2.4 Complex variables ## **Complex numbers** | Cartesian form | $z = x + \mathbf{i}y$ | (2.153) | z
i
x,y | complex variable $i^2 = -1$ real variables | |------------------------|---|-------------------------------|--|--| | Polar form | $z = re^{i\theta} = r(\cos\theta + i\sin\theta)$ | (2.154) | $egin{array}{c} r \ heta \end{array}$ | amplitude (real)
phase (real) | | Modulus ^a | $ z = r = (x^2 + y^2)^{1/2}$
$ z_1 \cdot z_2 = z_1 \cdot z_2 $ | (2.155)
(2.156) | z | modulus of z | | Argument | $\theta = \arg z = \arctan \frac{y}{x}$ $\arg(z_1 z_2) = \arg z_1 + \arg z_2$ | (2.157)
(2.158) | arg <i>z</i> | argument of z | | Complex conjugate | $z^* = x - iy = re^{-i\theta}$ $arg(z^*) = -argz$ $z \cdot z^* = z ^2$ | (2.159)
(2.160)
(2.161) | z* | complex conjugate of $z = re^{i\theta}$ | | Logarithm ^b | $\ln z = \ln r + \mathbf{i}(\theta + 2\pi n)$ | (2.162) | n | integer | aOr "magnitude." ## Complex analysis^a | Cauchy–
Riemann
equations ^b | if $f(z) = u(x,y) + iv(x,y)$
then $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$
$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ | (2.163)
(2.164) | z complex variable
i $i^2 = -1$
x,y real variables
f(z) function of zu,v real functions | |--|--|--------------------|---| | Cauchy–
Goursat
theorem ^c | $\oint_c f(z) \mathrm{d}z = 0$ | (2.165) | | | Cauchy integral formula ^d | $f(z_0) = \frac{1}{2\pi \mathbf{i}} \oint_c \frac{f(z)}{z - z_0} dz$ | (2.166) | a_n Laurent coefficients | | | $f^{(n)}(z_0) = \frac{n!}{2\pi \mathbf{i}} \oint_c \frac{f(z)}{(z - z_0)^{n+1}} dz$ | (2.167) | a_{-1} residue of $f(z)$ at z_0
z' dummy variable | | Laurent expansion ^e | $f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$ | (2.168) | y c_2 | | | where $a_n = \frac{1}{2\pi i} \oint_c \frac{f(z')}{(z' - z_0)^{n+1}} dz'$ | (2.169) | | | Residue
theorem | $\oint_{c} f(z) dz = 2\pi \mathbf{i} \sum \text{enclosed residues}$ | (2.170) | x - | ^aClosed contour integrals are taken in the counterclockwise sense, once. ^bThe principal value of $\ln z$ is given by n=0 and $-\pi < \theta \le \pi$. ^bNecessary condition for f(z) to be analytic at a given point. ^cIf f(z) is analytic within and on a simple closed curve c. Sometimes called "Cauchy's theorem." ^dIf f(z) is analytic within and on a simple closed curve c, encircling z_0 . ^eOf f(z), (analytic) in the annular region between concentric circles, c_1 and c_2 , centred on z_0 . c is any closed curve in this region encircling z_0 .