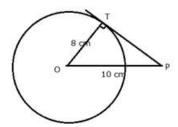
EXERCISE. 18 (A)

Question 1:

The radius of a circle is 8 cm. calculate the length of a tangent draw to this circle from a point at a distance of 10 cm from its centre.

Solution 1:



OP = 10 cm; radius OT = 8 cm

 $:: OT \perp PT$

In RT. ΔOTP,

 $OP^2 = OT^2 + PT^2$

$$10^2 = 8^2 + PT^2$$

$$PT^2 = 100 - 64$$

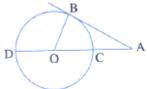
$$PT^{2} = 36$$

$$PT = 6$$

Length of tangent = 6 cm.

Question 2:

In the given figure, O is the centre of the circle and AB is a tangent at B. If AB = 15 cm and AC = 7.5 cm, calculate the radius of the circle.



Solution 2:

AB = 15 cm, AC = 7.5 cm

Let 'r' be the radius of the circle.

$$\therefore$$
 OC = OB = r

$$AO = AC + OC = 7.5 + r$$

In \triangle AOB,

$$AO^2 = AB^2 + OB^2$$

$$(7.5+r)^2 = 15^2 + r^2$$

$$\Rightarrow \left(\frac{15+2r}{2}\right)^2 = 225+r^2$$

$$\Rightarrow$$
 225 + 4 r^2 + 60 r = 900 + 4 r^2

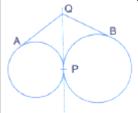
$$\Rightarrow$$
 60r = 675

$$\Rightarrow$$
 r = 11.25 cm

Therefore, r = 11.25 cm

Question 3:

Two circle touch each other externally at point P. Q is a point on the common tangent through P. Prove that the tangents QA and QB are equal.



Solution 3:

From Q, QA and QP are two tangents to the circle with centre O

Therefore, QA = QP....(i)

Similarly, from Q, QB and QP are two tangents to the circle with centre O'

Therefore, $QB = QP \dots (ii)$

From (i) and (ii)

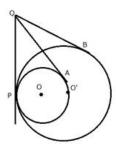
QA = QB

Therefore, tangents QA and QB are equal.

Question 4:

Two circle touch each other internally. Show that the tangents drawn to the two circles from any point on the common tangent are equal in length.

Solution 4:



From Q, QA and QP are two tangents to the circle with centre O

Therefore, $QA = QP \dots (i)$

Similarly, from Q, QB and QP are two tangents to the circle with centre O'

Therefore, $QB = QP \dots (ii)$

From (i) and (ii)

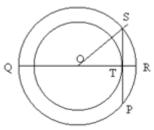
QA = QB

Therefore, tangents QA and QB are equal.

Question 5:

Two circle of radii 5 cm and 3 cm are concentric. Calculate the length of a chord of the outer circle which touches the inner.

Solution 5:



OS = 5 cm

OT = 3 cm

In Rt. Triangle OST

By Pythagoras Theorem,

$$ST^2 = OS^2 - OT^2$$

$$ST^2 = 25 - 9$$

$$ST^2 = 16$$

$$ST = 4$$
 cm

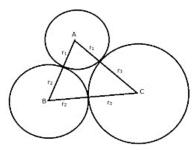
Since OT is perpendicular to SP and OT bisects chord SP

So, SP = 8 cm

Question 6:

Three circles touch each other externally. A triangle is formed when the centres of these circles are joined together. Find the radii of the circle, if the sides of the triangle formed are 6 cm, 8 cm and 9 cm.

Solution 6:



AB = 6 cm, AC = 8 cm and BC = 9 cm

Let radii of the circles having centers A, B and C be r_1, r_2 and r_3 respectively.

$$r_1 + r_3 = 8$$

$$r_3 + r_2 = 9$$

$$r_2 + r_1 = 6$$

adding

$$r_1 + r_3 + r_3 + r_2 + r_2 + r_1 = 8 + 9 + 6$$

$$2(r_1 + r_2 + r_3) = 23$$

$$r_1 + r_2 + r_3 = 11.5 \text{ cm}$$

$$r_1 + 9 = 11.5$$
 (Since $r_2 + r_3 = 9$)

$$r_1 = 2.5 \text{ cm}$$

$$r_2 + 6 = 11.5$$
 (Since $r_1 + r_3 = 6$)

$$r_2 = 5.5 \text{ cm}$$

$$r_3 + 8 = 11.5$$
 (Since $r_2 + r_1 = 8$)

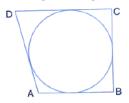
$$r_3 = 3.5 \text{ cm}$$

Hence, $r_1 = 2.5$ cm, $r_2 = 5.5$ cm and $r_3 = 3.5$ cm

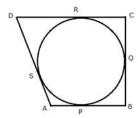
Question 7:

If the sides of a quadrilateral ABCD touch a circle, prove that:

$$AB + CD = BC + AD$$



Solution 7:



Let the circle touch the sides AB, BC, CD and DA of quadrilateral ABCD at P, Q, R and S respectively.

Since AP and AS are tangents to the circle from external point A

 $AP = AS \dots (i)$

Similarly, we can prove that:

 $BP = BQ \dots (ii)$

 $CR = CQ \dots (iii)$

 $DR = DS \dots (iv)$

Adding,

AP + BP + CR + DR = AS + DS + BQ + CQ

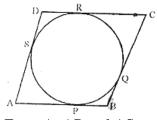
AB + CD = AD + BC

Hence, AB + CD = AD + BC

Question 8:

If the sides of a parallelogram touch a circle (refer figure of Q. 7), Prove that the parallelogram is a rhombus.

Solution 8:



From A, AP and AS are tangents to the circle.

Therefore, AP = AS....(i)

Similarly, we can prove that:

 $BP = BQ \dots (ii)$

CR = CQ(iii)

 $DR = DS \dots (iv)$

Adding,

AP + BP + CR + DR = AS + DS + BQ + CQ

AB + CD = AD + BC

Hence, AB + CD = AD + BC

But AB = CD and BC = AD.....(v) Opposite sides of a $\parallel gm$

Therefore, AB + AB = BC + BC

2AB = 2BC

 $AB = BC \dots (vi)$

From (v) and (vi)

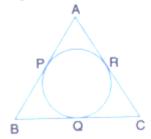
AB = BC = CD = DA

Hence, ABCD is a rhombus.

Question 9:

From the given figure, prove that:

$$AP + BQ + CR = BP + CQ + AR$$



Also show that:

$$AP + BQ + CR = \frac{1}{2} \times Perimeter of \triangle ABC.$$

Solution 9:

Since from B, BQ and BP are the tangents to the circle

Therefore, $BQ = BP \dots (i)$

Similarly, we can prove that

$$AP = AR$$
(ii)

and
$$CR = CQ \dots (iii)$$

Adding,

$$AP + BQ + CR = BP + CQ + AR \dots (iv)$$

Adding AP + BQ + CR to both sides

$$2(AP + BQ + CR) = AP + PQ + CQ + QB + AR + CR$$

$$2(AP + BQ + CR) = AB + BC + CA$$

Therefore, AP + BQ + CR =
$$\frac{1}{2}$$
 × (AB + BC + CA)

$$AP + BQ + CR = \frac{1}{2} \times \text{perimeter of triangle ABC}$$

Question 10:

In the figure of Question 9; If AB = AC then prove that BQ = CQ.

Solution 10:

Since, from A, AP and AR are the tangents to the circle

Therefore, AP = AR

Similarly, we can prove that

BP = BQ and CR = CQAdding, AP + BP + CQ = AR + BQ + CR(AP + BP) + CQ = (AR + CR) + BQAB + CQ = AC + BQBut AB = ACTherefore, CQ = BQ or BQ = CQ

Question 11:

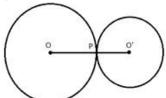
Radii of two circles are 6. 3 cm and 3.6 cm. State the distance between their centres if:

- (i) they touch each other externally
- (ii) they touch each other internally

Solution 11:

Radius of bigger circle = 6.3 cm and of smaller circle = 3.6 cm

i)



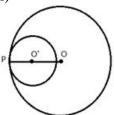
Two circles are touching each other at P externally. O and O' are the centers of the circles. Join OP and O'P

$$OP = 6.3 \text{ cm}, O'P = 3.6 \text{ cm}$$

Adding,

$$OP + O'P = 6.3 + 3.6 = 9.9 \text{ cm}$$

ii)



Two circles are touching each other at P internally. O and O' are the centers of the circles. Join OP and O'P

$$OP = 6.3 \text{ cm}, O'P = 3.6 \text{ cm}$$

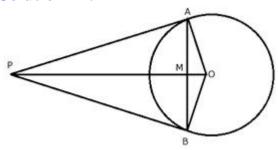
$$OO' = OP - O'P = 6.3 - 3.6 = 2.7 \text{ cm}$$

Question 12:

From a point P outside a circle, with centre O, tangents PA and PB are drawn. Prove that:

- (i) $\angle AOP = \angle BOP$
- (ii) OP is the ⊥ bisector of chord AB

Solution 12:



i) In $\triangle AOP$ and $\triangle BOP$

AP = BP (Tangents from P to the circle)

OP = OP (Common)

OA = OB (Radii of the same circle)

∴ By Side – Side – Side criterion of congruence,

 $\triangle AOP \cong \triangle BOP$

The corresponding parts of the congruent triangle are congruent

$$\Rightarrow \angle AOP = \angle BOP$$
 [by c.p.c.t]

ii) In ΔOAM and ΔOBM

OA = OB (Radii of the same circle)

 $\angle AOM = \angle BOM \text{ (Proved } \angle AOP = \angle BOP \text{)}$

OM = OM (Common)

∴ By side – Angle – side criterion of congruence,

 $\triangle OAM \cong \angle OBM$

The corresponding parts of the congruent triangles are congruent.

 \Rightarrow AM = MB

And $\angle OMA = \angle OMB$

But,

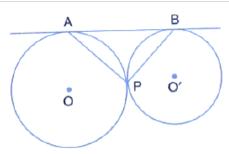
 \angle OMA + \angle OMB = 180°

 $\therefore \angle OMA = \angle OMB = 90^{\circ}$

Hence, OM or OP is the perpendicular bisector of chord AB.

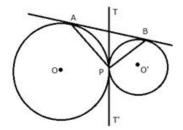
Question 13:

In the given figure, two circles touch each other externally at point P. AB is the direct common tangent of these circles. Prove that:



- (i) tangent at point P bisects AB,
- (ii) angles APB = 90°

Solution 13:



Draw TPT' as common tangent to the circles.

i) TA and TP are the tangents to the circle with centre O.

Therefore, $TA = TP \dots (i)$

Similarly, $TP = TB \dots (ii)$

From (i) and (ii)

TA = TB

Therefore, TPT' is the bisector of AB.

ii) Now in $\triangle ATP$,

 $\therefore \angle TAP = \angle TPA$

Similarly in $\triangle BTP$, $\angle TBP = \angle TPB$

Adding,

 $\angle TAP + \angle TBP = \angle APB$

But

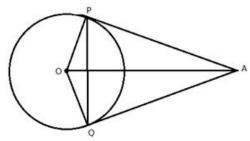
 \therefore TAP + \angle TBP + \angle APB = 180°

 $\Rightarrow \angle APB = \angle TAP + \angle TBP = 90^{\circ}$

Question 14:

Tangents AP and AQ are drawn to a circle, with centre O, from an exterior point A. prove that: $PAQ = 2\angle OPQ$

Solution 14:



In quadrilateral OPAQ,

$$\angle OPA = \angle OQA = 90^{\circ}$$

$$(:: OP \perp PA \text{ and } OQ \perp QA)$$

$$\therefore \angle POQ + \angle PAQ + 90^{\circ} + 90^{\circ} = 360^{\circ}$$

$$\Rightarrow$$
 $\angle POQ + \angle PAQ = 360^{\circ} - 180^{\circ} = 180^{\circ}$ (i)

In triangle OPQ,

OP = OQ (Radii of the same circle)

$$\therefore$$
 OPQ = \angle OQP

But

$$\angle POQ + \angle OPQ + \angle OQP = 180^{\circ}$$

$$\Rightarrow \angle POQ + \angle OPQ + \angle OPQ = 180^{\circ}$$

$$\Rightarrow \angle POQ + 2\angle OPQ = 180^{\circ}$$
(ii)

From (i) and (ii)

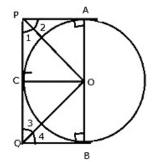
$$\angle POQ + \angle PAQ = \angle POQ + 2\angle OPQ$$

$$\Rightarrow \angle PAQ = 2\angle OPQ$$

Question 15:

Two parallel tangents of a circle meet a third tangent at points P and Q. prove that PQ subtends a right angle at the centre.

Solution 15:



Join OP, OQ, OA, OB and OC.

In $\triangle OAP$ and $\triangle OCP$

OA = OC (Radii of the same circle) OP = OP (Common)

PA = PC (Tangents from P)

 \therefore By side – side – side criterion of congruence,

 $\triangle OAP \cong \triangle OCP$ (SSS postulate)

The corresponding parts of the congruent triangles are congruent.

$$\Rightarrow \angle APO = \angle CPO$$
 (cpct)(i)

Similarly, we can prove that

$$\triangle OCQ \cong \triangle OBQ$$

$$\Rightarrow \angle CQO = \angle BQO$$
(ii)

$$\therefore \angle APC = 2\angle CPO$$
 and $\angle CQB = 2\angle CQO$

But.

$$\angle APC + \angle COB = 180^{\circ}$$

(Sum of interior angles of a transversal)

$$\therefore 2\angle CPO + 2\angle CQO = 180^{\circ}$$

$$\Rightarrow \angle CPO + \angle CQO = 90^{\circ}$$

Now in $\triangle POQ$,

$$\angle$$
CPO + \angle COO + \angle POQ = 180°

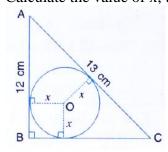
$$\Rightarrow$$
 90° + \angle POQ = 180°

$$\therefore \angle POQ = 90^{\circ}$$

Question 16:

ABC is a right angles triangle with AB = 12 cm and AC = 13 cm. A circle, with centre O, has been inscribed inside the triangle.

Calculate the value of x, the radius of the inscribed circle.



Solution 16:

In $\triangle ABC$, $\angle B = 90^{\circ}$

 $OL \perp AB$, $OM \perp BC$ and $ON \perp AC$

LBNO is a square

$$LB = BN = OL = OM = ON = x$$

$$\therefore AL = 12 - x$$

$$\therefore$$
 AL = AN = 12 - x

Since ABC is a right triangle

$$AC^2 = AB^2 + BC^2$$

$$\Rightarrow 13^2 = 12^2 + BC^2$$

$$\Rightarrow$$
 169 = 144 + BC²

$$\Rightarrow$$
 BC² = 25

$$\Rightarrow$$
 BC = 5

$$\therefore$$
 MC = 5 – X

But
$$CM = CN$$

$$\therefore$$
 CN = 5 – X

Now,
$$AC = AN + NC$$

$$13 = (12 - x) + (5 - x)$$

$$13 = 17 - 2x$$

$$2x = 4$$

$$x = 2 \text{ cm}$$

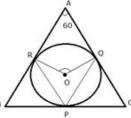
Question 17:

In a triangle ABC, the incircle (centre O) touches BC, CA and AB at points P, Q and R respectively. Calculate:

(i)
$$\angle QOR$$
 (ii) $\angle QPR$;

Given that $\angle A = 60^{\circ}$

Solution 17:



The incircle touches the sides of the triangle ABC and $OP \perp BC$, $OQ \perp AC$, $OR \perp AB$

i) In quadrilateral AROQ,

$$\angle ORA = 90^{\circ}, \angle OQA = 90^{\circ}, \angle A = 60^{\circ}$$

$$\angle QOR = 360^{\circ} - (90^{\circ} + 90^{\circ} + 60^{\circ})$$

$$\angle QOR = 360^{\circ} - 240^{\circ}$$

$$\angle QOR = 120^{\circ}$$

ii) Now arc RQ subtends $\angle QOR$ at the centre and $\angle QPR$ at the remaining part of the circle.

$$\therefore \angle QPR = \frac{1}{2} \angle QOR$$

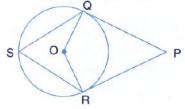
$$\Rightarrow \angle QPR = \frac{1}{2} \times 120^{\circ}$$

$$\Rightarrow \angle QPR = 60^{\circ}$$

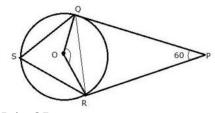
Question 18:

In the following figure, PQ and PR are tangents to the circle, with centre O. If $\angle QPR = 60^{\circ}$, calculate:

(i) $\angle QOR$ (ii) $\angle OQR$ (iii) $\angle QSR$



Solution 18:



Join QR.

i) In quadrilateral ORPQ,

$$OQ \perp OP, OR \perp RP$$

$$\therefore$$
 \angle OQP = 90°, \angle ORP = 90°, \angle QPR = 60°

$$\angle QOR = 360^{\circ} - (90^{\circ} + 90^{\circ} + 60^{\circ})$$

$$\angle QOR = 360^{\circ} - 240^{\circ}$$

$$\angle QOR = 120^{\circ}$$

ii) In ∠QOR,

OO = OR (Radii of the same circle)

$$\therefore$$
 OQR = \angle QRO(i)

But,
$$\angle OQR + \angle QRO + \angle QOR = 180^{\circ}$$

$$\angle OQR + \angle QRO + 120^{\circ} = 180^{\circ}$$

$$\angle OQR + \angle QRO = 60^{\circ}$$

From (i)

$$2\angle OQR = 60^{\circ}$$

$$\angle OQR = 30^{\circ}$$

iii) Now arc RQ subtends ∠QOR at the centre and ∠QSR at the remaining part of the circle.

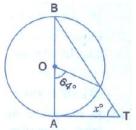
$$\therefore \angle QSR = \frac{1}{2} \angle QOR$$

$$\Rightarrow \angle QSR = \frac{1}{2} \times 120^{\circ}$$

$$\Rightarrow \angle QSR = 60^{\circ}$$

Question 19:

In the given figure, AB is the diameter of the circle, with centre O, and AT is the tangent. Calculate the numerical value of x.



Solution 19:

In $\triangle OBC$,

OB = OC (Radii of the same circle)

$$\therefore \angle OBC = \angle OCB$$

But, Ext. $\angle COA = \angle OBC + \angle OCB$

Ext.
$$\angle COA = 2\angle OBC$$

$$\Rightarrow$$
 64° = 2 \angle OBC

$$\Rightarrow \angle OBC = 32^{\circ}$$

Now in $\triangle ABT$

$$\angle BAT = 90^{\circ} (OA \perp AT)$$

$$\angle$$
OBC or \angle ABT = 32°

$$\therefore \angle BAT + \angle ABT + x^{\circ} = 180^{\circ}$$

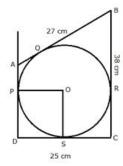
$$\Rightarrow$$
 90° + 32° + x° = 180°

$$\Rightarrow x^{\circ} = 58^{\circ}$$

Question 20:

In quadrilateral ABCD; angles $D = 90^{\circ}$, BC = 38 cm and DC = 25 cm. A circle is inscribed in this quadrilateral which touches AB at point Q such that QB = 27 cm, Find the radius of the circle.

Solution 20:



BQ and BR are the tangents from B to the circle.

Therefore, BR = BQ = 27 cm.

Also RC = (38 -; 27) = 11cm

Since CR and CS are the tangents from C to the circle

Therefore, CS = CR = 11 cm

So, DS = (25 - 11) = 14 cm

Now DS and DP are the tangents to the circle

Therefore, DS = DP

Now, $\angle PDS = 90^{\circ}$ (given)

and $OP \perp AD, OS \perp DC$

therefore, radius = DS = 14 cm

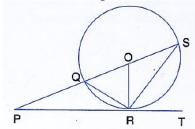
Ouestion 21:

In the given figure, PT touches the circle with centre O at point R. Diameter SQ is produced to meet the tangent TR at P.

Given $\angle SPR = x^{\circ}$ and $\angle QRP = y^{\circ}$;

Prove that:

- (i) $\angle ORS = v^{\circ}$
- (ii) Write an expression connecting x and y.



Solution 21:

 $\angle QRP = \angle OSR = y$ (angles in alternate segment)

But OS = OR (Radii of the same circle)

 $\therefore \angle ORS = \angle OSR = y$

 \therefore OQ = OR (radii of same circle)

 $\therefore \angle OQR = \angle ORQ = 90^{\circ} - y$ (i) (Since OR $\perp PT$)

But in $\triangle PQR$,

Ext
$$\angle OQR = x + y \dots(i)$$

From (i) and (ii)

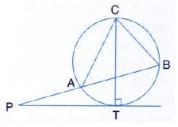
$$x + y = 90^{\circ} - y$$

$$\Rightarrow$$
 x + 2y = 90°

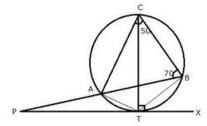
Question 22:

PT is a tangent to the circle at T. if $\angle ABC = 70^{\circ}$ and $\angle ACB = 50^{\circ}$; Calculate:

(i) ∠CBT (ii) ∠BAT (iii) ∠APT



Solution 22:



Join AT and BT.

i) TC is the diameter of the circle

 \therefore \angle CBT = 90° (Angle in a semi – circle)

(ii) $\angle CBA = 70^{\circ}$

$$\therefore \angle ABT = \angle CBT - \angle CBA = 90^{\circ} - 70^{\circ} = 20^{\circ}$$

Now, $\angle ACT = \angle ABT = 20^{\circ}$ (Angle in the same segment of the circle)

 \therefore \angle TCB = \angle ACB - \angle ACT = 50° - 20° = 30°

But, $\angle TCB = \angle TAB$ (Angles in the same segment of the circle)

 \therefore ZTAB or ZBAT = 30°

(iii) $\angle BTX = \angle TCB = 30^{\circ}$ (Angles in the same segment)

 $\therefore \angle PTB = 180^{\circ} - 30^{\circ} = 150^{\circ}$

Now in ΔPTB

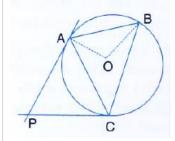
$$\angle APT + \angle PTB + \angle ABT = 180^{\circ}$$

$$\Rightarrow$$
 $\angle APT + 150^{\circ} + 20^{\circ} = 180^{\circ}$

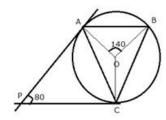
$$\Rightarrow \angle APT = 180^{\circ} - 170^{\circ} = 10^{\circ}$$

Question 23:

In the given figure, O is the centre of the circumcircle ABC. Tangents at A and C intersect at P. Given angle $AOB = 140^{\circ}$ and angle $APC = 80^{\circ}$; find the angle BAC.



Solution 23:



Join OC.

Therefore, PA and PA are the tangents

 \therefore OA \perp PA and OC \perp PC

In quadrilateral APCO,

$$\angle APC + AOC = 180^{\circ}$$

$$\Rightarrow$$
 80° + \angle AOC = 180°

$$\Rightarrow \angle AOC = 100^{\circ}$$

$$\angle BOC = 360^{\circ} - (\angle AOB + \angle AOC)$$

$$\angle BOC = 360^{\circ} - (140^{\circ} + 100^{\circ})$$

$$\angle B = 360^{\circ} - 240^{\circ} = 120^{\circ}$$

Now, arc BC subtends $\angle BOC$ at the centre and $\angle BAC$ at the remaining part of the circle

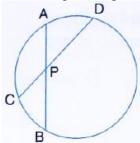
$$\therefore \angle BAC = \frac{1}{2} \angle BOC$$

$$\angle BAC = \frac{1}{2} \times 120^{\circ} = 60^{\circ}$$

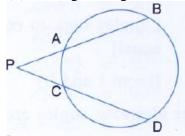
EXERCISE. 18 (B)

Question 1:

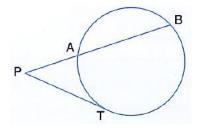
(i) In the given figure $3 \times CP = PD = 9cm$ and AP = 4.5 cm Find BP.



(ii) In the given figure, $5 \times PA = 3 \times AB = 30$ cm and PC = 4cm. find CD.



(iii) In the given figure tangent PT = 12.5 cm and PA = 10 cm; find AB.



Solution 1:

i) Since two chords AB and CD intersect each other at P.

$$\therefore AP \times PB = CP \times PD$$

$$\Rightarrow$$
 4.5×PB = 3×9(3CP = 9cm \Rightarrow CP = 3cm)

$$\Rightarrow$$
 PB = $\frac{3 \times 9}{4.5}$ = 6 cm

ii) Since two chords AB and CD intersect each other at P.

$$\therefore AP \times PB = CP \times PD$$

But
$$5 \times PA = 3 \times AB = 30$$
 cm

$$\therefore 5 \times PA = 30 \text{ cm} \Rightarrow PA = 6 \text{ cm}$$

And
$$3 \times AB = 30 \text{ cm} \Rightarrow AB = 10 \text{ cm}$$

$$\Rightarrow$$
 BP = PA + AB = 6+10 = 16 cm

$$AP \times PB = CP \times PD$$

$$\Rightarrow 6 \times 16 = 4 \times PD$$

$$\Rightarrow PD = \frac{6 \times 16}{4} = 24 \text{ cm}$$

$$CD = PD - PC = 24 - 4 = 20 \text{ cm}$$

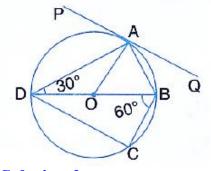
iii) Since PAB is the secant and PT is the tangent

∴
$$PT^2 = PA \times PB$$

⇒ $12.5^2 = 10 \times PB$
⇒ $PB = \frac{12.5 \times 12.5}{10} = 15.625 \text{ cm}$
 $AB = PB - PA = 15.625 - 10 = 5.625 \text{ cm}$

Question 2:

In the following figure, PQ is the tangent to the circle at A, DB is the diameter and O is the centre of the circle. If $\angle ADB = 30^{\circ}$ and $\angle CBD = 60^{\circ}$, Calculate:



Solution 2:

i) PAQ is a tangent and AB is the chord.

$$\angle QAB = \angle ADB = 30^{\circ}$$
 (angles in the alternate segment)

ii) OA = OD (radii of the same circle)

$$\therefore \angle OAD = \angle ODA = 30^{\circ}$$

But,
$$OA \perp PQ$$

$$\therefore \angle PAD = \angle OAP - \angle OAD = 90^{\circ} - 30^{\circ} = 60^{\circ}$$

iii) BD is the diameter.

$$\therefore \angle BCD = 90^{\circ}$$
 (angle in a semi – circle)

Now in $\triangle BCD$,

$$\angle$$
CDB + \angle CBD + \angle BCD = 180°

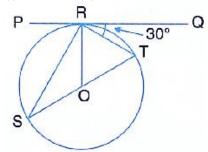
$$\Rightarrow \angle CDB + 60^{\circ} + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 \angle CDB = $180^{\circ} - 150^{\circ} = 30^{\circ}$

Question 3:

If PQ is a tangent to the circle at R; calculate:

(i) ∠PRS (ii) ∠ROT



Given O is the centre of the circle and angle $TRQ = 30^{\circ}$

Solution 3:

PQ is a tangent and OR is the radius.

$$\therefore$$
 OR \perp PQ

$$\therefore \angle ORT = 90^{\circ}$$

$$\Rightarrow \angle TRQ = 90^{\circ} - 30^{\circ} = 60^{\circ}$$

But in $\triangle OTR$,

OT = OR (Radii of the same circle)

$$\therefore \angle OTR = 60^{\circ} \text{ Or } \angle STR = 60^{\circ}$$

But,

 $\angle PRS = \angle STR = 60^{\circ}$ (Angle in the alternate segment)

In $\triangle ORT$,

$$\angle ORT = 60^{\circ}$$

$$\angle OTR = 60^{\circ}$$

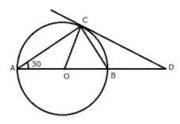
$$\therefore \angle ROT = 180^{\circ} - \left(60^{\circ} + 60^{\circ}\right)$$

$$\angle ROT = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

Question 4:

AB is the diameter and AC is a chord of a circle with centre O such that angle BAC = 30° . The tangent to the circle at C intersects AB produced in D. show that BC = BD.

Solution 4:



Join OC,

 $\angle BCD = \angle BAC = 30^{\circ}$ (angles in alternate segment)

Arc BC subtends \angle DOC at the centre of the circle and \angle BAC at the remaining part of the circle.

$$\therefore \angle BOC = 2\angle BAC = 2\times 30^{\circ} = 60^{\circ}$$

Now in $\triangle OCD$,

$$\angle BOC$$
 or $\angle DOC = 60^{\circ}$

$$\angle OCD = 90^{\circ} (OC \perp CD)$$

$$\therefore \angle DCO + \angle ODC = 90^{\circ}$$

$$\Rightarrow$$
 60° + \angle ODC = 90°

$$\Rightarrow \angle ODC = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

Now in $\triangle BCD$,

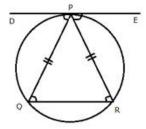
$$\therefore$$
 \angle ODC or \angle BDC = \angle BCD = 30°

$$\therefore$$
 BC = BD

Question 5:

Tangent at P to the circumcircle of triangle PQR is drawn. If the tangent is parallel to side, QR show that Δ PQR is isosceles.

Solution 5:



DE is the tangent to the circle at P.

DE || QR (Given)

 $\angle EPR = \angle PRQ$ (Alternate angles are equal)

 $\angle DPQ = \angle PQR$ (Alternate angles are equal) (i)

Let $\angle DPQ = x$ and $\angle EPR = y$

Since the angle between a tangent and a chord through the point of contact is equal to the angle in the alternate segment

$$\therefore$$
 \angle DPQ = \angle PRQ(ii) (DE is tangent and PQ is chord)

from (i) and (ii)

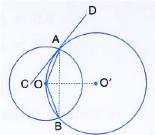
$$\angle PQR = \angle PRQ$$

$$\Rightarrow$$
 PQ = PR

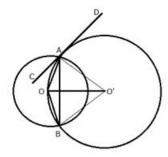
Hence, triangle PQR is an isosceles triangle.

Question 6:

Two circle with centres O and O are drawn to intersect each other at points A and B. Centre O of one circle lies on the circumference of the other circle and CD is drawn tangent to the circle with centre O at A. prove that OA bisects angle BAC.



Solution 6:



Join OA, OB, O'A, O'B and O'O.

CD is the tangent and AO is the chord.

 $\angle OAC = \angle OBA$ (angles in alternate segment)

In $\triangle OAB$,

OA = OB (Radii of the same circle)

 \therefore OAB = \angle OBA(ii)

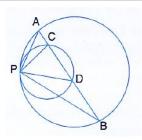
From (i) and (ii)

 $\angle OAC = \angle OAB$

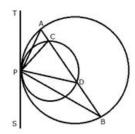
Therefore, OA is bisector of ∠BAC

Question 7:

Two circles touch each other internally at a point P. A chord AB of the bigger circle intersects the other circle in C and D. Prove that $\angle CPA = \angle DPB$.



Solution 7:



Draw a tangent TS at P to the circles given.

Since TPS is the tangent, PD is the chord.

 \therefore \angle PAB = \angle BPS(i) (Angles in alternate segment)

Similarly,

 $\angle PCD = \angle DPS \dots$ (ii)

Subtracting (i) from (ii)

 $\angle PCD - \angle PAB = \angle DPS - \angle BPS$

But in $\triangle PAC$,

Ext. $\angle PCD = \angle PAB + \angle CPA$

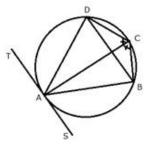
 $\therefore \angle PAB + \angle CPA - \angle PAB = \angle DPS - \angle BPS$

 $\Rightarrow \angle CPA = \angle DPB$

Question 8:

In a cyclic quadrilateral ABCD, the diagonal AC bisects the angle BCD. Prove that the diagonal BD is parallel to the tangent to the circle at point A.

Solution 8:



 $\angle ADB = \angle ACB$ (i) (Angles in same segement)

Similarly,

 $\angle ABD = \angle ACD$ (ii)

But, $\angle ACB = \angle ACD$ (AC is bisector of $\angle BCD$)

 $\therefore \angle ADB = \angle ABD$ (from (i) and (ii))

TAS is a tangent and AB is a chord

 $\therefore \angle BAS = \angle ADB$ (angles in alternate segment)

But, $\angle ADB = \angle ABD$

 $\therefore \angle BAS = \angle ABD$

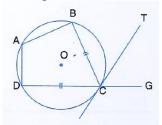
But these are alternate angles

Therefore, TS || BD

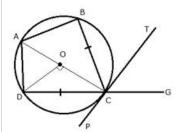
Question 9:

In the figure, ABCD is a cyclic quadrilateral with BC = CD. TC is tangent to the circle at point C and DC is produced to point G. If \angle BCG = 108° and O is the centre of the circle, find:

- (i) Angle BCT
- (ii) angle DOC



Solution 9:



Join OC, OD and AC

i)

$$\angle BCG + \angle BCD = 180^{\circ}$$
 (Linear pair)

$$\Rightarrow$$
 180° + \angle BCD = 180°

$$\Rightarrow \angle BCD = 180^{\circ} - 180^{\circ} = 72^{\circ}$$

$$BC = CD$$

$$\therefore \angle DCP = \angle BCT$$

But,
$$\angle BCT + \angle BCD + \angle DCP = 180^{\circ}$$

$$\therefore \angle BCT + \angle BCT + 72^{\circ} = 180^{\circ}$$

$$2\angle BCT = 180^{\circ} - 72^{\circ}$$

$$\angle BCT = 54^{\circ}$$

ii)

PCT is a tangent and CA is a chord.

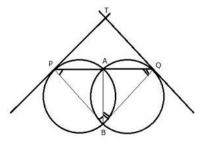
$$\angle CAD = \angle BCT = 54^{\circ}$$

But arc DC subtends \angle DOC at the centre and \angle CAD at the remaining part of the circle.

$$\therefore$$
 \angle DOC = $2\angle$ CAD = $2\times54^{\circ}$ = 108°

Question 10:

Two circles intersect each other at points A and B. A straight line PAQ cuts the circles at P and Q. If the tangents at P and Q intersect at point T; show that the points P, B, Q and T are concyclic. **Solution 10:**



Join AB, PB and BQ

TP is the tangent and PA is a chord

 \therefore \angle TPA = \angle ABP (i) (angles in alternate segment)

Similarly,

$$\angle TQA = \angle ABQ$$
(ii)

Adding (i) and (ii)

$$\angle TPA + \angle TQA = \angle ABP + \angle ABQ$$

But, ΔPTQ ,

$$\angle$$
TPA + \angle TQA + \angle PTQ = 180°

$$\Rightarrow \angle PBQ = 180^{\circ} - \angle PTQ$$

$$\Rightarrow \angle PBQ + \angle PTQ = 180^{\circ}$$

But they are the opposite angles of the quadrilateral

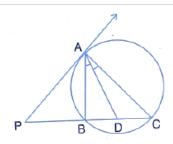
Therefore, PBQT are cyclic.

Hence, P, B, Q and T are concyclic.

Question 11:

In the figure; PA is a tangent to the circle, PBC is secant and AD bisects angle BAC. Show that triangle PAD is an isosceles triangle. Also, show that:

$$\angle CAD = \frac{1}{2} (\angle PBA - \angle PAB)$$



Solution 11:

i) PA is the tangent and AB is a chord

 \therefore $\angle PAB = \angle C$ (i) (angles in the alternate segment)

AD is the bisector of $\angle BAC$

$$\therefore \angle 1 = \angle 2$$
(ii)

In $\triangle ADC$,

 $Ext.\angle ADP = \angle C + \angle 1$

$$\Rightarrow$$
 Ext \angle ADP = \angle PAB + \angle 2 = \angle PAD

Therefore, ΔPAD is an isosceles triangle.

ii) In ΔABC,

Ext. $\angle PBA = \angle C + \angle BAC$

$$\angle BAC = \angle PBA - \angle C$$

$$\Rightarrow \angle 1 + \angle 2 = \angle PBA - \angle PAB$$

(from (i) part)

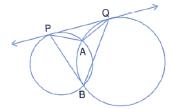
$$2\angle 1 = \angle PBA - \angle PAB$$

$$\angle 1 = \frac{1}{2} (\angle PBA - \angle PAB)$$

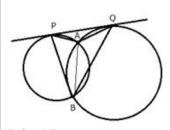
$$\Rightarrow \angle CAD = \frac{1}{2} (\angle PBA - \angle PAB)$$

Question 12:

Two circles intersect each other at points A and B. their common tangent touches the circles at points P and Q as shown in the figure. Show that the angles PAQ and PBQ are supplementary.



Solution 12:



Join AB.

PQ is the tangent and AB is a chord

 $\therefore \angle QPA = \angle PBA$ (i) (angles in alternate segment)

Similarly,

$$\angle PQA = \angle QBA$$
(ii)

Adding (i) and (ii)

$$\angle QPA + \angle PQA = \angle PBA + \angle QBA$$

But, in $\triangle PAQ$,

$$\angle QPA + \angle PQA = 180^{\circ} - \angle PAQ$$
 (iii)

And
$$\angle PBA + \angle QBA = \angle PBQ$$
(iv)

From (iii) and (iv)

$$\angle PBQ = 180^{\circ} - \angle PAQ$$

$$\Rightarrow \angle PBQ + \angle PAQ = 180^{\circ}$$

$$\Rightarrow \angle PBQ + \angle PBQ = 180^{\circ}$$

Hence $\angle PAQ$ and $\angle PBQ$ are supplementary

Question 13:

In the figure, chords AE and BC intersect each other at point D.

(i) If $\angle CDE = 90^{\circ}$,

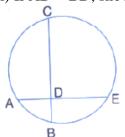
AB = 5 cm,

BD = 4 cm and

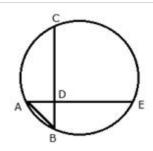
CD = 9 cm

Find DE.

(ii) If AD = BD, show that AE = BC



Solution 13:



Join AB.

i) In Rt. \triangle ADB,

$$AB^2 = AD^2 + DB^2$$

$$5^2 = AD^2 + 4^2$$

$$AD^2 = 25 - 16$$

$$AD^2 = 9$$

$$AD = 3$$

Chords AE and CB intersect each other at D inside the circle

 $AD \times DE = BD \times DC$

 $3 \times DE = 4 \times 9$

DE = 12 cm

ii) If AD = BD(i)

We know that:

 $AD \times DE = BD \times DC$

But AD = BD

Therefore, DE = DC(ii)

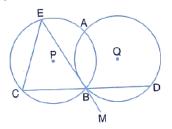
Adding (i) and (ii)

AD + DE = BD + DC

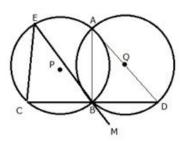
Therefore, AE = BC

Question 14:

Circles with centres P and Q intersect at points A and B as shown in the figure. CBD is a segment and EBM is tangent to the circle with centre Q, at point B. If the circle are congruent; show that CE = BD



Solution 14:



Join AB and AD

EBM is a tangent and BD is a chord.

 $\angle DBM = \angle BAD$ (angles in alternate segments)

But, $\angle DBM = \angle CBE$ (Vertically opposite angles)

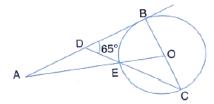
 $\therefore \angle BAD = \angle CBE$

Since in the same circle or congruent circles, if angles are equal, then chords opposite to them are also equal.

Therefore, CE = BD

Question 15:

In the adjoining figure, O is the centre of the circle and AB is a tangent to it at point B. $\angle BDC = 65^{\circ}$ Find $\angle BAO$.



Solution 15:

AB is a straight line.

$$\therefore \angle ADE + \angle BDE = 180^{\circ}$$

$$\Rightarrow$$
 \angle ADE + 65° = 180°

$$\Rightarrow \angle ADE = 115^{\circ}$$
(i)

AB i.e. DB is tangent to the circle at point B and BC is the diameter.

$$\therefore \angle DB \angle = 90^{\circ}$$

In $\triangle BDC$,

$$\angle DBC + \angle BDC + \angle DCB = 180^{\circ}$$

$$\Rightarrow$$
 90° + 65° + \angle DCB = 180°

$$\Rightarrow \angle DCB = 25^{\circ}$$

Now, OE = OC (radii of the same circle)

$$\therefore$$
 \angle DCB or \angle OCE = \angle OEC = 25°

Also,

$$\angle OEC = \angle DEC = 25^{\circ}$$

(vertically opposite angles)

In $\triangle ADE$,

$$\angle ADE + \angle DEA + \angle DAE = 180^{\circ}$$

From (i) and (ii)

$$115^{\circ} + 25^{\circ} + \angle DAE = 180^{\circ}$$

$$\Rightarrow$$
 \angle DAE or \angle BAO = $180^{\circ} - 140^{\circ} = 40^{\circ}$

$$\therefore \angle BAO = 40^{\circ}$$

EXERCISE. 18 (C)

Question 1:

Prove that, of any two chords of a circle, the greater chord is nearer to the centre.

Solution 1:



Given: A circle with centre O and radius r. OM \perp AB and ON \perp CD Also AB > CD

To prove: OM < ON Proof: Join OA and OC.

In Rt. $\triangle AOM$,

$$AO^2 = AM^2 + OM^2$$

$$\Rightarrow r^2 = \left(\frac{1}{2}AB\right)^2 + OM^2$$

$$\Rightarrow$$
 r² = $\frac{1}{4}AB^2 + OM^2$ (i)

Again in Rt. ΔONC,

$$OC^2 = NC^2 + ON^2$$

$$\Rightarrow r^2 = \left(\frac{1}{2}CD\right)^2 + ON^2$$

$$\Rightarrow r^2 = \frac{1}{4}CD^2 + ON^2 \quad(ii)$$

From (i) and (ii)

$$\frac{1}{4}AB^2 + OM^2 = \frac{1}{4}CD^2 + ON^2$$

But, AB > CD (given)

 \therefore ON > OM

 $\Longrightarrow OM < ON$

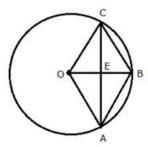
Hence, AB is nearer to the centre than CD.

Question 2:

OABC is a rhombus whose three vertices A, B and C lie on a circle with centre O.

- (i) If the radius of the circle is 10 cm, find the area of the rhombus
- (ii) If the area of the rhombus is $32\sqrt{3}$ cm² find the radius of the circle.

Solution 2:



i) Radius = 10 cm

In rhombus OABC,

$$OC = 10 \text{ cm}$$

$$\therefore OE = \frac{1}{2} \times OB = \frac{1}{2} \times 10 = 5 \text{ cm}$$

In Rt. ΔOCE.

$$OC^2 = OE^2 + EC^2$$

$$\Rightarrow$$
 10² = 5² + EC²

$$\Rightarrow$$
 EC² = 100 - 25 = 75

$$\Rightarrow$$
 EC = $5\sqrt{3}$

$$\therefore AC = 2 \times EC = 2 \times 5\sqrt{3} = 10\sqrt{3}$$

Area of rhombus =
$$\frac{1}{2} \times OB \times AC$$

$$=\frac{1}{2}\times10\times10\sqrt{3}$$

$$=50\sqrt{3}$$
 cm² ≈ 86.6 cm² ($\sqrt{3} = 1.73$)

(ii) Area of rhombus =
$$32\sqrt{3}$$
 cm²

But area of rhombus OABC = 2 x area of $\triangle OAB$

Area of rhombus OABC =
$$2 \times \frac{\sqrt{3}}{4} r^2$$

Where r is the side of the equilateral triangle OAB.

$$2 \times \frac{\sqrt{3}}{4} r^2 = 32\sqrt{3}$$

$$2 \times \frac{\sqrt{3}}{4} r^2 = 32\sqrt{3}$$
$$\Rightarrow \frac{\sqrt{3}}{2} r^2 = 32\sqrt{3}$$

$$\Rightarrow$$
 r² = 64

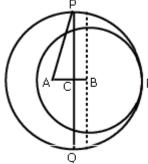
$$\Rightarrow$$
 r = 8

Therefore, radius of the circle = 8 cm

Question 3:

Two circle with centres A and B, and radii 5 cm and 3 cm, touch each other internally. If the perpendicular bisector of the segment AB meets the bigger circle in P and Q; find the length of PQ.

Solution 3:



If two circles touch internally, then distance between their centres is equal to the difference of their radii. So, AB = (5-3) cm = 2 cm.

Also, the common chord PQ is the perpendicular bisector of AB. Therefore, $AC = CB = \frac{1}{2} AB$

= 1 cm

In right $\triangle ACP$, we have $AP^2 = AC^2 + CP^2$

$$\Rightarrow 5^2 = 1^2 + CP^2$$

$$\Rightarrow$$
 CP² = 25 -; 1 = 24

$$\Rightarrow$$
 CP = $\sqrt{24}$ = $2\sqrt{6}$ cm

Now, PQ = 2 CP

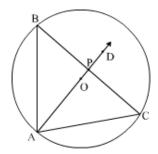
$$= 2 \times 2\sqrt{6}$$
 cm

$$=4\sqrt{6}$$
 cm

Question 4:

Two chords AB and AC of a circle are equal. Prove that the centre of the circle lies on the bisector of angle BAC.

Solution 4:



Given: AB and AC are two equal chords of C(O, r).

To prove: Centre, O lies on the bisector of $\angle BAC$.

Construction: Join BC. Let the bisector of ∠BAC intersects BC in P.

Proof:

In \triangle APB and \triangle APC,

AB = AC (Given)

 $\angle BAP = \angle CAP$ (Given)

AP = AP (Common)

 $\therefore \triangle APB \cong \triangle APC$ (SAS congruence criterion)

 \Rightarrow BP = CP and \angle APB = \angle APC (CPCT)

 $\angle APB + \angle APC = 180^{\circ}$ (Linear pair)

 \Rightarrow 2 \angle APB = 180° (\angle APB = \angle APC)

 \Rightarrow \angle APB = 90°

Now, BP = CP and \angle APB = 90°

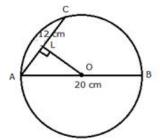
: AP is the perpendicular bisector of chord BC.

⇒ AP passes through the centre, O of the circle.

Question 5:

The diameter and a chord of a circle have a common end-point. If the length of the diameter is 20 cm and the length of the chord is 12 cm, how far is the chord from the centre of the circle?

Solution 5:



AB is the diameter and AC is the chord.

Draw OL \(\perp \) AC

Since $OL \perp AC$ and hence it bisects AC, O is the centre of the circle.

Therefore, OA = 10 cm and AL = 6 cm

Now, in Rt. $\triangle OLA$,

$$AO^2 = AL^2 + OL^2$$

$$\Rightarrow 10^2 = 6^2 + OL^2$$

$$\Rightarrow$$
 OL² = 100 - 36 = 64

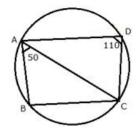
$$\Rightarrow$$
 OL = 8 cm

Therefore, chord is at a distance of 8 cm from the centre of the circle.

Question 6:

ABCD is a cyclic quadrilateral in which BC is parallel to AD, angle ADC = 110° and angle BAC = 50° . Find angle DAC and angle DCA.

Solution 6:



ABCD is a cyclic quadrilateral in which AD||BC

$$\angle ADC = 110^{\circ}$$
, $\angle BAC = 50^{\circ}$

$$\angle B + \angle D = 180^{\circ}$$

(Sum of opposite angles of a quadrilateral)

$$\Rightarrow \angle B + 110^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle B = 70^{\circ}$$

Now in $\triangle ABC$,

$$\angle BAC + \angle ABC + \angle ACB = 180^{\circ}$$

$$\Rightarrow$$
 50° + 70° + \angle ACB = 180°

$$\Rightarrow \angle ACB = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

$$\therefore$$
 $\angle DAC = \angle ACB = 60^{\circ}$ (alternate angles)

Now in $\triangle ADC$,

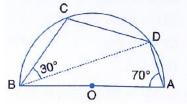
$$\angle DAC + \angle ADC + \angle DCA = 180^{\circ}$$

$$\Rightarrow$$
 60° +110° + \angle DCA = 180°

$$\Rightarrow \angle DCA = 180^{\circ} - 170^{\circ} = 10^{\circ}$$

Question 7:

In the given figure, C and D are points on the semi-circle described on AB as diameter. Given angle $BAD = 70^{\circ}$ and angle $DBC = 30^{\circ}$, calculate angle BDC.



Solution 7:

Since ABCD is a cyclic quadrilateral, therefore, $\angle BCD + \angle BAD = 180^{\circ}$ (since opposite angles of a cyclic quadrilateral are supplementary)

$$\Rightarrow \angle BCD + 70^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle BCD = 180^{\circ} - 70^{\circ} = 110^{\circ}$$

In $\triangle BCD$, we have,

$$\angle CBD + \angle BCD + \angle BDC = 180^{\circ}$$

$$\Rightarrow$$
 30° + 110° + \angle BDC = 180°

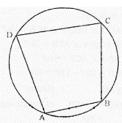
$$\Rightarrow \angle BDC = 180^{\circ} - 140^{\circ}$$

$$\Rightarrow \angle BDC = 40^{\circ}$$

Question 8:

In cyclic quadrilateral ABCD, $\angle A = 3 \angle C$ and $\angle D = 5 \angle B$. Find the measure of each angle of the quadrilateral.

Solution 8:



ABCD is a cyclic quadrilateral.

$$\therefore \angle A + \angle C = 180^{\circ}$$

$$\Rightarrow$$
 3 \angle C + \angle C = 180°

$$\Rightarrow 4\angle C = 180^{\circ}$$

$$\Rightarrow \angle C = 45^{\circ}$$

$$\therefore \angle A = 3\angle C$$

$$\Rightarrow \angle A = 3 \times 45^{\circ}$$

$$\Rightarrow \angle A = 135^{\circ}$$

Similarly,

$$\therefore \angle B + \angle D = 180^{\circ}$$

$$\Rightarrow \angle B + 5 \angle B = 180^{\circ}$$

$$\Rightarrow$$
 6 \angle B = 180°

$$\Rightarrow \angle B = 30^{\circ}$$

$$\therefore \angle D = 5 \angle B$$

$$\Rightarrow \angle D = 5 \times 30^{\circ}$$

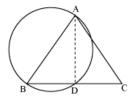
$$\Rightarrow \angle D = 150^{\circ}$$

Hence,
$$\angle A = 135^{\circ}$$
, $\angle B = 30^{\circ}$, $\angle C = 45^{\circ}$, $\angle D = 150^{\circ}$

Question 9:

Show that the circle drawn on any one of the equal sides of an isosceles triangle as diameter bisects the base.

Solution 9:



Join AD.

AB is the diameter.

 $\therefore \angle ADB = 90^{\circ}$ (Angle in a semi-circle)

But, $\angle ADB + \angle ADC = 180^{\circ}$ (linear pair)

 $\Rightarrow \angle ADC = 90^{\circ}$

In \triangle ABD and \triangle ACD,

 $\angle ADB = \angle ADC$ (each 90°)

AB = AC (Given)

AD = AD (Common)

 $\triangle ABD \cong \triangle ACD$ (RHS congruence criterion)

 \Rightarrow BD = DC (C.P.C.T)

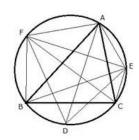
Hence, the circle bisects base BC at D.

Question 10:

Bisectors of vertex angles A, B, and C of a triangle ABC intersect its circumcircle at the points

D, E and F respectively. Prove that angle EDF = $90^{\circ} - \frac{1}{2} \angle A$

Solution 10:



Join ED, EF and DF. Also join BF, FA, AE and EC.

$$\angle EBF = \angle ECF = \angle EDF$$
(i) (angles in the same segment)

In cyclic quadrilateral AFBE,

$$\angle EBF + \angle EAF = 180^{\circ}$$
(ii) (sum of opposite angles)

Similarly in cyclic quadrilateral CEAF,

$$\angle EAF + \angle ECF = 180^{\circ}$$
(iii)

Adding (ii) and (iii)

$$\Rightarrow$$
 \angle EDF + \angle ECF + $2\angle$ EAF = 360°

$$\Rightarrow \angle EDF + \angle EDF + 2\angle EAF = 360^{\circ}$$
 (from (i))

$$\Rightarrow 2\angle EDF + 2\angle EAF = 360^{\circ}$$

$$\Rightarrow \angle EDF + \angle EAF = 180^{\circ}$$

$$\Rightarrow \angle EDF + \angle 1 + \angle BAC + \angle 2 = 180^{\circ}$$

But
$$\angle 1 = \angle 3$$
 and $\angle 2 = \angle 4$

(angles in the same segment)

$$\therefore \angle EDF + \angle 3 + \angle BAC + \angle 4 = 180^{\circ}$$

But
$$\angle 4 = \frac{1}{2} \angle C$$
, $\angle 3 = \frac{1}{2} \angle B$

$$\therefore \angle EDF + \frac{1}{2} \angle B + \angle BAC + \frac{1}{2} \angle C = 180^{\circ}$$

$$\Rightarrow \angle EDF + \frac{1}{2}\angle B + 2 \times \frac{1}{2}\angle A + \frac{1}{2}\angle C = 180^{\circ}$$

$$\Rightarrow \angle EDF + \frac{1}{2}(\angle A + \angle B + \angle C) + \frac{1}{2}\angle A = 180^{\circ}$$

$$\Rightarrow \angle EDF + \frac{1}{2}(180^{\circ}) + \frac{1}{2}\angle A = 180^{\circ}$$

$$\Rightarrow \angle EDF + 90^{\circ} + \frac{1}{2} \angle A = 180^{\circ}$$

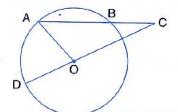
$$\Rightarrow \angle EDF = 180^{\circ} - \left(90^{\circ} + \frac{1}{2} \angle A\right)$$

$$\Rightarrow \angle EDF = 180^{\circ} - 90^{\circ} \frac{1}{2} \angle A$$

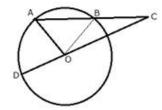
$$\Rightarrow \angle EDF = 90^{\circ} - \frac{1}{2} \angle A$$

Question 11:

In the figure, AB is the chord of a circle with centre O and DOC is a line segment such that BC = DO. If $\angle C = 20^{\circ}$, find angle AOD.



Solution 11:



Join OB,

In $\triangle OBC$,

BC = OD = OB (Radii of the same circle)

$$\therefore \angle BOC = \angle BCO = 20^{\circ}$$

And Ext. $\angle ABO = \angle BCO + \angle BOC$

$$\Rightarrow$$
 Ext.. $\angle ABO = 20^{\circ} + 20^{\circ} = 40^{\circ}$ (i)

In $\triangle OAB$,

OA = OB (radii of the same circle)

$$\therefore \angle OAB = \angle OBA = 40^{\circ}$$
 (from (i))

$$\angle AOB = 180^{\circ} - \angle OAB - \angle OBA$$

$$\Rightarrow \angle AOB = 180^{\circ} - 40^{\circ} - 40^{\circ} = 100^{\circ}$$

Since DOC is a straight line

$$\therefore \angle AOD + \angle AOB + \angle BOC = 180^{\circ}$$

$$\Rightarrow \angle AOD + 100^{\circ} + 20^{\circ} = 180^{\circ}$$

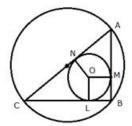
$$\Rightarrow \angle AOD = 180^{\circ} - 120^{\circ}$$

$$\Rightarrow \angle AOD = 60^{\circ}$$

Question 12:

Prove that the perimeter of a right triangle is equal to the sum of the diameter of its incircle and twice the diameter of its circumcircle.

Solution 12:



Join OL. OM and ON.

Let D and d be the diameter of the circumcircle and incircle. and let R and r be the radius of the circumcircle and incircle.

In circumcircle of $\triangle ABC$,

$$\angle B = 90^{\circ}$$

Therefore, AC is the diameter of the circumcircle i.e. AC = D

Let radius of the incircle = r

$$\therefore$$
 OL = OM = ON = r

Now, from B, BL, BM are the tangents to the incircle.

$$\therefore$$
 BL = BM = r

Similarly,

AM = AN and CL = CN = R

(Tangents from the point outside the circle)

Now,

AB + BC + CA = AM + BM + BL + CL + CA

$$= AN + r + r + CN + CA$$

$$= AN + CN + 2r + CA$$

$$= AC + AC + 2r$$

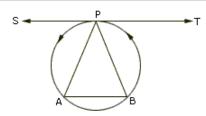
$$= 2AC + 2r$$

$$= 2D + d$$

Ouestion 13:

P is the mid – point of an arc APB of a circle. Prove that the tangent drawn at P will be parallel to the chord AB.

Solution 13:



Join AP and BP.

Since TPS is a tangent and PA is the chord of the circle.

 $\angle BPT = \angle PAB$ (angles in alternate segments)

Rut

$$\angle PBA = \angle PAB(:: PA = PB)$$

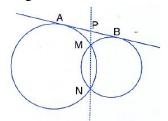
 $\therefore \angle BPT = \angle PBA$

But these are alternate angles

∴ TPS || AB

Question 14:

In the given figure, MN is the common chord of two intersecting circles and AB is their common tangent.



Prove that the line NM produced bisects AB at P.

Solution 14:

From P, AP is the tangent and PMN is the secant for first circle.

$$\therefore AP^2 = PM \times PN \quad \dots \quad (i)$$

Again from P, PB is the tangent and PMN is the secant for second circle.

$$\therefore PB^2 = PM \times PN$$
(ii)

From (i) and (ii)

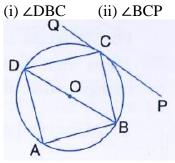
$$AP^2 = PB^2$$

$$\Rightarrow$$
 AP = PB

Therefore, P is the midpoint of AB.

Question 15:

In the given figure, ABCD is a cyclic quadrilateral, PQ is tangent to the circle at point C and BD is its diameter. If $\angle DCQ = 40^{\circ}$ and $\angle ABD = 60^{\circ}$, find;



(iii) ∠ADB

Solution 15:

- i) PQ is tangent and CD is a chord
- \therefore \angle DCQ = \angle DBC (angles in the alternate segment)

$$\therefore DBC = 40^{\circ} \left(\because \angle DCQ = 40^{\circ}\right)$$

ii)

$$\angle DCQ + \angle DCB + \angle BCP = 180^{\circ}$$

$$\Rightarrow$$
 40° + 90° + \angle BCP = 180° (:: \angle DCB = 90°)

$$\Rightarrow \angle BCP = 180^{\circ} - 130^{\circ} = 50^{\circ}$$

iii) In ΔABD,

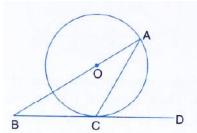
$$\angle BAD = 90^{\circ}, \angle ABD = 60^{\circ}$$

$$\therefore \angle ADB = 180^{\circ} - (90^{\circ} + 60^{\circ})$$

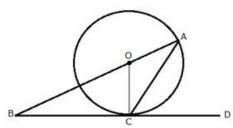
$$\Rightarrow \angle ADB = 180^{\circ} - 150^{\circ} = 30^{\circ}$$

Question 16:

The given figure shows a circle with centre O and BCD is tangent to it at C. Show that: $\angle ACD + \angle BAC = 90^{\circ}$



Solution 16:



Join OC.

BCD is the tangent and OC is the radius.

 $:: OC \perp BD$

$$\Rightarrow \angle OCD = 90^{\circ}$$

$$\Rightarrow \angle OCA + \angle ACD = 90^{\circ}$$

But in $\triangle OCA$

OA = OC (radii of same circle)

 $\therefore \angle OCA = \angle OAC$

Substituting (i)

$$\angle OAC + \angle ACD = 90^{\circ}$$

$$\Rightarrow \angle BAC + \angle ACD = 90^{\circ}$$

Question 17:

ABC is a right triangle with angle $B = 90^{\circ}$, A circle with BC as diameter meets hypotenuse AC at point D. prove that:

(i)
$$AC \times AD = AB^2$$

(ii)
$$BD^2 = AD \times DC$$

Solution 17:

i) In $\triangle ABC$,

 $\angle B = 90^{\circ}$ and BC is the diameter of the circle.

Therefore, AB is the tangent to the circle at B.

Now, AB is tangent and ADC is the secant

$$\therefore AB^2 = AD \times AC$$

ii) In ΔADB,

$$\angle D = 90^{\circ}$$

$$\therefore \angle A + \angle ABD = 90^{\circ}$$
(i)

But in $\triangle ABC$, $\angle B = 90^{\circ}$

$$\therefore \angle A + \angle C = 90^{\circ}$$
(ii)

From (i) and (ii)

$$\angle C = \angle ABD$$

Now in $\triangle ABD$ and $\triangle CBD$

$$\angle BDA = \angle BDA = 90^{\circ}$$

$$\angle ABD = \angle BCD$$

 $\therefore \triangle ABD \sim \triangle CBD$ (AA postulate)

$$\therefore \frac{BD}{DC} = \frac{AD}{BD}$$

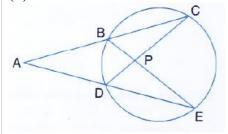
$$\Rightarrow$$
 BD² = AD×DC

Question 18:

In the given figure, AC = AE Show that:

(i)
$$CP = EP$$

$$(ii) BP = DP$$



Solution 18:

In $\triangle ADC$ and $\triangle ABE$,

 $\angle ACD = \angle AEB$ (angles in the same segment)

AC = AE (Given)

 $\angle A = \angle A$ (common)

 $\therefore \triangle ADC \cong \triangle ABE (ASA postulate)$

 \Rightarrow AB = AD

But AC = AE

 \therefore AC – AB = AE – AD

 \Rightarrow BC = DE

In $\triangle BPC$ and $\triangle DPE$

 $\angle C = \angle E$ (angles in the same segment)

BC = DE

 $\angle CBP = \angle CDE$ (angles in the same segment)

 $\therefore \Delta BPC \cong \Delta DPE$ (ASA Postulate)

 \Rightarrow BP = DP and CP = PE (cpct)

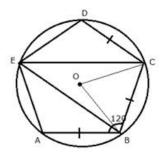
Question 19:

ABCDE is a cyclic pentagon with centre of its circumcircle at point O such that AB = BC = CD and angle $ABC = 120^{\circ}$

Calculate:

(i) ∠BEC (ii) ∠BED

Solution 19:



i) Join OC and OB.

$$AB = BC = CD$$
 and $\angle ABC = 120^{\circ}$

$$\therefore \angle BCD = \angle ABC = 120^{\circ}$$

OB and OC are the bisectors of \angle ABC and \angle BCD respectively.

$$\therefore \angle OBC = \angle BCO = 60^{\circ}$$

In $\triangle BOC$,

$$\angle BOC = 180^{\circ} - (\angle OBC + \angle BOC)$$

$$\Rightarrow \angle BOC = 180^{\circ} - (60^{\circ} + 60^{\circ})$$

$$\Rightarrow \angle BOC = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

Arc BC subtends \angle BOC at the centre and \angle BEC at the remaining part of the circle.

$$\therefore \angle BEC = \frac{1}{2} \angle BOC = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$$

ii) In cyclic quadrilateral BCDE,

$$\angle BED + \angle BCD = 180^{\circ}$$

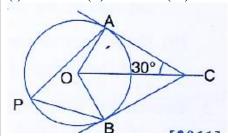
$$\Rightarrow \angle BED + 120^{\circ} = 180^{\circ}$$

$$\therefore \angle BED = 60^{\circ}$$

Question 20:

In the given figure, O is the centre of the circle. Tangents at A and B meet at C. If $\angle ACO = 30^{\circ}$, find:

(i) ∠BCO (ii) ∠AOB (iii) ∠APB



Solution 20:

In the given fig, O is the centre of the circle and CA and CB are the tangents to the circle from C. Also, $\angle ACO = 30^{\circ}$

P is any point on the circle. P and PB are joined.

To find: (i) ∠BCO

(ii) ∠AOB

(iii)∠APB

Proof:

(i) In ΔOAC and OBC

OC = OC (Common)

OA = OB (radius of the circle)

CA = CB (tangents to the circle)

 \therefore $\triangle OAC \cong \triangle OBC$ (SSS congruence criterion)

 $\therefore \angle ACO = \angle BCO = 30^{\circ}$

(ii) $\therefore \angle ACB = 30^{\circ} + 30^{\circ} = 60^{\circ}$

 $\therefore \angle AOB + \angle ACB = 180^{\circ}$

 $\Rightarrow \angle AOB + 60^{\circ} = 180^{\circ}$

 $\Rightarrow \angle AOB = 180^{\circ} - 60^{\circ}$

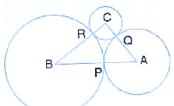
 $\Rightarrow \angle AOB = 120^{\circ}$

(iii) Arc AB subtends ∠AOB at the centre and ∠APB is in the remaining part of the circle.

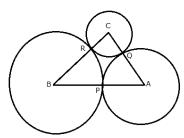
$$\therefore \angle APB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 120^{\circ} = 60^{\circ}$$

Question 21:

ABC is a triangle with AB = 10 cm, BC = 8 cm and AC = 6 cm (not drawn to scale). Three circle are drawn touching each other with the vertices as their centres. Find the radii of the three circles.



Solution 21:



E

Given: ABC is a triangle with AB = 10 cm, BC = 8 cm, AC = 6 cm. Three circles are drawn with centre A, B and C touch each other at P, Q and R respectively.

We need to find the radii of the three circles.

Let

$$PA = AQ = x$$

$$QC = CR = y$$

$$RB = BP = z$$

$$x + z = 10 \dots (1)$$

$$z + y = 8 \dots (2)$$

$$y + x = 6 \dots (3)$$

Adding all the three equations, we have

$$2(x + y + z) = 24$$

$$\Rightarrow$$
 x + y + z = $\frac{24}{2}$ = 12(4)

Subtracting (1) (2) and (3) from (4)

$$y = 12 - 10 = 2$$

$$x = 12 - 8 = 4$$

$$z = 12 - 6 = 6$$

Therefore, radii are 2 cm, 4 cm and 6 cm

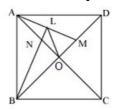
Question 22:

In a square ABCD, its diagonals AC and BD intersect each other at point O. the bisector of angle DAO meets BD at point M and the bisector of angle ABD meets AC at N and AM at L. Show that:

- (i) $\angle ONL + \angle OML = 180^{\circ}$
- $(ii) \angle BAM = \angle BMA$
- (iii) ALOB is a cyclic quadrilateral

Solution 22:

ABCD is a square whose diagonals AC and BD intersect each other at right angles at O.



i)
$$\therefore \angle AOB = \angle AOD = 90^{\circ}$$
In $\triangle ANB$,
$$\angle ANB = 180^{\circ} - (\angle NAB + \angle NBA)$$

$$\Rightarrow \angle ANB = 180^{\circ} - \left(45^{\circ} + \frac{45^{\circ}}{2}\right) \text{ (NB is bisector of } \angle ABD)}$$

$$\Rightarrow \angle ANB = 180^{\circ} - 45^{\circ} - \frac{45^{\circ}}{2} = 135^{\circ} - \frac{45^{\circ}}{2}$$
But, $\angle LNO = \angle ANB \text{ (vertically opposite angles)}$

$$\therefore \angle LNO = 135^{\circ} - \frac{45^{\circ}}{2} \quad \quad \text{(i)}$$
Now in $\triangle AMO$,
$$\angle AMO = 180^{\circ} - (\angle AOM + \angle OAM)$$

$$\Rightarrow \angle AMO = 180^{\circ} - \left(90^{\circ} + \frac{45^{\circ}}{2}\right) \text{ (MA is bisector of } \angle DAO\text{)}$$

$$\Rightarrow \angle AMO = 180^{\circ} - 90^{\circ} - \frac{45^{\circ}}{2} = 90^{\circ} - \frac{45^{\circ}}{2} \quad \quad \text{(ii)}$$

$$Adding \text{ (i) and (ii)}$$

$$\angle LNO + \angle AMO = 135^{\circ} - \frac{45^{\circ}}{2} + 90^{\circ} - \frac{45^{\circ}}{2}$$

$$\Rightarrow \angle LNO + \angle AMO = 225^{\circ} - 45^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ONL + \angle OML = 180^{\circ}$$

ii)

$$\angle BAM = \angle BAO + \angle OAM$$

 $\Rightarrow \angle BAM = 45^{\circ} + \frac{45^{\circ}}{2} = 67\frac{1^{\circ}}{2}$

And

$$\Rightarrow \angle BMA = 180^{\circ} - (\angle AOM + \angle OAM)$$

$$\Rightarrow \angle BMA = 180^{\circ} - 90^{\circ} - \frac{45^{\circ}}{2} = 90^{\circ} - \frac{45^{\circ}}{2} = 67\frac{1^{\circ}}{2}$$

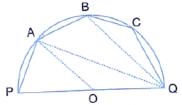
iii) In quadrilateral ALOB,

$$\therefore$$
 \angle ABO + \angle ALO = 45° + 90° + 45° = 180°

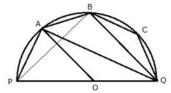
Therefore, ALOB is a cyclic quadrilateral.

Question 23:

The given figure shows a semi-circle with centre O and diameter PQ. If PA = AB and $\angle BCQ = 140^{\circ}$; Find measures of angles PAB and AQB. Also, show that AO is parallel to BQ.



Solution 23:



Join PB.

i) In cyclic quadrilateral PBCQ,

$$\angle BPQ + \angle BCQ = 180^{\circ}$$

$$\Rightarrow \angle BPQ + 140^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle BPQ = 40^{\circ}$$
(1)

Now in $\triangle PBQ$,

$$\angle PBQ + \angle BPQ + \angle BQP = 180^{\circ}$$

$$\Rightarrow$$
 90° + 40° + \angle BQP = 180°

$$\Rightarrow \angle BQP = 50^{\circ}$$

In cyclic quadrilateral PQBA,

$$\angle PQB + \angle PAB = 180^{\circ}$$

$$\Rightarrow$$
 50° + \angle PAB = 180°

$$\Rightarrow \angle PAB = 130^{\circ}$$

ii) Now in $\triangle PAB$,

$$\angle PAB + \angle APB + \angle ABP = 180^{\circ}$$

$$\Rightarrow$$
 130° + \angle APB + \angle ABP = 180°

$$\Rightarrow \angle APB + \angle ABP = 50^{\circ}$$
But

$$\angle APB = \angle ABP (:: PA = PB)$$

$$\therefore \angle APB = \angle ABP = 25^{\circ}$$

$$\angle BAQ = \angle BPQ = 40^{\circ}$$

$$\angle APB = 25^{\circ} = \angle AQB$$
 (angles in the same segment)

$$\therefore \angle AQB = 25^{\circ} \dots (2)$$

iii) Arc AQ subtends \angle AOQ at the centre and \angle APQ at the remaining part of the circle.

We have,

$$\angle APQ = \angle APB + \angle BPQ \dots (3)$$

From (1), (2) and (3), we have

$$\angle APQ = 25^{\circ} + 40^{\circ} = 65^{\circ}$$

$$\therefore \angle AOQ = 2\angle APQ = 2 \times 65^{\circ} = 130^{\circ}$$

Now in $\triangle AOQ$,

$$\angle OAQ = \angle OQA = (:: OA = OQ)$$

But

$$\angle OAQ + \angle OQA + \angle AOQ = 180^{\circ}$$

$$\Rightarrow \angle OAQ + \angle OAQ + 130^{\circ} = 180^{\circ}$$

$$\Rightarrow 2\angle OAQ = 50^{\circ}$$

$$\Rightarrow \angle OAQ = 25^{\circ}$$

$$\therefore \angle OAQ = \angle AQB$$

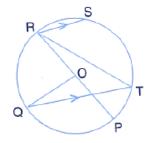
But these are alternate angles.

Hence, AO is parallel to BQ.

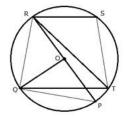
Question 24:

The given figure shows a circle with centre O such that chord RS is parallel to chord QT, angle $PRT = 20^{\circ}$ and angle $POQ = 100^{\circ}$. Calculate:

- (i) angle QTR
- (ii) angle QRP
- (iii) angle QRS
- (iv) angle STR



Solution 24:



Join PQ, RQ and ST.

i)
$$\angle POQ + \angle QOR = 180^{\circ}$$

$$\Rightarrow 100^{\circ} + \angle QOR = 180^{\circ}$$

$$\Rightarrow \angle QOR = 80^{\circ}$$
Are PO subtends $\angle QOR = 80^{\circ}$

Arc RQ subtends \angle QOR at the centre and \angle QTR at the remaining part of the circle.

$$\therefore \angle QTR = \frac{1}{2} \angle QOR$$

$$\Rightarrow \angle QTR = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$$

ii) Arc QP subtends ∠QOP at the centre and ∠QRP at the remaining part of the circle.

$$\therefore \angle QRP = \frac{1}{2} \angle QOP$$

$$\Rightarrow \angle QRP = \frac{1}{2} \times 100^{\circ} = 50^{\circ}$$

iii) RS || QT

$$\therefore \angle SRT = \angle QTR$$
 (alternate angles)

But
$$\angle QTR = 40^{\circ}$$

$$\therefore$$
 \angle SRT = 40°

Now,

$$\angle QRS = \angle QRP + \angle PRT + \angle SRT$$

$$\Rightarrow \angle QRS = 50^{\circ} + 20^{\circ} + 40^{\circ} = 110^{\circ}$$

iv) Since RSTQ is a cyclic quadrilateral

$$\therefore \angle QRS + \angle QTS = 180^{\circ}$$
 (sum of opposite angles)

$$\Rightarrow \angle QRS + \angle QTS + \angle STR = 180^{\circ}$$

$$\Rightarrow$$
 110° + 40° + \angle STR = 180°

$$\Rightarrow \angle STR = 30^{\circ}$$

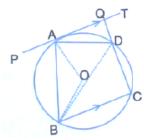
Question 25:

In the given figure, PAT is tangent to the circle with centre O at point A on its circumference and is parallel to chord BC. If CDQ is a line segment , show that:

$$(i) \angle BAP = \angle ADQ$$

(ii)
$$\angle AOB = 2 \angle ADQ$$

$$(iii) \angle ADQ = \angle ADB$$



Solution 25:

i) Since PAT || BC

 \therefore \angle PAB = \angle ABC (alternate angles)(i)

In cyclic quadrilateral ABCD,

Ext $\angle ADQ = \angle ABC$ (ii)

From (i) and (ii)

 $\angle PAB = \angle ADQ$

ii) Arc AB subtends ∠AOB at the centre and ∠ADB at the remaining part of the circle.

 \therefore \angle AOB = $2\angle$ ADB

 $\Rightarrow \angle AOB = 2\angle PAB$ (angles in alternate segments)

 $\Rightarrow \angle AOB = 2\angle ADQ$ (proved in (i) part)

iii)

 \therefore \angle BAP = \angle ADB (angles in alternate segments)

But

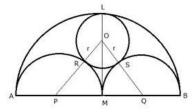
 $\angle BAP = \angle ADQ$ (proved in (i) part)

 $\therefore \angle ADQ = \angle ADB$

Ouestion 26:

AB is a line segment and M is its mid – point three semi circles are drawn with AM, MB and AB as diameter on the same side of the line AB. A circle with radius r unit is drawn so that it touches all the three semi circles show that : $AB = 6 \times r$

Solution 26:



Let O, P and Q be the centers of the circle and semicircles.

Join OP and OQ.

$$OR = OS = r$$

and
$$AP = PM = MQ = QB = \frac{AB}{4}$$

Now, $OP = OR + RP = r + \frac{AB}{4}$ (since PM=RP=radii of same circle)

Similarly,
$$OQ = OS + SQ = r + \frac{AB}{4}$$

$$OM = LM -; OL = \frac{AB}{2} - r$$

Now in Rt. $\triangle OPM$,

$$OP^2 = PM^2 + OM^2$$

$$\Rightarrow \left(r + \frac{AB}{4}\right)^2 = \left(\frac{AB}{4}\right)^2 + \left(\frac{AB}{2} - r\right)^2$$
$$\Rightarrow r^2 + \frac{AB^2}{16} + \frac{rAB}{2} = \frac{AB^2}{16} + \frac{AB^2}{4} + r^2 - rAB$$

$$\Rightarrow \frac{\text{rAB}}{2} = \frac{\text{AB}^2}{4} - \text{rAB}$$

$$\Rightarrow \frac{AB^2}{4} = \frac{rAB}{2} + rAB$$

$$\Rightarrow \frac{AB^2}{4} = \frac{3rAB}{2}$$

$$\Rightarrow \frac{AB}{4} = \frac{3}{2}r$$

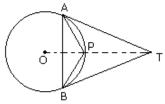
$$\Rightarrow AB = \frac{3}{2}r \times 4 = 6r$$

Hence $AB = 6 \times r$

Question 27:

TA and TB are tangents to a circle with centre O from an external point T. OT intersects the circle at point P. Prove that AP bisects the angle TAB.

Solution 27:



Join PB.

In $\triangle TAP$ and $\triangle TBP$,

TA = TB (tangents segments from an external points are equal in length)

Also, $\angle ATP = \angle BTP$. (since OT is equally inclined with TA and TB) TP = TP (common)

 $\Rightarrow \Delta TAP \cong \Delta TBP$ (by SAS criterion of congruency)

 \Rightarrow \angle TAP = \angle TBP (corresponding parts of congruent triangles are equal)

But $\angle TBP = \angle BAP$ (angles in alternate segments)

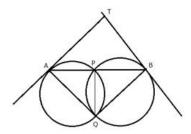
Therefore, $\angle TAP = \angle BAP$.

Hence, AP bisects $\angle TAB$.

Question 28:

Two circles intersect in points P and Q. A secant passing through P intersects the circles in A and B respectively. Tangents to the circles at A and B intersect at T. Prove that A, Q, B and T lie on a circle.

Solution 28:



Join PQ.

AT is tangent and AP is a chord.

 \therefore ZTAP = ZAQP (angles in alternate segments)(i)

Similarly, $\angle TBP = \angle BQP$ (ii)

Adding (i) and (ii)

$$\angle TAP + \angle TBP = \angle AQP + \angle BQP$$

$$\Rightarrow \angle TAP + \angle TBP = \angle AQB \quad \dots (iii)$$

Now in ΔTAB ,

$$\angle ATB + \angle TAP + \angle TBP = 180^{\circ}$$

$$\Rightarrow \angle ATB + \angle AQB = 180^{\circ}$$

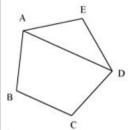
Therefore, AQBT is a cyclic quadrilateral.

Hence, A, Q, B and T lie on a circle.

Question 29:

Prove that any four vertices of a regular pentagon are concylic (lie on the same circle)

Solution 29:



ABCDE is a regular pentagon.

$$\therefore \angle BAE = \angle ABC = \angle BCD = \angle CDE = \angle DEA = \left(\frac{5-2}{5}\right) \times 180^{\circ} = 180^{\circ}$$

In $\triangle AED$,

AE = ED (Sides of regular pentagon ABCDE)

$$\therefore \angle EAD = \angle EDA$$

In ΔAED,

$$\angle AED + \angle EAD + \angle EDA = 180^{\circ}$$

$$\Rightarrow$$
 108° + \angle EAD + \angle EAD = 180°

$$\Rightarrow$$
 2 \angle EAD = 180° -108° = 72°

$$\Rightarrow$$
 \angle EAD = 36°

$$\therefore$$
 \angle EDA = 36°

$$\angle BAD = \angle BAE - \angle EAD = 108^{\circ} - 36^{\circ} = 72^{\circ}$$

In quadrilateral ABCD,

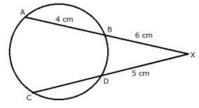
$$\angle BAD + \angle BCD = 108^{\circ} + 72^{\circ} = 180^{\circ}$$

: ABCD is a cyclic quadrilateral

Question 30:

Chords AB and CD of a circle when extended meet at point X. Given AB = 4 cm, BX = 6 cm and XD = 5 cm, calculate the length of CD.

Solution 30:



We know that XB.XA = XD.XC

Or,
$$XB.(XB + BA) = XD.(XD + CD)$$

Or,
$$6(6+4) = 5(5+CD)$$

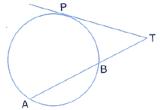
Or,
$$60 = 5(5 + CD)$$

Or,
$$5 + CD = \frac{60}{5} = 12$$

Or,
$$CD = 12 - 5 = 7$$
 cm.

Question 31:

In the given figure, find TP if AT = 16 cm and AB = 12 cm.



Solution 31:

PT is the tangent and TBA is the secant of the circle.

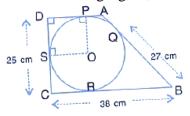
Therefore, $TP^2 = TA \times TB$

$$TP^2 = 16 \times (16 - 12) = 16 \times 4 = 64 = (8)^2$$

Therefore, TP = 8 cm

Question 32:

In the following figure, a circle is inscribed in the quadrilateral ABCD.



If BC = 38 cm, QB = 27 cm, DC = 25 cm and that AD is perpendicular to DC, find the radius of the circle.

Solution 32:

From the figure we see that BQ = BR = 27 cm (since length of the tangent segments from an external point are equal)

As
$$BC = 38 \text{ cm}$$

$$\Rightarrow CR = CB - BR = 38 - 27$$
$$= 11 \text{ cm}$$

Again,

CR = CS = 11cm (length of tangent segments from an external point are equal)

Now, as DC = 25 cm

∴ DS = DC - SC
=
$$25 - 11$$

= 14 cm

Now, in quadrilateral DSOP,

 $\angle PDS = 90^{\circ}$ (given)

 \angle OSD = 90°, \angle OPD = 90° (since tangent is perpendicular to the

radius through the point of contact)

 \Rightarrow DSOP is a parallelogram

 \Rightarrow OP || SD and \Rightarrow PD || OS

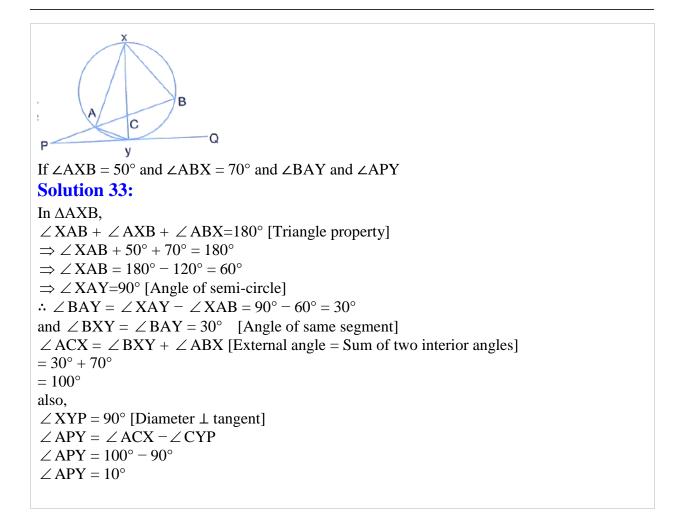
Now, as OP = OS (radii of the same circle)

 \Rightarrow OPDS is a square. \therefore DS = OP = 14cm

 \therefore radius of the circle = 14 cm

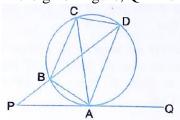
Question 33:

In the given figure, XY is the diameter of the circle and PQ is a tangent to the circle at Y.



Question 34:

In the given figure, QAP is the tangent at point A and PBD is a straight line.



If $\angle ACB = 36^{\circ}$ and $\angle APB = 42^{\circ}$, find:

(i) ∠BAP (ii) ∠ABD (iii) ∠QAD (iv) ∠BCD

Solution 34:

PAQ is a tangent and AB is a chord of the circle.

i) $\therefore \angle BAP = \angle ACB = 36^{\circ}$ (angles in alternate segment)

ii) In ΔAPB

 $Ext \angle ABD = \angle APB + \angle BAP$

 \Rightarrow Ext \angle ABD = $42^{\circ} + 36^{\circ} = 78^{\circ}$

iii)
$$\angle ADB = \angle ACB = 36^{\circ}$$
 (angles in the same segment)

Now in $\triangle PAD$

Ext.
$$\angle QAD = \angle APB + \angle ADB$$

$$\Rightarrow$$
 Ext \angle QAD = $42^{\circ} + 36^{\circ} = 78^{\circ}$

iv) PAQ is the tangent and AD is chord

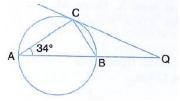
$$\therefore$$
 QAD = \angle ACD = 78° (angles in alternate segment)

And
$$\angle BCD = \angle ACB + \angle ACD$$

$$\therefore \angle BCD = 36^{\circ} + 78^{\circ} = 114^{\circ}$$

Question 35:

In the given figure, AB is the diameter. The tangent at C meets AB produced at Q. If $\angle CAB = 34^{\circ}$, Find:



(i)∠CBA (ii) ∠CQB

Solution 35:

i) AB is diameter of circle.

$$\therefore$$
 ACB = 90°

In $\triangle ABC$,

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow$$
 34° + \angle CBA + 90° = 180°

$$\Rightarrow \angle CBA = 56^{\circ}$$

ii) QC is tangent to the circle

$$\therefore \angle CAB = \angle QCB$$

Angle between tangent and chord = angle in alternate segment

$$\therefore \angle QCB = 34^{\circ}$$

ABO is a straight line

$$\Rightarrow$$
 \angle ABC + \angle CBQ = 180°

$$\Rightarrow$$
 56° + \angle CBQ = 180°

$$\Rightarrow \angle CBQ = 124^{\circ}$$

Now.

$$\angle CQB = 180^{\circ} - \angle QCB - \angle CBQ$$

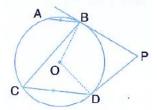
$$\Rightarrow \angle CQB = 180^{\circ} - 34^{\circ} - 124^{\circ}$$

$$\Rightarrow \angle CQB = 22^{\circ}$$

Question 36:

In the given figure, O is the centre of the circle. The tangents at B and D intersect each other at point P.

If AB is parallel to CD and \angle ABC = 55°, find:



(i) ∠BOD (ii) ∠BPD

Solution 36:

i)

$$\angle BOD = 2 \angle BCD$$

$$\Rightarrow \angle BOD = 2 \times 55^{\circ} = 110^{\circ}$$

ii) Since, BPDO is cyclic quadrilateral, opposite angles are supplementary.

$$\therefore \angle BOD + \angle BPD = 180^{\circ}$$

$$\Rightarrow$$
 $\angle BPD = 180^{\circ} - 110^{\circ} = 70^{\circ}$

Question 37:

In two concentric circles, prove that all chords of the outer circle, which touch the inner circle, are of equal length.

Solution 37:

$$i) PQ = RQ$$

$$\therefore$$
 \angle PRQ = \angle QPR (opposite angles of equal sides of a triangle)

$$\Rightarrow \angle PRQ + \angle QPR + 68^{\circ} = 180^{\circ}$$

$$\Rightarrow 2\angle PRQ = 180^{\circ} - 68^{\circ}$$

$$\Rightarrow \angle PRQ = \frac{112^{\circ}}{2} = 56^{\circ}$$

Now, $\angle QOP = 2 \angle PRQ$ (angle at the centre is double)

$$\Rightarrow$$
 QOP = $2 \times 56^{\circ} = 112^{\circ}$

ii) $\angle PQC = \angle PRQ$ (angles in alternate segments are equal)

$$\angle QPC = \angle PRQ$$
 (angles in alternate segments)

$$\therefore \angle PQC = \angle QPC = 56^{\circ} (\because \angle PRQ = 56^{\circ} \text{ from (i)})$$

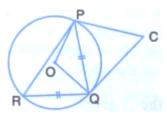
$$\angle PQC + \angle QPC + \angle QCP = 180^{\circ}$$

$$\Rightarrow$$
 56° + 56° + \angle OCP = 180°

$$\Rightarrow \angle QCP = 68^{\circ}$$

Question 38:

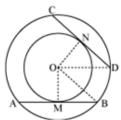
In the following figure, PQ = QR, $\angle RQP = 68^{\circ}$, PC and CQ are tangents to the circle with centre O



- (i) $\angle QOP$
- (ii) ∠QCP

Solution 38:

Consider two concentric circles with centres at O. Let AB and CD be two chords of the outer circle which touch the inner circle at the points M and N respectively.



To prove the given question, it is sufficient to prove AB = CD.

For this join OM, ON, OB and OD.

Let the radius of outer and inner circles be *R* and *r* respectively.

AB touches the inner circle at M.

AB is a tangent to the inner circle

$$\therefore$$
 OM \perp AB

$$\Rightarrow$$
 BM = $\frac{1}{2}$ AB

$$\Rightarrow$$
 AB = 2BM

Similarly ON \perp CD, and CD = 2DN

Using Pythagoras theorem in Δ OMB and Δ OND

$$OB^2 = OM^2 + BM^2$$
, $OD^2 = ON^2 + DM^2$

$$\Rightarrow$$
 BM = $\sqrt{R^2 - r^2}$, DN = $\sqrt{R^2 - r^2}$

Now.

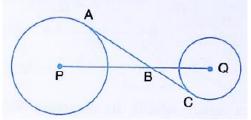
$$AB = 2BM = 2\sqrt{R^2 - r^2}, CD = 2DN = 2\sqrt{R^2 - r^2}$$

$$\therefore$$
 AB = CD

Hence proved.

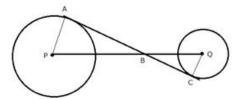
Question 39:

In the figure, given below, AC is a transverse common tangent to two circles with centres P and Q and of radii 6 cm and 3 cm respectively.



Given that AB = 8 cm, calculate PQ.

Solution 39:



Since AC is tangent to the circle with center P at point A.

$$\therefore \angle PAB \angle = 90^{\circ}$$

Similarly, $\angle QCB = 90^{\circ}$

In $\triangle PAB$ and $\triangle QCB$

$$\angle PAB = \angle OCB = 90^{\circ}$$

 $\angle PBA = \angle QBC$ (vertically opposite angles)

$$\therefore \Delta PAB \sim \Delta QCB$$

$$\Rightarrow \frac{PA}{OC} = \frac{PB}{OB}$$
(i)

Also in Rt. ΔPAB,

$$PB = \sqrt{PA^2 + PB^2}$$

$$\Rightarrow$$
 PB = $\sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \text{ cm}$ (ii)

From (i) and (ii)

$$\frac{6}{3} = \frac{10}{QB}$$

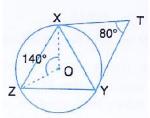
$$\Rightarrow$$
 QB = $\frac{3 \times 10}{6}$ = 5 cm

Now,

$$PQ = PB + QB = (10 + 5) \text{ cm} = 15 \text{ cm}$$

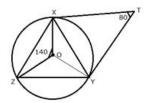
Question 40:

In the figure, given below, O is the centre of the circumcircle of triangle XYZ.



Tangents at X and Y intersect at point T. Given $\angle XTY = 80^{\circ}$, and $\angle XOZ = 140^{\circ}$, calculate the value of $\angle ZXY$.

Solution 40:



In the figure, a circle with centre O, is the circum circle of triangle XYZ.

$$\angle XOZ = 140^{\circ}$$

Tangents at X and Y intersect at point T, such that $\angle XTY = 80^{\circ}$

$$\therefore \angle XOY = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

But, $\angle XOY + \angle YOZ + \angle ZOX = 360^{\circ}$ [Angles at a point]

$$\Rightarrow$$
 100° + \angle YOZ + 140° = 360°

$$\Rightarrow$$
 240° + \angle YOZ = 360°

$$\Rightarrow \angle YOZ = 360^{\circ} - 240^{\circ}$$

$$\Rightarrow \angle YOZ = 120^{\circ}$$

Now arc YZ subtends \angle YOZ at the centre and \angle YXZ at the remaining part of the circle.

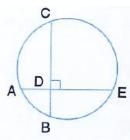
$$\therefore \angle YOZ = 2\angle YXZ$$

$$\Rightarrow \angle YXZ = \frac{1}{2} \angle YOZ$$

$$\Rightarrow \angle YXZ = \frac{1}{2} \times 120^{\circ} = 60^{\circ}$$

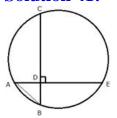
Question 41:

In the given figure, AE and BC intersect each other as point D.



If $\angle CDE = 90^{\circ}$, AB = 5cm, BD = 4cm and CD = 9 cm find AE.

Solution 41:



From Rt. ΔADB,

$$AD = \sqrt{AB^2 - DB^2} = \sqrt{5^2 - 4^2} = \sqrt{25 - 16} = \sqrt{9} = 3 \text{ cm}$$

Now, since the two chords AE and BC intersect at D,

$$AD \times DE = CD \times DB$$

$$3 \times DE = 9 \times 4$$

$$DE = \frac{9 \times 4}{3} = 12$$

Hence, AE = AD + DE = (3 + 12) = 15 cm