Chapter 21. Solids [Surface Area and Volume of 3-D Solids]

Exercise 21(A)

Solution 1:

Let the length, breadth and height of rectangular solid are 5x, 4x, 2x.

Total surface area = 1216 cm²

$$2(5x \cdot 4x + 4x \cdot 2x + 2x \cdot 5x) = 1216$$
$$20x^{2} + 8x^{2} + 10x^{2} = 608$$
$$38x^{2} = 608$$
$$x^{2} = \frac{608}{38} = 16$$
$$x = 4$$

Therefore, the length, breadth and height of rectangular solid are $5\times4=20~\text{cm}$, $4\times4=16~\text{cm}$, $2\times4=8~\text{cm}$.

Solution 2:

Let a be the one edge of a cube.

Volume $= a^3$

$$729 = a^3$$

$$9^3 = a^3$$

$$9 = a$$

$$a = 9 \, \mathrm{cm}$$

Total surface area= $6\alpha^2 = 6 \times 9^2 = 486 \text{ cm}^2$

Solution 3:

Volume of cinema hall = $100 \times 60 \times 15 = 90000 \,\text{m}^3$

150 m³requires= 1 person

$$90000 \,\mathrm{m}^3 \,\mathrm{requires} = \frac{1}{150} \times 90000 = 600 \,\mathrm{persons}$$

Therefore, 600 persons can sit in the hall.

Solution 4:

Let h be height of the room.

1 person requires 16 m 3

75 person requires $75 \times 16 \text{ m}^3 = 1200 \text{ m}^3$

Volume of room is $1200 \, \mathrm{m}^3$

$$1200 = 25 \times 9.6 \times h$$

$$h = \frac{1200}{25 \times 9.6}$$

$$h = 5 \text{ m}$$

Solution 5:

Volume of melted single cube = $3^3 + 4^3 + 5^3$ cm³

$$= 27 + 64 + 125 \text{cm}^3$$

$$= 216 \text{ cm}^3$$

Let a be the edge of the new cube.

Volume= 216 cm3

$$a^3 = 216$$

$$a^3 = 6^3$$

$$a = 6 \text{ cm}$$

Therefore, 6 cm is the edge of cube.

Solution 6:

Volume of melted single cube $x^3 + 8^3 + 10^3$ cm³

$$= x^3 + 512 + 1000 \,\mathrm{cm}^3$$

$$= x^3 + 1512 \text{ cm}^3$$

Given that 12 cm is edge of the single cube.

$$12^3 = x^3 + 1512 \text{ cm}^3$$

$$x^3 = 12^3 - 1512$$

$$x^3 = 1728 - 1512$$

$$x^3 = 216$$

$$x^3 = 6^3$$

$$x = 6$$
 cm

Solution 7:

Let the side of a cube be 'a' units.

Total surface area of one cube $=6a^2$

Total surface area of 3 cubes = $3 \times 6a^2 = 18a^2$

After joining 3 cubes in a row, length of Cuboid =3a

Breadth and height of cuboid = a

Total surface area of cuboid = $2(3a^2 + a^2 + 3a^2) = 14a^2$

Ratio of total surface area of cuboid to the total surface area of 3 cubes = $\frac{14a^2}{18a^2} = \frac{7}{9}$

Solution 8:

Let the length and breadth of the room is 5x and 3x respectively.

Given that the four walls of a room at 75paise per square met Rs. 240.

Thus.

$$240 = Area \times 0.75$$

Area =
$$\frac{240}{0.75}$$

Area =
$$\frac{24000}{75}$$

$$Area = 320m$$

$$Area = 2 \times Height (Length + Breadth)$$

$$320=2 \times 5(5x+3x)$$

$$32 = 8x$$

$$x = 4$$

Length =
$$5x$$

$$= 5(4)m$$

$$= 3(4)m$$

$$=12m$$

Solution 9:

The area of the playground is 3650 m^2 and the gravels are 1.2 cm deep. Therefore the total volume to be covered will be:

$$3650 \times 0.012 = 43.8 \text{ m}^3.$$

Since the cost of per cubic meter is Rs. 6.40, therefore the total cost will be: $43.8 \times Rs.6.40 = Rs.280.32$

Solution 10:

We know that

$$1 mm = \frac{1}{10} cm$$

$$8 mm = \frac{8}{10} cm$$

 $Volume = Base area \times Height$

$$\Rightarrow 2880 \text{ cm}^3 = x \times x \times \frac{8}{10}$$

$$\Rightarrow 2880 \times \frac{10}{8} = x^2$$

$$\Rightarrow x^2 = 3600$$

$$\Rightarrow x = 60 \text{ cm}$$

Solution 11:

External volume of the box= $27 \times 19 \times 11 \text{ cm}^3 = 5643 \text{ cm}^3$

Since, external dimensions are 27 cm, 19 cm, 11 cm; thickness of the wood is 1.5 cm.

... Internal dimensions

=
$$(27 - 2 \times 1.5)$$
 cm, $(19 - 2 \times 1.5)$ cm, $(11 - 2 \times 1.5)$ cm
= 24 cm, 16 cm, 8 cm

Hence, internal volume of box= $(24 \times 16 \times 8)$ cm³ = 3072 cm³

(i)

Volume of wood in the box= $5643 \text{ cm}^3 - 3072 \text{ cm}^3 = 2571 \text{ cm}^3$

(ii)

Cost of wood = Rs 1.20 × 2571 = Rs 3085.2

(iii)

Vol. of 4 cm cube= $4^3 = 64 \text{ cm}^3$

Number of 4 cm cubes that could be placed into the box

$$=\frac{3072}{64}=48$$

Solution 12:

Area of sheet= Surface area of the tank

⇒Length of the sheet× its width=Area of 4 walls of the tank +Area of its base

$$\Rightarrow$$
Length of the sheet $\times 2.5 \text{ m}=2(20+12)\times 8\text{ m}^2 + 20\times 12\text{ m}^2$

⇒Length of the sheet= 300.8 m

Cost of the sheet = 300.8 × Rs 12.50 = Rs 3760

Solution 13:

Let exterior height is h cm. Then interior dimensions are 78-3=75, 19-3=16 and h-3 (subtract two thicknesses of wood). Interior volume = $75 \times 16 \times (h-3)$ which must = $15 \times 16 \times (h-3)$ which must = $15 \times 16 \times (h-3)$

= 15000 cm^3

(1 dm = 10cm, 1 cu dm = 10^3 cm^3).

$$15000 \, \text{cm}^3 = 75 \times 16 \times (\text{h-3})$$

$$\Rightarrow$$
h-3 = 15000/(75x16) = 12.5 cm \Rightarrow h = 15.5 cm.

Solution 14:

(i)

If the side of the cube= a cm

The length of its diagonal= $a\sqrt{3}$ cm

And,

$$\left(a\sqrt{3}\right)^2 = 1875$$
$$a = 25 \text{ cm}$$

(ii)

Total surface area of the cube= 622

$$=6(25)^2 = 3750 \, \text{cm}^2$$

Solution 15:

Given that the volume of the iron in the tube 192 cm³

Let the thickness of the tube = X CM

 \therefore Side of the external square=(5 + 2x) cm

: Ext. vol. of the tube - its internal vol.= volume of iron in the tube, we have,

$$(5+2x)(5+2x) \times 8 - 5 \times 5 \times 8 = 192$$

$$(25+4x^2+20x) \times 8 - 200 = 192$$

$$200+32x^2+160x-200 = 192$$

$$32x^2+160x-192 = 0$$

$$x^2+5x-6 = 0$$

$$x^2+6x-x-6 = 0$$

$$x(x+6)-(x+6) = 0$$

$$(x+6)(x-1) = 0$$

$$x=1$$

Therefore, thickness is 1 cm.

Solution 16:

Let I be the length of the edge of each cube.

The length of the resulting cuboid= $4 \times l = 4 l \text{ cm}$

Let width (b) = I cm and its height (h)= I cm

. The total surface area of the resulting cuboid

$$= 2(I \times b + b \times h + h \times l)$$

$$648 = 2(4l \times l + l \times l + l \times 4l)$$

$$4l^{2} + l^{2} + 4l^{2} = 324$$

$$9l^{2} = 324$$

$$l^{2} = 36$$

$$l = 6 \text{ cm}$$

Therefore, the length of each cube is 6 cm.

$$\frac{\text{Surface area of the resulting cuboid}}{\text{Surface area of cube}} = \frac{648}{6l^2}$$

$$\frac{\text{Surface area of the resulting cuboid}}{\text{Surface area of cube}} = \frac{648}{6(6)^2}$$

$$\frac{\text{Surface area of the resulting cuboid}}{\text{Surface area of cube}} = \frac{648}{216} = \frac{3}{1} = 3:1$$

Exercise 21(B)

Solution 1:

The given figure can be divided into two cuboids of dimensions 6 cm, 4 cm, 3 cm, and 9 cm respectively. Hence, volume of solid

$$=9\times4\times3+6\times4\times3$$

$$=108+72$$

$$= 180 \, \text{cm}^3$$

Solution 2:

Area of cross section of the solid = $\frac{1}{2}(1.5 + 3) \times (40)$ cm²

$$=\frac{1}{2}(4.5)\times(40)$$
cm²

$$= 90 \, \text{cm}^2$$

Volume of solid = Area of cross section × Length

$$= 90 \times 15 \text{ cm}^3$$

$$= 1350 \, \text{cm}^3$$

=
$$1350000 \, \text{liters} \, \left[\text{Since } 1 \, \text{cm}^3 = 1000 \, \text{lt} \right]$$

Solution 3:

The cross section of a tunnel is of the trapezium shaped ABCD in which AB = 7m, CD =

5m and AM = BN. The height is 2.4 m and its length is 40m.

(i)

AM = BN =
$$\frac{7-5}{2}$$
 = $\frac{2}{2}$ = 1 m

∴ In ∆ADM,

$$AD^{2} = AM^{2} + DM^{2}$$
 [Using pythagoras theorem]

$$= 1^{2} + (2.4)^{2}$$

$$= 1 + 5.76$$

$$= 6.76$$

$$= (2.6)^{2}$$

$$AD = 2.6 \text{ m}$$

Perimeter of the cross-section of the tunnel=(7 + 2.6 + 2.6 + 5)m=17.2m

Length=40 m

.: Internal surface area of the tunnel (except floor)

=
$$(17.2 \times 40 - 40 \times 7)$$
m²
= $(688 - 280)$ m²
= 408 m²

Rate of painting=Rs 5 perm²

Hence, total cost of painting=Rs 5×408=Rs 2040

(ii)

Area of floor of tunnel $l \times b = 40 \times 7 = 280 \,\text{m}^2$

Rate of cost of paving = Rs 18 per m²

Total cost= $280 \times 18 = Rs5040$

Solution 4:

The rate of speed =
$$5 \frac{m}{s} = 500 \frac{cm}{s}$$

Volume of water flowing per sec = $3.2 \times 500 \text{ cm}^3 = 1600 \text{ cm}^3$

(ii)

Vol. of water flowing per min =
$$1600 \times 60 \text{ cm}^3 = 96000 \text{ cm}^3$$

Therefore, Vol. of water flowing per min= =
$$\frac{96000}{1000}$$
 = 96 litres

Solution 5:

Vol. of water flowing in 1 sec=
$$=\frac{1500 \times 1000}{5 \times 60} = 5000 \text{ cm}^3$$

Vol. of water flowing = area of cross section × speed of water

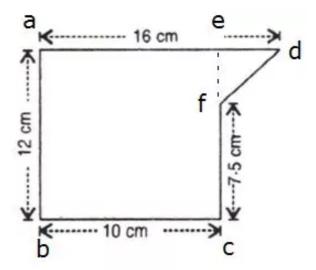
$$5000 \frac{cm^3}{s} = 2 cm^2 \times speed of water$$

⇒ speed of water =
$$\frac{5000}{2} \frac{cm}{s}$$

⇒ speed of water =
$$2500 \frac{cm}{s}$$

⇒ speed of water = 25
$$\frac{m}{s}$$

Solution 6:



(i)

Area of total cross section= Area of rectangle abce+ area of Adef

$$=(12\times10)+\frac{1}{2}(16-10)(12-7.5)$$

$$= 120 + \frac{1}{2}(6)(4.5) \text{ cm}^2$$

$$= 120 + 13.5 \text{ cm}^2$$

$$= 133.5 \, \text{cm}^2$$

(ii)

The volume of the piece of metal in cubic centimeters = Area of total cross section xlength

$$=133.5 \, \text{cm}^2 \times 400 \, \text{cm} = 53400 \, \text{cm}^3$$

1 cubic centimetre of the metal weighs 6.6 g

$$53400 \text{ cm}^3 \text{ of the metal weighs } 6.6 \times 53400 \text{ g} = \frac{6.6 \times 53400}{1000} \text{ kg}$$

$$=352.440$$
kg

The weight of the piece of metal to the nearest Kg is $352\,\mathrm{Kg}$.

Solution 7:

Vol. of rectangular tank= $80 \times 60 \times 60 \text{ cm}^3 = 288000 \text{ cm}^3$

One liter= 1000 cm3

Vol. of water flowing in per sec=

$$1.5 \text{ cm}^2 \times 3.2 \frac{\text{m}}{\text{s}} = 1.5 \text{ cm}^2 \times \frac{(3.2 \times 100) \text{ cm}}{\text{s}}$$
$$= 480 \frac{\text{cm}^3}{\text{s}}$$

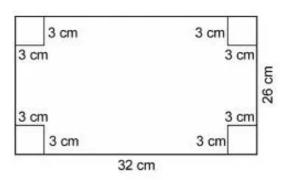
Vol. of water flowing in 1 min= $480 \times 60 = 28800 \text{ cm}^3$

Hence.

28800 cm³ can be filled = 1 min

$$288000 \text{ cm}^3 \text{ can be filled} = \left(\frac{1}{28800} \times 288000\right) \text{min} = 10 \text{ min}$$

Solution 8:



Length of sheet=32 cm

Breadth of sheet=26 cm

Side of each square=3cm

.. Inner length=32-2×3=32-6=26 cm

Inner breadth= $26 - 2 \times 3 = 26 - 6 = 20 \text{ cm}$

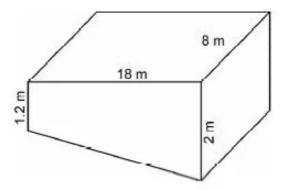
By folding the sheet, the length of the container=26 cm

Breadth of the container= 20 cm and height of the container= 3 cm

 \therefore Vol. of the container= $1 \times b \times b$

=26cm×20cm×3cm=1560 cm³

Solution 9:



Length of pool= 18 m

Breadth of pool= 8 m

Height of one side= 2m

Height on second side=1.2 m

$$\therefore \text{ Volume of pool} = 18 \times 8 \times \frac{(2+1.2)}{2} \text{ m}^3$$

$$=\frac{18\times8\times3.2}{2}$$
$$=230.4\text{m}^3$$

Solution 10:

Consider the box 1

Thus, the dimensions of box 1 are: 60 cm, 40 cm and 30 cm.

Therefore, the volume of box1=60×40×30=72000 cm³
Surface area of box 1=2(ℓ b+bh+ ℓ h)
Since the box is open at the bottom and from the give figure, we have,
Surface area of box 1=40×40+40×30+40×30+2(60×30)
=1600+1200+1200+3600
=7600 cm³

Consider the box 2

Thus, the dimensions of box 2 are: 40 cm, 30 cm and 30 cm.

Therefore, the volume of box2= $40 \times 30 \times 30 = 36000 \text{ cm}^3$ Surface area of box 2= $2(\ell b + bh + \ell h)$ Since the box is open at the bottom and from the give figure, we have, Surface area of box 2= $40 \times 30 + 40 \times 30 + 2(30 \times 30)$ = 1200 + 1200 + 1800= 4200 cm^2

Thus, the dimensions of box 2 are: 40 cm, 30 cm and 20 cm.

```
Therefore, the volume of box3 = 40 \times 30 \times 20 = 24000 \text{ cm}^3

Surface area of box 3 = 2(\ell b + b h + \ell h)

Since the box is open at the bottom

and from the given figure, we have

Surface area of box 3=40 \times 30 + 40 \times 20 + 2(30 \times 20)

= 1200 + 800 + 1200

= 3200 \text{ cm}^2
```

Total volume of the box=volume of box 1+volume of box 2

+volume of box 3

=72000+36000+24000

 $= 132000 \text{ cm}^3$

Similarly, total surface area of the box

=surface area of box 1

+surface area of box 2

+surface area of box 3

=7600+4200+3200

 $=15000 \text{ cm}^2$

Exercise 21(C)

Solution 1:

The perimeter of a cube formula is, Perimeter = 4a where (a = length)

Given that perimeter of the face of the cube is 32 cm

$$\Rightarrow$$
 4a = 32 cm

$$\Rightarrow a = \frac{32}{4}$$

$$\Rightarrow a = 8 cm$$

We know that surface area of a cube with side 'a' = $6a^2$

Thus, Surface area =
$$6 \times 8^2 = 6 \times 64 = 384$$
 cm²

We know that the volume of a cube with side 'a' = a^3

Thus, volume = $8^3 = 512 \text{ cm}^3$

Solution 2:

Given dimensions of the auditorium are: $40 \text{ m} \times 30 \text{ m} \times 12 \text{ m}$ The area of the floor = 40×30

Also given that each student requires 1.2 m² of the floor area.

Thus, Maximum number of students =
$$\frac{40 \times 30}{1.2}$$
 = 1000

Volume of the auditorium

$$= 40 \times 30 \times 12 \text{ m}^3$$

= Volume of air available for 1000 students

Therefore, Air available for each student =
$$\frac{40 \times 30 \times 12}{1000}$$
 m³ = 14.4 m³

Solution 3:

Length of longest rod=Length of the diagonal of the box

$$17 = \sqrt{12^2 + x^2 + 9^2}$$

$$17^2 = 12^2 + x^2 + 9^2$$

$$x^2 = 17^2 - 12^2 - 9^2$$

$$x^2 = 289 - 144 - 81$$

$$x^2 = 64$$

$$x = 8 \text{ cm}$$

Solution 4:

(i)

No. of cube which can be placed along length = $\frac{30}{3}$ = 10.

No. of cube along the breadth = $\frac{24}{3}$ = 8

No. of cubes along the height = $\frac{15}{3}$ = 5.

.. The total no. of cubes placed = 10 × 8 × 5 = 400

(ii)

Cubes along length =
$$\frac{30}{4}$$
 = 7.5 = 7

Cubes along width = $\frac{24}{4}$ = 6 and cubes along height = $\frac{15}{4}$ = 3.75 = 3

.: The total no. of cubes placed = $7 \times 6 \times 3 = 126$

(iii)

Cubes along length =
$$\frac{30}{5}$$
 = 6

Cubes along width= $\frac{24}{5}$ = 4.5 = 4 and cubes along height= $\frac{15}{5}$ = 3

 \therefore The total no. of cubes placed = $6 \times 4 \times 3 = 72$

Solution 5:

Vol. of the tank= vol. of earth spread

$$4 \times 6^3 \,\text{m}^3 = (112 \times 62 - 4 \times 6^2) \,\text{m}^2 \times \text{Rise in level}$$

Rise in level =
$$\frac{4 \times 6^{3}}{112 \times 62 - 4 \times 6^{2}}$$
$$= \frac{864}{6800}$$
$$= 0.127 \text{ m}$$
$$= 12.7 \text{ cm}$$

Solution 6:

Let a be the side of the cube.

Side of the new cube=a+3

Volume of the new cube=a3 +2457

That is,
$$(a+3)^3 = a^3 + 2457$$

$$\Rightarrow a^3 + 3 \times a \times 3(a + 3) + 3^3 = a^3 + 2457$$

$$\Rightarrow$$
 9a² + 27a + 27 = 2457

$$\Rightarrow 9a^2 + 27a - 2430 = 0$$

$$\Rightarrow a^2 + 3a - 270 = 0$$

$$\Rightarrow a^2 + 18a - 15a - 270 = 0$$

$$\Rightarrow a(a+18)-15(a+18)=0$$

$$\Rightarrow (a-15)(a+18) = 0$$

$$\Rightarrow a - 15 = 0 \text{ or } a + 18 = 0$$

$$\Rightarrow a = 15 \text{ or } a = -18$$

Volume of the cube whose side is 15 cm = 15^3 = 3375 cm³ Suppose the length of the given cube is reduced by 20%.

Thus new side
$$a_{new} = a - \frac{20}{100} \times a$$

$$= a \left(1 - \frac{1}{5}\right)$$

$$= \frac{4}{5} \times 15$$

$$= 12 \text{ cm}$$

Volume of the new cube whose side is 12 cm= 12^3 = 1728 cm³ Decrease in volume=3375-1728=1647 cm³

Solution 7:

The dimensions of rectangular tank:30 cm \times 20 cm \times 12 cm Side of the cube=10 cm

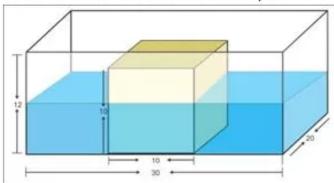
Volume of the cube $=10^3 = 1000 \text{ cm}^3$

The height of the water in the tank is 6 cm.

Volume of the cube till $6 \text{cm} = 10 \times 10 \times 6 = 600 \text{cm}^3$

Hence when the cube is placed in the tank,

then the volume of the water increases by 600 cm3.



The surface area of the water level is 30 cm×20 cm=600 cm²
Out of this area, let us subtract the surface area of the cube.
Thus, the surface area of the shaded part in the above figure is 500 cm²

shaded part in the above figure is 500 cm²

The displaced water is spreaded out

in 500 cm² to a height of 'h' cm.

And hence the volume of the water displaced is equal to the volume

of the part of the cube in water.

Thus, we have,

500×h=600 cm3

$$\Rightarrow h = \frac{600}{500} \text{ cm}$$

Thus, now the level of the water in the tank

is = 6+1.2=7.2 cm

Remaining height of the water level,

so that the metal cube is just

submerged in the water =10-7.2=2.8 cm

Thus the volume of the water that must be poured in the tank so that the metal

cube is just submerged in the water=2.8×500=1400 cm³

We know that 1000 cc=1 litre

Thus, the required volume of water= $\frac{1400}{1000}$ = 1.4 litres.

Solution 8:

The dimensions of a solid cuboid are:72 cm,30 cm,75 cm

Volume of the cuboid=72 cm×30 cm×75 cm=162000 cm3

Side of a cube=6 cm

Volume of a cube=63 = 216 cm3

The number of cubes = $\frac{162000}{216}$ = 750

The surface area of a cube= $6a^2 = 6 \times 6^2 = 216 \text{ cm}^2$

Total surface area of 750 cubes=750×216=162000 cm2

Total surface area in square metres= $\frac{162000}{10000}$

=16.2 square metres

Rate of polishing the surface per square metre=Rs.150

Total cost of polishing the surfaces=150×16.2=Rs.2430

Solution 9:

The dimensions of a car petrol tank are:50 cm × 32 cm × 24 cm

Volume of the tank=38400 cm3

We know that 1000 cm3 = 1 litre

Thus volume of the tank= $\frac{38400}{1000}$ = 38.4 litres

The average consumption of the car=15 Km/litre

Thus, the total distance that can be

covered by the car=38.4×15=576 Km

Solution 10:

Given dimensions of a rectangular

box are in the ratio 4:2:3

Therefore, the total surface area of

the box=2[$4x \times 2x + 2x \times 3x + 4x \times 3x$]

$$= 2(8x^2 + 6x^2 + 12x^2)$$
 m²

Difference between cost of covering the box

with paper at Rs.12 per m² and with paper

at Rs.13.50 per $m^2 = Rs.1,248$

$$\Rightarrow 52x^{2}[13.5-12] = 1248$$

$$\Rightarrow$$
 52××²×1.5 = 1248

$$\Rightarrow$$
 78××2 = 1248

$$\Rightarrow x^2 = \frac{1248}{78}$$

$$\Rightarrow \times^2 = 16$$

 $\Rightarrow x = 4$ [Length, width and height cannot be negative]

Thus, the dimensions of the rectangular

box are: 4×4 m, 2×4 m, 3×4 m

Thus, the dimensions are 16 m, 8 m and 12 m.