Chapter 26. Co-ordinate Geometry

Exercise 26(A)

Solution 1:

(i)
$$y = \frac{4}{3}x - 7$$

Dependent variable is γ

Independent variable is x

(ii)
$$x = 9y + 4$$

Dependent variable is x

Independent variable is y

(iii)
$$x = \frac{5y + 3}{2}$$

Dependent variable is x

Independent variable is y

(iv)
$$y = \frac{1}{7} (6x + 5)$$

Dependent variable is y

Independent variable is x

Solution 2:

Let us take the point as

$$A(8,7) \cdot B(3,6) \cdot C(0,4) \cdot D(0,-4) \cdot E(3,-2) \cdot F(-2,5) \cdot G(-3,0) \cdot H(5,0) \cdot I(-4,-3)$$

On the graph paper, let us draw the co-ordinate axes XOX' and YOY' intersecting at the origin O. With proper scale, mark the numbers on the two co-ordinate axes.

Now for the point A(8,7)

Step I

Starting from origin O, move 8 units along the positive direction of X axis, to the right of the origin O Step II

Now from there, move 7 units up and place a dot at the point reached. Label this point as A(8,7)

Similarly plotting the other points

$$B(3,6) \cdot C(0,4) \cdot D(0,-4) \cdot E(3,-2) \cdot F(-2,5) \cdot G(-3,0) \cdot H(5,0) \cdot I(-4,-3)$$

Solution 3:

Two ordered pairs are equal.

⇒Therefore their first components are equal and their second components too are separately equal.

$$(i)(x-1,y+3)=(4,4)$$

$$(x-1,y+3)=(4,4)$$

$$x-1=4$$
 and $y+3=4$

$$x = 5$$
 and $y = 1$

$$(ii)(3x+1,2y-7)=(9,-9)$$

$$(3x+1,2y-7)=(9,-9)$$

$$3x+1=9$$
 and $2y-7=-9$

$$3x = 8 \text{ and } 2y = -2$$

$$x = \frac{8}{3} \text{ and } y = -1$$

(iii)
$$(5x-3y,y-3x) = (4,-4)$$

$$(5x-3y,y-3x)=(4,-4)$$

$$5x - 3y = 4...$$
 (A) and $y - 3x = -4...$ (B)

Now multiplying the equation (B) by 3, we get

$$3y - 9x = -12....$$
 (C)

Now adding both the equations (A) and (C), we get

$$(5x - 3y) + (3y - 9x) = (4 + (-12))$$

 $-4x = -8$
 $x = 2$

Putting the value of x in the equation (B), we get

$$y - 3x = -4$$

$$\Rightarrow$$
 y = 3x - 4

$$\Rightarrow$$
 y = 3(2) - 4

$$\Rightarrow$$
 y = 2

Therefore we get,

$$x = 2, y = 2$$

Solution 4:

(i) The abscissa is 2

Now using the given graph the co-ordinate of the given point A is given by (2,2)

(ii) The ordinate is 0

Now using the given graph the co-ordinate of the given point B is given by (5,0)

(iii) The ordinate is 3

Now using the given graph the co-ordinate of the given point C and E is given by (-4,3)& (6,3)

(iv) The ordinate is -4

Now using the given graph the co-ordinate of the given point D is given by (2,-4)

(v) The abscissa is 5

Now using the given graph the co-ordinate of the given point H, B and G is given by (5,5),(5,0) & (5,-3)

(vi)The abscissa is equal to the ordinate.

Now using the given graph the co-ordinate of the given point I,A & H is given by (4,4),(2,2) & (5,5)

(vii)The ordinate is half of the abscissa

Now using the given graph the co-ordinate of the given point E is given by (6,3)

Solution 5:

(i)The ordinate of a point is its x-co-ordinate.

False

(ii)The origin is in the first quadrant.

False.

(iii)The y-axis is the vertical number line.

True

(iv)Every point is located in one of the four quadrants.

True

(v)If the ordinate of a point is equal to its abscissa; the point lies either in the first quadrant or in the second quadrant.

(vi)The origin (0,0) lies on the x-axis.

True.

(vii)The point (a,b) lies on the y-axis if b=0.

False

Solution 6:

(i)
$$3-2x=7$$
; $2y+1=10-2\frac{1}{2}y$

Now

$$3 - 2x = 7$$

$$3 - 7 = 2x$$

$$-4 = 2x$$

$$-2 = x$$

Again

$$2y+1=10-2\frac{1}{2}y$$

$$2y+1=10-\frac{5}{2}y$$

$$4y + 2 = 20 - 5y$$

$$4y + 5y = 20 - 2$$

$$9y = 18$$

$$y = 2$$

: The co-ordinates of the point (-2,2)

(ii)
$$\frac{2a}{3} - 1 = \frac{a}{2}$$
, $\frac{15 - 4b}{7} = \frac{2b - 1}{3}$

Now

$$\frac{2a}{3}-1=\frac{a}{2}$$

$$\frac{2a}{3} - \frac{a}{2} = 1$$

$$\frac{4a - 3a}{6} = 1$$

$$a = 6$$

Again

$$\frac{15-4b}{7} = \frac{2b-1}{3}$$

$$45-12b = 14b-7$$

$$45+7 = 14b+12b$$

$$52 = 26b$$

$$2 = b$$

 \therefore The co-ordinates of the point (6,2)

(iii)
$$5x - (5 - x) = \frac{1}{2}(3 - x)$$
; $4 - 3y = \frac{4 + y}{3}$

Now

$$5x - (5 - x) = \frac{1}{2}(3 - x)$$

$$(5x+x)-5=\frac{1}{2}(3-x)$$

$$12x - 10 = 3 - x$$

$$12x + x = 3 + 10$$

$$13x = 13$$

$$x = 1$$

Again

$$4 - 3y = \frac{4 + y}{3}$$

$$12 - 9y = 4 + y$$

$$12 - 4 = y + 9y$$

$$8 = 10y$$

$$\frac{8}{10} = y$$

$$\frac{4}{5} = y$$

: The co-ordinates of the point $\left(1, \frac{4}{5}\right)$

Solution 7:

(i) A(2,0) B(8,0) and C(8,4)

After plotting the given points A(2,0), B(8,0) and C(8,4) on a graph paper; joining A with B and B with C. From the graph it is clear that the vertical distance between the points B(8,0) and C(8,4) is 4 units, therefore the vertical distance between the points A(2,0) and D must be 4 units. Now complete the rectangle ABCD As is clear from the graph D(2,4) (ii)A(4,2), B(-2,-2) and D(4,-2)

After plotting the given points A(4,2), B(-2,2) and D(4,-2) on a graph paper; joining A with B and A with D. From the graph it is clear that the vertical distance between the points A(4,2) and D(4,-2) is 4 units and the horizontal distance between the points A(4,2) and B(-2,2) is 6 units , therefore the vertical distance between the points B(-2,2) and C must be 4 units and the horizontal distance between the points B(-2,2) and C must be 6 units. Now complete the rectangle ABCD As is clear from the graph C(-2,2)

After plotting the given points A(-4,-6), C(6,0) and D(-4,0) on a graph paper; joining D with A and D with C. From the graph it is clear that the vertical distance between the points D(-4,0) and A(-4,-6) is 6 units and the horizontal distance between the points D(-4,0) and D(-4,0) and

As is clear from the graph B(6,-6)

(iv) B(10,4), C(0,4) and D(0,-2)

After plotting the given points $B(10,4) \cdot C(0,4)$ and D(0,-2) on a graph paper; joining C with B and C with D. From the graph it is clear that the vertical distance between the points C(0,4) and D(0,-2) is B units and the horizontal distance between the points D(0,4) and D(0,4) and

As is clear from the graph A(10, -2)

Solution 8:

Given A(2,-2), B(8,2) and C(4,-4) are the vertices of the parallelogram ABCD

After plotting the given points A(2,-2), B(8,2) and C(4,-4) on a graph paper; joining B with C and B with A . Now complete the parallelogram ABCD.

As is clear from the graph D(-6,4)

Now from the graph we can find the mid points of the sides AB and CD.

Therefore the co-ordinates of the mid-point of AB is E(3,2) and the co-ordinates of the mid-point of CD is F(-1,-4)

Solution 9:

Given A(-2,4), C(4,10) and D(-2,10) are the vertices of a square ABCD

After plotting the given points $A(-2,4) \cdot C(4,10)$ and D(-2,10) on a graph paper; joining D with A and D with C. Now complete the square ABCD

As is clear from the graph B(4,4)

Now from the graph we can find the mid points of the sides $\ _{BC}$ and $\ _{CD}$ and the co-ordinates of the diagonals of the square.

Therefore the co-ordinates of the mid-point of BC is E(4,7) and the co-ordinates of the mid-point of CD is F(1,10) and the co-ordinates of the diagonals of the square is G(1,7)

Solution 10:

After plotting the given points, we have clearly seen from the graph that

- (i) A(3,5), B(1,1) and C(0,-1) are collinear.
- (ii) P(-2,-1), Q(-1,-4) and R(-4,1) are non-collinear.

Solution 11:

Given A(5,-7)

After plotting the given point A(5,-7) on a graph paper. Now let us draw a perpendicular AM from the point A(5,-7) on the x-axis and a perpendicular AM from the point A(5,-7) on the y-axis.

As from the graph clearly we get the co-ordinates of the points $\, M \,$ and $\, N \,$

Co-ordinate of the point M is (5,0)

Co-ordinate of the point N is (0,-7)

Solution 12:

Given that in square ABCD; A(3,4), B(-2,4) and C(-2,-1)

Solution 13:

After plotting the given points A(3,4), B(-2,4) and C(-2,-1) on a graph paper; joining B with C and B with A. From the graph it is clear that the vertical distance between the points B(-2,4) and C(-2,-1) is B units and the horizontal distance between the points B(-2,4) and B(-2,4) and

As is clear from the graph D(3,-1)

Now the area of the square $\ _{ABCD}$ is given by

area of $ABCD = (side)^2 = (5)^2 = 25$ units

Given that in rectangle OABC; point O is origin and OA = 10 units along x-axis therefore we get O(0,0) and OABC. Also it is given that OAB = 8 units. Therefore we get O(0,0) and OABC are also are also as a constant and OABC and OABC are also as a constant and OABC and OABC are also as a constant and OABC and OABC are a constant and OABC are a constant and OABC and OABC are a constant and OABC are a constant and OABC are a constant and OABC and OABC are a constant and OABC are a consta

After plotting the points O(0,0), A(10,0), B(10,8) and C(0,8) on a graph paper; we get the above rectangle OABC and the required coordinates of the vertices are A(10,0), B(10,8) and C(0,8)

Exercise 26(B)

Solution 1:

(i) Since x = 3, therefore the value of y can be taken as any real no.

First prepare a table as follows:

Х	3	3	3
У	-1	0	1

Thus the graph can be drawn as follows:

(ii)

First prepare a table as follows:

х	-3	-3	-3
У	-1	0	1

(iii)

First prepare a table as follows:

х	5	5	5
У	-1	0	1

Thus the graph can be drawn as follows:

(iv)

The equation can be written as:

$$x = \frac{7}{2}$$

First prepare a table as follows:

х	$\frac{7}{2}$	7/2	7/2
У	-1	0	1

(v)

First prepare a table as follows:

х	-1	0	1
У	4	4	4

Thus the graph can be drawn as follows:

(vi)

First prepare a table as follows:

X	-1	0	1
У	-6	-6	-6

First prepare a table as follows:

×	-1	0	1
У	2	2	2

Thus the graph can be drawn as follows:

(viii)

First prepare a table as follows:

х	-1	0	1
У	-6	-6	-6

Thus the graph can be drawn as follows:

(ix)

First prepare a table as follows:

х	-1	0	1
У	5/2	<u>5</u> 2	5/2

(x)

First prepare a table as follows:

Х	-1	0	1
У	0	0	0

Thus the graph can be drawn as follows:

(xi)

First prepare a table as follows:

×	0	0	0
У	-1	0	1

Solution 2:

(i)

First prepare a table as follows:

х	-1	0	1
ÿ.	-3	0	3

Thus the graph can be drawn as follows:

(ii)

First prepare a table as follows:

х	-1	0	1
У	1	0	-1

(iii)

First prepare a table as follows:

Х	-1	0	1
У	2	0	-2

First prepare a table as follows:

х	-1	0	1
У	-1	0	1

Thus the graph can be drawn as follows:

(v)

First prepare a table as follows:

х	-1	0	1
У	5	0	-5

Thus the graph can be drawn as follows:

(vi)

First prepare a table as follows:

х	-1	0	1
У	$\frac{1}{2}$	0	$-\frac{1}{2}$

First prepare a table as follows:

х	-1	0	1
У	-4	0	4

Thus the graph can be drawn as follows:

(viii)

First prepare a table as follows:

х	-1	0	1
У	$\frac{3}{2}$	0	$-\frac{3}{2}$

(ix)

First prepare a table as follows:

Х	-1	0	1
У	$\frac{1}{2}$	0	$-\frac{1}{2}$

Solution 3:

(i)

First prepare a table as follows:

Х	-1	0	1
У	$-\frac{5}{3}$	3	5

Thus the graph can be drawn as follows:

(ii)

First prepare a table as follows:

х	-1	0	1
У	$-\frac{5}{3}$	-1	$-\frac{1}{3}$

(iiii)

First prepare a table as follows:

×	-1	0	1
У	5	4	3

First prepare a table as follows:

Х	-1	0	1
У	$-\frac{13}{2}$	$-\frac{5}{2}$	$\frac{3}{2}$

Thus the graph can be drawn as follows:

(v)

First prepare a table as follows:

Х	-1	0	1
У	$-\frac{5}{6}$	$\frac{2}{3}$	13 6

Thus the graph can be drawn as follows:

(vi)

First prepare a table as follows:

х	-1	0	1
У	-2	$-\frac{4}{3}$	$-\frac{2}{3}$

(vi)

First prepare a table as follows:

х	-1	0	1
У	-2	$-\frac{4}{3}$	$-\frac{2}{3}$

Thus the graph can be drawn as follows:

(vii)

The equation will become:

$$2x - 3y = 8$$

First prepare a table as follows:

х	-1	0	1
У	$-\frac{10}{3}$	$-\frac{8}{3}$	-2

(viii)

The equation will become:

$$5x - 2y = 17$$

First prepare a table as follows:

х	-1	0	1
У	-11	$-\frac{17}{2}$	-6

Thus the graph can be drawn as follows:

(ix)

First prepare a table as follows:

Х	-1	0	1
У	$-\frac{1}{5}$	$-\frac{2}{5}$	$-\frac{3}{5}$

Solution 4:

(i)

To draw the graph of 3x + 2y = 6 follows the steps:

First prepare a table as below:

X	-2	0	2
Υ	6	3	0

Now sketch the graph as shown:

From the graph it can verify that the line intersect x axis at (2,0) and y at (0,3).

To draw the graph of 2x - 5y = 10 follows the steps:

First prepare a table as below:

Х	-1	0	1
Y	$-\frac{12}{5}$	-2	$-\frac{8}{5}$

Now sketch the graph as shown:

From the graph it can verify that the line intersect x axis at (5,0) and y at (0,-2).

(iii)

To draw the graph of $\frac{x}{2} + \frac{2y}{3} = 3$ follows the steps:

First prepare a table as below:

Х	-1	0	1
Υ	5.25	4.5	3.75

Now sketch the graph as shown:

From the graph it can verify that the line intersect x axis at (10,0) and y at (0,7.5).

(iv)

To draw the graph of
$$\frac{2x-1}{3} - \frac{y-2}{5} = 0$$
 follows the steps:

First prepare a table as below:

X	-1	0	1
Υ	-3	1/3	11 3

Now sketch the graph as shown:

From the graph it can verify that the line intersect x axis at $\left(-\frac{1}{10},0\right)$ and y at (0,4.5).

Solution 5:

(i)

First draw the graph as follows:

This is an right trinangle.

Thus the area of the triangle will be:

$$=\frac{1}{2} \times \text{base} \times \text{altitude}$$

$$=\frac{1}{2}\times 4\times 12$$

(iii)

First draw the graph as follows:

This is a right triangle.

Thus the area of the triangle will be:

$$A = \frac{1}{2} \times base \times altitude$$

$$=\frac{1}{2}\times\frac{9}{2}\times3$$

$$=\frac{27}{4}$$
 = 6.75 sq.units

Solution 6:

(i)

To draw the graph of y = 3x - 1 and y = 3x + 2 follows the steps:

First prepare a table as below:

X	-1	0	1
Y=3x-1	-4	-1	2
Y=3x+2	-1	2	5

Now sketch the graph as shown:

(ii)

To draw the graph of y = x - 3 and y = -x + 5 follows the steps:

First prepare a table as below:

Х	-1	0	1
Y=x-3	-4	-3	-2
Y=-x+5	6	5	4

Now sketch the graph as shown:

From the graph it can verify that the lines are perpendicular.

(iii

To draw the graph of 2x - 3y = 6 and $\frac{x}{2} + \frac{y}{3} = 1$ follows the steps:

First prepare a table as below:

Х	-1	0	1
$y = \frac{2}{3}x - 2$	- <u>8</u>	-2	$-\frac{4}{3}$
$y = -\frac{3}{2}x + 3$	<u>9</u> 2	3	3 2

Now sketch the graph as shown:

From the graph it can verify that the lines are perpendicular.

To draw the graph of 3x + 4y = 24 and $\frac{X}{4} + \frac{y}{3} = 1$ follows the steps:

First prepare a table as below:

X	-1	0	1
$y = -\frac{3}{4}x + 6$	<u>27</u> 4	6	2 <u>1</u>
$y = -\frac{3}{4} \times +3$	1 <u>5</u> 4	3	9 4

Now sketch the graph as shown:

From the graph it can verify that the lines are parallel.

Solution 7:

First prepare a table as follows:

X	-1	0	1
Y=x-2	-3	-2	-1
Y=2x+1	-1	1	3
Y=4	4	4	4

Now the graph can be drawn as follows:

Solution 8:

First prepare a table as follows:

X	-1	0	1
Y=2x-1	-3	-1	1
Y = 2x	-2	0	2
Y=2x+1	-1	1	3

Now the graph can be drawn as follows:

The lines are parallel to each other.

Solution 9:

To draw the graph of 3x + 2y = 6 follows the steps:

First prepare a table as below:

X	-2	0	2
Υ	6	3	0

Now sketch the graph as shown:

From the graph it can verify that the line intersect x axis at (2,0) and y at (0,3), therefore the co ordinates of P(x-axis) and Q(y-axis) are (2,0) and (0,3) respectively.

Solution 10:

First prepare a table as follows:

X	-1	0	1
Υ	2	<u>3</u> 2	1

Thus the graph can be drawn as shown:

For y = 3 we have x = -3

For y = -2 we have x = 7

Solution 11:

First prepare a table as follows:

Х	-1	0	1
у	$-\frac{15}{4}$	-3	$-\frac{9}{4}$

The graph of the equation can be drawn as follows:

From the graph it can be verify that

If x = 4 the value of y = 0

If x = 0 the value of y = -3.

Solution 12:

First prepare a table as follows:

х	-1	0	1
У	25 4	5	15 4

The graph of the equation can be drawn as follows:

From the graph it can be verified that:

for y = 10, the value of x = -4.

for x = 8 the value of y = -5.

Solution 13:

The equations can be written as follows:

$$y = 2 - x$$

$$y = \frac{1}{2}(x - 5)$$

$$y = -\frac{x}{3}$$

First prepare a table as follows:

х	y = 2 - x	$y = \frac{1}{2}(x - 5)$	$y = -\frac{x}{3}$
-1	3	-3	$\frac{1}{3}$
0	2	$-\frac{5}{2}$	0
1	1	-2	$-\frac{1}{3}$

Thus the graph can be drawn as follows:

From the graph it is clear that the equation of lines are passes through the same point.

Exercise 26(C)

Solution 1:

The angle which a straight line makes with the positive direction of x-axis (measured in anticlockwise direction) is called inclination o the line.

The inclination of a line is usually denoted by $\boldsymbol{\theta}$

- (i)The inclination is $\theta = 45^{\circ}$
- (ii) The inclination is $\theta = 135^{\circ}$
- (iii) The inclination is $\theta = 30^{\circ}$

Solution 2:

- (i)The inclination of a line parallel to x-axis is θ = 0°
- (ii)The inclination of a line perpendicular to x-axis is $\theta = 90^{\circ}$
- (iii) The inclination of a line parallel to y-axis is θ = 90°
- (iv) The inclination of a line perpendicular to y-axis is θ = 0°

Solution 3:

If θ is the inclination of a line; the slope of the line is $\tan \theta$ and is usually denoted by letter m.

(i) Here the inclination of a line is 0° , then $\theta = 0^{\circ}$

Therefore the slope of the line is $m = \tan 0^\circ = 0$

(ii) Here the inclination of a line is 30°, then θ = 30°

Therefore the slope of the line is m = $\tan \theta = 30^\circ = \frac{1}{\sqrt{3}}$

(iii) Here the inclination of a line is 45° , then θ = 45°

Therefore the slope of the line is $m = \tan 45^\circ = 1$

(iv)Here the inclination of a line is 60° , then $\theta = 60^{\circ}$

Therefore the slope of the line is m = $\tan 60^\circ = \sqrt{3}$

Solution 4:

If $\tan \theta$ is the slope of a line; then inclination of the line is $\tan \theta$

(i) Here the slope of line is 0; then $\tan \theta = 0$

Now

$$\tan \theta = 0$$

$$\tan \theta = \tan 0^{\circ}$$

$$\theta = 0^0$$

Therefore the inclination of the given line is $\theta = 0^{\circ}$

(ii) Here the slope of line is 1; then $\tan \theta = 1$

Now

$$\tan \theta = 1$$

$$\tan \theta = \tan 45^{\circ}$$

$$\theta = 45^{\circ}$$

Therefore the inclination of the given line is $\theta = 45^{\circ}$

(iii) Here the slope of line is $\sqrt{3}$; then $\tan \theta = \sqrt{3}$

Now

$$\tan \theta = \sqrt{3}$$

$$\tan \theta = \tan 60^{\circ}$$

$$\theta = 60^{\circ}$$

Therefore the inclination of the given line is θ = 60°

(iv)Here the slope of line is $\frac{1}{\sqrt{3}}$; then $\tan \theta = \frac{1}{\sqrt{3}}$

Now

$$\tan \theta = \frac{1}{\sqrt{3}}$$

$$\tan \theta = \tan 30^0$$

$$\theta = 30^{\circ}$$

Therefore the inclination of the given line is $\theta = 30^{\circ}$

Solution 5:

(i) For any line which is parallel to x-axis, the inclination is $\theta = 0^{\circ}$

Therefore, Slope(m) = $\tan \theta = \tan 0^{\circ} = 0$

(ii) For any line which is perpendicular to x-axis, the inclination is θ = 90°

Therefore, Slope(m) = $\tan \theta = \tan 90^\circ = \infty$ (not defined)

(iii) For any line which is parallel to y-axis, the inclination is $\theta = 90^{\circ}$

Therefore, Slope(m) = $\tan \theta = \tan 90^\circ = \infty$ (not defined)

(iv) For any line which is perpendicular to y-axis, the inclination is θ = 0°

Therefore, Slope(m) = $\tan \theta = \tan 0^\circ = 0$

Solution 6:

Equation of any straight line in the form y = mx + c, where slope = m(co-efficient of x) and

y-intercept = c(constant term)

$$(i)x+3y+5=0$$

$$x+3y+5=0$$

$$3y = -x - 5$$

$$y = \frac{-x-5}{3}$$

$$y = \frac{-1}{3}x + \left(-\frac{5}{3}\right)$$

Therefore,

slope = co-efficient of
$$x = -\frac{1}{3}$$

y-intercept = constant term =
$$-\frac{5}{3}$$

(ii)
$$3x - y - 8 = 0$$

$$3x - y - 8 = 0$$

$$-y = -3x + 8$$

$$y = 3x + (-8)$$

Therefore,

slope = co-efficient of
$$x = 3$$

y-intercept = constant term =
$$-8$$

(iii)
$$5x = 4y + 7$$

$$5x = 4y + 7$$
$$4y = 5x - 7$$

$$y = \frac{5x - 7}{4}$$
$$y = \frac{5}{4}x + \left(-\frac{7}{4}\right)$$

Therefore,

slope = co-efficient of
$$x = \frac{5}{4}$$

y-intercept = constant term =
$$-\frac{7}{4}$$

(iv)
$$x = 5y - 4$$

$$x = 5y - 4$$

$$5y = x + 4$$

$$y = \frac{x+4}{5}$$

$$y = \frac{1}{5}x + \frac{4}{5}$$

Therefore,

slope = co-efficient of
$$x = \frac{1}{5}$$

y-intercept = constant term =
$$\frac{4}{5}$$

(v)
$$y = 7x - 2$$

Therefore,

$$y = 7x - 2$$

 $y = 7x + (-2)$

slope = co-efficient of
$$x = 7$$

y-intercept = constant term =
$$-2$$

(vi)
$$3y = 7$$

$$3y = 7$$

$$3y = 0 \cdot x + 7$$

$$y = \frac{0}{7}x + \frac{7}{3}$$

$$y = 0 \cdot x + \frac{7}{3}$$

Therefore,

slope = co-efficient of
$$x = 0$$

y-intercept = constant term =
$$\frac{7}{3}$$

(vii)
$$4y + 9 = 0$$

$$4y + 9 = 0$$

$$4y = 0 \cdot x - 9$$

$$y = \frac{0}{4}x - \frac{9}{4}$$

$$y = 0 \cdot x + \left(-\frac{9}{4}\right)$$

Therefore,

slope = co-efficient of
$$x = 0$$

y-intercept = constant term =
$$-\frac{9}{4}$$

Solution 7: (i)Given Slope is 2, therefore m = 2 Y-intercept is 3, therefore c = 3 Therefore, y = mx + cy = 2x + 3Therefore the equation of the required line is y = 2x + 3(ii)Given Slope is 5, therefore m = 5 Y-intercept is -8, therefore c = -8 Therefore, y = mx + cy = 5x + -8Therefore the equation of the required line is y = 5x + (-8)(iii)Given Slope is -4, therefore m = -4 Y-intercept is 2, therefore c = 2 Therefore, y = mx + cy = -4x + 2Therefore the equation of the required line is y = -4x + 2(iv)Given Slope is -3, therefore m = -3 Y-intercept is -1, therefore c = -1 Therefore, y = mx + cy = -3x - 1Therefore the equation of the required line is y = -3x - 1(v)Given Slope is 0, therefore m = 0 Y-intercept is -5, therefore c = -5 Therefore, y = mx + c $y = 0 \cdot x + (-5)$ Therefore the equation of the required line is y = -5(vi)Given Slope is 0, therefore m = 0Y-intercept is 0, therefore c = 0Therefore, y = mx + c $y = 0 \cdot x + 0$

y = 0

Therefore the equation of the required line is y = 0

Solution 8:

Given line is 3x + 4y = 12The graph of the given line is shown below.

Clearly from the graph we can find the y-intercept. The required y-intercept is 3.

Solution 9:

Given line is

2x - 3y - 18 = 0The graph of the given line is shown below.

Clearly from the graph we can find the y-intercept. The required y-intercept is ${\sf -6}$

Solution 10:

Given line is x + y = 5The graph of the given line is shown below.

From the given line x + y = 5, we get

$$x+y=5$$

 $y=-x+5$
 $y=(-1)\cdot x+5$ (A)

Again we know that equation of any straight line in the form y = mx + c, where m is the gradient and c is the intercept. Again we have if slope of a line is $\tan \theta$ then inclination of the line is θ

Now from the equation (A), we have

$$m = -1$$

$$\tan \theta = -1$$

$$\tan \theta = \tan 135^{0}$$

$$\theta = 135^{0}$$

And c = 5

Therefore the required inclination is $\theta = 135^{\circ}$ and y-intercept is c = 5