Matrices **Part - 2**

ASSERTION AND REASON BASED MCQs

(1 Mark each)

Directions: In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.

- (A) Both A and R are true and R is the correct explanation of Λ
- (B) Both A and R are true but R is NOT the correct explanation of A
- (C) A is true but R is false
- (**D**) A is false and R is True
- Q. 1. Assertion (A): If A is a square matrix such that $A^2 = A$, then $(I + A)^2 - 3A = I$

Reason (R): AI = IA = A

Ans. Option (A) is correct.

Explanation: AI = IA = A is true.

$$A^2 = A$$

Hence R is true.
Given
$$A^2 = A$$
,

$$\therefore (I+A)^2 - 3A = I^2 + 2IA + A^2 - 3A$$

$$= I + 2A + A - 3A$$

$$= I$$

Hence A is true.

R is the correct explanation for A.

Q. 2. Assertion (A): $\begin{bmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \end{bmatrix}$ is a scalar matrix.

Reason (R): If all the elements of the principal diagonal are equal, it is called a scalar matrix.

Ans. Option (C) is correct.

Explanation: In a scalar matrix the diagonal elements are equal and the non-diagonal elements are zero. Hence R is false.

A is true since the diagonal elements are equal and the non-diagonal elements are zero.

Q. 3. Assertion (A): $(A + B)^2 \neq A^2 + 2AB + B^2$.

Reason (R): Generally $AB \neq BA$

Ans. Option (A) is correct.

Explanation: For two matrices A and B, generally $AB \neq BA$.

i.e., matrix multiplication is not commutative.

.. R is true

$$(A+B)^{2} = (A+B)(A+B)$$
$$= A^{2} + AB + BA + B^{2}$$
$$\neq A^{2} + 2AB + B^{2}$$

∴ A is true

R is the correct explanation for A.

Q. 4. A and B are two matrices such that both AB and BA are defined.

Assertion (A): $(A + B)(A - B) = A^2 - B^2$

Reason (R): $(A + B)(A - B) = A^2 - AB + BA - B^2$

Ans. Option (D) is correct.

Explanation: For two matrices A and B, even if both AB and BA are defined, generally $AB \neq$ BA.

$$(A + B)(A - B) = A^2 - AB + BA - B^2$$
.

Since $AB \neq BA$, $(A + B)(A - B) \neq A^2 - B^2$.

Hence R is true and A is false.

Q. 5. Let A and B be two symmetric matrices of order 3.

Assertion (A): A(BA) and (AB)A are symmetric matrices.

Reason (**R**): AB is symmetric matrix if matrix multiplication of A with B is commutative.

Ans. Option (B) is correct.

Explanation: Generally (AB)' = B'A'If AB = BA, then (AB)' = (BA)' = A'B' = ABSince (AB)' = AB, AB is a symmetric matrix. Hence R is true.

$$A(BA) = (AB)A = ABA$$

 $(ABA)' = A'B'A' = ABA.$

A(BA) and (AB)A are symmetric matrices. Hence A is true.

But R is not the correct explanation for A.

Q. 6. Assertion (A): If the matrix
$$P = \begin{bmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \\ 3a & 3 & 3 \end{bmatrix}$$
 is a

symmetric matrix, then $a = \frac{-2}{3}$ and $b = \frac{3}{2}$.

Reason (**R**): If *P* is a symmetric matrix, then P' = -P. Ans. Option (**C**) is correct.

Explanation: If P is a symmetric matrix, then P' = P.

Hence R is false.

As P is a symmetric matrix, P' = P

$$\begin{bmatrix} 0 & 3 & 3a \\ 2b & 1 & 3 \\ -2 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \\ 3a & 3 & -1 \end{bmatrix}$$

.. By equality of matrices, $a = \frac{-2}{3}$ and $b = \frac{3}{2}$. Hence A is true.

Q. 7. Assertion (A): If *A* is a symmetric matrix, then *B'AB* is also symmetric.

Reason (R): (ABC)' = C'B'A'

Ans. Option (A) is correct.

Explanation: For three matrices A, B and C, if ABC is defined then (ABC)' = C'B'A'.

Hence R is true.

Given that A is symmetric $\Rightarrow A' = A$ (B'AB)' = B'A'(B')' = B'AB.

Hence A is true.

R is the correct explanation for A.

Q. 8. Assertion (A): If A and B are symmetric matrices, then AB - BA is a skew symmetric matrix

Reason (R): (AB)' = B'A'

Ans. Option (A) is correct.

Explanation: $(AB)' = B'A' \Rightarrow R$ is true.

Given that A and B are symmetric matrices.

$$A' = A$$
 and $B' = B$

$$(AB - BA)' = (AB)' - (BA)'$$

$$= B'A' - A'B' = BA - AB$$

Since
$$(AB - BA)' = -(AB - BA)$$
,

AB - BA is skew symmetric.

Hence A is true.

R is the correct explanation for A.