Study of Compounds – Hydrogen Chloride

Hydrogen Chloride

Laboratory Preparation of Hydrogen Chloride

Hydrogen chloride gas is prepared by heating a metallic chloride (NaCl) with conc. sulphuric acid (H_2SO_4). **Reactions:**

Collection

- Hydrogen chloride gas is collected by the upward displacement of air as it is 1.28 times heavier than air.
- It is not collected over water because it is highly soluble in water.

Physical Properties

- Colourless, pungent, choking odour, slight sour taste.
- It is 1.28 times heavier than water and highly soluble in water.
- Liquefies at temperature of about 10°C at 40 atmospheric pressure.
- Boiling point is -83°C, and freezing point is -113°C.

Chemical Properties of HCI

- 1. Combustibility: The gas is neither combustible nor a supporter of combustion.
- 2. Thermal dissociation: On heating above 500°C, it dissociates into hydrogen and chlorine.

2HCl_(g) >500°C H_{2(g)} + Cl_{2(g)}

3. **With metals**: Metals which come before hydrogen in the electrochemical series form chlorides with the liberation of hydrogen.

 $Zn + 2HCI \longrightarrow ZnCI_2 + H_{2(g)}$

4. **Reaction with ammonia**: It combines with ammonia to form dense white fumes of ammonium chloride.

$$NH_{3 (g)} + HCI_{(g)} \longrightarrow NH_{4}CI$$

Hydrochloric Acid

Hydrochloric acid is prepared by dissolving hydrogen chloride gas in water using a special funnel arrangement because direct absorption of HCI gas in water using a delivery tube causes back suction.

Properties of Hydrochloric Acid

Physical Properties

- Colourless, slightly pungent with sharp sour taste.
- Corrosive in nature and causes blisters on the skin.
- Density is 1.2 gm/cc with boiling point of 110°C.

Chemical Properties

• Monobasic in nature

HCl dissociates in aqueous solution to produce one hydrogen ion [H+] per molecule of the acid. HCl + H₂O \longrightarrow H₃O⁺ + Cl⁻

Acidic nature

The presence of hydrogen ion [H⁺] in HCl imparts acidic properties to an aqueous solution of hydrochloric acid.

Action on metals

	Ca	+ 2HCl	\longrightarrow	$CaCl_2$	+ H ₂	
	Mg	+ 2HCI	\longrightarrow	$MgCl_2$	+ H ₂	
•	Action on	oxides and hy	droxid	es		
	MgO	+ 2HCI	\longrightarrow	MgCl ₂	+ H ₂ O	
	Ca (OH) ₂	+ 2HCI	\longrightarrow	$CaCl_2$	+ H ₂ O	
•	With salts	s of weaker aci	ds			
	Na ₂ CO ₃	+ 2HCI	\longrightarrow	2NaCl	+ H ₂ O	+ CO ₂
	NaHCO ₃	+ HCI	\longrightarrow	NaCl	+ H ₂ O	+ CO ₂
	Na_2SO_3	+ 2HCl	\longrightarrow	2NaCl	+ H ₂ O	+ SO ₂
	$NaHSO_3$	+ HCI	\longrightarrow	NaCl	+ H ₂ O	+ SO ₂
	Na_2S	+ 2HCI	\longrightarrow	2NaCl	$+ H_2S$	

- Action on thiosulphates $Na_2SO_3 + 2HCI \longrightarrow 2NaCI + H_2O + SO_2 + S$
- Reaction with nitrates AgNO₃ + HCl \longrightarrow AgCl + HNO₃

Oxidation of Hydrochloric Acid

MnO ₂ + 4HCl	$\stackrel{\blacktriangle}{\longrightarrow} \text{MnCl}_2 + 2\text{H}_2\text{O} + \text{Cl}_2$
K ₂ Cr ₂ O ₇ + 14HCl	$\stackrel{\blacktriangle}{\longrightarrow} 2KCI + 2CrCl_3 + 7H_2O + 3Cl_2$
2KMnO₄ + 16HCl	$\stackrel{\blacktriangle}{\longrightarrow} 2\text{KCl} + 2\text{MnCl}_2 + 8\text{H}_2\text{O} + 5\text{Cl}_2$
Pb ₃ O ₄ + 8HCl	\bigtriangleup 3 PbCl ₂ + 4H ₂ O + Cl ₂

Formation of Aqua Regia

Aqua regia is a mixture of one part of conc. nitric acid and three parts of conc. hydrochloric acid.

 $HNO_3 + 3HCI \longrightarrow NOCI + 2H_2O + 2[CI]$

The nascent chlorine released reacts with noble metals such as gold and platinum to give their soluble chlorides.

 $\mathsf{Au} \ + 3[\mathsf{CI}] \ \longrightarrow \mathsf{Au}\mathsf{CI}_3$

 $\mathsf{Pt} \quad + 4[\mathsf{CI}] \quad \longrightarrow \mathsf{Pt}\mathsf{CI}_4$

Uses of Hydrochloric Acid

- a. In the manufacture of dyes, drugs, paints and silver chloride.
- b. For purifying bone black, because HCI dissolves the calcium phosphate present in bones.
- c. To remove rust from iron sheets.