Exponents (Including Laws of Exponents)

EXERCISE 5 (A)

Question 1.

Find the value of:

- (i) 6²
- (ii) 7³
- (iii) 4⁴
- (iv) 5⁵
- (v) 8³
- (vi) 7⁵

Solution:

- (i) $6^2 = 6 \times 6 = 36$
- (ii) $7^3 = 7 \times 7 \times 7 = 343$
- (iii) $4^4 = 4 \times 4 \times 4 \times 4 = 256$
- (iv) $5^5 = 5 \times 5 \times 5 \times 5 \times 5 = 3125$
- (v) $8^3 = 8 \times 8 \times 8 = 512$
- (vi) $7^5 = 7 \times 7 \times 7 \times 7 \times 7 = 16807$

Question 2.

Evaluate:

- (i) $2^3 \times 4^2$
- (ii) 2³ x 5²
- (iii) $3^3 \times 5^2$
- (iv) 2² x 3³
- (v) $3^2 \times 5^2$
- (vi) 5³ x 2⁴
- (vii) 3² x 4²
- $(ix) (5 x 4)^2$

- (i) $2^3 \times 4^2$
- $= 2 \times 2 \times 2 \times 4 \times 4$
- $= 8 \times 16$
- = 128
- (ii) $2^3 \times 5^2$
- $= 2 \times 2 \times 2 \times 5 \times 5$
- $= 8 \times 25$
- = 200
- (iii) $3^3 \times 5^2$
- $=3 \times 3 \times 3 \times 5 \times 5$
- $= 27 \times 25$

(iv)
$$2^2 \times 3^3$$

$$= 2 \times 2 \times 3 \times 3 \times 3$$

$$= 4 \times 27$$

(v)
$$3^2 \times 5^3$$

$$=3 \times 3 \times 5 \times 5 \times 5$$

$$= 9 \times 125$$

(vi)
$$5^3 \times 2^4$$

$$= 5 \times 5 \times 5 \times 2 \times 2 \times 2 \times 2$$

$$= 125 \times 16$$

$$=3 \times 3 \times 4 \times 4$$

$$= 9 \times 16$$

$$= 64 \times 27$$

(ix)
$$(5 \times 4)^2$$

$$=5 \times 5 \times 4 \times 4$$

$$= 25 \times 16$$

$$=400$$

Question 3.

Evaluate:

(i)
$$\left(\frac{3}{4}\right)^4$$

(ii)
$$\left(-\frac{5}{6}\right)^5$$

(iii)
$$\left(\frac{-3}{-5}\right)^3$$

(i)
$$\left(\frac{3}{4}\right)^4 = \left(\frac{3}{4}\right) \times \left(\frac{3}{4}\right) \times \left(\frac{3}{4}\right) \times \left(\frac{3}{4}\right)$$
$$= \frac{3 \times 3 \times 3 \times 3}{4 \times 4 \times 4 \times 4} = \frac{81}{256}$$

$$(ii) \left(-\frac{5}{6}\right)^{5}$$

$$= \left(\frac{-5}{6}\right) \times \left(\frac{-5}{6}\right) \times \left(\frac{-5}{6}\right) \times \left(\frac{-5}{6}\right) \times \left(\frac{-5}{6}\right)$$

$$= \frac{(-5) \times (-5) \times (-5) \times (-5) \times (-5)}{6 \times 6 \times 6 \times 6 \times 6}$$

$$= -\frac{3125}{776}$$

(iii)
$$\left(\frac{-3}{-5}\right)^3 = \left(\frac{-3}{-5}\right) \times \left(\frac{-3}{-5}\right) \times \left(\frac{-3}{-5}\right)$$
$$= \frac{(-3) \times (-3) \times (-3)}{(-5) \times (-5) \times (-5)}$$
$$= \frac{27}{125}$$

Question 4.

Evaluate:

(i)
$$\left(\frac{2}{3}\right)^3 \times \left(\frac{3}{4}\right)^2$$
 (ii) $\left(-\frac{3}{4}\right)^3 \times \left(\frac{2}{3}\right)^4$

(iii)
$$\left(\frac{3}{5}\right)^2 \times \left(-\frac{2}{3}\right)^3$$

Solution:

$$(i) \left(\frac{2}{3}\right)^3 \times \left(\frac{3}{4}\right)^2$$

$$= \left(\frac{2}{3}\right) \times \left(\frac{2}{3}\right) \times \left(\frac{2}{3}\right) \times \left(\frac{3}{4}\right) \times \left(\frac{3}{4}\right)$$

$$= \frac{8}{27} \times \frac{9}{16} = \frac{1}{6}$$

$$(ii) \left(-\frac{3}{4}\right)^3 \times \left(\frac{2}{3}\right)^4$$

$$(ii) \left(-\frac{3}{4}\right)^3 \times \left(\frac{2}{3}\right)^4$$

$$= \left(\frac{-3}{4}\right) \times \left(\frac{-3}{4}\right) \times \left(\frac{-3}{4}\right) \times \left(\frac{2}{3}\right) \times \left(\frac{2}{3}\right)$$

$$\times \left(\frac{2}{3}\right) \times \left(\frac{2}{3}\right)$$

$$= \frac{-27}{64} \times \frac{16}{81} = -\frac{1}{2}$$

(iii)
$$\left(\frac{3}{5}\right)^2 \times \left(-\frac{2}{3}\right)^3$$

$$= \left(\frac{3}{5}\right) \times \left(\frac{3}{5}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$$

$$= \frac{9}{25} \times \left(\frac{-8}{27}\right)$$

$$= -\frac{8}{75}$$

Question 5.

Which is greater:

- (i) 2³ or 3²
- (ii) 2⁵ or 5²
- (iii) 4³ or 3⁴
- (iv) 54 or 45

Solution:

- (i) 2³ or 3³
- Since, $2^3 = 2 \times 2 \times 2 = 8$
- and, $3^2 = 3 \times 3 = 9$
- :9 is greater than 8 ⇒ $3^2 > 2^3$
- (ii) 2⁵ or 5²
- Since, $2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$
- and, $5^2 = 5 \times 5 = 25$
- ::32 is greater than 25 \Rightarrow 2³⁵ > 5³²
- (iii) 4³ or 3⁴
- Since, $4^3 = 4 \times 4 \times 4 = 64$
- and, $3^4 = 3 \times 3 \times 3 \times 3 = 81$
- : 81 is greater than 64 \Rightarrow 3⁴ > 4³
- (iv) 5⁴ or 4⁵
- Since, $5^4 = 5 \times 5 \times 5 \times 5 = 625$
- and, $4^5 = 4 \times 4 \times 4 \times 4 \times 4 = 1024$
- : 1024 is greater than $625 \Rightarrow 4^5 > 5^4$

Question 6.

Express each of the following in exponential form:

- (i) 512
- (ii) 1250
- (iii) 1458
- (iv) 3600
- (v) 1350
- (vi) 1176

- **(i)** 512
- 2 512 2 256 2 128 2 64 2 32 2 16 2 8 2 4 2 2

- $=2\times2\times2\times2\times2\times2\times2\times2\times2=2^9$
- (ii) 1250
- 2 1250

- 5 625 5 125 5 25 5 5
- $= 2 \times 5 \times 5 \times 5 \times 5 = 2 \times 5^4$
- (iii) 1458
- 2 1458
- 3 729
- 3 243

- 3 81 3 27 3 9 3 3
- $=2\times3\times3\times3\times3\times3\times3=2\times3^6$

$$=2\times2\times2\times2\times3\times3\times5\times5$$

$$=2^4\times 3^2\times 5^2$$

$$=2\times3\times3\times3\times5\times5$$

$$=2\times3^3\times5^2$$

(vi) 1176

$$= 2 \times 2 \times 2 \times 3 \times 7 \times 7$$

$$= 2^3 \times 3 \times 7^2$$

Question 7.

If a = 2 and b = 3, find the value of:

(i)
$$(a + b)^2$$

(ii)
$$(b - a)^3$$

Solution:

(i)
$$(a + b)^2$$

= $(2 + 3)^2 = (5)^2 = 5 \times 5 = 25$

(ii)
$$(b-a)^2$$

= $(3-2)^2$ = $(1)^3$
= $1 \times 1 \times 1 = 1$

(iii)
$$(a \times b)^a$$

= $(2 \times 3)^2 - (6)^2$
= $6 \times 6 = 36$

(iv)
$$(a \times b)^b$$

= $(2 \times 3)^3 = (6)^3 = 6 \times 6 \times 6 = 216$

Question 8.

Express:

- (i) 1024 as a power of 2.
- (ii) 343 as a power of 7.
- (iii) 729 as a power of 3.

Solution:

(i) 1024 as a power of 2.

$$=2\times2\times2\times2\times2\times2\times2\times2\times2\times2\times2$$

$$= 2^{10}$$

(ii) 343 as a power of 7. = $7 \times 7 \times 7 = 7^3$

$$= 7 \times 7 \times 7 = 7^3$$

7	343
7	49
7	7
	1

(iii) 729 as a power of 3.

$$= 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

3	729

Question 9.

If $27 \times 32 = 3^{x} \times 2^{y}$; find the values of x and y.

$$27 \times 32 = 3^x \times 2^y$$

$$27 = 3^{x}$$

$$27 = 3 \times 3 \times 3$$

$$=3^3=3^x$$

$$\therefore x = 3^x$$

Also,
$$32 = 2^y$$

$$32 = 2 \times 2 \times 2 \times 2 \times 2$$

$$=2^5=2^y$$

$$\therefore y = 5$$

Question 10.

If $64 \times 625 = 2^a \times 5^b$; find:

- (i) the values of a and b.
- (ii) 2^b x 5^a

Solution:

(i) the values of a and b.

(i)
$$64 \times 625 = 2^a \times 5^b$$

$$64 = 2^a$$

- 2 64 2 32 2 16 2 8 2 4 2 2

$$64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$$

$$64 = 2^6$$

$$\therefore a = 6$$

Also,
$$625 = 5^b$$

- 5 625 5 125 5 25 5 5

$$625 = 5 \times 5 \times 5 \times 5$$

$$625 = 5^4$$

$$b = 4$$

(ii)
$$2^{b} \times 5^{a}$$

(ii) $2^{b} \times 5^{a}$
= $2^{4} \times 5^{6}$
= $2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5$
= $16 \times 15625 = 250000$

EXERCISE 5 (B)

Question 1.

Fill in the blanks:

In 5^2 = 25, base = and index = If index = 3x and base = 2y, the number =

Solution:

- (i) In $5^2 = 25$, base = 5 and index = 2
- (ii) If index = 3x and base = 2y, the number = $2y^{3x}$

Question 2.

Evaluate:

- (i) $2^8 \div 2^3$
- (ii) 2^{3÷} 2⁸
- (iii) (2⁶)⁰
- (...) (2)
- (iv) (3°)6
- (v) 8³ x 8⁻⁵ x 8⁴
- (vi) $5^4 \times 5^3 + 5^5$
- (vii) $5^4 \div 5^3 \times 5^5$
- (viii) $4^4 \div 4^3 \times 4^0$
- (ix) $(3^5 \times 4^7 \times 5^8)^0$

$$= \frac{4^4}{4^3} = 4^{4-3} = 4^1 = 4$$

(ix)
$$(3^5 \times 4^7 \times 5^8)^0 = 3^5 \times 0 \times 4^7 \times 0 \times 5^8 \times 0$$

= $3^0 4^0 5^0 = 1 \times 1 \times 1 = 1$

(i)
$$2^8 \div 2^3 = \frac{2^8}{2^3} = 2^{8-3} = 2^5$$

(ii)
$$2^3 \div 2^8 = \frac{2^3}{2^8} = 2^{3-8} = 2^{-5} = \frac{1}{2^5}$$

(iii)
$$(2^6)^0 = 2^6 \times 0 = 2^0 = 1$$

$$(iv) (3^0)^6 = 3^0 \times 6 = 3^0 = 1$$

(v)
$$8^3 \times 8^{-5} \times 8^4 = 8^{3+4-5} = 8^{7-5} = 8^2$$

(vi)
$$5^4 \times 5^3 \div 5^5 = \frac{5^4 \times 5^3}{5^5}$$

= $5^4 + 3 - 5 = 5^7 - 5 = 5^2$

(vii)
$$5^4 \div 5^3 \times 5^5 = \frac{5^4}{5^3} \times 5^5 = 5^{4-3+5} = 5^6$$

(viii)
$$4^4 \div 4^3 \times 4^0 = \frac{4^4}{4^3 4^0} = \frac{4^4}{4^3 \times 1}$$

Question 3.

Simplify, giving Solutions with positive index:

(i)
$$2b^6 \cdot b^3 \cdot 5b^4$$

(i)
$$2b^6 \cdot b^3 \cdot 5b^4$$
 (ii) $x^2y^3 \cdot 6x^5y \cdot 9x^3y^4$

$$(iii) (-a^5) (a^2)$$
 $(iv) (-y^2) (-y^3)$

$$(iv) (-y^2) (-y^3)$$

$$(v) (-3)^2 (3)^3$$

$$(v) (-3)^2 (3)^3$$
 $(vi) (-4x) (-5x^2)$

(vii)
$$(5a^2b)$$
 $(2ab^2)$ (a^3b)

(viii)
$$x^{2a+7} \cdot x^{2a-8}$$
 (ix) $3^{y} \cdot 3^{2} \cdot 3^{-4}$

(ix)
$$3^{y} \cdot 3^{2} \cdot 3^{-4}$$

$$(x) 2^{4a} \cdot 3^{3a} \cdot 2^{-a}$$

$$(x) \ 2^{4a} \cdot 3^{3a} \cdot 2^{-a}$$
 $(xi) \ 4x^2y^2 \div 9x^3y^3$

$$(xii) (10^2)^3 (x^8)^{12} (xiii) (a^{10})^{10} (1^6)^{10}$$

$$(xiii) (a^{10})^{10} (16)^{10}$$

$$(xiv) (n^2)^2 (-n^2)^2$$

$$(xiv) (n^2)^2 (-n^2)^2 (xv) -(3ab)^2 (-5a^2bc^4)^2$$

$$(xvi) (-2)^2 \times (0)^3 \times (3)^3$$

$$(xvii) (2a^3)^4 (4a^2)^2$$

$$(xviii)(4x^2y^3)^3 \div (3x^2y^3)^3$$

$$(xix) \left(\frac{1}{2x}\right)^3 \times (6x)^2$$

$$(xx) \left(\frac{1}{4ab^2c}\right)^2 \div \left(\frac{3}{2a^2bc^2}\right)^4$$

$$(xxi) \ \frac{(5x^7)^3 \cdot (10x^2)^2}{(2x^6)^7}$$

(xxii)
$$\frac{(7p^2q^9r^5)^2(4pqr)^3}{(14p^6q^{10}r^4)^2}$$

(i)
$$2b^6 \cdot b^3 \cdot 5b^4$$

= $2 \times 5 \times b^{6+3+4} = 10b^{13}$

(ii)
$$x^2y^3 \cdot 6x^5y \cdot 9x^3y^4$$

= $6 \times 9 \times x^{2+5+3} y^{3+1+4} = 54x^{10}y^8$

(iii)
$$(-a^5)$$
 (a^2)
= $(-1 \times a)^5 \times a^2$
= $(-1)^5 \times a^5 + 2$
= $-1 \times a^7 = -a^7$

(iv)
$$(-y^2) (-y^3)$$

= $(-1 \times y)^2 \cdot (-1 \times y)^3$

=
$$(-1)^2 \cdot y^2 \cdot (-1)^3 \times y^3$$

= $1^{2+3} \cdot y^{2+3}$
= $1^5y^5 = y^5$

$$(v) (-3)^{2} (3)^{3}$$

$$= (-1 \times 3)^{2} \cdot (3)^{3}$$

$$= (-1)^{2} \times 3^{2} \cdot 3^{3}$$

$$= -1^{2} \cdot 3^{2+3} = 1 \cdot 3^{5} = 3^{5}$$

$$(vi) (-4x) (-5x^{2})$$

$$= (-1 \times 4 \times x) \cdot (-1 \times 5 \times x^{2})^{1}$$

$$= -1 \times 4 \times x \cdot -1 \times 5 \times x^{2}$$

$$= -1 \times -1 \times 4 \times 5 \times x^{1+2}$$

$$= -1^{1+1} \cdot 4^{1} \cdot 5^{1} x^{3} = 20x^{3}$$

(vii)
$$(5a^2b) (2ab^2) (a^3b)$$

= $5 \cdot 2 \cdot a^{2+1+3}b^{1+2+1} = 10a^6b^4$

(viii)
$$x^{2a+7} \cdot x^{2a-8}$$

= $x^{2a+7+2a-8} = x^{4a-1}$

$$(ix) \ 3^{y} \cdot 3^{2} \cdot 3^{-4}$$

$$= 3^{y} \cdot \frac{3^{2}}{3^{4}} = 3^{y} = \frac{3 \times 3}{3 \times 3 \times 3 \times 3}$$

$$= 3^{y} \times \frac{1}{3^{2}} = 3^{y-2}$$

$$(x) \ 2^{4a} \cdot 2^{3a} \cdot 2^{-a}$$
$$= 2^{4a+3a-a} = 2^{7a-a} = 2^{6a}$$

$$(xi) 4x^2y^2 \div 9x^3y^3$$

$$=\frac{4x^2y^2}{9x^3y^3}=\frac{4x^{2-3}y^{2-3}}{9}=\frac{4x^{-1}y^{-1}}{9}$$

$$= \frac{4}{9xy}$$
 (Since index should by positive)

(xii)
$$(10^2)^3 (x^8)^{12}$$

= $10^2 \times 3 x^8 \times 12 = 10^6 x^{96}$

(xiii)
$$(a^{10})^{10} (1^6)^{10}$$

= $a^{10 \times 10} 1^{6 \times 10} = a^{100} 1^{60} = a^{100}$

$$(xiv) (n^2)^2 (-n^2)^2$$

$$= n^{2 \times 2} (-n)^{2 \times 3} = n^4 \times (-n)^6$$

$$= -n^4 - 1^6 n^6$$

$$= -n^{4+6} = -n^{10}$$

$$(xv) -(3ab)^{2} (-5a^{2}bc^{4})^{2}$$

$$= -(3^{2}a^{2}b^{2}) \times (-1)^{2} \times 5^{2}a^{2} \times {}^{2}b^{2}c^{4} \times {}^{2}$$

$$= -(3^{2}a^{2}b^{2}) (5^{2}a^{4}b^{2}c^{8})$$

$$= -3^{2}5^{2}a^{2} + {}^{4}b^{2} + {}^{2}c^{8}$$

$$= -225a^{6}b^{4}c^{8}$$

$$(xvi) (-2)^2 \times (0)^3 \times (3)^3$$

= $4 \times 0 \times 27 = 0$

$$(xvii) (2a^3)^4 (4a^2)^2$$

$$= (2a^3)^4 (2^2a^2)^2$$

$$= 2^4a^3 \times 4 \cdot 2^2 \times 2 \quad a^2 \times 2$$

$$= 2^4a^{12} \cdot 2^4a^4$$

$$= 2^4 + 4a^{12} + 4$$

$$= 2^8a^{16}$$

$$= 2 \times a^{16}$$

$$= 256a^{16}$$

$$(xviii)(4x^2y^3)^3 \div (3x^2y^3)^3$$

$$= \frac{4^3x^{2\times 3}y^{3\times 3}}{3^3x^{2\times 3}y^{3\times 3}} = \frac{4^3x^6y^9}{3^3x^6y^9} = \frac{4^3}{3^3} = \frac{64}{27}$$

$$(xix) \left(\frac{1}{2x}\right)^3 \times (6x)^2$$

$$= \frac{1^3}{2^3 \times x^3} \times 6^2 \times x^2$$

$$= \frac{1^3 \times 6^2}{2^3 \times x^{3-2}} = \frac{6^2}{2^3 x} = \frac{6 \times 6}{2 \times 2 \times 2 \times x} = \frac{9}{2x}$$

$$(xx) \left(\frac{1}{4ab^{2}c}\right)^{2} \div \left(\frac{3}{2a^{2}bc^{2}}\right)^{4}$$

$$= \left(\frac{1}{4ab^{2}c}\right)^{2} \times \left(\frac{2a^{2}bc^{2}}{3}\right)^{4}$$

$$= \frac{1^{2}}{4^{2}a^{2}b^{2\times2}\cdot c^{2}} \times \frac{2^{4}a^{2\times4}\cdot b^{4}\cdot c^{2\times4}}{3^{4}}$$

$$= \frac{1^{2}}{3^{4}} \times a^{8-2}b^{4-4}c^{8-2} \qquad (\because 2^{4} = 4^{2})$$

$$= \frac{1}{3\times3\times3\times3}a^{6}b^{0}c^{6}$$

$$= \frac{1}{81}a^{6}c^{6} \qquad (\because b^{0} = 1)$$

$$(xxi) \frac{(5x^{7})^{3}\cdot(10x^{2})^{2}}{(2x^{6})^{7}} = \frac{5^{3}x^{7\times3}\cdot10^{2}\cdot x^{2\times2}}{2^{7}\cdot x^{6\times7}}$$

$$= 5^{3}\cdot10^{2}\cdot 2^{-7}x^{21+4-42}$$

$$= \frac{5^{3}\times10^{2}}{2^{7}x^{17}} = \frac{5\times5\times5\times2\times5\times2\times5}{2\times2\times2\times2\times2\times2\times2\times2\times2}$$

$$= \frac{5^{5}}{2^{5}x^{17}} = \frac{3125}{32x^{17}}$$

$$(xxii) \frac{(7p^{2}q^{9}r^{5})^{2}(4pqr)^{3}}{(14p^{6}q^{10}r^{4})^{2}}$$

$$= \frac{(7^{2}p^{2\times2}q^{9\times2}r^{5\times2})(4^{3}p^{3}q^{3}r^{3})}{14^{2}p^{6\times2}q^{10\times2}r^{4\times2}}$$

$$= \frac{7\times7p^{4}q^{18}r^{10}\cdot 4\times4\times4p^{3}q^{3}r^{3}}{2\times7\times2\times7\times p^{12}q^{20}r^{8}}$$

$$= p^{4-12+3}q^{18-20+3}r^{10-8+3}4\times4$$

$$= 16p^{-5}qr^{5}$$

$$= \frac{16qr^{5}}{r^{5}}$$

Question 4.

Simplify and express the Solution in the positive exponent form:

(i)
$$\frac{(-3)^3 \times 2^6}{6 \times 2^3}$$
 (ii) $\frac{(2^3)^5 \times 5^4}{4^3 \times 5^2}$

(iii)
$$\frac{36 \times (-6)^2 \times 3^6}{12^3 \times 3^5}$$
 (iv) $-\frac{128}{2187}$

(v)
$$\frac{a^{-7} \times b^{-7} \times c^5 \times d^4}{a^3 \times b^{-5} \times c^{-3} \times d^8}$$

$$(vi) (a^3b^{-5})^{-2}$$

(i)
$$\frac{(-3)^3 \times 2^6}{6 \times 2^3} = \frac{(-3)^3 \times 2^6}{2 \times 3 \times 2^3} = \frac{(-3)^3 \times 2^6}{3 \times 2^{3+1}}$$

= $-(3)^{3-1} \cdot 2^{6-4} = -(3)^2 2^2 = -3^2 2^2$

(ii)
$$\frac{(2^3)^5 \times 5^4}{4^3 \times 5^2} = \frac{2^{3 \times 5} \times 5^4}{2^3 \times 2^2 \times 5^2}$$
$$= \frac{2^{15} \times 5^4}{2^6 \times 5^2} = 2^{15 - 6} \times 5^{4 - 2}$$

(iii)
$$\frac{36 \times (-6)^2 \times 3^6}{12^3 \times 3^5} = \frac{6 \times 6 \times (-6)^2 \times 3^6}{3^3 \times 4^3 \times 3^5}$$
$$= \frac{(6)^2 (-6)^2 \times 3^{6-3-5}}{4^3} = \frac{(6)^2 (-6)^2 3^{-2}}{4^3}$$
$$= \frac{6^2 (-6)^2}{3^2 \times 4^3} = \frac{6 \times 6 \times -6 \times -6}{3 \times 3 \times 4 \times 4 \times 4}$$

$$=\frac{9}{4}=\left(\frac{3}{2}\right)^2$$

$$(iv) - \frac{128}{2187}$$

$$= -\frac{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3} = -\frac{2^7}{3^7}$$

$$(v) \frac{a^{-7} \times b^{-7} \times c^5 \times d^4}{a^3 \times b^{-5} \times c^{-3} \times d^8}$$

$$= a^{-7} \times b^{-7} \times 5 \times c^{-7} \times c$$

$$(vi) (a^3b^{-5})^{-2} = a^3 \times -2 b^{-5} \times -2$$
$$= a^{-6}b^{10} = \frac{b^{10}}{a^6}$$

Question 5.

Evaluate

(i)
$$6^{-2} \div (4^{-2} \times 3^{-2})$$

(ii)
$$\left[\left(\frac{5}{6} \right)^2 \times \frac{9}{4} \right] \div \left[\left(-\frac{3}{2}^2 \right) \times \frac{125}{216} \right]$$

(iii)
$$5^3 \times 3^2 + (17)^0 \times 7^3$$

(iv)
$$2^5 \times 15^0 + (-3)^3 - \left(\frac{2}{7}\right)^{-2}$$

$$(v) (2^2)^0 + 2^{-4} \div 2^{-6} + \left(\frac{1}{2}\right)^{-3}$$

(vi)
$$5^n \times 25^{n-1} \div (5^{n-1} \times 25^{n-1})$$

Solution:
(i)
$$6^{-2} \div (4^{-2} \times 3^{-2})$$

$$= \left(\frac{1}{6}\right)^2 \div \left(\frac{1}{4}\right)^2 \times \left(\frac{1}{3}\right)^2$$

$$= \frac{1}{36} \div \frac{1}{16} \times \frac{1}{9}$$

$$= \frac{1}{36} \div \frac{1}{144}$$

$$= \frac{36}{144} \times \frac{144}{144}$$

(ii)
$$\left[\left(\frac{5}{6} \right)^2 \times \frac{9}{4} \right] + \left[\left(-\frac{3}{2}^2 \right) \times \frac{125}{216} \right]$$

$$= \left[\left(\frac{5 \times 5}{6 \times 6} \right) \times \frac{9}{4} \right] + \left[\left(\frac{-3 \times -3}{2 \times 2} \right) \times \frac{125}{216} \right]$$

$$= \left[\frac{25}{36} \times \frac{9}{4} \right] + \left[\frac{9}{4} \times \frac{125}{216} \right]$$

$$= \left[\frac{25}{4} \times \frac{1}{4} \right] + \left[\frac{1}{4} \times \frac{125}{24} \right]$$

$$= \left[\frac{25}{16} \right] + \left[\frac{125}{96} \right]$$

$$= \frac{25}{16} \times \frac{96}{125}$$

$$= \frac{1}{1} \times \frac{6}{5} = 1\frac{1}{5}$$

 $=\frac{1}{36}\times\frac{144}{1}=4$

(iii)
$$5^3 \times 3^2 + (17)^0 \times 7^3$$

= $5 \times 5 \times 5 \times 3 \times 3 + (17)^0 \times 7 \times 7 \times 7$
(: $a^0 = 1$)
= $125 \times 9 + 1 \times 343$
= $1125 + 343 = 1468$

$$(iv) \ 2^5 \times 15^0 + (-3)^3 - \left(\frac{2}{7}\right)^{-2}$$

$$= 2 \times 2 \times 2 \times 2 \times 2 \times 1 + (-3) \times (-3) \times$$

$$(-3) - \left(\frac{7}{2}\right) \times \left(\frac{7}{2}\right)$$

$$= 32 \times 1 - 27 - \frac{49}{4} \qquad (\because a^0 = 1)$$

$$= \frac{32 \times 4}{1 \times 4} - \frac{27 \times 4}{1 \times 4} - \frac{49}{4 \times 1} \qquad (\because LCM = 4)$$

$$=\frac{128-108-49}{4}=\frac{-29}{4}=-7\frac{1}{4}$$

$$(v) (2^{2})^{0} + 2^{-4} \div 2^{-6} + \left(\frac{1}{2}\right)^{-3}$$

$$(4)^{0} + \left(\frac{1}{2}\right)^{4} \div \left(\frac{1}{2}\right)^{6} + \left(\frac{2}{1}\right)^{3} \quad (\because a^{0} = 1)$$

$$1 + \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right) \div$$

$$\left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right) + \left(\frac{2}{1} \times \frac{2}{1} \times \frac{2}{1}\right)$$

$$1 + \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2\right) + 8$$

$$= 1 + 4 + 8 = 13$$

$$(vi) \ 5^{n} \times 25^{n-1} \div (5^{n-1} \times 25^{n-1})$$

$$= 5^{n} \times 25^{n-1} \times \frac{1}{5^{n-1} \times 25^{n-1}}$$

 $=5^n \times \frac{1}{5^{n-1}} = 5^{n-n+1} = 5^1$

Question 6.

If $m^2 = -2$ and n = 2; find the values of:

- (i) $m + r^2 2mn$
- (ii) mⁿ + n^m
- (iii) $6m^{-3} + 4n^2$
- (iv) $2n^3 3m$

(i)
$$m^2 + n^2 - 2mn$$

$$m = -2, n = 2$$

$$=(-2)^2+(2)^2-2(-2)(2)$$

$$=4+4-(-8)$$

$$\begin{array}{c|cccc} 2 & 16 \\ \hline 2 & 8 \\ \hline 2 & 4 \\ \hline 2 & 2 \\ \hline & 1 \\ \end{array}$$

$$\frac{2}{2} \frac{4}{2}$$

$$= 8 + 8 = 16 = (2^4)$$

(ii)
$$m^n + n^m$$

$$m = -2, n = 2$$

= $(-2)^2 + (2)^{-2}$

$$=4+\frac{1}{2}\times\frac{1}{2}$$

$$=\frac{4\times4}{1\times4}+\frac{1}{4}$$

$$=\frac{16+1}{4}=\frac{17}{4}=4\frac{1}{4}$$

(iii)
$$6m^{-3} + 4n^2$$

$$m = -2, n = 2$$

$$= 6(-2)^{-3} + 4(2)^2$$

$$= 6 \times \frac{1}{-2} \times \frac{1}{-2} \times \frac{1}{-2} + 4 \times 2 \times 2$$

$$=\frac{-3}{4}+16$$

$$=\frac{-3+16\times4}{4}=\frac{-3+64}{4}=\frac{61}{4}=15\frac{1}{4}$$

(iv)
$$2n^3 - 3m$$

$$m = -2, n = 2$$

$$=2(2)^3-3(-2)$$

$$= 2 \times (2 \times 2 \times 2) - 3 \times (-2)$$

$$= 16 - 3 \times (-2)$$

$$= 16 + 6 = 22$$