CONTINUITY AND DIFFERENTIABILITY

5.1 Overview

5.1.1 Continuity of a function at a point

Let f be a real function on a subset of the real numbers and let c be a point in the domain of f. Then f is continuous at c if

$$\lim_{x \to c} f(x) = f(c)$$

More elaborately, if the left hand limit, right hand limit and the value of the function at x = c exist and are equal to each other, i.e.,

$$\lim_{x \to c} f(x) \quad f(c) \quad \lim_{x \to c} f(x)$$

then f is said to be continuous at x = c.

5.1.2 Continuity in an interval

- (i) f is said to be continuous in an open interval (a, b) if it is continuous at every point in this interval.
- (ii) f is said to be continuous in the closed interval [a, b] if
 - f is continuous in (a, b)
 - $\bullet \quad \lim_{x \to a^+} \quad f(x) = f(a)$
 - $\bullet \quad \lim_{x \to b^{-}} f(x) = f(b)$

5.1.3 Geometrical meaning of continuity

- (i) Function f will be continuous at x = c if there is no break in the graph of the function at the point (c, f(c)).
- (ii) In an interval, function is said to be continuous if there is no break in the graph of the function in the entire interval.

5.1.4 Discontinuity

The function f will be discontinuous at x = a in any of the following cases :

- (i) $\lim_{x \to a^{-}} f(x)$ and $\lim_{x \to a^{+}} f(x)$ exist but are not equal.
- (ii) $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ exist and are equal but not equal to f(a).
- (iii) f(a) is not defined.

5.1.5 Continuity of some of the common functions

Function $f(x)$	Interval in which f is continuous
1. The constant function, i.e. $f(x) = c$	
2. The identity function, i.e. $f(x) = x$	R
3. The polynomial function, i.e.	
$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$	
$4. \mid x - a \mid$	$(-\infty,\infty)$
5. x^{-n} , n is a positive integer	$(-\infty,\infty)-\{0\}$
6. $p(x) / q(x)$, where $p(x)$ and $q(x)$ are	$\mathbf{R} - \{ x : q(x) = 0 \}$
polynomials in x	
7. $\sin x$, $\cos x$	R
	π
8. $\tan x$, $\sec x$	$\mathbf{R} - \{ (2 n + 1) \frac{\pi}{2} : n \in \mathbf{Z} \}$
9. $\cot x$, $\csc x$	\mathbf{R} – { $(n\pi : n \in \mathbf{Z})$

10. e^x

11. $\log x$ $(0, \infty)$

12. The inverse trigonometric functions, In their respective i.e., $\sin^{-1} x$, $\cos^{-1} x$ etc.

5.1.6 Continuity of composite functions

Let f and g be real valued functions such that $(f \circ g)$ is defined at a. If g is continuous at a and f is continuous at g (a), then $(f \circ g)$ is continuous at a.

5.1.7 Differentiability

The function defined by $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$, wherever the limit exists, is defined to be the derivative of f at x. In other words, we say that a function f is differentiable at a point c in its domain if both $\lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h}$, called left hand

derivative, denoted by Lf'(c), and $\lim_{h\to 0^+} \frac{f(c+h)-f(c)}{h}$, called right hand derivative, denoted by Rf'(c), are finite and equal.

- (i) The function y = f(x) is said to be differentiable in an open interval (a, b) if it is differentiable at every point of (a, b)
- (ii) The function y = f(x) is said to be differentiable in the closed interval [a, b] if R f'(a) and L f'(b) exist and f'(x) exists for every point of (a, b).
- (iii) Every differentiable function is continuous, but the converse is not true

5.1.8 Algebra of derivatives

If u, v are functions of x, then

(i)
$$\frac{d(u \pm v)}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$$
 (ii) $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$

(iii)
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

5.1.9 Chain rule is a rule to differentiate composition of functions. Let f = vou. If

$$t = u(x)$$
 and both $\frac{dt}{dx}$ and $\frac{dv}{dt}$ exist then $\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx}$

5.1.10 Following are some of the standard derivatives (in appropriate domains)

1.
$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}$$
 2. $\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^2}}$

2.
$$\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$$

3.
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$
 4. $\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$

4.
$$\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$$

5.
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2 - 1}}, |x| > 1$$

6.
$$\frac{d}{dx}(\csc^{-1}x) = \frac{-1}{|x|\sqrt{x^2 - 1}}, |x| > 1$$

5.1.11 Exponential and logarithmic functions

- (i) The exponential function with positive base b > 1 is the function $y = f(x) = b^x$. Its domain is **R**, the set of all real numbers and range is the set of all positive real numbers. Exponential function with base 10 is called the common exponential function and with base e is called the natural exponential function.
- (ii) Let b > 1 be a real number. Then we say logarithm of a to base b is x if $b^x = a$, Logarithm of a to the base b is denoted by $\log_b a$. If the base b = 10, we say it is common logarithm and if b = e, then we say it is natural logarithms. $\log x$ denotes the logarithm function to base e. The domain of logarithm function is \mathbf{R}^+ , the set of all positive real numbers and the range is the set of all real numbers.
- (iii) The properties of logarithmic function to any base b > 1 are listed below:

$$1. \log_b(xy) = \log_b x + \log_b y$$

$$2. \log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

- $3. \log_b x^n = n \log_b x$
- 4. $\log_b x = \frac{\log_c x}{\log_c b}$, where c > 1
- $5. \log_b x = \frac{1}{\log_x b}$
- 6. $\log_b b = 1$ and $\log_b 1 = 0$
- (iv) The derivative of e^x w.r.t., x is e^x , i.e. $\frac{d}{dx}(e^x)$ e^x . The derivative of $\log x$ w.r.t., x is $\frac{1}{x}$; i.e. $\frac{d}{dx}(\log x)$ $\frac{1}{x}$.
- **5.1.12** Logarithmic differentiation is a powerful technique to differentiate functions of the form $f(x) = (u(x))^{v(x)}$, where both f and u need to be positive functions for this technique to make sense.
- **5.1.13** Differentiation of a function with respect to another function

Let u = f(x) and v = g(x) be two functions of x, then to find derivative of f(x) w.r.t.

to g(x), i.e., to find $\frac{du}{dv}$, we use the formula

$$\frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}}.$$

5.1.14 Second order derivative

 $\frac{d}{dx} \frac{dy}{dx} = \frac{d^2y}{dx^2}$ is called the second order derivative of y w.r.t. x. It is denoted by y" or y_2 , if y = f(x).

5.1.15 Rolle's Theorem

Let f: [a, b] **R** be continuous on [a, b] and differentiable on (a, b), such that f(a) = f(b), where a and b are some real numbers. Then there exists at least one point c in (a, b) such that f'(c) = 0.

Geometrically Rolle's theorem ensures that there is at least one point on the curve y = f(x) at which tangent is parallel to x-axis (abscissa of the point lying in (a, b)).

5.1.16 Mean Value Theorem (Lagrange)

Let f: [a, b] **R** be a continuous function on [a, b] and differentiable on (a, b). Then

there exists at least one point
$$c$$
 in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Geometrically, Mean Value Theorem states that there exists at least one point c in (a, b) such that the tangent at the point (c, f(c)) is parallel to the secant joining the points (a, f(a)) and (b, f(b)).

5.2 Solved Examples

Short Answer (S.A.)

Example 1 Find the value of the constant k so that the function f defined below is

continuous at
$$x = 0$$
, where $f(x) = \begin{cases} \frac{1 - \cos 4x}{8x^2}, & x \neq 0 \\ k, & x = 0 \end{cases}$

Solution It is given that the function f is continuous at x = 0. Therefore, $\lim_{x \to 0} f(x) = f(0)$

$$\Rightarrow \lim_{x \to 0} \frac{1 - \cos 4x}{8x^2} = k$$

$$\Rightarrow \lim_{x \to 0} \frac{2\sin^2 2x}{8x^2} = k$$

$$\Rightarrow \lim_{x \to 0} \left(\frac{\sin 2x}{2x} \right)^2 = k$$

$$\Rightarrow$$
 $k=1$

Thus, f is continuous at x = 0 if k = 1.

Example 2 Discuss the continuity of the function $f(x) = \sin x \cdot \cos x$.

Solution Since $\sin x$ and $\cos x$ are continuous functions and product of two continuous function is a continuous function, therefore $f(x) = \sin x$. $\cos x$ is a continuous function.

Example 3 If $f(x) = \begin{cases} \frac{x^3 + x^2 - 16x + 20}{(x - 2)^2}, & x \neq 2 \\ k, & x = 2 \end{cases}$ is continuous at x = 2, find

the value of k.

Solution Given f(2) = k.

Now,
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2} \frac{x^{3} + x^{2} - 16x + 20}{(x - 2)^{2}}$$

$$= \lim_{x \to 2} \frac{(x - 5)(x - 2)^2}{(x - 2)^2} \quad \lim_{x \to 2} (x - 5) \quad 7$$

As f is continuous at x = 2, we have

$$\lim_{x\to 2} f(x) = f(2)$$

 \Rightarrow

Example 4 Show that the function *f* defined by

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

is continuous at x = 0.

Solution Left hand limit at x = 0 is given by

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} x \sin \frac{1}{x} = 0$$
 [since, -1 < \sin \frac{1}{x} < 1]

Similarly $\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin \frac{1}{x} = 0$. Moreover f(0) = 0.

Thus $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} f(x)$ f(0). Hence f is continuous at x = 0

Example 5 Given $f(x) = \frac{1}{x-1}$. Find the points of discontinuity of the composite function y = f[f(x)].

Solution We know that $f(x) = \frac{1}{x-1}$ is discontinuous at x = 1

Now, for x = 1,

$$f(f(x)) = f\left(\frac{1}{x-1}\right) = \frac{1}{\frac{1}{x-1}-1} = \frac{x-1}{2-x},$$

which is discontinuous at x = 2.

Hence, the points of discontinuity are x = 1 and x = 2.

Example 6 Let f(x) = x|x|, for all $x \in \mathbb{R}$. Discuss the derivability of f(x) at x = 0

Solution We may rewrite
$$f$$
 as $f(x) = \begin{cases} x^2, & \text{if } x \ge 0 \\ -x^2, & \text{if } x < 0 \end{cases}$

Now Lf'(0) =
$$\lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{-h^{2} - 0}{h} = \lim_{h \to 0^{-}} -h = 0$$

Now Rf'(0) =
$$\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^+} \frac{h^2 - 0}{h} = \lim_{h \to 0^-} h = 0$$

Since the left hand derivative and right hand derivative both are equal, hence f is differentiable at x = 0.

Example 7 Differentiate $\sqrt{\tan \sqrt{x}}$ w.r.t. x

Solution Let $y = \sqrt{\tan \sqrt{x}}$. Using chain rule, we have

$$\frac{dy}{dx} = \frac{1}{2\sqrt{\tan\sqrt{x}}} \cdot \frac{d}{dx} (\tan\sqrt{x})$$

$$= \frac{1}{2\sqrt{\tan\sqrt{x}}} \cdot \sec^2 \sqrt{x} \cdot \frac{d}{dx} (\sqrt{x})$$

$$= \frac{1}{2\sqrt{\tan\sqrt{x}}} (\sec^2 \sqrt{x}) \cdot \frac{1}{2\sqrt{x}}$$

$$= \frac{(\sec^2 \sqrt{x})}{4\sqrt{x}\sqrt{\tan\sqrt{x}}}.$$

Example 8 If $y = \tan(x + y)$, find $\frac{dy}{dx}$.

Solution Given $y = \tan(x + y)$. differentiating both sides w.r.t. x, we have

$$\frac{dy}{dx} \sec^2(x \quad y) \frac{d}{dx}(x \quad y)$$
$$= \sec^2(x + y) \quad 1 \quad \frac{dy}{dx}$$

or
$$[1 - \sec^2(x + y)] \frac{dy}{dx} = \sec^2(x + y)$$

Therefore,
$$\frac{dy}{dx} \frac{\sec^2(x \ y)}{1 \sec^2(x \ y)} = -\csc^2(x + y).$$

Example 9 If $e^x + e^y = e^{x+y}$, prove that

$$\frac{dy}{dx} = -e^{y-x}$$
.

Solution Given that $e^x + e^y = e^{x+y}$. Differentiating both sides w.r.t. x, we have

$$e^x + e^y \frac{dy}{dx} = e^{x+y} \quad 1 \quad \frac{dy}{dx}$$

$$(e^{y}-e^{x}+y)\frac{dy}{dx}=e^{x}+y-e^{x},$$

which implies that
$$\frac{dy}{dx} = \frac{e^{x-y} - e^x}{e^y - e^x} = \frac{e^x - e^y}{e^y - e^x} = e^y - e^x$$
.

Example 10 Find
$$\frac{dy}{dx}$$
, if $y = \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$, $-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$.

Solution Put $x = \tan \theta$, where $\frac{-\pi}{6} < \theta < \frac{\pi}{6}$.

Therefore,
$$y = \tan^{-1} \left(\frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta} \right)$$
$$= \tan^{-1} (\tan 3)$$
$$= 3 \qquad (because \frac{1}{2} - 3 - \frac{1}{2})$$
$$= 3 \tan^{-1} x$$

Hence,
$$\frac{dy}{dx} = \frac{3}{1 + x^2}.$$

Example 11 If $y = \sin^{-1} x \sqrt{1 + x}$ $\sqrt{x} \sqrt{1 + x^2}$ and 0 < x < 1, then find $\frac{dy}{dx}$.

Solution We have $y = \sin^{-1} x \sqrt{1 + x} \sqrt{x} \sqrt{1 + x^2}$, where 0 < x < 1.

Put
$$x = \sin A$$
 and $\sqrt{x} = \sin B$

Therefore, $y = \sin^{-1} \sin A \sqrt{1 + \sin^2 B} \sin B \sqrt{1 + \sin^2 A}$

$$= \sin^{-1} \sin A \cos B \sin B \cos A$$

$$= \sin^{-1} \sin(A B) = A - B$$

Thus
$$y = \sin^{-1} x - \sin^{-1} \sqrt{x}$$

Differentiating w.r.t. x, we get

$$\frac{dy}{dx} \quad \frac{1}{\sqrt{1-x^2}} \quad \frac{1}{\sqrt{1-\sqrt{x}^2}} \cdot \frac{d}{dx} \sqrt{x}$$

$$=\frac{1}{\sqrt{1-x^2}} \quad \frac{1}{2\sqrt{x}\sqrt{1-x}} \, .$$

Example 12 If $x = a \sec^3$ and $y = a \tan^3$, find $\frac{dy}{dx}$ at $\frac{dy}{dx}$.

Solution We have $x = a \sec^3$ and $y = a \tan^3$.

Differentiating w.r.t. , we get

$$\frac{dx}{d}$$
 3a sec² $\frac{d}{d}$ (sec) 3a sec³ tan

and
$$\frac{dy}{d\theta} = 3a \tan^2 \theta \frac{d}{d\theta} (\tan \theta) = 3a \tan^2 \theta \sec^2 \theta$$
.

Thus
$$\frac{dy}{dx} = \frac{\frac{dy}{d}}{\frac{dx}{dx}} = \frac{3a \tan^2 \sec^2}{3a \sec^3 \tan} = \frac{\tan}{\sec} = \sin$$

Hence,
$$\frac{dy}{dx}$$
 at $\frac{\sqrt{3}}{3}$.

Example 13 If
$$x^y = e^{x-y}$$
, prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$.

Solution We have $x^y = e^{x-y}$. Taking logarithm on both sides, we get

$$y \log x = x - y$$

$$y (1 + \log x) = x$$

i.e.
$$y = \frac{x}{1 + \log x}$$

Differentiating both sides w.r.t. x, we get

$$\frac{dy}{dx} = \frac{(1 - \log x) \cdot 1 - x - \frac{1}{x}}{(1 - \log x)^2} = \frac{\log x}{(1 - \log x)^2}.$$

Example 14 If
$$y = \tan x + \sec x$$
, prove that $\frac{d^2 y}{dx^2} = \frac{\cos x}{(1 + \sin x)^2}$.

Solution We have $y = \tan x + \sec x$. Differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \sec^2 x + \sec x \tan x$$

$$= \frac{1}{\cos^2 x} \frac{\sin x}{\cos^2 x} = \frac{1 \sin x}{\cos^2 x} = \frac{1 + \sin x}{(1 + \sin x)(1 - \sin x)}.$$

thus
$$\frac{dy}{dx} = \frac{1}{1-\sin x}$$
.

Now, differentiating again w.r.t. x, we get

$$\frac{d^2y}{dx^2} = \frac{-\cos x}{(1-\sin x)^2} \frac{\cos x}{(1-\sin x)^2}$$

Example 15 If
$$f(x) = |\cos x|$$
, find $f'(\frac{3}{4})$.

Solution When $\frac{1}{2} < x < \pi$, $\cos x < 0$ so that $|\cos x| = -\cos x$, i.e., $f(x) = -\cos x$ $f'(x) = \sin x$.

Hence,
$$f'(\frac{3}{4}) = \sin(\frac{3}{4}) = \frac{1}{\sqrt{2}}$$

Example 16 If $f(x) = |\cos x - \sin x|$, find $f'(\frac{\pi}{6})$.

Solution When $0 < x < \frac{\pi}{4}$, $\cos x > \sin x$, so that $\cos x - \sin x > 0$, i.e.,

$$f'(x) = \cos x - \sin x$$
$$f'(x) = -\sin x - \cos x$$

Hence
$$f'(\frac{\pi}{6}) = -\sin\frac{\pi}{6} - \cos\frac{\pi}{6} = -\frac{1}{2}(1+\sqrt{3})$$
.

Example 17 Verify Rolle's theorem for the function, $f(x) = \sin 2x$ in $[0, \frac{\pi}{2}]$.

Solution Consider $f(x) = \sin 2x$ in $[0, \frac{\pi}{2}]$. Note that:

- (i) The function f is continuous in $0, \frac{1}{2}$, as f is a sine function, which is always continuous.
- (ii) $f'(x) = 2\cos 2x$, exists in $0, \frac{\pi}{2}$, hence f is derivable in $\left(0, \frac{\pi}{2}\right)$.

(iii)
$$f(0) = \sin 0 = 0$$
 and $f(\frac{\pi}{2}) = \sin \pi = 0 \Rightarrow f(0) = f(\frac{\pi}{2})$.

Conditions of Rolle's theorem are satisfied. Hence there exists at least one $c \in (0, \frac{1}{2})$ such that f'(c) = 0. Thus

$$2\cos 2c = 0$$
 \Rightarrow $2c = \frac{\pi}{2}$ \Rightarrow $c = \frac{\pi}{4}$.

Example 18 Verify mean value theorem for the function f(x) = (x-3)(x-6)(x-9) in [3, 5].

Solution (i) Function f is continuous in [3, 5] as product of polynomial functions is a polynomial, which is continuous.

(ii) $f'(x) = 3x^2 - 36x + 99$ exists in (3, 5) and hence derivable in (3, 5).

Thus conditions of mean value theorem are satisfied. Hence, there exists at least one $c \in (3, 5)$ such that

$$f(c) = \frac{f(5) - f(3)}{5 - 3}$$

$$\Rightarrow 3c^2 - 36c + 99 = \frac{8 - 0}{2} = 4$$

$$\Rightarrow c = 6 - \sqrt{\frac{13}{3}}.$$

Hence $c = 6 = \sqrt{\frac{13}{3}}$ (since other value is not permissible).

Long Answer (L.A.)

Example 19 If
$$f(x) = \frac{\sqrt{2} \cos x + 1}{\cot x + 1}, x \neq \frac{1}{4}$$

find the value of $f(x) = \frac{1}{4}$ so that f(x) becomes continuous at $x = \frac{1}{4}$.

Solution Given,
$$f(x) = \frac{\sqrt{2}\cos x}{\cot x}, x = \frac{1}{4}$$

Therefore,
$$\lim_{x \to \frac{\pi}{4}} f(x) \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \cos x}{\cot x} \frac{1}{1}$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{\left(\sqrt{2} \cos x - 1\right) \sin x}{\cos x - \sin x}$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \cos x}{\sqrt{2} \cos x} \frac{1}{1} \cdot \frac{\sqrt{2} \cos x}{\cos x} \frac{1}{\sin x} \cdot \frac{\cos x}{\cos x} \frac{\sin x}{\sin x} \cdot \sin x$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{2\cos^2 x - 1}{\cos^2 x - \sin^2 x} \cdot \frac{\cos x + \sin x}{\sqrt{2}\cos x + 1} \cdot (\sin x)$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{\cos 2x}{\cos 2x} \cdot \left(\frac{\cos x + \sin x}{\sqrt{2}\cos x + 1}\right) \cdot (\sin x)$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{\cos x}{\sqrt{2}\cos x} \cdot \frac{\sin x}{\sin x}$$

$$= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}$$

Thus,

$$\lim_{x \to \frac{1}{4}} f(x) = \frac{1}{2}$$

If we define $f\left(\frac{\pi}{4}\right) = \frac{1}{2}$, then f(x) will become continuous at $x = \frac{\pi}{4}$. Hence for f to be continuous at $x = \frac{\pi}{4}$.

Example 20 Show that the function f given by f(x) $\frac{e^{\frac{1}{x}}}{e^{\frac{1}{x}}} 1, \text{ if } x = 0$ $0, \quad \text{if } x = 0$

is discontinuous at x = 0.

Solution The left hand limit of f at x = 0 is given by

$$\lim_{x \to 0} f(x) \quad \lim_{x \to 0} \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} - 1} \quad \frac{0}{0} \quad 1$$

Similarly,

$$\lim_{x \to 0} f(x) \quad \lim_{x \to 0} \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} - 1}$$

$$= \lim_{x \to 0} \frac{1}{1} \frac{\frac{1}{\frac{1}{x}}}{\frac{1}{\frac{1}{e^{x}}}} = \lim_{x \to 0} \frac{1}{1} \frac{e^{\frac{1}{x}}}{\frac{1}{e^{x}}} \frac{1}{1} \frac{0}{0} 1$$

Thus $\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$, therefore, $\lim_{x\to 0} f(x)$ does not exist. Hence f is discontinuous at x=0.

Example 21 Let
$$f(x)$$

$$\frac{1 \cos 4x}{x^2}, \text{ if } x = 0$$

$$\frac{a}{\sqrt{16} \sqrt{x}}, \text{ if } x = 0$$

For what value of a, f is continuous at x = 0?

Solution Here f(0) = a Left hand limit of f at 0 is

$$\lim_{x \to 0} f(x) \quad \lim_{x \to 0} \frac{1 - \cos 4x}{x^2} \quad \lim_{x \to 0} \frac{2\sin^2 2x}{x^2}$$

$$\lim_{2x \to 0} 8 \frac{\sin 2x}{2x} = 8(1)^2 = 8.$$

and right hand limit of f at 0 is

$$\lim_{x \to 0} f(x) \quad \lim_{x \to 0} \frac{\sqrt{x}}{\sqrt{16 - \sqrt{x}} - 4}$$

$$= \lim_{x \to 0} \frac{\sqrt{x}(\sqrt{16 - \sqrt{x}} - 4)}{(\sqrt{16 - \sqrt{x}} - 4)(\sqrt{16 - \sqrt{x}} - 4)}$$

$$= \lim_{x \to 0} \frac{\sqrt{x} (\sqrt{16} \sqrt{x} + 4)}{16 \sqrt{x} + 16} \lim_{x \to 0} \sqrt{16} \sqrt{x} + 4 = 8$$

Thus, $\lim_{x \to 0} f(x) = \lim_{x \to 0} f(x)$ 8. Hence f is continuous at x = 0 only if a = 8.

Example 22 Examine the differentiability of the function f defined by

$$f(x) = \begin{cases} 2x & 3, & \text{if } 3 & x & 2 \\ x & 1, & \text{if } 2 & x & 0 \\ x & 2, & \text{if } 0 & x & 1 \end{cases}$$

Solution The only doubtful points for differentiability of f(x) are x = -2 and x = 0. Differentiability at x = -2.

Now L f'(-2) =
$$\lim_{h \to 0} \frac{f(-2 + h) - f(-2)}{h}$$

= $\lim_{h \to 0} \frac{2(-2 + h) - 3 - (-2 + 1)}{h} - \lim_{h \to 0} \frac{2h}{h} - \lim_{h \to 0} 2 - 2$.
and R f'(-2) = $\lim_{h \to 0} \frac{f(-2 + h) - f(-2)}{h}$
= $\lim_{h \to 0} \frac{-2 - h - 1 - (-2 + 1)}{h}$
= $\lim_{h \to 0} \frac{h - 1 - (-1)}{h} - \lim_{h \to 0} \frac{h}{h} - 1$

Thus R $f'(-2) \neq L f'(-2)$. Therefore f is not differentiable at x = -2. Similarly, for differentiability at x = 0, we have

$$L(f'(0)) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{0 + h - 1 - (0 - 2)}{h}$$

$$= \lim_{h \to 0} \frac{h - 1}{h} - \lim_{h \to 0} 1 - \frac{1}{h}$$

which does not exist. Hence f is not differentiable at x = 0.

Example 23 Differentiate tan-1 $\frac{\sqrt{1-x^2}}{x}$ with respect to $\cos^{-1} 2x\sqrt{1-x^2}$, where

$$x = \frac{1}{\sqrt{2}}, 1$$
.

Solution Let
$$u = \tan^{-1} \frac{\sqrt{1-x^2}}{x}$$
 and $v = \cos^{-1} 2x\sqrt{1-x^2}$.

We want to find
$$\frac{du}{dv}$$
 $\frac{\frac{du}{dx}}{\frac{dv}{dx}}$

Now
$$u = \tan^{-1} \frac{\sqrt{1-x^2}}{x}$$
. Put $x = \sin\theta$. $\left(\frac{\pi}{4} < \theta < \frac{\pi}{2}\right)$.

Then
$$u = \tan^{-1} \frac{\sqrt{1 + \sin^2 \alpha}}{\sin \alpha} = \tan^{-1} (\cot \theta)$$

$$= \tan^{-1} \left\{ \tan \left(\frac{\pi}{2} - \theta \right) \right\} = \frac{\pi}{2} - \theta \qquad \frac{\pi}{2} \quad \sin^{-1} x$$

Hence
$$\frac{du}{dx} = \frac{1}{\sqrt{1 + x^2}}$$
.

Now
$$v = \cos^{-1}(2x \sqrt{1 + x^2})$$

$$= \frac{1}{2} - \sin^{-1}(2x \sqrt{1 + x^2})$$

$$= \frac{1}{2} - \sin^{-1}(2\sin\theta \sqrt{1 - \sin^2\theta}) = \frac{\pi}{2} - \sin^{-1}(\sin 2\theta)$$

$$= \frac{\pi}{2} - \sin^{-1}(\sin(\pi - 2\theta)) \quad [\text{since } \frac{\pi}{2} < 2\theta < \pi]$$

$$= \frac{1}{2} (2) \frac{1}{2} 2$$

$$\Rightarrow v = \frac{1}{2} + 2\sin^{-1}x$$

$$\Rightarrow \frac{dv}{dx} \frac{2}{\sqrt{1 + x^2}}$$

Hence

$$\frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{\frac{-1}{\sqrt{1 - x^2}}}{\frac{2}{\sqrt{1 - x^2}}} = \frac{-1}{2}.$$

Objective Type Questions

Choose the correct answer from the given four options in each of the Examples 24 to 35.

Example 24 The function
$$f(x) =$$
$$\frac{\sin x}{x} \cos x, \text{if } x = 0$$
$$k , \text{if } x = 0$$

is continuous at x = 0, then the value of k is

Solution (B) is the Correct answer.

Example 25 The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at

(A) 4 (B)
$$-2$$
 (C) 1 (D) 1.5

Solution (D) is the correct answer. The greatest integer function [x] is discontinuous at all integral values of x. Thus D is the correct answer.

Example 26 The number of points at which the function $f(x) = \frac{1}{x - [x]}$ is not

continuous is

Solution (D) is the correct answer. As x - [x] = 0, when x is an integer so f(x) is discontinuous for all $x \in \mathbb{Z}$.

Example 27 The function given by $f(x) = \tan x$ is discontinuous on the set

(A)
$$n : n \mathbb{Z}$$

(B)
$$2n : n \mathbb{Z}$$

(C)
$$(2n \ 1) = n \ \mathbf{Z}$$

(D)
$$\frac{n}{2}$$
: n **Z**

Solution C is the correct answer.

Example 28 Let $f(x) = |\cos x|$. Then,

- (A) *f* is everywhere differentiable.
- (B) f is everywhere continuous but not differentiable at $n = n\pi$, $n \in \mathbb{Z}$.
- (C) f is everywhere continuous but not differentiable at $x = (2n + 1)\frac{\pi}{2}$, $n \in \mathbb{Z}$.
- (D) none of these.

Solution C is the correct answer.

Example 29 The function f(x) = |x| + |x - 1| is

- (A) continuous at x = 0 as well as at x = 1.
- (B) continuous at x = 1 but not at x = 0.
- (C) discontinuous at x = 0 as well as at x = 1.
- (D) continuous at x = 0 but not at x = 1.

Solution Correct answer is A.

Example 30 The value of k which makes the function defined by

$$f(x)$$
 $\begin{array}{c} \sin \frac{1}{x}, & \text{if } x = 0 \\ k, & \text{if } x = 0 \end{array}$, continuous at $x = 0$ is

(B)

(C)
$$-1$$

(D) none of these

Solution (D) is the correct answer. Indeed $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist.

Example 31 The set of points where the functions f given by $f(x) = |x - 3| \cos x$ is differentiable is

COLUMN-II

(A)
$$\mathbf{R}$$
 (B) $\mathbf{R} - \{3\}$ (C) $(0, \infty)$ (D) none of these

Solution B is the correct answer.

Example 32 Differential coefficient of sec $(\tan^{-1}x)$ w.r.t. x is

(A)
$$\frac{x}{\sqrt{1+x^2}}$$
 (B) $\frac{x}{1+x^2}$ (C) $x\sqrt{1+x^2}$ (D) $\frac{1}{\sqrt{1+x^2}}$

Solution (A) is the correct answer.

Example 33 If
$$u = \sin^{-1} \left(\frac{2x}{1+x^2} \right)$$
 and $v = \tan^{-1} \left(\frac{2x}{1-x^2} \right)$, then $\frac{du}{dv}$ is

(A) $\frac{1}{2}$ (B) x (C) $\frac{1-x^2}{1+x^2}$ (D)

Solution (D) is the correct answer.

Example 34 The value of c in Rolle's Theorem for the function $f(x) = e^x \sin x$, $x \in [0, \pi]$ is

(A)
$$\frac{\pi}{6}$$
 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) $\frac{3\pi}{4}$

Solution (D) is the correct answer.

Example 35 The value of c in Mean value theorem for the function f(x) = x(x-2), $x \in [1, 2]$ is

(A)
$$\frac{3}{2}$$
 (B) $\frac{2}{3}$ (C) $\frac{1}{2}$ (D) $\frac{3}{2}$

Solution (A) is the correct answer.

Example 36 Match the following

(A) If a function
$$f(x)$$

$$\frac{\sin 3x}{x}, \text{if } x = 0$$

$$\frac{k}{2}, \text{ if } x = 0$$
 (a) $|x|$

is continuous at x = 0, then k is equal to

COLUMN-I

- (B) Every continuous function is differentiable
- (b) True (c) 6
- (C) An example of a function which is continuous everywhere but not differentiable at exactly one point
 - D) The identity function i.e. $f(x) = x \ \forall x \in \mathbb{R}$ is a (d) False continuous function

Solution $A \rightarrow c$, $B \rightarrow d$,

$$C \rightarrow a, D \rightarrow b$$

Fill in the blanks in each of the Examples 37 to 41.

Example 37 The number of points at which the function $f(x) = \frac{1}{\log|x|}$ is

discontinuous is _____.

Solution The given function is discontinuous at $x = 0, \pm 1$ and hence the number of points of discontinuity is 3.

Example 38 If $f(x) = \begin{cases} ax + 1 & \text{if } x \ge 1 \\ x + 2 & \text{if } x < 1 \end{cases}$ is continuous, then a should be equal to _____.

Solution a = 2

Example 39 The derivative of $\log_{10} x$ w.r.t. x is _____.

Solution $(\log_{10} e) \frac{1}{x}$.

Example 40 If $y = \sec^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right) + \sin^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)$, then $\frac{dy}{dx}$ is equal to _____.

Solution 0.

Example 41 The deriative of $\sin x$ w.r.t. $\cos x$ is ______.

Solution $-\cot x$

State whether the statements are True or False in each of the Exercises 42 to 46.

Example 42 For continuity, at x = a, each of $\lim_{x \to a^+} f(x)$ and $\lim_{x \to a^-} f(x)$ is equal to f(a).

Solution True.

Example 43 y = |x - 1| is a continuous function.

Solution True.

Example 44 A continuous function can have some points where limit does not exist.

Solution False.

Example 45 $|\sin x|$ is a differentiable function for every value of x.

Solution False.

Example 46 $\cos |x|$ is differentiable everywhere.

Solution True.

5.3 EXERCISE

Short Answer (S.A.)

1. Examine the continuity of the function

$$f(x) = x^3 + 2x^2 - 1$$
 at $x = 1$

Find which of the functions in Exercises 2 to 10 is continuous or discontinuous at the indicated points:

2.
$$f(x) = \begin{cases} 3x+5, & \text{if } x \ge 2\\ x^2, & \text{if } x < 2 \end{cases}$$

3.
$$f(x) = \begin{cases} \frac{1 - \cos 2x}{x^2}, & \text{if } x \neq 0 \\ 5, & \text{if } x = 0 \end{cases}$$

at x=2

at
$$x=0$$

4.
$$f(x) = \begin{cases} \frac{2x^2 - 3x - 2}{x - 2}, & \text{if } x \neq 2 \\ 5, & \text{if } x = 2 \end{cases}$$

5.
$$f(x) = \begin{cases} \frac{|x-4|}{2(x-4)}, & \text{if } x \neq 4\\ 0, & \text{if } x = 4 \end{cases}$$

at x=2

at
$$x = 4$$

6.
$$f(x) = \begin{cases} |x|\cos\frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

7.
$$f(x) = \begin{cases} |x-a|\sin\frac{1}{x-a}, & \text{if } x \neq 0 \\ 0, & \text{if } x = a \end{cases}$$

at x = 0

at
$$x = a$$

8.
$$f(x) = \begin{cases} \frac{e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}, & \text{if } x \neq 0 \\ 1+e^{\frac{1}{x}}, & \text{of } x = 0 \end{cases}$$

$$\mathbf{g.} f(x) = \begin{cases} \frac{x^2}{2}, & \text{if } 0 \le x \le 1\\ 2x^2 - 3x + \frac{3}{2}, & \text{if } 1 < x \le 2 \end{cases}$$

at x = 0

at
$$x = 1$$

10.
$$f(x) = |x| + |x-1|$$
 at $x = 1$

Find the value of k in each of the Exercises 11 to 14 so that the function f is continuous at the indicated point:

11.
$$f(x)$$
 3x 8, if x 5 at x 5 12. $f(x)$ 2x 16 if x 2 at x 2 k , if x 2

13.
$$f(x)$$

$$\frac{\sqrt{1 + kx} - \sqrt{1 + kx}}{x}, \text{ if } 1 = x = 0$$
$$\frac{2x - 1}{x - 1}, \text{ if } 0 = x - 1 \text{ at } x = 0$$

14.
$$f(x) = \begin{cases} \frac{1 - \cos kx}{x \sin x}, & \text{if } x \neq 0 \\ \frac{1}{2}, & \text{if } x = 0 \end{cases}$$

15. Prove that the function *f* defined by

$$f(x) = \begin{cases} \frac{x}{|x| + 2x^2}, & x \neq 0 \\ k, & x = 0 \end{cases}$$

remains discontinuous at x = 0, regardless the choice of k.

16. Find the values of a and b such that the function f defined by

$$f(x) = \begin{cases} \frac{x-4}{|x-4|} + a & \text{if } x < 4 \\ a+b & \text{if } x = 4 \\ \frac{x-4}{|x-4|} + b & \text{if } x > 4 \end{cases}$$

is a continuous function at x = 4.

17. Given the function $f(x) = \frac{1}{x+2}$. Find the points of discontinuity of the composite function y = f(f(x)).

- 18. Find all points of discontinuity of the function $f(t) = \frac{1}{t^2 + t 2}$, where $t = \frac{1}{x 1}$.
- 19. Show that the function $f(x) = |\sin x + \cos x|$ is continuous at $x = \pi$.

Examine the differentiability of f, where f is defined by

20.
$$f(x) = \begin{cases} x[x], & \text{if } 0 \le x < 2 \\ (x-1)x, & \text{if } 2 \le x < 3 \end{cases}$$

at $x = 2$.

21.
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & , if x \neq 0 \\ 0 & , if x = 0 \end{cases}$$
 at $x = 0$.

22.
$$f(x) = \begin{cases} 1+x & \text{if } x \le 2\\ 5-x & \text{if } x > 2 \end{cases}$$

at $x = 2$.

- 23. Show that f(x) = |x-5| is continuous but not differentiable at x = 5.
- **24.** A function $f: \mathbf{R} \to \mathbf{R}$ satisfies the equation f(x+y) = f(x) f(y) for all $x, y \in \mathbf{R}$, $f(x) \neq 0$. Suppose that the function is differentiable at x = 0 and f'(0) = 2. Prove that f'(x) = 2 f(x).

Differentiate each of the following w.r.t. x (Exercises 25 to 43):

25.
$$2^{\cos^2 x}$$
 26. $\frac{8^x}{x^8}$ **27.** $\log \left(x + \sqrt{x^2 + a} \right)$

28.
$$\log \left[\log (\log x^5) \right]$$
 29. $\sin \sqrt{x} + \cos^2 \sqrt{x}$ **30.** $\sin^n (ax^2 + bx + c)$

31.
$$\cos(\tan\sqrt{x+1})$$
 32. $\sin x^2 + \sin^2 x + \sin^2(x^2)$ 33. $\sin^{-1}\left(\frac{1}{\sqrt{x+1}}\right)$

34.
$$(\sin x)^{\cos x}$$
 35. $\sin^m x \cdot \cos^n x$ **36.** $(x+1)^2 (x+2)^3 (x+3)^4$

37.
$$\cos^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right), \frac{-\pi}{4} < x < \frac{\pi}{4}$$
 38. $\tan^{-1}\left(\sqrt{\frac{1 - \cos x}{1 + \cos x}}\right), -\frac{\pi}{4} < x < \frac{\pi}{4}$

39.
$$\tan^{-1}(\sec x + \tan x), -\frac{\pi}{2} < x < \frac{\pi}{2}$$

40.
$$\tan^{-1} \left(\frac{a \cos x - b \sin x}{b \cos x + a \sin x} \right), -\frac{\pi}{2} < x < \frac{\pi}{2} \text{ and } \frac{a}{b} \tan x > -1$$

41.
$$\sec^{-1}\left(\frac{1}{4x^3 - 3x}\right)$$
, $0 < x < \frac{1}{\sqrt{2}}$ 42. $\tan^{-1} \frac{3a^2x + x^3}{a^3 + 3ax^2}$, $\frac{1}{\sqrt{3}} \frac{x}{a} = \frac{1}{\sqrt{3}}$

43.
$$\tan^{-1} \left(\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right), -1 < x < 1, x \ne 0$$

Find $\frac{dy}{dx}$ of each of the functions expressed in parametric form in Exercises from 44 to 48.

44.
$$x = t + \frac{1}{t}, \ y = t - \frac{1}{t}$$
 45. $x = e^{\theta} \left(\theta + \frac{1}{\theta} \right), \ y = e^{-\theta} \left(\theta - \frac{1}{\theta} \right)$

46.
$$x = 3\cos\theta - 2\cos^3\theta$$
, $y = 3\sin\theta - 2\sin^3\theta$.

47.
$$\sin x = \frac{2t}{1+t^2}$$
, $\tan y = \frac{2t}{1-t^2}$.

48.
$$x = \frac{1 + \log t}{t^2}$$
, $y = \frac{3 + 2 \log t}{t}$.

49. If
$$x = e^{\cos 2t}$$
 and $y = e^{\sin 2t}$, prove that $\frac{dy}{dx} = \frac{-y \log x}{x \log y}$.

50. If
$$x = a\sin 2t \ (1 + \cos 2t)$$
 and $y = b \cos 2t \ (1 - \cos 2t)$, show that $\left(\frac{dy}{dx}\right)_{\text{at } t = \frac{\pi}{4}} = \frac{b}{a}$.

51. If
$$x = 3\sin t - \sin 3t$$
, $y = 3\cos t - \cos 3t$, find $\frac{dy}{dx}$ at $t = \frac{\pi}{3}$.

- **52.** Differentiate $\frac{x}{\sin x}$ w.r.t. $\sin x$.
- 53. Differentiate $\tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right)$ w.r.t. $\tan^{-1} x$ when $x \neq 0$.

Find $\frac{dy}{dx}$ when x and y are connected by the relation given in each of the Exercises 54 to 57.

54.
$$\sin(xy) + \frac{x}{y} = x^2 - y$$

55.
$$\sec(x + y) = xy$$

56.
$$\tan^{-1}(x^2 + y^2) = a$$

57.
$$(x^2 + y^2)^2 = xy$$

58. If
$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$
, then show that $\frac{dy}{dx} \cdot \frac{dx}{dy} = 1$.

59. If
$$x = e^{\frac{x}{y}}$$
, prove that $\frac{dy}{dx} = \frac{x - y}{x \log x}$.

60. If
$$y^x = e^{y-x}$$
, prove that $\frac{dy}{dx} = \frac{\left(1 + \log y\right)^2}{\log y}$.

61. If
$$y = (\cos x)^{(\cos x)^{(\cos x)}}$$
, show that $\frac{dy}{dx} = \frac{y^2 \tan x}{y \log \cos x - 1}$.

62. If
$$x \sin (a + y) + \sin a \cos (a + y) = 0$$
, prove that $\frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}$.

63. If
$$\sqrt{1-x^2} + \sqrt{1-y^2} = a (x - y)$$
, prove that $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$.

64. If
$$y = \tan^{-1}x$$
, find $\frac{d^2y}{dx^2}$ in terms of y alone.

Verify the Rolle's theorem for each of the functions in Exercises 65 to 69.

65.
$$f(x) = x (x - 1)^2$$
 in [0, 1].

66.
$$f(x) = \sin^4 x + \cos^4 x$$
 in $\left[0, \frac{\pi}{2}\right]$.

67.
$$f(x) = \log(x^2 + 2) - \log 3$$
 in [-1, 1].

68.
$$f(x) = x (x + 3)e^{-x/2}$$
 in [-3, 0].

69.
$$f(x) = \sqrt{4-x^2}$$
 in [-2, 2].

70. Discuss the applicability of Rolle's theorem on the function given by

$$f(x) = \begin{cases} x^2 & 1, & \text{if } 0 < x < 1 \\ 3 & x, & \text{if } 1 < x < 2 \end{cases}.$$

- 71. Find the points on the curve $y = (\cos x 1)$ in $[0, 2\pi]$, where the tangent is parallel to x-axis.
- 72. Using Rolle's theorem, find the point on the curve y = x(x-4), $x \in [0, 4]$, where the tangent is parallel to x-axis.

Verify mean value theorem for each of the functions given Exercises 73 to 76.

73.
$$f(x) = \frac{1}{4x-1}$$
 in [1, 4].

74.
$$f(x) = x^3 - 2x^2 - x + 3$$
 in [0, 1].

75.
$$f(x) = \sin x - \sin 2x$$
 in $[0, \pi]$.

76.
$$f(x) = \sqrt{25 - x^2}$$
 in [1, 5].

- 77. Find a point on the curve $y = (x 3)^2$, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1).
- 78. Using mean value theorem, prove that there is a point on the curve $y = 2x^2 5x + 3$ between the points A(1, 0) and B (2, 1), where tangent is parallel to the chord AB. Also, find that point.

Long Answer (L.A.)

79. Find the values of p and q so that

$$f(x) = \begin{cases} x^2 + 3x + p, & \text{if } x \le 1\\ qx + 2, & \text{if } x > 1 \end{cases}$$

is differentiable at x = 1.

80. If $x^m ext{.} y^n = (x + y)^{m+n}$, prove that

(i)
$$\frac{dy}{dx} = \frac{y}{x}$$
 and (ii) $\frac{d^2y}{dx^2} = 0$.

- **81.** If $x = \sin t$ and $y = \sin pt$, prove that $(1-x^2)\frac{d^2y}{dx^2} x\frac{dy}{dx} + p^2y = 0$.
- **82.** Find $\frac{dy}{dx}$, if $y = x^{tanx} + \sqrt{\frac{x^2 + 1}{2}}$.

Objective Type Questions

Choose the correct answers from the given four options in each of the Exercises 83 to 96.

- 83. If f(x) = 2x and $g(x) = \frac{x^2}{2} + 1$, then which of the following can be a discontinuous function
 - (A) f(x) + g(x)

(B) f(x) - g(x)

 $(C) \quad f(x) \ . \ g(x)$

- (D) $\frac{g(x)}{f(x)}$
- **84.** The function $f(x) = \frac{4 x^2}{4x x^3}$ is
 - (A) discontinuous at only one point
 - (B) discontinuous at exactly two points
 - (C) discontinuous at exactly three points
 - (D) none of these
- **85.** The set of points where the function f given by $f(x) = |2x-1| \sin x$ is differentiable is
 - (A) **R**

(B) $\mathbf{R} - \left\{ \frac{1}{2} \right\}$

(C) $(0, \infty)$

(D) none of these

86. The function $f(x) = \cot x$ is discontinuous on the set

(A) $\{x=n\pi:n\in\mathbf{Z}\}$

(B) $\{x=2n\pi:n\in\mathbf{Z}\}$

(C) $\left\{ x = \left(2n+1\right)\frac{\pi}{2} ; n \in \mathbf{Z} \right\}$

(iv) $\left\{ x = \frac{n\pi}{2} ; n \in \mathbf{Z} \right\}$

87. The function $f(x) = e^{|x|}$ is

(A) continuous everywhere but not differentiable at x = 0

(B) continuous and differentiable everywhere

(C) not continuous at x = 0

(D) none of these.

88. If $f(x) = x^2 \sin \frac{1}{x}$, where $x \ne 0$, then the value of the function f at x = 0, so that the function is continuous at x = 0, is

 $(A) \quad 0$

(B) -1

(C) 1

(D) none of these

89. If $f(x) = \begin{cases} mx+1, & \text{if } x \le \frac{\pi}{2} \\ \sin x + n, & \text{if } x > \frac{\pi}{2} \end{cases}$, is continuous at $x = \frac{\pi}{2}$, then

(A)
$$m = 1, n = 0$$

(B) $m = \frac{n\pi}{2} + 1$

(C)
$$n = \frac{m\pi}{2}$$

(D) $m = n = \frac{\pi}{2}$

90. Let $f(x) = |\sin x|$. Then

(A) f is everywhere differentiable

(B) f is everywhere continuous but not differentiable at $x = n\pi$, $n \in \mathbb{Z}$.

(C) f is everywhere continuous but not differentiable at $x = (2n + 1) \frac{\pi}{2}$, $n \in \mathbb{Z}$.

(D) none of these

91. If $y = \log\left(\frac{1-x^2}{1+x^2}\right)$, then $\frac{dy}{dx}$ is equal to

$$(A) \quad \frac{4x^3}{1-x^4}$$

(B)
$$\frac{-4x}{1-x^4}$$

(C)
$$\frac{1}{4-x^4}$$

(D)
$$\frac{-4x^3}{1-x^4}$$

92. If $y = \sqrt{\sin x + y}$, then $\frac{dy}{dx}$ is equal to

(A)
$$\frac{\cos x}{2y-1}$$

(B)
$$\frac{\cos x}{1-2y}$$

(C)
$$\frac{\sin x}{1 - 2y}$$

(D)
$$\frac{\sin x}{2y-1}$$

93. The derivative of $\cos^{-1}(2x^2 - 1)$ w.r.t. $\cos^{-1}x$ is

(B)
$$\frac{-1}{2\sqrt{1-x^2}}$$

(C)
$$\frac{2}{x}$$

(D)
$$1 - x^2$$

94. If $x = t^2$, $y = t^3$, then $\frac{d^2y}{dx^2}$ is

(A)
$$\frac{3}{2}$$

(B)
$$\frac{3}{4t}$$

(C)
$$\frac{3}{2t}$$

(D)
$$\frac{3}{2t}$$

95. The value of c in Rolle's theorem for the function $f(x) = x^3 - 3x$ in the interval $[0, \sqrt{3}]$ is

(B)
$$-1$$

(C)
$$\frac{3}{2}$$
 (D) $\frac{1}{3}$

- **96.** For the function $f(x) = x + \frac{1}{x}$, $x \in [1, 3]$, the value of c for mean value theorem is
 - (A) 1 (B) $\sqrt{3}$
 - (C) 2 (D) none of these

Fill in the blanks in each of the Exercises 97 to 101:

- **97.** An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.
- **98.** Derivative of x^2 w.r.t. x^3 is _____.
- **99.** If $f(x) = |\cos x|$, then $f'(\frac{\pi}{4}) = \underline{\qquad}$.
- **100.** If $f(x) = |\cos x \sin x|$, then $f'(\frac{\pi}{3}) = \underline{\qquad}$.
- **101.** For the curve \sqrt{x} \sqrt{y} 1, $\frac{dy}{dx}$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$ is ______.

State **True** or **False** for the statements in each of the Exercises 102 to 106.

- **102.** Rolle's theorem is applicable for the function f(x) = |x 1| in [0, 2].
- **103.** If f is continuous on its domain D, then |f| is also continuous on D.
- **104.** The composition of two continuous function is a continuous function.
- **105.** Trigonometric and inverse trigonometric functions are differentiable in their respective domain.
- **106.** If $f \cdot g$ is continuous at x = a, then f and g are separately continuous at x = a.