Chapter - 5

Arithmetic Progression

(Assertion and Reasoning Questions)

In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- **(b)** Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.

Q.1. Assertion (A): Let the positive numbers a,b,c be in A.P., then $\frac{1}{bc}$, $\frac{1}{ac}$, $\frac{1}{ab}$ are also in A.P.

Reason (R): If each term of an A.P. is divided by abc, then the resulting sequence is also in A.P.

Q.2. Assertion (A): Common difference of the AP -5, -1, 3, 7, is 4.

Reason (R): Common difference of the AP a, a + d, a + 2d,.....is given by d = 2nd term-1st term.

Q.3. Assertion (A): Sum of first 10 terms of the arithmetic progression -0.5, -1.0, -1.5, is 27.5

Reason (R): Sum of n terms of an A.P. is given as $S_n = \frac{n}{2}[2a + (n-1)d]$ where a = first term, d = common difference.

Q.4. Assertion (A): $a_n - a_{n-1}$ is not independent of n then the given sequence is an AP.

Reason (R): Common difference $d = a_n - a_{n-1}$ is constant or independent of n.

Q.5. Assertion (A): The sum of the series with the nth term. $t_n = (9-5n)$ is (465), when no. of terms n = 15.

Reason (R): Given series is in A.P. and sum of n terms of an A.P. is

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Q.6. Assertion (A) : Three consecutive terms 2k + 1, 3k + 3 and 5k - 1 form an AP than k is equal to 6.

Reason (R): In an AP a, a + d, a + 2d,...., the sum to n terms of the AP be

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Q.7. Assertion (A): If nth term of an A.P. is 7 – 4n, then its common differences is -4.

Reason (R) : Common difference of an A.P. is given by $d=a_{n+1}-a_n$.

Q.8. Assertion (A): The sum of the first n terms of an AP is given by

$$S_n = 3n^2 - 4n$$
. Then its n th term $a_n = 6n - 7$.

Reason (R): n th term of an AP, whose sum to n terms is S_n , is given by $a_n = S_n - S_{n-1}$

Q.9. Assertion (A): If S_n is the sum of the first n terms of an A.P., then its n^{th} term a_n is given by $a_n = S_n - S_{n-1}$.

Reason (R): The 10th term of the A.P. 5, 8, 11, 14, is 35.

Q.10. Assertion (A): Common difference of an AP in which $a_{21} - a_7 = 84$ is 14.

Reason (R): n th term of AP is given by $a_n = a + (n-1)d$

Q.11. Assertion (A): Sum of first hundred even natural numbers divisible by 5 is 500.

Reason (R): Sum of first n-terms of an A.P. is given by $S_n = \frac{n}{2}[a+\ell]$ where l = last term.

Q.12. Assertion (A): Arithmetic between 8 and 12 is 10.

Reason (R): Arithmetic between two numbers 'a ' and 'b' is given as $\frac{a+b}{2}$.

-X-X-X-

ANSWER KEY

Q.1: (a)

Q.2: (a)

Common difference, d = -1 - 1 (-5) = 4 So, both A and R are correct and R explains A.

Q.3: (a)

Both are correct. Reason is the correct reasoning for Assertion.

Assertion,

$$S_{10} = \frac{10}{2} [2(-0.5) + (10 - 1)(-0.5)]$$
$$= 5[-1 - 4.5]$$
$$= 5(-5.5) = 27.5$$

Q.4: (d)

Assertion is incorrect.

We have, common difference of an AP $d=a_n-a_{n-1}$ is independent of n or constant. So, A is correct but R is incorrect.

Q.5: (d)

Q.6: (b)

For
$$2k+1, 3k+3$$
 and $5k-1$ to form an AP
 $(3k+3)-(2k+1) = (5k-1)-(3k+3)$
 $k+2 = 2k-4$
 $2+4 = 2k-k = k$
 $k=6$

So, both A and R are correct but R does not explain A

Q.7: (a)

Both are correct. Reason is the correct explanation.

Assertion,

$$a_n = 7 - 4n$$

 $d = a_{n+1} - a_n$
 $= 7 - 4(n+1) - (7 - 4n)$
 $= 7 - 4n - 4 - 7 + 4n = -4$

Q.8: (a)

n th term of an AP be

$$a_n = S_n - S_{n-1}$$

$$a_n = 3n^2 - 4n - 3(n-1)^2 + 4(n-1)$$

$$a_n = 6n - 7$$

So, both A and R are correct and R explains A.

$$a_{10} = a + 9d$$

= $5 + 9(3) = 5 + 27 = 32$

Q.10: (d)

Assertion is incorrect.

We have,
$$a_n = a + (n-1)d$$

$$a_{21} - a_7 = \{a + (21-1)d\}$$

$$-\{a + (7-1)d\} = 84$$

$$a + 20d - a - 6d = 84$$

$$14d = 84$$

$$d = \frac{18}{14} = 6$$

$$d = 6$$

So, A is incorrect but R is correct.

Q.11: (d)

Assertion is incorrect.

Assertion: Even natural numbers divisible by 5 are 10, 20, 30, 40,

They form an A.P. with,

$$a = 10, d = 10$$

 $S_{100} = \frac{100}{2} [2(10) + 99(10)] = 50500$

Reason is correct.

Q.12: (a)

Both are correct and Reason is the correct explanation for the Assertion.