$

(iii)
$$\left(\frac{3x+3}{x+1}\right) + \left(\frac{x+1}{3x+1}\right) = \frac{5}{2}$$

(iv)
$$3\sqrt{\frac{x}{5}} + 3\sqrt{\frac{5}{x}} = 10$$

Solution 6:

(i)
$$\sqrt{\frac{x}{x-3}} + \sqrt{\frac{x-3}{x}} = \frac{5}{2}$$

Let $\sqrt{\frac{x}{x-3}} = y$
Then $y + \frac{1}{y} = \frac{5}{2}$
 $\Rightarrow \frac{y^2+1}{y} = \frac{5}{2}$
 $\Rightarrow 2y^2 + 2 = 5y$
 $\Rightarrow 2y^2 - 5y + 2 = 0$
 $\Rightarrow 2y^2 - 4y - y + 2 = 0$
 $\Rightarrow 2y (y-2) - 1 (y-2) = 0$
 $\Rightarrow (y-2) (2y-1) = 0$
If $y-2=0$ Or $2y-1=0$
Then $y=2$ Or $y=\frac{1}{2}$
 $\Rightarrow \sqrt{\frac{x}{x-3}} = 2$ Or $\sqrt{\frac{x}{x-3}} = \frac{1}{2}$
 $\Rightarrow \frac{x}{x-3} = 4$ Or $\frac{x}{x-3} = \frac{1}{4}$
 $\Rightarrow x = 4$ Or $x = -1$

(ii)
$$\left(\frac{2x-3}{x-1}\right) - 4\left(\frac{x-1}{2x-3}\right) = 3$$

Let $\frac{2x-3}{x-1} = y$
Then $y - \frac{4}{y} = 3$
 $\Rightarrow \frac{y^2-4}{y} = 3$
 $\Rightarrow y^2 - 4 = 3y$
 $\Rightarrow y^2 - 3y - 4 = 0$
 $\Rightarrow y^2 - 4y + y - 4 = 0$
 $\Rightarrow y (y - 4) + 1 (y - 4) = 0$
 $\Rightarrow (y - 4) (y + 1) = 0$
If $y - 4 = 0$ Or $y + 1 = 0$
Then $y = 4$ Or $y = -1$
 $\Rightarrow \frac{2x-3}{x-1} = 4$ Or $\frac{2x-3}{x-1} = -1$
 $\Rightarrow 4x - 4 = 2x - 3$ Or $2x - 3 = -x + 1$
 $\Rightarrow 2x = 1$ Or $3x = 4$
 $\Rightarrow x = \frac{1}{2}$ Or $x = \frac{4}{3} = 1\frac{1}{3}$

(iii)
$$\left(\frac{3x+1}{x+1}\right) + \left(\frac{x+1}{3x+1}\right) = \frac{5}{2}$$

Let $\frac{3x+1}{x+1} = y$

Then
$$y + \frac{1}{y} = \frac{5}{2}$$

$$\Rightarrow \frac{y^2 + 1}{y} = \frac{5}{2}$$

$$\Rightarrow 2y^2 + 2 = 5y$$

$$\Rightarrow 2y^2 - 5y + 2 = 0$$

$$\Rightarrow 2y^2 - 4y - y + 2 = 0$$

$$\Rightarrow 2y(y - 2) - 1(y - 2) = 0$$

$$\Rightarrow (y - 2) (2y - 1) = 0$$
If $y - 2 = 0$ Or $2y - 1 = 0$
Then $y = 2$ Or $y = \frac{1}{2}$

$$\Rightarrow \frac{3x + 1}{x + 1} = 2$$
 Or $\frac{3x + 3}{x + 1} = \frac{1}{2}$

$$\Rightarrow 3x + 1 = 2x + 2$$
 Or $6x + 2 = x + 1$

$$\Rightarrow x = 1$$
 Or $5x = -1$

$$\Rightarrow x = 1$$
 Or $x = \frac{-1}{5}$

(iv)
$$3\sqrt{\frac{x}{5}} + 3\sqrt{\frac{5}{x}} = 10$$

Let $\sqrt{\frac{x}{5}} = y$
Then $3y + \frac{3}{y} = 10$
 $\Rightarrow \frac{3y^2 + 3}{y} = 10$
 $\Rightarrow 3y^2 + 3 = 10y$
 $\Rightarrow 3y^2 - 10y + 3 = 0$
 $\Rightarrow 3y^2 - 9y - y + 3 = 0$
 $\Rightarrow 3y (y - 3) - 1(y - 3) = 0$
 $\Rightarrow (y - 3)(3y - 1) = 0$
If $y - 3 = 0$ Or $3y - 1 = 0$
Then $y = 3$ Or $y = \frac{1}{3}$
 $\Rightarrow \sqrt{\frac{x}{5}} = 3$ or $\sqrt{\frac{x}{5}} = \frac{1}{3}$
 $\Rightarrow \frac{x}{5} = 9$ Or $\frac{x}{5} = \frac{1}{9}$
 $\Rightarrow x = 45$ Or $9x = 5$
 $\Rightarrow x = 45$ Or $x = \frac{5}{9}$

Question 7:

Solve the equation $2x - \frac{1}{x} = 7$. Write your answer correct to two decimal places.

Solution 7:

$$2x - \frac{1}{x} = 7$$

$$\Rightarrow \frac{2x^2 - 1}{x} = 7$$

$$\Rightarrow 2x^2 - 1 = 7x$$

$$\Rightarrow 2x^2 - 7x - 1 = 0$$
Here $a = 2$, $b = -7$ and $c = -1$

$$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-7) \pm \sqrt{(-7)^2 - 4(2)(-1)}}{2(2)}$$

$$= \frac{7 \pm \sqrt{57}}{4} = \frac{7 \pm 7.55}{4}$$

$$= \frac{7 + 7.55}{4} \text{ and } \frac{7 - 7.55}{4} = 3.64 \text{ and } -0.14$$

Question 8:

Solve the following equation and give your answer correct to 3 significant figures:

$$5x^2 - 3x - 4 = 0$$

Solution 8:

Consider the given equation:

$$5x^2 - 3x - 4 = 0$$

Using quadratic formula, we have

EXERCISE 7 (D)

Question 1:

$$\frac{2X}{x-3} + \frac{1}{2x+3} + \frac{3x+9}{(x-3)(2x+3)} = 0; \ \ x \neq 3, \ x \neq -\frac{3}{2}$$

Solution 1:

$$\frac{2X}{x-3} + \frac{1}{2x+3} + \frac{3x+9}{(x-3)(2x+3)} = 0; \ \ x \neq 3, \ x \neq -\frac{3}{2}$$

$$\Rightarrow \frac{2x(2x+3)+1(x-3)+3x+9}{(x-3)(2x+3)} = 0$$

$$\Rightarrow 4x^2 + 6x + x - 3 + 3x + 9 = 0$$

$$\Rightarrow 4x^2 + 10x + 6 = 0$$

$$\Rightarrow 4x^2 + 4x + 6x + 6 = 0$$

$$\Rightarrow 4x(x+1) + 6(x+1) = 0$$

$$\Rightarrow (x+1)(4x+6) = 0$$

$$\Rightarrow x+1=0 \text{ Or } 4x+6=0$$

$$\Rightarrow x=-1 \text{ Or } x=\frac{-6}{4}=\frac{-3}{2} \text{ (reject)}$$

Ouestion 2:

 $(2x + 3)^2 = 81$

Solution 2:

 $(2x + 3)^2 = 81$

$$\Rightarrow$$
 2x + 3 = ± 9

$$\Rightarrow$$
 2x + 3 = 9 and 2x + 3 = -9

$$\Rightarrow$$
 2x = 6 and 2x = -12

$$\Rightarrow$$
 x = 3 and x = -6

Question 3:

 $a^2x^2 - b^2 = 0$

Solution 3:

$$a^2x^2 - b^2 = 0$$

$$\Rightarrow$$
 (ax)² - b² = 0

$$\Rightarrow$$
 (ax + b) (ax - b) = 0

If
$$ax + b = 0$$
 and $ax - b = 0$

Then
$$x = \frac{-b}{a}$$
 and $x = \frac{b}{a}$

Question 4:

$$X^2 - \frac{11}{4}x + \frac{15}{8} = 0$$

Solution 4:

$$X^2 - \frac{11}{4}x + \frac{15}{8} = 0$$

$$\Rightarrow \frac{8x^2 - 22x + 15}{8} = 0$$

$$\Rightarrow 8x^2 - 22x + 15 = 0$$

$$\Rightarrow$$
 8x² - 12x - 10x + 15 = 0

$$\Rightarrow$$
 4x (2x - 3) - 5(2x - 3) = 0

$$\implies$$
 (2x - 3) (4x - 5) = 0

$$\Rightarrow$$
 2x - 3 = 0 Or 4x - 5 = 0

$$\implies$$
 $x = \frac{3}{2}$ Or $x = \frac{5}{4}$

Ouestion 5:

$$x + \frac{4}{x} = -4$$
; $x \neq 0$

Solution 5:

$$x + \frac{4}{x} = -4$$

$$X + \frac{4}{x} = -4$$

$$\Rightarrow \frac{x^2 + 4}{x} = -4$$

$$\Rightarrow$$
 $x^2 + 4 = -4x$

$$\Rightarrow$$
 x² + 4x + 4 = 0

$$\Rightarrow (x+2)^2 = 0$$

$$\Rightarrow$$
 x + 2 = 0

$$\Rightarrow$$
 x = -2

Ouestion 6:

$$2x^2 - 5x^2 + 3 = 0$$
 Take $x^2 = y$

Solution 6:

$$2x^2 - 5x^2 + 3 = 0$$

$$\Rightarrow$$
 2x⁴ - 3x² - 2x² + 3 = 0

$$\Rightarrow$$
 x² (2x² - 3) -1(x² - 1) = 0

$$(2x^2-3)(x^2-1)=0$$

If
$$2x^2 - 3 = 0$$
 Or $x^2 - 1 = 0$

Then
$$x^2 = \frac{3}{2}$$
 Or $x^2 = 1$

$$\Rightarrow$$
 x = $\pm \sqrt{\frac{3}{2}}$ Or x = ± 1

Question 7:

$$X^4 - 2x^2 - 3 = 0$$

Solution 7:

$$X^4 - 2x^2 - 3 = 0$$

$$\Rightarrow x^2 - 3x^2 + x^2 - 3 = 0$$

$$\implies$$
 $x^2(x^2 - 3) + 1(x^2 - 3) = 0$

$$\Rightarrow$$
 (x² - 3) (x² + 1) = 0

If
$$x^2 - 3 = 0$$
 Or $x^2 + 1 = 0$
Then $x^2 = 3$ Or $x^2 = -1$ (reject)
 $\Rightarrow x = \pm \sqrt{3}$

Question 8:

$$9\left(x^2 + \frac{1}{x^2}\right) - 9\left(x + \frac{1}{x}\right) - 52 = 0$$

Solution 8:

$$9\left(x^2 + \frac{1}{x^2}\right) - 9\left(x + \frac{1}{x}\right) - 52 = 0$$

Let
$$x + \frac{1}{x} = y$$

Squaring on both sides

$$X^2 + \frac{1}{x^2} + 2 = y^2$$

$$\Rightarrow x^2 + \frac{1}{x^2} = y^2 - 2$$

Putting these values in the given equation

$$9(y^2 - 2) - 9y - 52 = 0$$

$$\implies$$
 9y² - 18 - 9y - 52 = 0

$$\Rightarrow 9y^2 - 9y - 70 = 0$$

$$\Rightarrow$$
 9y² - 30y + 21y - 70 = 0

$$\implies$$
 3y (3y - 10) + 7 (3y - 10) = 0

$$\implies$$
 (3y - 10) (3y + 7) = 0

$$\Rightarrow$$
 3y - 10 = 0 Or 3y + 7 = 0

$$\Rightarrow$$
 y = $\frac{10}{3}$ Or y = $\frac{-7}{3}$

$$\Rightarrow x + \frac{1}{x} = \frac{10}{3}$$
 Or $x + \frac{1}{x} = \frac{-7}{3}$

$$\Rightarrow 3y - 10 = 0 \quad \text{Or} \quad 3y + 7 = 0$$

$$\Rightarrow 3y - 10 = 0 \quad \text{Or} \quad 3y + 7 = 0$$

$$\Rightarrow y = \frac{10}{3} \quad \text{Or} \quad y = \frac{-7}{3}$$

$$\Rightarrow x + \frac{1}{x} = \frac{10}{3} \quad \text{Or} \quad x + \frac{1}{x} = \frac{-7}{3}$$

$$\Rightarrow \frac{x^2 + 1}{x} = \frac{10}{3} \quad \text{Or} \quad \frac{x^2 + 1}{x} = \frac{-7}{3}$$

$$\Rightarrow 3x^2 - 10x + 3 = 0 \quad \text{Or} \quad 3x^2 + 7x + 3 = 0$$

$$\Rightarrow 3x^2 - 10x + 3 = 0$$
 Or $3x^2 + 7x + 3 = 0$

$$\Rightarrow 3x^2 - 9x - x + 3 = 0 \quad \text{Or} \quad x = \frac{-7 \pm \sqrt{(-7)^2 - 4(3)(3)}}{2(3)}$$

$$\Rightarrow$$
 3x (x - 3) - 1 (x - 3) = 0 Or x = $\frac{-7 \pm \sqrt{13}}{6}$

$$\implies (x-3)(3x-1) = 0$$

$$\Rightarrow$$
 x = 3 and x = $\frac{1}{3}$

Question 9:

$$2\left(x^2 \frac{1}{x^2}\right) - \left(x + \frac{1}{x}\right) = 11$$

Solution 9:

$$2\left(x^2 + \frac{1}{x^2}\right) - \left(x + \frac{1}{x}\right) = 11$$

Let
$$x + \frac{1}{x} = y$$

Squaring on both sides

$$X^2 + \frac{1}{x^2} + 2 = y^2$$

$$\Rightarrow$$
 $x^2 + \frac{1}{x^2} = y^2 - 2$

Putting these values in the given equation

$$2(y^2-2)-y=11$$

$$\Rightarrow$$
 2y² - 4 - y - 11 = 0

$$\Rightarrow$$
 2y² - y - 15 = 0

$$\Rightarrow$$
 2y² - 6y + 5y - 15 = 0

$$\Rightarrow$$
 2y (y - 3) + 5 (y - 3) = 0

$$\implies$$
 (y - 3) (2y + 5) = 0

$$\Rightarrow$$
 If $y - 3 = 0$ Or $2y + 5 = 0$

$$\Rightarrow$$
 y = 3 Or y = $\frac{-5}{2}$

$$\Rightarrow$$
 x + $\frac{1}{x}$ = 3

Or
$$x + \frac{1}{x} = \frac{-5}{2}$$

$$\Rightarrow \frac{x^2+1}{x} = 3$$

$$\Rightarrow x + \frac{1}{x} = 3$$

$$\Rightarrow \frac{x^2 + 1}{x} = 3$$
Or $x + \frac{1}{x} = \frac{-5}{2}$
Or $\frac{x^2 + 1}{x} = \frac{-5}{2}$

$$\Rightarrow x^2 - 3x + 1 = 0$$

$$2x^2 + 5x + 2 = 0$$

$$\Rightarrow x^{2} - 3x + 1 = 0 \quad \text{Or} \quad 2x^{2} + 5x + 2 = 0$$

$$\Rightarrow x = \frac{-3 \pm \sqrt{(-3)^{2} - 4(1)(1)}}{2(1)} \quad \text{Or} \quad 2x^{2} + 4x + x + 2 = 0$$

Or
$$2x^2 + 4x + x + 2 = 0$$

$$X = \frac{-3 \pm \sqrt{5}}{2}$$

Or
$$2x(x+2) + 1(x+2) = 0$$

Or
$$(x + 2) (2x + 1) = 0$$

Then x = -2 and $x = \frac{-1}{2}$

Ouestion 10:

$$\left(x^2 + \frac{1}{x^2}\right) - 3\left(x - \frac{1}{x}\right) - 2 = 0$$

Let
$$x - \frac{1}{x} = y \implies x^2 + \frac{1}{x^2} = y^2 + 2$$

Solution 10:

$$\left(x^2 + \frac{1}{x^2}\right) - 3\left(x - \frac{1}{x}\right) - 2 = 0$$

Let
$$x - \frac{1}{x} = y$$

Squaring on both sides

$$X^2 + \frac{1}{x^2} - 2 = y^2$$

$$\Rightarrow x^2 + \frac{1}{x^2} = y^2 + 2$$

Putting these values in the given equation

$$(y^2 + 2) - 3y - 2 = 11$$

$$\Rightarrow$$
 y² - 3y = 0

$$\Rightarrow$$
 y (y - 3) = 0

Or
$$y - 3 = 0$$

If
$$y = 0$$

Or
$$y = 3$$

$$\overrightarrow{x} = \frac{1}{x} = 0$$

$$\Rightarrow y (y-3) = 0$$
If $y = 0$

$$\Rightarrow x - \frac{1}{x} = 0$$

$$\Rightarrow \frac{x^2 - 1}{x} = 0$$
Or
$$y - 3 = 0$$
Or
$$y = 3$$
Or
$$x - \frac{1}{x} = 3$$
Or
$$\frac{x^2 - 1}{x} = 3$$

$$\Rightarrow$$
 $x^2 - 1 = 0$

$$\Rightarrow$$
 $x^2 - 1 = 0$ Or $x^2 - 3x - 1 = 0$

$$\Rightarrow (x+1)(x-1) = 0$$

$$\Rightarrow (x + 1) (x - 1) = 0 \qquad \text{Or} \quad \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-1)}}{\frac{2(1)}{2}}$$

$$\Rightarrow x = -1 \text{ and } x = 1 \qquad \text{Or} \quad x = \frac{3 \pm \sqrt{13}}{2}$$

$$\Rightarrow$$
 x= - 1 and x = 1

Or
$$x = \frac{3 \pm \sqrt{13}}{2}$$

Question 11:

$$(x^2 + 5x + 4)(x^2 + 5x + 6) = 120$$

Take: $x^2 + 5x = y$

Solution 11:

$$(x^2 + 5x + 4)(x^2 + 5x + 6) = 120$$

Let
$$x^2 + 5x = y$$

Then
$$(y + 4) (y + 6) = 120$$

$$\Rightarrow$$
 y² + 6y + 4y + 24 - 120 = 0

$$\implies y^2 + 10y - 96 = 0$$

$$\Rightarrow$$
 y² + 16y - 6y - 96 = 0

$$\Rightarrow$$
 y (y + 16) - 6 (y + 16) = 0

$$\Rightarrow$$
 (y + 16) (y - 16) = 0

Then
$$y = -16$$
 Or $y = 6$

$$\Rightarrow$$
 x² + 5x + 16 = 0 Or x² + 5x - 6 = 0

$$\Rightarrow X = \frac{-5 \pm \sqrt{(5)^2 - 4(1)(16)}}{2(1)}$$

Or
$$x^2 + 6x - x - 6 = 0$$

$$x = \frac{-5 \pm \sqrt{-39}}{2}$$
 (reject)

Or
$$x(x+6)-1(x+6)=0$$

Or
$$(x + 6)(x - 1) = 0$$

Then x = -6 and x = 1

Question 12:

Solve each of the following equations, given answer up to two decimal places.

(i)
$$x^2 - 5x - 10 = 0$$

(ii)
$$3x^2 - x - 7 = 0$$

(i)
$$x^2 - 5x - 10 = 0$$

Solution 12:

Here
$$a = 1$$
, $b = -5$ and $c = -10$

$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\implies X = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-10)}}{2(1)}$$

$$\implies X = \frac{5 \pm \sqrt{65}}{2} = \frac{5 \pm 8.06}{2}$$

$$\Rightarrow$$
 x = $\frac{13.06}{2}$ and $\frac{-3.06}{2}$ = 6.53 and -1.53

(ii)
$$3x^2 - x - 7 = 0$$

Here
$$a = 3$$
, $b = -1$ and $c = -7$

$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\implies X = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(3)(-1-7)}}{2(3)}$$

$$\implies X = \frac{1 \pm \sqrt{85}}{6} = \frac{1 \pm 9.22}{6}$$

$$\Rightarrow$$
 x = $\frac{10.22}{6}$ and $\frac{-8.22}{2}$ = 1.70 and -1.37

Question 13:

Solve:
$$\left(\frac{x}{x+2}\right)^2 - 7\left(\frac{x}{x+2}\right) + 12 = 0$$
; $x \ne -2$

Solution 13:

$$\left(\frac{x}{x+2}\right)^{2} - 7\left(\frac{x}{x+2}\right) + 12 = 0; x \neq -2$$
Let $\frac{x}{x+2} = y$

Let
$$\frac{x}{x+2} = y$$

Then
$$y^2 - 7y + 12 = 0$$

$$\Rightarrow$$
 $y^2 - 4y - 3y + 12 = 0$

$$\Rightarrow$$
 y(y - 4) -3 (y - 3) = 0

$$\Rightarrow (y-4)(y-3)=0$$

Then
$$y = 4$$
 and $y = 3$

Then
$$y = 4$$
 and $y = 3$

$$\Rightarrow \frac{x}{x+2} = 4 \text{ and } \frac{x}{x+2} = 3$$

$$\Rightarrow 4x + 8 = x \text{ and } 3x + 6 = x$$

$$\Rightarrow$$
 $4x + 8 = x \text{ and } 3x + 6 = x$

$$\Rightarrow$$
 $x = \frac{-8}{3}$ and $x = -3$

Question 14:

Solve:

(i)
$$x^2 - 11x - 12 = 0$$
; when $x \in N$

(ii)
$$x^2 - 4x - 12 = 0$$
; when $x \in I$

(iii)
$$2x^2 - 9x + 10 = 0$$
; when $x \in Q$

Solution 14:

(i)
$$x^2 - 11x - 12 = 0$$

$$\Rightarrow$$
 $x^2 - 12x + x - 12 = 0$

$$\Rightarrow$$
 x(x - 12) + 1(x - 12) = 0

$$\implies$$
 (x - 12) (x + 1) = 0

$$\Rightarrow$$
 x = 12 and x = -1

Since $x \in N$, then x = 12

(ii)
$$x^2 - 4x - 12 = 0$$

$$\Rightarrow$$
 $x^2 - 6x + 2x - 12 = 0$

$$\Rightarrow$$
 x(x - 6) + 2(x - 6) = 0

$$\Rightarrow (x-6) (x+2) = 0$$

$$\Rightarrow$$
 x = 6 and x = -2

Since $x \in I$, then x = 6 and -2

(iii)
$$2x^2 - 9x + 10 = 0$$

$$\Rightarrow 2x^2 - 5x - 4x - 10 = 0$$

$$\Rightarrow$$
 x(2x - 5) - 2(2x - 5) = 0

$$\Rightarrow$$
 (2x - 5) (x - 2) = 0

$$\Rightarrow$$
 x = $\frac{5}{2}$ and x = 2

Since $x \in Q$, then $x = \frac{5}{2}$ and 2.

Question 15:

Solve:

$$(a + b)^2 x^2 - (a + b)x - 6 = 0$$
; $a + b \neq 0$

Take: (a + b) x = y

Solution 15:

$$(a + b)^2 x^2 - (a + b)x - 6 = 0$$
; $a + b \neq 0$

$$\Rightarrow$$
 (a + b)² x² - 3 (a + b) x + 2 (a + b) x - 6 = 0

$$\Rightarrow$$
 (a + b)x [(a + b) x - 3] + 2 [(a + b) x - 3] = 0

$$\Rightarrow$$
 [(a + b) x - 3] [(a + b) x - 2] = 0

$$\Rightarrow$$
 (a + b) x - 3 = 0 Or (a + b) x + 2 = 0

$$\Rightarrow$$
 $x = \frac{3}{a+b}$ Or $x = \frac{-2}{a+b}$

Question 16:

Solve:
$$\frac{1}{p} + \frac{1}{q} + \frac{1}{x} = \frac{1}{x+p+q}$$

Take:
$$\frac{1}{p} + \frac{1}{q} + \frac{1}{x} - \frac{1}{x+p+q} = 0$$

Solution 16:

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{x} = \frac{1}{x + p + q}$$

$$\Rightarrow \frac{1}{q} + \frac{1}{q} + \frac{1}{q} + \frac{1}{q} = 0$$

$$\Rightarrow \frac{q+p}{q+p} + \frac{x}{x+p+q-x} = 0$$

$$p \quad q \quad x \quad x + p + q$$

$$\Rightarrow \frac{1}{p} + \frac{1}{q} + \frac{1}{x} - \frac{1}{x+p+q} = 0$$

$$\Rightarrow \frac{q+p}{pq} + \frac{x+p+q-x}{x(x+p+q)} = 0$$

$$\Rightarrow \frac{q+p}{pq} + \frac{p+q}{x(x+p+q)} = 0$$

$$\Rightarrow (p+q) \left[\frac{1}{pq} + \frac{1}{x^2 + px + qx} \right] = 0$$

$$\Rightarrow (p+q) \left[\frac{x^2 + px + qx + pq}{pq(x^2 + px + qx)} \right] = 0$$

$$\Rightarrow (p + q) \left[\frac{x^2 + px + qx + pq}{pq(x^2 + px + qx)} \right] = 0$$

$$\Rightarrow$$
 x² + px + qx + pq = 0

$$\Rightarrow$$
 x (x + p) + q(x + p) = 0

$$\Rightarrow$$
 (x + p) (x + q) = 0

$$\Rightarrow$$
 x = -p and x = -q

Question 17:

Solve:

(i)
$$x(x + 1) + (x + 2) (x + 3) = 42$$

(i)
$$x(x + 1) + (x + 2) (x + 3) = 42$$

(ii) $\frac{1}{x+1} - \frac{2}{x+2} = \frac{3}{x+3} - \frac{4}{x+4}$

Solution 17:

(i)
$$x(x + 1) + (x + 2) (x + 3) = 42$$

$$\Rightarrow$$
 x² + x + x² + 3x + 2x + 6 - 42 = 0

$$\Rightarrow 2x^2 + 6x - 36 = 0$$

$$\Rightarrow$$
 2x² + 12x - 6x - 36 = 0

$$\Rightarrow 2x(x+6) - 6(x+6) = 0$$

$$\Rightarrow (x+6)(2x-6)=0$$

If
$$x + 6 = 0$$
 Or $2x - 6 = 0$

Then
$$x = -6$$
 Or $x = 3$

(ii)
$$\frac{1}{x+1} - \frac{2}{x+2} = \frac{3}{x+3} - \frac{4}{x+4}$$

$$\Rightarrow \frac{1(x+2)-2(x+1)}{(x+1)(x+2)} = \frac{3(x+4)-4(x+3)}{(x+3)(x+4)}$$

$$\Rightarrow \frac{-x}{x^2 + 3x + 2} = \frac{-x}{x^2 + 7x + 12}$$

⇒
$$-x [x^2 + 3x + 2 = x^2 + 7x + 12]$$

⇒ $-x [-4x = 10]$
 $X = 0$ and $x = \frac{-10}{4} = -2.5$

Question 18:

For each equation, given below find the value of 'm' so that the equation has equal roots also, find the solution of each equation:

(i)
$$(m-3) x^2 - 4x + 1 = 0$$

(ii)
$$3x^2 + 12x + (m + 7) = 0$$

(iii)
$$x^2 - (m + 2)x + (m + 5) = 0$$

Solution 18:

(i)
$$(m-3) x^2 - 4x + 1 = 0$$

Here a = (m - 3), b = -4 and c = 1

Given equation has equal roots

Then
$$D = 0$$

$$\Rightarrow$$
 b² - 4ac = 0

$$\implies$$
 $(-4)^2 - 4(m-3)(1) = 0$

$$\Rightarrow$$
 16 – 4m + 12 = 0

$$\Rightarrow$$
 -4m = -28

$$\Rightarrow$$
 m = 7

Put value of m in given equation

$$4x^2 - 4x + 1 = 0$$

$$\Rightarrow$$
 $(2x-1)^2 = 0$

$$\Rightarrow$$
 2x - 1 = 0

$$\Rightarrow$$
 X = $\frac{1}{2}$

(ii) $3x^2 + 12x + (m + 7) = 0$

Here a = 3, b = 12 and c = m + 7

Given equation has equal roots

Then
$$D = 0$$

$$\Rightarrow$$
 b² - 4ac = 0

$$\Rightarrow$$
 (12)² -4(3) (m + 7) = 0

$$\implies$$
 144 $-$ 12m $-$ 84 $=$ 0

$$\Rightarrow$$
 - 12m = -60

$$\Rightarrow$$
 m = 5

Put value of m in given equation

$$3x^2 - 12x + 12 = 0$$

$$X^2 + 4x + 4 = 0$$

$$\Rightarrow$$
 (x + 2)² = 0

$$\Rightarrow$$
 x + 2 = 0

$$\Rightarrow$$
 X = -2

(iii) $x^2 - (m + 2) x + (m + 5) = 0$

Here a = 1, b = -4 (m + 2) and c = m + 5

Given equation has equal roots

Then D = 0

$$\Rightarrow$$
 b² - 4ac = 0

$$\Rightarrow [-(m + 2)]^2 - 4(1)(m + 5) = 0$$

$$\Rightarrow$$
 m² + 4m + 4 - 4m - 20 = 0

$$\Rightarrow$$
 m² - 16 = 0

$$\Rightarrow$$
 m² = 16

$$\Rightarrow$$
 m = ± 4

Put value of m in given equation

$$x^2 - 6x + 9 = 0$$

$$x^2 - 6x + 9 = 0$$
 Or $x^2 + 2x + 1 = 0$

$$\Rightarrow (x-3)^2 = 0$$
$$\Rightarrow x-3=0$$

Or
$$(x + 1)^2 = 0$$

$$\Rightarrow$$
 x - 3 = 0

Or
$$x + 1 = 0$$

$$\Rightarrow$$
 x = 3

Or
$$x = -1$$

Ouestion 19:

Without solving the following quadratic equation, find the value of 'p' for which the roots are equal.

$$Px^2 - 4x + 3 = 0$$

Solution 19:

$$Px^2 - 4x + 3 = 0$$

Here a = p, b = -4 and c = 3

Given equation has equal roots

Then D = 0

$$\Rightarrow$$
 b² - 4ac = 0

$$\Rightarrow [-4]^2 - 4(p)(3) = 0$$

$$\Rightarrow$$
 16 - 12p = 0

$$\Rightarrow$$
 - 12p = - 16

$$\Rightarrow$$
 p = $\frac{-16}{-12} = \frac{4}{3}$

Question 20:

Without solving the following quadratic equation, find the value of 'm' for which the given equation has real and equal roots.

$$X^{2} + 2(m-1)x + (m+5) = 0$$

Solution 20:

Consider the given equation:

$$X^2 + 2(m-1)x + (m+5) = 0$$

The nature of the roots of a quadratic equation $ax^2 + bx + c = 0$, depends entirely on the value of its discriminant $b^2 - 4ac$.

If a, b and c are real numbers and a \neq 0,

Then discriminant:

- (i) $b^2 4ac = 0 \Rightarrow$ the roots are real and equal
- (ii) $b^2 4ac > 0 \Rightarrow$ the roots are real and unequal.
- (iii) $b^2 4ac < 0 \Rightarrow$ the roots are imaginary (not equal)

Since the roots of the given equation are real and equal,

We have,

$$b^2 - 4ac = 0$$

$$\Rightarrow$$
 (2 (m - 1))² - 4 x 1 x (m + 5) = 0

$$\Rightarrow$$
 4 (m² + 1 - 2m) - 4 (m + 5) = 0

$$\Rightarrow 4m^2 + 4 - 8m - 4m - 20 = 0$$

$$\Rightarrow 4m^2 - 12m - 16 = 0$$

$$\Rightarrow$$
 m² - 3m - 4 = 0

$$\Rightarrow m^2 - 4m + m - 4 = 0$$

$$\Rightarrow$$
 m (m - 4) +1 (m - 4) = 0

$$\Rightarrow$$
 m + 1 = 0 Or m - 4 = 0

$$\Rightarrow$$
 m = -1 Or m = 4