ICSE Paper 2016 CHEMISTRY

(Two Hours)

Answers to this Paper must be written on the paper provided separately. You will **not** be allowed to write during the first **15** minutes. This time is to be spent in reading the Question Paper. The time given at the head of this Paper is the time allowed for writing the answers. Section I is compulsory. Attempt any four questions from Section II. The intended marks for questions or parts of questions are given in brackets [].

SECTION-I (40 Marks)

(Attempt **all** questions from this Section)

C

Question 1:
(a) Fill in the blanks with the choices given in brackets. [5]
 Metals are good (oxidizing agents/reducing agents) because they are electron
(b) Choose the correct answer from the options given below: [5]
 An element with the atomic number 19 will most likely combine chemically with the element whose atomic number is: (A) 17 (B) 11 (C) 18 (D) 20 The ratio between the number of molecules in 2g of hydrogen and 32g of oxygen is: (A) 1 : 2 (B) 1 : 0.01 (C) 1 : 1 (D) 0.01 : 1 [Given that H = 1, O = 16]
 3. The two main metals in Bronze are: (A) Copper and zinc (B) Copper and lead (C) Copper and nickel (D) Copper and tin
 4. The particles present in strong electrolytes are: (A) Only molecules (B) Mainly ions (C) Ions and molecules (D) Only atoms 5. The aim of the Fountain Experiment is to prove that:
(A) HCl turns blue litmus red

- (c) Write balanced chemical equations for each of the following: [5]
 - 1. Action of warm water on AIN.

(B) HCl is denser than air

(C) HCl is highly soluble in water (D) HCl fumes in moist air.

- 2. Action of hot and concentrated Nitric acid on copper.
- 3. Action of Hydrochloric acid on sodium bicarbonate.

- 4. Action of dilute Sulphuric acid on Sodium Sulphite.
- 5. Preparation of ethanol from Ethyl Chloride.

(d) State your observations when: [5]

- 1. Dilute Hydrochloric acid is added to Lead nitrate solution and the mixture is heated.
- 2. Barium chloride solution is mixed with Sodium Sulphate Solution.
- 3. Concentrated Sulphuric acid is added to Sugar Crystals.
- 4. Dilute Hydrochloric acid is added to Copper carbonate.
- 5. Dilute Hydrochloric acid is added to Sodium thiosulphate.

(e) Identify the term/substance in each of the following: [5]

- 1. The tendency of an atom to attract electrons to itself when combined in a compound.
- 2. The method used to separate ore from gangue by preferential wetting.
- 3. The catalyst used in the conversion ofethyne to ethane.
- 4. The type of reactions alkenes undergo.
- 5. The electrons present in the outermost shell of an atom.
- (f) (i) A gas of mass 32gms has volume of 20 litres at S.T.P. Calculate the gram molecular weight of the gas.
- (ii) How much Calcium oxide is formed when 82g of calcium nitrate is heated? Also find the volume of nitrogendioxide evolved:

$$2Ca(NO_3)_2 \rightarrow 2CaO + 4NO_2 + O_2$$

(Ca = 40, N = 14, O = 16) [5]

(g) Match the salts given in Column I with their method of preparation given in Column II: [5]

Column I		Column II	
(i)	Pb(NO ₃) ₂ from PbO	(A)	Simple displacement
(ii)	MgCl ₂ from Mg	(B)	Titration
(iii)	FeCl ₃ from Fe	(C)	Neutralization
(iv)	NaNO ₃ from NaOH	(D)	Precipitation
(v)	ZnCO ₃ from ZnSO ₄	(E)	Combination

(h) (i) Write the IUPAC names of each of the following: [5]

- (ii) Rewrite the following sentences by using the correct symbol > (greater than) or < (less than) in the blanks given:
 - 1. The ionization potential of Potassium is that of Sodium.
 - 2. The electronegativity of Iodine is that of Chlorine.

Answer:

(a)

- 1. Reducing agents, donors
- 2. High
- 3. Alkaline
- 4. AgCl
- 5. Hydrogenation

(b)

- 1. (A) 17
- 2. (C) 1:1
- 3. (D) Copper and tin
- 4. (B) Mainly ions
- 5. (C) HCl is highly soluble in water.

(c)

(i)
$$AlN + 3H_2O \longrightarrow Al(OH)_3 + NH_3 \uparrow$$

(ii)
$$Cu + 4HNO_3 \longrightarrow Cu(NO_3)_2 + 2H_2O + 2NO_2$$

(iv)
$$Na_2SO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O + SO_2 \uparrow$$

(v)
$$C_2H_5Cl + KOH \longrightarrow C_2H_5OH + KCl$$

(d)

- 1. A white precipitate of lead chloride appears which dissolves on heating.
- 2. A white insoluble precipitate of Barium sulphate is obtained.
- 3. White crystals of sugar turn to a black spongy mass called sugar charcoal.
- 4. A brisk effervescence with the release of colourless, odourless, acidic gas that extinguish glowing splint i.e., carbon dioxide gas is evolved.
- 5. A colourless gas with smell of burning sulphur i.e., Sulphur dioxide is released. A yellow crystal settles at the bottom i.e., sulphur.

(e)

- 1. Electron affinity
- 2. Froth Floatation Method (concentration of ore)
- 3. Nickel
- 4. Addition reaction
- 5. Valence electron

(f)

(i) The mass of 22.4 L of gas at S.T.P. is equal to its gram molecular mass.

22.4 litres of gas will weigh =
$$\frac{32}{20} \times 22.4$$

= 35.84 gms.

≃ 36 gms.

Therefore, Gram molecular weigh of the gas is 36 gms.

Ans.

1. If 328 g of Ca(NO₃)₂ releases 112 gm of CaO

Then 82 g of
$$Ca(NO_3)_2$$
 will releases = $\frac{112}{328} \times 82$

= 28 gms of CaO

Ans.

2. If 328 g of Ca(NO₃)₂ releases 89·6l of NO₂ at STP

Then 82 g of
$$Ca(NO_3)_2$$
 will releases = $\frac{89.6}{328} \times 82$

= 22.4 litres of nitrogendioxide.

Ans.

(g)

Column I			Column II		
(i)	Pb(NO ₃) ₂ from PbO	(C)	neutralisation.		
(ii)	$MgCl_2$ from Mg	(A)	Simple displacement.		
(iii)	FeCl ₃ from Fe	(E)	Combination		
(iv)	$NaNO_3$ from $NaOH$	(B)	Titration		
(v)	ZnCO ₃ from ZnSO ₄	(D)	Precipitation		

(h) (i)

- 1. Prop-1-ene
- 2. Butr-2-yne
- 3. Ethan-1-al

(ii)

- 1. < (less than)
- 2. < (less than)

SECTION-II (40 Marks)

(Attempt **any four** questions from this section)

Question 2:

(a) Use the letters only written in the Periodic Table given below to answer the questions that follow:

[4]

- 1. State the number of valence electrons in atom J.
- 2. Which element shown forms ions with a single negative charge?
- 3. Which **metallic element** is more reactive than **R**?
- 4. Which element has its electrons arranged in four shells?
- (b) Fill in the blanks by selecting the correct word from the brackets: [2]
 - 1. If an element has a low ionization energy then it is likely to be (metallic/non metallic).
 - 2. If an element has seven electrons in its outermost shell then it is likely to have the (largest/smallest) atomic size among all the elements in the same period.
- (c) The following table shows the electronic configuration of the elements W, X, Y, Z:

Element	W	Х	Y	Z
Electronic configuration	2, 8, 1	2, 8, 7	2, 5	1

Answer the following questions based on the table above:

- 1. What type of Bond is formed between: [2]
 - 1. W and X 2. Y and Z
- 2. What is the formula of the compound formed between: [2]
 - 1. X and Z
- 2. W and X

Answer:

(a)

- 1. No. of Valence electrons in atom J = 5
- 2. Element M
- 3. Element T is more reactive than R.
- 4. Element T has its electrons arranged in four shells

(b)

- 1. Metallic
- 2. Smallest

(c) (i)

- 1. Ionic bond.
- 2. Covalent bond.

(ii)

1. X Z +1 = XZ

2.

W X -1 = WX

Question 3:

- (a) Write a balanced chemical equation for each the following: [3]
 - 1. Burning of ethane in plentiful supply of air.
 - 2. Action of water on Calcium carbide.
 - 3. Heating of Ethanol at 170°C in the presence of conc. Sulphuric acid.
- (b) Give the structural formulae of each of the following: [3]
 - 1. 2-methyl propane
 - 2. Ethanoic acid
 - 3. Butan-2-ol
- (c) Equation for the reaction when **compound** A is bubbled through bromine dissolved in carbon tetrachloride is as follows: [2]

$$A \xrightarrow{Br_2/CCl_4} CH_2Br$$

$$CH_2Br$$

- 1. Draw the structure of A.
- 2. State your observation during this reaction.
- (d) Fill in the blanks using the appropriate words given below: [2] (Sulphur dioxide, Nitrogen dioxide, Nitric oxide, Sulphuric acid)
 - 1. Cold, dilute nitric acid reacts with copper to give
 - 2. Hot, concentrated nitric acid reacts with sulphur to form

Answer:

(a)

(i)
$$2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O$$

ethane

(ii)
$$CaC_2 + 2H_2O \longrightarrow Ca(OH)_2 + C_2H_2$$
 calcium carbide Acetylene

(iii)
$$C_2H_5OH + H_2SO_4 \xrightarrow{170^{\circ}C} C_2H_5HSO_4 + H_2O$$

Ethanol $C_2H_5HSO_4 \xrightarrow{} C_2H_4 + H_2SO_4$
ethene

(b)

(c)(i) A is ethene C₂H₄

(ii) Reddish brown colour of bromine water gets decolourised.

(d)

- 1. Nitric oxide.
- 2. Sulphuric acid

Question 4:

- (a) Identify the gas evolved and give the chemical test in each of the following case: [2]
 - 1. Dilute hydrochloric acid reacts with sodium sulphite.
 - 2. Dilute hydrochloric acid reacts with iron (II) sulphide.
- **(b)** State your observations when ammonium hydroxide solution is added drop by drop and then in excess to each of the following solutions: **[2]**
 - 1. copper sulphate solution.
 - 2. zinc sulphate solution.
- (c) Write equations for the reactions taking place at the two electrodes (mentioning clearly the name of the electrode) during the electrolysis of: [4]
 - 1. Acidified copper sulphate solution with copper electrodes.
 - 2. Molten lead bromide with inert electrodes.

(d)

- 1. Name the **product formed** at the **anode** during the electrolysis of acidified water using platinum electrodes.
- 2. Name the **metallic ions** that should he present in the electrolyte when an article made of copper is to be electroplated with silver. [2]

Answer:

(a)

- Sulphur-di-oxide gas is evolved.
 Colourless, gas with smell of burning sulphur. It turns acidified potassium dichromate orange to green.
- 2. Hydrogen sulphide gas is evolved.

 Colourless gas with smell of rotten eggs. It turns lead acetate paper black.

(b)

- 1. Bluish white precipitate appears which dissolves in excess of NH₄OH and give an inky blue solution of tetra amino copper sulphate.
- 2. A gelatinous white precipitate appears which dissolves in excess of NH₄OH and give a clear transparent colourless solution of tetra amine zinc sulphate.

(c)

(i) At Anode: $Cu - 2e^- \longrightarrow Cu^{2+}$

At Cathode: $Cu^{2+} + 2e^{-} \longrightarrow Cu$

(ii) At Anode: $Br^- - e^- \longrightarrow Br$

 $Br + Br \longrightarrow Br_2$

At Cathode: $Pb^{2+} + 2e^{-} \longrightarrow Pb$

The cathode and anode both are made of graphite plate.

(d)

- 1. Oxygen gas.
- 2. Silver ions/Ag+.

Question 5:

(a) A gas cylinder contains 12×10^{24} molecules of oxygen gas.

If Avogadro's number is 6×10^{23} ; Calculate:

- (i) the mass of oxygen present in the cylinder.
- (ii) the volume of oxygen at S.T.P. present in the cylinder. [O = 16] [2]
- **(b)** A gaseous hydrocarbon contains 82.76% of carbon. Given that its vapour density is 29, find its **molecular formula**. [C = 12, H = 1] [3]
- (c) The equation $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$, represents the catalytic oxidation of ammonia. If 100 cm³ of ammonia is used calculate the volume of oxygen required to oxidise the ammonia completely.
- (d) By drawing an electron dot diagram show the formation of **Ammonium Ion** [AtomicNo. :N = 7 and H = 1] [2]

Answer:

(i) Let Mass of molecule =
$$\frac{\text{No. of Molecules}}{\text{N}_{A}} \times \text{Molecular Mass}$$

$$= \frac{12 \times 12^{24}}{6 \times 10^{23}} \times (2 \times 16)$$

$$= 2 \times 10 \times 32 = 640 \text{ g} \qquad \text{Ans.}$$
(ii) Volume of molecule = $\frac{\text{No. of molecules}}{\text{N}_{A}} \times \text{Molar Volume}$

$$= \frac{12 \times 10^{24}}{6 \times 10^{23}} \times 22 \cdot 4$$

$$= 2 \times 10 \times 22 \cdot 4$$

$$= 248 \text{ litres.}$$

(b)

Element / Compound	% Mass	Atomic or Mol. Mass	No. of Atoms	Simplest Ratio	Rounding off Ratio
C	82.76	12	$\frac{82.76}{12} = 6.89$	$\frac{6.89}{6.89} = 1$	1 × 2 = 2
н	17-24	1	$\frac{17\cdot24}{1} = 17\cdot24$	$\frac{17\cdot24}{6\cdot89} = 2\cdot5$	$2.5 \times 2 = 5$

.. The empirical formula is C2H5.

Empirical formula mass of $C_2H_5 = 12 \times 2 + 5 \times 1 = 29$.

V.D. = 29

Mol. Mass =
$$2 \times V.D$$
.

= 2×29

= 58

$$n = \frac{\text{Molecular Mass}}{\text{Emp. formula Mass}}$$

$$= \frac{58}{29} = 2$$

Molecular formula = (Empirical formula)_n

$$= (C_2H_5)_2$$

$$= C_4H_{10}.$$

Ans.

 $\begin{array}{l} \text{4 NH}_3 + 5\text{O}_2 \longrightarrow 4\text{NO} + 6\text{H}_2\text{O} \\ 4 \text{Vol.} : 5 \text{Vol.} & 5 \text{Vol} : \text{Nil} \end{array}$

If 4 volumes of NH_3 requires 5 vol. of O_2

Then 100 cm³ of NH₃ requires = $\frac{5}{4} \times 100$ = 125 cm³ oxygen. (d) Formation of NH_4^+ ion :

Question 6:

- (a) Name the gas evolved when the following mixtures are heated: [2]
 - 1. Calcium hydroxide and Ammonium Chloride.
 - 2. Sodium Nitrite and Ammonium Chloride.
- (b) Write balanced chemical equations for each of the following: [2]
- (i) When excess of ammonia is treated with chlorine.
- (ii) An equation to illustrate the reducing nature of ammonia.
- (c) A, B, C and D summarize the properties of **sulphuric acid** depending on whether it is **dilute** or **concentrated.** [3]
- A = Typical acid property
- B = Non volatile acid
- C = Oxidizing agent
- D = Dehydrating agent

Choose the property (A, B, C or D) depending on which is relevant to each of the following:

- 1. Preparation of Hydrogen chloride gas.
- 2. Preparation of Copper sulphate from copper oxide.
- 3. Action of cone. Sulphuric acid on Sulphur.

(d) Give reasons why: [3]

- 1. Sodium Chloride will conduct electricity only in fused or aqueous solution state.
- 2. In the electroplating of an article with silver, the electrolyte sodium argento-cyanide solution is preferred over silver nitrate solution.
- 3. Although copper is a good conductor of electricity, it is a non-electrolyte.

Answer:

(a)

- 1. Ammonia gas.
- 2. Nitrogen gas.

(b)

(i)
$$8NH_3 + 3Cl_2 \longrightarrow 6NH_4Cl + N_2$$

Excess

(ii)
$$3\text{CuO} + 2\text{NH}_3 \xrightarrow{\Delta} 3\text{Cu} + \text{N}_2 \uparrow + 3\text{H}_2\text{O}$$

This reaction show the reducing nature of ammonia. NH₃ reduces CuO into Cu.

(c)

- 1. B—Non volatile acid.
- A—Typical acid property.
- 3. C—Oxidizing agent.

(d)

- 1. In solid state, sodium chloride does not contain free ions so it will not conduct electricity but in fused or aqueous state it contains free mobile ions that conducts electricity.
- 2. Silver nitrate solution undergoes rapid dissociation that can cause non-uniform coating therefore it is not preferred. Whereas sodium argentocyanide to cyanide solution is a complex salt and undergoes slow decomposition and ensure smooth and uniform coating.
- 3. Copper is a metals so it conducts electricity by flow of electrons but it does not form ions so it is a non electrolyte.

Question 7:

- (a) (i) Name the **solution** used to react with **Bauxite** as a first step in obtaining pure aluminium oxide, in the Baeyer's process.
- (ii) Write the equation for the reaction where the aluminium oxide for the electrolytic extraction of aluminium is obtained by heating aluminium hydroxide.
- (iii) Name the **compound** added to pure alumina to lower the fusion temperature during the electrolytic reduction of alumina.
- (iv) Write the equation for the reaction that occurs at the cathode during the extraction of aluminium by electrolysis.
- (v) Explain why it is preferable to use a number of graphite electrodes as anode instead of a single electrode, during the above electrolysis. [5]
- (b) State what would you observe when:
 - 1. Washing Soda Crystals are exposed to the atmosphere.
 - 2. The salt ferric chloride is exposed to the atmosphere. [2]
- (c) Identify the cations in each of the following case:
 - 1. NaOH solution when added to the Solution (A) gives a reddish brown precipitate.
 - 2. NH₄OH Solution when added to the Solution (B) gives white ppt which does not dissolve in excess.
 - 3. NaOH Solution when added to Solution (C) gives white ppt which is insoluble in excess. [3]

Answer:

(a)

Caustic soda (NaOH).

(ii)
$$2Al(OH)_3 \xrightarrow{1000^{\circ}C} Al_2O_3 + 3H_2O$$

(iii) Cryolite (Na₃AlF₆)

(iv) At Cathode:
$$Al^{3+} + 3e^- \longrightarrow Al$$

(v) The gas released at the anode is oxygen which will react with the heated graphite rod and form carbon dioxide and gradually get exhausted. Taking a number of graphite rods will compensate the loss and allow the process to go on for a longer time.

(b)

- 1. Washing soda crystals are efflorescent substance. When they are exposed to atmosphere, they lose their water of crystallisation and become an amorphous powder.
- 2. Ferric chloride is a deliquescent substance. When they are exposed to atmosphere, it will absorb water vapour and dissolve in it.

(c)

- 1. Ferric ion/Fe³⁺.
- 2. Lead ion/Pb²⁺.
- 3. Calcium ions/Ca²⁺.