Algebra of Matrices Part - 3

ASSERTION-REASON QUESTIONS

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false and R is also false.
- **1.** Assertion (A): A matrix $A = \begin{bmatrix} 1 & 2 & 0 & 3 \end{bmatrix}$ is a row matrix of order 1×4 .

Reason (R): A matrix having one row and any number of column is called a row matrix.

- 2. Assertion (A): If $\begin{bmatrix} x^2 4x & x^2 \\ x^2 & x^3 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -x + 2 & 1 \end{bmatrix}$, then the value of x = 1.
 - **Reason** (R): Two matrices $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{m \times n}$ of same order $m \times n$ are equal, if $a_{ij} = b_{ij}$ for all i = 1, 2, 3,m and j = 1, 2, 3, n.
- 3. Assertion (A): If A and B are symmetric matrices of same order then AB BA is also a symmetric matrix.
 - **Reason** (R): Any square matrix A is said to be skew-symmetric matrix if $A = -A^T$, where A^T is the transpose of matrix A.

Answers

- **1.** (a)
- **2.** (a)
- 3. (d)