Inverse Trigonometric Functions Part - 3

ASSERTION-REASON QUESTIONS

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- Both A and R are true but R is not the correct explanation of A.
- A is true but R is false.
- (d) A is false and R is also false.
- **1. Assertion (A)** : Domain of $f(x) = \sin^{-1} x + \cos x$ is [-1, 1].
 - Reason (R): Domain of a function is the set of all possible values for which function will be defined.
- **2.** Assertion (A): Function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = \sin x$ is not a bijection.
 - (R): A function $f: A \rightarrow B$ is said to be bijection if it is one-one and onto.
- 3. Assertion (A): Principal value of $\tan^{-1}(-\sqrt{3})$ is $-\frac{\pi}{3}$.
 - **Reason** (R): $\tan^{-1}: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ so for any $x \in \mathbb{R}$, $\tan^{-1}(x)$ represent an angle in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- **4.** Assertion (A): $\sin^{-1}(-x) = -\sin^{-1}x$; $x \in [-1, 1]$
 - **Reason** (R): $\sin^{-1}: [-1, 1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is a bijection map.

Answers

- **1.** (a)
- **2.** (a) **3.** (a) **4.** (b)