2.4 Complex variables

Complex numbers

Cartesian form	$z = x + \mathbf{i}y$	(2.153)	z i x,y	complex variable $i^2 = -1$ real variables
Polar form	$z = re^{i\theta} = r(\cos\theta + i\sin\theta)$	(2.154)	$egin{array}{c} r \ heta \end{array}$	amplitude (real) phase (real)
Modulus ^a	$ z = r = (x^2 + y^2)^{1/2}$ $ z_1 \cdot z_2 = z_1 \cdot z_2 $	(2.155) (2.156)	z	modulus of z
Argument	$\theta = \arg z = \arctan \frac{y}{x}$ $\arg(z_1 z_2) = \arg z_1 + \arg z_2$	(2.157) (2.158)	arg <i>z</i>	argument of z
Complex conjugate	$z^* = x - iy = re^{-i\theta}$ $arg(z^*) = -argz$ $z \cdot z^* = z ^2$	(2.159) (2.160) (2.161)	z*	complex conjugate of $z = re^{i\theta}$
Logarithm ^b	$\ln z = \ln r + \mathbf{i}(\theta + 2\pi n)$	(2.162)	n	integer

aOr "magnitude."

Complex analysis^a

Cauchy– Riemann equations ^b	if $f(z) = u(x,y) + iv(x,y)$ then $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$	(2.163) (2.164)	z complex variable i $i^2 = -1$ x,y real variables f(z) function of zu,v real functions
Cauchy– Goursat theorem ^c	$\oint_c f(z) \mathrm{d}z = 0$	(2.165)	
Cauchy integral formula ^d	$f(z_0) = \frac{1}{2\pi \mathbf{i}} \oint_c \frac{f(z)}{z - z_0} dz$	(2.166)	a_n Laurent coefficients
	$f^{(n)}(z_0) = \frac{n!}{2\pi \mathbf{i}} \oint_c \frac{f(z)}{(z - z_0)^{n+1}} dz$	(2.167)	a_{-1} residue of $f(z)$ at z_0 z' dummy variable
Laurent expansion ^e	$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$	(2.168)	y c_2
	where $a_n = \frac{1}{2\pi i} \oint_c \frac{f(z')}{(z' - z_0)^{n+1}} dz'$	(2.169)	
Residue theorem	$\oint_{c} f(z) dz = 2\pi \mathbf{i} \sum \text{enclosed residues}$	(2.170)	x -

^aClosed contour integrals are taken in the counterclockwise sense, once.

^bThe principal value of $\ln z$ is given by n=0 and $-\pi < \theta \le \pi$.

^bNecessary condition for f(z) to be analytic at a given point.

^cIf f(z) is analytic within and on a simple closed curve c. Sometimes called "Cauchy's theorem."

^dIf f(z) is analytic within and on a simple closed curve c, encircling z_0 .

^eOf f(z), (analytic) in the annular region between concentric circles, c_1 and c_2 , centred on z_0 . c is any closed curve in this region encircling z_0 .