Chapter - 2

Polynomials

(Assertion and Reasoning Questions)

In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- **(b)** Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- **(c)** Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- **Q.1.** Assertion (A): $x^2+7x+12$ has no real zeroes.

Reason (R): A quadratic polynomial can have at the most two zeroes.

Q.2. Assertion (A) : If the sum of the zeroes of the quadratic polynomial x^2 -2kx+8 is 2 then value of k is 1.

Reason (R): Sum of zeroes of a quadratic polynomial ax²+bx+c is -b/a

Q.3. Assertion (A): $P(x) = 4x^3-x^2+5x^4+3x-2$ is a polynomial of degree 3.

Reason (R): The highest power of x in the polynomial P(x) is the degree of the polynomial.

Q.4. Assertion (A): x^3+x has only one real zero.

Reason (R): A polynomial of nth degree must have n real zeroes.

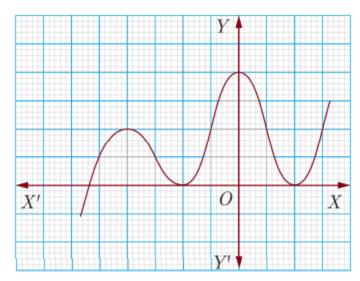
Q.5. Assertion (A) : If one zero of polynomial $p(x) = (k^2+4)x^2+13x+4k$ is reciprocal of the other, then k=2.

Reason (R): If (x-a) is a factor of p(x), then p(a) = 0 i.e., a is a zero of p(x).

Q.6. Assertion (A): x^2+4x+5 has two zeroes.

Reason (R): A quadratic polynomial can have at the most two zeroes.

Q.7. Assertion (A): Degree of a zero polynomial is not defined.


Reason (R): Degree of a non-zero constant polynomial is 0.

Q.8. Assertion (A) : If the product of the zeroes of the quadratic polynomial $x^2+3x+5k$ is -10 then value of k is -2.

Reason (R): Sum of zeroes of a quadratic polynomial ax²+bx+c is -b/a

Q.9. Assertion (A): The graph y=f(x) is shown in figure, for the polynomial f(x). The number of zeroes of f(x) is 3.

Reason (R): The number of zero of the polynomial f(x) is the number of point of which f(x) cuts or touches the axes.

Q.10. Assertion (A): $3-2\sqrt{5}$ is one zero of the quadratic polynomial then other zero will be $3+2\sqrt{5}$.

Reason (R): Irrational zeros (roots) always occurs in pairs.

-x-x-x-

ANSWER KEY

Q.1: (d) **Q.2**: (a)

Q.3: (d) **Q.4**: (c)

Q.8: (b)

Q.5: (b) **Q.6**: (d)

Q.7: (b)

Q.9: (c) **Q.10**: (a)