11.7 Alternating Series

1216. The Alternating Series Test (Leibniz's Theorem)

Let $\{a_n\}$ be a sequence of positive numbers such that $a_{n+1} < a_n$ for all n.

$$\lim_{n\to\infty}a_n=0.$$

Then the alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ and $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ both converge.

1217. Absolute Convergence

- A series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.
- If the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent then it is convergent.

1218. Conditional Convergence

A series $\sum_{n=1}^{\infty} a_n$ is conditionally convergent if the series is convergent but is not absolutely convergent.