Inverse Trigonometric Functions Part - 2

ASSERTION AND REASON BASED MCQs

(1 Mark each)

Directions: In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.

- (A) Both A and R are true and R is the correct explanation of A
- (B) Both A and R are true but R is NOT the correct explanation of A
- (C) A is true but R is false
- (D) A is false and R is True

Q. 1. Assertion (A):
$$\sin^{-1} \left(\sin \frac{2\pi}{3} \right) = \frac{2\pi}{3}$$

Reason (R):
$$\sin^{-1}(\sin \theta) = \theta$$
, if $\theta \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

Ans. Option (D) is correct.

Explanation:

The principal value branch of $\sin^{-1}x$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

Let
$$x = \sin \theta \Rightarrow \theta = \sin^{-1} x$$

$$\sin^{-1}(\sin\theta) = \sin^{-1}x = \theta$$

$$\sin^{-1}(\sin \theta) = \theta$$
, if $\theta \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.

Hence R is true.

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right)\neq\frac{2\pi}{3}$$
, since $\frac{2\pi}{3}\notin\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$

Hence A is false

Q. 2. Assertion (A): Range of $\tan^{-1}x$ is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

Reason (R): Domain of $tan^{-1}x$ is R.

Ans. Option (B) is correct.

Explanation: Domain of tan x is the set $\{x : x \in R\}$

and
$$x \neq (2n + 1) \frac{\pi}{2}$$
, $n \in \mathbb{Z}$ and Range is \mathbb{R} .

 \Rightarrow tan x is not defined for odd multiples of $\frac{\pi}{2}$.

If we restrict the domain of tangent function to $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, then it is one-one and onto with its

range as R. Actually tan x restricted to any of the

intervals
$$\left(\frac{-3\pi}{2}, \frac{-\pi}{2}\right), \left(\frac{-\pi}{2}, \frac{\pi}{2}\right), \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$$
 etc., is

bijective and its range is R.

Thus $tan^{-1}x$ can be defined as a function whose domain is R and range could be any of the

intervals
$$\left(\frac{-3\pi}{2}, \frac{-\pi}{2}\right), \left(\frac{-\pi}{2}, \frac{\pi}{2}\right), \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$$
 and soon.

- .. Both A and R are true but R is not correct explanation of A.
- **Q. 3. Assertion (A):** Principal value of $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is $\frac{\pi}{4}$

Reason (R): Principal value of $\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right)$ is $\frac{\pi}{3}$

Ans. Option (C) is correct.

Explanation:

$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \sin^{-1}\left(\sin\frac{\pi}{4}\right)$$
$$= \frac{\pi}{4}$$

$$\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right) = y$$

$$\cot y = \frac{-1}{\sqrt{3}}$$

$$= -\cot\left(\frac{\pi}{3}\right)$$

$$= \cot\left(\pi - \frac{\pi}{3}\right)$$

$$= \cot\left(\frac{2\pi}{3}\right)$$

Hence Assertion is correct and Reason is

Q. 4. Assertion (A): Range of $\cot^{-1} x$ is $(0, \pi)$

Reason (R): Domain of $\tan^{-1} x$ is R.

Ans. Option (B) is correct.

incorrect.

Q. 5. Assertion (A): Principal value of $\cos^{-1}(1)$ is π

Reason (R): Value of cos 0° is 1

Ans. Option (D) is correct.

Explanation: In case of Assertion:

$$\cos^{-1}(1) = y$$

$$\cos y = 1$$

$$\cos y = \cos 0^{\circ} \qquad [\because \cos 0^{\circ} = 1]$$

$$y = 0$$

 \Rightarrow Principal value of $\cos^{-1}(1)$ is 0

Hence Assertion is in correct.

Reason is correct.