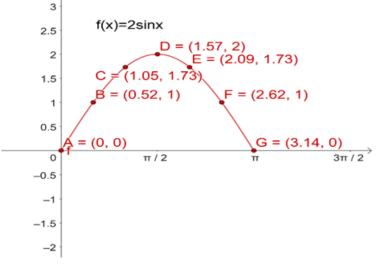
6. Graphs of Trigonometric Functions

Exercise 6.1

1 A. Question

Sketch the graphs of the following functions :

 $f(x)=2\,\sin x,\, 0\leq x\leq \pi$


Answer

We know that g (x) = sin x is a periodic function with period π .

 \therefore f (x) = 2 sin x is a periodic function with period π . So, we will draw the graph of f (x) = 2 sin x in the interval [0, π]. The values of f (x) = 2 sin x at various points in [0, π] are listed in the following table:

Х	[0 (A)	п/6 (В)	п/З (С)	п/2 (D)	2n/3 (E)	5n/6 (F)	п (G)
	(x) = 2 in x	0	1	√3 = 1.73	2	√3 = 1.73	1	0

By plotting the above points, we obtain the required curve.

1 B. Question

Sketch the graphs of the following functions :

$$g(x) = 3\sin\left(x - \frac{\pi}{4}\right), 0 \le x \le \frac{5\pi}{4}$$

Answer

We know that if f(x) is a periodic function with period T, then f (ax + b) is periodic with period T/[a].

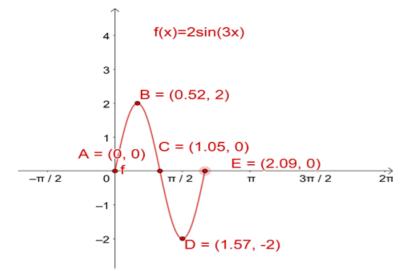
 $\therefore g(x) = 3\sin(x - \frac{\pi}{4})$ is a periodic function with period π . So, we will draw the graph of $g(x) = 3\sin(x - \frac{\pi}{4})$ in the interval [0, 5 π /4]. The values of $g(x) = 3\sin(x - \frac{\pi}{4})$ at various points in [0, 5 π /4] are listed in the following table:

x	0 (A)	п/4 (В)	п/2 (C)	3п/4 (D)	п (Е)	5п/4 (F)
$g(x) = 3 \sin\left(x - \frac{\pi}{4}\right)$	-3/√2 = -2.1	0	$\frac{3}{\sqrt{2}} = 2.12$	3	$\frac{3}{\sqrt{2}} = 2.12$	0

1 C. Question

Sketch the graphs of the following functions :

 $h(x) = 2 \sin 3x, 0 \le x \le 2 \pi/3$


Answer

We know that g (x) = sin x is a periodic function with period 2π .

 \therefore h (x) = 2 sin 3x is a periodic function with period 2 π /3. So, we will draw the graph of h (x) = 2 sin 3x in the interval [0, 2 π /3]. The values of h (x) = 2 sin 3x at various points in [0, 2 π /3] are listed in the following table:

х	0(A)	п/6(В)	п/3 (С)	п/2 (D)	2n/3 (E)
H(x) = 2 sin 3x	0	2	0	-2	0

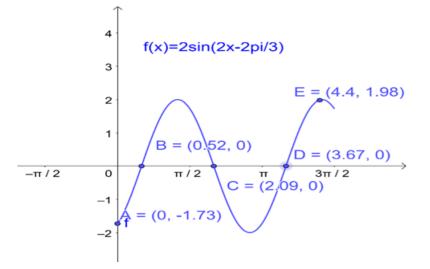
By plotting the above points, we obtain the required curve.

1 D. Question

Sketch the graphs of the following functions :

$$\phi(x) = 2\sin\left(2x - \frac{\pi}{3}\right), 0 \le x \le \frac{7\pi}{5}$$

Answer


We know that if f(x) is a periodic function with period T, then f (ax + b) is periodic with period T/[a].

 $\dot{\phi}(x) = 2\sin(2x - \frac{\pi}{3})$ is a periodic function with period π . So, we will draw the graph of $\phi(x) = 2\sin(2x - \frac{\pi}{3})$ in the interval [0, 7 π /5]. The values of $\phi(x) = 2\sin(2x - \frac{\pi}{3})$ at various points in [0,

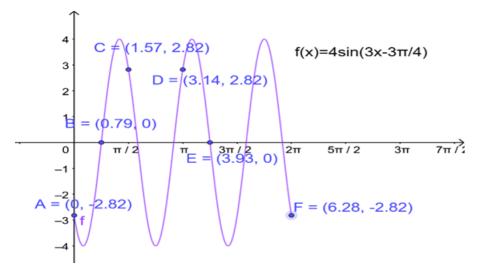
 $7\pi/5$] are listed in the following table:

х	0	п/6	2п/3	7п/6	7n/5
	-√3 = -1.73	0	0	0	1.98

By plotting the above points, we obtain the required curve.

1 E. Question

Sketch the graphs of the following functions :


$$\psi(x) = 4 \sin 3\left(x - \frac{\pi}{4}\right), 0 \le x \le 2\pi$$

Answer

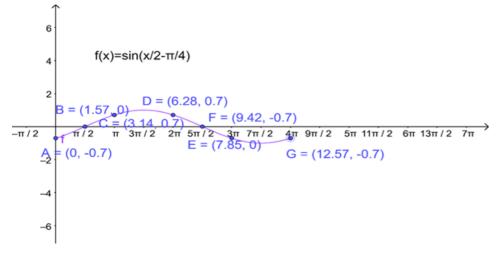
We know that if f(x) is a periodic function with period T, then f (ax + b) is periodic with period T/[a].

 $\psi(x) = 4 \sin 3(x - \frac{\pi}{4})$ is a periodic function with period 2π . So, we will draw the graph of $\psi(x) = 4 \sin 3(x - \frac{\pi}{4})$ in the interval [0, 2π]. The values of $\psi(x) = 4 \sin 3(x - \frac{\pi}{4})$ at various points in [0, 2π] are listed in the following table:

х	0	п/4	п/2	п	5п/4	2п
$\psi(x) = 4\sin 3\left(x - \frac{\pi}{4}\right)$	0.00	0	2√2 = 2.82	2√2 =2.82	0	-2√2 = -2.82

Sketch the graphs of the following functions :

$$\theta(x) = \sin\left(\frac{x}{2} - \frac{\pi}{4}\right), 0 \le x \le 4\pi$$


Answer

We know that if f(x) is a periodic function with period T, then f (ax + b) is periodic with period T/[a].

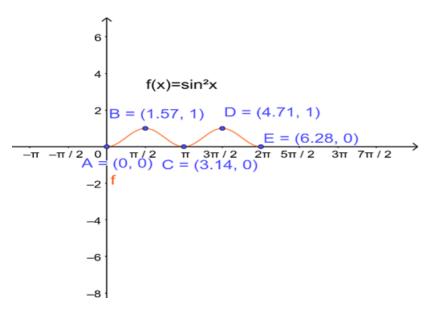
 $\therefore \theta(x) = \sin(\frac{x}{2} - \frac{\pi}{4})$ is a periodic function with period 4π . So, we will draw the graph of $\theta(x) = \sin(\frac{x}{2} - \frac{\pi}{4})$ in the interval $[0, 4\pi]$. The values of $\theta(x) = \sin(\frac{x}{2} - \frac{\pi}{4})$ at various points in $[0, 4\pi]$ are listed in the following table:

х	0	п/2	п	2п	5n/2	3п	4п
$\theta(x) = \sin\left(\frac{x}{2} - \frac{\pi}{4}\right)$	-0.7	0		1/√2 = 0.7	0	-1/√2 = -0.7	-1/√2 =-0.7

By plotting the above points, we obtain the required curve.

1 G. Question

Sketch the graphs of the following functions :

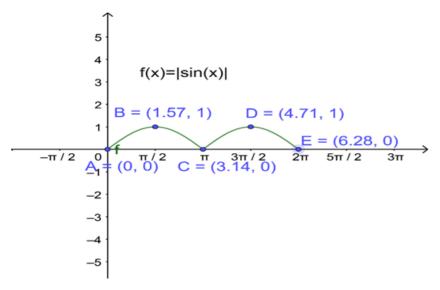

 $u(x) = \sin^2 x, 0 \le x \le 2\pi v(x) = |\sin x|, 0 \le x \le 2\pi$

Answer

We know that g (x) = sin x is a periodic function with period π .

 \therefore u (x) = sin² x is a periodic function with period 2 π . So, we will draw the graph of u (x) = sin² x in the interval [0, 2 π]. The values of u (x) = sin² x at various points in [0, 2 π] are listed in the following table:

х	0	п/2	п	3п/2	2п
$U(x) = sin^2 x$	0	1	0	1	0



Then,

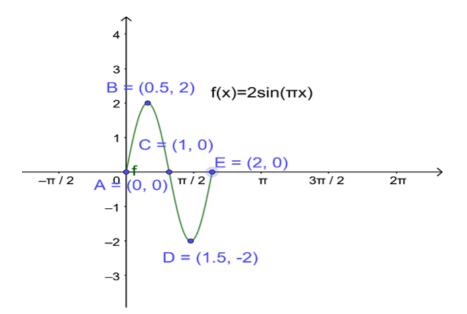
 \therefore u (x) = $|\sin x|$ is a periodic function with period 2π . So, we will draw the graph of u (x) = $|\sin x|$ in the interval $[0, 2\pi]$. The values of u (x) = $|\sin x|$ at various points in $[0, 2\pi]$ are listed in the following table:

x	0	п/2	п	3п/2	2п
U(x) = sin x	0	1	0	1	0

By plotting the above points, we obtain the required curve.

1 G. Question

Sketch the graphs of the following functions :


 $f(x) = 2 \sin \pi x, 0 \le x \le 2.$

Answer

We know that g (x) = sin x is a periodic function with period 2π .

 \therefore f (x) = 2 sin π x is a periodic function with period 2. So, we will draw the graph of f (x) = 2 sin π x in the interval [0, 2]. The values of f (x) = 2 sin π x at various points in [0, 2] are listed in the following table:

х	0	1/2	1	3/2	2
f(x) = 2 sin пx	0	2	0	-2	0

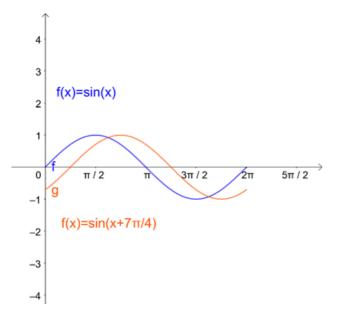
2 A. Question

Sketch the graphs of the following pairs of functions on the same axes :

$$f(x) = \sin x, g(x) = \sin \left(x + \frac{\pi}{4} \right)$$

Answer

We observe that the functions $f(x) = \sin x$ and $g(x) = \sin (x + \pi/4)$ are periodic functions with periods 2π and $7\pi/4$.


The values of these functions are tabulated below:

Values of f (x) = sin x in $[0, 2\pi]$

х	0	п/2	п	3п/2	2п
f(x) = sin x	0	1	0	-1	0

Values of g (x) = sin (x + $\pi/4$) in [0, $7\pi/4$]

х	0	п/4	3п/4	5п/4	7n/4
$g(x) = \sin\left(x + \frac{\pi}{4}\right)$	1/√2 = 0.7	1	0	-1	0

2 B. Question

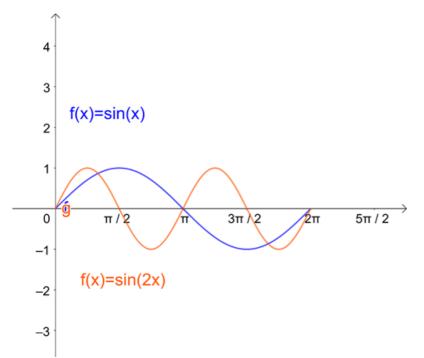
Sketch the graphs of the following pairs of functions on the same axes :

 $f(x) = \sin x, g(x) = \sin 2x$

Answer

We observe that the functions $f(x) = \sin x$ and $g(x) = \sin 2x$ are periodic functions with periods 2π and π .

The values of these functions are tabulated below:


Values of f (x) = sin x in $[0, 2\pi]$

х	0	п/2	п	3п/2	2п
f(x) = sin x	0	1	0	-1	0

Values of g (x) = sin (2x) in $[0, \pi]$

х	0	п/4	п/2	3п/4	п	5n/4	3п/2	7n/4	2п
$g(x) = \sin(2x)$	0	1	0	-1	0	1	0	-1	0

By plotting the above points, we obtain the required curve.

2 C. Question

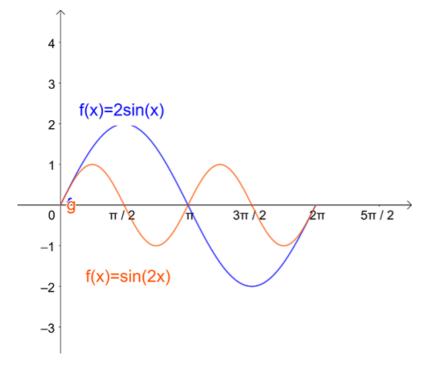
Sketch the graphs of the following pairs of functions on the same axes :

 $f(x) = \sin 2x, g(x) = 2 \sin x$

Answer

We observe that the functions $f(x) = \sin 2x$ and $g(x) = 2 \sin x$ are periodic functions with periods π and π .

The values of these functions are tabulated below:


Values of f (x) = sin (2x) in $[0, \pi]$

x	0	п/4	п/2	3п/4	п	5п/4	3п/2	7n/4	2п
f(x) = sin(2x)	0	1	0	-1	0	1	0	-1	0

Values of g (x) = $2 \sin x \ln [0, \pi]$

х	0	п/2	п	3п/2	2п
g(x) = 2 sin x	0	1	0	-1	0

By plotting the above points, we obtain the required curve.

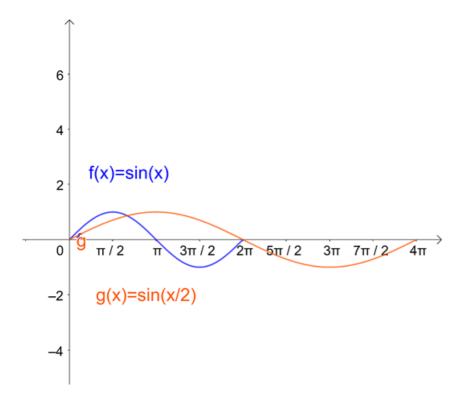
2 D. Question

Sketch the graphs of the following pairs of functions on the same axes :

$$f(x) = \sin \frac{x}{2}, g(x) = \sin x$$

Answer

We observe that the functions $f(x) = \sin x/2$ and $g(x) = \sin x$ are periodic functions with periods π and 2π .


The values of these functions are tabulated below:

Values of f (x) = sin x/2 in $[0, \pi]$

х	0	п	2п	3п	4п
f(x) = sin x/2	0	1	0	-1	0

Values of g (x) = sin (x) in $[0, 2\pi]$

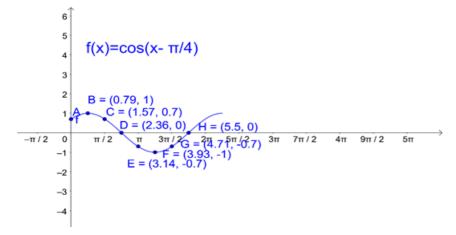
х	0	п/2	П	3п/2	2п	5п/2	3п	7n/2	4п
g(x) = sin (2x)	0	1	0	-1	0	1	0	-1	0

Exercise 6.2

1 A. Question

Sketch the graphs of the following trigonometric functions :

$$f(x) = \cos\left(x - \frac{\pi}{4}\right)$$


Answer

We know that g (x) = $\cos x$ is a periodic function with period 2π .

 \therefore f (x) = cos (x - $\pi/4$) is a periodic function with period π . So, we will draw the graph of f (x) = cos (x - $\pi/4$) in the interval [0, π]. The values of f (x) = cos (x - $\pi/4$) at various points in [0, π] are listed in the following table:

х	0	п/4	п/2	3п/4	п	5n/4	3п/2	7п/4
$f(x) = \cos x$	1/√2	1	1/√2	0	-1/√2	-1	-1/√2	0
(х - п/4)	= 0.7		= 0.7		= -0.7		= -0.7	

By plotting the above points, we obtain the required curve.

1 B. Question

Sketch the graphs of the following trigonometric functions :

$$g(x) = \cos\left(x + \frac{\pi}{4}\right)$$

Answer

We know that f (x) = $\cos x$ is a periodic function with period 2π .

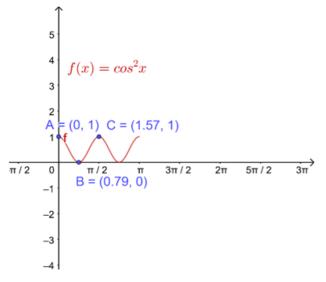
 \therefore g (x) = cos (x + $\pi/4$) is a periodic function with period π . So, we will draw the graph of g (x) = cos (x + $\pi/4$) in the interval [0, π]. The values of g (x) = cos (x + $\pi/4$) at various points in [0, π] are listed in the following table:

х	0	п/4	п/2	3п/4	п	5п/4	3п/2	7п/4
g (x) = cos (x + п/4)	1/√2 = 0.7	0	-1/√2 = -0.7	-1	-1/√2 = -0.7	0	1/√2 = 0.7	1

By plotting the above points, we obtain the required curve.

1 C. Question

Sketch the graphs of the following trigonometric functions :


 $h(x) = \cos^2 2x$

Answer

We know that f (x) = $\cos x$ is a periodic function with period 2π .

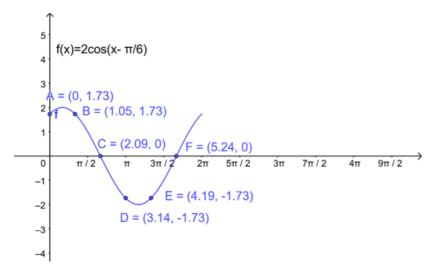
 \therefore h (x) = cos² 2x is a periodic function with period π . So, we will draw the graph of h (x) = cos² 2x in the interval [0, π]. The values of h (x) = cos² 2x at various points in [0, π] are listed in the following table:

х	0	п/4	п/2	3п/4	п	5п/4	3п/2
h (x) = cos ² 2x	1	0	1	0	1	0	1

1 D. Question

Sketch the graphs of the following trigonometric functions :

$$\phi(\mathbf{x}) = 2\cos\left(\mathbf{x} - \frac{\pi}{6}\right)$$


Answer

We know that f (x) = cos x is a periodic function with period 2π .

 $\therefore \phi(x) = 2\cos(x - \pi/6)$ is a periodic function with period π . So, we will draw the graph of $\phi(x) = 2\cos(x - \pi/6)$ in the interval $[0, \pi]$. The values of $\phi(x) = 2\cos(x - \pi/6)$ at various points in $[0, \pi]$ are listed in the following table:

х	0	п/З	2п/3	п	4п/3	5п/3
φ (x) = 2cos	√3 =	√3 =	0	-√3 =	-√3	0
(х - п/б)	1.73	1.73		-1.73	= -1.73	

By plotting the above points, we obtain the required curve.

1 E. Question

Sketch the graphs of the following trigonometric functions :

 $\psi(x) = \cos 3x$

Answer

We know that f (x) = cos x is a periodic function with period 2π .

 $\therefore \psi(x) = \cos(3x)$ is a periodic function with period $2\pi/3$. So, we will draw the graph of $\psi(x) = \cos(3x)$ in the

interval [0, $2\pi/3$]. The values of ψ (x) = cos (3x) at various points in [0, $2\pi/3$] are listed in the following table:

х	0	п/6	п/3	п/2	2п/3	5п/6
$\psi(x) = \cos(3x)$	1	0	-1	0	1	0

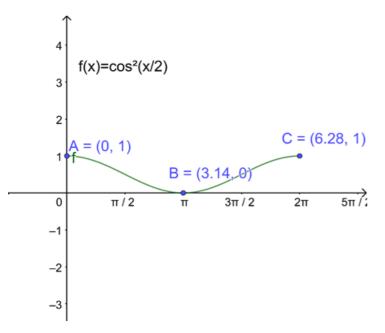
By plotting the above points, we obtain the required curve.

$$f(x)=\cos(3x)$$

$$f(x$$

1 F. Question

Sketch the graphs of the following trigonometric functions :


$$u(x) = \cos^2 \frac{x}{2}$$

Answer

We know that f (x) = $\cos x$ is a periodic function with period 2π .

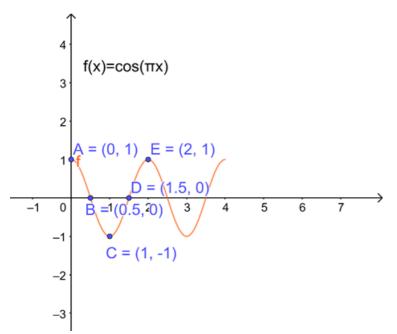
 \therefore u (x) = cos² (x/2) is a periodic function with period π . So, we will draw the graph of u (x) = cos² (x/2) in the interval [0, π]. The values of u (x) = cos² (x/2) at various points in [0, π] are listed in the following table:

х	0	п	2п	3п
$u(x) = \cos^2(x/2)$	1	0	1	0

1 G. Question

Sketch the graphs of the following trigonometric functions :

 $f(x) = \cos \pi x$


Answer

We know that g (x) = $\cos x$ is a periodic function with period 2π .

 \therefore f (x) = cos (π x) is a periodic function with period 2. So, we will draw the graph of f (x) = cos (π x) in the interval [0, 2]. The values of f (x) = cos (π x) at various points in [0, 2] are listed in the following table:

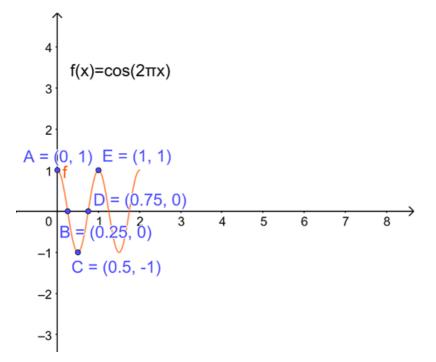
х	0	1/2	1	3/2	2	5/2
f (x) = cos (пx)	1	0	-1	0	1	0

By plotting the above points, we obtain the required curve.

1 H. Question

Sketch the graphs of the following trigonometric functions :

 $g(x) = \cos 2\pi x$


Answer

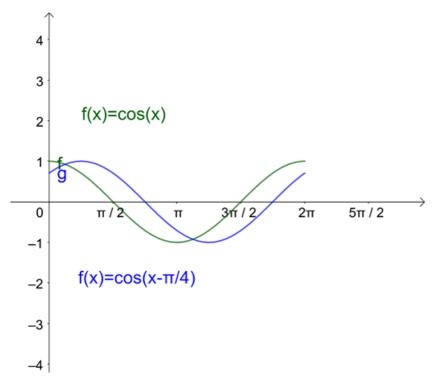
We know that f (x) = $\cos x$ is a periodic function with period 2π .

 \therefore g (x) = cos (2 π x) is a periodic function with period 1. So, we will draw the graph of g (x) = cos (2 π x) in the interval [0, 1]. The values of g (x) = cos (2 π x) at various points in [0, 1] are listed in the following table:

х	0	1/4	1/2	3/4	1	5/4	3/2	7/4	2
g (x) = cos (2nx)	1	0	-1	0	1	0	-1	0	1

By plotting the above points, we obtain the required curve.

2 A. Question


Sketch the graphs of the following curves on the same scale and the same axes :

$$y = \cos x$$
 and $y = \cos \left(x - \frac{\pi}{4} \right)$

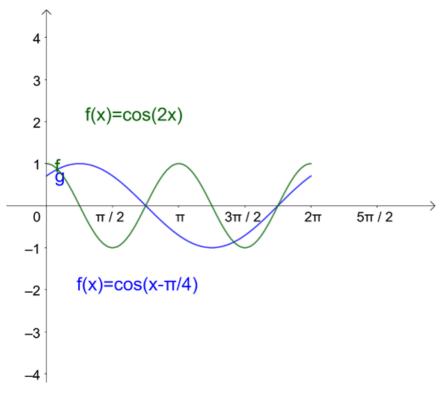
Answer

We observe that the functions $y = \cos x$ and $y = \cos (x - \pi/4)$ are periodic functions with periods π and π . The values of these functions are tabulated below:

Х	0	п/4	п/2	3п/4	п	5п/4	3п/2	7n/4
y = cos x	1	1/√2 = 0.7	0	-1/√2 = -0.7	-1	-1/√2 = -0.7	0	1
у = cos (x-п/4)	1/√2 = 0.7	1	1/√2 = 0.7	0	-1/√2 = -0.7	-1	-1/√2 = -0.7	0

2 B. Question

Sketch the graphs of the following curves on the same scale and the same axes :


 $y = \cos 2x$ and $y = \cos \left(x - \frac{\pi}{4} \right)$

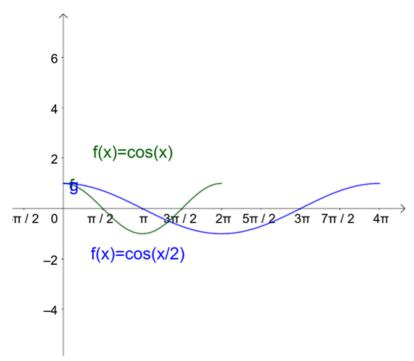
Answer

We observe that the functions $y = \cos 2x$ and $y = \cos 2(x - \pi/4)$ are periodic functions with periods π and π .

The values of these functions are tabulated below:

х	0	п/4	п/2	3п/4	п	5n/4	3п/2	7n/4
y = cos 2x	1	0	-1	0	1	0	-1	0
y = cos 2(x-п/4)	0	1	0	-1	0	1	0	-1

Sketch the graphs of the following curves on the same scale and the same axes :


 $y = \cos x$ and $y = \cos \frac{x}{2}$

Answer

We observe that the functions $y = \cos x$ and $y = \cos (x/2)$ are periodic functions with periods π and π .

The values of these functions are tabulated below:

х	0	п/2	п	3п/2	2п
y = cos x	1	0	-1	0	1
$y = \cos(x/2)$	1	1/√2	0	-1/√2	-1
		= 0.7		= -0.7	

2 D. Question

Sketch the graphs of the following curves on the same scale and the same axes :

 $y = \cos^2 x$ and $y = \cos x$

Answer

We observe that the functions $y = \cos^2 x$ and $y = \cos (x)$ are periodic functions with period 2π .

The values of these functions are tabulated below:

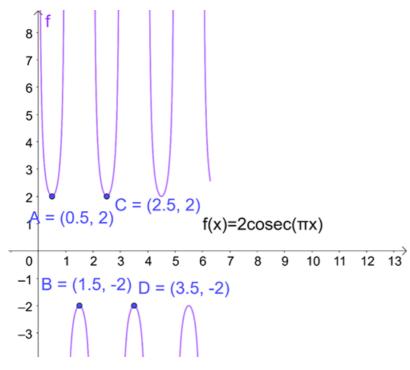
Х	0	п/2	п	3п/2	2п
$y = \cos^2 x$	1	0	1	0	1
y = cos x	1	0	-1	0	1

By plotting the above points, we obtain the required curve.

Exercise 6.3

1. Question

Sketch the graphs of the following functions :


 $f(x) = 2 \operatorname{cosec} \pi x$

Answer

We know that g (x) = cosec x is a periodic function with period 2π .

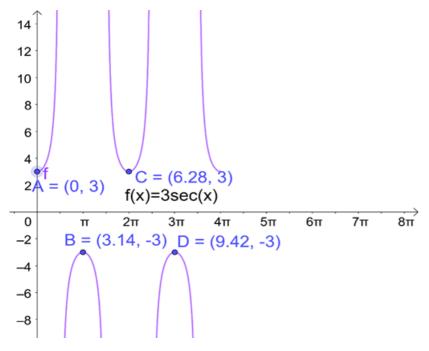
 \therefore f (x) = 2 cosec (π x) is a periodic function with period 2. So, we will draw the graph of f (x) = 2 cosec (π x) in the interval [0, 2]. The values of f (x) = 2 cosec (π x) at various points in [0, 2] are listed in the following table:

х	0	1/2	1	1-	3/2	2-	2	5/2
f (x) = 2 cosec (пx)	ø	2	8	-00	-2	-00	8	2

2. Question

Sketch the graphs of the following functions :

 $f(x) = 3 \sec x$


Answer

We know that g (x) = sec x is a periodic function with period π .

 \therefore f (x) = 3 sec (x) is a periodic function with period π . So, we will draw the graph of f (x) = 3 sec (x) in the interval [0, π]. The values of f (x) = 3 sec (x) at various points in [0, π] are listed in the following table:

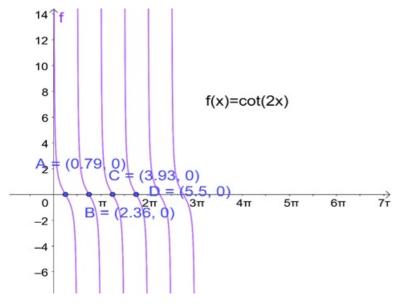
х	0	п/2	п/2-	п	3п/2-	3п/2	2п	5n/2
$f(x) = 3 \sec(x)$	3	8	-∞	-3	-∞	8	3	8

By plotting the above points, we obtain the required curve.

3. Question

Sketch the graphs of the following functions :

 $f(x) = \cot 2x$


Answer

We know that g (x) = cot x is a periodic function with period π .

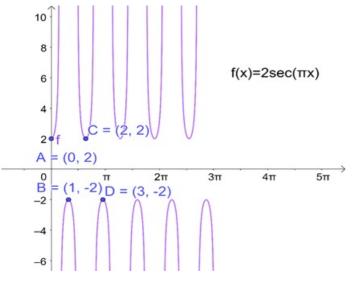
 \therefore f (x) = cot (2x) is a periodic function with period π . So, we will draw the graph of f (x) = cot (2x) in the interval [0, π]. The values of f (x) = cot (2x) at various points in [0, π] are listed in the following table:

х	0	п/4	п/2-	п/2 +	3п/4	П-
$f(x) = \cot(2x)$	$\rightarrow \infty$	0	-∞	→∞	0	-00

By plotting the above points, we obtain the required curve.

4. Question

Sketch the graphs of the following functions :


 $f(x) = 2 \sec \pi x$

Answer

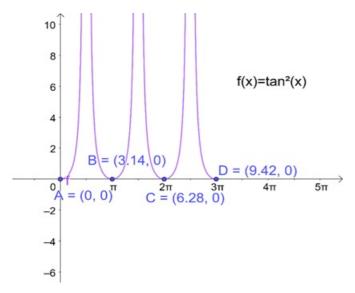
We know that g (x) = sec x is a periodic function with period π .

 \therefore f (x) = 2 sec (π x) is a periodic function with period 1. So, we will draw the graph of f (x) = 2 sec (π x) in the interval [0, 1]. The values of f (x) = 2 sec (π x) at various points in [0, 1] are listed in the following table:

х	0	1/2+	1/2-	1	3/2 -	3/2	2
f (x) = 3 sec (x)	2	ø	→-∞	-2	-00	8	2

Sketch the graphs of the following functions :

 $f(x) = tan^2 x$


Answer

We know that g (x) = tan x is a periodic function with period π .

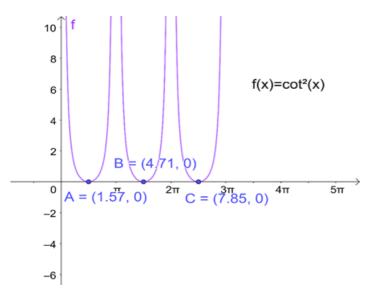
 \therefore f (x) = tan² (x) is a periodic function with period π . So, we will draw the graph of f (x) = tan² (x) in the interval [0, π]. The values of f (x) = tan² (x) at various points in [0, π] are listed in the following table:

х	0	п/2	п/2	П	3п/2	3п/2	2п
$f(x) = tan^{2}(x)$	0	[∞]	$\rightarrow \infty$	0	8	$\rightarrow \infty$	0

By plotting the above points, we obtain the required curve.

6. Question

Sketch the graphs of the following functions :


 $f(x) = \cot^2 x$

Answer

We know that g (x) = cot x is a periodic function with period π .

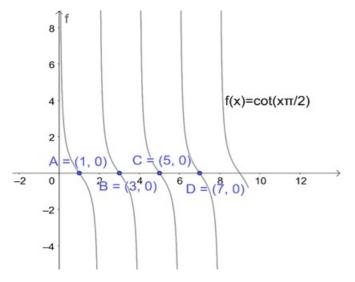
 \therefore f (x) = cot² (x) is a periodic function with period π . So, we will draw the graph of f (x) = cot² (x) in the interval [0, π]. The values of f (x) = cot² (x) at various points in [0, π] are listed in the following table:

x	0	п/2	п	п	3п/2	2п
$f(x) = \cot^2(x)$	$\rightarrow \infty$	0	8	$\rightarrow \infty$	0	8

7. Question

Sketch the graphs of the following functions :

$$f(x) = \cot \frac{\pi x}{2}$$


Answer

We know that g (x) = cot x is a periodic function with period π .

 \therefore f (x) = cot (π x/2) is a periodic function with period 2. So, we will draw the graph of f (x) = cot (π x/2) in the interval [0, 2]. The values of f (x) = cot (π x/2) at various points in [0, 2] is listed in the following table:

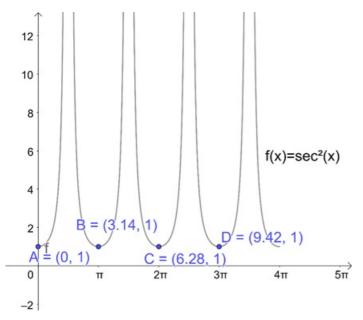
х	-2	-1	0-	0 +	1	2
$f(x) = \cot(\pi x/2)$	$\rightarrow \infty$	0	→ -∞	+ 8	0	$\rightarrow -\infty$

By plotting the above points, we obtain the required curve.

8. Question

Sketch the graphs of the following functions :

 $f(x) = \sec^2 x$


Answer

We know that g (x) = sec x is a periodic function with period π .

 \therefore f (x) = sec² (x) is a periodic function with period π . So, we will draw the graph of f (x) = sec² (x) in the interval [0, π]. The values of f (x) = sec² (x) at various points in [0, π] are listed in the following table:

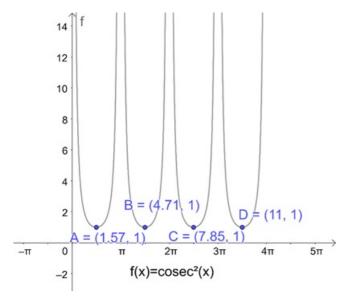
х	0	п/2	п/2	п	3п/2	3п/2	2п
$f(x) = sec^{2}(x)$	1	→∞	→-∞	1	→∞	→-∞	1

By plotting the above points, we obtain the required curve.

9. Question

Sketch the graphs of the following functions :

 $f(x) = cosec^2 x$


Answer

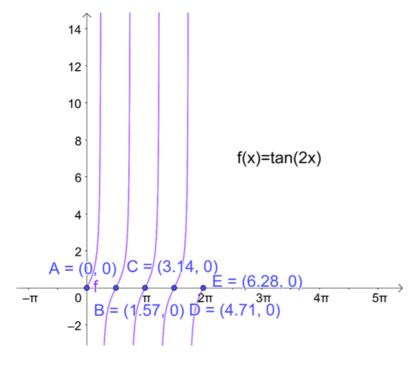
We know that g (x) = cosec x is a periodic function with period 2π .

 \therefore f (x) = cosec² (x) is a periodic function with period 2 π . So, we will draw the graph of f (x) = cosec² (x) in the interval [0, 2 π]. The values of f (x) = cosec² (x) at various points in [0, 2 π] are listed in the following table:

х	0	п/2	П	п	3п/2	2п
$f(x) = cosec^2(x)$	→-∞	1	48	→-∞	1	→∞

By plotting the above points, we obtain the required curve.

10. Question


Sketch the graphs of the following functions :

Answer

We know that g (x) = tan x is a periodic function with period π .

 \therefore f (x) = tan (2x) is a periodic function with period $\pi/2$. So, we will draw the graph of f (x) = tan (2x) in the interval [0, $\pi/2$]. The values of f (x) = tan (2x) at various points in [0, $\pi/2$] are listed in the following table:

Х	-3n/4	-п/2	-п /4	-п/4	0	п/4	п/4	п /2	3п/4
f(x) = tan (2x)	→-∞	0	→ ∞	→ -∞	0	→∞	→ -∞	0	→ ∞

