Chapter - 1

Real Numbers

Euclids Division Lemma

All rational and irrational numbers are called real numbers. E.g.
8

3, 4, V5 X 9. The set of real numbers is denoted by R. Real Numbers can be
represented on a number line.

Classification of Real Numbers:
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Natural Numbers: Natural Numbers is a set of counting numbers. They are
denoted by N.

N={1234....0}
Whole Numbers: Whole numbers is a set of natural numbers plus zero.

W=1{0,1,23.... 0}



Integers: Integers is a set of whole numbers and negative of all natural
numbers.

Z={-3,-2,-1,0,1,2,3}

Rational Numbers: All the numbers that can be written in the form , where and
are integers and # 0 are called rational numbers.
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Irrational Numbers: All the numbers that cannot be written in the form , are
called irrational numbers. All the non-terminating and

non-repeating decimal numbers are irrational numbers.
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e Now, consider v . When we calculate the value of V3 we

get V3 =1.7320508075688 here the decimal number do not repeat and do
not terminate. Hence, it is an irrational

number.
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e V'3 is an irrational number, but v is not an irrational number because V9 =

3, which is a rational number.
Hence, the square roots of all the numbers do not give an irrational number.

e The value of the famous irrational number 7 is 3.145926...... Again the
decimal number is neither repeating nor terminating.

Euclid’s Division Lemma

A lemma is a proven statement used for proving another statement.
Euclid’s Division Lemma states that any positive integer can be divided by
another positive integer in such a way that it leaves a remainder which is
smaller than and this is

also known as the long division process.

According to Euclid’s Division Lemma, if a and b are two positive



integers, there exist unique integers q and r which satisfies the

condition,a=bq + r,where 0 =r<b

Here, a —Dividend

b —Divisor

q —+Quotient

r —+Remainder

Dividend = (Divisor Quotient) Remainder.

Let us consider a pair of integers 46 and 7 If we divide 46 by 7,
6

7] a6

- 42

4

Here, 7 is the divisor, 46 is the dividend, 6 is the quotient and 4 is the
remainder. Clearly, the remainder, that is 4, is smaller than the divisor, 7.

This can also be written as,

Example : Show that every positive even integer is of the form 2 q,
and that every positive odd integer is of the form 2q + 1, where q is
some integer.

Let be any positive integer and b =2

According to Euclid’s division lemma there exist and such that
a=bq+r, where 0 =r<b.- (i)

Here, b = 2

Putting b = 2 in Eq. (i) we get,

a = 2q + r, where q is any integer



Now, 0 = r<2

Therefore, the possible remainders are 0 and 1.
When,r=0,a=2q+0

a=2q

Whenr =1,a=2q+1
Ifa = 2q, then is an even integer.

Ifa = 2q, then is an odd integer.

Let us consider an even positive integer, 6 and an odd positive integer, 9.
Then, 6 =2x 3

and9=2x4+1

Clearly, the positive even integer is of the form and odd positive integer is of
the form 2q +1.

Example: Show that any positive odd integer is of the form 6q + 1,
or 6q + 3 or 6q + 5, where is any integer.

Let be any odd positive integerand b =6.

According to Euclid’s division lemma there exist q and r such that
a=bq+r, where 0 =r<b.- (i)

Putting b = 6 in Eq.(i) we get,

a=6q-+r, where is any integer and 0 6

As0=r<6,.r=012345

When,r=0 ,a= 6q+ 0

r=1,a=6q+1

r= 2, a= 6q+ 2



r=3,a=6q+ 3

r=4,a= 6q+ 4

r=>5,a=6q+ 5

Assuming q=2, then a=6q=6x2=12, an even integer
a=6q+2=6x2+2=14, an even integer
a=6q+4=6x2+4=16. an even integer.

Since, a is an odd integer a # 6q, a 7 6q+2, a 7 6q+4
Any positive odd integer is of the form 6q+1,6q+3,6q+5
Now, the value of can q be any integer. Let us assume that the value of q is 2.
Then,6q + 1 = 6x24+1=13, positive odd integer
6q+3=6x2+3=12+3=15, positive odd integer

6q+5 = 6x24+5=12+5=17, positive odd integer

Example: Show that the square of any positive odd integer is of the form 4q +
1 for some integer q.

Let a be any positive integer
According to Euclid’s division lemma there exist g and r such that

a=bq+r,where0 =r <b
Now, is of the form 2m + 1, as is a positive odd integer.

When a=2m+1

a® = (2m + 1)?

a® = 4m* +4m + 1
a®>=4(m?+m)+1=4g+1

a’ = 49 + 1, whereq = (m* + m)



Hence, for some integer , the square of any odd integer is of the form 4m+1
Let us assume that the value of the odd positive integer is 3

Square of 3 = 3° =

9=2x4+1

Here, q = 2

Clearly, square of odd integer 3, that is 9, can be written in the form 4q+1

Example: Show that the cube of any positive integer is of the form 9m ,
9m+1 or 9m +8, for some integer m.

Let a be any positive integer such that it is of the form
3q,3q+1,3q+2

When a=3q

a’ = (Sq):j = 27(13 - 9(3(}3:] = 9m, wherem = 3q3
When a = 3q+1

ad = (3g+1)° =27¢* + 27¢* + 9g + 1

o (a+ b = a® + 3a2b+ 3ab? + b*

o= 9q(3q2 +3¢+1)+1

a’ = 9m + 1, wherem = q(3¢> + 3¢ + 1)

When a=3q+2

a® = (3g+ 2)* = 27¢° + 54> + 36g + 8

a® = 9¢(3¢q% + 6q + 4) + 8

a® = 9m + 8, wherem = ¢(3¢> + 6q + 4)

Hence «'is of the form 9m, 9m+1 or 9m+8



Let us consider positive integers 3,4 and 5
Cubeofd =P =37=0x3

Cubeof 4=4"=64=9x7 +1

Cube of 5=5=125=9x13 + 8

So, the cube of 3 is of the form 9m

The cube of 4 is of the form 9m + 1

The cube of 5 is of the form 9m + 8
Euclid’s Division Algorithm

An algorithm is a series of well-defined steps which gives a procedure to
solve a type of problem.

Euclid’s division Algorithm is a technique used to compute the Highest
Common Factor (HCF) of two given positive integers. HCF of two positive
integers and is the largest

positive integer that divides both and .

To obtain the HCF of two positive integers and , where , we use Euclid’s
division Algorithm.

Step 1: Apply Euclid’s division Lemma, to a and b to find whole numbers q and
rsuchthat,a=bq+r,0 = r <b

Step 2 : If r=0, bisthe HCFofaand b.If r # 0 then apply division lemma to
bandr.

Step 3: Continue the process till the remainder is zero. The divisor at this stage
will be the required HCF.

Example: Use Euclid’s division algorithm, to find the HCF of 870 and 225.
Given numbers are 870 and 225.

Here, 870 >225 . By using Euclid’s Division Lemma,a=bq+r1r,0 =r < b,



we get,
870 =225x3 + 195
Now, r = 195 #0 .

We consider new divisor 225 and new remainder 195 and apply the division
lemma to get,

225=195x1 + 30
Again.r = 7 30 0.

We consider new divisor 195 and new remainder 30 and apply the division
lemma to get,.

195=30x6+ 15
Againt = 15 7 0.

We consider new divisor 30 and new remainder 15 and apply the division
lemma to get,

30=15x2+40

Now, the remainder is equal to zero, we stop our procedure, the divisor at this
stage is 15. Hence the HCF of 870 and 225 is 15.

Example : Use Euclid’s division algorithm, to find the HCF of 176 and 38220.
Given numbers are 176 and 38220.

Here, 38220 > 176 . By using Euclid’s Division Lemma,a=bq+r1r,0 =r < b
, we get,

38220 =176x 217 + 28

Now, r=2870.
We consider new divisor 176 and new remainder 28 and apply the division
lemma to get,

176 =28x6 + 8



Againr =8 # 0.

We consider new divisor 28 and new remainder 8 and apply the division
lemma to get,

28 = 8x3+ 4
r=47%0,

We consider new divisor 8 and new remainder 4 and apply the division lemma
to get,

8=4x2+0

Now, the remainder is equal to zero, we stop our procedure, the divisor at this
stage is 4. Hence the HCF of 176 and 38220 is 4.

Example: Find the HCF of 180, 252 and 324 by using Euclid’s division Lemma.
Given numbers are 180, 252 and 324.
Now, 324 > 252 > 180
We will first find the HCF of 324 and 252
By using Euclid’s Division Lemma, a=bq+r1,0 = r < b , where we
get,
324=252x1+72
Now, r=72 7 0.

We consider now new divisor 252 and new remainder 72 and apply the
division lemma to get,

252=72x3+ 36
Againr=3670.

We consider new divisor 72 and new remainder 36 and apply the division
lemma to get,



72=36x2+0.

The remainder is equal to zero, the divisor at this stage is 36. Hence the HCF of
324 and 252 is 36.

Now, we will use Euclid’s Division Lemma for 180 and 36 to get,

180 = 36 x5 +0
The HCF of 180 and 36 is 36.
Hence the HCF of 324, 252 and 180 is 36.
Example : Two tanks contain 504 L and 735 L of milk, respectively. Find the
maximum capacity of a container which can measure the milk of either tank in
exact number of
times.
The capacities of the two tanks are 504L and 735L.
The maximum capacity of a container will be the HCF of 504 and
735.
735 > 504
By using Euclid’s Division Lemma we get,

735=504x1+ 231

Now,r = 2317 0.

We will consider new divisor 504 and new remainder 231 and apply Euclid’s
Division Lemma to get,

504 =231x2 442
Again, r = 42 7 0.

We now consider new divisor 231 and new remainder 42, and apply Euclid’s
Division Lemma to get,

231 =42x5 =21



¥ = 21 70,
We now consider new divisor 42 and new remainder 21, and apply Euclid’s
Division Lemma to get,

42=21x2+0

The remainder is equal to zero, the divisor at this stage is 21. Hence the HCF of
504 and 735 is 21.

Therefore, the maximum capacity of the required container is 21L.

Example : Three pieces of timber 42 m, 49 m and 56 m long have to be divided
into planks of the same length. What is the greatest possible length of each
plank?

The greatest possible length of the plank will be the HCF of 42m, 49 m and 56
m.

Now, 56 > 49 > 42

We will first find the HCF of 56 and 49.

By using Euclid’s Division Lemma we get,
56=49x1+7

Now,r =7 7 0.

We will consider new divisor 49 and new remainder 7 and apply Euclid’s
Division Lemma to get,

49=7x7+ 0

The remainder is equal to zero, the divisor at this stage is 7. Hence the HCF of
56 and 49 is 7.

Now, using Euclid’s Division Lemma for 42 and 7 we get,
42=7x6+0

As the remainder is 0, the divisor in this case is the HCF of 42 and 7.



Therefore, the HCF of 42 and 7 is 7.

The HCF of and is 7.

Hence the greatest possible length of the plank is 7m
Fundamental Theorem of Arithmetic

Composite Number

Composite Numbers are those numbers that have at least one factor other than
1 and the number itself.

Consider a number, 10. Now the factors of 10 are 1, 2, 5 and 10. So it is
a composite number.

Prime Number

Prime Numbers are those numbers which have exactly two factors, 1 and the
number itself.

Let us take one more number 23. Now the factors of 23 are 1 and 23. That
means it has two factors 1 and the number itself, so it is called a prime
number.

Fundamental Theorem of Arithmetic states that every composite number can
be expressed as a product of primes, and this factorization is unique, apart
from the order in

which the prime factors occur.

Any composite number can be written as a product of primes in one way only
as long as we are not particular about the order in which the primes occur.

Let us consider an example here, we will use a tree diagram to show
the factors of 270.
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270 =2x33%x5

®

Ce)
® ©

270=5x 33X 2

n

Here, in the prime factorization of 270, the prime numbers appearing in both
the cases are the same only the order in which they appear are different.

Therefore, the prime factorization of 270 is unique except for the order
in which the primes occur.

Example: Check whether 15n can end with digit zero for any natural number n.
If a number ends with the digit 0, then it is divisible by both 2 and 5.
But prime factors of 15 are 3 and 5.
157= (3 X 5)n=3n X 50
Here, the prime factorization of 15" contains only 5 but not 2.

The uniqueness of the Fundamental Theorem of Arithmetic guarantees
that there are no other primes in the prime factorization of 15n,

Therefore, 15" cannot end with digit zero for any natural number n.

Example: Explain, why (7 X 6 X 5 X 4 X3 x2x 1)+ 5and (3 x5 X 13 X 46)
+ 23 is a composite number?



Composite numbers are those numbers that have at least one factor other than
1 and the number itself. E.g.4, 6, 9

D(7X6X5%X4%Xx3%Xx2%Xx1)+5=5040+5=5045
5045 =5 x 1009
As the factors of 5045 are 5 and 1009, it is a composite number.
ii) (3 x5%x 13 x 46) + 23 =8970 + 23 = 8993
8993 =17 x 23 x 23 X 2
As the factors of 8993 are 17, 23 and 2, it is a composite number.
HCF and LCM by Prime Factorisation Method
In this method, we first express the given numbers as a product of
prime factors separately. Then, HCF is the product of the smaller power of
each common prime factor in the numbers and LCM is the product of the
greatest power of each prime factor involved in the numbers.
For any two positive integers a and b,

HCF(a, b) X LCM (a,b) =a X b

Example: Find the LCM and HCF of 120 and 144 by the fundamental theorem
of arithmetic.

120=23%x3 X5
144 = 24 x 32

Now, HCF is the product of the smallest power of each common prime factor in
the numbers

' Common Prime Factors | Smallest Power of Prime Factor
2 | 23
3 l '

HCF (120,144) =23 x3 =8 x 3 = 24



Prime Factors of 120 and 144 | Greatest Power of Prime Factor
2 24
3
5 51

LCM is the product of the greatest power of each prime factor involved in the
numbers.
LCM (120,144) = 24X 32x5=16 X9 x5=720

Example: If two positive integers p and q can be expressed as p = abZ2and q =
a3b, where a, b are prime numbers, find the LCM(p, q).

Given: p = abZand q = a%b

' Prime Factors of p and q ‘Greatest Power of Prime Factor
a a’
b b*

LCM is the product of the greatest power of each prime factor involved in the
numbers.

LCM(p, q) = a3 X b2 = a3b?

Example: Write the HCF and LCM of the smallest odd composite number and
the smallest odd prime number.

Smallest odd composite number is 9 and the smallest odd prime number is 3.

9=32
3=31

Now, the smallest power of the common prime factor is 3 1.
HCF (9,3) =3
The greatest power of the common prime factor is 32.

LCM (9,3) =32=9



Example: If HCF (253,440) = 11 and LCM (253, 440) = 253 X R. Find the value
of R.

We know that,
HCF(a,b) X LCM (a,b) =a X b
~ HCF(253, 440) X LCM (253, 440) = 253 X 440

11 X 253 X R =253 x 440

253X440
R= 253X11
R =40

Example: Ravi and Shikha drive around a circular sports field. Ravi takes

16 min to complete one round, while Shikha completes the round in 20 min.
If both start at the same point, at the same time and go in the same direction,
then after how much time will they meet at the starting point?

Time taken by Ravi to drive one round of the circular field = 16 min Time
taken by Shikha to drive one round of the circular field =20 min

The time after which they will again meet at the starting point will be equal to
the LCM of 16 min and 20 min.

16 = 24
20=22X5

LCM(16,20) =24 x5=16 X5 =80
Therefore, Ravi and Shikha will meet again at the starting point after 80 min.
Revisiting Irrational Numbers

Revisiting Irrational Numbers

4
Irrational numbers are those numbers whicg cannot be written in the form ¢,
where p and q are integers and q # 0. E.g.V 2,V 3, V15

The square roots of all the numbers do not give an irrational number.
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For example, V2 is an irrational number but V4 = 2, which is rational.

Therefore square roots of all prime numbers are irrational.

If p is a prime number then V7 is an irrational number.

Theorem 1:

If a prime number p divides a2, then p divides a, where a is a positive integer.
Proof:

Every positive integer can be expressed as the product of primes.

Leta = p1p2p3 ... ««. ... .. pn Where p1p2p3 ... ... ... .. pn are all the prime numbers
of a.

az = (plp2p3 ...........pn)
a2 = (p1pzp3 - -« «- - . PN)(P1P2P3 -- wox v - - Pn)

az = (p12p22p3? ... ... .. .. pn2)

[t is given that p divides a2. According to the Fundamental Theorem
of Arithmetic, we can say that p is one of the prime factors of a2.

According to the Fundamental Theorem of Arithmetic, the prime factorization
of a natural number is unique.

Now the only prime factors of azare pipz2p3 ... ... ... .. pn. Therefore, p is one of
pip%p3 ..o o .. PN

So p is also a factor of a

If p divides a2 then p also divides a.
Let us consider a positive integer 12.
Now, the factors of 12 are 2, 2 and 3.
On squaring 12 we get,

122 =144



The factors of 144 are 2, 2, 2, 2, 3 and 3.

If one of the factors, let’s say 3 divides 144. Then this factor, 3 will also divide
144, as it is one of the factors of 144 also.

—

Example: Prove that V2 is an irrational number.

.J_
Let us assume that V2 is rational. Since it is a rational number it can
7

be expressed in the form b, where a and b are integers and b # 0.

Now, a and b have no common factor other than 1.
(1

B = ;
V2 = b, where aand b are coprime

On squaring both sides, we get
'

2= b
2b? = a2
Therefore, 2 divides aZ.
We know that when 2 divides a%then 2 divides a also.
We can write a = 2m, where m is an integer.

Putting a = 2m in 2b2 = a2

2b2 = (2m)?
2b2 = 4m?
b2 = 2m?

Again if 2 divides b2, then 2 divides b also.
Therefore, 2 is a common factor of a and b.

But this contradicts the fact that a, b have no common factor other than 1.

a5 . . .
So, we conclude that V2 is irrational.



Example: Show that 3v2 is an irrational number.

Let us assume that 3v2 is rational.

(

Then 3v2 can be expressed in the form b where a and b are integers and b # 0.
Now, a and b have no common factor other than 1.

o
/9.

3V i, where a and b are coprime integers

1)

Since, 3, a and b are integers, 3b is rational.

Now, a rational number cannot be equal to an irrational number, that is\*’fE
So, we conclude that 3*‘6 is irrational.

Example: Show that 5 — V'3 is irrational.

Let us assume that 5 —V 3 is rational. As it is a rational number, it can be
i
expressed in the form b where a and b are integersand b # 0. Now,aand b
have no common factor other than 1.
/o .
5 — V3 =ab, where a and b are coprime

(1

5 —ﬂ: \;@
5b — a
E} =V3
5b—a
As, 5, a, and b are integers, 0  isrational.

Now, V3 is an irrational number and cannot be equal to a rational number.

= .
So, we conclude that 5 — V3 is irrational.



Example: Prove that 2v3 + V5 is an irrational number.

Let us assume that 2\,@ + /5 is rational. As it is a rational number, it can be
i

expressed in the form I where a and b are integersand b # 0. Now,a and b
have no common factor other than 1.

i

= e T .
2V3 + V5 =}, where a and b are coprime

i
2\/3: E — \f‘f[“._:’

On squaring both sides, we get
4}

12 = (b—~+5)2
i
12 =a2/b2 — 2V/5 b+ 5

3 [
a® — Tb*

Since, 2, 7, a and b are integers  2ab  is rational
A rational number cannot be equal to an irrational number.
= = n’ll"_ EI‘J? - . .
So, our assumption is wrong. Hence, 2V3 + V9 is irrational.
Revisiting rational numbers and their decimal expansion
Revisiting Rational Numbers

Rational Numbers and their Decimal Expansion



The decimal expansion of every rational number is either terminating
or non-terminating repeating.

Terminating Decimal Expansion

The number which terminates after a finite number of steps in the
process of division is called terminating decimal expansion. E.g. 6.25, 1.14

Non-Terminating Decimal Expansion

The number which does not terminate in the process of division is
called non-terminating decimal expansion.

There are two types of non-terminating decimal expansions
a) Non-terminating repeating Decimal Expansion

The number which does not terminate but repeats the particular
number again and again in the process of division is said to be non-
terminating repeating decimal.

E.g. 0.333333
b) Non-terminating Non-repeating Decimal Expansion

The number which neither terminates nor repeats the particular number in
the process of division is said to be non-terminating repeating decimal. E.g.
1.03303033

Theorem 1:

Let x be a rational number whose decimal expansion terminates.

1”
Then x can be expressed in the form 7, where p and q are coprime and the

prime factorization of q is of the form 25+, where m, n are non- negative
integers.

Theorem} 2
I

Let x = 7 be a rational number, such that the prime factorization of q is



‘fj'
of the form 2=5- , where m, n are non-negative integers, then 7 has
a terminating decimal.

23 23

23X 5% 23X53
=21X5X5% = 21X 51
2875 2875 9575
(2X5) = (10)* = To000 = 0.2875
Theorem 3:
l“

Let x =Ybe a rational number, such that the prime factorization of q is not
of the form 2»5», where m, n are non-negative integers, then x has decimal
expansion which is non-terminating repeating.

Example:

[N}

H4
Without actually performing the long division, state whether 225 has

a terminating decimal expansion or non-terminating recurring
decimal expansion.

s @2
Since the factors of the denominator (3:97) is not of the form 2n5.

543

So0,225 is non-terminating recurring decimal expansion.

Example:

=]
118 ]

The decimal expansion of the rational number2!\5" will terminate
after how many places of decimal.



23X5 265
24X53 X5  24X54
265 265 265
B T s
_(2X5)7 ~ 10% 10000

53
The decimal expansion of the rational number 21X5* will terminate after 4
places of decimal.
299 299

Example: If 1000 = 25", then find the value of m and n, where m and n are
non- negative integers. Hence, write its decimal expansion without
actual division.

299 299
4000 — 2m5n
299 299
4000 2553
209 299
2man = 25 X753

m=bandn=3

299 299

Now,4000 can be expressed as 2° X 5*

299




7475 TATS | TATS
———— = = == = 0.07475
_(2X5)5  10° 100000

Example:

What can you say about the prime factorization of the denominators of
the following rational:

i) 42.123456789

i) Since 42.123456789 has a terminating decimal expansion. So, its
denominator is of the form 257, where m and n are non- negative integers.

ii) Since 32.5678 has non-terminating decimal expansion. So,
its denominator has factors other than 2 or 5.



	1. Real Numbers_001.pdf (p.1-20)
	1. Real Numbers_021.pdf (p.21-24)

