ICSE Paper 2012

CHEMISTRY

SECTION-I (40 Marks)

Attempt all questions from this Section

Question 1.

(a)

(i)

13

- Name the gas in each of the following : (i)
 - The gas evolved on reaction of Aluminium with boiling concentrated caystic alkali solution.
- The gas produced when excess ammonia reacts with chlorine. (ii) (iii)
- A gas which turns acidified potassium dichromate clear green. (iv)
- The gas produced when copper reacts with concentrated nitric acid.
- The gas produced on reaction of dilute sulphuric acid with a metallic (v) sulphide. [5]
- State one observation for each of the following : **(b)**
 - Excess ammonium hydroxide solution is added to lead nitrate solution. (i)
 - Bromine vapours are passed into a solution of ethyne in carbon (ii)
 - A zinc granule is added to copper sulphate solution. (iii) (iv)
 - Zinc nitrate crystals are strongly heated. (v)
 - Sodium hydroxide solution is added to ferric chloride solution at first a little and then in excess.
- Some word / words are missing in the following statements. You are required to (c) rewrite the statements in the correct form using the appropriate word/words :
 - Ethyl alcohol is dehydrated by sulphuric acid at a temperature of about
 - Aqua regia contains one part by volume of nitric acid and three parts by (ii) volume of hydrochloric acid. (in)
 - Magnesium nitride reacts with water to liberate ammonia.
 - Cations migrate during electrolysis. (V)
- Magnesium reacts with nitric acid to liberate hydrogen gas. (**d**) Choose the correct answer from the options given below :

[5]

- An element in period-3 whose electron affinity is zero.
- [5]
- (A) Neon (B) Sulphur (C) Sodium (D) Argon An alkaline earth metal. (ii) (A) Potassium **(B)** Calcium(C) Lead (D) Copper The vapour density of carbon dioxide [C = 12, O = 16](iii) (A) 32 (B) 16 (C) 44
 - (D) 22

×	(iv) Identify the weak electroly of	Chemistry, 2012 731
	in a weak electrolyte fro	m the following
	(A) Sodium Chloride solution (C) Dilute S. L.	(B) Dilute Hydrochloric acid
	 (C) Dilute Sulphuric acid (v) Which of the following 	
1	(V) which of the following metall	(D) Aqueous acetic acid ic oxides cannot be reduced by normal
		in the reduced by normal
•	(A) Magnesium oxide	(B) Copper(II) oxide
i - ,	(C) Zinc oxide	(D) Iron(III) oxide
	(e) Match the following :	
	Column A	(5)
	1. Acid salt	
	2. Double salt	A. Ferrous ammonium sulphate
	3. Ammonium hydroxide solution	B. Contains only ions
	4. Dilute hydrochloric acid	C. Sodium hydrogen sulphate
1	5. Carbon tetrachloride	D. Contains only molecules
i u		F Conduit
1 C	Give the structural formula for the follo (i) Methanoic good	owing :
	(1) Meinanoic acid	
		ана. Ала
		· · · · · · · · · · · · · · · · · · ·
	(v) 2-methyl propane	4 · · · ·
/	Y Concentrated nitric acid oxidises phose the following equation :	bhorus to phosphoric:! [5]
1	the following equation :	to phosphoric acia according to
	$P + 5HNO_3$ (conc.) \longrightarrow If 9.3g of phosphorus was used in the	$H_3PO_4 + H_0O + 5NO$
	o I I woopiloi us wus uspa in the me	
	indica Ul Dhoshhorie ta	h and
	ine muss of phosphoric acid form	x x
1	(III) The volume of nitropen dioride mu	duced at STP
(h)	- $ -$	
	Give reasons for the following : (i) Iron is rendered proving :	[2]
Ç	the chuckey of Dussille with firms	g nitric acid.
т.	a solution of sodum chio	mini al a seconda de la seconda de
Ans	(v) Hydrogen chloride gas cannot be dr.	ied over quick 1:
(a)	(i) Hydrogen	
	(iv) Nitrogen (ii) Nitrogen	i (iii) Sulphur dioxide
(b)	(i) Insoluble chalky white and fill interview.	n sulphide
	and chidley with a pot of load t	ydroxide is obtained.
	(iii) The blue colour of coppor sub-	iter disappears.
	(iv) Reddish brown fumes of nitra	olution disappears.
	a glowing splint are released to	oxide a colourless gas that rekindles
	yellow when hot and white when cal	, a ppt is left which is
	(v) Insoluble reddish brown ppt obtained	1. J)
	and the obtained	I

÷

.

(c)	(i) Ethyl alcohol is dehydrated temperature of about 170°C.	d by <u>concentrated</u> sulphuric acid at a				
2	 (ii) Aqua regia contains one part three parts by volume of <u>conc</u> 	t by volume of <u>concentrated</u> nitric acid and <u>centrated</u> hydrochloric acid.				
	· ·	th <u>boiling</u> water to liberate ammonia.				
2		Cations migrate <u>to cathode</u> during electrolysis.				
· •.		<u>dilute</u> nitric acid to liberate hydrogen gas.				
(d)		-Calcium (iii) D-22				
- -	(iv) D-Aqueous acetic acid(v) A-	-Magnesium oxide				
(e)	Column A	Column B				
	1. Acid salt	C. Sodium hydrogen sulphate				
	2. Double salt	A. Ferrous ammonium sulphate				
č	3. Ammonium hydroxide solution					
5.	4. Dilute hydrochloric acid	B. Contains only ions				
	5. Carbon tetrachloride	D. Contains only molecules				
(f)	(i) Methanoic acid :	(ii) Ethanal :				
	O	H O				
	и Н—С—О—Н	 H—C-—C—H				
		1				
	(iii) Ethyne :	H				
	$H - C \equiv C - H$					
	(iv) Acetone :					
		H				
•	CH ₃					
245	C = O OR	$H \rightarrow C = O$				
	CH ₃	Н				
	•••					
		H				
	$\begin{array}{c c} \mathbf{H} & \mathbf{CH}_{3} \mathbf{H} \\ \mathbf{H} & \mathbf{H} \end{array}$					
	(v) $H - C_1 - C_2 - C_3 - H$					
	 H H H					
(g)	$P + 5HNO_3 \longrightarrow H_3PO_4 + H_2O + 4$	5NO.				
·.· ·	31 3×1+31+16×4	5×22·4				
		= 112 l				
50	(i) No. of moles of P = $\frac{9\cdot3}{31} = 0\cdot3$ mo	oles. Ans.				
	•					

(ii) Mass of H_3PO_4 :

If 31 gm of P produces 98 gm of H₃PO₄

Then $9.3 \text{ gm of P produces} = \frac{98}{31} \times 9.3$

= 29.39 = 29.4 gm.

(iii) Volume of nitrogen dioxide at STP :
 If 31 gm of P releases 112l of NO₂ at STP

Then 9.3 gm of P releases

$$O_2 \text{ at STP} = \frac{112}{31} \times 9.3$$

= 33.59 = 33.6 l.

Ans.

Ans.

ide

- (h) (i) Conc. HNO₃ being a strong oxidising agent oxidises iron, forming a layer that makes iron non reactive or passive.
 - (ii) Aqueous solution of sodium chloride contains mobile ions like Na⁺, Cl⁻, H^+ , OH⁻, H_3O^+ etc. so they conduct electricity.
 - (iii) Atomic size decreases and nuclear charges increases as we move from left to right in a period so energy required to remove one electron from the valence shell increases from left to right thus ionisation potential increases.
 - (iv) Alkali metals readily lose electrons from their valence shell and get oxidised. So they behave as good reducing agents.
 - (v) Hydrogen chloride is acidic whereas quick lime is basic. So they will react with each other hence quick lime can not be used to dry hydrogen chloride.

SECTION-II (40 marks)

(Answer any **four** questions from this section)

Question 2.

Some properties of sulphuric acid are listed below. Choose the role played by sulphuric acid as A, B, C or D which is responsible for the reactions (i) to (v). Some role/s may be repeated.

- A. Dilute acid.
- B. Dehydrating agent.
- C. Non-volatile acid
- D. Oxidising agent

(i)
$$CuSO_4.5H_0O \xrightarrow{Conc. H_2SO_4} CuSO_4 + 5H_0O$$

- (ii) $S + H_2SO_4$ (conc.) $\longrightarrow 3SO_2 + 2H_2O$
- (iii) NaNO₃ + H₂SO₄ (conc.) $\xrightarrow{<200^{\circ}C}$ NaHSO₄ + HCl

(iv) $MgO + H_2SO_4 \longrightarrow MgSO_4 + H_2O$

(x) Zn + 2H₂SO₄ (conc.) \longrightarrow ZnSO₄ + SO₂ + 2H₂O

Give balanced equations for the following reactions :

(i) Dilute nitric acid and Copper carbonate.

(ii) Concentrated hydrochloric acid and Potassium permanga⁺

(iii) Ammonia and Oxygen in the presence of a catalyst.

(iv) Silver nitrate solution and Sodium chloride solution.

(v) Zinc sulphide and Dilute sulphuric acid.

Answer:

(a) (i)	B – Dehydrating agent.
----------------	------------------------

(ii) D-Oxidising agent

(iii) C - Non-volatile acid

- (iv) A - Dilute acid.
- (v) D-Oxidising agent
- $CuCO_3 + 2HNO_3 \longrightarrow Cu(NO_3)_2 + H_2O + CO_2$ (i)
 - $2\textbf{KMnO}_4 + 16\text{HCl} \longrightarrow 2\text{KCl} + 2\text{MnCl}_2 + 8\text{H}_2\text{O} + 5\text{Cl}_2$ **(ii)**
 - $4\mathbf{NH}_3 + 5\mathbf{O}_2 \xrightarrow{\mathbf{Pt}} 4\mathbf{NO} + 6\mathbf{H}_2\mathbf{O}$ (iii)
- $AgNO_3 + NaCl \longrightarrow AgCl + NaNO_3$ (iv)
- $ZnS + H_2SO_4 \longrightarrow ZnSO_4 + H_2S$ **(v)**

Question 3.

(b)

- Select the correct answer from the list given in brackets : **(a)**
 - An aqueous electrolyte consists of the ions mentioned in the list, the ion (i) which could be discharged most readily during electrolysis.

 $[Fe^{2+}, Cu^{2+}, Pb^{2+}, H^+]$

- The metallic electrode which does not take part in an electrolytic **(ii)** reaction.
- [Cu, Ag, Pt, Ni]. The ion which is discharged at the anode during the electrolysis of (iii) copper sulphate solutions using copper electrodes as anode and cathode.
- $[Cu^{2+}, OH^{-}, SO_4^{2-}, H^{+}]$ When dilute sodium chloride is electrolysed using graphite electrodes, (iv) the cation is discharged at the catode most readily.

 $[Na^+, OH^-, H^+, Cl^-]$

- During silver plating of an article using potassium argentocyanide as an (v) electrolyte, the anode material should be [Cu, Ag, Pt, Fe]. [5]
- Match the properties and uses of alloys in List 1 with the appropriate answer **(b)** from List 2.

-	List 1	Τ	List 2
1.	The alloy contains Cu and Zn, is hard, silvery and is used in decorative articles.	1	Duralumin
2.	It is stronger than Aluminium, light and is used in making light tools.	B .	Brass
3.	It is lustrous, hard, corrosion resistant and used in surgical instruments.	С.	Bronze
1.	Tin lowers the melting point of the alloy and is used for soldering purpose.	D.	Stainless steel
5. r)	The alloy is hard, brittle, takes up polish and is used for making statues.	E.	Solder

(g) P + 5HN

 $\mathbf{31}$

(ii) Pt (v) Ag (iii) Cu²⁺/Nil

No. of ralumin (i)

rass

			r chi ous Mitrate	Lead Nitrate			
	(ii)	Test	Ferrous Nitrate				
	L		CO_2	is released <i>i.e.</i> , SO_2			
	·		solution is released <i>i.e.</i> ,	ssium dichromate			
			potassium dichromate	turn acidified			
5 (M)			effect on acidified	water milky and	lime		
		1	water milky but has no	smell of bur sulphur, turn	ning		
		lil. H_2SO_4	gas that turn lime	(22)	with		
	· []	Add dil. HCl or	Colourless, odourless	Gala 1	· · · · · · · · · · · · · · · · · · ·		
(b)	(i)	Test	Sodium Carbonate	Sodium Sulph	1		
	(iii) C	O3 (Carbonate		Sulphate ion)			
(a)	(i) N	03 ⁻ (Nitrate ion) (ii) $Cl^{-}(Ch$	loride ion)			
Ansv	wer:		×	a [*] ∞2 [*] 4	[0]		
	ine typ	e of bonding pres	ent in it.		n. State [3]		
(c)	Draw	an electron dot d	iagram to show the struct	ure of hydronium in	[0] n State		
85.8 1	(iii) <i>I</i>	Ianganese dioxid	le and Copper(II) oxide.		[3]		
		errous nitrate a					
-	(i) Sodium carbonate and Sodium sulphite.						
(b)	State of	ne chemical test	between each of the followi	ng pairs :			
	1	precipitate insolu	ble in dilute hydrochloric o	icid or dilute nitric o	a white		
		-	eacting with Barium chlo		n Kara		
a	e j	ootassium dichro	lime water milky, but the g	gas has no effect on	acidifiéd		
280	(iii)	Compound Z wh	ich on reacting with dilut	te sulphuric acid lit	berates a		
		iyaroxiae solutio	n.	य यो द्वाँस्टर	1		
	while precipitate is obtained which is soluble in excess of ammo						
2	(ii)	When a solution	of compound Y is treated	with silver nitrate a	olution a		
		sulphuric acid li	n heating with copper berates a reddish brown ga	s.	entrated		
(4)	(i)		-				
(a)			ent in the following compo	4 4 4			
Que	estion 4				a		
		C) Bronze		an a≇≊ Starte at a Starte a			
					Missip.		
	(3)—((4)—(E) Sold	ler		ler		

(iii)

Add few drops of

Test

Heat with conc.

NaOH

HCl

with irritating smell and acidic nature is released *i.e.*, chlorine

Chalky white ppt of lead

Copper (II) oxide

1 :

hydroxide.

No reaction.

Dirty green ppt of

Manganese dioxide

Greenish yellow gas

Ferrous hydroxide

gas.

The type of bonding is Co-ordinate bonding.

Question 5. (a) (i) 6

(i) 67.2 litres of hydrogen combines with 44.8 litres of nitrogen to form ammonia under specific conditions as :

 $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$

Calculate the volume of ammonia produced. What is the other substance, if any, that remains in the resultant mixture ? [2]

- (ii) The mass of 5.6 dm³ of a certain gas at STP is 12.0 g. Calculate the relative molecular mass of the gas.
 [2]
- (iii) Find the total percentage of Magnesium in magnesium nitrate crystals, $Mg(NO_3)_2.6H_2O.$ [Mg = 24; N = 14; O = 16 and H = 1] [2]
- (b) Refer to the flow chart diagram below and give balanced equations with conditions, if any, for the following conversions A to D. [4]

(b) (A) - NaCl + $H_2SO_4 \xrightarrow{\text{below}} NaHSO_4 + HCl$ (conc.) 200 °C

> (B) – Fe + 2HCl $\xrightarrow{\Delta}$ FeCl₂ + H₂ (dil.)

 $(C) - NH_3 \uparrow + HCl \uparrow \xrightarrow{\Delta} NH_4Cl \uparrow.$

 $(D) - Pb(NO_3)_2 + 2HCl \longrightarrow PbCl_2 + 2HNO_3.$

Question 6.

- (a) Name the following metals :
 - (i) A metal present in cryolite other than sodium.
 - (ii) A metal which is unaffected by dilute or concentrated acids.
 - (iii) A metal present in period 3, group 1 of the periodic table.

[3]

(b) The following questions are relevant to the extraction of Aluminium :

- (i) State the reason for addition of caustic alkali to bauxite ore during purification of bauxite.
- (ii) Give a balanced chemical equation for the above reaction.
- (iii) Along with cryolite and alumina, another substance is added to the electrolyte mixture. Name the substance and give one reason for the addition. [3]
- (c) The following questions are based on the preparation of ammonia gas in the laboratory :
 - (i) Explain why ammonium nitrate is not used in the preparation of ammonia.
 - (ii) Name the compound normally used as a drying agent during the process.
 - (iii) How is ammonia gas collected ?
 - (iv) Explain why it is not collected over water.

[4]

Answer:

- (a) (i) Aluminium
 - (ii) Gold

(iii) Sodium

- (b) (i) To dissolve bauxite ore and obtain a solution of Sodium Aluminate.
 - (ii) $Al_2O_3 \cdot 2H_2O + 2NaOH \xrightarrow{\Delta} 2NaAlO_2 + 3H_2O$

(iii) Fluorspar/CaF₂.

To reduce the high melting point of alumina and to make it a conducting medium.

- (c) (i) Ammonium nitrate is a highly explosive substance and can not be heated.
 - (ii) Quicklime/CaO.
 - (iii) By downward displacement of air or upward delivery as it is lighter than air.
 - (iv) Ammonia is highly soluble in water so it cannot be collected over water.

and a second

738 | ICSE Last 10 Years Solved Papers

Question 7.

- (a) From the following organic compounds given below, choose one compound in each case which relates to the description [i] to [iv]:
 - [Ethyne, ethanol, acetic acid, ethene, methane]
 - (i) An unsaturated hydrocarbon used for welding purposes.
 - (ii) An organic compound whose functional group is carboxyl.
 - (iii) A hydrocarbon which on catalytic hydrogenation gives a saturated hydrocarbon.

[4]

[3]

- (iv) An organic compound used as a thermometric liquid.
- (i) Why is pure acetic acid known as glacial acetic acid ?
 - (ii) Give a chemical equation for the reaction between ethyl alcohol and acetic acid. [2]
- (c) There are three elements E, F, G with atomic numbers 19, 8, and 17 respectively.
 - (i) Classify the elements as metals and non-metals.
 - (ii) Give the molecular formula of the compound formed between E and G and state the type of chemical bond in this compound. [1]

Answer.

(b)

- (a) (i) Ethyne
 - (ii) Acetic acid
 - (iii) Ethene
 - (iv) Ethanol
- (b) (i) Pure acetic acid on cooling forms an ice like mass so it is called glacial acetic acid.
 - (ii) $CH_3COOH + C_2H_5OH \longrightarrow CH_3COOC_2H_5 + H_2O$ ethanoic acid ethanol ethyl ethanoate This reaction is called esterification.
- (c) E = 19 = 2, 8, 8, 1

F = 8 = 2, 6

- G = 17 = 2, 8, 7
- (i) E = Metal, F & G = Non metal
- (ii) $E^{+1} X G^{-1} = EG = Ionic/electrovalent bond.$