ICSE Paper 2008

CHEMISTRY

SECTION—I (40 Marks)

(Compulsory : Attempt all questions.)

- (a) For part (a) (i) (a) (x), select the correct answer from the choices A, B, C, D which are given. Write down only the letter corresponding to the correct answer.
 - (i) With reference to the variation of properties in the Periodic Table, which of the following is generally true?
 - (A) Atomic size increases from left to right across a period.
 - (B) Ionization potential increases from left to right across a period.
 - (C) Electron affinity increases going down a group.
 - (D) Electro-negativity increases going down a group.
 - (ii) Which of the following is **not** a common characteristic of an electrovalent compound?
 - (A) High melting point.
 - (B) Conducts electricity when molten.
 - (C) Consists of oppositely charged ions.
 - (D) Ionizes when dissolved in water.
 - (iii) Dilute sulphuric acid will produce a white precipitate when added to a solution of:
 - (A) Copper nitrate

(B) Zinc nitrate

(C) Lead nitrate

- (D) Sodium nitrate
- (iv) The salt which in solution gives a pale green precipitate with sodium hydroxide solution and a white precipitate with barium chloride solution is:
 - (A) Iron (III) sulphate

(B) Iron (II) sulphate

(C) Iron (II) chloride

- (D) Iron (III) chloride
- (v) The gas law which relates the volume of a gas to the number of molecules of the gas is :
 - (A) Avogadro's Law

(B) Gay-Lussac's Law

(C) Boyle's Law

- (D) Charles' Law
- (vi) During the electrolysis of molten lead bromide, which of the following takes place?
 - (A) Bromine is released at the cathode
 - (B) Lead is deposited at the anode
 - (C) Bromine ions gain electrons
 - (D) Lead is deposited at the cathode

	(VI	i) Br	rass is an alloy of :	8		
* *			A) Copper and tin		(B)	Copper and zinc
			C) Zinc and lead		(D)	Lead and tin
	(vii	ii) An	mmonia can be obtai	ined by adding	₹ wate	er to:
	3	(A)	Ammonium chlor	ide		Ammonium nitrate
13		(C)) Magnesium nitra	de		Magnesium nitrate
	(ix)	Wh			sed to	prepare sulphuryl chloride?*
	**eu	(A)) Adding concentra	ted sulphuric	acid t	o a chloride
		(B)) Passing sulphur o	lioxide througl	h a so	Jution of chloring
		(C)	Reacting dry sulp	hur dioxide an	d dry	chloring
		(D)	Reacting dilute su	ılphuric acid u	oith a	solution of chlorine.
	(x)	1 ne	e formation of 1, 2 ample of :	?-dibromethan	e froi	solution of chlorine. m ethene and bromine is an
	2	(A)	Substitution		(B)	Dehydration
	29		Dehydrohalogenat	ion		A 7.7'
(b)	The		tion for the burning		(10)	Addition [10]
				$_2 \longrightarrow 16CO_2$	- ± 18	пО
ē.	(i)	How $octa$	w many moles of co	arbon dioxide	are	n ₂ O produced when one mole of
	(ii)		at volume, at stp, is	occupied by the	he nu	umber of moles determined in
ž s	(iii)	If the	ne relative molecular pon dioxide produced	mass of carbo d by burning to	n dios	xide is 44, what is the mass of
	(iv)	wnat	it is the empirical for	rmula of octan	10 8	r=1
(c)	Nam	e the	organic compound	prepared by ea	ch of	[5] the following reactions :
	(i)	C_2H_5	$_{5}COONa + NaOH -$	→		the following reactions.
,	(ii)	CH_3I	$I + 2\overline{H} \longrightarrow$			
			₅ Br + KOH (alcoholic	c solution) —	X.	
	(iv)	CO +	$+2H_2$ (Zinc oxide cat	talvst)	<i>></i>	
· ·	(v)	CaC_2	$_2 + 2H_2O \longrightarrow$			[#]
(d)			e following substanc	es:		[5]
40	(i) ₁		alkaline gas A wh		se w	hite fumes with hydrogen
a	(ii) Z	A dilı with r	ute acid B which d metals but does give	loes not norme	ally g	swith corner
	(iii) (Gas C	C has an offensive sn	noll libo rotton	Teucio	} with copper.
Part of						
	(v) L	Liquic	d E can be dehydrat	vnich can be u	ised a	s a bleaching agent. **
1	,		A LI CONDING OF THE PROPERTY OF THE PARTY OF	ea to produce e	othan	e. [5]

(e)							
(0)	Write	the equation for the following reactions :					
e.	(i)	Aluminium nitride and water. (ii) Calcium carbide and water.					
	(iii)	Ethene and water (steam). (iv) Sulphur dioxide and water. **					
	(v)	Bromoethane and an aqueous solution of sodium hydroxide. [5]					
(f)	(i)	Here is an electrode reaction:					
(1)	(1)	$Cu \longrightarrow Cu^{2+} + 2e$					
		At which electrode (anode or cathode) would such a reaction take place?					
	u _p	Is this an example of oxidation or reduction?					
	(ii)	A solution contains magnesium ions (Mg $^{2+}$) iron (II) ions (Fe $^{2+}$) and					
19.5	(11)	copper ions (Cu^{2+}). On passing an electric current through this solution					
		which ions will be the first to be discharged at the cathode? Write the					
		equation for the cathode reaction.					
	(iii)	Why is carbon tetrachloride, which is a liquid, a non-electrolyte? [5]					
(g)	What	t are the terms defined in (g) (i) – (v) below?					
\ O '.	(i)	A bond formed by a shared pair of electrons, each bonding atom					
<i>.</i> 8	Ē	contributing one electron to the pair.					
045 N	(ii)	A bond formed by a shared pair of electrons with both electrons coming					
n		from the same atom.					
	(iii)	A salt containing a metal ion surrounded by other ions or molecules.					
300	(iv)	A base which is soluble in water.					
	()	The term of the contract of th					
,	(v)	A reaction in which the hydrogen of an alkane is replaced by another					
3	(v)	A reaction in which the hydrogen of an alkane is replaced by another element like chlorine. [5]					
Ans	wer.	element like chlorine. [5]					
58		element like chlorine. [5]					
	wer.	element like chlorine. [5] B (ii)—D (iii)—C (iv)—B (v)—A					
(a)	wer. (i)]	element like chlorine. [5] $B \qquad (ii) -D \qquad (iii) -C \qquad (iv) -B \qquad (v) -A$ $-D \qquad (vii) -B \qquad (viii) -C \qquad (x) -D$ $2C_8H_{18} + 25 O_2 \longrightarrow 16CO_2 + 18H_2O$					
(a)	wer. (i)—l (vi)—	element like chlorine. [5] $B \qquad (ii) -D \qquad (iii) -C \qquad (iv) -B \qquad (v) -A$ $-D \qquad (vii) -B \qquad (viii) -C \qquad (x) -D$ $2C_8H_{18} + 25 O_2 \qquad 16CO_2 + 18H_2O$ $2 \text{ moles} \qquad 16 \text{ moles}$					
(a)	wer. (i)—l (vi)—	element like chlorine. [5] B (ii)—D (iii)—C (iv)—B (v)—A -D (vii)—B (viii)—C (x)—D $2C_8H_{18} + 25 O_2 \longrightarrow 16CO_2 + 18H_2O$ 2 moles 16 moles 1 mole 8 moles					
(a)	wer. (i)—l (vi)—	element like chlorine. [5] B (ii)—D (iii)—C (iv)—B (v)—A -D (vii)—B (viii)—C (x)—D $2C_8H_{18} + 25 O_2 \longrightarrow 16CO_2 + 18H_2O$ $2 \text{ moles} \qquad 16 \text{ moles}$ $1 \text{ mole} \qquad 8 \text{ moles}$ One mole of octane forms 8 moles of CO_{24} on burning. Ans.					
	wer. (i)—l (vi)—	element like chlorine. [5] B (ii)—D (iii)—C (iv)—B (v)—A -D (vii)—B (viii)—C (x)—D $2C_8H_{18} + 25 O_2 \longrightarrow 16CO_2 + 18H_2O$ 2 moles 16 moles 1 mole 8 moles					
(a)	wer. (i)—] (vi)— (i)	element like chlorine. [5] B (ii)—D (iii)—C (iv)—B (v)—A -D (vii)—B (viii)—C (x)—D $2C_8H_{18} + 25 O_2 \longrightarrow 16CO_2 + 18H_2O$ 2 moles 16 moles 1 mole 8 moles One mole of octane forms 8 moles of CO_{24} on burning. Ans.					
(a)	wer. (i)—] (vi)— (i)	element like chlorine. [5] B (ii)—D (iii)—C (iv)—B (v)—A -D (vii)—B (viii)—C (x)—D $2C_8H_{18} + 25 O_2 \longrightarrow 16CO_2 + 18H_2O$ 2 moles 16 moles 1 mole 8 moles One mole of octane forms 8 moles of $CO_{2\xi}$ on burning. Ans. At STP one mole of gas occupies 22·4 litres					
(a)	wer. (i)—] (vi)— (i)	element like chlorine. [5] B (ii)—D (iii)—C (iv)—B (v)—A -D (vii)—B (viii)—C (x)—D $2C_8H_{18} + 25 O_2 \longrightarrow 16CO_2 + 18H_2O$ 2 moles 16 moles 1 mole 8 moles One mole of octane forms 8 moles of CO_{24} on burning. Ans. At STP one mole of gas occupies $22 \cdot 4$ litres \therefore 8 moles of CO_2 will occupy = $22 \cdot 4 \times 8$ = $179 \cdot 2l$.					
(a)	(i)—] (vi)— (i) (ii)	element like chlorine. [5] B (ii)—D (iii)—C (iv)—B (v)—A -D (vii)—B (viii)—C (x)—D $2C_8H_{18} + 25 O_2 \longrightarrow 16CO_2 + 18H_2O$ 2 moles 16 moles 1 mole 8 moles One mole of octane forms 8 moles of CO_{24} on burning. At STP one mole of gas occupies $22\cdot 4$ litres \therefore 8 moles of CO_2 will occupy = $22\cdot 4\times 8$ = $179\cdot 2l$.					
(a)	(i)—] (vi)— (i) (ii)	element like chlorine. [5] B (ii)—D (iii)—C (iv)—B (v)—A D (vii)—B (viii)—C (x)—D $2C_8H_{18} + 25 O_2 \longrightarrow 16CO_2 + 18H_2O$ 2 moles 16 moles 1 mole 8 moles One mole of octane forms 8 moles of CO_{24} on burning. Ans. At STP one mole of gas occupies $22\cdot4$ litres \therefore 8 moles of CO_2 will occupy = $22\cdot4\times8$ = $179\cdot2l$. From equation we know that 2 moles of octane produces 16 moles of					
(a)	(i)—] (vi)— (i) (ii)	element like chlorine. [5] B (ii)—D (iii)—C (iv)—B (v)—A -D (vii)—B (viii)—C (x)—D $2C_8H_{18} + 25 O_2 \longrightarrow 16CO_2 + 18H_2O$ 2 moles 16 moles 1 mole 8 moles One mole of octane forms 8 moles of CO_{24} on burning. Ans. At STP one mole of gas occupies $22\cdot4$ litres $\therefore 8 \text{ moles of } CO_2 \text{ will occupy } = 22\cdot4\times8$ $= 179\cdot2l.$ From equation we know that 2 moles of octane produces 16 moles of CO_2					
(a)	(i)—] (vi)— (i) (ii)	element like chlorine. [5] B (ii)—D (iii)—C (iv)—B (v)—A -D (vii)—B (viii)—C (x)—D $ 2C_8H_{18} + 25 O_2 \longrightarrow 16CO_2 + 18H_2O $ 2 moles 16 moles 1 mole 8 moles One mole of octane forms 8 moles of CO_2 on burning. Ans. At STP one mole of gas occupies $22 \cdot 4$ litres $ \therefore 8 \text{ moles of } CO_2 \text{ will occupy} = 22 \cdot 4 \times 8 $ $ = 179 \cdot 2l. $ From equation we know that 2 moles of octane produces 16 moles of CO_2 $ \therefore \text{Mass of } CO_2 \text{ produced} = 16 \times 44 $ $ = 704 $					
(a)	(i)—] (vi)— (i) (ii)	element like chlorine. [5] B (ii)—D (iii)—C (iv)—B (v)—A -D (vii)—B (viii)—C (x)—D $2C_8H_{18} + 25 O_2 \longrightarrow 16CO_2 + 18H_2O$ $2 \text{ moles} \qquad 16 \text{ moles}$ $1 \text{ mole} \qquad 8 \text{ moles}$ One mole of octane forms 8 moles of CO_2 on burning. Ans. At STP one mole of gas occupies $22 \cdot 4$ litres $\therefore \qquad 8 \text{ moles of } CO_2 \text{ will occupy} = 22 \cdot 4 \times 8$ $= 179 \cdot 2l.$ From equation we know that 2 moles of octane produces 16 moles of CO_2 $\therefore \qquad \text{Mass of } CO_2 \text{ produced} = 16 \times 44$					
(a) (b)	(i)—] (vi)— (i) (ii) (iii)	element like chlorine. [5] B (ii)—D (iii)—C (iv)—B (v)—A -D (vii)—B (viii)—C (x)—D $2C_8H_{18} + 25 O_2 \longrightarrow 16CO_2 + 18H_2O$ $2 \text{ moles} \qquad 16 \text{ moles}$ $1 \text{ mole} \qquad 8 \text{ moles}$ One mole of octane forms 8 moles of CO_2 on burning. Ans. At STP one mole of gas occupies $22 \cdot 4$ litres $\therefore \qquad 8 \text{ moles of } CO_2 \text{ will occupy} = 22 \cdot 4 \times 8$ $= 179 \cdot 2l.$ From equation we know that 2 moles of octane produces 16 moles of CO_2 $\therefore \qquad \text{Mass of } CO_2 \text{ produced} = 16 \times 44$ $= 704$ Empirical formula of octane is C_4H_9 .					
(a) (b)	(i)—] (vi)— (ii) (iii) (iv) (i)	element like chlorine. [5] B (ii)—D (iii)—C (iv)—B (v)—A -D (vii)—B (viii)—C (x)—D $2C_8H_{18} + 25 O_2 \longrightarrow 16CO_2 + 18H_2O$ 2 moles 16 moles 1 mole 8 moles One mole of octane forms 8 moles of CO_{24} on burning. Ans. At STP one mole of gas occupies $22\cdot4$ litres \therefore 8 moles of CO_2 will occupy = $22\cdot4\times8$ = $179\cdot2l$. From equation we know that 2 moles of octane produces 16 moles of CO_2 \therefore Mass of CO_2 produced = 16×44 = 704 Empirical formula of octane is C_4H_9 . Ethane (ii) Methane (iii) ethene (iv) methanol (v) Ethyne					
(a) (b)	(i)—] (vi)— (ii) (iii) (iv) (i) (i)	element like chlorine. [5] B (ii)—D (iii)—C (iv)—B (v)—A -D (vii)—B (viii)—C (x)—D $2C_8H_{18} + 25 O_2 \longrightarrow 16CO_2 + 18H_2O$ 2 moles 16 moles 1 mole 8 moles One mole of octane forms 8 moles of CO_{24} on burning. Ans. At STP one mole of gas occupies $22 \cdot 4$ litres \therefore 8 moles of CO_2 will occupy = $22 \cdot 4 \times 8$ = $179 \cdot 2l$. From equation we know that 2 moles of octane produces 16 moles of CO_2 \therefore Mass of CO_2 produced = 16×44 = 704 Empirical formula of octane is C_4H_9 . Ethane (ii) Methane (iii) ethene (iv) methanol (v) Ethyne Ammonia (ii) Nitric acid					

- 770 | ICSE Last 10 Years Solved Papers
 - (iii) $C_2H_4 + H_2O$
- C_2H_5OH
- $C_2H_5Br + NaOH \longrightarrow$ (v)
- $NaBr + C_2H_5OH$
- **(f)** This reaction will take place at anode. (i) It is an example of oxidation.
 - (ii) Cu++ ions.

 $Cu^{++} + 2e^- \longrightarrow Cu$ (at cathode).

- Carbon tetrachloride is a convalent compound. (i)
- **(g)** Covalent bond
- (ii) Co-ordinate bond.
- (iii) Complex salt.

- (iv) Alkali
- (v) Substitution.

Section—II (40 marks)

(Answer any four questions from this section)

Question 2.

1

Copy and complete the following table relating to important industrial processes. Output refers to the product of the process not the intermediate

Name of process	Inputs	Catalyst	Equation for	
Hahan D			catalysed	Output
Haber Process	30008611 +	+	reaction	
	Ammonia + air			
Cont		*		Nitric
Contact Process	Sulphur dioxide			acid
	+		a.	ė
	oxygen		ži u	

Answer.

Name of	Inputs	Catal	A		
process		Catalyst	catalysed	Output	
Haber Process	Hydrogen +	D: 1	reaction		
	Nitrogen	Finely dioxided iron	$ \begin{array}{c} N_2 + 3H_2 \longrightarrow \\ 2NH_3 \end{array} $	Ammonia	
Ostwald's Process	Ammonia +	Platinum	$4 \text{ NH}_3 + 50_2 \longrightarrow$	Nitric acid	
Contact	Sulphur		4NO + 6H ₂ O		
Process	dioxide	Vanadium pentoxide	$2SO_2 + O_2 \longrightarrow$	Sulphuric	
	+		$2SO_3$	acid	
on 3.	oxygen	1.			

Question 3.

The following questions refer to the Periodic Table:

- (a) Name the first and last element in period 2. (ii)
 - What happens to the atomic size of elements moving from top to bottom of a group?

Which of the elements has the greatest electron affinity among the (iii) halogens? What is the common feature of the electronic configurations of the (iv) elements in group 7? Supply the missing word from those in the brackets (Do not write out the sentence). If an element has a low ionization energy then it is likely to be (i) (metallic/non-metallic). If an element has seven electrons in its outermost shell then it is likely to have the (largest/smallest) atomic size among all the elements in the same period. [2] The metals of Group 2 from top to bottom are: Be, Mg, Ca, Sr, Ba. (i) Which of these metals will form ions most readily and why? What property of an element is measured by electronegativity? (ii) [3]Answer. (i) First element \longrightarrow Lithium. Last element ---- Neon (ii) It increases. (iii) Chlorine. (iv) Elements of seventh group have seven electrons in their valence shell. (i) metallic (ii) smallest. (i) Ba will form ions most readily because it has lowest ionisation potential Electronegativity of an element is its relative tendency to attract the (ii) shared pair of electrons towards itself in a covalent bond. Question 4. Distinguish between the saturated hydrocarbon ethane and the unsaturated hydrocarbon ethene by drawing their structural formulae. Addition reactions and substitution reactions are types of organic reactions. Which type of reaction is shown by: (i) ethane (ii) ethene [2] (i) Write the equation for the complete combustion of ethane. (ii) Using appropriate catalysts, ethane can be oxidized to an alcohol, an aldehyde and an acid. Name the alcohol, aldehyde and acid formed when ethane is oxidized. [4] (i) Why is pure acetic acid known as glacial acetic acid? What type of compound is formed by the reaction between acetic acid and an alcohol?

Answer.

(b)

(c)

(a)

(b)

(c)

(c)

(d)

[2]

ethene (Unsaturated hydrocarbon) Saturated hydrocarbon: Ethane has single covalent bond between

Unsaturated hydrocarbon: Ethene has a double covalent bond between carbon atoms.

- **(b)** $\operatorname{ethane} \longrightarrow \operatorname{substitution}$ reactions. (i)
 - ethene ----- addition reactions. (ii)
- **(c)** $2\mathrm{C}_2\mathrm{H}_6 + 7\mathrm{O}_2 \longrightarrow 4\mathrm{CO}_2 + 6\mathrm{H}_2\mathrm{O}$ (i)
 - When ethene is oxidised, ethanol (C2H5OH), ethanal (CH3CHO) and (ii) ethanoic acid ($\mathrm{CH_{3}COOH}$) are formed. (i)
- Because on cooling pure acetic acid forms ice like crystals. (d) (ii)
 - An ester is formed.

Question 5.

- (a) (i) A compound has the following percentage composition by mass: carbon 14.4%, hydrogen 1.2% and chlorine 84.5%. Determine the empirical formula of this compound. Work correct to 1 decimal place. (H (ii)
 - The relative molecular mass of this compound is 168, so what is its molecular formula? (iii)
 - By what type of reaction could this compound be obtained from ethyne?
- **(b)** From the equation

$$C + 2H_2SO_4 \longrightarrow CO_2 + 2H_2O + 2SO_2$$

Calculate:

- The mass of carbon oxidized by 49 g of sulphuric acid (C = 12; relative (i) $molecular\ mass\ of\ sulphuric\ acid=98).$
- The volume of sulphur dioxide measured at stp. liberated at the same (ii)

Volume occupied by 1 mole of a gas at stp is 22.4 dm^3).

[4]

[6]

Answer.

(a) (i)

Element	Percentage	At. Mass			
C		At. Mass	Relative No.of atoms	Simplest ratio	
TT	14.4	12	14.4/12 = 1.2		
H	1.2	1	$1 \cdot 2/1 = 1 \cdot 2$ $1 \cdot 2/1 = 1 \cdot 2$	$1 \cdot 2/1 \cdot 2 = 1$	
Cl	84.5	35.5		$1 \cdot 2/1 \cdot 2 = 1$	
(#)	Empirica	al formula	84.5/35.5 = 2.4	$2 \cdot 4/1 \cdot 2 = 2$	

Empirical formula = CHCl₂

(ii) Relative molecular mass = 168

Empirical formula mass = 12 + 1 + 71

$$n = \frac{\text{Relative molecular mass}}{\text{empirical formula mass}}$$

$$=\frac{168}{84}=2$$

Molecular formula = $(\text{Empirical formula})_n$ = $(\text{CHCl}_2)_2$ = $\text{C}_2\text{H}_2\text{Cl}_4$.

- (iii) By addition reaction.
- (b) (i) From equation:

 2×98 g of sulphuric acid oxidises 12g of carbon

49g of sulphuric acid will oxidise =
$$\frac{12 \times 49}{2 \times 98}$$

$$= 3g of C.$$

Ans.

(ii) From equation:

 2×98 of sulphuric acid liberates $2 \times 22.4 l$ of SO₂.

49 g of sulphuric acid will liberate =
$$\frac{2 \times 22 \cdot 4 \times 49}{2 \times 98}$$

=
$$11 \cdot 2 l$$
 of SO_2 .

Ans.

Question 6.

- (a) The following is a sketch of an electrolytic cell used in the extraction of aluminium:
 - (i) What is the substance of which the electrodes A and B are made?

- (ii) At which electrode (A or B) is the aluminium formed?
- (iii) What are the two aluminium compounds in the electrolyte C?
- (iv) Why is it necessary for electrode B to be continuously replaced? [5]
- **(b)** Making use only of substances chosen from those given below:

Dilute sulphuric acid

sodium carbonate

Zinc

sodium sulphite

Lead

calcium carbonate

give the equations for the reactions by which you could obtain:

- (i) hydrogen
- (ii) sulphur dioxide**
- (iii) carbon dioxide
- (iv) zinccarbonate (two steps required)

[5]

Answer.

- (a) (i) Graphite or carbon
 - (ii) At electrode A.
 - (iii) Alumina (Aluminium oxide) and Cryolite (sodium aluminium fluoride).
 - (iv) Because electrode B gets burnt away with oxygen produced.
- **(b)** (i) $\operatorname{Zn} + \operatorname{H}_2 \operatorname{SO}_4 \longrightarrow \operatorname{ZnSO}_4 + \operatorname{H}_2$
 - (iii) $Na_2CO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O + CO_2$.

^{**} Answer has not given due to out of present syllabus.

774 | ICSE Last 10 Years Solved Papers

- (iv) $\operatorname{Zn} + \operatorname{H}_2 \operatorname{SO}_4 \longrightarrow \operatorname{ZnSO}_4 + \operatorname{H}_2$.
- (v) $ZnSO_4 + Na_2CO_3 \longrightarrow ZnCO_3 + Na_2SO_4$.

Question 7.

- (a) (i) What is the property of concentrated sulphuric acid which allows it to be used in the preparation of hydrogen chloride and nitric acid?
 - (ii) What property of hydrogen chloride is demonstrated when it is collected by downward delivery (upward displacement)?
 - (iii) Why is hydrogen chloride not collected over water?
 - (iv) What is the property of nitric acid which allows it to react with copper?
 - (v) What property of concentrated sulphuric acid is in action when sugar turns black in its presence? [5]
- **(b)** Write the equations for the following reactions:
 - (i) Dilute nitric acid and copper.
 - (ii) Dilute sulphuric acid and barium chloride.
 - (iii) Dilute hydrochloric acid and sodium thiosulphate.
 - (iv) Dilute hydrochloric acid and lead nitrate solution.
 - (v) Dilute sulphuric acid and sodium sulphide.

[5]

Answer.

- (a) (i) It is non-volatile.
 - (ii) Hydrogen chloride is heavier than air.
 - (iii) Because Hydrogen chloride is highly soluble in water.
 - (iv) It is a strong oxidising agent.
 - (v) Conc. sulphuric acid is a dehydrating agent.
- (b) (i) $3Cu + 8HNO_3 \longrightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$
 - (ii) $H_2SO_4 + BaCl_2 \longrightarrow BaSO_4 + 2HCl$
 - (iii) $Na_2S_2O_3 + 2HCl \longrightarrow 2NaCl + H_2O + SO_2 + S$
 - (iv) $Pb(NO_3)_2 + 2HCl \longrightarrow PbCl_2 + 2HNO_3$.
 - (v) $Na_2S + H_2SO_4 \longrightarrow Na_2SO_4 + H_2S$.