CHAPTER -15
TRIGGERS

What is a Trigger :

A trigger is a stored procedure that defines an action the database automatically initiates when some
database related events such as INSERT, UPDATE OR DELETE occurs.

Why Triggers:

A trigger is a fragment of code that you tell Oracle to run before or after a table is modified. A
trigger has the power to :-
mmake sure that a column is filled in with default information
mmake sure that an audit row is inserted into another table
mafter finding that the new information is inconsistent with other stuff in the database, raise an error that

will cause the entire transaction to be rolled back

mThe different types of integrity constraints providéezlarativemechanism to associate “simple”
conditions with a table such as a primary key, foreign keys or domain constraints.

mComplex integrity constraints that refer to several tables and attributes cannot be specified within table
definitions.Triggersin contrast, provide a procedural technique to specify and maintain integrity
constraints.

Triggers Vs Procedures:

mTriggers Execute Implicitly while Procedure execute explicitly.

mlt do not accept arguments while Procedures may or may not have arguments.

mTriggers are fired for DML(Insert, Update or Delete) statements while procedures execute all DML
statements including SELECT.

Trigger Vs constraints:

mTriggers affect only the row added after the trigger is enabled.

mAffects all the rows in a table

Syntax

CREATE [OR REPLACE] TRIGGER t rigger_name
Before/ after insert/update/ delete

[of columnname]
ONtable_name

[For each Row]

BEGIN

SQL statements;
END [triggername];

The structure of a row-level

CREATE OR REPLACE TRIGGER**trigger name***
When
ON
which table

FOR EACH ROW
conditions for firing

begin
stuff to do

end;

Components of a trigger definition :
trigger name

create[or replace] trigger <trigger name
m trigger time point
before| after
m triggering event(s)
insert or update[of <column(sy] or delete on<table>
m trigger type(optional)
for each row
m trigger restriction(only for for each rowtriggers !)
when (<conditior>)
m trigger body
<PL/SQL block

Executing Triggers
When using SQL*Plus, you have to providécharacter to get the program to evaluate a trigger or
PL/SQL function definition. You then have to sapow errors" if you want SQL*Plus to print out what
went wrong. Unless you expect to write perfect code all the time, it can be convenient to leave these
SQL*Plus incantations in your .sq| files.

Types of Triggers

HRow level triggers

EStatement Level Trigger

mBefore and after Trigger

Hminstead of Trigger

ETrigger on system events and user events

Example: 1

SQL> Create or replace trigger empcount

After insert on emp

For each row

Declare

n integer,
Begin
Select count(*) into n from emp;
dbms_output.put_line(‘total no. of records in a table is : ‘||n);

End;

Accessing coloumn values :
B :old .<colomn name>
B :new. <Colomn name>

=* Points to Remember *

* Only with a row trigger it is possible to access the attribute values of a tuple before and after the
modification (because the trigger is executed once for each row).

* For anupdatetrigger, the old attribute value can be accessed usidg columre and the new
attribute value

can be accessed usimgw.<columrs.
* For aninsert trigger, only:new.<columr> can be
Used.

* for a deletetrigger only:old.<columr> can be used (because there exists no old, respectively, new
value of the tuple). In these casegw.<columr> refers to the attribute value stolumre of the inserted
tuple, andold.<columre refers to the attribute value of

<columre of the deleted tuple.

In a row trigger thus it is possible to specify comparisons between old and new attribute values in the
PL/SQL block,
e.g., if :old .SAL < :new.SAL then. ..".

If for a row trigger the trigger time poibeforeis specified, it is even possible to modify the new values of
the row, e.g.;new.SAL :=:new.SAL * 1.05 or:new.SAL :=:old.SAL.

Such modifications are not possible watiter row triggers.

Example : 1

SQL> Create or replace trigger empcount
Before delete on emp
For each row
Declare
n integer;
Begin
select count(*) into n from emp;
Dbms_output.put_line(‘total no. of records in a table is : ‘||n);
End;

Example : 2

SQL> Create or replace trigger EMPUPD
Before update on emp
For each row
Begin
if :new.salary<:old.salary then
Dbms_output.put_line(‘Salary can not be reduced’);
End;

Example : 3

statement level trigger-
SQL> Create or replace trigger EMPUPD
Before update on emp
Begin
if :new.salary<:old.salary then
Dbms_output.put_line(‘Salary can not be reduced’);
End,;

Example 4:

SQL> Create or replace trigger EMPUPD
After update on emp
n number;
Begin
select count(*) into n from emp;
Dbms_output.put_line(‘Total Records in table EMP :’||n);
End;

Enabling a Trigger is:
ALTER TRIGGERtrigger_nameENABLE;

For example:

If you had a trigger called orders_before_insert,
you could enable it with the following command:
ALTER TRIGGER orders_before_insert ENABLE;

Disable a Trigger
syntax :

ALTER TRIGGERtrigger_nameDISABLE;
For example:
ALTER TRIGGER orders_before_insert DISABLE;

Drop a Trigger
syntax :
DROP TRIGGERrigger_name

For example:
DROP TRIGGER orders_before_insert;

Example:

create or replace triggercheck_budget EMP

after insert or update of SAL, DEPTNOon EMP

declare

cursor DEPT_CURIs selectDEPTNO, BUDGETrom DEPT;
DNO DEPT.DEPTNG®@6TYPE;

ALLSAL DEPT.BUDGET%TYPE;

DEPT_SALnumber;

begin

openDEPT_CUR;

loop
fetch DEPT_CURIinto DNO, ALLSAL,;
exit whenDEPT_CURANOTFOUND ;
selectsum(SAL)into DEPT_SALfrom EMP where DEPTNO = DNO;
if DEPT_SAL > ALLSALthen
raise_application_error(-20325, 'Total of salaries in the department '|| to_char(DNO) || ' exceeds
budget’);
end if;
end loop;
closeDEPT_CUR,;
end;/
More about triggers :
Triggers are not exclusively used for integrity maintenance. They can also be used for
* Monitoring purposes, such as the monitoring of user accesses and modifications on certain sensitive
tables.
* Logging actions, e.g., on tables:
Contd..
create trigger LOG EMP
after insert or update or delete onEMP
begin
if inserting then

insert into EMP LOGvaluequser, 'INSERT’, sysdatg;

end if ;
if updating then

insert into EMP LOGvaluequser, 'UPDATE’, sysdate);
end if ;

if deleting then
insert into EMP LOGvaluequser, 'DELETE’, sysdate);
end if ;
end;

By using a row trigger, even the attribute values of the modified tuples can be stored in the table EMP LOG.

» automatic propagation of modifications. For example, if a manager is transferred to another
department, a trigger can be defined that automatically transfers the manager’'s employees to the new
department.

More about Triggers

If a trigger is specified within the SQL*Plus shell, the definition must end with a point “.” in the last
line. Issuing the commandn causes SQL*Plus to compile this trigger definition.

A trigger definition can be loaded from a file using the command @. Note that the last line in the file
must consist of a slash “/”.

A trigger definition cannot be changed, it can only be re-created usiog thplace clause.

The commandirop <trigger name deletes a trigger.

After a trigger definition has been successfully compiled, the trigger automatically is enabled.

The commandlter trigger <trigger name disableis used to deactivate a trigger. All

triggers defined on a table can be (de)activated using the command

alter table <Tablename enable| disable all trigger;

The data dictionary stores information about triggers in the table USER TRIGGERS. The information
includes the trigger name, type, table, and the code for the PL/SQL block.

Difference b/w For and Do Loops: When No. of repetitions are known then For loop is used, and if the
No. of iterations are unknown then do loops are used.

Difference b/w While and Until: While means as long as the condition is true, the loop execute the body

Whereas Until means as long as the condition is not true, the loop repeats

Exiting from Loop: Exit statement helps to terminate any of the loops directly.
EXIT DO : To terminate any Do loop
EXIT FOR : To terminate for loop

Use of For Each ... Next Loop: It is used to repeat a group of statements for each element in a dynamic

array as we are not sure about the size of the array.

Two Basic Operations on Arrays: Traversing means processing each element of the array

Searching means to find a given element in array.

Calling Procedure ; It's a procedure that calls another procedure.

Called/Caller Procedure ; The procedure being called is known as Called / Caller Procedure.
Actual Parameters : Theparameters provided by calling procedures are actual.

Formal Parameters : The parameters received by called procedures are formal.

A sub procedure may call in two ways:

With a call statement - Call procedure-name (actual arguments list) Eg: Call abc (x,y)
Without call statement- procedure — name actual arguments Eg: abc x, y

If Private/Public keyword is not specified with a procedure then the procedure beleabies
The value being returned by the function is assigned to the function name, which automatically returns it to

the calling procedure or function. A function may return only one value.

*Sub procedure does not return a value, so a call to a sub procedure is a complete statement.
* Function procedure returns a value, so a call to a function procedure is part of an expression.
In a procedure, optional parameters are declared in argument list from right hand side.
Sub OptProcedure(ByVal X as Integer, ByVal Y as InteBgWal Optional Z as Integer)
VB Passes an argumey Reference by default.
Exit sub andExit Function statements can be used to Exit from a sub procedure or a function procedure.

If a variable is declared aBUBLIC A as Integerin form1 and it'svalue is 20 then it can be used in

form2 asforml1.A.

List the variable scopes in decreasing lifespaJBLIC, MODULE, STATIC, LOCAL

Try this:
Sub MyProcl ()

Dim A as Integer

A=12
Print A
Call MyProc2 (A)
A=A+2
Print A
End Sub
Sub MyProc2 (B as Integer)
Print B
B=B+10
Print B
End Sub
O/Pis:
12
12
22
24

When a number is converted to a string, a leading space is always reserved for its sign.

St = Str (198) ‘Gives 198"
St = Str (-198) ‘ Gives-198”

Cint () function returns truly rounded number. Eg. : Print Cint (-14.8) will print -15.

