12.2 Probability Formulas

Events: A, B Probability: P

Random variables: X, Y, Z

Values of random variables: x, y, z

Expected value of X: μ

Any positive real number: ε

Standard deviation: σ

Variance: σ^2

Density functions: f(x), f(t)

1259. Probability of an Event

$$P(A) = \frac{m}{n}$$
,

where

m is the number of possible positive outcomes, n is the total number of possible outcomes.

1260. Range of Probability Values $0 \le P(A) \le 1$

1261. Certain Event P(A)=1

1262. Impossible Event P(A)=0

1263. Complement $P(\overline{A}) = 1 - P(A)$

1264. Independent Events P(A/B) = P(A), P(B/A) = P(B)

1265. Addition Rule for Independent Events $P(A \cup B) = P(A) + P(B)$

where f is the density function.

- **1288.** Exponential Density Function $f(t) = \lambda e^{-\lambda t}$, $\mu = \lambda$, $\sigma^2 = \lambda^2$ where t is time, λ is the failure rate.
- **1289.** Exponential Distribution Function $F(t)=1-e^{-\lambda t}$, where t is time, λ is the failure rate.
- 1290. Expected Value of Discrete Random Variables

$$\mu = E(X) = \sum_{i=1}^{n} x_i p_i ,$$

where x_i is a particular outcome, p_i is its probability.

1291. Expected Value of Continuous Random Variables

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

1292. Properties of Expectations

$$E(X+Y)=E(X)+E(Y),$$

$$E(X-Y)=E(X)-E(Y),$$

$$E(cX) = cE(X),$$

$$E(XY) = E(X) \cdot E(Y),$$

where c is a constant.

1293. $E(X^2)=V(X)+\mu^2$,

where

$$\mu = E(X)$$
 is the expected value,

V(X) is the variance.

1294. Markov Inequality

$$P(X > k) \le \frac{E(X)}{k}$$

where k is some constant.

1295. Variance of Discrete Random Variables

$$\sigma^2 = V(X) = E[(X - \mu)^2] = \sum_{i=1}^n (x_i - \mu)^2 p_i$$
,

where

x; is a particular outcome,

p_i is its probability.

1296. Variance of Continuous Random Variables

$$\sigma^2 = V(X) = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

1297. Properties of Variance

$$V(X+Y)=V(X)+V(Y),$$

$$V(X-Y)=V(X)+V(Y),$$

$$V(X+c)=V(X),$$

$$V(cX) = c^2V(X),$$

where c is a constant.

1298. Standard Deviation

$$D(X) = \sqrt{V(X)} = \sqrt{E[(X - \mu)^2]}$$

1299. Covariance

$$cov(X,Y) = E[(X - \mu(X))(Y - \mu(Y))] = E(XY) - \mu(X)\mu(Y),$$

where

X is random variable,

V(X) is the variance of X,

 μ is the expected value of X or Y.

1300. Correlation

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{V(X)V(Y)}},$$

where

V(X) is the variance of X,

V(Y) is the variance of Y.